
MASTER’S THESIS 2024

Cross-Domain Generalizability
in Image Feature Extraction
Mamdollah Amini, Adi Creson

ISSN 1650-2884
LU-CS-EX: 2024-34

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datateknik

LU-CS-EX: 2024-34

Cross-Domain Generalizability in Image
Feature Extraction

Mamdollah Amini, Adi Creson

Cross-Domain Generalizability in Image
Feature Extraction

Mamdollah Amini
mamdollah@gmail.com

Adi Creson
adi@creson.se

June 20, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Simon Kristoffersson Lind, simon.kristoffersson_lind@cs.lth.se
Alexander Dürr, alexander.durr@cs.lth.se

Examiner: Volker Krüger, volker.krueger@cs.lth.se

mailto:mamdollah@gmail.com
mailto:adi@creson.se
mailto:simon.kristoffersson_lind@cs.lth.se
mailto:alexander.durr@cs.lth.se
mailto:volker.krueger@cs.lth.se

Abstract

This thesis examines the effectiveness of using ResNet-50, a pre-trained deep
convolutional neural network, as a feature extractor in the reinforcement learn-
ing environment of the Atari game Breakout. The study evaluates the generaliz-
ability of features extracted from the last block of different stages of ResNet-50
in training a reinforcement learning agent and compares these across the stages.
Through a multi-phase experimental setup, the research explores ResNet-50’s
ability to adapt to domains outside its original training, without fine-tuning
the model. The findings reveal that all stages of ResNet-50 underperformed,
particularly in comparison to a established benchmark. Notably, the last stage,
stage 4, showed some potential for learning despite overall poor performance.
The results suggest that ResNet-50 as a feature extractor has limited success in
Breakout and depends heavily on careful integration and design of the reinforce-
ment learning pipeline. This study contributes to the ongoing discussion about
the practicality of leveraging large pre-trained models in new domains, under-
scoring both the challenges and opportunities of repurposing these models for
diverse applications.

Keywords: ResNet, Feature Extraction, Reinforcement Learning, Atari Breakout, Gen-
eralizeability

2

Acknowledgements

We extend our sincere thanks to our supervisors, Alexander Dürr and Simon Kristofferson
Lind, at the Faculty of Engineering at Lund University, for their invaluable guidance and ex-
pertise. Their mentorship was instrumental in our development from novices to knowledge-
able practitioners throughout this project. We are particularly grateful for their availability
and the insightful discussions during our weekly meetings.

3

4

Contents

1 Introduction 9
1.1 Introduction . 9
1.2 Problem Statement and Motivation . 10
1.3 Purpose and Goal . 11
1.4 Research Questions . 11
1.5 Delimitations . 11
1.6 Outline of the Paper . 11

2 Theoretical Background and Preliminaries 13
2.1 Machine Learning . 13

2.1.1 Supervised Learning . 14
2.1.2 Reinforcement Learning . 14

2.2 The resurgence of Deep Learning . 15
2.2.1 Neural Network . 16
2.2.2 Deep Neural Network . 17
2.2.3 Convolutional Neural Network . 18

2.3 Backpropagation and Residual Networks 19
2.3.1 Overview of ResNet-50 Architecture 21

2.4 Reinforcement Learning . 24
2.4.1 Reinforcement Learning Framework 24
2.4.2 Exploration versus Exploitation . 24
2.4.3 The Credit Assignment Problem and Reward Shaping 25
2.4.4 Bellman Equations . 26
2.4.5 PPO and Deep Reinforcement Learning 26

2.5 Feature Extraction . 28
2.5.1 Atari Environment - Breakout . 29

3 Methodology 31
3.1 Experimental Setup . 31
3.2 Study design . 32

5

CONTENTS

3.3 Benchmark Replication . 33
3.3.1 Preprocessing . 33
3.3.2 Initialization . 33
3.3.3 Frame Skipping with Action Repetition 33
3.3.4 Frame Stacking . 34
3.3.5 Hyperparameters . 35
3.3.6 Architecture . 35

3.4 Ablation study . 36
3.5 Hyperparameter Sweep . 37
3.6 Main experiment: Resnet-50 Evaluation . 37

4 Results 41
4.1 Benchmark . 41

4.1.1 Mean Episodic Reward . 41
4.1.2 Mean Episodic Length . 42

4.2 Ablation Study . 43
4.2.1 Mean Episodic Reward . 43
4.2.2 Mean Episodic Length . 43
4.2.3 Best Model Mean Episodic Rewards 44

4.3 Hyperparameter Sweeps . 44
4.4 Main Experiment: Comparison of Feature Extraction Stages in ResNet-50 . 45

4.4.1 Mean Episodic Reward . 46
4.4.2 Mean Episodic Length . 46
4.4.3 Feature Maps . 47

4.5 Comparisons . 47

5 Discussion 49
5.1 Key Findings . 49
5.2 Evaluation of Methodology . 50

5.2.1 Frame Stacking and Global Averaging 50
5.2.2 Reinforcement Learning Network Architectures 51

5.3 Evaluation of Results . 51
5.3.1 Benchmark Replication . 51
5.3.2 Ablation Study . 52
5.3.3 Hyperparameter Optimization . 52
5.3.4 Main Experiment: Comparing ResNet-50 Stages 53
5.3.5 Spikes in Mean Episodic Length . 53

5.4 Future Work . 54
5.4.1 Frame Stacking . 54
5.4.2 Global Average Pooling . 54
5.4.3 Different RL Environments . 55
5.4.4 Alternative Pre-Trained Models . 55

6 Conclusion 57

References 59

6

CONTENTS

Appendix A Network Architectures 65

Appendix B Popular Scientific Summary 71

7

CONTENTS

8

Chapter 1

Introduction

In this chapter, we introduce the topic and discuss the problem statement along with our
motivation for pursuing this thesis. We then define the purpose and objectives of our study.
Following this, we outline our research questions and the corresponding hypotheses. We also
describe the delimitations to clarify the scope of our research. Finally, we provide a brief
overview of the structure of the paper.

1.1 Introduction
Machine learning (ML) has revolutionized the way we extract meaningful insights from vast
amounts of data and tackle complex problems. Machine Learning is defined as the process of
solving a practical problem by an algorithmically built statistical model based on extracted
knowledge from gathered data [7]. Both the wealth of data and the adoption of Machine
Learning and AI have increased in recent years, especially after the introduction of major
applications like OpenAI’s ChatGPT; and this accelerating rate of innovation in AI is driven
by the investment, access to rich data, and the continuous researches directed by tech giants
[1]. Before the adoption of machine learning and AI, intelligent systems operated based on
manual human interventions and expert-designed decision rules to process data or handle
user input [26]. These types of logic-based systems were feasible for deterministic and well-
understood processes that could be modeled with hand-coded rules, but they were domain
and task-specific, and a small change would require redesigning or rewriting the whole sys-
tem by a human expert in that field [26]. Using ML, however, and presenting a large enough
collection of training data enables an ML algorithm to learn and determine the underlying
characteristics, patterns, and distribution in the data, which eliminates the need for a manual
decision-making process [33].

The effectiveness of ML algorithms hinges significantly on the quality of the training data
the ML algorithms are trained on [19]. This necessitates the preparation and transformation

9

1. Introduction

of raw data since raw data collected from real-world settings often contains inconsisten-
cies, missing values, or redundant information, which can impede the learning process of
ML algorithms [26, 29]. Raw data like input images from cameras, for instance, need to be
transformed into a suitable format before being used for training a desired model. Therefore,
ML engineers and data scientists are often tasked with the responsibility of data preparation,
among other tasks, a process that involves techniques such as cleaning, reshaping, and feature
engineering the raw data [26]. Feature engineering is a cornerstone in data preparation and
aims at enriching the dataset by deriving new informative features or transforming existing
ones, a pivotal step in reducing the dimensionality of the data while preserving relevant in-
formation [26]. Feature extraction, a subset of feature engineering and a subject this study
focuses on is a crucial step for many reasons, especially when working with large datasets or
complex algorithms. Working with extracted features enables models to learn faster due to re-
duced computational cost, improves their performance due to reduced redundancy, prevents
overfitting to training data, and provides overall insights into data [2]. There are different
methods and techniques for feature extraction depending on the type of data or domain, i.e.,
depending on whether we work with image processing, text data, or audio processing.

Feature extraction is essential for enhancing the performance of machine learning algo-
rithms and models by improving data processing capabilities. However, a model’s perfor-
mance is highly dependent on the quality and characteristics of its training data, including
the features extracted during training. Consequently, a model trained on data from a spe-
cific source or environment often experiences performance degradation when applied to data
from a different source with different statistical distributions.

For instance, a model trained on ImageNet-1k [9], which is a multi-category image dataset
with 1000 distinct categories, is unlikely to maintain the same level of performance when
evaluated with the COCO [24] dataset, which focuses on instance segmentation of 80 com-
mon objects in natural context [11]. This discrepancy arises because the feature extractors
learned during training are typically tailored to the specific dataset, rather than incorporat-
ing general features. General features refer to characteristics that are not specific to a particular
dataset. Instead, they encapsulate attributes common across various datasets and classes of
objects. These features help in representing the overall distribution of diverse datasets.

In the context of Reinforcement Learning (RL), where agents must learn and adapt to
different environments, using a general feature extractor can significantly enhance an agent’s
ability to operate in new, previously unencountered environments. By leveraging features
that are universally applicable rather than dataset-specific, agents should be able to generalize
better, thereby improving their performance in diverse and dynamic settings.

1.2 Problem Statement and Motivation
Machine learning models are often task-specific and trained on datasets that predominantly
feature task-optimized features. This approach may yield high performance on the targeted
task but models trained on task-specific features often lead to limited generalization capa-
bilities, as expected, and struggle to adapt when confronted with new datasets or scenarios
beyond the training scope.

10

1.3 Purpose and Goal

To address the need for models that can generalize and adapt to diverse settings, this
study investigates the use of large pre-trained models, such as ResNet-50, as feature extractors
in environments and tasks different from those they were originally trained on. Although
general features and the use of large pre-trained models as feature extractors hold significant
promise, this area remains underexplored for reinforcement learning.

1.3 Purpose and Goal
The purpose of this thesis is to investigate how and to what extent large CNN-based pre-
trained models like ResNet-50 can be used to extract general features, and how it could ben-
efit model training in reinforcement learning environments. Hence, the primary objective of
this thesis is to investigate whether pre-trained models can be used as general-purpose feature
extractor in RL. Leveraging the inherent versatility of general features helps enhance model
generalization capabilities and enables more robust and adaptable learning solutions. This
would help minimize the need for building custom and specific feature extraction models for
different tasks.

1.4 Research Questions
The following research questions are formulated to guide our study:

1. To what extent is it possible to train a reinforcement learning agent using a pre-trained
ResNet-50 model as a feature extractor?

2. Is there a difference in performance among the different stages of ResNet-50 when
used as feature extractors in training an RL agent?

1.5 Delimitations
In this research, we have decided to focus exclusively on ResNet-50 as our large pre-trained
model of choice. Additionally, we have confined our analysis to the Breakout Atari game to
assess the generalizability of ResNet-50.

1.6 Outline of the Paper
In this paper, we provide the theoretical foundation, covering the key components of ResNet-
50, the reinforcement learning framework, the Proximal Policy Optimization (PPO) algo-
rithm, and the specifics of Atari Breakout, the chosen training game. Our methodology
involves a multi-phase study, including benchmark replication, an ablation study, a hyper-
parameter sweep, and the main experiment evaluating different stages of ResNet-50. We
present the results using the mean episodic reward as the primary metric, discuss various
observations and considerations for future research, and conclude with our findings.

11

1. Introduction

12

Chapter 2

Theoretical Background and Preliminaries

This chapter presents the fundamental theoretical background of the thesis along with other
relevant works. First, Section 2.1 presents essential concepts in Machine Learning, focusing
on supervised and reinforcement learning (RL). Next, Section 2.2 presents the resurgence of
Deep Learning, including deep neural networks (DNN) and convolutional neural networks
(CNN). Section 2.3 provides an overview of backpropagation and Residual Networks, de-
tailing the ResNet-50 architecture. Section 2.4 provides a more detailed explanation of RL,
covering the RL framework, exploration versus exploitation, the credit assignment problem,
reward shaping, the Bellman equation, and the Proximal Policy Optimization (PPO) algo-
rithm used for training RL agents. Finally, Section 2.5 explores the application of ResNet-50
as a feature extractor in RL tasks, with a specific focus on the Atari Breakout environment.

2.1 Machine Learning
Machine learning employs techniques to identify patterns in data and uses these patterns
to make predictions about new, unseen data without relying on explicitly programmed rules.
This process can be executed using traditional algorithmic machine learning models or through
deep neural networks that act as function approximators.[29]. There are several paradigms
within ML, each with different for different types of data and tasks. Therefore, choosing the
right learning algorithm requires an understanding of the fundamentals of various learning
algorithms and how they apply to different tasks [29]. Learning algorithms are strategies or
techniques used to learn from data. Examples of learning algorithms include, for instance,
k-means clustering for grouping data points and Q-learning for training reinforcement learning
agents. Models, on the other hand, are the concrete representations of the learned patterns
and relationships from data, and the tangible outcomes of the learning processes [7]. Real-
world data are of various forms and therefore the choice of the learning algorithm, hence the
resulting model, depends on the specifications of the problem being solved, the nature of the
data, and the desired outcome [7]. ML algorithms have different approaches when it comes

13

2. Theoretical Background and Preliminaries

to practical implementation and most common algorithms are broadly categorized into su-
pervised learning, unsupervised learning, and reinforcement learning.

2.1.1 Supervised Learning
Supervised learning is a setting in which the learning algorithm is provided with labeled
training data, i.e., known pairs (input, output), and the model is expected to learn a function
that maps inputs to outputs [29]. Supervised learning algorithms are applied in both classi-
fication and regression tasks. Input can be anything from email messages to sensor measure-
ments and camera images, transformed into machine-readable feature vectors or attributes.
Outputs can be real numbers, labels, sequences of labels, vectors, or some other structure[7].
These types of learning algorithms focus on the accurate prediction of new, previously un-
seen inputs or examples that have the same characteristics as the training set. These types
of models are used in tasks such as classification in medical imaging and diagnoses, object
detection, real estate valuation based on house features, and other similar tasks [26].

2.1.2 Reinforcement Learning
Reinforcement learning (RL) is another fundamental paradigm in ML and refers to the types
of learning problems where the goal is to teach a learning agent to maximize some notion of
cumulative reward through interactions with an environment. The agent observes the state
of the environment, takes actions at discrete time steps based on the perceived state, receives
rewards or penalties based on the executed actions, transitions into a new state and evaluates
its decisions to adjusts its behavior to optimize its long-term performance [7]. An RL agent
is expected to learn a policy function with a maximized expected average reward that can make
the optimal action/decision for a given state [7]. Decision-making processes are modeled by
frameworks based on Markov processes (MPs), discrete-time stochastic processes where the
conditional probability distribution of the future states only relies on the present state [23].
The standard theory of RL is defined by a Markov Decision Process (MDP), an extension of
the MP, and typically involves five elements as follows:

• S: set of states or observation space from an environment.

• A: set of actions the agent can choose from.

• T: a transition probability function T(xt+1|st, at) that specifies the probability of transi-
tioning to state st+1 ∈ S given the agent chooses action at ∈ A in state st ∈ S.

• R: a reward function rt+1 = R(sr , st+1) which rewards/punishes the agent for transition-
ing from state st to state st+1 by taking action at .

• γ ∈ [0, 1]: a discount factor that determines the relative importance of distant future
rewards compared to the immediate future.

14

2.2 The resurgence of Deep Learning

The agent’s strategy for choosing an action a given a state s is called its policy π(a|s). The
tuple (st, at, rt+1, st+1) is called a transition, and several sequential transitions are called roll-
out. A finite trajectory or a sequence (s0, a0, r1, s1, a1, r2, ...) with a finite length τ is called
an episode. These terms become useful when analyzing the performance of RL agents by
comparing their episodic mean reward, for instance. The ultimate goal of the agent is to learn an
optimal policy π∗ that maximizes the discounted expected reward. The discounted expected
reward for an episode with length τ is defined as the weighted sum of immediate rewards:

G(π) = EτπR = Eτπ
τ−1∑
t=0

γtrt+1

Here, τπ is a trajectory distribution, the probability of observing a trajectory (s0, a0, r1, s1, a1, r2, ...),
and defined as:

τπ =
∏

t

π(at |st)T (st+1|st, at)

A short comparison helps clarify how RL differs from other ML methodologies like super-
vised learning. RL differs from supervised learning in learning objectives, data requirements,
and feedback mechanisms. In a supervised setting, the model learns a mapping from inputs
to outputs from a fixed dataset, but in RL the agent interacts with an environment and gen-
erates data through exploration. This is what makes the RL sample inefficient compared to
supervised learning [32]. The model in a supervised setting receives explicit feedback in the
form of correct labels while an RL agent receives feedback in a continuous loop where the
agent’s actions or decisions influence the environment and, consequently, future observations
and rewards. The core components of an RL problem are:

• Agent: The learner or decision maker.

• Environment: The external system with which the agent interacts.

• State (s): A representation of the current situation of the agent.

• Reward (r): The feedback from the environment based on the action taken.

• Policy (π): The strategy that the agent employs to make decisions and determine ac-
tions based on the current state.

2.2 The resurgence of Deep Learning
Earlier algorithms in ML, often referred to as classic ML methods, had limitations and faced
challenges such as the necessity of manual feature engineering, scalability issues with high-
dimensional data or large-scale datasets, and the difficulty in capturing complex patterns
as well as hierarchical features in data. The limitations imposed by these challenges were
addressed when deeper neural networks emerged with the name of deep learning after 2010
[22]. The interest in neural networks was revived due to the increased and advanced com-
putational power, particularly GPUs, the availability of large amounts of data, which deep
learning models require for effective training, and more importantly development of suc-
cessful applications capable of addressing actual, real-life problems. A key milestone in this

15

2. Theoretical Background and Preliminaries

resurgence was the impact of AlexNet, a convolutional neural network (CNN) that won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. This section will
introduce the basics of neural networks and deep learning, and then explain the specializa-
tion of CNNs for visual tasks, and finally provide an overview of the ResNet-50 architecture
which won the ILSVRC in 2015.

2.2.1 Neural Network
To clearly describe deep learning, we must first introduce the concepts of neural networks
(also known as multi-layer perceptrons) and neurons. Neural networks are distinguished
from other classical methods by their unique structure. A neural network comprises layers of
nodes, or artificial neurons, a unique structure that distinguishes them from other classical
methods [26]. Each neural network includes an input layer, an output layer, and one or more
hidden layers with weighted connections to the neurons in the preceding and succeeding lay-
ers [7].

A neuron or a node is the most fundamental building block of a fully connected neural
network that takes the weighted sum of inputs from every node in the preceding layer, adds a
bias term, and distributes it to neurons in the succeeding layer through a non-linear activation
function. Figure 2.1 shows a simple feed-forward neural network with p = 5 predictors or
features X1, ..., X5 and K = 5 hidden units or neurons. It shows how a neuron in the hidden
layer takes the weighted sum of features from the input layer and returns an output which
is further used by the single neuron of the output layer. Activation functions are crucial for
the neural network since they add non-linearity and enable the network to learn complex
and non-linear patterns in the data [7]. It is called an activation function since the function
compares the input value to a threshold value and decides whether a neuron should be active
or not. The choice of activation function plays an important role in the performance of
the model since they are involved in the backpropagation algorithm, a feed-backward process
where the model parameters are updated. A more detailed explanation of backpropagation
is provided in 2.3.

In general, a neural network model has the form

f (X) = β0 +

K∑
k=1

βkhk(X) = β0 +

K∑
k=1

βkg(wk0 +

p∑
j=1

wk jX j)

Here, w10, ...,wK p and β0, ..., βK represent the parameters. The K activations a2
k , k = 1, ...,K ,

in the hidden layers, are computed as functions of the input features X1, ..., Xp, and fed into
the output layer, resulting in

f (X) = β0 +

K∑
k=1

βka2
k

The nonlinear activation function g(z) is the Sigmoid function in Figure 2.1, however, the
preferred choice in modern neural networks is the ReLU (rectified linear unit) activation func-
tion [19], which takes the form

g(z) = (z)+ = max{0, z}

16

2.2 The resurgence of Deep Learning

Figure 2.1: A simple feed-forward neural network with a single hid-
den layer. The hidden layer computes activations a(2)

j = σ(z j) =
1

1+e−z j that are nonlinear transformations of the weighted sum of in-
puts X = (X1, X2, ..., X5). The model has an input of five features,
one hidden layer with five neurons and Sigmoid activation func-
tions, and one output neuron [28]

2.2.2 Deep Neural Network
The "deep" in deep neural network (DNN) refers to the depth of neural networks, and net-
works with two or more hidden layers are considered deep neural networks [8]. Deep neural
networks reduce the manual human intervention required by classic neural networks and
enable DNNs to use large unstructured data, particularly since over 80% of an organization’s
data is estimated to be unstructured [8]. In general, and similar to the simple NN with one
hidden layer described earlier, a DNN with p input units, L hidden layers each with Kl nodes,
and m output nodes has the following form where a(l)

k is the activation of k:th node in l:th
hidden layer, and each Zm is a different linear model in the final output layer:

a(l)
k = h(l)

k (X) = g(w(l)
k0 +

p∑
j=1

w(l)
k j X j)

Zm = βm0 +

KL∑
j=1

βmjh(L)
j (X) = βm0 +

KL∑
j=1

βmja(L)
j

17

2. Theoretical Background and Preliminaries

Here, the superscript notation indicates to which layer the parameters, activations, and acti-
vation functions belong. For instance, h(l)

k (·), a(l)
k , and w(l)

k j represent the activation functions,
activations, and weights of the l:th layer, respectively. βmj represent the weights connecting
the j :th node in the last hidden layer to the m:th output node.

Despite being powerful for certain tasks, plain neural networks on itself have limitations
when applied directly to visual and spatial data [19]. The curse of dimensionality, parameter ex-
plosion, feature engineering, and translation invariance are some of the limitations of plain neu-
ral networks when used with visual data. For instance, a 100x100 grayscale image has 10,000
dimensions as each pixel is considered a feature. The input layer in a neural network would
require 10,000 parameters or weights for each neuron in the first hidden layer, W ∈ RN×10000.
Image data are usually high-dimensional and NNs struggle to efficiently process them due to
the large number of parameters required in the network [29]. Consequently, the large num-
ber of connections among the hidden layers in a DNN increases both the computational
complexity and memory requirements of the network. Furthermore, regular DNNs can not
efficiently capture spatial features and translation invariance in visual data [29]. Convolu-
tional neural networks address these limitations through convolutional layers with learnable
kernels, which enable parameter sharing, sparse connectivity, and capture features regardless
of spatial translations [3].

2.2.3 Convolutional Neural Network
As introduced in 2.2, DNNs resurged around 2010 when massive databases of labeled images
of increasingly more classes were being accumulated, and a special family of NN called con-
volutional neural networks (CNNs) evolved and gained significant success in a wide range of
problems related to visual tasks like image recognition, object detection, and segmentation
[22]. This section will provide a more detailed explanation of the idea behind the unique
architecture of CNNs and how they are inspired by the human visual system.

A CNN builds a hierarchy of representations from an input image by first identifying
low-level features, such as edges and lines, and progressively combining them into higher-
level features like parts objects. This process is achieved through a combination of convolu-
tion layers, which extract features, and pooling layers, which reduce the dimensionality of the
feature maps [19]. Feature maps from the convolution backbone are then passed to fully con-
nected layers for capturing global relationships, ending with a softmax activation to classify
the image by supplying probability distributions over various classes [26].

A convolution layer consists of multiple small-sized convolution kernels or filters, such as
3x3 or 5x5 matrices of weights. Convolving the kernels with the input images produces feature
maps, and enables parameter sharing across the entire image, which reduces the number of
required parameters [22]. Formally, the convolved image O ∈ RH′×W ′ from applying the
discrete convolution between a kernel K ∈ Rkh×kw×3 and an RGB input image I ∈ RH×W×3 is
formulated as:

O(i, j) =
3∑

c=1

kh∑
m=1

kw∑
n=1

K(m, n, c) · I(i + m − 1, j + n − 1, c) + b

18

2.3 Backpropagation and Residual Networks

where I(i+m−1, j+n−1, c) is a local patch of the input image in the channel c, and K(m, n, c)
is the filter weights. A non-linearity function, such as ReLU, is applied element-wise to the
convolved image to get the feature map. The resulting feature map is then passed through a
pooling layer to reduce its spatial dimensions. The most common pooling operation is max
pooling, which takes the maximum value within a specified window, providing translation
invariance and reducing computation[22]:

MaxPool(x) = max
(m,n)∈window

x(m, n)

Kernels in a CNN typically match or are smaller than the input image dimensions. The
number of kernels in each convolution layer determines the number of channels for the sub-
sequent layer. For instance, if the first convolution layer uses K kernels, the second layer’s
kernels should have K channels. The resulting feature maps are combined to form a two-
dimensional output after applying an activation function and, consequently, no color infor-
mation is passed to subsequent layers [22]. Figure 2.2 shows a deep CNN architecture with
convolution layers, max-pooling layers, fully-connected layers, and softmax activation.

2.3 Backpropagation and Residual Networks
Convolutional neural networks have achieved remarkable success in various tasks, yet in-
creasing their depth without compromising performance remains a significant challenge. In-
creased depth is crucial for the hierarchical representation of features. Empirical evidence
suggests that the performance of a CNN is correlated with its depth; however, constructing
deep neural networks involves more than merely adding new layers [29]. Neural networks are
trained using the backpropagation algorithm, which relies on the chain rule to update the net-
work parameters effectively. During the final step of a forward pass, the network’s predicted
output is compared to the true output using a loss function. The backpropagation algorithm
then performs a backward pass to minimize the cost function by adjusting the model’s weights
and biases. The adjustment to each parameter is determined by the gradients of the cost
function for that parameter. Thus, backpropagation employs the chain rule to compute the
gradients across different layers, making it a form of gradient descent tailored to the layered
structure of neural networks.

Deeper networks benefit from the potential to learn more complex features and patterns,
but training deep networks using backpropagation becomes increasingly challenging, espe-
cially with certain activation functions like the Sigmoid function [20]. As more layers are
added, the gradients of the loss function may approach zero (vanishing gradients) or become
excessively large (exploding gradients). This phenomenon occurs because the chain rule re-
sults in the multiplication of partial derivatives of each layer. For instance, in a network with
n hidden layers, backpropagation updates the input layer’s parameters by a fraction of the
product of n small gradients multiplied by the learning rate, which typically results in a small
product and, in rare cases, a large one. This issue, known as the vanishing/exploding gradients
problem, causes gradients to decrease/increase exponentially as they propagate back to the
first layer. Consequently, the degradation problem in deeper networks causes saturation in
accuracy during training [3].

19

2. Theoretical Background and Preliminaries

Figure 2.2: Overview of a Convolo neural network. A 2x2 max-
pooling layer is applied after every two convolutional layer.

20

2.3 Backpropagation and Residual Networks

Figure 2.3: A sinusoidal input signal (red) propagates through a sim-
ple network with two different activation functions. The network
has two layers, each with a single neuron. Left: ReLU activation
function, f (x) = max{0, sin(x)}. Right: Sigmoid activation func-
tion, f (x) = 1

1+e− sin(x) . The blue curves represent the output signals
after passing through two ReLU functions. The green curves repre-
sent the output signals after passing through two Sigmoid functions.

This issue with the Sigmoid activation function can be illustrated using a simple sinu-
soidal input signal. Figure2.3 demonstrates how the same input signal propagates through a
simple network of two layers, each with a single neuron, using two different activation func-
tions. It can be observed that the signal diminishes as it propagates deeper into the network
with Sigmoid activation functions, Figure 2.3 (right), whereas it undergoes a different trans-
formation with Rectified Linear Unit (ReLU) functions, Figure 2.3 (left). As a result, the
gradients in the network with the Sigmoid activation functions also shrink with the number
of layers, as illustrated in Figure 2.3.

A simple solution to the vanishing gradient problem is to avoid using the Sigmoid ac-
tivation function, thus preventing the squeezing of activation values and gradients. A more
effective solution is to use residual connections or shortcut connections in neural networks [20].
This type of architecture, known as residual neural network or ResNet, does not require retain-
ing the entire input signal and is designed to scale and support a large number of layers with
minimal risk of degrading the network’s accuracy and performance. The residual connec-
tions in ResNets allow the network to retain relatively more input information over stacks
of layers, mitigating the problem of vanishing gradients while optimizing efficiency, accu-
racy, and complexity [20]. Residual connections, hence residual learning, are implemented
in residual blocks which are based on the idea that if a stack of nonlinear layers can approxi-
mate a desired underlying mapping H(x), then it can also approximate the residual function
F(x) = H(x) − x, which can be reformulated to H(x) = F(x) + x.

2.3.1 Overview of ResNet-50 Architecture
This section provides an overview of the ResNet-50 architecture, a 50-layer variant of residual
networks, and explains how this innovative architecture overcomes the vanishing/exploding
gradients problem.

21

2. Theoretical Background and Preliminaries

ResNet-50 is a 50-layer deep CNN architecture based on the residual convolution net-
work introduced in the original paper. It consists of multiple building blocks called bottleneck
residual blocks. These blocks consist of two paths: a main path with a stack of three convo-
lutional layers, and a shortcut path that performs an identity mapping. The outputs of the
two paths are added elementwise to form the output of the residual block. Figure 2.4 shows a
3-layer "bottleneck" residual block for ResNet-50. The first and last 1x1 convolutions in the
block reduce and restore dimensions, resulting in smaller input/output dimensions for the
middle 3x3 bottleneck layer [20]. Using a residual block allows the network to fit the residual
mapping F(X) which is easier to optimize than the underlying mapping H(X) [20]. The skip
connection in the residual block allows the unhindered flow of data along the feed-forward
path, and the gradients along the backpropagation path. The identity shortcut connections
do not add extra parameters, so adding additional layers does not degrade the network’s per-
formance since regularization will handle them if they provide no benefit [20]. On the other
hand, these additional layers can improve the network’s performance, because they have non-
zero parameters even with regularization.

Figure 2.4: Overview of a bottleneck residual block for Resnet-50.
To avoid a dimensional mismatch between stages, the identity path
in the first residual blocks of stages two, three, and four also includes
a convolutional layer.

Let X represent the input to the residual block, which can be the output of a previous
layer. This input is fed to both the shortcut connection and the stack of convolution layers
forming the main path. Let Fi(X) denote the output of the i-th convolutional layer for i ∈
{1, 2, 3}, and ReLU(X) is the activation function. The computation within the residual block
and its output can be expressed as follows:

F(X) = F3(ReLU(F2(ReLU(F1(X))))))

Output = ReLU(X + F(X))

22

2.3 Backpropagation and Residual Networks

Here, Fi(X) = Wi ∗ X + bi , where Wi are the convolutional filter weights, bi are the bias
terms and ∗ denotes the convolution operation. The ReLU activation function, defined as
ReLU(X) = max(0, X), is applied after each convolutional layer.

The residual blocks are stacked on top of each other to create different ResNet archi-
tectures such as ResNet-18, ResNet-101, and ResNet-152. ResNet-50 consists of 16 residual
blocks organized into 4 residual stages, with each stage containing a certain number of resid-
ual blocks. Specifically, the four stages have 3, 4, 6, and 3 residual blocks, respectively [20].
Additionally, ResNets include an initial convolutional layer, followed by a max pooling layer
before entering the first residual block of the first stage. The network concludes the con-
volutional backbone with a global average pooling layer after the final residual block of the
last stage, and a fully connected (dense) layer that produces the final output. This stacking
of convolutional layers in residual blocks and organizing them in stages allows for both deep
and efficient architectures, maintaining high performance and accuracy. Figure 2.5 illustrates
an overview of the ResNet-50 architecture.

Figure 2.5: An overview of the ResNet-50 architecture. The stem
or the initial stage consists of one convolutional layer and one max-
pooling layer. Each bottle residual block in each stage consists of 3
convolutional layers: 1x1, 3x3, and 1x1. The final layers consist of an
average pooling layer and a dense layer.

23

2. Theoretical Background and Preliminaries

2.4 Reinforcement Learning
This section will focus on explaining core concepts of Reinforcement Learning which have
been monumental in laying the foundations and have aided machines in surpassing expert
human level in highly complex environments such as Go [16] [17], and the e-sport game, Dota
[10].

2.4.1 Reinforcement Learning Framework
A good framework for understanding reinforcement learning is depicted in figure 2.6, below.
It describes the core components of what comprises the reinforcement learning domain.

The

Figure 2.6: An overview of the reinforcement learning framework.

The agent, or learner, interacts with an environment through a set of actions. The envi-
ronment, in turn, produces a new state for every action, with a corresponding reward. The
reward may be zero (non-reward), positive (reward), or negative (penalty). A simple example
of this interaction is illustrated through figure 2.7, below.

In this example, 2.7, the robot represents an RL agent. The robot has an action space
consisting of four possible moves: {Move Left = ←, Move Right = →, Move Up = ↑, Move
Down = ↓}. Whenever the robot chooses an action, the environment produces a new state,
corresponding to a new grid with the robot’s new position. With each transition, also called
the time step, the environment also produces a reward, which as previously mentioned can be
zero, positive, or negative. In this case, it is a penalty of minus one to prevent the agent from
moving around aimlessly in the environment and encourage it to effectively find an optimal
path to the target or the terminating state with a reward of 100 points. The long-term goal of
a reinforcement learning algorithm would be to maximize the average accumulated reward
of the robot, so that the robot reaches a certain goal, in this example, the target.

2.4.2 Exploration versus Exploitation
Let us say that the robot in figure 2.7 starts by exploring paths randomly. By chance, the
robot may find a path to the treasure chests following the edge cells of the grid. This is of

24

2.4 Reinforcement Learning

Figure 2.7: A reinforcement learning scenario, where the robot is the
agent, and the grid world represents the environment.

course a suboptimal path, considering that the robot has other paths that would lead the
robot to the treasure chest quicker. However, since the robot’s goal is to maximize reward,
the robot may choose to exploit its current knowledge and utilize the path every time. On
the other hand, if the robot just explores a new path continuously, it will never leverage
its learned knowledge. This trade-off between exploitation and exploration is a known as a
crucial dilemma in reinforcement learning [32] and is important for finding good policies.
One way to balance exploration vs exploitation would be to premiere exploration in the
initial phases of the learning, to later exploit what is known.

2.4.3 The Credit Assignment Problem and Reward
Shaping

The process in which you design the environment to produce rewards, e.g. in every time step
or at the end of an episode, relates to an important challenge in the reinforcement domain,
called the Credit-Assignment Problem, or as it was first called the Basic Credit-Assignment
problem [25]. In the case of sparse rewards / delayed rewards, where the reward perhaps
comes at the end of an episode consisting of a large sequence of actions, it is hard to assign
credit to the actions that resulted in the reward. An example of this would be chess, where
there are a wide array of actions taken by both players, which result in either a win, loss,
or draw. Some of the actions may have been monumental towards the win, whereas others
may have been insignificant. This problem can be alleviated by thorough reward shaping, for
example, by placing rewards more closely in time to when they occur. However, this requires
deep domain-specific knowledge and may result in unwanted behavior from the agent. If we
take chess as an example again, one could reward the agent for capturing the queen, but this
may result in the agent prioritizing the capture over a loss. Therefore, reward shaping must
be done with utmost carefulness, and sometimes it is most beneficial to only provide a sparse
reward, e.g. in the case of a win, which best aligns the agent with the goal of winning.

25

2. Theoretical Background and Preliminaries

2.4.4 Bellman Equations
Some of the foundations for reinforcement learning were laid out as early as the 1950s, with
Richard Bellman’s work on dynamic programming and Markov Decision Processes [5] [4].
More specifically, he developed the principle of optimality and formulated what would later
be known as the Bellman equation. These findings provided theoretical frameworks for how
present decisions affect future outcomes. The principle of optimality states:

”An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy concerning
the state resulting from the first decision”.

The Bellman Optimality Equation for the state-value function V ∗(s):

V ∗(s) = max
a

∑
s′,r

P(s′, r|s, a)
[
r + γV ∗(s′)

]
(2.1)

The Value Function, described in Equation 2.1, provides a method for finding the opti-
mal policy. It states that the optimal value, V ∗(s), for a given state s, is obtained by choosing
an action a that maximizes the expected accumulated reward. This includes not only the
sum of immediate rewards r, but also the expected future rewards, discounted by a factor γ.
This calculation considers the probabilistic nature of transitions, meaning that the outcome
of any action a in a state s can lead to multiple possible next states s′, each with a certain
probability. The formula accounts for these probabilities, thus ensuring that the expected
value of future rewards is properly weighted by the likelihood of each potential outcome.
The process is accomplished recursively, enabling the algorithm to consider possible future
states and their associated rewards.

The value function can be used to find the Optimal Policy π∗ by:

π∗(s) = arg max
a

R(s, a) + γ
∑

s′
P(s′|s, a)V ∗(s′)

 (2.2)

The optimal Policy, found through the true value function, is nothing more than using
equation 2.1 greedily. Using the equation greedily means using only locally available infor-
mation [32]. This makes sense as equation 2.2 gives you the long-term value (accumulated
reward) of a state for choosing a specific action which results in the next state s∗. Doing this
greedily at each time step will result in the optimal policy π∗. defined in equation 2.2.

2.4.5 PPO and Deep Reinforcement Learning
In complex games like chess, where the true value functions are intricate and impossible
to calculate due to the astronomical number of possible moves and states, approximating
these functions is a common strategy. Neural networks are frequently employed due to their
robust capability to approximate functions. This process involves parameterizing the value
and policy functions, represented by theta, which encompasses the weights and biases of the

26

2.4 Reinforcement Learning

neural network. The parameterized value function V (s; θ) and policy function π(a|s; θ) can
be defined as follows:

V (s; θ) = f (s; θV), (2.3)

π(a|s; θ) = σ(g(s, a; θπ)), (2.4)

where f and g represent the neural network architectures for the value and policy functions,
respectively. θV and θπ are the parameters (weights and biases) specific to each function, and
σ denotes the softmax function that outputs a probability distribution over actions.

PPO is an algorithm developed by OpenAI [30], particularly designed for updating neural
networks in reinforcement learning contexts. It addresses some of the limitations observed
in earlier methods like Deep Q-Networks (DQN) and Trust Region Policy Optimization
(TRPO). PPO simplifies the approach to policy optimization by introducing a clipped sur-
rogate objective function, which makes it computationally less demanding and easier to im-
plement than TRPO. As an on-policy algorithm, PPO operates by learning from a batch of
experiences gathered under the current policy. After these experiences are used for updat-
ing the neural networks, they are discarded, necessitating the collection of new experiences
under the updated policy for further learning. Below follows the clipped surrogate object
function (the loss function) from the OpenAi paper,

LCLIP(θ) = Êt
[
min
(
rt(θ)Ât, clip (rt(θ), 1 − ϵ , 1 + ϵ) Ât

)]
The advantage estimation at time step t, denoted by Ât , is given by the following equation:

Ât = −V (st) + rt + γrt+1 + · · · + γ
T−t+1rT−1 + γ

T−tV (sT) (2.5)

Where:

• V (st) represents the current value network estimation of being in St .

• rt, rt+1, . . . , rT−1 are the rewards received from time step t to T − 1.

• γ is the discount factor. The idea is similar to the "time value of money" concept, where
money received today is worth more than money received in the future.

• γT−tV (sT) applies the discount factor to the value function’s estimation of being in the
final state sT , reflecting the value of ending in state sT from time t.

Simply put, the advantage function quantifies the difference between the expected return
as estimated by our value network and the actual return derived from the collected experi-
ences.

This difference can be abstractly expressed by the following equation:

Advantage = Actual Return − Expected Return (2.6)

Where:

• Expected Value represents the value function’s estimation of the expected return from
a particular state.

• Actual Return encapsulates the accumulated discounted rewards obtained from real
experiences starting from that state.

27

2. Theoretical Background and Preliminaries

rt(θ) =
πθ(at | st)
πθold(at | st)

(2.7)

The term rt(θ) represents the likelihood of action under the new policy compared to the
old policy. A value greater than 1 indicates that the action is more likely under the new policy,
whereas a value between 0 and 1 means that it is less likely. When this ratio is multiplied by
the advantage function, rt(θ)Ât , the result quantifies how much better or worse an action is
under the new policy relative to the baseline policy’s average action.

The term clip(rt(θ), 1 − ϵ , 1 + ϵ)Ât modifies the probability ratio by clipping it within
the range [1 − ϵ , 1 + ϵ]. This ensures that the policy update does not deviate too drastically
from the old policy, specifically by the adjustments to be within the bounds set by ϵ , hence
preventing drastic changes due to large advantage estimates or highly favorable/unfavorable
actions under the old policy.

Using the min function, as shown in equation 2.8, enables the selection of the smaller
of the two terms. This approach ensures a more cautious update, preventing the new policy
from deviating significantly from the parameter space of the old policy.

min
(
rt(θ)Ât, clip (rt(θ), 1 − ϵ , 1 + ϵ) Ât

)
(2.8)

When having a shared network between the policy and the value network, a composite
loss function at time t for policy parameters θ can be defined as:

LCLIP+VF+S
t (θ) = Êt

[
LCLIP

t (θ) − c1LVF
t (θ) + c2S[πθ](st)

]
(2.9)

Where:

• LCLIP
t (θ) represents the clipped policy loss.

• LVF
t (θ) is the value function loss, scaled by the coefficient c1.

• S[πθ](st) denotes the entropy bonus for the policy πθ at state st , scaled by c2.

Equation 2.9 introduces two additional hyperparameters, c1 and c2. c1 is the coefficient
for the value function, which determines the priority given to updating the value function.
A higher c1 assigns greater importance to minimizing the value function loss. c2 is the coef-
ficient for the entropy bonus, which encourages exploration. Setting c2 high promotes more
exploratory behavior in the policy, and vice versa.

2.5 Feature Extraction
The combination and integration of deep learning and reinforcement learning (RL) has led
to significant advancements in solving complex decision-making tasks. In RL, agents need
to make optimal sequential decisions to maximize cumulative rewards. Leveraging deep neu-
ral network (DNN) architectures, such as convolutional neural networks (CNNs), to extract
meaningful features from the environment’s observations is crucial for achieving high per-
formance.

Feature extraction from the input data is a crucial aspect of deep learning, particularly
in tasks where visual perception is essential. It involves transforming raw input data into a

28

2.5 Feature Extraction

smaller set of features that can be effectively used by machine learning algorithms. Feature ex-
traction is particularly important for RL-visual tasks that are difficult to solve using a prede-
fined set of rules, like autonomous driving, robotics, healthcare, surveillance, and simulation
such as mastering complex games like Go [29]. For instance, Google DeepMind’s AlphaGo
Zero was trained by RL algorithms, using neural networks consisting of many residual blocks
of convolutional layers [31]. Although integrating RL in these tasks has offered advantages,
working with visual data remains challenging due to several factors:

• High Dimensionality: Large state space in RL due to high-dimensional image data.

• Sample Inefficiency: RL agents require many samples for effective learning, which is
both time-consuming and computationally expensive.

• Robustness and Generalization: Robustness to variation in the visual environment
and generalization to unseen scenarios are crucial for RL models.

Reducing the dimensionality of raw input data through feature extraction helps address
these challenges. Extracted features highlight the most relevant aspects of the environment
for the agent, helping it to optimize its decision-making ability.

2.5.1 Atari Environment - Breakout
Atari games have become benchmarks in reinforcement learning (RL) research due to their
well-defined rules, simplicity, and visual complexity. Breakout, a classic arcade game, requires
players to control a paddle to hit a ball toward a wall of bricks while preventing the ball from
falling off the screen. Training an agent in this environment involves understanding the
spatial layout and making optimal decisions. The robot’s action space includes four moves:
{NOOP, FIRE, RIGHT, LEFT} [18]. "NOOP" means no operation, "FIRE" starts the game,
and "RIGHT" and "LEFT" move the paddle accordingly. The environment generates a new
state for each action. Each game, or episode, grants the agent five lives. The maximum score
is 864 points, achieved by clearing two walls of bricks, each worth 432 points. The bricks are
arranged in rows, with the first two rows (blue and green) worth 1 point each, the next two
rows (yellow and brown) worth 4 points each, and the final two rows (orange and red) worth
7 points each, totaling 432 points per wall.

Figure 2.8: A state generated by the Atari Breakout environment.

29

2. Theoretical Background and Preliminaries

30

Chapter 3

Methodology

In this chapter, we will explore our methodology for evaluating the potential of training a
reinforcement learning (RL) agent to play the Atari game Breakout through the use of fea-
tures derived from a convolutional neural network (CNN). We will start by discussing our
experimental setup, followed by an overview of the study design, which includes benchmark
replication, an ablation study, hyperparameter sweep optimization, and the main experi-
ment: evaluating the integration of ResNet-50 as a feature extractor.

3.1 Experimental Setup
All the experiments were run on the same computer, with the following specifications:

• Operating system: Ubuntu 22.04.4 LTS x86_64

• Processor: 13th Gen Intel i7-13700K (24 cores)

• RAM: 64 GB

• GPU: NVIDIA GeForce RTX 4080

The main technologies used were:

• Python: The primary programming language used for implementing the models and run-
ning experiments.

• Stable Baselines3: A set of reliable implementations of reinforcement learning algorithms.

• PyTorch: An open-source machine learning library used for developing and training deep
learning models.

31

3. Methodology

• Weights & Biases (Wandb): A tool for tracking experiments, visualizing metrics, and
managing hyperparameters.

• Gymnasium: A toolkit for developing and comparing reinforcement learning algorithms
through a standard API and a variety of environments.

The model of choice was a PyTorch implementation of the ResNet-50 architecture, which
was trained on the ImageNet dataset for classification purposes, covering 1000 classes [14].
We choose Resnet50 because of its proven efficiency in the computer vision domain, achiev-
ing an accuracy of 80.858% for the top-1 classification and 95.435% for the top-5 classification.
[14]

3.2 Study design
We conducted a comprehensive multiphase study that included the following stages:

1. Replication of Benchmark: We began by replicating an established benchmark to ensure
the validity of our setup and approach.

2. Ablation Study: Next, we performed an ablation study to determine the contribution
of each component to the overall performance.

3. Hyperparameter Sweep: Following this, we conducted a hyperparameter sweep to in-
vestigate whether there were better hyperparameters.

4. Comparison of Feature Extraction Stages in ResNet-50: Aside from determining how
well Resnet-50 performs as a feature extractor for image-based reinforcement learning,
we also wanted to evaluate if there was any difference in performance when using the
extracted features from the last block of each of the four stages in Resnet-50, both us-
ing the benchmark hyperparameters and the hyperparameters found through the sweep
study mentioned in the previous step.

32

3.3 Benchmark Replication

3.3 Benchmark Replication
We replicated a benchmark from the RL Zoo3 repository [27] for our training. Identical pre-
processing, initialization, frame skipping, and stacking methods were employed, along with
the same hyperparameters. Our implementation utilized the Stable Baselines3 RL library [15]
within the Atari Breakout Gymnasium environment, specifically BreakoutNoFrameskip-v4
[18]. Detailed explanations of these methodologies are provided in the sections that follow.

3.3.1 Preprocessing
The default image output from the Gymnasium environment is a 210×160 RGB image [18],
which we converted to a grayscale image and resized to 84× 84 using the cv2 Python library.
This process is illustrated below in Figure 3.1.

Figure 3.1: An overview of the preprocessing for the benchmark
model. Left: original, center: after grayscale, right: final result.

3.3.2 Initialization
To introduce variability in the initial game state and prevent the agent from always starting
from the same conditions, we employ a no-op (no operation) initialization. Upon resetting
the environment, the agent performs a random number of no-op actions (between 1 and 30).
This process allows the ball to start in different positions. By varying the starting condi-
tions, the agent is exposed to a wider range of scenarios, which should help it develop a more
generalized understanding of the game dynamics.

3.3.3 Frame Skipping with Action Repetition
To optimize computational efficiency, the frame-skipping technique with action repetition
was utilized. The agent only selects an action every k-th frame. For the intermediate k − 1
frames, the same action is repeated. This approach was utilized in various studies, includ-
ing [12], for Atari games. According to the authors, this technique allows the agent to play
approximately k-times more games as the computational load of repeating an action that ad-
vances the environment, is less than letting the agent calculate a new action at every frame.
We choose a k value of four, meaning that the agent chooses one action, and then that action

33

3. Methodology

is repeated for the subsequent three frames. This process is illustrated in figure 3.2, below,
where frames without a red cross illustrate the agent choosing an action and the subsequent
three frames are repeated actions.

Figure 3.2: Frame skipping with action repetition. Original images
represent chosen actions. Images with red crosses represent repeated
actions.

3.3.4 Frame Stacking

Similar to what was done in to [12] and [13], we employed a frame stacking technique. This
means that instead of inputting independent frames, stacks of frames were used. This is
expected to help the agent make better decisions, giving it a sense of motion and temporal
context. We used a stack of four frames, frames(t, t + 4, t + 8, t + 12) , as was done in [12] and
[13]. If we represent these frames as xn, we get a state representation S1 = (x1, x2, x3, x4). This
state representation can be described as a sliding window with a stride of one. Applying this
method to the next state would give S2 = (x2, x3, x4, x5), and so forth. The frame stacking was
only applied after each frame had gone through the preprocessing. These stacked frames, were
used in both training and evaluation of the models, after the aforementioned preprocessing
had been applied.

34

3.3 Benchmark Replication

3.3.5 Hyperparameters
We used the hyperparameters listed in the table 3.1. All hyperparameters are exactly as in the
benchmark taken from the rl-zoo3 repository [27].

Hyperparameter Value

Algorithm PPO
Number of Timesteps 10,000,000
Frame Stack 4
Learning Rate 0.00025
Learning Rate Schedule Linear
Batch Size 256
Number of Steps 128
Number of Epochs 4
Gamma 0.99
GAE Lambda 0.95
Clip Range 0.1
Clip Range Schedule Linear
Entropy Coefficient 0.01
Value Function Coefficient 0.5
Max Gradient Norm 0.5

Table 3.1: Hyperparameters for PPO algorithm for training the
benchmark model.

3.3.6 Architecture
The network employed a convolutional neural network (CNN) architecture. It included
three convolutional layers, each followed by a ReLU activation function, to enhance the non-
linear properties of the decision function and model complex relationships in the data. After
the convolutional layers, the output was flattened into a feature vector of size 3136. This
vector was then passed to a fully connected layer that reduced its dimensionality to a 512-
dimensional feature vector, serving as a consolidated representation of the input data. Sub-
sequently, this feature vector is fed into two distinct branches of the network: the policy net-
work (actor) and the value network (critic). The policy network outputs a four-dimensional
vector, representing the probabilities of the four possible actions in Breakout, while the value
network produces a single scalar value, estimating the current state’s value. Both outputs are
crucial for the reinforcement learning process, employing the Proximal Policy Optimization
(PPO) algorithm to perform policy gradient updates effectively. An illustrative diagram of
the network architecture is available in Figure A.1 of the appendices. In total, the architecture
comprised approximately 1.686 million tunable parameters.

35

3. Methodology

3.4 Ablation study
To comprehensively evaluate the factors affecting the performance and specifically assess the
impact of integrating ResNet-50, including how adapting images to meet ResNet-50’s input
specifications influences outcomes, we conducted an ablation study. Please note that this is
not an ablation study in the traditional sense, which involves removing components. Instead,
this is more akin to a reverse ablation study, as we are adding components. However, for sim-
plicity, it can be considered an ablation study. Throughout all experiments, we maintained
consistent settings for initialization, frame skipping with action repetition, and frame stack-
ing as per the benchmark protocol. The primary objective was to isolate and examine the
effects of modifications made for ResNet-50 adaptation to pinpoint their individual contri-
butions to overall performance. For this study, we specifically utilized the last block of stage
four of ResNet-50 to explore its efficacy as a feature extractor. Later on, in the main experi-
ment section, the last block of all the ResNet-50 stages will be evaluated. The preprocessing
required for ResNet-50 included resizing images to 232 × 232 via bilinear interpolation,
cropping to 224×224, and normalizing using the means [0.485, 0.456, 0.406] and standard
deviations [0.229, 0.224, 0.225] as specified by PyTorch [14]. For this study, we streamlined
the image processing by directly resizing images from 210× 160 to 224× 224, bypassing the
intermediate resizing to 232× 232 and subsequent cropping. We reasoned that the protocol
of resizing to 232×232 before cropping to 224×224 was developed for images from the Im-
ageNet database, which are of higher dimensionality and typically require downsizing before
cropping. This method contrasts with our approach, where the frames needed to be upscaled
from a lower dimensionality of 210 × 160 to 224 × 224 to meet the input specifications of
ResNet-50.

The experiments were organized as follows:

• Experiment 1: Used the benchmark grayscale images at 84 × 84 (benchmark replica-
tion).

• Experiment 2: Skipped the grayscale-conversion of the 84 × 84 RGB images to assess
the impact of adding color.

• Experiment 3: Resized the original RGB 210 × 160 to 224 × 224 to assess the impact
of resizing the observation frame.

• Experiment 4: Normalized the resized RGB frame by the mean and standard deviation
values provided by Pytorch, as previously mentioned, to assess the impact of normal-
izing the observation.

• Experiment 5: Integrated the ResNet-50 architecture, using features from the last
block of stage four, to determine the impact of using extracted features instead of
observation frames.

All of these steps are illustrated concisely in Table 3.2, below.

36

3.5 Hyperparameter Sweep

Experiment Grayscale RGB Resizing Processing ResNet

1 X
2 X
3 X X
4 X X X
5 X X X X

Table 3.2: An overview of the ablation study. The X’s represent the
components that were used in that specific study.

3.5 Hyperparameter Sweep
Since our ablation study showed sub-par performance for the last block of the last stage
in ResNet-50, we decided to conduct ten hyperparameter sweeps using Weights and Biases
(W&B) [6], each consisting of one million time steps. Due to time constraints and compu-
tational demands, our focus was solely on optimizing the following hyperparameters using a
Bayesian search. This decision was influenced by rl-benchmark, which modified only these
parameters while keeping everything else at default settings. The goal of our Bayesian search
was to maximize the mean episodic reward.

The hyperparameters and settings used for the sweep are listed below:

Parameter Distribution Min Max Description

batch_size int_uniform 128 512 Batch size
clip_range uniform 0.01 0.1 Clip range
ent_coef uniform 0.001 0.01 Entropy coefficient
learning_rate uniform 0.00125 0.005 Learning rate
n_epochs int_uniform 1 10 Number of epochs
n_steps int_uniform 64 256 Number of steps
normalize_advantage values false true Normalize advantage
vf_coef uniform 0.25 1 Value function coefficient

Table 3.3: Sweep configuration parameters

3.6 Main experiment: Resnet-50 Evaluation
We conducted an evaluation of the last block in four different stages of ResNet-50 using two
sets of hyperparameters: one set was the benchmark parameters detailed in table 3.1, and the
other set was identified through a hyperparameter sweep, as discussed in the results chapter.
It’s important to note that the experiment for the end of stage 4 has already been conducted
as part of the ablation study.

In all these experiments, we maintained consistency with the benchmark configurations
in terms of initialization, frame skipping with action repetition. Additionally, we imple-

37

3. Methodology

mented the preprocessing steps for ResNet-50 that were outlined in the ablation study. De-
tails on the architectures used for each stage are provided in the appendices (see Figures A.2,
A.3, A.4, A.5). Frame stacking was handled differently compared to the approach employed
by the benchmark due to technical constraints imposed by ResNet-50. We chose to process
the frames separately, and only concatenate the feature vectors at the end, forming the input
to the RL model. This process is detailed further below, and illustrated in figure 3.3.

The feature maps generated by each stage of the ResNet-50 are averaged and stacked to
form the input for the subsequent stage and layer. We define:

• C: the number of feature maps output by the last block of each stage,

• N : the number of feature vectors to be stacked (in this case, N = 4).

For a given block, the output consists of C feature maps. After global average pooling,
the feature maps are reduced to a one-dimensional feature vector of size C. These vectors are
then stacked to form the input to the next stage, as follows:

1. Output after pooling: A feature vector v of size C.

2. Stacking: Stacking N such vectors yields an input vector V for the next stage, calcu-
lated as:

V = [v1, v2, v3, v4]

where each vi is of same dimension and size, C.

3. Input Dimensionality: The total size of the input vector V is N × C. Example for
stage1, where C = 256 and N = 4, the input dimension becomes:

|V | = 4 × 256 = 1024

C varies for the end of stage1, stage2, stage3, and stage4, with values of 256, 512, 1024,
2048 respectively.

This input structure is pivotal for the architecture, as it handles feature maps from the
previous stage and prepares them for further processing in the subsequent stage. The whole
process of the main experiment is illustrated in Figure 3.3, below.

38

3.6 Main experiment: Resnet-50 Evaluation

Figure 3.3: Main experiment pipeline. A stack of four RGB frames is
resized, normalized, and fed to the ResNet-based feature extractor.
Global averaging is applied to the resulting feature maps, reducing
each feature map into a single value. Resulting feature vectors are
concatenated together before being fed to the RL model.

39

3. Methodology

40

Chapter 4

Results

This chapter presents the findings from our multiphase study. The graphs, except for those
representing the best model, were created by running five evaluation episodes every 50,000
time steps, over a total of 10,000,000 time steps. We calculated the mean episodic reward
(averaged accumulated reward) and the mean episodic length over five episodes. The best
models were identified through these periodic evaluations during the training phase. The
graphs for the best models were generated by first evaluating the models over 25 episodes
and then averaging the rewards to ensure robust results for each model.

4.1 Benchmark

This section provides the mean episodic rewards and mean episodic length as key metrics of
the replicated benchmark.

4.1.1 Mean Episodic Reward

Figure 4.1 illustrates the mean episodic reward averaged over five episodes, for the benchmark
model. The slightly opaque trend lines in the background represent the raw, unsmoothed
data. This visualization demonstrates how the model converged to a stable performance level
of approximately 400 points. The benchmark experiments are referred to as experiment 1 in
the ablation study, hence the naming in the legend.

41

4. Results

Figure 4.1: Benchmark mean episodic reward averaged over five
games.

4.1.2 Mean Episodic Length
Figure 4.2 displays the mean episodic length, averaged over five episodes. This graph is un-
smoothed to highlight the spikes in mean episodic length. The data reveals frequent and
significant spikes, with levels occasionally exceeding 100,000 time steps.

Figure 4.2: Benchmark mean episode length averaged over five
games.

42

4.2 Ablation Study

4.2 Ablation Study
This section provides the mean episodic rewards of the five experiments in the ablation study,
together with mean episodic length of the first and last experiments in the ablation study
representing the benchmark and integration of ResNet-50 as a feature extractor, respectively.
Furthermore, it provides the metrics for the best model obtained for each experiment.

4.2.1 Mean Episodic Reward
Figures 4.3 illustrates the running average of mean episodic reward for the five experiments in
the ablation study. The slightly opaque trend lines in the background represent the raw, un-
smoothed data. Experiment 5, in which we included the ResNet-50 architecture, performed
significantly worse, as can be noted from the graph.

Figure 4.3: Mean episodic reward averaged over five games for the
five experiments in the ablation study.

4.2.2 Mean Episodic Length
Figure 4.4 displays the mean episodic lengths for experiment 1 (the replicated benchmark)
and experiment 5. Notably, experiment 5 also demonstrated spikes in mean episodic length
as observed in the ablation study, with an average trend around 2700 time steps. To avoid
cluttering the graph, experiments 2 through 4, which followed similar trends to experiment
1, were omitted.

43

4. Results

Figure 4.4: Mean Episodic Lengths for experiments 1 and 5 in the
ablation study.

4.2.3 Best Model Mean Episodic Rewards
Once the best model for each of the experiments had been identified, they were evaluated
again over 25 episodes to ensure robustness. Table 4.1 shows the Mean Episodic Reward.
Most experiments in the ablation study converged around a mean episodic reward of 400 or
above, whereas the experiment including the ResNet-50 architecture only achieved a mean
episodic reward of around 30.

Experiment Mean Episodic Reward Standard Deviation

Experiment 1 410 19
Experiment 2 409 21
Experiment 3 409 21
Experiment 4 461 167
Experiment 5 30 5

Table 4.1: Summary of mean episodic rewards and their standard
deviations for various experiments. The numbers have been rounded
to the nearest integer.

4.3 Hyperparameter Sweeps
Figure 4.5 below, presents the results of ten runs conducted with varying hyperparameter val-
ues, each running for one million time steps. The yellow line represents the best-performing
run. The specific hyperparameters used for this optimal performance are detailed in Table
4.2, below.

44

4.4 Main Experiment: Comparison of Feature Extraction Stages in ResNet-50

Figure 4.5: Overview of the configurations pertaining to the 10 hy-
perparameter sweeps.

Hyperparameter Value

Batch Size 280
Clip Range 0.3329
Learning Rate 0.002513
Entropy Coefficient (ent coef) 0.00207
Number of Epochs (n_epochs) 3
Number of Steps (n_steps) 80
Normalize Advantage True
Value Function Coefficient (vf_coef) 0.5818

Table 4.2: Hyperparameters for the best-performing run.

4.4 Main Experiment: Comparison of Fea-
ture Extraction Stages in ResNet-50

This chapter presents the results from the "Comparison of Feature Extraction Stages in ResNet-
50 experiments. These results are derived from models trained using both the benchmark hy-
perparameters and the best-performing hyperparameters identified through hyperparameter
sweep runs, as detailed in the methodology section. Note that "Benchmark Hyperparameters
Stage 4", is equivalent to "Experiment 5", in the ablation study.

45

4. Results

4.4.1 Mean Episodic Reward

Figure 4.6, shown below, displays the mean episodic reward for the different stages in ResNet-
50, for the runs with both the benchmark hyperparameters and the hyperparameters of the
best-performing sweep run. This figure shows that the only model displaying any form of
learning is the one utilizing the features outputted by the end of stage 4. A comparison with
the benchmark will be illustrated in the upcoming section "Comparisons".

Figure 4.6: Mean episodic rewards for the four stages in ResNet-
50 with the benchmark hyperparameters and the best performing
hyperparameters obtained from the hyperparameter sweep.

4.4.2 Mean Episodic Length

Figure 4.7 illustrates the mean episodic lengths for stages 3 and 4. These stages were specifi-
cally selected to avoid overcrowding the graph. All other stages exhibited a similar trend to
stage 3, including those using the hyperparameters from the most effective sweep. Typically,
the values hover around 1500 mean episodic lengths but exhibit sudden spikes reaching up
to 20,000 and even 40,000.

46

4.5 Comparisons

Figure 4.7: Mean episodic lengths across stages 3 & 4 in ResNet-50.

4.4.3 Feature Maps
For the convenience of the reader, we have included visualizations of one of the feature maps
generated at the end of each residual stage. This helps to intuitively illustrate the differences
between the stages. These visualizations can be viewed in Figure 4.8.

Figure 4.8: One feature map illustrated from each of the different
stages of ResNet-50. Left: stage 1, left center: stage 2, right center:
stage 3, right: stage 4

4.5 Comparisons
Table 4.3, below, displays a comparison of performance metrics for the benchmark and the
four stages of ResNet-50, using both benchmark hyperparameters and the best-performing
sweep hyperparameters. The table also includes the training times for each experiment,
which includes evaluations performed at every 50,000 time steps. Thus, while the table pri-
marily serves as an indicator of training duration, it also provides a comparison of the training
efficiency across different stages.

47

4. Results

Experiment Mean Episodic Reward Standard Deviation Training Time

Benchmark (Experiment 1) 409.52 18.16 4h 15m

Benchmark Hyperparameters
Stage 1 2.16 3.84 18h 11m
Stage 2 2.88 4.20 21h 5m
Stage 3 2.88 4.20 1d 6h 9m
Stage 4 (Experiment 5) 29.84 5.00 1d 9h 23m

Sweep Hyperparameters
Stage 1 6.16 5.46 19h 24m
Stage 2 1.31 3.58 1d 4h
Stage 3 2.88 4.20 1d 8h 15m
Stage 4 6.16 6.95 1d 18h 19m

Table 4.3: Comparison of mean episodic rewards, standard devia-
tions, and training times across different stages in ResNet-50 and
hyperparameter settings.

48

Chapter 5

Discussion

The primary objective of this study was to investigate to what extent it was possible to use
a large pre-trained CNN-based model as a versatile feature extractor in RL settings. Cross-
domain generalizability enables pre-trained models to perform well on different data sets
without significant performance degradation. In this study, we chose to investigate and iden-
tify the strengths and limitations of ResNet-50 as a feature extractor for training an RL agent
in the Atari Breakout environment. This discussion will summarize the key findings and in-
terpret the results. The discussion will critically evaluate the chosen and employed method-
ology, acknowledge the encountered strengths and limitations, and explore the challenges
faced in achieving cross-domain generalizability. Also, this section will suggest directions for
future research to address the challenges encountered. Through a comprehensive analysis of
our findings, we strive to contribute to the ongoing efforts to develop robust image feature
extraction methods.

5.1 Key Findings
Following are the key findings from our experiments using ResNet-50 as a feature extractor
in the Atari Breakout environment:

First, we observed that integrating ResNet-based feature extractors generally exhibited
poor performance in our study, despite having shown highly successful results in single-
domain scenarios [21]. Specifically, the performance of the last stage of the ResNet-50 model
was significantly different from the other three stages. This suggests that the representation
level from different stages plays a crucial role in the effectiveness of extracted features.

Second, the results highlighted the impact of hyperparameter optimization on the per-
formance of the feature extractor. Using benchmark hyperparameters gave better results
compared to those with other settings. This underscores the significance of tailored hyperpa-
rameter configurations in optimizing model adaptability or generalizability to new domains.

Third, the results revealed that preprocessing techniques had significant effect on the

49

5. Discussion

performance of the benchmark model. Methods such as grayscale transformation, normal-
ization, and cropping had an impact on the learning speed, while the models converged to
similar values. This suggests that a robust preprocessing pipeline is crucial for a versatile
image feature extraction model.

In summary, our results suggest that there are multiple factors, besides the choice of pre-
trained model, that affect the cross-domain generalizability in image feature extraction. This
emphasizes the need for careful consideration of model architecture, hyperparameter tuning,
and preprocessing techniques to enhance the robustness of feature extraction methods.

5.2 Evaluation of Methodology
We employed a systematic approach in our evaluation of the feature extraction techniques
and capabilities of ResNet-50 in this study. The goal of our experimental setup and design
of the methodology was to ensure that the results were reliable and replicable.

First, we replicated the benchmark as a sanity check to ensure our experimental setup
was functional and worked as expected. This is a necessary step that ensures that the perfor-
mance of the subsequential experiments relies on factors other than the experimental setup.
Then, we performed an ablation study to evaluate the impact of different processes, choices,
and pipeline components on the overall performance of the study metrics. This step is cru-
cial for identifying the importance and impact of different choices and components in the
preprocessing pipeline, which in turn reduces uncertainties in the experiment. After find-
ing an optimal configuration and design, we performed a hyperparameter optimization to
evaluate how sensitive the experiment or pipeline was to hyperparameters. Optimizing hy-
perparameters is an important step in training ML models because hyperparameters govern
the learning process and model structure, which in turn impact performance and efficiency.
We train the RL agent with different stages as a feature extractor, with both the optimal set
of hyperparameters identified through sweep, and the benchmark hyperparameters. Finally,
we compare the results for both hyperparameters and stages.

5.2.1 Frame Stacking and Global Averaging
It is worth mentioning that the choice of frame stacking and global averaging methods im-
pact the feature dimensions, and therefore might also play important roles in the effective-
ness of the extracted features. Following the benchmark suggestion, we worked with stacks of
four frames. ResNet-50 takes in 3-dimensional input data, and we used RGB frames, so our
choice of giving ResNet-50 information about the dynamics of the environment was limited
to concatenating four frames after running global averaging pooling on the extracted fea-
ture maps. This might have been a suboptimal choice or even a critical flaw in our approach
when compared to the benchmark, which operates on stacks of four grayscale frames, en-
abling it to observe the stacked frames as a whole. ResNet-50 could also work with stacked
frames if we had used a stack of three grayscale observations, since grayscale observations
are 2-dimensional. It is however uncertain how this would have affected the performance, as
ResNet-50 was not trained in this manner. Overall, a more fair comparison might have been
to train a benchmark without stacked frames, and then compare the performances.

50

5.3 Evaluation of Results

We could have also used an alternative method for the global average pooling layer that
currently averages each feature map from the ResNet feature extractor to only a single value.
Averaging a whole feature map to a single value can therefore be seen as information loss. An
alternative method would have been to do pixel-wise averaging followed by a flattening layer
to preserve more spatial information in feature maps, or perhaps look into other dimensional
reduction techniques that would have resulted in less information loss. This would reduce
the stack of four frames to only one frame embedded with temporal features and information
on the environment dynamics. Consequently, it would reduce the computation time by 75%
for the feature extraction part.

5.2.2 Reinforcement Learning Network Architectures
A possible explanation for ResNet-50’s underperformance relative to the benchmark might
be attributed to differences in network architectures. The network used for training the
benchmark had 1,686,693 tunable parameters, including a CNN-based feature extractor which
is trained to generate specific and optimal features for training the RL agent. In contrast, the
architecture used with ResNet-50 to train the RL-agent incorporated a fully connected net-
work with tunable parameters ranging from 139,845 for stage 1, to 1,057,349 for stage 4. This
disparity in network complexity and parameter count may also account for the observed per-
formance variations across different stages and the benchmark. However, it is highly unlikely
that it accounts for all the difference in performance between the stages and the benchmark.
For details regarding the architectures, see appendices.

5.3 Evaluation of Results
The following section discusses the results obtained from the different phases of the study.

5.3.1 Benchmark Replication
We replicated the ppo-BreakoutNoFrameskip-v4 benchmark provided by RL-Zoo with the same
settings and set of hyperparameters to establish a solid baseline for our experiments. Figure
4.1 shows that the mean episodic rewards converge stably towards 400 verifying that our
implementation is consistent with the benchmark established and ensures that subsequent
experiments and modifications are grounded in a validated starting point. Figure 4.2 shows
the mean episodic length without running average smoothing. We can observe large spikes
that stretch above 100,000 time steps. Visual investigation of the agent playing the game
revealed that these spikes are caused by indefinite loops when the agent gets stuck with a
particular break that it never successfully hits or some particular trajectory that results in
the same trajectory again. The deterministic nature of the policy prevents the agent from
getting out of the loop. The environment has a stop criterion of 108,000 time steps which
resets the environment, enabling the agent to continue with a new episode. It is important
to note, however, that this only happens in the evaluation, as it employs a deterministic
policy. Fixing this issue, would’ve reduced the training time (the evaluations were run while
training).

51

5. Discussion

5.3.2 Ablation Study
The ablation study following the benchmark replication involved a series of controlled ex-
periments where we systematically varied one component at a time. Table 3.2 provides the
key factors examined.

Experiment 1 represents the benchmark with grayscale observations and acts a reference
for the remaining experiments. It should be noted that the Atari Breakout environment
returns RGB observations, and grayscale transformation is part of the preprocessing steps
in the benchmark. Therefore, in experiment 2, we decided to investigate and evaluate the
performance difference between grayscale and RGB observations by skipping the grayscale
transformation in the preprocessing step. This was particularly important because ResNet-
50 also works with 3-dimensional (RGB) input images. The performance difference was not
significant, since color information gets lost when RGB images propagate through convolu-
tion layers.

Next, in experiment 3, we scaled the observation image from 210 × 160 to 224 × 224
to match the dimensionality required by the ResNet-50 architecture. The purpose was to
evaluate the importance of scaling or resizing the environment observations. Resizing the
original, 210×160 observation, resulted in both faster convergence and higher episodic mean
rewards. It can be assumed that the higher resolution images provides more information for
the network, enabling it to extract richer features.

Normalizing the input data is part of the ResNet-50 preprocessing steps, as outlined by
PyTorch. Therefore, in experiment 4, we normalized the observations with the mean and
standard deviations obtained by ResNet-50 from the ImageNet dataset to determine their
influence. We expected normalization with ImageNet values to play an important role in ex-
tracting general features and speeding up the convergence rate. However, to our surprise, the
overall performance did not experience significant changes but, on the contrary, the training
time of the RL agent increased, probably due to the computational overhead.

Lastly, in experiment 5, we added a ResNet-based feature extractor after having added
the scaling and normalizing steps in previous experiments. The increased computational
time was expected and noticed immediately, however the resulting poor performance by
adding ResNet-50 was not expected. This was not expected because of both the excellent
empirical performance of ResNet-50 observed in other studies, and the theoretical advan-
tages promised by the deep residual structure of ResNet-50 such as rich and hierarchical
feature extraction capabilities.

5.3.3 Hyperparameter Optimization
After having performed the ablation study and gradually constructed a final setting, i.e., using
the last residual block of stage 4 as a feature extractor, we utilized Weights & Biases (wandb)
to conduct hyperparameter sweeps for fine-tuning our experimental setup. We conducted a
Bayesian optimization over 10 configurations, each consisting of only 1,000,000 time steps
due to time constraints. We retained the default hyperparameter settings from the RL-Zoo
benchmark in our Bayesian optimization, opting not to modify them. While adjusting these
parameters could potentially have led to better optimization, time constraints necessitated
this approach. The set of optimal hyperparameters provided in table 4.2 only performed well
during the optimization. Figure 4.2 also shows low mean episodic length for the benchmark

52

5.3 Evaluation of Results

below 2 · 106 time steps. This is due to the exploratory nature of the PPO algorithm or the
presence of high stochasticity at the beginning of the training which requires the models to
run for a minimum of 2, 5 · 106 time steps before focusing more on exploitation, considering
that the benchmark performance improves after approximately time 2, 5 · 106 steps. This
suggests that more extensive hyperparameter sweeps should have been conducted. Addition-
ally, our hyperparameter sweeps were confined to just the fourth stage. Conducting sweeps
for each stage might have allowed us to tailor optimizations more precisely to each stage. De-
spite optimization, the optimized hyperparameters continued to underperform compared
to those from the benchmark protocol, making it uncertain whether more comprehensive
sweeps would have yielded significant improvements.

5.3.4 Main Experiment: Comparing ResNet-50 Stages
The main experiment involved a more comprehensive evaluation of the modified versions of
the ResNet-50 model as feature extractors. This involved training the RL agent with the four
different residual stages of ResNet-50 as feature extractors, using both the benchmark and
optimized hyperparameters.

Through testing and analysis of the four different residual stages of the ResNet-50, we
aimed to uncover insights into the effectiveness of different representation levels. We ex-
pected to see a notable difference in performance among the four residual stages. However,
the only experiment that showed indication of being able to learn was the one utilizing stage
4 with the benchmark hyperparameters. The rest of the experiments had identical perfor-
mance. Figure 4.6 illustrates this difference and suggests that only the features extracted by
stage 4, using the benchmark hyperparameters, contain enough information for the RL agent
to learn from. We know that kernels in different layers have different receptive fields. Ker-
nels in earlier layers are activated by a small patch of the input image while kernels in deeper
layers in the network include contributions from a larger area of the input image due to the
cumulative effect of multiple convolutional and pooling layers. Therefore, it is reasonable
to expect deeper layers to integrate information over larger portions of the input image, en-
abling the network to capture more complex dynamics from the environment observations.
Stage four can, therefore, be expected to have better performance.

ResNet-50 is 50 layers deep and deep models are computationally intensive, both in terms
of memory and more importantly processing power, which can be a drawback and cause lim-
itations when quick iterations and real-time performance are required. We experienced a
significant difference in training time when we modified the model to include up to a certain
residual block or stage. Computationally, training the RL agent with the original ResNet-50
as a feature extractor took more than two days, modifying it to only include the first stage
took approximately roughly 33 hours with the benchmark hyperparameters. Replicating the
benchmark took approximately 4 hours of training time in comparison and performed signif-
icantly better, making it hard to argue for an effective application of ResNet-50 as a feature
extractor.

5.3.5 Spikes in Mean Episodic Length
As noted earlier in sections 4.1.2 and4.4.2, both the benchmark and the four stages of ResNet-
50 exhibited occasional spikes in performance. In the case of the benchmark, Figure 4.2, these

53

5. Discussion

spikes could be attributed to high scores nearly completing the game, which sometimes led to
infinite loops where the ball continuously bounced off walls. However, this explanation does
not hold for the four stages of ResNet-50, as the observed spikes, Figure 4.7, occurred despite
significantly lower mean episodic rewards, making infinite loops impossible. We attempted
a visual inspection of these models to identify any recurring patterns but were unable to
discern any clear reasons for these anomalies, leaving us without a definitive and reasonable
explanation for their occurrence.

5.4 Future Work
ResNet-50 can be expected to perform well as a versatile feature extractor in tasks with var-
ious classes of images and objects since it is a powerful architecture for image classification.
Using it in an Atari environment where the consecutive observations only differ in a few pix-
els from each other might be similar to asking ResNet-50 to classify them as different classes
of images. It is difficult for ResNet-50 to accomplish this since the differences between obser-
vations become notable only when we compare observations with a large number of frames
in difference. This is despite the fact that we use frame stacking. Therefore, further mod-
ifications in choices, methods, and the training pipeline as whole need to be considered in
future studies.

After having mentioned the limitations and assumptions, and identified flaws in our
approach, we provide the following aspects to be considered for future studies.

5.4.1 Frame Stacking
Frame stacking became a major concern towards the end of this study. Future work shall ex-
plore different and better strategies for frame stacking than simply concatenating the global
averaged feature vectors obtained from four RGB observation frames, as we have done in this
study which provided limited insights into the environment dynamics for the ResNet feature
extractor. We have observed that the difference in performance between using grayscale or
RGB observations is neglectable. Therefore, using stacks of three grayscale observations as
inputs to the ResNet feature extractor shall not lead to significant performance degradation.

Alternatively, one could explore training a reinforcement learning agent with ResNet-
50, without using stacked frames to determine if this impacts the performance. To ensure a
fair and effective comparison, it would also be necessary to evaluate this approach against a
benchmark that is similarly trained without frame stacking.

5.4.2 Global Average Pooling
Our current method reduces an entire feature map into a single point by taking the global
average of the feature map. Spatial information embedded in feature maps gets lost with
this reduction technique, which might significantly impact performance. Future work could
investigate alternative pooling and dimensionality reduction techniques that preserve more
spatial information, hence maintaining a more detailed feature representation.

54

5.4 Future Work

5.4.3 Different RL Environments
Our study was limited to evaluating ResNet-50 in only one environment. To fully assess
the cross-domain generalizability of ResNet-50 more comprehensively, future studies shall
evaluate the robustness of ResNet-50 in multiple different RL environments with varying
levels of complexity to see how well the features generalize.

5.4.4 Alternative Pre-Trained Models
Lastly, while ResNet-50 was chosen for its proven excellent performance in image classifica-
tion tasks, we suggest that future studies explore other large pre-trained models. There are
multiple models CNN-based models and transformer-based models like vision transform-
ers (ViTs) which have shown promising results in various vision tasks that can be used for
additional insights into cross-domain generalizability.

55

5. Discussion

56

Chapter 6

Conclusions

Our study highlights that ResNet-50 underperforms relative to our benchmark in the tested
configuration, with only the fourth stage showing some learning potential. This indicates
a need for further investigation into this stage’s capabilities. The computational inefficien-
cies observed when using ResNet-50 as a feature extractor for training reinforcement learn-
ing agents emphasize its limitations for such applications. However, given the complex and
opaque nature of deep neural networks, continued research might reveal more about the
generalizability of large pre-trained models. We also acknowledge that our methodology,
particularly our approach to frame stacking and average pooling, may have influenced our
outcomes. Therefore, these results should be interpreted as preliminary, specific to the use
of ResNet-50 in Atari game environments, which vary widely in complexity. Additionally,
our findings underscore the significant impact of hyperparameter selection on performance
outcomes, as evidenced by the fact that benchmark hyperparameters facilitated learning in
stage four, whereas the best-performing hyperparameters identified via sweep did not yield
similar results.

57

6. Conclusion

58

References

[1] Artificial Intelligence Market Size, Share, Growth Report 2030 — grandviewre-
search.com. https://www.grandviewresearch.com/industry-analysis/
artificial-intelligence-ai-market. [Accessed 03-04-2024].

[2] Feature Extraction — deepai.org. https://deepai.org/
machine-learning-glossary-and-terms/feature-extraction. [Accessed
05-03-2024].

[3] Convolutional Neural Network (CNN) Fundamental Operational Survey. Springer, Cham,
2020.

[4] Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957.

[5] Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1957.

[6] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available
from wandb.com.

[7] A. Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[8] IBM Data and AI Team. Ai vs. machine learning vs. deep learning
vs. neural networks | ibm. https://www.ibm.com/think/topics/
ai-vs-machine-learning-vs-deep-learning-vs-neural-networks. [Ac-
cessed 12-04-2024].

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[10] B. Christopher et al. Dota 2 with large scale deep reinforcement learning, 2019.

[11] K. Gauen et al. Comparison of visual datasets for machine learning. In 2017 IEEE Inter-
national Conference on Information Reuse and Integration (IRI), pages 346–355. IEEE, 2017.

59

https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://deepai.org/machine-learning-glossary-and-terms/feature-extraction
https://deepai.org/machine-learning-glossary-and-terms/feature-extraction
https://www.ibm.com/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

REFERENCES

[12] M. Volodymyr et al. Playing atari with deep reinforcement learning, 2013.

[13] M. Volodymyr et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[14] P. Adam et al. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[15] R. Antonin et al. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021.

[16] S. David et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[17] S. David et al. Mastering the game of go without human knowledge. Nature,
550(7676):354–359, 2017.

[18] T. Mark et al. Gymnasium, March 2023.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

[21] Md Belal et al. Hossain. Transfer learning with fine-tuned deep cnn resnet50 model for
classifying covid-19 from chest x-ray images - pmc. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC8933872/, 03 2022.

[22] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor. An Introduction to Statistical
Learning: with Applications in Python. Springer Texts in Statistics. Springer International
Publishing, 2023.

[23] Ngan Le, Vidhiwar Singh Rathour, Kashu Yamazaki, Khoa Luu, and Marios Savvides.
Deep reinforcement learning in computer vision: A comprehensive survey. CoRR,
abs/2108.11510, 2021.

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick.
Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[25] Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,
1961.

[26] A.C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide for Data
Scientists. O’Reilly Media, 2016.

[27] Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

60

http://www.deeplearningbook.org
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933872/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933872/
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

REFERENCES

[28] Bart Rogiers, Dirk Mallants, Okke Batelaan, Matej Gedeon, Marijke Huysmans, and
Alain Dassargues. Estimation of hydraulic conductivity and its uncertainty from grain-
size data using glue and artificial neural networks. Mathematical Geosciences, 44:739–763,
08 2012.

[29] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research
directions. SN computer science, 2(3):160, 2021.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms, 2017.

[31] D. Silver, J. Schrittwieser, and K. et al. Simonyan. Mastering the game of go without
human knowledge. Nature, 550, 10 2017.

[32] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, Cambridge, MA, USA, 2 edition, 2018.

[33] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer; 2nd Edition,
2022.

61

REFERENCES

62

Appendices

63

Appendix A

Network Architectures

Figure A.1: Benchmark Network Architecture

65

A. Network Architectures

Figure A.2: Reinforcement Learning Network Architecture Em-
ployed in Conjunction with ResNet-50 Stage 1

66

Figure A.3: Reinforcement Learning Network Architecture Em-
ployed in Conjunction with ResNet-50 Stage 2

67

A. Network Architectures

Figure A.4: Reinforcement Learning Network Architecture Em-
ployed in Conjunction with ResNet-50 Stage 3

68

Figure A.5: Reinforcement Learning Network Architecture Em-
ployed in Conjunction with ResNet-50 Stage 4

69

A. Network Architectures

70

Appendix B

Popular Scientific Summary

71

B. Popular Scientific Summary

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-06-14

EXAMENSARBETE Cross-Domain Generalizability in Image Feature Extraction
Utilizing ResNet-50 as a Feature Extractor in Reinforcement Learning
STUDENT Mamdollah Amini & Adi Creson
HANDLEDARE Alexander Dürr (LTH), Simon Kristoffersson Lind (LTH)
EXAMINATOR Volker Krüeger (LTH)

Cross-Domain Generalizability in Image
Feature Extraction

POPULÄRVETENSKAPLIG SAMMANFATTNING Mamdollah Amini & Adi Creson

Large pre-trained models are widely utilized for a variety of tasks, typically within
environments specific to their training. How well do these models adapt and perform
when applied to new domains?

To explore this further, we opted to evaluate a Py-
torch implementation of ResNet-50, a deep con-
volutional neural network architecture originally
trained on the ImageNet dataset for image clas-
sification tasks. We used it as a feature extrac-
tor to train a reinforcement learning agent in the
Atari Breakout game environment. Additionally,
we aimed to assess the effectiveness of various hier-
archical features or representation levels by mod-
ifying the ResNet-50 model to include different
numbers of residual blocks. These modifications
allowed us to explore how different features out-
putted across the four stages of the model affected
performance.

To promote certain behaviors in a reinforce-
ment learning agent, we utilize a reward system.
In our training with the Atari Breakout game,
the agent receives rewards (points) for breaking
bricks, which motivates it to hit as many bricks as
possible before the round ends. We replicated our
benchmark model from previous research. This
model consistently performed well, achieving an

average reward of around 400.

When we employed ResNet-50 as the feature ex-
tractor, performance significantly declined. Of the
four stages in ResNet-50, only the fourth stage ex-
hibited any learning capability, achieving a reward
of around 30 and taking about 33 hours to train
compared to roughly four hours for our benchmark
model in our experimental setup. This perfor-
mance discrepancy leads us to conclude that using
ResNet-50 in this manner is suboptimal. How-
ever, further research in this area is warranted as
it offers valuable insights into the opaque nature
of deep learning and the generalizability of large
pre-trained networks.

72

	Introduction
	Introduction
	Problem Statement and Motivation
	Purpose and Goal
	Research Questions
	Delimitations
	Outline of the Paper

	Theoretical Background and Preliminaries
	Machine Learning
	Supervised Learning
	Reinforcement Learning

	The resurgence of Deep Learning
	Neural Network
	Deep Neural Network
	Convolutional Neural Network

	Backpropagation and Residual Networks
	Overview of ResNet-50 Architecture

	Reinforcement Learning
	Reinforcement Learning Framework
	Exploration versus Exploitation
	The Credit Assignment Problem and Reward Shaping
	Bellman Equations
	PPO and Deep Reinforcement Learning

	Feature Extraction
	Atari Environment - Breakout

	Methodology
	Experimental Setup
	Study design
	Benchmark Replication
	Preprocessing
	Initialization
	Frame Skipping with Action Repetition
	Frame Stacking
	Hyperparameters
	Architecture

	Ablation study
	Hyperparameter Sweep
	Main experiment: Resnet-50 Evaluation

	Results
	Benchmark
	Mean Episodic Reward
	Mean Episodic Length

	Ablation Study
	Mean Episodic Reward
	Mean Episodic Length
	Best Model Mean Episodic Rewards

	Hyperparameter Sweeps
	Main Experiment: Comparison of Feature Extraction Stages in ResNet-50
	Mean Episodic Reward
	Mean Episodic Length
	Feature Maps

	Comparisons

	Discussion
	Key Findings
	Evaluation of Methodology
	Frame Stacking and Global Averaging
	Reinforcement Learning Network Architectures

	Evaluation of Results
	Benchmark Replication
	Ablation Study
	Hyperparameter Optimization
	Main Experiment: Comparing ResNet-50 Stages
	Spikes in Mean Episodic Length

	Future Work
	Frame Stacking
	Global Average Pooling
	Different RL Environments
	Alternative Pre-Trained Models

	Conclusion
	References
	Appendix Network Architectures
	Appendix Popular Scientific Summary

