
MASTER’S THESIS 2024

Point-Cloud-Based Crowd
Counting
Isak Jakobsson, Jonathan Runeke

ISSN 1650-2884
LU-CS-EX: 2024-30

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-30

Point-Cloud-Based Crowd Counting

Punktmolnsbaserad personräkning

Isak Jakobsson, Jonathan Runeke

Point-Cloud-Based Crowd Counting

Isak Jakobsson
is6427ja-s@student.lth.se

Jonathan Runeke
jo8561ru-s@student.lth.se

June 17, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Maj Stenmark, maj.stenmark@cs.lth.se

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:is6427ja-s@student.lth.se
mailto:jo8561ru-s@student.lth.se
mailto:maj.stenmark@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

Automating the process of counting people in crowds is crucial for enhancing
safety in various settings where crowds are present. Although camera-based
crowd-counting methods exist, they often struggle in suboptimal lighting con-
ditions and fail to safeguard the privacy of individuals within the crowds. To
address these limitations, we propose the use of LiDAR sensors, which offer
the dual advantages of maintaining high accuracy under all lighting conditions
and preserving privacy. LiDAR (Light Detection and Ranging) technology uses
lasers to scan an environment and generate a point cloud consisting of coordi-
nates in three-dimensional space. In this thesis, we developed and evaluated four
methods for crowd counting using LiDAR, three of which were deep-learning-
based and one based on a classical machine-learning algorithm. The models were
trained on synthetic data generated using the game creation software Unreal En-
gine 5. All four approaches underwent evaluation based on their performance
concerning people quantity, crowd density, and distance from the sensor. Our
findings indicate that the classical machine-learning approach, employing the
DBSCAN clustering algorithm, outperforms the deep-learning approaches. Al-
though the deep-learning models show promising features, they would benefit
from training on higher-quality data. We conclude by recommending further
development of point-cloud-based crowd counting, thereby paving the way for
a safer future in crowded environments.

Keywords: LiDAR, Point Cloud, Machine Learning, Density Estimation, Crowd Count-
ing, Clustering, Synthetic Data

2

Acknowledgements

Firstly, we would like to thank our supervisor, Maj Stenmark, for her support and feedback
throughout our master’s thesis. We also wish to express our gratitude to the team we had the
opportunity to work alongside, whose continuous support and positive work environment
we especially valued.

Front page image taken by Nazarizal Mohammad, depicting a sunset over Bungkarno
Stadium, Jakarta [1].

3

4

Contents

1 Introduction 7
1.1 Task and Purpose . 7

1.1.1 Research Questions . 8
1.2 Method . 8
1.3 LiDAR . 9
1.4 Limitations and Assumptions . 10
1.5 Ethics . 11
1.6 Contribution Statement . 11
1.7 Outline . 12

2 Theory 13
2.1 Existing Solutions . 13

2.1.1 Detection-Based Crowd Counting 13
2.1.2 Regression-Based Crowd Counting 14
2.1.3 Density Estimation . 15
2.1.4 Clustering in Point Clouds . 15

2.2 Machine-Learning Concepts . 17
2.2.1 Convolutions . 17
2.2.2 Convolutional Neural Network . 19
2.2.3 Segmentation . 19

2.3 Deep Learning on Point Clouds . 20
2.3.1 PointNet Architecture . 20
2.3.2 PointNet++ Architecture . 21

2.4 Unreal Engine 5 . 23

3 Approach 25
3.1 Dataset . 26

3.1.1 Simulated Dataset . 26
3.1.2 Real Data . 27
3.1.3 Evaluation Datasets . 27

5

CONTENTS

3.2 Human Clustering Approach . 28
3.2.1 Background Subtraction . 28
3.2.2 Clustering . 29

3.3 Head Clustering Approach . 29
3.3.1 Segmentation . 30

3.4 Density Estimation Approaches . 32
3.4.1 Class Densities . 32
3.4.2 Exact Densities . 33

4 Results 35
4.1 Background Subtraction . 35
4.2 Human Clustering Approach . 36

4.2.1 Finding Clustering Parameters . 36
4.2.2 Evaluation . 38

4.3 Head Clustering Approach . 41
4.3.1 Finding Clustering Parameters . 41
4.3.2 Evaluation . 44

4.4 Density Estimation Approaches . 47
4.4.1 Evaluation . 47

4.5 Deep Learning on Point Clouds . 50

5 Discussion 53
5.1 Dataset . 53

5.1.1 Advantages with Simulated Data 53
5.1.2 Limitations with Simulated Data 54
5.1.3 Advantages with Real Data . 55
5.1.4 Limitations with Real Data . 55

5.2 Deep Learning on Point Clouds . 56
5.3 Approaches . 57

5.3.1 Human Clustering . 57
5.3.2 Head Clustering . 58
5.3.3 Density Estimation . 59
5.3.4 Comparing the Approaches . 60

5.4 Future Work . 61
5.4.1 Alternative Approaches . 61
5.4.2 Train with Real Data and Improve Simulation 62
5.4.3 Algorithmical Approaches . 62

6 Conclusion 63

6

Chapter 1

Introduction

Crowd safety and analysis is an important area of research, where crowd counting is an es-
sential component. The ability to automatically count and track people in larger groups is
of great interest in applications ranging from ensuring general safety to optimising resource
allocations. Recent advancements in technology regarding machine learning and image pro-
cessing have led to increased performance of camera-based counting methods. However,
cameras are not always the optimal choice of sensor. In this master’s thesis, Light Detection
and Ranging (LiDAR)-based people counting methods were developed and tested to combat
the challenges camera-based methods may face.

Crowds may arise for multiple different reasons, where common cases include musical
concerts, large queues, evacuations, and public transport. As every crowd is different, flexible
and dynamic methods are needed to accurately analyse them. Denser crowds are generally
more dangerous and may, in some cases, be deadly. In 2021, ten people lost their lives at a
concert in Houston, USA, due to constant pressure from people around them [2]. To help
increase safety and reduce the risk of similar tragic events, more advanced crowd analysis
methods need to be developed.

In this thesis, four methods for people counting using LiDAR were developed and evalu-
ated. Three of the methods were deep-learning-based, and one employed a more traditional
machine-learning algorithm. Popular techniques used on LiDAR data were combined with
more traditional techniques used on camera-based methods. All networks have been trained
on simulated data generated using the game engine Unreal Engine 5 (UE5).

1.1 Task and Purpose
The primary objective of this master’s thesis was to produce an automated method for deter-
mining the number of people in a crowd using LiDAR sensors. This involved conducting re-
search on existing methods and subsequently devising our own models based on this research.
The models were to be compared to identify the most promising techniques for potential fu-

7

1. Introduction

ture refinement and implementation. Furthermore, this thesis aimed to test the usability of
deep learning on point clouds for crowd counting, compared to traditional machine learning
without the use of neural networks.

A crucial aim of this research was to enhance crowd safety measures. Accurate crowd size
estimation allows for proactive measures to mitigate potential hazards and minimise the risk
of harm to individuals in crowded environments. Beyond immediate safety concerns, this
research also intends to provide valuable insights for various stakeholders. Accurate crowd
analysis holds significance for marketing strategies and urban planning, enabling businesses
and authorities to understand crowd behaviour, preferences, and demands. This knowledge
can optimise resource allocation and decision-making processes to allow for better planning
of future events.

1.1.1 Research Questions
Based on the task above, these research questions could be formulated:

• RQ1: How can people counting be effectively implemented using point clouds?

• RQ1.1: How does the number of individuals in the crowd affect the accuracy and per-
formance of the people counting system?

• RQ1.2: What is the impact of crowd density on the performance of the people counting
system?

• RQ1.3: How does the distance from the LiDAR sensor influence the system’s perfor-
mance in counting people?

• RQ2: Is deep learning a viable approach for solving the task of people counting using
LiDAR data?

• RQ2.1: How do deep-learning models compare to traditional machine-learning algo-
rithms in terms of accuracy and efficiency for people counting?

By addressing these research questions, this thesis aims to contribute to the field in the
following ways:

• CS1: Expanding the scope of applications of LiDAR based surveillance systems.

• CS2: Provide insights into the performance characteristics of people counting systems
under varying conditions.

• CS3: Evaluate the effectiveness of deep-learning models trained on synthetically gen-
erated point clouds to solve the task of crowd counting.

1.2 Method
In order to be able to answer our research questions, we decided to develop, implement, and
evaluate several different approaches. After grasping what was already possible in this field

8

1.3 LiDAR

through a continuous literary study, we were able to begin to work with a specific strategy.
Inspiration for other solutions came from unexpected discoveries in previous implementa-
tions combined with further understanding of how to use machine learning to solve the task
of crowd counting. This resulted in several viable approaches, which we ultimately narrowed
down to four, namely, human clustering, head clustering, and two different implementations
of density estimation.

Some datasets were needed for this master’s thesis. Beyond a training dataset, specific
datasets were required to answer RQ1.1, RQ1.2, and RQ1.3. When producing these datasets,
two questions arose:

• What data is already available?

• How can we produce more data?

After deciding how to address these questions, we began to train, test, and evaluate our
approaches.

1.3 LiDAR
LiDAR is a type of sensor that has been growing in popularity since its invention in the
1960s [3]. The technology has been applied in multiple areas such as agriculture, vehicle
industry, and military, and more applications are being explored [4]. In recent years, the au-
tonomous driving industry has found good use of LiDAR to improve distance measuring and
positioning. The accuracy and robustness of the sensor, which performs well in suboptimal
conditions, make it a good choice for this type of application.

The LiDAR is an active remote sensor, meaning that it sends out a pulse of energy and
measures the changes in the returned signal [4]. This is in contrast to passive sensors, such
as cameras and thermal cameras, which only collect naturally occurring radiation without
emitting energy. Being an active sensor means that it can still perform well in conditions
such as darkness and bad weather, however, it also comes with its disadvantages. Depending
on the frequency of light used, some materials can be difficult for the LiDAR to accurately
measure. For example, water may absorb the light, and mirrors or glass may reflect most of
the light.

The main idea behind how the LiDAR works is the reflection of light [4]. Since the speed
of light is known, it is possible to measure the time for a beam of light to reflect off a surface,
bounce back, and use that to calculate the distance. This is the principle on which LiDAR
works. Mirrors are used to direct a laser in a scanning pattern and measure the distance to
thousands of points in its field of view. The density of points can be adjusted for specific
tasks, a lower number of points means more frames per second that can be captured. From
all of these measurements, a point cloud can be constructed for each captured frame.

A point cloud is a representation of LiDAR data, which can be visualised using a com-
puter. It is a cloud-like structure with points scattered for each of the received reflections
from the LiDAR scan. The points’ distance and angle to the origin of the point cloud are the
same distance and angle as from the LiDAR to the reflected surface. An advantage of point
clouds over normal images is that they can be interacted with, they do not necessarily have
to be viewed from the perspective of the LiDAR. With a stream of LiDAR data, it is also

9

1. Introduction

possible to construct a model of the background by looking at the points that stay the same
over a long period of time. Using this model, it is possible to filter out irrelevant parts of the
point clouds, making them easier to manage and understand.

Figure 1.1 shows a visualisation of a LiDAR point cloud.

Figure 1.1: A crowd, captured at Malmö Arena, visualised in a point
cloud. The colour is a gradient from red to blue, where red points
have a low reflection intensity and blue points have a high reflection
intensity.

1.4 Limitations and Assumptions

A crucial limitation to this master’s thesis was the lack of real annotated LiDAR data. As a
large part of the thesis was to evaluate the application of deep learning for crowd counting,
large amounts of data were needed to train the models. With the time it takes to annotate
point clouds in consideration, the option to automatically generate synthetic data was chosen.
However, simulating data came with its own limitations, discussed in subsection 5.1.2. Since
data generation was not the main objective of this master’s thesis, limited time was spent on
it.

Training deep-learning models is highly resource-intensive and requires powerful com-
puters. The computer that was performing the training of the models was equipped with a
NVIDIA GeForce RTX 3060 graphics card with 12GB of video memory. Even though this is
normally considered a powerful graphics card, it puts a limitation on how large the models
can be in terms of trainable parameters as well as how much data can be processed in a single
batch.

10

1.5 Ethics

1.5 Ethics

LiDAR offers more privacy than cameras. As mentioned in section 1.3, point clouds have a
low resolution and do not include any colours, therefore, it is almost impossible to recognise
people just from LiDAR data. This is especially evident when comparing point clouds to
cameras, which generate pictures that resemble the world we are used to seeing with our eyes.
To be able to recognise someone, features like facial details, hair, skin colour, and clothes are
used. None of these features are noticeable through LiDAR, while all of them exist in high-
resolution pictures.

When dealing with security, especially the surveillance of people in public and private
situations, it is crucial to adhere to current regulations. One such regulation is the EU Global
Data Privacy Regulation (GDPR). LiDAR holds a clear advantage over cameras because it is
non-identifying and thus automatically complies with GDPR. However, it should be noted
that individuals with very distinct features, such as being exceptionally tall or having two
heads, could still be identifiable in LiDAR data.

Injuries and deaths have been the result of multiple crowd accidents in recent history.
One of the more serious accidents was the stampede in Houston, USA, where ten people
lost their lives and approximately 300 people were injured. The organisers of this event were
not expecting this incident, even though they had protocols for bomb or terrorist threats,
shootings, and severe weather [2]. This shows the current lack of knowledge in this area and
the importance of improved crowd safety.

Malmö Stad has developed a chart for different densities of crowds, using colours to
indicate what type of crowd it is. The chart is made up of 5 zones: green zone, blue zone,
yellow zone, orange zone, and red zone. The green zone is when everyone has sufficient space
to be able to have fully stretched-out arms while spinning, roughly four square metres per
person. The blue zone is when everyone has space to stand without touching anyone else. The
yellow zone is when people are pressed together but can still wiggle their arms. The orange
zone is when the crowd is so compact that you cannot even move your arms anymore. Lastly,
the red zone is when some people lose contact with the floor, being lifted by the pressure of
the crowd. To counteract the red zone, people have to be lifted and pulled out of the crowd by
security guards. The zones are used to detect when crowds are starting to become dangerous.

1.6 Contribution Statement

Throughout the master’s thesis, we have been working side by side, always discussing with
each other. By working together, it was possible for both of us to get a full understanding of
the entire thesis. However, in order to work in parallel, we continuously divided the work
between us. An example of that is when we started to implement the machine-learning mod-
ules. Here, Jonathan focused on the task of head clustering, while Isak focused on the density
estimation approaches.

11

1. Introduction

1.7 Outline
Important theories and concepts behind our work are provided in chapter 2. In chapter 3,
we describe how our datasets were made, followed by a description of our four proposed
approaches. Then, all the results will be presented in chapter 4 and discussed in chapter 5.
chapter 6 provides a conclusion of the master’s thesis.

12

Chapter 2

Theory

This chapter describes the methods and techniques that were chosen to solve the task of
crowd counting using LiDAR. An overview of existing solutions is provided, along with their
advantages and disadvantages. Then we go through some important machine-learning con-
cepts as well as the architecture of the deep-learning models we used in the implementation.

2.1 Existing Solutions
Previous research in this area primarily focuses on crowd counting using cameras. Cam-
era technology has been around longer than LiDAR and has been more widely used in
surveillance. There are three core approaches for crowd counting that have been explored:
detection-based, regression-based, and density estimation [5, 6]. These three strategies will
be discussed in the following subsections.

2.1.1 Detection-Based Crowd Counting
Object detection in images is a well-studied topic in computer vision. It has seen rapid de-
velopment in the past 20 years, driven by advancements in machine learning. The devel-
opment of object detection can be separated into two historical periods: before and after
deep-learning [7].

Before 2012, object detection was done without the help of neural networks. The first
algorithm to achieve real-time face detection was the Viola Jones Detector, created by P.
Viola and M. Jones in 2001. It used sliding windows to search images for faces at different
scales and positions. A few years later, N. Dalal and B. Triggs revealed the HOG (Histogram
of Oriented Gradients) detector, mainly built for the purpose of pedestrian detection. The
later stages of the 2000s were dominated by the Deformable Part-Based Model, proposed by
P. Felzenszwalb in 2008. It was an extension of the HOG detector and used a divide-and-
conquer strategy to detect even more classes than previously possible [7].

13

2. Theory

Convolutional Neural Networks (CNN), described in subsection 2.2.2, revolutionised
the field of object detection in 2014, starting with the introduction of Regions with CNN
(RCNN). It worked by selecting candidates for objects in an image and feeding them into a
CNN to extract its features, which were then used as input to a linear classifier. From this,
a large number of algorithms and improvements have been developed and are still being re-
searched. Current strategies for object detection can be categorised into two types: one-stage
methods and two-stage methods. One-stage methods achieve faster inference speeds, while
two-stage methods generally achieve higher accuracy. Recently, research regarding the use
of transformers in computer vision has led to further advancements in performance. The
current state-of-the art model, Co-DETR, uses this technique [8] [7].

Detecting people in an image and counting them may seem like a natural approach to
the task of crowd counting. However, crowded scenes are problematic for detectors. As
partial occlusion and long distances are introduced, the accuracy of detection-based methods
rapidly decreases. Figure 2.1 shows how a detection model fails to detect a partially occluded
person. A method of detection-based counting has been proposed by B. Wu and R. Nevatia
in 2005, building on the Viola Jones Detector [9]. Their method worked by detecting the
edges of people and combining them. This technique allows the algorithm to detect partially
occluded people better than traditional detection, however, it is still limited by low resolution
and large distances [10].

Figure 2.1: Two people are detected as one, showing a flaw in
detection-based counting.

2.1.2 Regression-Based Crowd Counting
Regression is the process of learning the relationship between input and output data from an
unknown function [11]. Machine-learning models can learn this relationship by processing
examples with known outputs and updating their internal estimation of the function. There
are multiple forms of regression: linear regression, Gaussian process regression, Bayesian re-
gression, and many more, all suitable for different tasks. The most common type is linear
regression, which aims to estimate the line that best represents the relationship between in-
put and output. Typically, the mean squared error is used as a metric to determine how well
the model performs.

An approach for crowd counting based on Bayesian regression has been proposed by
Antoni B. Chan and Nuno Vasconcelos [12]. One of the main advantages of using Bayesian

14

2.1 Existing Solutions

regression is that it can utilise prior knowledge and is flexible, meaning it can handle both
complex and linear models [13]. This regression-based model shows better performance com-
pared to the detection-based model previously discussed. However, regression-based count-
ing techniques lack spatial information [14]. Only the estimated size of the crowd is returned
by the model, with no way of knowing the distribution of the individual people.

2.1.3 Density Estimation
Density estimation is a more recent approach to crowd counting [14]. The idea is that a
machine-learning model takes an image of a crowd as input and outputs a new image, where
every pixel represents how many people there are in that section of the input image. It results
in a density map showing how the people in the crowd are distributed, as well as a way of
telling where the crowd is the most dense, see Figure 2.2. The density map also has the
important feature that the integral over all pixels results in the number of people visible in
the image.

A density estimation model using a two-columned CNN was proposed by V. Ranjan et
al. [15] in 2018. It works by producing both a low-resolution and a high-resolution density
map and combining the results. This way, they can extract features on a larger scale with the
low-resolution branch and use that to improve the high-resolution density map. At the time
of publishing, their method reached state-of-the-art performances on popular datasets for
crowd counting.

One issue that density estimation is susceptible to is vegetation and other messy back-
grounds. Objects such as trees and bushes may be detected as highly dense areas of the image,
resulting in counting mistakes in those sections, as can be seen in Figure 2.2. Z. Lui et al. tackle
this by incorporating foreground segmentation and global scale information [6]. The fore-
ground segmentation helps with eliminating the intricate background, while the global scale
information adjusts the predicted count according to an overall density level in the image.

Another drawback of using density estimation is the tedious process of annotating the
data. For regression-based models, the ground truth is just the number of people visible in
the image. To accurately train a CNN to output density maps, the ground truth also has to be
density maps. This means that the annotation process is to manually create these maps for the
dataset. Usually, this means placing a pixel on all heads in the image and using a smoothing
algorithm to blur that pixel over a larger area, as can be seen in Figure 2.2 (b). Annotating
images with hundreds or even thousands of people is itself a large task, let alone annotating
an entire dataset. However, while it may be difficult to find data for specific scenarios, there
exist annotated datasets for crowd counting using density estimation [16].

2.1.4 Clustering in Point Clouds
Clustering is an important technique that can be applied to point clouds. It is the process of
grouping together a selection of points based on a specific criterion [18]. This grouping can
be done based on features such as distance to a point’s neighbour, the reflectance of points,
as well as other features depending on the task. Clustering can be used as a way to abstract
a point cloud, meaning that instead of working with tens of thousands of points, one can
work with only a handful of clusters. The technique allows for easier analytics on large point
clouds, i.e. it is easier to track a cluster than to track individual points.

15

2. Theory

Figure 2.2: Intricate background misidentified as people. (a) Input
image, (b) Ground-truth density map, (c) Estimated density map.
Image from the paper A survey of recent advances in CNN-based
single image crowd counting and density estimation [17]. Used with
permission from the author.

A common clustering algorithm used when processing point clouds is Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN). A great advantage of this algorithm
compared to others, such as K-Means, is that the number of clusters to find is not specified
before running the algorithm. Instead, two parameters—the maximum radius eps and the
minimum number of neighbours min_points—are set, and DBSCAN will find all the clus-
ters that fit these values. The algorithm works by finding core cluster points by checking if
the distance to any of their neighbours is less than eps. If a point has more than min_points
neighbours in this radius, these points are marked as a cluster. Clusters containing some of
the same points are then merged until no clusters overlap. The pseudo code can be found in
Algorithm 2.1, taking in the data D, eps, and min_points. In Figure 2.3, it can be seen how
eps affects the clustering. The number of clusters found directly depends on these parame-
ters, which makes it important to tune them right in order to only find the clusters that are
relevant. As a result of narrowing the parameters, more points are being labelled as noise.

The main problem with using clustering as a method for counting people in crowds is
that as the crowd gets denser, the clusters tend to blend together. When two people get too
close together, it becomes difficult for the clustering algorithm to differentiate the clusters,
and they are counted as one person.

16

2.2 Machine-Learning Concepts

Figure 2.3: Demonstrating DBSCAN clustering on 2D data with
varying eps. The labels indicate what cluster a point belongs to.
Points with the label -1 are seen as noise points and do not belong
to any cluster.

2.2 Machine-Learning Concepts
In this section, some important concepts used in machine learning are described.

2.2.1 Convolutions
In the context of machine learning, a convolution is a method used to filter out specific
features from an input vector, e.g. an image [19]. It works by sliding a kernel (a small matrix
of weights) over the image and calculating the scalar product for each position of the kernel.
The output image will be of the same size or smaller than the input, depending on whether

17

2. Theory

Algorithm 2.1 DBSCAN

1: function DBSCAN(D, eps, min_points)
2: C ← 0
3: for all unvisited points p ∈ D do
4: mark p as visited
5: N ← regionQuery(p, eps)
6: if len(N) < min_points then
7: mark p as NOISE
8: else
9: C ← C + 1

10: expandCluster(p, N , C, eps, min_points)
11: end if
12: end for
13: end function

14: function expandCluster(p, N , C, eps, min_points)
15: mark p as part of cluster C
16: for all p′ ∈ N do
17: if p′ is not visited then
18: mark p′ as visited
19: N ′ ← regionQuery(p′, eps)
20: if len(N ′) ≥ min_points then
21: N ← N ∪ N ′
22: end if
23: end if
24: if p′ not part of any cluster then
25: mark p′ as part of cluster C
26: end if
27: end for
28: end function

29: function regionQuery(p, eps)
30: return all points within eps-radius of p (including p)
31: end function

zero-padding was used or not. If zero-padding is used, a frame of zeros is added to the input.
Another hyperparameter is stride, which determines how far the kernel should be moved
with each step. A 2D convolution, visualised in Figure 2.4, can be described as follows:

B(x, y) =
a∑

i=−a

b∑
j=−b

ω(i, j)A(x − i, y − j) (2.1)

where A is the input matrix, ω is the kernel, and B is the result of the convolution. Every
element of the kernel is included in −a ≤ i ≤ a and −b ≤ j ≤ b.

18

2.2 Machine-Learning Concepts

Figure 2.4: Illustration of how 2D convolutions work. Matrix A is
convolved with kernelω to produce matrix B. No zero-padding was
used in this example, resulting in a smaller output matrix.

2.2.2 Convolutional Neural Network
A CNN is a neural network that takes advantage of convolution [19]. A CNN is usually con-
structed with multiple convolutional layers followed by a flattening process that ends with
one or more fully connected layers. A convolutional layer requires fewer weights than fully
connected layers and is more common when working with images [20]. To demonstrate the
difference, suppose an input image of size 64x64 with three colour channels and a kernel
of size 6x6x3. A convolutional layer would have 108 weights, while a single neuron would
have 12,288 weights each in a fully connected layer. Furthermore, a fully connected layer is
generally made up of more than one neuron, which means there would be linearly 12,288 ad-
ditional weights per neuron. A common type of intermediate layer in a CNN is max pooling.
This layer reduces the size of the input by selecting the maximum value within each kernel’s
area as the output.

2.2.3 Segmentation
Segmentation is a process for dividing something into different parts. In image segmentation,
it could mean finding regions of specific objects in the image. When doing segmentation with
machine learning, the goal is to predict a label for each pixel, meaning that all pixels of a car
get the class label Car, and all pixels of humans get class label Human. The same concept holds
for segmentation in point clouds. But instead of predicting labels to pixels, each point in the
point cloud gets a label.

There are three types of segmentation: semantic segmentation, instance segmentation,
and panoptic segmentation [21]. The types of segmentations are visualised in Figure 2.5.
Semantic segmentation is when the label describes the object in that pixel, e.g. Car, Human,
and so on. Instance segmentation is a combination of semantic segmentation and object
detection. The result of instance segmentation is, therefore, both what type of object it is and
which specific instance of the object it is. Finally, panoptic segmentation is a combination of
semantic and instance segmentation. It uses instance segmentation for objects that should

19

2. Theory

be counted, such as people or cars, and it uses semantic segmentation for objects that do not
have to be counted, such as trees or roads.

Figure 2.5: Visualises the different types of segmentation [21]. Used
with permission from the author.

2.3 Deep Learning on Point Clouds
In this section, we will discuss how to use deep learning on point clouds. Deep learning is a
form of machine learning that employs deeper network architectures, such as multi-layered
neural networks. A point cloud is a set of points in R3 space, where each point has a x, y,
and z value. Compared with images, point clouds are very irregular since there is no order
between points and the number of points varies.

There are methods available to transform a point cloud into a more regular shape, such
as the image grid transform and voxel transform. An image grid consists of a collection of
images from different viewpoints generated from a point cloud, whereas voxels are regular
grid cubes in 3D space. A voxel is considered occupied if at least one point from the point
cloud is located within it. However, transforming the point cloud into voxels or image grids
presents certain challenges. When using voxels, the size of the voxel must be determined. Very
fine-grained voxels result in a large matrix, requiring some compression, while larger voxels
create a smaller matrix but require greater compression. Additionally, these transformations
can obscure natural invariances present in the original data.

Using one of these transforms would mean that CNN could be used as a network. How-
ever, to be able to use the point clouds themselves as input, the network has to be able to deal
with the following three properties of point clouds:

• Unordered. The order of the points should not matter.

• Interaction among points. Points should be located in metric space and have mean-
ingful neighbours.

• Invariance under transformations. Transformations such as rotating the point cloud,
should not result in different segmentation and classification outputs.

2.3.1 PointNet Architecture
PointNet is a deep-learning architecture that is able to solve segmentation and classification
tasks on point clouds. It was proposed by Qi et al. in 2017 [22] and was one of the first deep

20

2.3 Deep Learning on Point Clouds

network architectures that was able to use point clouds as input without having to transform
them into image grids or 3D voxels in advance.

The architecture of PointNet is visualised in Figure 2.6. The main pipeline is for learning
classification problems. It takes an input of n points and outputs a one-hot vector of size
k, i.e. a vector where a single value is 1 and all other values are 0. Each value of the one-hot
vector represents a class, and the index with value 1 is the corresponding predicted class for
the input.

Figure 2.6: PointNet Architecture. The blue part is the classification
network, and the yellow part is the segmentation network, which is
an extension of the classification network. Image by Qi et al. [22].
Used with permission from the author.

The segmentation network is an extension of the classification network, with the differ-
ence that it returns a class for each input point. Here, m is the number of classes.

PointNet consists of three central modules: a symmetry function, local and global infor-
mation aggregation, and a joint alignment network.

For the symmetry function, PointNet utilises max pooling. The purpose of a symmetry
function is to ensure that the result is independent of the order of the inputs. The max
pooling in PointNet has an input shape of n x 1024 and an output shape of 1024. The output
is the largest value in each column. As seen in Figure 2.6, all points are treated separately
before the max pooling, which ensures that the input order does not matter.

Local and global information aggregation ensures that points can interact with each
other. By concatenating all point features with the global feature gained from max pooling,
every point obtains information about the point cloud. This is visualised at the beginning of
the segmentation network part of Figure 2.6.

The 3x3 and 64x64 T-net transforms in the architecture are two joint alignment net-
works. They make sure that the network is invariant to rigid transformations, i.e rotations,
translations, and reflections.

2.3.2 PointNet++ Architecture
PointNet++ is a successor to PointNet, created by the same people as the original Point-
Net [23]. PointNet++ aims to solve two issues with its predecessor. The first issue involves

21

2. Theory

managing features with different scales in the same point cloud. And the second is to be able
to process point clouds of varying densities.

In order to solve these problems, PointNet++ employs a hierarchical neural network ar-
chitecture for processing point clouds. The hierarchical architecture enables the network to
find both local and global features of the data. The PointNet++ architecture is visualised in
Figure 2.7. PointNet++ uses sampling and grouping to find local regions of the point cloud,
followed by a forward feed through an original PointNet network for each local region, using
PointNet as described in section 2.3. The layers work as follows:

• Sampling Layer. This layer takes the whole point cloud as input and finds centroids
for all local regions by doing iterative farthest point sampling (FPS). FPS begins by
selecting a random point as the first centroid. The other centroids are found by iter-
atively selecting the point farthest away from the previously selected centroids. FPS
gets better coverage of the point cloud compared with random sampling.

• Grouping Layer. With the centroids found in the sampling layer, this layer can create
local regions. PointNet++ uses a ball query to find all points within a certain radius of a
centroid with an upper limit of K points. Another method would be to use K nearest
neighbour (kNN) search to find the K nearest points. Ball query is more favourable
because it assures a fixed region scale.

• PointNet Layer. This layer extracts features from each local region by doing a forward
pass through a PointNet network. However, before the local region is passed through
the PointNet, it is translated to a local coordinate system with the centroid set as the
origin. The same PointNet is used for each local region, similar to how the same kernel
moves over an image in a convolutional layer.

Figure 2.7: PointNet++ Architecture. Each step includes sampling,
grouping, and a small PointNet. The final part of the network is
divided into a segmentation network and a classification network.
Image by Qi et al. [22]. Used with permission from the author.

As seen in Figure 2.7, these three layers are repeated until the set abstraction is completed.
From there, it is possible to either do segmentation with point feature propagation or do

22

2.4 Unreal Engine 5

classification with a multi-layered perceptron (MLP). A MLP is a type of neural network
where multiple layers of neurons are connected, and the data is fed forward through the
network to produce an output at the last layer.

Since every point from the input point cloud needs a label in segmentation, the last ab-
stracted point cloud has to be up-sampled to the original size. The segmentation process
begins by interpolating features for points that were discarded during each grouping layer.
The features f (x) are the inverse distance weighted average of the features of the k nearest
neighbours in the previous layer and are calculated with Equation 2.2. A skip link concate-
nation is applied, where the interpolated features are concatenated with the features from
the corresponding set abstraction. Before repeating the interpolation process again, a "unit
PointNet" is applied to each point. The "unit PointNet" acts like a one-by-one convolution
in CNNs. When the point cloud is fully upsampled, a per-point score for the segmentation
has been found.

f (x) =
∑k

i=1 ωi(x) fi∑k
i=1 ωi(x)

where ωi(x) =
1

d(x, xi)2 (2.2)

2.4 Unreal Engine 5
The simulator used to generate the data for this thesis was built in UE5. UE5 is a 3D game
engine built by Epic, especially used in game development, but it can also be used as a sim-
ulator [24]. Games built on UE5 include Fortnite and Ark: Survival Ascended. The Engine
provides tools for creating realistic environments with accurate visuals, lighting, and physics
while still running efficiently in real time on the computer. UE5 is mainly built for game
developers who want to create worlds for their games. However, in this master’s thesis, it
was used to simulate and record crowds with a LiDAR sensor.

23

2. Theory

24

Chapter 3

Approach

This chapter begins by discussing how all of our data was generated, describing the different
datasets used throughout the master’s thesis.

In the sections 3.2, 3.3, and 3.4, we will describe how all of our approaches were imple-
mented. The first approach, described in section 3.2, called human clustering, was based only
on a clustering algorithm finding the clusters of all people. The approach described in sec-
tion 3.3 is called head segmentation. This approach used a deep-learning model to segment
heads from the point cloud, then a clustering algorithm was applied to count the number
of heads. Finally, two density estimation approaches are described in section 3.4. Both of
these were deep-learning approaches trying to estimate the number of people per point in
the point cloud, meaning that the sum over all points estimates the number of people in the
entire point cloud. A graphical overview of the entire workflow is visualised in Figure 3.1.

Figure 3.1: Graphical overview of the workflow.

25

3. Approach

3.1 Dataset
To solve the problem of not having any data to work with, we could either chose to record
LiDAR data from the real world, or synthetically generate it using a simulator such as UE5.
We opted for generating the data since it allowed for automatic annotation and faster data
gathering. Some real data was collected as well, to be used for visual testing.

3.1.1 Simulated Dataset
As previously mentioned, UE5 was used to generate the simulated data. Another alterna-
tive would have been to use an already existing LiDAR simulation tool called Carla, which is
mostly used to create simulated data for autonomous driving systems, built on Unreal Engine
4 (UE4) [25]. Although Carla has been used in master’s theses prior to ours with somewhat
successful results, as in "Pedestrian detection and tracking in 3D point cloud data on lim-
ited systems" [26] and "Segmentation, Classification and Tracking of objects in LiDAR Point
Cloud Data Using Deep Learning" [27], we decided to use UE5. Our decision was based on the
fact that we already had some experience using UE5, and we felt that we had more freedom
in controlling how the LiDAR should behave compared to the Carla simulator. Additionally,
UE5 is a well-established tool for creating simulations [28].

The Epic Games Marketplace offers assets, both paid and free, that can be used by cre-
ators in UE5, some of which come with pre-built worlds. The worlds we chose to work with
were a park map called City Park and an auto-generative city map. Both of these were free to
use. We also created our own map, where we could easily control the number of people and
the size of the space they could walk around in. This map was only used to create controlled
test scenarios, as described further in subsection 3.1.3. The city map had generative proper-
ties, meaning that the city was randomly generated from a palette of a few different buildings,
randomly placed trees, and varying road layouts. To maximise entropy, we wanted the world
to include variance in ground level, such as stairs or slopes, which the city map lacked. The
park contained multiple ground levels, with staircases connecting them. While the park did
not have generative properties, it was still a large enough world with multiple locations suit-
able for recording. Some interesting locations include a fountain park with staircases and a
baseball field, which, when filled with people, could look like a concert crowd.

A crowd was simulated by manually placing pedestrian paths in the editor that humans,
called MetaHumans, would follow. MetaHumans are a type of non-playable character avail-
able in the Epic Games Marketplace. They come with a set of intelligence traits that allow
them to navigate the pedestrian paths fluently without clipping through each other or other
objects in the scene. The paths that they followed were not strict, meaning that they did
not have to follow exact paths but rather roam around freely close to the paths, resulting in
crowds that appeared more lifelike.

The data was generated by placing LiDAR modules around the crowd. For each scene,
we used between three and five LiDAR modules in order to capture more data from the same
crowd. The LiDAR modules were placed in a way that made them have completely different
views of the crowd by placing them at different locations with varying heights and angles.
The reason we wanted more than one LiDAR in each scene was that we could generate more
varied data faster this way.

26

3.1 Dataset

One LiDAR data file contained all the points from a single point cloud. Each line in the
file had information about one point, mainly: x, y, z, distance, reflection intensity,
line_index, object_ID, and annotation_ID. The coordinates were represented by x, y,
and z, measured in Unreal units. These units were interpreted as centimetres when using
the datasets. The distance parameter represented the distance from the LiDAR sensor
to the point in Unreal units. The reflection_intensity was a floating point number
between 0 and 1, where 1 is total reflection while points with reflection_intensity close
to zero are less reflective. The Line_index denoted which line the point belonged to. The
object_ID was a unique number shared with points that came from the same MetaHuman.
Lastly, annotation_ID was used differently depending on how we wanted to annotate the
data for the different approaches, described in sections 3.3, 3.2, and 2.1.3.

When recording with the LiDAR sensor, we excluded most of the background points
from the data. This simplified the training process, and by never including them directly, we
did not have to send the data through a background subtraction step when training. How-
ever, since we wanted the models to be trained with data that resembles real data, where
background subtraction may not always be perfect, we did not exclude all background points.

3.1.2 Real Data
Even though we did not opt for real-world LiDAR recordings, we have two hours of LiDAR
data from a real crowd. The data was recorded at an event at Malmö Arena for the employees
of the company we wrote for. This was a great opportunity for us to get a chance to work
with a real LiDAR sensor while at the same time being able to collect some valuable data.

The LiDAR was placed 2.40 metres above the floor in the perimeter corridor of the arena.
The LiDAR overlooked four entrances into the arena. We chose this location because a lot
of people would gather around the entrances in the beginning and during the pauses of the
event. Before the event began, the space in front of the LiDAR was nearly empty of people,
and as the entry to the arena began, more and more people occupied the space. This increase
in people density meant that we got data on crowds of varying sizes and densities, ranging
from a couple of people up to a blue zone crowd, as described in section 1.5.

As mentioned in subsection 3.1.1, it is time-consuming to annotate LiDAR data manually.
Therefore, we decided not to annotate any of the real data we captured at Malmö Arena and
thus not use it for training. Instead, we only used it for visual evaluation of our approaches.

3.1.3 Evaluation Datasets
To evaluate the performance of our approaches, we produced three different datasets, aiming
to test the robustness of our approaches. The tests were designed to evaluate the performance
with respect to people quantity, crowd density, and distance. The three datasets had 1,000
samples each.

For the evaluation with respect to people quantity, a dataset containing samples from ten
scenes was used. Every scene had a different number of people, ranging from 1 to 750. From
this evaluation, we wanted to find out in what ranges our approaches perform better and in
what ranges they perform worse.

In the dataset for evaluating crowd density performance, every sample had 100 people in
it, while the area they were placed in varied from 100 square metres up to 784 square meters.

27

3. Approach

In other words, the smallest square the crowd was bound to was 10 by 10 metres, and the
largest was 28 by 28 metres. An increase of two metres in side length was applied in order to
get ten different area sizes in the test. The information we wanted to gather from this test
was how well our approaches could handle dense and sparse crowds.

For the distance evaluation test, a dataset with varying distances from the LiDAR sensor
to the crowd was made. Just like the density test, every sample had 100 people in it, but
in this case the area was constant at 400 square metres. The closest distance was 19 metres,
and the furthest distance was 100 meters. Again, ten different scenes were made, with the
distance increasing by nine metres per scene. We wanted this test in order to evaluate if there
were any differences in the result depending on the distance to the crowd.

3.2 Human Clustering Approach
The first and most simple approach to crowd counting was to find all clusters in a point cloud
and count them. Since people in a point cloud appear as clusters, an algorithm such as the one
described in subsection 2.1.4 could be used to find them. The last step is to simply count the
number of clusters found by the algorithm. Therefore, this approach uses no deep learning,
only the clustering algorithm. Before any of these steps could be applied, the point cloud had
to be filtered to remove any background points that might interfere with the clustering. All
of these steps form a pipeline, outputting a number for a given point cloud. The pipeline
can be seen in Figure 3.2, and the individual steps are further described in the following
subsections.

Figure 3.2: Pipeline for the human clustering approach.

3.2.1 Background Subtraction
To improve the performance of the clustering algorithm, all irrelevant points in the point
cloud should be filtered out, leaving only the points composing humans. This could be
achieved using a background subtraction step. This module works by taking in a point cloud
that serves as a background model and comparing it to another point cloud. Ideally, this
background model should contain no objects except for the ones that should be filtered out,
and the background should be as similar as possible to the rest of the data. The subtrac-
tion works by voxelising the background model and saving the voxels (3D version of a pixel)
containing points in a set. Voxelising is the process of dividing 3D space into a fixed-size
grid of voxels. The next step is to simply remove all points in the input point cloud that lie
inside one of the background voxels. The accuracy of the filtration depends on both the back-
ground model and the voxel size. A larger voxel size accepts more error in the background
model while potentially removing more points from the input than necessary.

The pseudocode outlining the background subtraction algorithm as described above can
be found in Algorithm 3.1. The algorithm takes in three parameters: B: the point cloud of

28

3.3 Head Clustering Approach

the background model; X : the point cloud that is to be background filtered; and size: the
size of the voxels.

The same background subtraction algorithm was used in all following approaches.

Algorithm 3.1 Background subtraction

1: function backgroundSubtraction(B, X , size)
2: Y ← [] ▷ Output points
3: V ← [] ▷ Background voxels
4: for all b ∈ B do ▷ Voxelise all points in background
5: v ← voxelCoordinates(b, size)
6: Add v to V
7: end for
8: for all x ∈ X do ▷ Filter the input
9: v ← voxelCoordinates(x, size)

10: if v /∈ V then
11: add v to Y
12: end if
13: end for
14: return Y
15: end function

16: function voxelCoordinates(p, size)
17: y ← round(p ÷ size) × size
18: return y
19: end function

3.2.2 Clustering
The clustering part of this pipeline was relatively simple. It used an existing implementation
of the DBSCAN clustering algorithm by scikit-learn, similar to Algorithm 2.1. The process
of finding the parameters eps and min_points consisted of performing tests on a training
dataset with different combinations of the parameters. Using the results from these tests, an
optimal set of parameters could be chosen.

Finally, to get the total number of people in the point cloud, all of the clusters found
could be counted.

3.3 Head Clustering Approach
This approach to solving the task includes two main parts. The first part was to find all the
heads of the people by using a segmentation deep-learning model, and the second was to
cluster the heads. It was reasonable to assume that heads are usually further separated than
the bodies of people in crowded situations, making them easier to cluster. Depending on
the density of the crowd, people may make contact shoulder-to-shoulder while their heads
stay separated. To take advantage of this, a model has been trained to segment the heads,

29

3. Approach

meaning it can filter out all the points that do not belong to people’s heads. This process is
further described in the following subsection. With the point cloud only containing heads,
the same clustering technique as in section 3.2 could be applied. These steps are visualised in
the pipeline in Figure 3.3.

Figure 3.3: Pipeline for the head clustering approach.

3.3.1 Segmentation
The segmentation model was built in Python using the PointNet++ architecture, as described
in subsection 2.3.2. The dataset contained crowds in the range of 1–700 people, with varying
densities of the crowd as well as varying distances to the LiDAR sensor. The background was
mostly filtered out when generating the data, leaving a small amount of noise to help with the
generalisation of the model. This also meant that we could skip the background subtraction
step in our pipeline when training.

When studying the generated data closer, it was noticed that the class distribution was
not even. In our data, we have two classes: other and head, where the other points mas-
sively outnumbered the head points. This is problematic when training the machine-learning
model since it produces bias in the model and inaccurate metrics. The training would indi-
cate unreasonably high accuracy at the start of training, predicting the other class for every
point in the point cloud. To help the model make sense of this unbalanced data, we incor-
porated class weights into the loss function—cross entropy in this case. These class weights
adjust the impact a training example has on the model’s weights. In our case, it would mean
that an error on the head class would have a larger impact than an error on the other class.
Adding this, as well as implementing more relevant metrics such as precision, recall, and f1-
score, helped us improve the segmentation model. Figure 3.4 shows an example of how an
annotated point cloud may look.

The PointNet++ architecture requires the input to always have the same shape, meaning
the point cloud has to have the same number of points for every sample. This requirement
imposed a few challenges. It is not reasonable to assume that a point cloud from a LiDAR will
have the same number of points for every frame, since reflections and noise will cause points
to appear and disappear unpredictably. Furthermore, when filtering out the background, the
number of points remaining depends entirely on the number of moving objects in the scene,
which in our case is the crowd size. Therefore, we had to downsample or upsample the point
cloud to a fixed number of points before our model could process it. This was done using a
fixed-point transform that either removed or duplicated points uniformly until the desired
number of points was met. To minimise data loss in this step, we found the median value for
the number of points per sample in our train dataset and applied the fixed point transform
to that number. This means that there are as many upsamples as downsamples in total.

In addition to the fixed-point transform, normalisation transforms are also applied. Nor-
malisation is the process of bringing all data to a similar scale, between 0 and 1. This will

30

3.3 Head Clustering Approach

help the model become scale-invariant and generally improve its performance. We start by
centering the point cloud around the origin (0, 0, 0) by subtracting the mean from all points:

p′i = pi −
1
N

N∑
j

p j (3.1)

All of the point coordinates are then divided by the largest coordinate in the sample,
resulting in a normalised point cloud:

p′′i =
p′i

max(abs(P))
(3.2)

When utilising the trained model for inferring new, unseen data, the sample is passed
through the network multiple times. Since we apply the previously mentioned transforms,
the output will vary when predicting the same data. Predicting multiple times allows us to
create a statistical probability for every point to decide what class it should have, depending
on the number of times it was predicted to be a certain class.

These transforms also had an impact on the clustering part of the pipeline. If we were to
run the clustering algorithm on the data after it had been normalised, the distances between
points would vary depending on how much the point cloud was scaled during the transforms.
This would mean that the clustering parameters, mainly eps, had to be different for all sam-
ples. To solve this, we store the scaling factor and offset that were used in the transformations
and apply them in reverse to get the original point cloud back to the way it was before clus-
tering. This ensures the clustering is always applied to point clouds with the same units of
measurement.

Figure 3.4: Annotated point cloud from the training dataset. Blue
points are head class, red points are other class.

31

3. Approach

3.4 Density Estimation Approaches

As mentioned in subsection 2.1.3, density estimation has reached state-of-the-art perfor-
mance in counting people in images. Therefore, it seemed interesting to attempt to replicate
this technique on point clouds. A density map could be represented in a few different ways
in 3D data, and it is not clear which would be the optimal representation. In the follow-
ing subsections, two approaches using density estimation are described, both based on deep
learning.

3.4.1 Class Densities

Density estimation and segmentation are closely related in the sense that every data point is
assigned a value. Using this logic, a method for assigning classes that represent densities to
the points in the point cloud was formulated. To decide what class a point should be assigned
in the annotation process, we look at the total number of points that compose a person in
the point cloud. All of these points will share the same class kp, which can be found using
the following formula:

kp = round
(

K
1 + e−a(np−C)

)
(3.3)

where K is the number of classes, a is the area covered, np is the number of points that com-
pose person p, and C is the centre of the function. Figure 3.5 (a) displays an example of
how this function may look. When analysing our generated data, we observed that the dis-
tribution of points comprising an individual was not uniform; rather, it resembled a normal
distribution, as can be seen in Figure 3.5 (b). Because of this, we decided to use this sigmoid-
like function for class assignment, as that would even out the number of samples per class,
therefore creating a more balanced dataset.

After the model had predicted classes for each point in a point cloud, we could use the
following equations to find the density, dp, for a point:

np = min

−ln
(

K
k − 1

)
a

+C, 2C

 (3.4)

dp =
1
np

(3.5)

Using these equations, the sum of all dp belonging to person p will be close to one. The
reason it is not exactly one is because of the rounding in Equation 3.3. This also means that the
larger K is, the more accurate the densities will be, which is not suitable for machine learning
in general since adding more classes makes it more difficult for the model to differentiate
them.

The last step in the pipeline, as visualised in Figure 3.6, is to sum up all the densities for
each point to get the total count of people.

32

3.4 Density Estimation Approaches

Figure 3.5: (a) Graph of Equation 3.3, using K = 20, a = 0.02,
C = 150, and varying np. (b) Graph displaying the distribution of
the number of points per person throughout the dataset.

Figure 3.6: Pipeline for the density classes approach.

To understand this better, an example will be walked through. Assume a scene containing
two people at different distances from the LiDAR. In the resulting point cloud, the two
people will be composed of some number of points, say 195 points for the first person and
113 points for the second. Assuming perfect background subtraction, these are the only points
that remain. Using Equation 3.3 and the same parameter values as in Figure 3.5 (a), we find
that all of the points composing the first person should be assigned class 14, and all points
composing person 2 should be assigned class 6. These are the classes that the segmentation
model will attempt to predict. To turn these classes into densities that can be used to find the
number of people in the scene, Equations 3.4 and 3.5 have to be used. Using these equations
together with the predicted classes, all of the points belonging to the first person get the
density 0.005198, and the second person’s points get the density 0.009291. Summing up all
the densities in the point cloud should then give an estimate of the number of people in the
crowd. Since we assumed perfect background subtraction, this means: 195 ∗ 0.005198 +
113 ∗ 0.009291 = 2.063493 ≈ 2.

3.4.2 Exact Densities
To get around the rounding problem with using classes for densities, this approach modifies
the network to output a floating point value for each point in the point cloud instead of a
class. The pipeline for this approach is shown in Figure 3.7. The main modification to the

33

3. Approach

network was a change in the loss function. As mentioned in subsection 3.3.1, cross entropy
has been used for the other approaches, which should only be used for classification and
segmentation problems. Therefore, the loss function was changed to mean squared error
instead.

The annotation process was simpler compared to the one used for class densities. The
annotated data consisted of densities calculated using Equation 3.5.

Figure 3.7: Pipeline for the exact densities approach.

34

Chapter 4

Results

This chapter will begin by showing the results for background subtraction and will then
continue by presenting all the results we got from each approach we have implemented. Every
approach will include results for the three tests: quantity, density, and distance, as well as
some visualised results for real-world samples.

4.1 Background Subtraction
With a voxel size of 0.25 metres, a background subtraction going from Figure 4.1 (a) to (b)
was possible. We found that a bigger voxel size removed too much from the foreground, such
as lower parts of legs or people close to walls. On the other hand, if the voxel size was smaller,
fewer background points were removed.

35

4. Results

(a) Before. (b) After.

Figure 4.1: Captured from the perimeter corridor of Malmö Arena.

4.2 Human Clustering Approach
In this section, the results from the human clustering approach, as described in section 3.2,
are presented.

4.2.1 Finding Clustering Parameters
The result for finding the DBSCAN parameters eps and min_points is shown in Figure 4.2.
We varied eps between 10.0 and 40.0 and min_points from 4.0 to 32.0. Table 4.1 shows that
eps = 30.0 and min_points = 8.0 had the lowest mean absolute error of 24.41. Therefore,
we decided to use these parameter values when predicting on the evaluation datasets.

36

4.2 Human Clustering Approach

Figure 4.2: Regression estimates for all combinations of eps and
min_points.

Table 4.1: Mean absolute error for all combinations of eps and
min_points.

eps = 10.0 eps = 20.0 eps = 30.0 eps = 40.0
min_points = 4.0 332.89 101.78 25.61 61.46
min_points = 8.0 190.34 50.78 24.41 81.89
min_points = 16.0 86.86 28.60 55.65 103.46
min_points = 32.0 156.24 102.97 101.56 132.42

37

4. Results

4.2.2 Evaluation
Running the evaluation datasets through the human clustering pipeline resulted in the fol-
lowing graphs.

In Figure 4.3, the predictions for the quantity test follow the ideal line closely. The per-
formance goes down when the number of people in the crowd increases, however, it still
performs well at the upper limits of the test. The mean absolute error was 10.99 with respect
to all test samples. However, as seen in Figure 4.4, the mean absolute error was 5.6 times
lower at 1.95 when there were less than 100 people in the scene.

Figure 4.3: Quantity test results from the human clustering ap-
proach.

38

4.2 Human Clustering Approach

Figure 4.4: Quantity test results from the human clustering ap-
proach for crowds with less than 100 people.

Figure 4.5 shows the result for the density test. The median is close to error zero regardless
of the area, where areas of 256, 324, and 484 square metres are the closest to error zero. The
median is always positive, which means that the clustering algorithm finds more clusters than
it should have in the majority of the samples. Figure 4.5 does also show that the distance
between the lower and upper bounds of the whiskers is larger for denser crowds compared
to sparse crowds.

Figure 4.5: Density test results from the human clustering approach.

39

4. Results

Continuing to the distance test, Figure 4.6 shows that the error was somewhat consistent
between the distances of 28 and 64 metres, except for the error at 37 metres. When the
distance exceeded 73 metres, the median error went from -5 to -15, which indicated that the
error was getting worse when the distance increased.

Figure 4.6: Distance test results from the human clustering ap-
proach.

When the human clustering pipeline was used with real data, it had problems separating
people standing close together and filtering out noise. Figure 4.7 (left) shows the cluster-
ing results from a point cloud taken at the Malmö event, discussed in subsection 3.1.2. The
coloured dots represent the centroid of each cluster. At the bottom left corner of the image,
the model has failed to separate four people and counted them as one. It also found multiple
clusters at the top that should have been counted as noise.

Figure 4.7 (right) is an example of the clustering results from simulated data. The clus-
tering algorithm found 63 people when the actual count was 55.

40

4.3 Head Clustering Approach

Figure 4.7: A visual representation of human clustering on real data
(left) and simulated data (right). The coloured dots illustrate the
centroid of each cluster.

4.3 Head Clustering Approach
In this section, the results from the head clustering approach, described in section 3.3, are
presented.

4.3.1 Finding Clustering Parameters
Figure 4.8 and Figure 4.9 show the results from clustering using varying parameters, eps and
min_points. In Figure 4.8, the predictions are compared to the actual number of humans
in the scene, while in Figure 4.9, they are compared to the number of heads in the scene.
Since there are usually people whose heads are not visible in the image, these show somewhat
different results. When comparing to the actual number of humans, Table 4.2 tells us that
eps = 20.0 and min_points = 4.0 give the lowest mean absolute error at 44.19. The same
combination of eps and min_points gives the lowest mean absolute error when comparing
to the number of heads visible as well, with a value of 7.82, as seen in Table 4.3. Since both
tests gave the same parameter values, those were chosen for the evaluation. However, if they
would have differed, the evaluation should be done based on the actual human count to get
the most accurate results.

41

4. Results

Figure 4.8: Regression estimates for all combinations of eps and
min_points. The actual number represents the number of humans
in the scene.

Table 4.2: Mean absolute error for all combinations of eps and
min_points for Figure 4.9.

eps = 10.0 eps = 20.0 eps = 30.0 eps = 40.0
min_points = 4.0 44.93 44.19 44.53 47.48
min_points = 8.0 68.95 52.37 52.63 55.55
min_points = 16.0 137.07 83.93 83.90 87.77
min_points = 32.0 188.19 140.18 139.81 142.36

42

4.3 Head Clustering Approach

Figure 4.9: Regression estimates for all combinations of eps and
min_points. The actual number represents the number of heads
visible in the scene.

Table 4.3: Mean absolute error for all combinations of eps and
min_points for Figure 4.9.

eps = 10.0 eps = 20.0 eps = 30.0 eps = 40.0
min_points = 4.0 8.62 7.82 8.15 11.11
min_points = 8.0 32.58 16.00 16.25 19.18
min_points = 16.0 95.70 47.56 47.53 50.39
min_points = 32.0 151.81 103.81 103.43 105.98

43

4. Results

4.3.2 Evaluation
The results from running the evaluation datasets through the head clustering pipeline are
presented below.

Figure 4.10 shows the results from the quantity test. The predictions diverge from the
ideal line as the number of people in the crowd increases, showing poor performance for
crowds larger than 100 people with a mean absolute error of 67.87 with respect to all data.
When looking closer at the predictions made on crowds with less than 100 people, it shows
better performance with a mean absolute error of 9.70, as can be seen in Figure 4.11.

Figure 4.10: Quantity test results from the head clustering approach.

44

4.3 Head Clustering Approach

Figure 4.11: Quantity test results from the head clustering approach
for crowds with less than 100 people.

When performing the density test on the head clustering approach, it is clear that it
performs better with less dense crowds. In Figure 4.12 (a), the error gets closer to zero when
the area is increased. However, it never reaches zero, which matches the results shown in the
quantity test, where the model always estimates lower than the actual number of people. The
model does not seem to gain confidence as the density decreases, as the distance between the
upper and lower bounds of the whiskers stays relatively the same throughout the test.

For Figure 4.12 (b), on the other hand, the clustering results were almost perfect. How-
ever, even here it is possible to see an improvement when the density of the crowd increases.

45

4. Results

Figure 4.12: The density test results from the head clustering ap-
proach. (a) shows the actual results achieved on the output from
the segmentation model, while (b) is head clustering performed on
perfectly segmented heads. Achieved by clustering the annotated
segmentation data.

Figure 4.13 shows the results from the distance tests. It can be seen that the head seg-
mentation model performed best when the LiDAR was as close as possible. As it was moved
further away, the performance quickly became worse, and the model became less confident.
However, there are multiple outliers centred around -40 error when the distance is low; this
will be discussed further in subsection 5.3.2.

Figure 4.13: Distance test results from the head clustering approach.

The clustering results from the head-segmentation model on real data are shown in Fig-
ure 4.14 (left). Here it can be seen that the centroids of the clusters are located close to the
heads of people. The model failed to segment the heads of some people, however, in some

46

4.4 Density Estimation Approaches

cases, it could separate people standing close together. Furthermore, it did not count the
noise at the top of the image as people.

Figure 4.14: A visual representation of head clustering on real data
(left) and simulated data (right). The coloured dots illustrate the
centroid of each cluster.

4.4 Density Estimation Approaches
In this section, the results from the density estimation approaches described in section 3.4
are presented.

4.4.1 Evaluation
The quantity evaluation shows some correlation between the prediction of the number of
people and how many people there actually were in the sample, as seen in Figure 4.15. The
incline of the predictions from the class densities approach closely matches the ideal line,
shifted up around 400. The predictions from the exact densities approach lie closer to the
ideal line, while the incline is a worse match.

47

4. Results

Figure 4.15: Quantity test results from the density estimation ap-
proaches, (a) Using classes as densities, (b) Using exact densities.

The results from the density evaluation show an interesting finding. Figure 4.16 show
that the performance is worse when the crowd is spread out over a larger area, meaning that
these models perform better with increased density. In the case of exact densities, it works
best at a density of around 0.39 people per square metre, while the class densities approach
works better with increased density.

Figure 4.16: Density test results from the density estimation ap-
proach, (a) Using classes as densities, (b) Using exact densities.

In the distance evaluation test, both methods performed best when the distance between
the LiDAR and the crowd was around 46 metres, as can be seen in Figure 4.17.

48

4.4 Density Estimation Approaches

Figure 4.17: Distance test results from the density estimation ap-
proach, (a) Using classes as densities, (b) Using exact densities.

A comparison between ground truth and a prediction can be seen in Figure 4.18. The
ground truths of both of the approaches show that each person is represented by a single
colour, i.e. the same density for each point. For the class densities approach, there are only
20 different densities a point can have, therefore, it is common for different people to have
the same colour. However, for the exact densities approach, each point has the exact density
for a given person. The predicted result did not follow our desire that every person should
consist of points with the same density, instead, multiple different densities can be found
in the same person. Both approaches did also show signs that they predicted an excessively
high density estimation for points that are far away from the camera, but points closer to the
camera are more accurately predicted.

49

4. Results

(a) Class densities:
Ground truth.

(b) Class densities:
Prediction.

(c) Exact densities:
Ground truth.

(d) Exact densities:
Prediction.

Figure 4.18: Visual representation of the class densities approach
(a and b) and the exact densities approach (c and d). The colour
spectrum goes from red to blue, where red represents a low density
at a point and blue represents a high density at a point.

4.5 Deep Learning on Point Clouds

In this section, general results from the training process of the deep-learning models are
presented. These will be used to discuss the applicability of deep learning on point clouds.

Figure 4.19 and Figure 4.20 shows the confusion matrices for the training and test datasets
respectively. The confusion matrix given from the training dataset shows a promising diag-
onal line, while Figure 4.20 has more difficulties dealing with the middle classes from 7 to
13.

50

4.5 Deep Learning on Point Clouds

Figure 4.19: Confusion matrix from the train split of the training
dataset for the class densities approach.

Figure 4.20: Confusion matrix from the test split of the training
dataset for the class densities approach.

The f1-score from training the class densities approach is shown in Figure 4.21. This graph
shows no indication of traditional overfitting.

51

4. Results

Figure 4.21: Training and validation graph for the class densities ap-
proach.

From Table 4.4, the inference time for each approach is presented. The human clustering
approach, which was the only approach that did not use deep learning, was fastest at 0.18
seconds, while the head clustering approach was the slowest.

Table 4.4: Inference time for the different approaches, in seconds.

Human Clustering Head Clustering Class Densities Exact Densities
0.18s 12.66s 2.48s 2.37s

52

Chapter 5

Discussion

The following chapter is organised as follows: first, the datasets are discussed, followed by
an examination of the results for each approach. Finally, an outline of the future research
directions will be presented.

5.1 Dataset
In this section, we will examine our dataset. First, we will highlight the advantages of sim-
ulated data, followed by its limitations. Then, we will move on to real data, discussing its
advantages and limitations.

5.1.1 Advantages with Simulated Data
The main reason why simulated data was used instead of real-life captured data was to min-
imise the time spent on recording and annotating data. In UE5, we were able to implement
different ways of annotating data, enabling us to try all our approaches. For the human clus-
tering approach, the data had to be annotated, such that every point got a class of 1 if it was a
point on a human and a 0 otherwise. For the head clustering approach, only the heads should
have an annotation set to 1. The two density estimation approaches were a bit different, since
we needed to keep track of a person ID as well in order to give the points the correct class or
float annotation.

When training a deep-learning model, it is important to have a diverse and large dataset.
With a larger dataset, it is possible to use a more complex model with a reduced risk of
overfitting [29]. The simulated training dataset consisted of 10,500 samples, totaling 97GB
of raw data.

Another advantage of simulating data was the ability to record crowds in more locations
than would have been possible in real life. As mentioned in subsection 3.1.1, we recorded

53

5. Discussion

data in parks, cities, and in our own map. These different locations made our dataset more
diverse, which is good for machine learning [29].

We could also make the data look how we wanted it to, meaning that we could decide how
many people there were in each scene and how close together they should be. Additionally,
we were able to place the LiDAR anywhere we wanted, not having to consider any physical
limitations.

5.1.2 Limitations with Simulated Data
There are also some limitations to using simulated data. Limitations mostly concern the low
entropy in simulated data and LiDAR physics. Creating realistic scenes with great diver-
sity is a laborious task and requires variety in the 3D models. People should wear different-
looking clothes with unique patterns and colours, and humans should have varying heights
and sizes. Realistic scenes should also contain clutter, such as loose objects on the ground,
vegetation, and vehicles. Crafting scenes that met this standard would require more time
than was available within the scope of this master’s thesis. Hence, the following restrictions
were implemented:

• Few variations in humans

• No loose objects on the ground

• No weather simulation; only daytime with a clear sky

Despite these limitations, it was possible to simulate life-like crowds. The first limitation
was that there were few variations in the appearance of humans. The non-playable characters
we used to create a crowd, as described in subsection 3.1.1, called MetaHumans, were a col-
lection of six differently-looking humans, including both males and females. The differences
between them were height differences, clothing, and skin colour. Due to the lack of colour in
LiDAR data, clothing and skin colour have little to no impact on the data. The height differ-
ence, however, is noticeable in LiDAR data, so we would have wanted more variation in this
case, such as children or really tall people. Other variations that appear in a real-world sce-
nario that we would have liked to include in our data include someone carrying a backpack,
someone with a stroller, and someone in a wheelchair.

The second limitation is concerning loose objects on the ground. Lose objects that do not
move will be background subtracted and will therefore not be visible in the data. Moving ob-
jects, on the other hand, will still be left in the data after background subtraction. However,
both static and moving objects will induce occlusions.

Section 1.3 mentions that LiDARs tolerate bad weather and lighting, therefore, it does
not matter whether the simulation was able to simulate weather or nights as well. Therefore,
we did not create samples from both night and daytime.

54

5.1 Dataset

To create LiDAR data from the simulated crowd, a LiDAR sensor was used. The LiDAR
sensor we used in UE5 had some differences from a real LiDAR:

• Reflection intensity is not accurate

• No cone shaped rays

• LiDAR noise

Firstly, the LiDAR sensor was able to detect reflection intensity, however, for this to work
well, all materials in the world had to be realistically designed. In our opinion, the available
materials were not realistic enough, so we decided not to use reflection intensity as part of
the data. We also had to disable laser bounces. This decision is related to the lack of realism
in the reflections, because if the reflections are not accurate, the bounces will not be accurate
either. Secondly, the LiDAR sensor did not simulate the cone effect of a real LiDAR ray,
since line traces in UE5 are infinitely thin. A real LiDAR ray spreads with distance in a cone
shape, and therefore it is possible for the light to go through foliage, which gives it the ability
to "see through" bushes and grass. The simulated ray would only return the first hit, whatever
it may be. Lastly, the LiDAR noise was not fully realistic. We chose not to prioritise creating
realistic noise because it would take too long to find the parameters, and we felt like the noise
would not impact the model positively or negatively. With this said, we did still have some
noise in order to not make the data too perfect.

5.1.3 Advantages with Real Data
As described in subsection 5.1.2, we were not able to utilise reflection intensities in our train-
ing because of the lack of realistic materials in our simulation. If we had trained on real data
instead, the reflection intensities would be accurate and therefore usable as features in our
training data. As seen in Figure 4.1, it seems like clothing has a high reflection intensity, while
skin has a low reflection intensity. This observation makes us believe that it would be easier
to segment heads from bodies.

Real data would also result in a more diverse dataset with more variety in how people
look and behave. This variety would improve the scope of the models we are training.

5.1.4 Limitations with Real Data
Recording LiDAR data manually would have required us to find locations with crowds and
acquire permission to record said crowds. During this master’s thesis, we were only able to
record at one location and only for a few hours.

Another limitation with real data would be the difficult annotation process. Besides the
fact that annotating is a time-consuming and tedious task, it is also difficult to make correct
annotations. For example, by looking at Figure 4.1 (b), it is not possible to determine the
number of people in the scene, especially the dense crowd that is further away. Maybe it
would have been possible to take camera pictures from the same angle and pair them with
the LiDAR samples. The combination of a camera and LiDAR would simplify the annotation
process because it is easier to see details in an image compared to point clouds.

55

5. Discussion

These limitations restricted our use of real data. Since we did not do any annotation of
our real data, it was not possible for us to use it in the training phase for our deep-learning
approaches. We were also limited in how we could evaluate approaches with real data, mean-
ing that we were only able to do some visual evaluation, as in Figure 4.7 (left) and Figure 4.14
(left).

5.2 Deep Learning on Point Clouds
Performing deep learning on point clouds has proven to be a difficult task. There are multiple
challenges working with LiDAR data compared to regular images, such as invariant data size
and the unordered structure of point clouds. During the process of this master’s thesis, we
wanted to try multiple different models besides PointNet++; however, we did not get any
other models to train successfully.

When training the density estimation models, the resulting confusion matrices looked
optimistic with a strong diagonal line, as seen in Figure 4.20. However, even though the line
is diagonal, there is considerable bleeding into nearby classes. Errors in the central classes
7–13 have less impact on the resulting density map due to the nature of the class assignment
function, described in Equation 3.3.

In Figure 4.21, the graphs do not indicate a traditional overtraining where the validation
curve diverges from the training curve. Therefore, we believe the issue is that the valida-
tion samples are too similar to the train samples and do not give a good indication of how
generalised the model is.

One way to improve the generalisation of the deep-learning models is to introduce data
augmentations. Data augmentation helps increase the size of the dataset without adding
new samples, in the sense that the same samples can contribute more when they are slightly
altered each time. We have experimented with applying random mirroring along the x and
y axes without any apparent effect on the results. An augmentation that we did not have
time to explore was random jitter. This is when all the points in the point cloud are nudged
a small distance in a random direction. This could help with generalising for the noise that
comes naturally when filming with a LiDAR sensor. The fixed-point transform could also be
improved so that it minimises loss of data. When downsampling, we could choose to remove
points based on how far away they are from the sensor, which would result in a point cloud
that is more evenly distributed. Since objects close to the sensor are more densely represented
compared to objects further away, we can afford to lose more of those points.

To improve the head segmentation model, we believe that larger networks would be use-
ful. The network used in this thesis consisted of around 1,700,000 trainable parameters. The
task of segmenting only the points belonging to heads and not any other points requires the
model to have high accuracy, which can be achieved by larger models. We have not experi-
mented with any larger models since the hardware we used was not sufficient. When training
the model, it consumed around 11–12GB of video memory out of the 12GB available on the
NVIDIA GeForce RTX 3060 we used. We were therefore limited in both the network size
and batch size we could use when training.

There is also a large difference in inference time between the approaches. Table 4.4 shows
that the approaches based on deep learning took multiple seconds longer to count people
compared to the human clustering approach, which did not use any neural networks. This

56

5.3 Approaches

was an important finding, as it tells us that only the human clustering approach can be used in
real time. Since we capture the LiDAR frames at a rate of 1Hz, the counting has to be done
within one second. It should also be noted that the head clustering approach was slower
than the other approaches. This was mainly because of the multiple inferences per sample,
described in section 3.3, to even out the predictions by the model. When testing the model, we
set it to predict each sample five times, which explains the roughly five times longer inference
time.

5.3 Approaches
This section will go through the four approaches and discuss the results. We end by compar-
ing them to come to a conclusion about which methods show the most promise for future
implementations.

5.3.1 Human Clustering
Even though the best fit was close to the ideal line in Figure 4.3, it does not mean that each
cluster represents a human. There could be instances where two or more people are in such
close proximity that they get grouped together within the same cluster. On the other hand,
there could also be instances where noise is misclassified as clusters or where a single human
is grouped into multiple different clusters. This type of under- and over-counting of clusters
can be seen in Figure 4.7. The group of people in the bottom left of the top image are clustered
into a single cluster, and multiple clusters of non-humans can be seen at the top of the same
image. In Figure 4.7 (right), there are also examples of when a single person is divided into
multiple clusters. In this case, the clustering led to an accurate number of people, even though
the visual result was inaccurate.

Another reason why the best fit in Figure 4.3 was close to the ideal line could be because
we chose parameters with respect to the ideal line of our train data. This might have led
to overfitting. As visualised in Figure 4.2, the selection of eps = 30.0 and min_points =
8.0 resulted in the lowest mean absolute error for our training data. However, for other
datasets, another combination of the parameters could have resulted in a better regression
line. Despite this, when evaluating using the optimal parameters from the train dataset on
the quantity evaluation dataset, the mean absolute error was still as good, indicating that the
chosen parameters were valid.

The mean absolute error was 10.99 on the quantity evaluation dataset, while it was 24.41
for the training dataset. Furthermore, when only observing samples with 100 people or less,
the mean absolute error was even lower, at 1.95. The reason why human clustering performed
better on the evaluation dataset compared to the training dataset could be because it is a
totally different dataset, and therefore it cannot be expected to produce the same result. The
smaller mean absolute error in Figure 4.5 indicates that the clustering algorithm was more
accurate when dealing with fewer people. This is probably because there is more space around
them when there are fewer people, leading to a more spread-out crowd and hence an easier
clustering task.

Moving on to Figure 4.5, showing the result from the densities test. The observation that
the median error was consistently positive implies that there were consistently more clusters

57

5. Discussion

detected than there should have been. It is especially interesting to note that the largest error
was found when the area was the smallest. The fact that the error was positive correlates
with Figure 4.4, where most of the samples of the actual 100 people were also overestimated.
However, it seems more likely that the number of clusters will decrease as the density of
people increases because there will be more possibilities for groups of people to be clustered
together. The reason could instead be partial occlusions, where a person might be divided
into two parts, e.g. when standing behind a light post or behind another human.

Figure 4.5 does also show that the interval between the whiskers is getting smaller with
a larger area. This means that the spread of the error is smaller when the area is larger. This
indicates that the clustering algorithm is more consistent when the people are more spread
out.

For the distance test shown in Figure 4.6, it is clear that the error becomes larger when
the distance increases. More specifically, we found that there were fewer clusters detected
when the distance to the crowd was greater than 73 metres. The clustering algorithm had
min_points of 8.0, meaning that a cluster needs to contain at least 8 points in order to be
classified as a cluster. However, when recording a crowd from a long distance, it is possible
for a human to be represented by fewer than 8 points. Additionally, the partial occlusions
that occur in crowds are also a cause that decreases the number of points per human.

5.3.2 Head Clustering
An important finding in the results for the head clustering approach was the substantial
deviation in the quantity test, seen in Figure 4.10. The accuracy of the model quickly decreases
as the number of people increases. This could be caused by multiple different factors, such as
the density increasing and the number of points remaining after the background subtraction
increasing. Firstly, as we used a fixed size for the recording area, 50 by 50 metres, the density
increased with the number of people. We know from the density test, Figure 4.12 (a), that the
performance gets worse with increased density. However, the highest density achieved in the
quantity test was around 5 square metres per person, which should mean an error of around
−8
100 ∗ 500 = 40 according to the density test. Secondly, the large recording area also implied
a large distance to the LiDAR. Calculating the error this brings is more difficult than the
density error since the crowd is spread out over a larger area. When the number of people was
500, the distance to the closest person was only a few metres, and the furthest was around 70
metres away. Taking an average of 35 metres gives an error of around −13

100 ∗500 = 65 according
to the distance test in Figure 4.13. These two observations make up for approximately 35%
of the total error when there are 500 people in the crowd. Finally, the remaining error could
be explained by the fixed-point transform. As the number of people increases, the number
of points remaining after the background subtraction also increases. This means that the
fixed-point transform has to remove more points to keep a constant number of points in
each sample. Since the background is removed before the transforms are applied, all points
removed by the fixed-point transform belong to humans, making it more difficult for the
model to segment the heads.

One of the theorised strengths of the head clustering technique was that it would perform
better in dense crowds compared to human clustering. This was believed because heads are
usually further apart than bodies, which would be the case if the head segmentation model
performed perfectly. However, as the density increased, the model predicted fewer and fewer

58

5.3 Approaches

people, and the resulting segmentations contained more than just heads. In Figure 4.14, the
lighter grey dots show which points have been labelled as heads. This decrease in segmenta-
tion performance could be explained by occlusion. When the crowd gets too dense, the only
part visible to the LiDAR is the top of the heads of people. This means that the shape of hu-
mans to the LiDAR is completely different in dense crowds compared to less dense crowds.
Even though the dataset did contain both types of crowds, the model may not have learned to
recognise all the shapes a human may have. We believe that this could be drastically improved
by incorporating more dense crowds into the dataset as well as increasing the entropy. An
increase in the size of the machine-learning model could also allow it to learn more complex
patterns in the data and perhaps help it recognise different human shapes.

The distance test also indicated a decrease in performance as the distance increased, as
seen in Figure 4.13. The model is shown to perform best when the crowd is as close to the
LiDAR as possible. As the distance increases, the people in the crowd make up fewer and
fewer points, making it difficult for the segmentation model to find the heads. Therefore, it
may be beneficial to record with a lower frame rate when the crowd is far away, allowing the
LiDAR to capture more data in every point cloud. Another observation in the distance test
was the outliers present at the distances of 19–37 metres. These seemed to fall into the range
of the whiskers when the distance increased. The cause of these is likely that those samples
came from a LiDAR with a suboptimal view of the scene. Since we used multiple LiDARs
at once when recording the evaluation dataset, some of them may have had worse conditions
for crowd counting or had a perspective not present in our training dataset.

When comparing how well the head segmentation works between real data and simulated
data, it is clear in Figure 4.14 that heads are more exactly segmented for simulated data than
real data. For real data, our segmentation model was able to somewhat successfully segment
the heads. However, the model did also classify other body parts as heads, such as shoulders,
therefore eliminating the advantage the head segmentation was supposed to have.

5.3.3 Density Estimation
The density estimation approaches did not perform as well as we had hoped. Even though
performs well for camera-based methods, the way we implemented it for LiDAR was not
optimal. All tests show that they predict unreliably, however, they still show some form
of correlation, meaning that they have learned something from the training. One of the
more interesting observations was how both of these models performed better with increased
density, as shown in Figure 4.16. Since these methods do not rely on clustering, they do not
necessarily have to be affected by the distances between the individual people. While it is
difficult to know exactly what a machine-learning model learns during training, it is notable
that it makes use of people standing close together to make its predictions.

In Figure 4.18, it can be seen what the models output. Looking at these images, it is
clear that this is not a good way to represent a density map in 3D data. Instead of getting an
overview of the crowd distribution, the densities outputted from our models simply represent
how densely the person has been composed of points or how far away they are from the
LiDAR. This more closely resembles a regression-based method than a density estimation
method, since the intermediate product is of little value as a density map.

There are multiple reasons why we believe these approaches did not perform well, such
as suboptimal machine-learning models, training data, and flaws in our implementation.

59

5. Discussion

Firstly, the deep-learning models we used were designed for segmentation problems. Al-
though we believed that density estimation was similar enough to segmentation for it to be
substitutable, there are some differences that we did not think through. The output den-
sity maps from camera-based models are usually of lower resolution compared to the inputs,
meaning that a single pixel in the density map covers a larger section of the image. When
viewing the problem as a segmentation task, the output is not scaled down, and the densities
only cover a single point in a point cloud. Another difference is that point clouds are sparse,
while regular images are dense. There can be arbitrary distances between points in a point
cloud, while image pixels are on a fixed grid. This means that densities in regular density
maps can be spread out over multiple pixels, which is not always possible in point clouds.
A possible way to solve these issues is by transforming the point clouds into voxel grids and
performing regular CNN operations to find the features of the point clouds. By doing this,
the voxel representation of the point clouds would be dense, and we could downscale the
output, solving both issues with density maps in point clouds. The downside to this tech-
nique is that it would be highly data-intensive since the voxels would have to be small to not
lose information.

Secondly, the training data was not optimal for the density estimation approaches. For
density estimation to make sense, some areas of the input should be able to have zero density.
In our data, the only objects in the scene are humans, meaning that all points in the input had
density. Therefore, the model never saw any samples containing zero density and may not
have learned how they should be represented. To improve on this, other moving objects that
pass through the background filtration, such as cars and hand baggage, should be introduced
in the training data. It may also be interesting to skip the background filtration step, however,
that would increase the point cloud size drastically.

Lastly, our implementation of density estimation on point clouds was flawed. To rep-
resent densities using classes was not optimal, as the difference between the classes was too
small for the model to accurately distinguish between them. For instance, using the class
assignment function shown in Figure 3.5 (a), the difference between classes 10 and 11 is only
20 points per person in the point cloud, with no difference in the overall shape of the person.

5.3.4 Comparing the Approaches
The results from the evaluation datasets clearly indicate that the human clustering approach
outperforms all other proposed methods. Notably, human clustering is the only method that
does not incorporate deep learning at any stage of its pipeline. In contrast, both the class
densities approach and the exact densities approach, which heavily rely on deep learning,
yielded the least accurate results. The head clustering approach, which combines the use
of deep learning and clustering, performed better than the density approaches but still fell
short of the human clustering method. This suggests that while incorporating deep learning
increases the complexity of the problem, it also offers the potential for a more dynamic sys-
tem. Despite the current shortcomings of our deep-learning approaches, particularly head
clustering, they show promise for improvement.

Even though human clustering generates the best results, it is difficult to recommend this
approach as a trustworthy solution. As discussed in subsection 5.3.1, it seems that an accurate
approximation of the crowd count was the outcome of mainly two clustering errors, namely,
grouping together people in close proximity of each other and misidentifying background

60

5.4 Future Work

noise as people. Therefore, in the case of crowd distribution analysis, we believe that the
head clustering approach has the highest potential among the four proposed approaches.

As discussed in section 5.2, the human clustering approach was the only one that could
predict the number of people in a crowd in real time. However, since the approaches only
generate an estimate at best, it might not be needed for the implementation to be able to
function in real time. Instead, an update of the crowd count every 12 seconds might be
sufficient, at least for large crowds.

One promising finding about the density approaches compared to the other two ap-
proaches was that they did not lose accuracy when the crowd density increased. Both human
clustering and head clustering depended heavily on clustering algorithms and were therefore
impacted by the density of the crowd. The concept of head clustering was to increase the
minimum distance between two people by only using their heads when doing the clustering.
Our implementation of the head segmentation part of the head clustering approach did not
perform well enough to be better than human clustering in dense situations. However, as
seen in Figure 4.12 (b), head clustering with perfect head segmentation did perform better
than human clustering, indicating that our concept was valid.

5.4 Future Work

Several intriguing ideas emerged during our research that we did not have the opportunity
to explore fully. In this section, we will discuss these ideas with the hope of inspiring future
research in this direction.

5.4.1 Alternative Approaches

Projecting point clouds onto 2D planes is a completely different approach compared to the
ones explored in this thesis. This projection would make it possible to utilise other machine-
learning techniques, such as regular CNNs and regression, to count people. Essentially, these
projections could be seen as "taking pictures" of the point cloud that can later be fed into
networks closely related to the ones described in section 2.1. An advantage of doing this on
point clouds would be that it is possible to capture a single point cloud from multiple angles,
all of which can be used to count, with the hope of extracting as much information from the
point cloud as possible. Compared to the approaches explored in this thesis, this approach
could utilise more popular and well-researched machine-learning techniques, possibly lead-
ing to better-performing models. However, the lack of annotated data to train such models
means that simulated data still has to be used or that time-consuming manual annotation has
to be done.

Another alternative approach is to estimate the danger level of a crowd rather than pre-
dicting the exact number of people. This method is less complex than people-counting, so a
smaller model might suffice, and data annotation would be simpler. Although this approach
provides less detailed analytical data, it remains useful for monitoring large crowds to assess
overall safety.

61

5. Discussion

5.4.2 Train with Real Data and Improve Simulation
As discussed in subsection 5.3.2, our approaches perform poorly on real data, likely because
the models were only trained on simulated data. We believe that there is much to gain in
performance by mixing in real data into the training dataset. We have not had the time to
explore the impact of training on real data since the annotation process was deemed to be
too time-consuming to be a part of this master’s thesis.

5.4.3 Algorithmical Approaches
In this thesis, we have mainly focused on machine-learning-based approaches. This is not
necessarily the optimal strategy. Instead, it might be interesting to study how other, purely
algorithmical solutions may perform.

One such algorithmical approach may be to estimate the volume a crowd occupies and
model a relationship between volume and people count. Parameters such as the density of
the crowd will have an impact, however, it may produce a good estimate for homogeneous
crowds with even density distributions.

An advantage of using algorithms compared to machine learning is that there is no need to
annotate training datasets. However, some annotated data will still be needed to evaluate the
performance. Since machine-learning approaches may be computationally slow and resource
intensive, as for the approach discussed in section 2.3, an algorithmical approach may save
computation time and energy consumption.

62

Chapter 6

Conclusion

Counting people in crowds using point-cloud-based techniques has proven to be both chal-
lenging and interesting. The primary aim of this thesis was to devise a solution for accurately
counting individuals in crowded settings, thereby enhancing safety and preventing potential
hazards. Four approaches were developed and implemented, showcasing promising results
in different ways. These approaches were evaluated based on three key principles: the num-
ber of people, crowd density, and distance from the LiDAR sensor. Both the data used for
evaluation and the training data were made synthetically in UE5. Additionally, some visual
assessment has been conducted on real LiDAR data.

To answer RQ1, the human clustering approach demonstrated the most robust overall
performance, accurately counting crowds of up to 500 individuals with an average error of
only 11 people. While the deep-learning models showed potential, further refinement of
both data quality and model architecture is necessary to achieve improved results. Although
the head clustering approach shows promise, particularly in dense crowds, enhancements
to the segmentation model are required to fully capitalise on its potential. However, our
implementation of density estimation approaches gave disappointing results due to flaws in
the implementation. An alternative method for implementing density estimation has been
suggested as a potential extension of our work.

Regarding RQ2, we recommend continued exploration of point-cloud-based crowd
counting using deep learning, as it shows promising indications of being a viable solution.
In particular, the head segmentation approach demonstrates potential for improved perfor-
mance in dense crowds compared to human clustering, provided that the segmentation model
is improved.

63

6. Conclusion

64

References

[1] Nazarizal Mohammad. Sunset over Bungkarno Stadium, Jakarta. url: https : / /
unsplash . com / photos / aerial - view - of - city - during - daytime -
abqlAKDYxxA (visited on 10/06/2024).

[2] John Crace. “Astroworld: deaths of 10 people at Houston concert ruled accidental”. In:
The Guardian (). url: https://www.theguardian.com/music/2021/dec/16/
astroworld-festival-deaths-ruled-accidental (visited on 01/26/2023).

[3] Ninad Mehendale and Srushti Neoge. “Review on lidar technology”. In: SSRN Electronic
Journal (2020). doi: 10.2139/ssrn.3604309.

[4] Annurag P S and Srinivaas A. “Advancements and applications of lidar technology
in the Modern World: A Comprehensive Review”. In: 2023 3rd International Conference
on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (July
2023). doi: 10.1109/iceccme57830.2023.10252481.

[5] Akshita Patwal et al. “Crowd counting analysis using Deep Learning: A Critical Re-
view”. In: Procedia Computer Science 218 (2023), pp. 2448–2458. doi: 10 . 1016 / j .
procs.2023.01.220.

[6] Zelong Liu et al. “Foreground Segmentation-Based Density Grading Networks for
Crowd Counting.” In: Sensors (14248220) 23.19 (2023), p. 8177. issn: 14248220. url:
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/
login.aspx?direct=true&AuthType=ip,uid&db=a9h&AN=
172987315&site=eds-live&scope=site.

[7] Zhengxia Zou et al. “Object detection in 20 years: A survey”. In: Proceedings of the IEEE
111.3 (Jan. 2023), pp. 257–276. doi: 10.1109/jproc.2023.3238524.

[8] Zhuofan Zong, Guanglu Song, and Yu Liu. “Detrs with collaborative hybrid assign-
ments training”. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV)
(Oct. 2023). doi: 10.1109/iccv51070.2023.00621.

65

https://unsplash.com/photos/aerial-view-of-city-during-daytime-abqlAKDYxxA
https://unsplash.com/photos/aerial-view-of-city-during-daytime-abqlAKDYxxA
https://unsplash.com/photos/aerial-view-of-city-during-daytime-abqlAKDYxxA
https://www.theguardian.com/music/2021/dec/16/astroworld-festival-deaths-ruled-accidental
https://www.theguardian.com/music/2021/dec/16/astroworld-festival-deaths-ruled-accidental
https://doi.org/10.2139/ssrn.3604309
https://doi.org/10.1109/iceccme57830.2023.10252481
https://doi.org/10.1016/j.procs.2023.01.220
https://doi.org/10.1016/j.procs.2023.01.220
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=a9h&AN=172987315&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=a9h&AN=172987315&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=a9h&AN=172987315&site=eds-live&scope=site
https://doi.org/10.1109/jproc.2023.3238524
https://doi.org/10.1109/iccv51070.2023.00621

REFERENCES

[9] Bo Wu and R. Nevatia. “Detection of multiple, partially occluded humans in a single
image by bayesian combination of Edgelet part detectors”. In: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1 (2005). doi: 10.1109/iccv.2005.
74.

[10] Di Kang, Zheng Ma, and Antoni B. Chan. “Beyond counting: Comparisons of density
maps for crowd analysis tasks—counting, detection, and tracking”. In: IEEE Transac-
tions on Circuits and Systems for Video Technology 29.5 (May 2019), pp. 1408–1422. doi:
10.1109/tcsvt.2018.2837153.

[11] Yunpeng Tai. “A Survey Of Regression Algorithms And Connections With Deep
Learning”. In: CoRR abs/2104.12647 (2021). arXiv: 2104 . 12647. url: https : / /
arxiv.org/abs/2104.12647.

[12] Antoni B Chan and Nuno Vasconcelos. “Bayesian poisson regression for crowd count-
ing”. In: 2009 IEEE 12th International Conference on Computer Vision (Sept. 2009). doi:
10.1109/iccv.2009.5459191.

[13] Sifatul Mostafi, Taghreed Alghamdi, and Khalid Elgazzar. “A bayesian linear regression
approach to predict traffic congestion”. In: 2021 IEEE 7th World Forum on Internet of
Things (WF-IoT) (June 2021). doi: 10.1109/wf-iot51360.2021.9595298.

[14] Bo Li et al. “Approaches on crowd counting and density estimation: a review.” In: Pat-
tern Analysis and Applications 24.3 (2021), pp. 853–874. issn: 1433-7541. url: https:
//ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.
aspx?direct=true&AuthType=ip, uid&db=edssjs&AN=
edssjs.3285B501&site=eds-live&scope=site.

[15] Viresh Ranjan, Hieu M. Le, and Minh Hoai. “Iterative Crowd Counting”. In: CoRR
abs/1807.09959 (2018). arXiv: 1807.09959. url: http://arxiv.org/abs/1807.
09959.

[16] Nitin Kumar Saini and Ranjana Sharma. “Deep Learning Approaches for Crowd Den-
sity Estimation: A Review.” In: 2023 12th International Conference on System Modeling &
Advancement in Research Trends (SMART), System Modeling & Advancement in Research
Trends (SMART), 2023 12th International Conference on (2023), pp. 83–88. issn: 979-8-
3503-6986-1. doi: 10.1109/SMART59791.2023.10428557.

[17] Vishwanath A. Sindagi and Vishal M. Patel. “A survey of recent advances in CNN-based
single image crowd counting and density estimation”. In: Pattern Recognition Letters
107 (2018). Video Surveillance-oriented Biometrics, pp. 3–16. issn: 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2017.07.007. url: https://www.
sciencedirect.com/science/article/pii/S0167865517302398.

[18] Ravil Mussabayev and Rustam Mussabayev. Optimizing K-means for Big Data: A Compar-
ative Study. 2023. doi: https://doi.org/10.48550/arXiv.2310.09819. arXiv:
2310.09819 [cs.LG].

[19] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural Net-
works 61 (Jan. 2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

[20] Sonya Coleman, Dermot Kerr, and Yunzhou Zhang. “Image Sensing and Processing
with Convolutional Neural Networks”. In: Sensors 22.10 (2022). issn: 1424-8220. doi:
10.3390/s22103612. url: https://www.mdpi.com/1424-8220/22/10/3612.

66

https://doi.org/10.1109/iccv.2005.74
https://doi.org/10.1109/iccv.2005.74
https://doi.org/10.1109/tcsvt.2018.2837153
https://arxiv.org/abs/2104.12647
https://arxiv.org/abs/2104.12647
https://arxiv.org/abs/2104.12647
https://doi.org/10.1109/iccv.2009.5459191
https://doi.org/10.1109/wf-iot51360.2021.9595298
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.3285B501&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.3285B501&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.3285B501&site=eds-live&scope=site
https://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edssjs&AN=edssjs.3285B501&site=eds-live&scope=site
https://arxiv.org/abs/1807.09959
http://arxiv.org/abs/1807.09959
http://arxiv.org/abs/1807.09959
https://doi.org/10.1109/SMART59791.2023.10428557
https://doi.org/https://doi.org/10.1016/j.patrec.2017.07.007
https://www.sciencedirect.com/science/article/pii/S0167865517302398
https://www.sciencedirect.com/science/article/pii/S0167865517302398
https://doi.org/https://doi.org/10.48550/arXiv.2310.09819
https://arxiv.org/abs/2310.09819
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3390/s22103612
https://www.mdpi.com/1424-8220/22/10/3612

REFERENCES

[21] Gabriela Csurka, Riccardo Volpi, and Boris Chidlovskii. Semantic Image Segmentation:
Two Decades of Research. 2023. doi: https://doi.org/10.48550/arXiv.2302.
06378. arXiv: 2302.06378 [cs.CV].

[22] R. Qi Charles et al. “PointNet: Deep Learning on point sets for 3D classification and
segmentation”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (July 2017). doi: 10.1109/cvpr.2017.16.

[23] Charles R. Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
Space. 2017. arXiv: 1706.02413 [cs.CV].

[24] Epic Games. We make the engine. You make it Unreal.
2024. url: https://www.unrealengine.com/en-US.

[25] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: Proceedings
of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[26] Jacob Berntsson and William Winberg. Pedestrian detection and tracking in 3D point cloud
data on limited systems. 2021.

[27] Robin Bernståle and Hjalmar Lind. Segmentation, Classification and Tracking of objects in
LiDAR Point Cloud Data Using Deep Learning. 2021.

[28] Epic Games. Create simulations that feel (almost) like real life. 2024. url: https://www.
unrealengine.com/en-US/uses/simulation.

[29] Li Shen et al. On Efficient Training of Large-Scale Deep Learning Models: A Literature Review.
2023.doi: https://doi.org/10.48550/arXiv.2304.03589. arXiv: 2304.03589
[cs.LG].

67

https://doi.org/https://doi.org/10.48550/arXiv.2302.06378
https://doi.org/https://doi.org/10.48550/arXiv.2302.06378
https://arxiv.org/abs/2302.06378
https://doi.org/10.1109/cvpr.2017.16
https://arxiv.org/abs/1706.02413
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US/uses/simulation
https://www.unrealengine.com/en-US/uses/simulation
https://doi.org/https://doi.org/10.48550/arXiv.2304.03589
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589

REFERENCES

68

Appendices

69

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-05-31

EXAMENSARBETE Point-Cloud-Based Crowd Counting
STUDENTER Isak Jakobsson, Jonathan Runeke
HANDLEDARE Maj Stenmark (LTH)
EXAMINATOR Elin Anna Topp (LTH)

Personräkning i punktmoln, för säkrare
folksamlingar

POPULÄRVETENSKAPLIG SAMMANFATTNING Isak Jakobsson, Jonathan Runeke

I takt med att allt fler människor samlas på offentliga platser ökar behovet av att
snabbt och effektivt kunna räkna personer i folkmassor. Detta arbete undersöker nya
punktmolnsbaserade metoder för att öka säkerheten och samtidigt bevara människors
integritet.

Att räkna personer i stora folkhav, som på kon-
serter eller under rusningstid på en stations-
perrong, är viktigt ur flera perspektiv. Ar-
rangörerna till konserten kan i god tid förhindra
skaderisker och panikattacker, och på tågstatio-
nen kan man förutse olyckor och därmed stoppa
flödet till perrongen och minska risken att någon
knuffas ner på spåret. Genom att använda en Li-
DAR för att analysera utsatta områden ökar också
integriteten för individerna i folkhavet, då per-
soner i allmänhet är oidentifierbara i LiDAR-data.

LiDAR är en förkortning av Light Detection
and Ranging, vilket översätts till ljusdetektion och
avståndsmätning. Sensorn fungerar genom att
skicka ut laserpulser för att mäta avstånd och
skapa tredimensionella kartor av omgivningen, så
kallade punktmoln.

I detta examensarbete har fyra olika metoder
utvecklats och testats för att identifiera om det
är möjligt att räkna personer med LiDAR. Tre av
metoderna var baserade på djupa neurala nätverk
och en byggde på en klassisk maskininlärningsal-
goritm. För att träna nätverken framställdes syn-
tetisk data från spelutvecklingsmjukvaran Unreal
Engine 5. Metoderna utvärderades sedan utifrån
deras prestanda med avseende på antal personer,
folktäthet och avstånd till LiDAR-sensorn.

Resultatet visade att den klassiska maskininlär-
ningslösningen är skalbar upp till 500 personer,
men att den hade problem med att uppskatta en
korrekt fördelning av folkmassor när tätheten blev
för hög. Metoderna som använde sig av djupa
nätverk gav intressanta resultat, men har många
förbättringsmöjligheter. Bilden visar hur en av
metoderna är tränad att identifiera huvuden.

Vi rekommenderar vidareutveckling av punkt-
molnsbaserad personräkning med LiDAR, med
fokus på att förbättra modellerna med djupa neu-
rala nätverk. Mer och bättre träningsdata skulle
kunna leda till mer robusta och pålitliga system
för att hantera folkmassor på ett enkelt och säk-
ert sätt. Med sådana system kan vi vänta oss
ökad säkerhet vid stora evenemang och offentliga
platser, utan att kompromissa med individers in-
tegritet.

	Introduction
	Task and Purpose
	Research Questions

	Method
	LiDAR
	Limitations and Assumptions
	Ethics
	Contribution Statement
	Outline

	Theory
	Existing Solutions
	Detection-Based Crowd Counting
	Regression-Based Crowd Counting
	Density Estimation
	Clustering in Point Clouds

	Machine-Learning Concepts
	Convolutions
	Convolutional Neural Network
	Segmentation

	Deep Learning on Point Clouds
	PointNet Architecture
	PointNet++ Architecture

	Unreal Engine 5

	Approach
	Dataset
	Simulated Dataset
	Real Data
	Evaluation Datasets

	Human Clustering Approach
	Background Subtraction
	Clustering

	Head Clustering Approach
	Segmentation

	Density Estimation Approaches
	Class Densities
	Exact Densities

	Results
	Background Subtraction
	Human Clustering Approach
	Finding Clustering Parameters
	Evaluation

	Head Clustering Approach
	Finding Clustering Parameters
	Evaluation

	Density Estimation Approaches
	Evaluation

	Deep Learning on Point Clouds

	Discussion
	Dataset
	Advantages with Simulated Data
	Limitations with Simulated Data
	Advantages with Real Data
	Limitations with Real Data

	Deep Learning on Point Clouds
	Approaches
	Human Clustering
	Head Clustering
	Density Estimation
	Comparing the Approaches

	Future Work
	Alternative Approaches
	Train with Real Data and Improve Simulation
	Algorithmical Approaches

	Conclusion

