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Abstract

This paper aims to explore the spatial statistical model of housing prices in the Yangtze
River Delta (YRD) and compare it with prices in the Pearl River Delta (PRD) and
the Beijing-Tianjin-Hebei Cooperative Development Area (BTH). By collecting the
relevant data such as population structure, economic development level, and education
level, and using a spatial statistical method, the paper constructs a spatial statistical
model of the housing prices in these three regions. It is found that the housing prices
in the YRD region show unique spatial distribution characteristics that are mainly
affected by geography. In contrast, housing prices in the PRD and BTH regions also
have their own characteristics, showing spatial agglomeration centered on a certain
city. The models are based on a Bayesian approach, and inference is made using
Integrated Nested Laplace Approximation (INLA).

Keywords: Housing price; Spatial statistical model; Temporal component; Bayesian
inference
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1 Introduction

Since the commercialization reform of China’s urban housing system, despite China’s
housing market being hit by multiple financial crises, urban housing prices have gener-
ally maintained a steady and rapid growth. In order to promote the stable and healthy
development of the real estate market, the central government proposed a new policy
in 2016 that ”houses are for living in, not for speculation.” However, judging from the
actual results in recent years, the rapid rise in housing prices in large cities has not
been fundamentally curbed. Against this background, economics and geographers in
China and abroad are increasingly aware of the necessity and urgency of studying the
housing price issue in Chinese cities.

The Yangtze River Delta (YRD), located on the eastern coast of China, is one of
the most economically vibrant and densely populated regions in the country. With
rapid urbanization and economic growth, the demand for housing in the YRD has
skyrocketed, leading to significant variations in housing prices across different cities and
localities. Understanding the spatial patterns and determinants of housing prices in the
YRD is crucial for policymakers, real estate developers, and investors to make informed
decisions. Comparative analyses with other economically advanced regions, such as the
Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) Coordinated Development
Area, provide valuable insights into the unique characteristics and challenges of the
YRD’s housing market.

A previous study [1] concludes that the spatial differentiation of housing prices among
Chinese cities is significant, showing patterns of both spatial agglomeration differenti-
ation (between the three southeastern coastal urban agglomerations and inland cities)
and administrative hierarchical differentiation (between provincial capital cities and
prefecture-level cities).

This thesis establishes a spatial model for the housing prices of three megalopolis on
the southeast coast, so as to gain insight into the differences in housing prices and the
growth patterns of housing prices in cities within that region.

1.1 History of spatial analysis

Statistical analysis of spatial data was born in Germany at the end of the 18th century
and the beginning of the 19th century. In 1909, German economist Alfred Weber [2]
founded the industrial location theory. The central place theory proposed by geo-
grapher Walter Christaller [3] in 1933 included non-productive service industries for
the first time. In economic activities, the urban level, scale, and spatial distribu-
tion patterns were systematically discussed. Homer Hoyt’s Sector Model [4] in 1939
described urban land use and the spatial patterns of residential areas.
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CHAPTER 1. INTRODUCTION

On the theoretical side, one of the most influential contributors during this period was
Georges Matheron, a French mathematician who pioneered the field of geostatistics. In
the 1960s, Matheron [5] developed the theory of regionalized variables and introduced
kriging, a method for spatial interpolation. Kriging, named after South African mining
engineer Danie Krige [6], provided a means to make the best linear unbiased predictions
for spatially correlated data. This technique became essential not only in mining and
environmental science but also in the analysis of economic and housing data, allowing
for more accurate spatial predictions and modeling.

In the realm of spatial statistics, Peter Whittle made significant strides. A British
mathematician, Whittle focused on the theory of stochastic processes. In 1954, he
worked on the spatial prediction of random fields and provided a robust mathemat-
ical foundation for analyzing spatially distributed data [7]. Whittle’s contributions
were crucial in the development of spatial econometric models, which account for the
interdependence of spatial data points, leading to more accurate and reliable analyses.

The 1960s also witnessed important advancements in the quantitative analysis of urban
land use. William Alonso introduced the Bid Rent Theory [8] in 1964, a seminal work
that explained how land values and housing prices decrease with distance from the
central business district. Alonso’s theory provided an economic framework to under-
stand urban spatial structures, influencing subsequent studies on urban development
and housing markets.

In 1970, Tobler [9], a geographer at the University of Michigan, proposed the first law
of geography: ”Everything is related, but things that are close are more closely related
than things that are far away.”, it laid the foundation for spatial statistics.

In the 1990s, The combination of spatial data statistical analysis and GIS symbolizes
the maturity of spatial statistics. Today, data accumulated over time (called spatio-
temporal big data) and spatiotemporal statistics that combine spatial statistics and
time statistics (time series analysis) are widely used in many aspects of society.

Internationally, scholars now have mainly discussed the status quo and connotation of
urbanization quality from the ecological perspective, such as sustainable development
and urban ecological civilization construction. For example, Yehua Dennis Wei [10] and
Simon Elias Bibri [11] both discussed urbanization and sustainable urban development.
Sajal Ghosh [12] analyzed the balance between urbanization, energy consumption, and
economic activities by summarizing the practical experience of India.

1.2 A basic model for housing prices

In this thesis, housing prices refer to unit housing prices per square meter. Previous
research [13] has found that due to the difference in housing prices potential energy
between cities and the existence of the ”ripple effect”, housing prices are usually trans-
mitted from economic center cities to adjacent cities and peripheral areas. Especially
in integrated areas with close economic connections, urban housing prices show signi-
ficant ”spatial dependence” and spillover effects from high to low.

2



CHAPTER 1. INTRODUCTION

Typically, Hedonic housing price models [14] are powerful in econometrics. Although
its theoretical basis is sound and appealing, these applications often encounter diffi-
culties relating to its specification. The Hedonic house price function relates the price
of a house to the implicit prices of its housing attributes. Thus

Pi = α +
∑

βkSki +
∑

γqLqi + ϵi (1.1)

where Pi is the housing prices, Ski are structural attributes, Lqi are locational attributes
and α, β, γ are parameters. Hedonic house price models imply that the spatial model
can be built as a linear predictor with covariates replacing Ski and spatial effects
replacing Lqi. In this thesis, we will also incorporate and study the temporal effect,
considering the changes in house prices over time (years), which is called time series
analysis. Usually, an AR model is a preliminary method for analyzing time series
[15]. However, in practical applications, time is typically used as a covariate, and
its relationship with the dependent variable needs to be addressed before fitting the
model.

1.3 Data

This thesis collected data from 2019 to 2022 from JuHuiData (gotohui.com) for
the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei region. This
geographical division is mainly derived from history and discussed in more details in
Chapter 2. However, the development and sale of real estate also have geographical,
political, and humanistic factors. For example, houses near rivers or subways are more
popular, and Chinese policies have increased housing prices near schools which implies
that the studied areas will likely not be homogeneous with respect to demography and
socioeconomic status.

1.4 Purpose of thesis

The rational development of the real estate market and stable housing prices have
an important impact on China’s economic development. By studying the influencing
factors and mechanisms of housing prices, while ensuring economic development and
controlling housing prices within a reasonable range, sustainable social and economic
development can be achieved, which will help the country and the government to
formulate corresponding real estate market control measures and to ensure the stable,
orderly and harmonious development of the real estate market.

This study aims to contribute to the existing literature on housing price modeling
by providing a comprehensive spatial statistical analysis of housing prices in the YRD
while drawing comparisons with the PRD and BTH, and to reveal key factors affecting
prices and similarities and differences in the spatial distribution of housing prices and
their determinants across different regions and also discuss the possibilities of using
the generalized model in practice.

3
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2 Regions and data

An overview of the regions and available data is presented in this Chapter.

2.1 The regions

Figure 2.1: China’s three major metropolitan areas. The topmost one is the BTH
Cooperative Development Area, the middle one is the YRD, and the bottom
one is the PRD.

2.1.1 The Yangtze River Delta

The Yangtze River Delta urban agglomeration (YRD) is a highly economically de-
veloped region along the eastern coast of China. Its prototype was the Shanghai
Economic Zone established on December 22, 1982. It is positioned as an advanced
manufacturing base and modern service industry base, a national scientific and tech-
nological innovation and technology research and development center, and a leader
in radiating the development of the Yangtze River Basin. Cities in the region are
geographically adjacent and diverse.

From the perspective of urban housing prices, housing prices in the Yangtze River
Delta region are relatively high, growing rapidly, with diverse levels and significant
gaps, which better reflect the overall characteristics of housing prices in China. They
are highly representative among China’s major urban agglomerations and can provide
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CHAPTER 2. REGIONS AND DATA

experience and development paths for other high-quality integrated urban agglomera-
tions.

2.1.2 The Pearl River Delta

In December 2008, the regional economic development of the Pearl River Delta (PRD)
was elevated to a national strategy. It now concentrates more than 80% of the total
economic output of Guangdong Province and has developed into an important eco-
nomic region and manufacturing center in China. The population density of the Pearl
River Delta region ranks among the top three in the world. The main source of popu-
lation growth is migration from other parts of China. Natural population growth does
not have a major impact on population growth.

Compared with the Yangtze River Delta, the Pearl River Delta started later and has
lower price levels. Because a large number of working people have flowed into the area,
population size has become an important factor affecting urban development. At the
same time, the average education level has also been lowered.

2.1.3 The Beijing-Tianjin-Hebei Cooperative Development Area

1981 was the beginning of government departments’ research on the integration of
Beijing, Tianjin, and Hebei. The Beijing-Tianjin-Hebei Coordinated Development
Zone (BTH), officially established in 2015, is an expansion of China’s capital economic
circle with Beijing as its core. In particular, Beijing is the political and cultural center
of China. Compared with the other two economic development zones, this urban
agglomeration does not primarily focus on economic development and has a higher
level of education. Educational factors and political factors have a greater impact on
housing prices in this area.

2.1.4 Dynamics in the regions

To further elaborate on the spatial statistical modeling of housing prices in the Yangtze
River Delta (YRD), Pearl River Delta (PRD), and Beijing-Tianjin-Hebei (BTH) co-
ordinated development regions, a few key points are worth mentioning:

• Economic Policies and Market Dynamics: The YRD, PRD, and BTH re-
gions all have their unique economic policies and market dynamics that influence
housing prices. The YRD, for instance, benefits from robust economic growth
and favorable policies that attract both domestic and foreign investments. This
drives up demand for housing, particularly in major cities like Shanghai and
Hangzhou; the PRD, on the other hand, has a more diversified economy with a
strong focus on manufacturing and services. Its real estate market is maturing,
offering a wide range of housing options to suit different budgets and preferences;
the BTH region, under the influence of the coordinated development strategy, is
seeing increasing investments in infrastructure and public services. This is likely
to impact housing prices positively in the long run.

6
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• Population Dynamics and Demographics: Population growth and migra-
tion patterns play a crucial role in shaping housing prices. The YRD, PRD, and
BTH regions all have large populations and high urbanization rates. However,
the demographic composition and migration trends vary; the YRD, for instance,
attracts a significant number of migrants from other parts of China due to its eco-
nomic opportunities. This drives up demand for housing, particularly in urban
areas. The PRD also sees a high level of migration, but its population is more
evenly distributed across the region; in the BTH region, under the influence of
the coordinated development strategy, the level of population mobility is low and
the population numbers in each district have tended to be stable. This could
have a negative impact on house prices, but the impact could vary by specific
city or region.

2.2 Available data

There are 303 districts and counties in the YRD, 50 districts and counties in the PRD,
and 127 districts and counties in the BTH. The housing price refers to the average
price per square meter in each district annually, measured in Chinese Yuan (RMB)
and 1 yuan is about 1.45 SEK (2024-06). The housing price information provided by
JuHuiData has the advantages of continuous time, complete samples, and accurate
data. Population data comes from ”The Seventh National Population Census of the
People’s Republic of China” [16]. And other impact factor data, such as GDP (gross
domestic product) for each area in 100 million RMB and the average years of education
for people over 15 years old, comes from ”China Statistical Yearbook” [17].

An overview of part of the data is presented in Table 2.1. Administrative divisions from
the government are uneven, but most regions have similar sizes (about 11000 km2).
During data cleaning, we removed some special areas, such as island groups and very
small areas. A rough comparison shows that the housing price distribution in the
PRD is more even (the range is smaller) while the data in the YRD has a large range.
Hence, it is reasonable that the YRD will show more significant spatial agglomeration.
The PRD region has a remarkable population density (2-3 times higher than other
regions on average) and the BTH has a higher education level, which illustrates the
characteristics of these two regions. Taking YRD as an example, the variates shown
imply a spatial pattern from the boundary to the center (Shanghai) in Figure 2.2.
Spatial patterns in housing prices and possibly covariates suggest that spatial effects
should be considered in modeling.

7
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Region
YRD
n=303

PRD
n=50

BTH
n=127

price(RMB/m2)
min 2670 5133 4133
mean 10792 14251 15655
max 112819 107078 128952

area(km2)
min 20 22.8 9.98
mean 1177 1074.4 1248.06
max 4452 3561.0 9037.00

GDP(108 RMB)
min 13.80 125.10 22.30
mean 554.60 993.80 568.80
max 16013.40 60122.20 10200.00

pd(ppl/km2)
min 56.33 137.6 37.3
mean 1818.75 5562.8 2359.0
max 33101.50 45554.5 35571.1

eduy
min 7.59 8.24 8.04
mean 9.12 10.25 10.74
max 12.93 12.65 13.26

Table 2.1: An overview of part of the data in three regions. ”pd” is the population
density in ppl/km2 (people per square kilometer). ”eduy” is the average years
of education for people over 15 years old.

Figure 2.2: The spatial pattern of the log-transformed housing prices (YRD-logPrice),
GDP (YRD-logGdp) and population density (YRD-logPd) and the average
years of education for people over 15 years old (YRD-eduy) in the YRD in
2020.

8



3 Model

Section 3.1 explains why the lognormal distribution should be used for the housing
prices and the log-transformed housing prices follow a normal distribution. Then a
spatial effect is added to the Hedonic housing price model in Section 3.2. Further
theory on spatial model is explained in Section 3.3. The general model and the joint
model for housing prices are specified in Section 3.4.

3.1 Log-normal distribution for housing prices

Housing prices often do not follow a simple, single distribution due to the complex-
ity and variability of real estate markets. Housing prices are commonly right-skewed
(positively skewed), which means there are a larger number of houses priced below the
median, with a long tail of higher-priced properties. Therefore, log-normal distribu-
tion, Gamma distribution, and generalized beta distribution are often used to analyze
the raw data. Sometimes, Weibull distributions are also used for housing prices if
the data is more severely skewed. Specially, the log-normal distribution is the most
popular. The log-normal distribution is defined for positive real numbers. This prop-
erty makes it suitable for modeling variables that cannot take negative values, such as
prices, incomes, and sizes. Also, the log-normal distribution is positively skewed and
its log-transformation follows a normal (bell-shaped) distribution.

The housing prices collected in the thesis fulfill a log-normal distribution, and have
the following probability density function

f(Yi|µi, σ) =
1

Yiσ
√
2π
e−

(log Yi−µi)
2

2σ2 (3.1)

Where log Yi ∼ N(µi, σ
2) and Yi has mean E[Yi] = eµi+σ2/2 and variance V ar[Yi] =

(eσ
2−1)e2µi+σ2

. Additionally, the geometric mean and median are both equal to eµ.

However, many predictors do not work ideally under these distributions. To avoid
this problem, mathematicians noted that log-transformed housing prices data follows
a Gaussian distribution [18]. In this case, yi = log Yi, is normal with mean µi and
variance σ2. In the following thesis, we will use log-transformed housing prices, yi, to
build a model such that the model will be conditioned on Gaussian distributions.

9



CHAPTER 3. MODEL

3.2 Modeling for housing prices

Based on the Hedonic housing price model in Section 1.2, the linear additive predictor
will be on the following form

ηit = β0 + zitβ︸ ︷︷ ︸
fixed effect

+ ui︸︷︷︸
spatial effect

+ vi︸︷︷︸
i.i.d. effect

yit|ηit ∼ N(ηit, τ
−1)

(3.2)

Here, z is a (suitable) collection of underlying covariates in each area and for each
year, β are parameters, ui is a correlated spatial effect, vi is an unstructured spatial
effect, and yit is the log-transformed housing prices. Note that time is included in the
factors z and observations y. And we have E[yit|ηit] = ηit.

When working with spatial data it is important to account for a possible spatial trend
in the model to avoid biases in the estimates. In this setting, the Bayesian approach for
inference is particularly effective [19], given that we can solve the inference problem in
a feasible amount of time. One of the main challenges in Bayesian inference for spatial
models is computational, given the added complexity due to the spatial structure.

3.3 Spatial models

3.3.1 Gaussian Markov random fields

Let the neighbours Ni to a point ni be the points {nj, j ∈ Ni} that are close to ni. A
Gaussian random field x ∼ N(µ,Σ) that satisfies

p(xi|{xj : j ̸= i}) = p(xi|{xj : j ∈ Ni}) (3.3)

is called a Gaussian Markov random fields (GMRF). The simplest example of a GMRF
is the AR(1)-process xt = axt−1 + ϵt, where a is a parameter and ϵt ∼ N(0, σ2) and
independent. However, the AR(1) model is primarily used in time series analysis to
capture temporal dependencies. To capture the conditional dependence on neighboring
locations, the CAR(1) model is used in spatial analysis [20]. Mathematically, the
CAR(1) model is defined as:

Xi|X−i ∼ N

(∑
j∈Ni

ρijXj, τ
2

)
where Xi is the value at location i; X−i represents the values at all other locations ex-
cept i;N (i) denotes the set of neighbors of location i; ρij are the spatial autoregressive
parameters; τ 2 is the conditional variance.

The Markov property, combined with the Gaussian assumption, results in the linear
predictor η forming a Gaussian Markov Random Field (GMRF). A notable character-
istic of the GMRF is that its precision matrix (the inverse of the covariance matrix)
is sparse. This sparsity provides significant computational advantages during the in-
ference process. The general theory on GMRFs and the associated computational
benefits is given by Rue and Held [21].

10
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3.3.2 Spatial referenced data

Available house prices data provided by JuhuiData in combination with the adminis-
trative geographical division of China yields spatially referenced data. Such that data
is characterized by each of the N areas in the analysis window being associated with
one observation, i.e. one average price. This spatial data can be viewed as realizations
of a (possibly multivariate) stochastic field

y := {y(x), x ∈ D} (3.4)

where D is a fixed countable subset of R2, and x is the coordinates giving the location
of each area. Here D will be the division into administrative districts provided by the
Chinese government. When constructing spatial models using areal data the spatial
dependency is modeled through the neighbourhood structure of D. The neighbours
can be defined through Ni as the set of all areas which share borders to area i, as
illustrated in Figure 3.1. These are called the first-order neighbours. It would also
be possible to consider Ni as the set of second-order neighbours, i.e. all the areas
that share borders with it (first-order) plus the areas which share borders with the
first-order neighbours (second-order). But in fact, second-order neighbours are not
a common method. Hence, we can obtain the adjacency matrix W with wij = 1 if
i and j are neighbours and wij = 0 if i = j or i and j are not neighbours. The
spatially correlated random effects can be simply defined by the adjacency matrix W ,
taking Q = I − ρW , where I is the identity matrix and ρ is a spatial autocorrelation
parameter. Hence, the precision matrix τQ of the linear predictor η can be computed
where τ is a precision hyperparameter. Note that the elements in Q are

Qij =


1, i = j,

−ρ, i ∈ Nj

0, otherwise

(3.5)

3.3.3 Conditional autoregression

To begin, consider first the vector of all linear predictors η = [η1 · · · ηN ]T as a random
vector, which indeed is the case in the Bayesian framework. If each component were
located at a time point rather than a spatial point - under a Markov assumption - the
joint density of η could be decomposed as

π(η) = π(η1)× π(η2|η1)× · · · × π(ηN |ηN−1) (3.6)

where π(·) generically denotes the probability density function of its argument. An
intuitive model specification would be to specify the conditional marginal distributions
π(ηi|ηi−1) for i = 2, ..., N . Since the assumption is first-order Markov, this compares to
an AR(1) model in the standard time series analysis [22]. However, this is not a useful
specification in the spatial setting. Nevertheless, using the intuition of specifying the
conditional distributions, it is natural to define the conditional distribution π(ηi|η−i),
where η−i denotes all elements of η except ηi. The Markov assumption in the spatial
setting refers to the property that ηi should only depend on a few components of η−i,
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Figure 3.1: Neighbourhood structure. The black area with a star represents the current
location; the blue areas with number 1 represents the first-order neighbour;
the red areas with number 2 represents the second-order neighbour.

namely the set of near neighbours Ni. If the model is specified as conditional on only
the set of first-order neighbours it is referred to as a conditional auto-regressive model
of order one (CAR(1)). One could also consider a CAR(2) model, which extends the
Markovian property to the second-order neighbours. These model specifications are
thoroughly discussed in Waller and Gelfand et al. [22]. The precision mentioned in
the previous section represents a CAR(1) model with conditional probability

E(ηi|η−i) = E(ηi|ηj, j ∈ Ni) =
∑
j∈Ni

ρηj

.

3.4 Model specification

Let π(yi|ηi, τ) denote the observation likelihood for the i:th observation conditioned on
the linear predictor ηi. Recall that Ni denotes the set of neighbours to area i and let
N(µ, σ2) denote the normal distribution with mean µ and variance σ2. The assumed
model will be on the following form.

yit|ηit ∼ π(yit|ηit, τ)
ηit = β0 + zitβ + ui + vi

u ∼ N(0, τ−1
u Q−1

u (ρ))

vi ∼ N(0, τ−1
v )

(3.7)

π(yit|ηit) is a Gaussian distribution with mean ηit and precision τ , see Equation 3.2.
The Gaussian part in a latent Gaussian model stems from that Gaussian priors are
assigned to the vector of parameters in the predictor ηit. The unstructured effects v =

12
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[v1, ..., vN ]
T models additional random variation, independent of geographic location.

It would be possible to exclude v from the model If the data is highly correlated in
space. The larger the effect of v compared to u is in the model, the less exchange of
information between areas is allowed. As seen, both ui and vi are specified as Gaussian,
with variance determined by the hyperparameters ρ, τu and τv. A common choice of
prior distributions of the hyperparameters is a Gamma distribution [19].

3.4.1 Priors

By default, the intercept has a Gaussian prior with mean equal to zero. Coefficients
of the fixed effects also have a Gaussian prior by default with zero mean and preci-
sion equal to 0.001. The spatial autocorrelation parameter ρ can be calculated using
Moran’s I. More details of Moran’s I will be introduced in Section 4.6.4. The prior
on the precision of the error term (τ , τu and τv) is, by default, a Gamma distribution
with parameters 1 and 0.00005 (shape and rate, respectively). Theoretically, hyper-
parameters have no impact on the performance of the model, but will affect the speed
and quality of learning. Given the absence of prior information in this scenario, opting
for a relatively flat prior is a sensible choice. Such a choice allows the data to exert a
stronger influence on the inference process, effectively letting the observed data ”speak
for themselves.” It is also the default in the R-INLA package.

3.4.2 BESAG model

The Besag model, introduced by Julian Besag, is designed to capture spatial correl-
ations, particularly in fields like geography and epidemiology. The Besag model is a
type of Conditional Autoregressive (CAR) model, which defines the conditional dis-
tribution of each area’s value based on its neighboring areas’ values. Specifically, the
Besag model assumes that the random effect of each area follows a normal distribution
with a mean that is the average of the neighboring areas’ random effects and a variance
that depends on the number of neighboring areas. The besag model for random vector
x = (x1, . . . , xn) is defined as

xi|xj, i ̸= j, τ ∼ N(
1

n

∑
i j

xj,
1

niτ
)

where ni is the number of neighbours of node i, i ∼ j indicates that the two nodes i
and j are neighbours and the hyperparameters τ is the precision of x.

3.4.3 BYM model

The BYM model (Besag-York-Mollié model) for random vector x is simply a union of
the besag model (spatial effect) u and a iid model (unstructured effect) v, so that

x =

(
u+ v
u

)
13



CHAPTER 3. MODEL

The hyperparameters are the precision τu of the besag mode u and τv of the iid model
v. The benefite is that this allows to get the posterior marginals of the sum of the
spatial and iid model.

3.4.4 Joint model

Sometimes it is necessary to share an effect that is estimated from two or more parts
of the dataset, so that all of them provide information about the effect when fitting
the model. This is known as a copy effect, as the new effect will be a copy of the
original effect plus some tiny noise.

Formally, the copy feature is used when a latent field is needed more than once in the
model formulation [23]. When using the feature we then create a (almost) identical
copy ofZ, denoted byZ∗ , that can then be used in the model formulation. In this case,
latent field can be extended from Z to ZC = (Z,Z∗), where π(ZC) = π(Z)π(Z∗|Z)
and

π(Z∗|Z, τZ , λ) ∝ exp(−τZ
2
(Z∗ − λZ)T (Z∗ − λZ)) (3.8)

where λ is a scale parameter and a default value of τZ is large e.g. τZ = exp(15) so
that the degree of closeness between Z and Z∗ is controlled by the fixed high precision
τZ .

Generally, the population and education level change a little each year for each district
at the macro level, but in terms of the economy, the annual changes are more obvious.
Hence, temporal effects can be considered for extraction from GDP. And the assumed
layered model will be on the following form.

yit|ηPit ∼ N(ηPit , τ
−1
P )

logGDPit ∼ N(ηGit , τ
−1
G )

ηGit ∼ AR(1)

ηPit = β0 + β∗ηGit + z
−G
it β + ui + vi

ui ∼ CAR(1)

vi ∼ i.i.d.

(3.9)

Here, ηGit is the copied effect from logGDP and z−G
it is all the covariates except GDP.

Note the copied effect has a scaling factor, β∗, and this is fixed to 1 by default.
Furthermore, the precision of ηGit is set to a very large value, ensuring that the copied
effect is very close to logGDP [24].
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4 Inference

A brief introduction to Bayesian inference and the conditions is given in Section 4.2.
Then the inference of Integrated Nested Laplace Approximation (INLA) [25] is de-
scribed in Section 4.5. In Section 4.6, methods for solving the model selection and
validation problem are presented.

4.1 The R-INLA package

R-INLA is the R package that implements approximate Bayesian inference using in-
tegrated nested Laplace approximation [26]. It is a rich package, which enables a lot
of models to be specified. It is available at http://www.r-inla.org.

An assumption required by R-INLA is that all observations yi should be independent
conditional on the latent field η. This conditional independence is crucial for simpli-
fying the computations and ensuring the efficiency of the inference procedures. The
joint likelihood of the observations can be decomposed into a product of individual
likelihoods. This decomposition simplifies the computation of the likelihood function,
making the model easier to handle computationally.

4.2 Bayesian Inference

In Bayesian inference, all unknown parameters in the model are treated as random
variables. The aim is to compute or estimate the joint posterior distribution, which
represents the distribution of the parameters ψ conditional on the observed data y.
From Equation 3.7, the latent Gaussian field is

x = [ β0 βT uT vT ]T

A = [1 z I I]

η = β0 + zβ + u+ v = Ax

y|η ∼ N(Ax, τ−1)

(4.1)

with dim(x) = n and I is the identity matrix. Since x is now a joint Gaussian density
with block precision matrix, we can rewrite the model as

y|x ∼
∏

π(yi|ηi,ψ)

x|ψ ∼ N(0, Q−1(ψ))

ψ ∼ π(ψ)

(4.2)

where ψ represents all hyperparameters [τ, τu, τv].
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Observations are assumed to be independent, conditioned on the vector of latent effects
and the hyperparameters. By assumption of the model, we already have the distribu-
tions π(y|x,ψ), π(x|ψ) and π(ψ). The main aim now is to compute the posterior
marginal distributions

π(x,ψ|y), π(xi|y), π(ψi|y) (4.3)

allowing us to estimate parameters and the latent fields.

4.3 Advantages of INLA

A typical strategy for approximating the posterior distributions in Equation (4.3) is
the Markov chain Monte Carlo (MCMC) method. However, in spatial contexts, par-
ticularly when dealing with large spatial fields u and potentially numerous parameters
in β resulting in a high dimension, MCMC methods often fail to deliver adequately
precise approximations within a feasible computational timeframe. Rue et al.[25] de-
velop the integrated nested Laplace approximation (INLA) for approximate Bayesian
inference as an alternative to traditional Markov chain Monte Carlo methods, thereby
solving the following two problems: the latent field z are strongly dependent on each
other and β and z are also strongly dependent, especially when the size of data is
large. And the Metropolis-Hastings algorithm and Gibbs sampling also play an im-
portant role in Bayesian inference. INLA prioritizes models that can be represented as
latent Gaussian Markov random fields (GMRF) due to their favorable computational
characteristics [21]. Specifically, the focus lies on estimating the posterior marginals of
the model parameters. Consequently, instead of tackling the highly multivariate joint
posterior distribution π(ψ|y), the emphasis shifts towards obtaining approximations
for univariate posterior distributions π(ψi|y). This approach enables the algorithm to
generate approximations with acceptable error using significantly fewer computations,
thereby facilitating sufficiently rapid approximations in the case of GMRFs.

4.4 The joint posterior distribution

The joint posterior distribution of the effects and hyperparameters x, ψ|y can be
expressed as

π(x,ψ|y) ∝ π(ψ) · π(x|ψ) · π(y|x,ψ)

∝ π(ψ) · π(x|ψ) ·
N∏
i=1

π(yi|x,ψ)

∝ π(ψ) · |Q(ψ)|1/2 exp(−1

2
xTQ(ψ)x) ·

N∏
i=1

exp(log(π(yi|x,ψ)))

∝ π(ψ) · |Q(ψ)|1/2 exp(−1

2
xTQ(ψ)x+

N∑
i=1

log(π(yi|x,ψ)))

(4.4)
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4.5 Integrated Nested Laplace Approximation

4.5.1 Nested Laplace approximation

By Bayes’ theorem, the posterior of the latent effects is π(x|ψ,y) ∝ π(y|x,ψ)π(x|ψ),
and it follows that

log π(x|ψ,y) = log π(y|x,ψ) + log π(x|ψ) + c (4.5)

where c is a constant. Now, since x|ψ is Gaussian by definition, taking the logarithm
yields a second order polynomial in x. Furthermore, using a second order Taylor
expansion of log π(y|x,ψ) , it appears that log π(x|ψ,y) can be approximated by a
second order polynomial for the case of Gaussian observations π(y|x,ψ) is already
second order. If log π(x|y,ψ) is a second order polynomial, then x|y,ψ is Gaussian.
This is referred to as the Laplace approximation. Let N(x;µ, σ2) denote the Gaussian
density with mean µ and variance σ2 at configuration x. Also, let πLA(x|y,ψ) denote
the Laplace approximation of π(x|y,ψ). Then specifically,

π(x|y,ψ) ≈ πLA(x|y,ψ) = N(x;x∗, H(x∗)) (4.6)

due to the uniqueness of the Taylor expansion. Here, x∗ denotes the mode of log π(x∗|ψ,y)
or equivalently x∗ = argmaxx π(x

∗|ψ,y), and H(x∗) is the Hessian matrix of second
derivatives of the log posterior evaluated at x∗, given by

H(x∗) = −[
∂2 log π(x∗|ψ,y)

∂x∗2 ]−1

= Q−−[
∂2 log π(y|x,ψ)

∂x2
],

(4.7)

where we have used the Gaussianity of π(x|ψ) in Equation 4.5 to get Q.

As usual, the approximation is most accurate at the mode. Laplace approximations
provide a computationally efficient way to approximate the posterior distribution,
especially when analytical methods are not feasible. However, it relies on the assump-
tion that the posterior distribution is approximately Gaussian, which may not hold in
all cases, particularly for multimodal or highly skewed distributions. Therefore, it’s
important to assess the adequacy of the approximation, possibly through sensitivity
analysis or comparison with alternative methods.

Then, the approximation of the full marginal posterior π(ψ|y) is optimized as follows.

π(ψ|y) = π(ψ,y)

π(y)
=
π(x,ψ|y)
π(x|ψ,y)

∝ π(y|x,ψ)π(x|ψ)π(ψ)
π(x|ψ,y)

(4.8)

where π(x,ψ|y) is shown in Section 4.4 and π(y|x,ψ), and π(x|ψ)and π(ψ) are the
assumption of the model. For a given ψ, it is possible to obtain an approximation by
replacing the denominator with its Laplace approximation from Equation (4.6), and
evaluate it at its most accurate point, namely the mode x∗(ψ) = argmaxxπ(x|ψ,y).
Note that the mode depends on the hyperparameters. This gives the approximation

π(ψ|y) ≈ π̃LA(ψ,y) =
π(y|x,ψ)π(x|ψ)π(ψ)

πLA(x|ψ,y)
(4.9)
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4.5.2 Integrated nested Laplace approximation

The Laplace approximation is performed around the mode of the posterior distribu-
tion. This means that it may fail to capture the global characteristics of the posterior
distribution, especially in cases of multimodal or highly skewed distributions. The
computational complexity of the Laplace approximation increases rapidly in high-
dimensional parameter spaces. When dealing with large parameter spaces, it may
result in inaccurate approximations or computational difficulties. Under the assump-
tion of independent observations, INLA addresses these drawbacks by using efficient
numerical integration techniques, allowing INLA to infer over a broader range of para-
meter space, and improving the accuracy of the approximation.

As mentioned earlier, INLA does not attempt to estimate the full joint posterior
distribution but focuses on computing the marginal distributions of the latent effects
and hyperparameters. The computation of the marginal distributions for the latent
effects and hyperparameters can be accomplished by considering that

π(ψi|y) =
∫
π(ψ|y)dψ−i ≈

∫
π̃LA(ψ|y)dψ−i (4.10)

π(xi|y) =
∫
π(xi|ψ,y)π(ψ|y)dψ ≈

∫
π̃LA(xi|ψ,y)π̃LA(ψ|y)dψ (4.11)

where π̃LA(·) is the Laplace approximation as above.

The expressions in Equation (4.10) and (4.11) suggest that the algorithm needs to
proceed in two steps. First a step where π(ψ|y) is approximated and then a second
where π(xi|ψ,y) is approximated. Note how in both expressions integration is done
over the space of the hyperparameters and that a good approximation to the joint
posterior distribution of the hyperparameters is required. Rue, Martino, and Chopin
[25] use the Laplace approximation to compute the posterior marginal of the latent
parameter xi as:

π̃(xi|y) =
∑
k

π̃(xi|ψk,y) · π̃(ψk|y) ·∆k (4.12)

Here, ∆k are the weights associated with a vector of values ψk of the hyperparamet-
ers on a grid. This method transforms complex high-dimensional calculations into
numerical integration.

4.6 Model selection and validation

4.6.1 Prediction errors

A common approach to evaluate a model’s performance is by examining its predictive
accuracy. Initially, a subset of the data is reserved as a validation set before any
estimation is performed. The remaining data is then used for estimation. Let Yi
represent an observation in the prediction set, and define the prediction error as ϵi =
Yi−E[Yi]. It can also be beneficial to examine the normalized prediction errors, defined
as ϵnormi = ϵi/E[Yi]. This allows for a comparison of models based on prediction quality,
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for instance, using the Mean Squared Error (MSE), which is defined as:

MSE =
1

N

∑
i

ϵ2i (4.13)

where N is the number of observations in the validation set. This method provides
a clear metric for assessing and comparing the predictive performance of different
models. Moreover, the prediction errors should show no spatial pattern, indicating
that the spatial structure has been successfully captured by the model.

4.6.2 Deviance information criteria

If it is interesting to compare the performance of different models, the deviance can
be used [19]. The deviance is defined as

D(θ) = −2 log π(y|θ) (4.14)

where, as usual, θ identifies the parameters of the likelihood, i.e. ψ in the model and
y is the observed data. In the Bayesian framework θ is a random variable, and hence
also D(θ). Typically, the posterior mean deviance

D̄ = E[D(θ)] (4.15)

is used to quantify the deviance as a measure of fit. However, with an increasing
number of parameters, the fit will be better and hence (D̄) smaller. Therefore it is
necessary to introduce a penalty against D̄ which reflects the model complexity. Such
a measure was proposed by Spiegelhalter et al. [27] as the Deviance information criteria
(DIC). It is a generalization of the well-known Akaike information criteria (AIC). The
DIC is a sum of two components, first the deviance D̄ which measures the model fit,
and second the effective number of parameters. The effective number of parameters
pD is a measure of model complexity, defined as the difference between the deviance
evaluated at the posterior mean of the parameters θ̂ = E[θ] and the posterior mean
of the deviance, defined as

pD = D̄ −D(θ̂) (4.16)

Finally, DIC is defined as the sum of the posterior mean of the deviance and the
effective number of parameters:

DIC = D̄ + pD = 2D̄ −D(θ̂) (4.17)

Here D̄ decreases with better model fit, and pD increases with added complexity. DIC
is used to evaluate and compare the goodness of fit of statistical models while penalizing
for model complexity. It aims to balance model fit and complexity, preferring models
that provide a good fit to the data without being overly complex.

4.6.3 WAIC

In statistics, the widely applicable information criterion (WAIC)[28], also known as
Watanabe–Akaike information criterion, is the generalized version of the Akaike in-
formation criterion (AIC) onto singular statistical models. Like DIC, WAIC also has
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two components. The first part is log pointwise predictive density (LPPD), which is
computed as

LPPD =
N∑
i=1

logE[p(yi|θ)] (4.18)

And the penalty term of WAIC is fully Bayesian and can be expressed as

pWAIC =
N∑
i=1

V ar[log p(yi|θ)] (4.19)

Finally, WAIC is defined as

WAIC = −2(LPPD − pWAIC) (4.20)

Gelman et al. [29] recommends WAIC because its results are closer in practice to the
results of leave-one-out cross-validation (LOO-CV). Also, a lower value of the WAIC
indicates that the model is better.

LOO differs from the aforementioned information criterion-based indices in that its
computation requires no penalty term. Specifically, LOO is computed as

LOO = −2LPPDloo = −2
N∑
i=1

log

∫
p(yi|θ)p−i(θ)dθ (4.21)

where p−i is the posterior distribution based on the data minus data point i. LOO
only focuses on prediction. It provides an unbiased estimate of the model’s predictive
performance and helps to assess how well the model generalizes to new, unseen data.
However, it requires rebuilding the model for each data point, making it computation-
ally intensive and the performance estimate can have high variance, especially with
small datasets, which can lead to unreliable estimates of model performance.

4.6.4 Moran’s I test

In statistics, Moran’s I is a measure of spatial autocorrelation developed by Patrick
Alfred Pierce Moran [30]. Spatial autocorrelation is characterized by a correlation in
a signal among nearby locations in space. Global Moran’s I is a measure of the overall
clustering of the spatial data, defined as

I =
N

W

∑N
i=1

∑N
j=1wij(xi − x̄)(xj − x̄)∑N

i=1(xi − x̄)2
(4.22)

where N is a number of spatial units indexed by i and j, x is the variable of interest
with mean x̄ like the residual of the model, wij is the elements of a matrix of spatial
weights with zeroes on the diagonal, and W is the sum of all spatial weights.

Note that ”Moran’s I = 0” indicates no spatial autocorrelation, suggesting a random
spatial pattern. But it is not rigorous to judge spatial autocorrelation only from the
numerical values of Moran’s I. To determine if the observed Moran’s I is significantly
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different from what would be expected under a null hypothesis of no spatial autocor-
relation, it is often standardized and compared to a normal distribution.

The value of I can depend quite a bit on the assumptions built into the spatial weights
matrix wij. The matrix is required because, in order to address spatial autocorrelation
and also model spatial interaction, we need to impose a structure to constrain the
number of neighbors to be considered. This is related to Tobler’s first law of geography
[9]. The law implies a spatial distance decay function, such that even though all
observations have an influence on all other observations, after some distance threshold
that influence can be neglected.
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5 Results

In Section 5.1, the different types of linear predictors are specified. Then, Section 5.2
shows the simple method to choose covariates. In Section 5.3, the results from fitting
housing prices in the Yangtze River Delta are presented. In Section 5.4, the prediction
of housing prices will be compared with real values, which can be used to assess the
quality of the model. And in Section 5.5, we will compare models among the three
regions.

From Section 5.1 to Section 5.4, we will firstly built a spatial statistical model for the
Yangtze River Delta region as inspiration for models in other regions.

5.1 The linear predictor

Four models have been fitted to housing prices in the Yangtze River Delta, all of which
follow the form outlined in Equation (3.7). The models differ based on the inclusion
of the co-variate effect zβ, the spatial effect ui, and the unstructured effect vi. The
precision parameters follow the default prior distribution as specified by R-INLA. Table
5.1 presents and names these models for future reference.

Model Name Linear Predictor
GLM ηit = β0 + zitβ
IID ηit = β0 + zitβ + vi
BESAG ηit = β0 + zitβ + ui
BYM ηit = β0 + zitβ + ui + vi

Table 5.1: The different structures in the linear predictor yield four different models

The data comprises 303 areas during four years. A random 20% of the data is selected
as a prediction set, leaving 969 observations (calculated as 0.8·303·4) for model fitting.
During the modeling stages, this is done by setting those values as yi = NA in R-
INLA, which excludes them from contributing to the observation likelihood. However,
R-INLA still makes predictions for these points, providing a straightforward method
for predictive validation.
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5.2 Choice of covariates

It is obvious that housing prices are related to many factors, and the establishment of
the model depends on the perspective from which the modeler analyzes the problem.
Therefore, we need to select appropriate covariates to explain the model.

5.2.1 Smooth

As assumption, the covariates have a basic linear relationship with the observations.
However, the visual effect is not necessarily realistic, and we still have to consider
whether there is a nonlinear relationship between them and then transform them to a
computable model. Firstly, we can use Box-Cox transformation like log-transformation.
Then if necessary, we can use more flexible model to explain the non-linear relation-
ship such as spline, the ”autoregressive model (AR)” or ”random walk model (RW)”.
Moreover, numerous statistical applications necessitate a flexible model structure, ac-
commodating non-linear relationships between the response variable and the covari-
ates.

Figure 5.1: The effect of GDP on housing prices in 2019. An AR(1) model used for the
relationship between log-transformed GDP and logPrice. The x-axis is the
log-transformed GDP (logGdp) of each districts in 2019 and the y-axis shows
the effect of logGdp on log-transformed housing prices (logPrice) in 2019.

For example, we apply an AR(1) model to a factor log-transformed GDP ”logGdp”
and, using standard INLA formulation of the non-linear effect [31], we set

logPrice ∼ f(logGdp,model =′ ar1′) + z−Gβ

where z−G is a vector containing all covariates except logGdp. We plot the results
in Figure 5.1 and find that logPrice are linear on the logGdp scale, albeit less than
perfectly. It implies that we do not need to do any more work to deal with the GDP
data in 2019 after log-transformation. Repeat this process, we obtained some possible
covariates in Section 5.2.2.

5.2.2 Correlation

Intuitively, because it is a linear predictor, covariates, or their transformations, should
have a linear correlation with the variable ηit. As above, we use log-transformed
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housing prices to build a model so that we also need to transform covariates to find
a suitable linear relationship. In this case, we apply log-transformation to some co-
variates. In Figure 5.2 displays that sex ratio (based on females) has the weakest
relationship with housing prices the (correlation coefficient is 0.158) while the plots
where the covariates are sex ratio (sr), log-transformed population (logPop), area (log-
Area) and illiteracy rate (logNedu) show nonlinear patterns. Hence, it is reasonable
to suspect that these covariates will have a negative impact on the model, but due to
their high correlation coefficients, we cannot directly remove them.

(a) The correlation between log-transformed
housing prices and education yaear
(eduy), log-transformed GDP (logGdp),
population density (logPd) and
population (logPop).

(b) The correlation between log-transformed
housing prices and sex ratio ((based on
females)), log-transformed number of
points of interest (logPoi), area and
illiteracy rate (logNedu).

Figure 5.2: The correlation between log-transformed housing prices and possible
covariates.

5.2.3 Confidence Interval

Approximate credibility intervals and p-values can be obtained from the estimated
posterior distributions of each β-coefficient. This allows for determining whether all
covariates are significant at the 95% level. It is a general method to determine whether
a variable is significant. However, because the data are limited, there are fewer cov-
ariates to choose from. We can roughly decide whether to use a covariate based on its
confidence interval. If its confidence interval contains 0, it is considered not needed
and should be deleted from the model. If it is a large model, we can check the signi-
ficance of all parameters βi, remove β-coefficients which are not significant anymore,
and refit the model. Then compare criteria such as DIC to choose the better one. If
a more rigorous approach is desired, there exists a substantial body of literature on
variable screening in linear regression, exemplified by Gelman and Hill [32].

Firstly, we use all possible covariates to build a model and find that there are some
covariates that are not significant. Then prioritize removal of covariates discussed
in the previous section if they are not significant. Repeat this process and the final
covariates are shown in Table 5.2. It is worth mentioning that the education level and
population density among the selected covariates are less affected by time, while GDP
changes significantly every year.
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Selected covariates
Covariate Estimate C.I. Explanation
logGDP 0.168 (0.117,0.218) log-transformed GDP
logPd 0.121 (0.076,0.166) log-transformed population density
year 0.044 (0.040,0.048) 4 years from 2019 - 2022
eduy 0.173 (0.132,0.214) Average year of education for people over 15 years old

Removed covariates
sr 0.009 (-0.005,0.023) sex ratio (based on females)
logNedu -0.033 (-0.075,0.010) log-transformed illiteracy rate
logPoi 0.195 (-0.002,0.388) log-transformed number of points of interest
logArea -0.046 (-35.847,35.754) log-transformed area of each district
logPop -0.029 (-35.830,35.771) log-transformed population

Table 5.2: Significant covariates after checking correlation and confidence interval. ’C.I.’
is confidence interval.

5.3 Housing price model

In this section, a housing price model in the Yangtze River Delta will be built. And
the common part (GLM part) of the model is given by

logPriceit ∼ 1 + logGdpit + logPdi + yeart + eduyi (5.1)

Emphatically, ηit is modeled as Gaussian-distributed and the mean is linked to the
linear predictor by

E[yit|ηit] = ηit

where yit is the log-transformed housing prices in each area and each year conditioned
on ηit and ηit is the linear predictor outlined in Table 5.1. The MSE using training
data, DIC, WAIC, and Moran’s I test are reported in Table 5.3. We use Moran’s
I test to test the residuals to make sure that a model can contain and explain all
spatial effects in the model. The GLM and IID model still remain spatial effects in
the residuals without structured effect u hence we can not choose these two models.

Model MSE DIC WAIC Moran’s I test
GLM 0.1312 988 988 The residuals contain spatial effects
IID 0.0006627 -2653 -2637 The residuals contain spatial effects
BESAG 0.004330 -2603 -2594 The residuals do not contain spatial effects
BYM 0.0006117 -2665 -2649 The residuals do not contain spatial effects

Table 5.3: MSE, DIC, WAIC, and Moran’s I test from fitting the housing price model.

It is obvious that the models incorporating the unstructured effect vi (IID and BYM)
are preferred in terms of the MSE, DIC, and WAIC. Meanwhile, the BESAG model
behaves better than the GLM model, and the BYM model also behaves better than the
IID model, which implies that the existence of a spatial effect ui is reasonable. Besides,
the BESAG and BYMmodel do not have significant spatial correlation in the residuals,
which implies they can explain spatial effects in the model perfectly. Thus the BYM
model is the best specification for the linear predictor given by ηit = β0+zitβ+ui+vi.
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Figure 5.3: Prediction errors plotted
according to their
coordinates in 2019.

Figure 5.4: Histogram of prediction
errors

Figure 5.5: Prediction error separated by
year and indexed by locations

5.3.1 Residual analysis for the BYM-model

Figure 5.3 depicts the prediction errors plotted based on their geographical location,
indicating the absence of any discernible spatial trend in the data. This suggests that
the BYM model effectively removes spatial effects from the data. Meanwhile, Figure
5.4 shows that the prediction errors essentially follow a normal distribution with a mean
value of 0, consistent with our modeling assumptions. Analyzing the prediction errors
from another perspective, in Figure 5.5 the residuals in different years are roughly the
same, while the residuals in different regions vary greatly. Therefore, temporal effects
have less impact on the model and predictions, and spatial effects play a major role
in the model.
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5.4 Prediction

The R-INLA package provides very convenient linear prediction functions which in-
cludes linear prediction and marginal linear prediction as well as their confidence in-
tervals. In Figure 5.6, the upper and lower 95% bounds of the linear predicted values
in 2019 definitely contain the true value which implies the BYM model is reasonable.
It is straightforward to compute estimates of housing prices in their original scale by
transforming the estimates of the logarithm of housing prices. First, use the function
inla.tmarginal to obtain the marginals of the prices as exp(log(price)). Then, use the
function inla.zmarginal to obtain the summaries of the marginals such that original
scale prediction is obtained.

Figure 5.6: Log-transformed housing prices (YRD-logPrice), predictions (YRD-PM), and
95% lower (YRD-LL) and upper (YRD-UL) bounds in 2022.

Then, we check how the training and test sets behave. In Figure 5.7, it shows that the
model works well since predictions in both training and test sets are consistent with
the real observations. A correlation test between real observations and predictions for
the test set obtained a P-value of less than 0.01 and a correlation coefficient of 0.99.
However, the correlation test is weak in this case and we prefer to use MSE and RMSE.
The MSE and RMSE of the training set are 3.7× 10−3 and 6.1× 10−2 while The MSE
and RMSE of the test set are 7.0 × 10−3 and 8.4 × 10−2. The very small MSE and
RSE of the training and test set support that the BYM model performs well.

28



CHAPTER 5. RESULTS

Figure 5.7: The prediction of training set and test set against the real observations.

5.4.1 Spatial effect

Recall that the BYM model is a union of the besag model u (spatial part) and an
i.i.d. model v given by Equation (3.2). Plotting the estimations against geographical
location clearly reveals spatial trends, which are shown in Figure 5.8. In most areas,
there is no spatial trend that can be distinguished by the naked eye in the GLM part,
but there are still individual bright spots. This can be explained by the provincial
capital. The i.i.d. and besag part have very similar performances, such that their sum
underscores the point that housing prices south of the Yangtze River are generally
higher than those north of the Yangtze River.

5.4.2 Prediction into the future

However, the current data can only verify the validity and quality of the model. People
and real estate companies are more concerned about future changes in housing prices.
In our model, population and average years of education for people over 15 years old
change sightly since we can regard them as constant across years. But GDP always has
different changes in different regions and years. However, Modeling GDP separately
and then forecasting housing prices using estimations of GDP is too cumbersome and
increases the error. R-INLA provides an advanced function - copy model specified in
Equation (3.9), which can share an effect that is estimated from two or more parts of
the dataset so that all of them provide information about the effect when fitting the
model. Hence, we can rewrite the model as

logPriceit ∼ 1 + logPdi + eduyi + yeart + f(logGDPit) + ui + vi

where f(logGDPit) will be modeled for logGDPit and shared.
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Figure 5.8: The plot in the upper left corner is estimates of the GLM-part, zβ, in the
BYM model (YRD-GLM); the upper right corner is the estimate of the i.i.d.
part, v (YRD-res iid); the lower left corner is the estimate of the besag part,
u (YRD-res sp); the lower right corner is the estimate of all the spatial part
u+ v (YRD-res bym).

The housing prices in 2023 are only collected at 231 prices. There still are 72 missing
observations, where the model may have significant errors. In Figure 5.9 and Figure
5.10, the plots seem to show a curvilinear (non-linear) trend using the copy model
since the prediction of GDP increases the error of the model. The prediction in 2023
is not as close to the observations as before. But most of their confidence intervals
include the function y = x. Judging from the current situation, this model is credible.
Although the model has some shortcomings, its advantages cannot be ignored.

The copy feature adds flexibility to model building. It allows us to construct hierarch-
ical and multi-level models where random effects are naturally shared across different
levels or components of the model. When different components of the model are driven
by the same random effects, it is easier to understand the relationships and dependen-
cies within the model. This can be crucial for maintaining consistency. For computers,
random effects are estimated only once and used repeatedly, saving time and comput-
ing resources. We believe that GDP and time are related which implies there is a
random effect between time and GDP, while education level (eduy) and population
structure (logPd) change slightly at the macro level which implies there is no random
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effect between them and time. Therefore, when predicting future housing prices, it is
also necessary to predict future GDP. In this case, the copy model can give full play
to its advantages and the results obtained are more feasible.

Figure 5.9: The prediction in 2020
using a copy model against
the real observations.

Figure 5.10: The prediction in 2023 of
copy model. Green line is
the error bar.

5.5 Comparison with two other regions

5.5.1 Comparison by temporal effect

Repeating the previous process, the spatial models of housing prices in the Pearl River
Delta and Beijing-Tianjin-Hebei regions are built. For consistency, three models share
the form given by Equation 5.1. And an ’AR(1)’ model is applied to year in all
three models to compare temporal effect. Figure 5.11 shows that during these four
years, housing prices in the PRD and YRD have exhibited a positive upward trend.
Specially, housing prices in the YRD have grown the fastest. In contrast, the housing
price trend in the BTH region has been relatively stable, with growth rates hovering
around zero. This stability can be attributed to macro-control measures implemented
by the government, which have effectively curbed rapid price increases and maintained
market stability. Meanwhile, in the PRD housing prices increase regularly over time
(more linear), indicating that economic development and macroeconomic control are
working simultaneously in the region. Clearly, this kind of housing market is positive
and healthy.

Overall, these temporal comparisons highlight the varying dynamics of housing price
growth across different regions. The strong growth in the YRD underscores the re-
gion’s robust economic development, while the stability in the BTH region reflects
the effectiveness of governmental intervention in stabilizing the housing market. The
PRD is somewhere in between. Understanding these regional differences is crucial
for policymakers and stakeholders aiming to address housing affordability and market
sustainability.
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Figure 5.11: Temporal effects in the housing price model. An AR model used for year in
the three regions.

5.5.2 Comparison by spatial effect and map

In Figure 5.12, the Beijng-Tianjin-Hebei (BTH) region exhibits a clear spatial trend,
with housing prices increasing towards the center. However, while there is a noticeable
highlight in the Pearl River Delta (PRD), the expected spatial effect is not evident
on the map. This observation raises two potential explanations: Firstly, due to the
region’s comprehensive economic development, housing prices may have experienced
fluctuations over the past few years without forming a distinct spatial trend. Altern-
atively, it’s possible that the current model is not sufficiently robust to capture the
underlying spatial dynamics. The latter explanation holds more credibility, primarily
due to the limitations posed by the available data. As mentioned, housing prices in
the YRD show north-south differences.

The GLM part of the PRD model in Figure 5.13 shows the east-west differentiation in
housing prices. The GLM part of the BTH model has a similar spatial correlation as
the spatial effects but it hints at the impact of transportation and economic activity
on housing prices, as housing prices in areas along Beijing’s route to the port are
relatively high. These two patterns mainly depend on covariate GDP. In the PRD,
due to large-scale population migration to central areas, housing prices in peripheral
areas are significantly lower than those in central areas.

Then, in Figure 5.14, housing prices in three regions all have a significant spatial effect
- rising towards one or more centers. Especially, in the YRD, housing prices in areas
along the Yangtze River are higher than elsewhere and reach the highest in Shanghai.
Meanwhile, housing prices in areas south of the Yangtze River are generally higher
than in the north. There is only one obvious center in the BTH. At the same time,
Tianjin has the largest port in the BTH region and the developed foreign trade eco-
nomy makes its housing prices slightly higher than those in other regions (excluding
Beijing). There are two gathering points in the Pearl River Delta region – the provin-
cial capital city Guangzhou, and Hong Kong. These two gathering points represent
two different development strategies of the Pearl River Delta, namely developing the
inland economy (locally) with Guangzhou as the representative, and developing for-
eign trade (internationally) with Hong Kong as the representative. Additionally, the
YRD stands for the region affected by geographical factors, where gathering points
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Figure 5.12: Spatial effects u in the YRD, BTH, and
PRD model.

Figure 5.13: The GLM part, zβ, of the YRD, BTH, and
PRD model in 2019.

Figure 5.14: Housing prices in the YRD, BTH, and PRD
in 2019.

appear in strips or blocks; the BTH represents the region with a special characteristic
(like capital); the PRD represents the region affected by policies (like economic devel-
opment strategies). Hence, the models in these three regions can be a good inspiration
for models in other regions in China.

5.5.3 Comparison by model

Table 5.4 shows the β-coefficients in all three models. Beijing-Tianjin-Hebei is the
political and cultural center of China, with a long history and cultural heritage. Due
to policy reasons, population mobility in the BTH has stabilized and is much lower than
that of the PRD and YRD. Hence, the effect of population is lowest. Additionally,
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due to the Beijing-Tianjin-Hebei (BTH) region’s emphasis on cultural and political
development rather than economic development, the β-coefficient of GDP in this region
is smaller compared to other regions. However, the weight of education increases
significantly. Also, Figure 5.15 shows that ”logPd” is not significant in the BTH
model because its confidence interval includes 0 and is uncertain for the PRD model
because it has a large range of confidence interval and the lower bound is close to 0.
Section 2.1.4 gives the reason: the population structure in the BTH is already stable
while migration in the PRD is numerous and unstable. For the covariate ”year”, the
estimates are consistent with the results in Section 5.5.1 – the temporal effect is most
significant in the YRD while we might consider removing the covariate ”year” in the
BTH model because the temporal effects has minimal impact in this region.

Region Intercept logGDP logPd eduy year
YRD 6.409 0.168 0.122 0.173 0.044
BTH 6.340 0.082 0.033 0.441 0.005
PRD 3.483 0.096 0.136 0.188 0.03

Table 5.4: β-coefficient in the three different regions.

The Yangtze River Delta is the earliest established and most developed economic
and trade center in China. Hence the indicator representing the economy ”GDP”
plays the most important role in the model and the starting point (intercept) of the
model is the largest. At the same time, the importance of population density due
to prosperous economy has increased in housing price models compared to the BTH.
Massive population movements have led to fluctuations in people’s educational levels
which explains the reduced importance of education in the model.

The Pearl River Delta has been a newly established economic development zone in the
past two decades. Hence the starting point of housing prices is relatively low which
is shown by the intercept of the model. This region’s economic development level has
surpassed BTH and is catching up with the Yangtze River Delta. In the past ten years,
people have immigrated here in large numbers in search of wealth and business. The
increase in population and its density further promotes changes in housing prices. Like
the YRD, they have very similar performance in terms of population and education.

5.5.4 Summary

A spatial statistical modeling of housing prices in the Yangtze River Delta (YRD),
when compared to the Pearl River Delta (PRD) and the Beijing-Tianjin-Hebei (BTH)
coordinated development regions, reveals several notable insights.

In the YRD, housing prices have remained consistently high, particularly in cities
like Shanghai, Nanjing, and Hangzhou. This can be attributed to their advantageous
geographical location, robust economic development, and the increasing demand for
quality housing and comfortable living conditions. For instance, Shanghai saw a 2.7%
year-on-year increase in housing prices in 2021, with an average price reaching 60,000
yuan per square meter. This trend is expected to continue due to the region’s economic
growth and improving living standards.
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Figure 5.15: β-coefficient and confidence interval.

In contrast, the PRD region exhibits a more stable real estate market. Characterized
by a high number of commercial and residential buildings, the PRD, notably Guang-
zhou, has a vibrant commercial real estate sector. Additionally, the region’s real estate
market is maturing, with an increasing number of mid-term and other long-term prop-
erty projects available for purchase. When comparing the YRD and PRD with the
BTH coordinated development region, differences in economic policies, infrastructure
investments, and population dynamics likely play a significant role in shaping housing
price trends. However, the spatial statistical modeling reveals that the YRD main-
tains a distinct lead in terms of housing prices, while the PRD offers a more balanced
market with a diverse range of housing options.

In summary, the spatial statistical modeling of housing prices in the YRD, compared to
the PRD and BTH regions, highlights the unique economic and geographic dynamics
that shape real estate markets in these vital economic hubs of China.
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6 Discussion and conclusions

6.1 Review

This study focuses on the spatial statistical modeling of housing prices in the Yangtze
River Delta (YRD) region and its comparative analysis with the Pearl River Delta
(PRD) and Beijing-Tianjin-Hebei (BTH) coordinated development area. The main
objectives are to identify spatial patterns and determinants of housing prices in YRD
and to assess how these patterns differ from PRD and BTH.

In Chapter 2, an overview of three regions and available data is presented. In Chapter
3, the statistical model for housing prices, Y , incorporating spatial dependence through
spatial auto-regression, was introduced.

In Chapter 4, the inference method utilizing Integrated Nested Laplace Approxima-
tion (INLA) was elaborated upon. The models were presented within a fully Bayesian
framework. And some metrics, such as Mean Squared Error (MSE), Deviance Inform-
ation Criterion (DIC), Widely Applicable Information Criterion (WAIC), and Moran’s
I test, were proposed for general model selection.

The first part of Chapter 5 addressed the methods of selecting covariates like linear
correlation and confidence intervals. The second part involved a comparison of models,
revealing that the ordinary Generalized Linear Model (GLM) model could be enhanced
by incorporating both the unstructured effect (v) and the spatial effect (u), resulting
in the BYM model. In Section 5.4, it was shown that the results of the models for
housing prices are in compliance with the observations and facts. The predictions
are satisfactory. However, because of the lack of observations, the quality of future
predictions is difficult to judge. Overall, the results obtained so far are acceptable.

In section 5.5, the models of the three regions are slightly different due to their re-
spective characteristics. But the spatial model effectively captures the spatial and
temporal effects of housing price changes in these three regions, as all of them exhibit
significant positive spatial autocorrelation. Housing prices in YRD exhibit significant
spatial variation, with higher prices concentrated in urban centers and along transport-
ation corridors. Meanwhile, Beijing, the capital of China, is the center of BTH, and
Shenzhen and Guangzhou become the center of the Pearl River Delta by economic de-
velopment strategy. Economic development, population density, education resources,
and geographical factors were found to be important determinants of housing prices in
YRD. Compared to PRD and BTH, YRD showed a stronger correlation between hous-
ing prices and economic indicators, suggesting a more market-driven housing market.
PRD and BTH also exhibited distinct spatial patterns and determinants, reflecting
their unique economic, social, and policy contexts. Lessons learned from the compar-
ative analysis can be applied to improve policy coordination among YRD, PRD, and
BTH, enhancing the effectiveness of regional development strategies.
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6.2 Model structure

By specifying the model as shown in Equation (3.7), simultaneous estimation of the
covariate effect (ziβ), the spatial effect (ui), and the random effect (vi) is achieved. The
distribution of strength across each component becomes data-driven. An alternative
approach involves initially conducting a pure GLM analysis, and subsequently utilizing
this estimate as an offset when estimating ui and vi. In this scenario, ui cannot be
directly interpreted as a spatial effect but is instead viewed as an additional factor.
This method consequently raises statistical concerns.

6.3 Future Study

Unfortunately, due to the late start in statistical analysis of the real estate industry
in China and the lack of public data, the available data is limited. It is regrettable
that the amount of data collected is relatively small. This scarcity of data poses
a challenge in thoroughly analyzing the subject matter and drawing comprehensive
conclusions. The limited dataset restricts the depth of our investigation and may
hinder the accuracy of our findings. Considering the possibility of increasing the total
sample size by adding more years of data or appropriately incorporating data from
surrounding areas could help address this issue. In future research endeavors, efforts
should be made to gather a more extensive and diverse dataset to provide a more
robust foundation for analysis and interpretation.

6.3.1 Model improvement

An important aspect of model improvement involves selecting appropriate hyperpriors.
However, this issue was not explored in this thesis, and thus, the impact of different
hyperprior choices remains unknown. In practical applications, it is advisable to at
least consider this question to some extent. For the housing prices data analyzed in this
thesis, no specific prior beliefs were held regarding the hyperparameters in Equation
(3.7). Therefore, one could argue that opting for a flat prior was a fair choice.

Then, the method of choosing covariates is sketchy. In fact, there are only a few pos-
sible covariates can be chosen such that covariates may not be enough to explain the
model. Maybe some missing covariates can play a significant role in this model. For
example, in this thesis, one variable is selected in each of the three aspects of economy,
population, and culture, but in fact, these three indicators can select more variables.
Further research could explore the dynamic interactions between housing prices and
other economic indicators over time, providing a more nuanced understanding of the
spatial evolution of housing markets. The integration of additional datasets, such as
land use, environmental factors, and social media data, could offer new perspectives
on the drivers of housing prices. As mentioned above, politics should also be reflected
in the housing price model, but this article did not collect appropriate relevant data.
Moreover, it’s plausible that certain variables are not best represented by linear ef-
fects but rather exhibit non-linear patterns, potentially warranting the consideration
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of spline effects. Also, considering the spatial autocorrelation structure more com-
prehensively could enhance the spatial modeling aspect. Techniques such as spatially
varying coefficient models or spatial autoregressive models with varying spatial weights
matrices could capture spatial heterogeneity more effectively. Incorporating additional
spatial predictors or exploring alternative spatial weighting schemes may also improve
the spatial predictive performance of the model. Taking these nuances into account
could lead to improved model accuracy. The observed discrepancies in prediction ac-
curacy depicted in Figure 5.9 and Figure 5.10 might stem from suboptimal regression
modeling. Nonetheless, enhancing the regression component is unlikely to alter the
fundamental conclusions drawn in this thesis. It’s improbable that refining the covari-
ate analysis would entirely eliminate the spatial effect. However, there remains room
for model enhancement at this stage.

6.3.2 Extending the model to a smaller area

Obviously, the division used in this article is not precise enough. The division adopted
in this article is at the district and county level, with an average area of about 1170
km2 and including many cities. This is not necessary for most house buyers. People
are more interested in housing prices in a specific and small area, such that reducing
the overall area and using grids to refine the area is reasonable. This method will
greatly increase the amount of data, making the inference problem computationally
intensive, and making it more urgent to use deterministic inference methods such as
INLA. But as long as the number of regions remains within the order of 105 [25], the
problem can still be solved within a feasible time using INLA.

Furthermore, we can reduce the overall area, limit the model to a certain city, and
divide the area to the suburbs based on the city center. However, data collection is a
difficult problem with this method. At the same time, more stable covariates should
be selected to reduce errors caused by statistics and data collection. For individuals,
this approach is almost impossible.

6.3.3 Extending the model to a larger area

However, the subject of this thesis is observing and modeling house prices at the macro
level, rather than targeting an individual city. Therefore, extending the model to a
larger area is a more reasonable direction, for example, modeling the eastern coastal
area of China. This is more conducive to the national macro-control of regional housing
prices. This method will also greatly increase the data set, and as mentioned above,
INLA solves this problem very well.

6.3.4 More temporal data

In fact, the lack of public data related to housing prices before 2015 is very serious.
But adding more years of data can still improve the accuracy of the model. By
increasing the temporal scope of the dataset, we can capture a broader range of trends
and variations in housing prices over time. This expanded time allows for a more
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comprehensive analysis of market dynamics and better prediction of future trends and
overall performance.

6.4 Conclusion

Although this thesis has initially constructed a general hypothesis model of integrated
regional housing price growth and spatial differentiation, there is no doubt that the
spatial differentiation phenomenon of regional urban housing prices is characterized
by diversity and complexity. As an exploratory work, there is still a lot of work that
needs to be improved and deepened.

Inspecting Figure 5.14, house prices appear to be higher in densely populated and
economically prosperous areas. This is an intuitive result because the market relation-
ship in these areas is more biased toward supply exceeding demand, which is a seller’s
market. The strong predictive performance of the BYM model for housing prices in
Section 5.3 suggests that spatial dependence should be considered in future house price
modeling.

From a macro perspective, spatial smoothing of the final pricing factors is necessary.
This helps the country regulate housing prices, avoid falsely high housing prices in
certain places, and curb real estate speculation.

From a national perspective, these three metropolitan areas represent a higher stage
of regional integration development, and their urban housing price growth and spatial
differentiation patterns reflect, to a certain extent, the general patterns and develop-
ment trends of the spatial and temporal evolution of housing prices in other urban
agglomerations.

To wrap things up, accounting for spatial dependence when modeling housing prices
yields a better model fit and the results are positive from a macro perspective.
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aléatoires aux sciences de la nature” in 1965. Paris: Paris School of Mines, 1963.

[6] Danie G. Krige. ‘A Statistical Approach to Some Basic Mine Valuation Problems
on the Witwatersrand’. In: Journal of the Chemical, Metallurgical and Mining
Society of South Africa 52 (1951). This paper introduces the concept of making
best linear unbiased predictions (BLUP) for spatially correlated data, which later
became known as kriging., pp. 119–139.

[7] Peter Whittle. ‘On Stationary Processes in the Plane’. In: Biometrika 41.3/4
(1954). This paper deals with the spatial prediction of random fields and has
been influential in the development of spatial statistics., pp. 434–449.

[8] William Alonso. ‘Location and land use’. In: Cambridge: Harvard University
Press (1964).

[9] Waldo R Tobler. ‘A computer movie simulating urban growth in the Detroit
region’. In: Economic geography 46.sup1 (1970), pp. 234–240.

[10] Yehua Dennis Wei. ‘Urbanization and sustainable urban development’. In: Journal
of Planning Education and Research 34.2 (2014), pp. 233–247.

[11] Simon Elias Bibri. ‘Urban sustainability and digital technology’. In: Sustainab-
ility 9.2 (2017), p. 261.

[12] Sajal Ghosh and Kakali Kanjilal. ‘Long-term equilibrium relationship between
urbanization, energy consumption and economic activity: empirical evidence
from India’. In: Energy 66 (2014), pp. 324–331.

[13] Hooi Hooi Lean and Russell Smyth. ‘Regional house prices and the ripple effect
in Malaysia’. In: Urban Studies 50.5 (2013), pp. 895–922.

[14] Scott Orford. ‘Modelling spatial structures in local housing market dynamics: A
multilevel perspective’. In: Urban Studies 37.9 (2000), pp. 1643–1671.

41

https://doi.org/10.13249/j.cnki.sgs.2013.010.1157
https://doi.org/10.13249/j.cnki.sgs.2013.010.1157
http://geoscien.neigae.ac.cn/CN/10.13249/j.cnki.sgs.2013.010.1157
http://geoscien.neigae.ac.cn/CN/10.13249/j.cnki.sgs.2013.010.1157


BIBLIOGRAPHY

[15] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Fore-
casting. Springer Science & Business Media, 2002.

[16] The Seventh National Population Census of the People’s Republic of China. Na-
tional Bureau of Statistics of China, 2021.

[17] National Bureau of Statistics of China. China Statistical Yearbook. China Stat-
istical Publishing House, 2019,2020,2021,2022.

[18] Takaaki Ohnishi, Takayuki Mizuno, Chihiro Shimizu and Tsutomu Watanabe.
‘On the evolution of the house price distribution’. In: (2011).

[19] Marta Blangiardo and Michela Cameletti. Spatial and spatio-temporal Bayesian
models with R-INLA. John Wiley & Sons, 2015.

[20] Julian Besag. ‘Spatial Interaction and the Statistical Analysis of Lattice Sys-
tems’. In: Journal of the Royal Statistical Society: Series B (Methodological)
36.2 (1974), pp. 192–225.

[21] Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and
applications. Chapman and Hall/CRC, 2005.

[22] Alan E Gelfand, Peter Diggle, Peter Guttorp and Montserrat Fuentes. Handbook
of spatial statistics. CRC press, 2010.

[23] Thiago G Martins, Daniel Simpson, Finn Lindgren and H̊avard Rue. ‘Bayesian
computing with INLA: new features’. In: Computational Statistics & Data Ana-
lysis 67 (2013), pp. 68–83.
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