
MASTER’S THESIS 2024

Improving Probe and Surfel
Placement for Dynamic Diffuse
Global Illumination
Patrik Fjellstedt, Martin Antoniev

ISSN 1650-2884
LU-CS-EX: 2024-40

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-40

Improving Probe and Surfel Placement for
Dynamic Diffuse Global Illumination

Förbättrad placering av ljussonder och
ytelement för dynamisk diffus global

belysning

Patrik Fjellstedt, Martin Antoniev

Improving Probe and Surfel Placement for
Dynamic Diffuse Global Illumination

Patrik Fjellstedt
pa2747fj-s@student.lu.se

Martin Antoniev
ma3468an-s@student.lu.se

June 25, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Michael Doggett, michael.doggett@cs.lth.se
Calle Lejdfors, calle.lejdfors@gmail.com

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:pa2747fj-s@student.lu.se
mailto:ma3468an-s@student.lu.se
michael.doggett@cs.lth.se
calle.lejdfors@gmail.com
per.andersson@cs.lth.se

Abstract

The computational complexity imposed by accurately estimating, calculating
and simulating dynamic diffuse global illumination (DDGI) in real-time com-
puter graphics has led to the development of a multitude of different approaches.
This thesis extends upon an existing system which uses statically placed light
probes and surface elements (surfels) to discretize and calculate the scene DDGI,
and presents a method for dynamically distributing and placing the light probes
in the scene based on its complexity. The new system uses an octree data struc-
ture whose branches are iteratively built and rebuilt depending on the geometric
density and changes in the scene, and where the light probes are placed in its leaf
nodes. Each probe evenly places surfels around itself using a Fibonacci lattice
to determine both indirect lighting contributions, which are then used to calcu-
late the scene DDGI, and whether to rebuild the octree at the node in which the
light probe resides. The new system was able to significantly reduce the number
of probes in a test scene from 9261 to 30 while maintaining visual quality, albeit
at the expense of an increased frame time.

Keywords: Octrees, Probes, Surfels, Real-Time, Computer Graphics, Ray Tracing

2

Acknowledgements

We would like to thank our supervisors Michael Doggett and Calle Lejdfors for their guid-
ance, support and invaluable feedback throughout the project. We would also like to thank
the author of the original work, Elmer Dellson, who provided us with a starting platform
from which we could build upon. Finally, we would like to thank our friends and family for
their support and encouragement.

3

4

Contents

1 Introduction 7
1.1 Research Questions . 7
1.2 Project Scope . 8
1.3 Contribution . 8

2 Background and Theory 9
2.1 Real-Time Computer Graphics . 9
2.2 The Rendering Equation . 9

2.2.1 Direct Illumination . 10
2.2.2 Global Illumination . 10

2.3 Scene Discretization . 10
2.3.1 Octrees . 11
2.3.2 Light Probes . 11
2.3.3 Surface Elements . 11
2.3.4 Axis-Aligned Bounding Boxes . 11

2.4 Spherical Lattices . 12
2.4.1 The Latitude-Longitude Lattice . 12
2.4.2 The Fibonacci Lattice . 12

2.5 Shader Programs . 13
2.5.1 Closest Hit Shaders . 13
2.5.2 Compute Shaders . 14

2.6 Previous System . 14
2.6.1 Probes . 14
2.6.2 Surfels . 14

2.7 Related Work . 15

3 Implementation 17
3.1 Buffer Resources . 17

3.1.1 Octree . 18
3.1.2 Probes . 19

5

CONTENTS

3.1.3 Surfels and Surfel Batches . 21
3.1.4 Leaf Indices and States . 22
3.1.5 Probe Indices . 22

3.2 Shader Programs . 22
3.2.1 Memory Update . 24
3.2.2 Light Update . 25
3.2.3 Build Probe Indices . 26
3.2.4 Closest Hit . 26

3.3 Technical Challenges . 26

4 Evaluation 27
4.1 Evaluation Approach . 27

4.1.1 Configurations . 27
4.1.2 Scenes . 28
4.1.3 Test Method . 28

4.2 Visuals . 29
4.3 Execution Times . 34

4.3.1 Cornell Box . 34
4.3.2 Cornell Box with Skull . 37

4.4 Probe Counts and Surfel Hits . 40
4.4.1 Cornell Box with Skull . 40
4.4.2 Visualization of Probes in the Scene 44

4.5 Discussion . 45
4.5.1 Visual Quality . 45
4.5.2 Execution Times . 46
4.5.3 Probe Counts and Surfel Hits . 47
4.5.4 Latitude-Longitude and Fibonacci Lattices 47
4.5.5 Validity . 47

5 Conclusions 49
5.1 Answers to Research Questions . 49
5.2 Future Work . 49

5.2.1 Probe Lighting and Sampling . 50
5.2.2 Splitting Condition . 50
5.2.3 Ground Truth . 50

References 51

Appendix A Average Probe Counts and Surfel Hits 55

Appendix B Additional Measurements 61

6

Chapter 1

Introduction

Lighting a three-dimensional scene in computer graphics in a convincing way remains a long-
standing challenge. One critical aspect of this challenge is global illumination, which aims to
simulate the complex interactions of light as it bounces off of surfaces in the scene. Global
illumination is essential for creating realistic images, as it captures the indirect lighting effects
that are not captured by direct lighting alone. In this thesis we focus on the problem of real-
time, scene-adaptive, global illumination through diffuse reflections, collectively known as
dynamic diffuse global illumination (DDGI)

Building upon an existing system that uses light probes (probes) to capture light infor-
mation within a region of space, combined with surface elements (surfels) to approximate
indirect lighting, this thesis aims to improve the placement of the probes and surfels in the
scene. The existing system employs a dense and regular grid to place the light probes, which
can be inefficient in terms of the number of probes.

We propose an improvement by distributing the probes hierarchically with an octree
data structure, based on the amount of geometry around each probe. This allows for a more
adaptive and sparse placement of probes based on the scene complexity without manual in-
tervention. In addition to the octree we also incorporate a Fibonacci lattice and compare
this with the latitude-longitude lattice used in the previous system, as a method for placing
the surfels.

By dynamically adjusting the probe placement based on the scene complexity, we aim to
reduce the number of probes placed in the scene while maintaining a similar, or producing a
better visual quality compared to the previous system.

1.1 Research Questions
This thesis aims to answer the following research questions:

• How well does the new system for probe and surfel placement reduce the number of

7

1. Introduction

placed probes while retaining a similar, or producing a better, visual quality compared
to the previous system in a more complex environment?

• How significantly does the choice of spherical lattice affect the surfel placement?

1.2 Project Scope
In order to investigate our research questions posed in section 1.1, we limited our project
scope. Initially we planned to extend the complexity of the scene further by introducing
additional lights and more advanced materials, however due to time constraints we decided
to focus on the diffuse part of surfaces and only introduced a more geometrically complex
object. We also did not consider more than the second order light contributions.

1.3 Contribution
The contributions to the state of knowledge that this thesis provides can be summarized as
follows:

• A method for dynamically and hierarchically determine where and when to place light
probes in a three-dimensional scene in a scalable way.

• An implementation and representation of an octree, a recursive data structure, for easy
interpretation on the graphics processing unit.

8

Chapter 2

Background and Theory

This chapter covers relevant background and theory used in this thesis.

2.1 Real-Time Computer Graphics
Real-time computer graphics is a subfield of computer graphics that imposes a hard constraint
on the rendering time of images, such that they are interactive. This typically means that the
images have to be generated at 30 frames per second or higher and is used in applications
such as video games. In order to achieve this type of performance an effective combination
of hardware and software must be used. This also leads to a variety of techniques and opti-
mizations that might not be necessary in other aspects of computer graphics, such as offline
rendering, and often means a trade-off between different factors such as visual quality and
performance.

The fundamental goal when producing an image is to calculate the color of each pixel.
There are a multitude of ways to achieve this, such as rasterization, ray tracing, path tracing,
and many more. In this thesis we are only concerned with ray tracing, which is a method that
has gained popularity in recent years, in no small part due to the access of hardware capable
of ray tracing becoming more available. In this method rays are cast from the camera into
the scene for each pixel and are traced until they hit a surface or reach a maximum depth.

2.2 The Rendering Equation
The rendering equation was formulated concisely by Kajiya in 1986 [7], and has since become
somewhat of a cornerstone for computer graphics when it comes to rendering images realis-
tically. There are different ways of writing the equation, but perhaps the simplest and most
straightforward is as it appears in the original paper, shown in equation (2.1).

9

2. Background and Theory

I(x, x′) = g(x, x′)
[
ϵ (x, x′) +

∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′

]
(2.1)

The rendering equation is based on the physical law of conservation of energy, and states
that the incoming light for a surface point is the sum of the emitted light and scattered light
from all other surfaces toward the surface point [7]. The quantity I(x, x′) relates to the light
intensity at point x from point x′, and g(x, x′) is a “geometry” term which is zero if x and
x′ are not mutually visible or r−2 otherwise, where r is the distance between the two points.
The quantity ϵ (x, x′) relates to the light intensity at point x, emitted from point x′, whereas
the quantity ρ(x, x′, x′′) relates to the light intensity at point x, scattered at point x′ from
point x′′.

Scattered light reaching point x may be scattered at any point x′ on all surfaces, S, and
originate from any other point x′′. This makes the rendering equation recursive and, conse-
quently, unfeasible to solve in real-time for every point on every surface in a scene. Instead,
certain simplifications are applied to the recursive part of the rendering equation, such as
limiting the number of considered scatterings and directions. Furthermore, the two terms
of the rendering equation, g(x, x′)ϵ (x, x′) and g(x, x′)

∫
S ρ(x, x

′, x′′)I(x′, x′′)dx′′, can be ex-
pressed in terms of direct and global illumination.

2.2.1 Direct Illumination
Direct illumination refers to the light reaching a surface, without being obstructed, directly
from a light source [1], and corresponds to the first term in equation (2.1). In the context of
ray tracing, this means that when a ray hits a surface, and the hit point is visible from the
perspective of the light source, the hit point on the surface is directly illuminated by the light
source. Equivalently, light rays from the light source which reflect once off of a surface and
reach an observer, directly illuminate the surface from the perspective of the observer.

2.2.2 Global Illumination
Global illumination, in contrast to direct illumination, encompasses all light which reaches a
surface indirectly, and corresponds to the second term in equation (2.1). As such, it can be
considered to describe all light reaching a surface except for that described by direct illumina-
tion. In particular, global illumination accounts for light from a light source which has been
reflected at least once before reaching a surface that is being observed. Equivalently, global
illumination is light which has been reflected at least twice before reaching the observer [1].

2.3 Scene Discretization
A scene, in the context of computer graphics, encompasses everything required in a three-
dimensional world for an image to be rendered in a desirable way [1]. For a scene, or parts
thereof, to be rendered efficiently in real-time, certain discretizations and simplifications can
be implemented and applied to make difficult calculations and representations simpler and
more manageable.

10

2.3 Scene Discretization

2.3.1 Octrees
An octree is a recursively defined tree data structure that can be used to hierarchically par-
tition and organize three-dimensional space into octants, where an octant has the primitive
shape of a cube [9]. Each node in an octree has either zero or exactly eight children, known
as each other’s siblings. A node which has no children is a leaf node, while a node which has
children is a parent node. All nodes in the octree have a parent except for the root node which
is at the top of the hierarchy. The depth of a node is the distance to the root in number of
edges, giving the root node a depth of zero.

Figure 2.1 shows an example of a hierarchical partitioning of three-dimensional space
into octants and a corresponding possible octree to represent the partitioning. The figure
illustrates how the octant for the root node subsumes all other partitions, as well as how each
child covers one eight the volume of its parent.

Figure 2.1: An example partitioning of three-dimensional space into
octants and a possible octree representation for the partitioning.

2.3.2 Light Probes
In simple terms, a light probe (probe) is a data structure which can be viewed as an omni-
directional camera that captures and encodes how light interacts and passes through a par-
ticular point in a three-dimensional scene [16, 5]. There are different ways of encoding the
aforementioned light information, and certain representations are better suited over others,
depending on their usage and application.

2.3.3 Surface Elements
A surface element (surfel) can be thought of as small rendering primitives which capture lo-
calized information about a surface [13]. A surfel data structure can, for instance, store its
radius, world-space position and normal, and the color of the surface it is placed on.

2.3.4 Axis-Aligned Bounding Boxes
An axis-aligned bounding box (AABB) is a type of bounding volume whose edges are paral-
lel, and faces are perpendicular, to the coordinate axes of the space. An AABB in three-
dimensional Euclidean space can be described by the pair of triples (xmin, ymin, zmin) and

11

2. Background and Theory

(xmax, ymax, zmax), where the first and second triple are the minimum and maximum bounds,
respectively, of the AABB.

The benefit of using AABBs is that intersection tests against them are computationally
inexpensive [1]. They are therefore typically assigned to dynamic objects in the scene to serve
as coarse approximations of the size for the objects they enclose, and are then used to, for
example, test for collision against other objects or the scene geometry itself.

2.4 Spherical Lattices
A point on a sphere in spherical coordinates is described by the triple (r, θ, ϕ), where r ∈
[0,∞) is the radius of the sphere, and where θ ∈ [0, π] and ϕ ∈ [0, 2π) are the latitudi-
nal and longitudinal angles, respectively. Transforming a point from spherical to Cartesian
coordinates can be done by using equation (2.2).

(x, y, z) = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)) (2.2)

2.4.1 The Latitude-Longitude Lattice
The points on a latitude-longitude lattice are the intersections on the grid spanned by a
number of parallels and meridians such that they are consecutively separated by an equal
latitudinal and longitudinal angle, respectively [4]. An example of a latitude-longitude lat-
tice consisting of 200 points, constructed from 10 parallels and 20 meridians, is shown in
figure 2.2. Note the grid-like structure and the concentration of points near the poles, as well
as the sparsity of points closer to the equator.

Figure 2.2: A latitude-longitude lattice with 200 points, spanned by
10 parallels and 20 meridians. The left image shows all points and
the right image only shows the points which are front-facing.

2.4.2 The Fibonacci Lattice
The points on a Fibonacci lattice are placed on a spiral such that the longitudinal angle
between consecutive points is the golden angle [4]. The spiral is wound onto the surface
of the unit sphere, from pole to pole, by letting the distance along the polar axis between

12

2.5 Shader Programs

consecutive points vary in steps that are inversely proportional to the total number of points
in the lattice [4, 14].

Equation (2.3) summarizes the above description of a Fibonacci lattice with n ∈ N+
points where g denotes the golden angle. A point on the Fibonacci lattice on the unit
sphere in Cartesian coordinates is given by equation (2.4), where the trigonometric relation
sin(arccos(z)) =

√
1 − z2 ⇐⇒ z ∈ [−1, 1] has been used to substitute for sin(θ), where

θ = arccos(z) ⇐⇒ r = 1.

(zi, ϕi) =
(
1 −

2
n

(
i −

1
2

)
, g

(
i −

1
2

))
, ∀i ∈ [1, n] (2.3)

(xi, yi, zi) =
(√

1 − z2
i cos(ϕi),

√
1 − z2

i sin(ϕi), zi

)
(2.4)

An example of a Fibonacci lattice constructed using equations (2.3) and (2.4) consisting
of 200 points is shown in figure 2.3. Note the subtle spiral-like structure and more evenly
distributed points as compared to the latitude-longitude lattice shown in figure 2.2.

Figure 2.3: A Fibonacci lattice with 200 points viewed from the same
angle as in figure 2.2. The left image shows all points and the right
image only shows the points which are front-facing.

2.5 Shader Programs
A shader program (shader) is a programmable computer program that is executed on the graph-
ics processing unit (GPU), as opposed to the central processing unit (CPU), as a stage in a
pipeline [1]. There are many types of shaders, each belonging to a specific pipeline and with
their own specialized purpose. For understanding this thesis, however, only the two following
shader types are of interest.

2.5.1 Closest Hit Shaders
In the context of ray tracing and the ray tracing pipeline, after a ray has been dispatched
into the scene and finished its traversal, a closest hit shader may be invoked for the ray. All the
geometry that was intersected by the ray is enumerated, and the closest hit shader is executed
for the intersection that was nearest to the ray origin [11].

13

2. Background and Theory

The closest hit shader is single-threaded and typically used to evaluate the color of the
hit point by, for example, testing if it is in shadow, checking the color of the hit surface or
contributing light from global illumination.

We adopted the terminology used by the original author to call the ray that was dis-
patched as the primary ray.

2.5.2 Compute Shaders
It is possible to perform general-purpose calculations on the GPU that are not strictly related
to graphics. For this, there is a special and simpler pipeline, designed to be run in parallel
with the ray tracing pipeline by utilizing the large number of parallel processors on the GPU
[10]. The programs that are executed by this pipeline are called compute shaders.

2.6 Previous System
The system developed in this thesis builds upon and extends an existing system by a former
master’s student [2] for calculating DDGI. The following subsections give brief overviews
of the design and key aspects of that system as they pertain to this thesis. For a more com-
prehensive description of the previous system, the reader is encouraged to take a look at the
aforementioned thesis.

2.6.1 Probes
The probes are naively and manually placed in a high-density, regular axis-aligned grid such
that neighboring probes along any axis are equidistant from one another, and so that the
entire scene is covered by the grid. Each probe is in turn represented by an octahedron which
discretizes a sphere into eight distinct outgoing light directions from the probe, parallel to
the facet normals of the octahedron.

All probes are stored in a buffer, and the position in the scene for a specific probe is
determined by its offset into the probe buffer. This consequently results in there always being
a fixed number of probes in the scene where they all have static positions for the duration of
the application.

2.6.2 Surfels
All probes have the same fixed number of surfels, and each surfel belongs to exactly one
probe and light direction for that particular probe. The surfels are stored in a buffer and,
in much the same way as for the probes, the probe and light direction that they belong to
is determined by their offset into the surfel buffer. This, again, means that there is always a
fixed number of surfels in the scene. The surfels are also placed around the probe which they
belong to using a latitude-longitude lattice.

14

2.7 Related Work

2.7 Related Work
Majercik et al. [8] describe, among other things, that the use of probes and voxelized repre-
sentations of the scene can be used for real-time global illumination and present trade-offs in
using them. They also coin the term DDGI and present a method in which irradiance probes
are extended to full irradiance fields in order to compute global illumination in scenes with
dynamic objects and lighting.

The work of Dellson [2] presents a method for using light probes in combination with
surfels to calculate DDGI in real-time through the use of a dense grid of probes. The work
was inspired by a precomputed radiance transfer (PRT) system which utilizes light probes in
the game Tom Clancy’s The Division (2016) [15] and global illumination based on surfels (GIBS)
which utilized screen-space surfels [6].

Zhang [16] presents a rendering implementation that uses static and dynamic surfels to
improve real-time rendering efficiency and is an extension of the GIBS system. In order to
accelerate the querying of surfels an octree grid was used.

15

2. Background and Theory

16

Chapter 3

Implementation

This chapter describes, in considerable detail, how the new DDGI system works. Since the
main focus of this thesis is to improve the probe and surfel placements of an existing system,
we focus our attention on describing how new components were implemented, namely the
octree as a hierarchical data structure, and how parts of the old system were reused, restruc-
tured and adapted to fit the dynamic nature of the new system.

The major components of the implemented system are namely the buffer resources, which
store all data used by the system, and the shader programs, which access, manipulate and
transform the data in the buffers.

3.1 Buffer Resources
In addition to the probe and surfel buffers used by the previous system that were mentioned
in section 2.6, the new system uses three more buffers. The most notable of the new buffers
is the octree buffer, which stores the scene octree and describes its shape, the details of which
are explained in section 3.1.1. The two other newly introduced buffers are used as acceleration
structures for quickly finding and referencing elements in other buffers and are explained in
sections 3.1.4 and 3.1.5.

The function and purpose of the buffer that stores the AABBs is unchanged from the
previous system and is used similarly in the new system, namely to detect changes to the
geometry in the scene. The elements of the previous probe and surfel buffers are, however,
restructured to accommodate for dynamically allocating and placing them in the scene. More
regarding the new probe and surfel buffers is described in sections 3.1.2 and 3.1.3, respectively.
Figure 3.1 shows a summary of the mentioned buffers, where the arrows are meant to illustrate
how an element in one buffer can refer to an element in a different or the same buffer.

17

3. Implementation

Octree

Probes

Surfel Batches

Leaf Indices & States

Probe Indices

AABBs

Figure 3.1: Key buffers maintained by the system and accessed by the
different shaders. The arrows indicate how elements in one buffer
can refer to elements in a different or the same buffer.

3.1.1 Octree

The octree buffer stores the nodes in the octree as signed integers and also describes the shape
of the octree from the data stored in the buffer. The nodes are stored in node clusters, which
are logical groupings of eight sibling nodes. Each node cluster also contains an additional
element at the front of the cluster, used in part for referring to the parent node of the siblings,
since they all have the same parent. A node cluster therefore occupies nine elements in the
octree buffer.

The root node is treated specially since it does not have a parent nor any siblings, and
consequently cannot be grouped into a node cluster. As for all other nodes, the root node only
occupies one element in the octree buffer which we have defined to always be the element
at the front of the buffer, at the zeroth index. Consecutive groups of nine elements after the
root node are each node clusters.

Storing the root node, which occupies one ninth the size of a node cluster, in the same
buffer where the node clusters are the logical units, makes the buffer inhomogeneous. This is
the reason that the elements of the octree buffer are signed integers instead of node cluster
data structures. Consequently, this introduces an undesirable side effect when the number
of elements in the octree buffer is not 1+ 9n where n ∈ N. In these cases, the elements at the
back of the buffer will form an incomplete node cluster, of which there can be at most one. All
other node clusters, if any, are complete node clusters. Caution is therefore exercised when
building the octree to never have a node be the parent of the incomplete node cluster, if one
exists, since this would result in an invalid octree representation.

Taking the above precaution into consideration, this implementation for representing
and storing an octree in a buffer in the described way, allows for easy scalability and also
guarantees that an octree buffer of any positive element count can be used to represent a
valid octree, since the root node will always exist.

The following sets of indices are now introduced to aid in organizing and describing the

18

3.1 Buffer Resources

elements in the octree buffer:

R = {0}
M = {1, 10, 19, . . .}
N = {[2, 9] , [11, 18] , [20, 27] , . . .}

The member of the singleton set R is the root index and is always zero as defined above. The
members of the set M are meta indices which denote the starting index for the node clusters.
Finally, the members of the set N are the node indices which denote the offsets of all nodes
that are grouped into node clusters. All the nodes in the octree buffer are hence found at the
indices in the set R ∪ N .

The values stored at the indices from the set M have the following interpretations de-
pending on the sign:

• Zero: The node cluster at this index is free.

• Negative: The node cluster at this index is allocated and the bitwise complement of
the value stored at this index is the index of the parent node.

Similarly, the values stored at the indices from the set R∪N have the following interpre-
tations depending on the sign:

• Zero: The node at this index is a leaf node.

• Negative: The node at this index is a leaf node and the bitwise complement of the value
stored at this index is the index of the probe in the probe buffer which occupies this
node.

• Positive: The node at this index is a parent node and the value stored at this index is
the index of the node cluster containing the children.

When a node requests for a node cluster to be allocated for it, the octree buffer is lin-
early scanned at the indices in the set M until a free node cluster is found, disregarding the
incomplete node cluster at the back if it exists. The found free node cluster is then linked
to the parent using a compare-and-swap (CAS) atomic operation. If the CAS succeeded, the
value stored at the parent is set to the index of the node cluster. Otherwise, the octree buffer
is scanned anew.

Figure 3.2 depicts an example octree buffer with the root node at the top left at index
zero, two complete node clusters and one incomplete node cluster. The root is the parent of
the node cluster in the middle, wherein the third node is the parent of the top node cluster
and the seventh node is a leaf with a probe in it.

3.1.2 Probes
The probes in this thesis are represented in the same way as in the previous system, that is,
as octahedrons, and the notion of surfel ownership is also retained as was described in sec-
tions 2.6.1 and 2.6.2. To accommodate for the new system needs, the data structure definition
for a probe is extended and shown in listing 3.1.

19

3. Implementation

0

28

10

−32

28

−1

31

10

35

−9

Figure 3.2: An example of an octree buffer showing the root node at
the top left, two complete node clusters and one incomplete node
cluster. The double-headed arrows are intra-buffer links and indi-
cate parent-children relationships. The rightmost arrow is an inter-
buffer link that points into the probe buffer, not shown in the figure.

In addition to the array of colors for the eight outgoing light directions, the structure
now also has a signed integer whose interpretation is described below. The position of the
probe in the world and depth in the octree is also stored in the probe data structure. The
reasoning for this is that it avoids traversing the octree to calculate these values, which is a
slow operation.

Listing 3.1: Data structure definition for probes with members
for the multipurpose signed integer, array of outgoing light colors,
world-space position, and depth in the octree.
struct probe
{

int link;
float4 colors [COLORS_PER_PROBE];
float3 position ;
int depth;

};

The signed integer member of the probe data structure has the following interpretations
depending on its sign:

• Zero: This probe is a free element in the probe buffer.

• Negative: This probe is allocated and the value of the bitwise complement of this mem-
ber is the index of the first surfel batch in the surfel batch buffer in a chain of surfel
batches owned by this probe.

Probes are allocated similarly to node clusters. Namely, the probe buffer is linearly
scanned until a free probe is found and then allocated using a CAS atomic operation on
the multipurpose integer member.

20

3.1 Buffer Resources

3.1.3 Surfels and Surfel Batches
The surfel data structure, shown in listing 3.2, has members for the position of the surfel in
the world, as well as for the normal and diffuse color of the surface it is placed on, which is
the same as in the previous system. In addition, the data structure now also has a member
for the lit color of the surfel, which allows for the new system to separate the lighting of the
surfels into multiple threads before accumulating the light into the probe to which the surfel
belongs. This is further described in section 3.2.2.

Listing 3.2: Data structure definition for surfels with members for
the world-space position and normal, and surface diffuse and lit col-
ors.
struct surfel
{

float3 position ;
float3 normal ;
float4 color_diffuse ;
float4 color_lit ;

};

The surfel buffer has been restructured to no longer store surfels individually but rather
in surfel batches, which are chunks of a fixed number of surfels. Listing 3.3 shows the data
structure definition for a surfel batch where the surfels are stored in the array member. The
interpretation of the signed integer member is described below.

Listing 3.3: Data structure definition for surfel batches with mem-
bers for the multipurpose signed integer and array of surfels.
struct surfel_batch
{

int link;
surfel surfels [SURFELS_PER_BATCH];

};

The signed integer member of the surfel batch data structure has the following interpre-
tations depending on its sign:

• Zero: This surfel batch is a free element in the surfel batch buffer.

• Negative: This surfel batch is allocated and the value of the bitwise complement of this
member is the index of the next surfel batch in a chain of surfel batches.

• Positive: This surfel batch is allocated and is the last surfel batch in a chain of surfel
batches.

Multiple surfel batches can thus be chained together, allowing for the probes to have a
different number of surfels as opposed to always having the same number of surfels, as was
described in section 2.6.2.

Surfel batches are allocated in the same way as for the probes, namely by linearly scanning
the surfel batch buffer and performing a CAS atomic operation on the multipurpose integer
member for the found free surfel batch.

21

3. Implementation

3.1.4 Leaf Indices and States
All operations on the octree occur at the leaf nodes. In particular, node cluster allocations
and deallocations make the branches in the octree grow or shrink at the affected leaf nodes,
and the probe lighting calculations are also performed in the leaf nodes, since that is where
the probes reside.

The leaf buffer is a convenient supplementary to the octree buffer which records both the
indices and states of all leaf nodes, and is used to operate on, and maintain the integrity of the
octree. Both the memory and light update shaders, described in sections 3.2.1 and 3.2.2, access
the leaf buffer each frame, and are split so that they only consume, or process, elements in
the buffer which are in a “memory” or “light” state, respectively. Both shaders can, however,
produce elements of both states.

To facilitate this, the leaf buffer consists of three segments of equal size which are treated
like a circular buffer. The buffer has associated with it a pull origin, p, assigned each frame
according to p ← p + 2 mod 3, and the update shaders have associated with them a pull
offset, q, which remains constant. The memory update shader has a pull offset of zero, and
the light update shader has a pull offset of one.

The two shaders pull elements from the segment at index p + q mod 3, and push ele-
ments of the opposite and same type into the segment at index p+q+1 mod 3 and p+q+2
mod 3, respectively. Figure 3.3 shows how the two update shaders access the segments of the
leaf buffer over three frames, making one complete cycle of the buffer.

In addition, each segment is treated as a set of key-value pairs, where the keys are the
leaf node indices, and where the values are the leaf node states. By treating each individual
segment as a map like this, we can ensure that work is not duplicated for any leaf node under
a frame, and that the octree integrity is maintained.

3.1.5 Probe Indices
The probe index buffer is supplementary to the probe buffer, and is used by the closest hit
shader to accelerate the lookup of all probes in the scene, as is further explained in sec-
tion 3.2.4. This is done by storing the indices of all allocated probes at the front of the probe
index buffer followed by one or more invalid, negative, indices. As such, the number of el-
ements for this buffer is one more than that of the probe buffer, to cover the extreme case
where all the probes have been allocated. The probe index buffer is populated by a relatively
small and simple compute shader program, of which its functional details are described in
section 3.2.3.

3.2 Shader Programs
There are four shader programs used by the new system which are of interest, where three
of them are compute shaders and the fourth is a closest hit shader. The shaders are run in
parallel, as mentioned in section 2.5, and each shader accesses one or more buffer resources
when it is executing. To prevent the shaders from reading incomplete data or corrupting
data, the accesses to the buffers are synchronized by the use of resource barriers between
each shader invocation.

22

3.2 Shader Programs

MU

M LM

2 0 1

LU

L ML

0 1 2

MU

M LM

1 2 0

LU

L ML

2 0 1

MU

M LM

0 1 2

LU

L ML

1 2 0

Figure 3.3: Accesses to the leaf buffer for both update shaders over
three frames, making one complete cycle. The pull origin index is
marked in boldface, and the notations “MU” and “LU” denote the
memory and light update shader, respectively. The notations “M”
and “L” denote elements which are in a state that are processed by the
memory and light update shader, respectively. The arrows indicate
elements being pulled from, or pushed into, segments of the leaf
buffer by the two update shaders.

23

3. Implementation

The use of barriers in this way imposes an ordering on the memory accesses and ensures
that all reads and writes made by a shader for a particular buffer resource are completed
before the next shader reads or writes to the same buffer. Figure 3.4 shows the four shaders
of interest where the arrows indicate both the conceptual execution order and the logical
flow of data between the shaders as a result of using resource barriers.

Memory Update Build Probe Indices

Light UpdateClosest Hit

Figure 3.4: Shader invocation order for each frame. The arrows in-
dicate the conceptual flow of execution.

3.2.1 Memory Update
Each thread in the memory update compute shader processes at most one node each frame
having one of the states listed below.

M0 Child is allocating: A node in this state is a parent which has at least one child that
is attempting to allocate a node cluster. As such, no further processing is done of this
node, and it is not pushed back into the leaf buffer. This state overrides all other
states processed by this shader, and prevents a parent from deallocating a child which
is simultaneously allocating.

M1 Allocate probe and surfel batches: A node in this state is attempting to allocate a probe
and associated surfel batches. If the allocations succeeded the node is pushed with a
new state of L1. Otherwise, it remains without a probe and is pushed with a state of
L3 to test for intersections again.

M2 Free probe and surfel batches: A node in this state frees its probe and associated surfel
batches and, if it is not the root, pushes its parent with a state of M4 to prompt further
deallocation.

M3 Allocate node cluster, probes and surfel batches: A node in this state is attempting
to become a parent by allocating enough memory for a node cluster, and a probe and
associated surfel batches for each of the eight children. If the allocations succeeded,
the probe and associated surfel batches of the parent are freed, and the eight children
are pushed with a state of L1. Otherwise, the node retains its probe and associated
surfel batches and is pushed with a state of L2.

M4 Free node cluster: A node in this state is a parent which has been prompted by at least
one of its children to deallocate its node cluster. The parent node simply checks if
all children are without probes and, if so, proceeds with the deallocation of the node
cluster. The children are then pushed with a state of L0, this node is pushed with a

24

3.2 Shader Programs

state of L3, and, if this node is not the root, the parent of this node is pushed with a
state of M4 to prompt further deallocation. No operation is performed if any of the
children had a probe.

3.2.2 Light Update
Each thread group in the light update compute shader processes at most one node each frame
having one of the states listed below, after first testing the node cube against all AABBs in
the AABB buffer. If there was any intersection and the node does not have a probe, the node
is pushed with state M1 and the shader exits. If instead the node has a probe, its state is
transitioned to L1 so that the surfels can be replaced.

L0 Parent has freed: The parent of this node has freed the node cluster which the leaf
belonged to. As such, no further processing is done of this node, and it is not pushed
back into the leaf buffer. This state overrides all other states processed by this shader,
and prevents a node from traversing the octree, since this is no longer a valid operation
due there not existing a path to the root.

L1 Place surfels and count hits: The surfels of the probe in this leaf node are placed or
replaced, and the hit fraction is counted to determine what state to push the node with
after lighting the surfels and probe. The surfel placement work is distributed evenly
among the threads in the thread group, so that all threads get to place approximately
the same number of surfels. The surfels are placed around the probe using a Fibonacci
lattice, calculated using equations (2.3) and (2.4), and so that each surfel is not placed
outside the octant cube for the node. Once all surfels have been placed, the hit fraction,
f , is calculated by a single thread and the state of the node is determined based on a
lower and upper surfel hit fraction, flower and fupper, and the current and maximum
depths, d and dmax, in the following way:

• If f < flower then the state is M2.

• If f ≥ fupper and d ̸= dmax then the state is M3 and the parent node is pushed
with state M0 if this node is not the root.

• Otherwise, the state is L2.

The node is not yet pushed into the leaf buffer, but rather proceeds with the work
described under state L2 below.

L2 Light surfels and probe: A node in this state, or coming from state L1, lights all surfel
hits belonging to the probe that resides in this node, before accumulating the light in
the probe itself. The work is distributed among the threads in the thread group in
the same way as for the work described under state L1. Once all surfel hits have been
lit, a single thread accumulates the contributions of all lit surfels into the outgoing
light directions of the probe and scales the contributions accordingly. If this state
was reached from state L1, the node is pushed with the state determined in that state.
Otherwise, the node is pushed with state L2.

25

3. Implementation

L3 Just check AABBs: Leaf nodes with this state do not have a probe and thus do not
perform any lighting calculations. The only work done by this shader in this case is to
check against the AABBs and take proper action as described above.

3.2.3 Build Probe Indices
A simple, multithreaded, compute shader is used to populate the probe index buffer and is
invoked after the memory update shader, when all probes for a frame have been placed. The
shader works by first resetting all indices in the probe index buffer to an invalid, negative,
index. It then scans all elements in the probe buffer and inserts the indices of all allocated
probes into the probe index buffer, from the front toward the back.

3.2.4 Closest Hit
The closest hit shader is where the hit points in the scene for the dispatched rays are colorized,
both with direct illumination if the hit point is not in shadow, and with global illumination
using the light data stored in the probes.

For calculating the contributing global illumination for a hit point, the closest hit shader
iterates over the elements in the probe index buffer until the first invalid value is reached. In
each iteration, the current probe index is then used to directly reference a probe that exists
in the scene in the probe buffer. The probe is tested for visibility by casting a ray from the
hit point to the probe, using the stored probe position in the probe data structure.

If the probe is visible it is treated as a point light and contributes light to the hit point
from its outgoing colors that are in the direction toward the hit point, and each contribu-
tion is scaled by the scalar product between the hit point surface normal and outgoing light
direction. The light is also attenuated based on the distance between the hit point and probe
and the depth in the octree of the probe, so that probes that are distant and cover a smaller
volume contribute less intense light.

3.3 Technical Challenges
The implementation of the new DDGI system was not without its challenges. The previous
system was able to use an efficient way to light probes and then interpolate between them
during the primary ray hit. If a probe was unable to place a surfel, it could instead look up
the color from a neighboring probe, giving the system a way to propagate light efficiently [2].
However, this was only possible because it used a dense probe grid, and since our system is
sparse there is no guarantee that an immediate neighboring probe exists in a given direction.

This turned out to be a difficult problem to solve, and although some time was spent
looking into possible solutions, we were unfortunately unable to find an efficient one. In-
stead, we settled for a solution where we would loop over all active probes in the scene and
calculate their contribution to a hit point. This meant that during the primary ray hit we
had to determine if it could see each probe, and in order to check for visibility we computed
a ray trace from the hit point to the probe. This is a costly operation and does not scale well
with the number of active probes.

26

Chapter 4

Evaluation

This chapter aims to evaluate our implementation through empirical visual quality, execution
times, and how the probe counts and surfel hit fractions varied during the measurement
tests. In section 4.1 we will describe the approach we took to evaluate our implementation, in
particular, the scenes and configurations used. In sections 4.2 to 4.4 we dive into the different
measurements gathered. Finally, in section 4.5 we will discuss the results. The specifications
of the PC used can be seen in table 4.1.

Component Specifications
GPU NVIDIA GeForce GTX 4070 Ti
CPU Intel Core i7-12700, 2100M MHz
RAM 16 GB

OS Windows 11

Table 4.1: Specifications of PC used in the evaluations.

4.1 Evaluation Approach
The test method is very similar to that of the previous work [2], and any notes about reusing
parts of this method or extending them will relate to it.

4.1.1 Configurations
We decided to limit our tests to these configurations:

• Maximum octree depths of 2 and 3.

• Number of surfels per probe of 64 and 128.

27

4. Evaluation

• Minimum and maximum surfel hit fractions of 1
4 and 1

2 , respectively.

Our initial tests showed that lower depth values resulted in poor image quality and depths
greater than three did not increase the image quality, but rather significantly increased the
time spent per frame. As mentioned in section 2.4, the latitude-longitude lattice is con-
structed from a number of parallels and meridians. This meant that we could compare the
two surfel placement methods by giving the latitude-longitude lattice the same number of
parallels as meridians in the case of 64 surfels per probe, i.e., 8 each.

We also chose 128 surfels per probe to see how the latitude-longitude lattice would com-
pare to the Fibonacci lattice in the case where the number of parallels and meridians differed.
In this case we kept 8 parallels and extended the number of meridians to 16. Additionally,
these two configurations were also chosen because they were used in the probe grid approach,
and we wanted to see how our implementation would compare to it.

Finally, we do acknowledge that the range chosen for the octree to further subdivide is
a parameter that could have been tested further, but due to time constraints we decided to
limit the number of configurations to the ones listed above.

4.1.2 Scenes
In order to evaluate our octree implementation we decided to reuse the CornellBox scene
from the previous project [2]. This scene consists of a simple room with four walls, a ceiling
and a floor. Two of the walls are painted in different colors, the left wall being green and
right one blue, and the room is lit by a single light source from the ceiling. In addition to
this, there are two boxes, one in the back to the left and one in the front to the right. The
boxes, the remaining walls, ceiling and floor are gray. The scene is shown in figure 4.1. Note
that in order to see into the room, the wall that should be in front of the camera is removed
with back face culling, but it is still present in the scene.

In addition to the original CornellBox scene, we added a skull model to give the scene
a more geometrically complex object [3]. This would allow for some frame of reference be-
tween the original probe grid and our octree implementation for the DDGI system, as well
as showing the effect of the system in a more complex scene.

4.1.3 Test Method
The test method ran the program for 600 frames with an animation that started at frame
200 and ended at frame 350. During this animation, the objects in the scene would rotate 45
degrees around their vertical axis. This allowed us to see how the system handled changes in
the scene and how it behaved before and after. In our case, we were interested in how much
time was spent per frame in the different shader passes, and how the different lattices choices
would affect the results.

In order to take measurements regarding time spent per frame, the system calls the
EndQuery function before and after dispatching the different shaders to gather timestamps.
This is then followed by a call to ResolveQueryData in order to retrieve them out of the
query heap [12]. After the frame is complete, the measurements are retrieved through a call-
back method and stored for export to a CSV file for further analysis.

28

4.2 Visuals

To see the effect of the different surfel placement methods, we decided to measure how
many surfels and probes were placed each frame. In the case of the surfel placements, we
decided to measure it as a percentage of the total number surfels that the probe could place
in the scene.

4.2 Visuals
Figures 4.1 to 4.6 show the output images of the previously mentioned scenes when the probe
grid and octree are used. The images are rendered with 64 surfels per probe and using the
latitude-longitude surfel placement strategy. When using the octree we have used a depth
of 2. We did not perceive any significant visual differences between the surfel placement
strategies during our tests, and in order to save space we have chosen to only show the images
from depth 3 and sample size of 64 as our results showed the largest amount of differences
in this case. The comparison between the two lattices can be seen in figures 4.7 and 4.8.

Figure 4.1: DDGI off in CornellBox.

29

4. Evaluation

(a) Probe Grid (b) Octree

Figure 4.2: DDGI only in CornellBox, brightened by 150%.

(a) Probe Grid (b) Octree

Figure 4.3: Final image of CornellBox.

30

4.2 Visuals

Figure 4.4: DDGI off in CornellBoxWithSkull.

(a) Probe Grid (b) Octree

Figure 4.5: DDGI only in CornellBoxWithSkull, brightened by
150%.

31

4. Evaluation

(a) Probe Grid (b) Octree

Figure 4.6: Final image of CornellBoxWithSkull.

(a) Lat-Long (b) Fibonacci

Figure 4.7: DDGI only in CornellBoxWithSkull for the different lat-
tices, brightened by 150%.

32

4.2 Visuals

(a) Lat-Long (b) Fibonacci

Figure 4.8: Final image of CornellBox with Skull for the different
lattices.

33

4. Evaluation

4.3 Execution Times
Here follows a set of graphs showing the execution times as measured from the different
scenes. In order to save space we only include measurements made with 64 surfels per probe
and at octrees with maximum depths of 2 and 3. The graphs show the different compute
shader execution times for the different configurations.

4.3.1 Cornell Box
In figures 4.9 to 4.14 we see the execution times for the CornellBox scene measured in mil-
liseconds. In figure 4.9 we see a small bump after around 20 frames into the measurement.
We believe that this is due to the system starting up, but the actual cause is unknown, and this
behavior is shared across the different measurements. In figure 4.10 we see that outside of the
animation the execution times are similar. Once the animation starts we get a jump in the
primary ray shader and this behavior is shared for the following measurements. Therefore,
we will show a zoomed in version of the animation for the remaining figures.

When we increased the depth to 3 we saw that the overall execution time increased from
around 13 ms in the static case to 22 ms for the primary ray shader. During animation, we
see a similar jump in the primary ray shader as we did at depth 2. At this depth there are also
spikes in the memory update pass that are not present at depth 2.

Finally, in figures 4.13 and 4.14 we see the average execution times for the different im-
plementations.

0 100 200 300 400 500 600

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBox(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Probe Update
Primary Ray

Figure 4.9: Frame time for probe grid using a latitude-longitude lat-
tice.

34

4.3 Execution Times

0 100 200 300 400 500 600

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBox(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.10: Frame time for octree depth 2 using a latitude-longitude
lattice.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBox(10 Runs)
Depth-3 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.11: Frame time for octree depth 3 using a latitude-longitude
lattice, zoomed in.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBox(10 Runs)
Depth-3 SurfelSamples-64

SamplingStrategy-Fibonacci

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.12: Frame time for octree depth 3 using a Fibonacci lattice,
zoomed in.

35

4. Evaluation

Static Probe Update

Static Prim
ary Ray

Animating Probe Update

Animating Prim
ary Ray

Time(ms)

LatLong 64

LatLong 128

S
ce

ne
CornellBox - Probe Grid Execution Times

0.95

1.8 2.5

1.3

2.4 3.3

3.8 4.4

1

1.5

2

2.5

3

3.5

4

Figure 4.13: Average execution times of probe grid in CornellBox.

Static Memory Update

Static Light U
pdate

Static Prim
ary Ray

Animating Memory Update

Animating Light U
pdate

Animating Prim
ary Ray

Time(ms)

Depth 2 LatLong 64

Depth 2 Fibonacci 64

Depth 2 LatLong 128

Depth 2 Fibonacci 128

Depth 3 LatLong 64

Depth 3 Fibonacci 64

Depth 3 LatLong 128

Depth 3 Fibonacci 128

S
ce

ne

CornellBox - Octree Execution Times

0.014

0.019

0.013

0.018

0.012

0.017

0.011

0.015

0.14

0.3

0.15

0.32

0.11

0.22

0.11

0.22

13

13

13

13

0.13

0.37

0.11

0.34

0.2

0.68

0.15

0.56

0.22

0.5

0.24

0.55

0.16

0.35

0.16

0.35

13

13

13

13

22

22

21

21

22

21

20

21 2

4

6

8

10

12

14

16

18

20

22

Figure 4.14: Average execution times of octree in CornellBox.

36

4.3 Execution Times

4.3.2 Cornell Box with Skull
Figures 4.15 to 4.20 show the execution times when a skull is added to the CornellBox scene.
In figures 4.17 and 4.18 we see that they have spikes in the memory update pass that are not
present at depth 2, similar to that of the scene without the skull.

Finally, in figures 4.19 and 4.20 we see the average execution times for the different imple-
mentations. From the measurements it is also clear that the performance was not impacted
too heavily by the addition of the skull model.

0 100 200 300 400 500 600

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBoxWithSkull(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Probe Update
Primary Ray

Figure 4.15: Frame time for probe grid using a latitude-longitude
lattice.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBoxWithSkull(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.16: Frame time for octree depth 2 using a latitude-longitude
lattice, zoomed in.

37

4. Evaluation

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)
CornellBoxWithSkull(10 Runs)

Depth-3 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.17: Frame time for octree depth 3 using latitude-longitude
lattice, zoomed in.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0

5

10

15

20

25

30

T
im

e
(m

s)

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-64

SamplingStrategy-Fibonacci

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Memory Update
Light Update
Primary Ray

Figure 4.18: Frame time for octree depth 3 using a Fibonacci lattice,
zoomed in.

38

4.3 Execution Times

Static Probe Update

Static Prim
ary Ray

Animating Probe Update

Animating Prim
ary Ray

Time(ms)

LatLong 64

LatLong 128

S
ce

ne

CornellBoxWithSkull - Probe Grid Execution Times

0.95

1.8 2.6

1.4

2.5 3.5

3.9 4.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.19: Average execution times of probe grid in Cornell-
BoxWithSkull.

Static Memory Update

Static Light U
pdate

Static Prim
ary Ray

Animating Memory Update

Animating Light U
pdate

Animating Prim
ary Ray

Time(ms)

Depth 2 LatLong 64

Depth 2 Fibonacci 64

Depth 2 LatLong 128

Depth 2 Fibonacci 128

Depth 3 LatLong 64

Depth 3 Fibonacci 64

Depth 3 LatLong 128

Depth 3 Fibonacci 128

S
ce

ne

CornellBoxWithSkull - Octree Execution Times

0.013

0.018

0.012

0.016

0.012

0.017

0.011

0.015

0.15

0.32

0.16

0.32

0.12

0.24

0.13

0.25

13

13

13

13

0.13

0.37

0.088

0.28

0.27

0.95

0.2

0.75

0.24

0.54

0.25

0.53

0.22

0.47

0.24

0.51

13

13

13

13

23

23

22

23

23

23

22

22

5

10

15

20

Figure 4.20: Average execution times of octree in CornellBoxWith-
Skull.

39

4. Evaluation

4.4 Probe Counts and Surfel Hits
In this section we look at how the number of probes and surfel hit fractions varied during
the measurement tests and as we alternated between the latitude-longitude and Fibonacci
lattices. The results from the different measurements are quite similar, and so to save space
we will only show figures for the same cases as in section 4.3.2. Since the probe grid has a
constant number of probes (9261) we will only show the results for the octree.

It should be noted that the y-axis of the different graphs are affected by certain aspects.
For the probe count, the maximum number of probes that can be in the scene for the different
depths is a power of 8, which in the worst case means that it devolves into a probe grid, i.e.,
fills every leaf with a probe. For our testing configurations this means a value of 64 and 512. In
the case for the surfel hit fractions, the maximum number of surfels is based on the splitting
condition range of 1

4 and 1
2 , which is why the y-axis for those graphs are between those values.

The results for the other scene and configurations can be found in appendix A.

4.4.1 Cornell Box with Skull
Since the number of probes were constant before and after animation, we only show the
zoomed in parts of the animation. During animation, we can observe that the number of
probes changes, as shown in figures 4.21 to 4.23. This is something we would expect, since
the tree is iteratively built based on changes in the scene.

Surfel hits share this pattern, although, whenever the probe count increased, the surfel
hit fractions decreased. This behavior is shown in figures 4.24 to 4.26. Finally, we have again
put the averages in table form to more easily compare them, which can be seen in figures 4.27
and 4.28.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

20

40

60

80

100

P
ro

be
C

ou
nt

CornellBoxWithSkull(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.21: Probe count for octree depth 2 using a latitude-
longitude lattice.

40

4.4 Probe Counts and Surfel Hits

180 200 220 240 260 280 300 320 340 360

Frame Nr.

20

40

60

80

100

P
ro

be
C

ou
nt

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.22: Probe count for octree depth 3 using a latitude-
longitude lattice.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

20

40

60

80

100

P
ro

be
C

ou
nt

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-64

SamplingStrategy-Fibonacci

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.23: Probe count for octree depth 3 using a Fibonacci lattice.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0.3

0.4

0.5

0.6

S
ur

fe
lH

itP
er

c

CornellBoxWithSkull(10 Runs)
Depth-2 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.24: Surfel hit fraction for octree depth 2 using a latitude-
longitude lattice.

41

4. Evaluation

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0.3

0.4

0.5

0.6

S
ur

fe
lH

itP
er

c

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-64
SamplingStrategy-LatLong

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.25: Surfel hit fraction for octree depth 3 using a latitude-
longitude lattice.

180 200 220 240 260 280 300 320 340 360

Frame Nr.

0.3

0.4

0.5

0.6

S
ur

fe
lH

itP
er

c

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-64

SamplingStrategy-Fibonacci

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

Figure 4.26: Surfel hit fraction for octree depth 3 using a Fibonacci
lattice.

42

4.4 Probe Counts and Surfel Hits

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (64) - Avg. ProbeCount

32 31 32 30

89 83 88 80

30

40

50

60

70

80

Figure 4.27: Probe count averages at depths 2 and 3.

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (64) - Avg. Surfel Hit (%)

0.33

0.34

0.35 0.33

0.34

0.35

0.36 0.36

0.33

0.335

0.34

0.345

0.35

0.355

0.36

Figure 4.28: Surfel hit fraction averages at depths 2 and 3.

43

4. Evaluation

4.4.2 Visualization of Probes in the Scene
In addition to the numerical measurements of probe counts and surfel hit fractions, we could
also visualize the probes in the scene through our debugging system, as shown in figure 4.29.
The probes are rendered as small red boxes, scaled with their depth in the octree, and the
rest of the scene is rendered using the hit normal to more easily see the probes.

In figure 4.29a we can see that the probes, when the latitude-longitude lattice is used,
become more concentrated at the top and bottom of the scene, as indicated by the region
marked as 1 and toward the bottom of the two blocks. We can also see in figure 4.29b that,
when the Fibonacci lattice is used, probes are more easily placed along the vertical wall of the
block indicated by 2, whereas the latitude-longitude has more difficulty in capturing this.

Both placement methods tend to creep into the corners of the scene, which can be seen in
the region marked by 3. The region marked by 4 shows a region in between the three objects
that splits when the Fibonacci lattice is used, but not when the latitude-longitude lattice is
used.

(a) Lat-Long (b) Fibonacci

Figure 4.29: Comparison of probe placements in the Cornell-
BoxWithSkull scene with a maximum octree depth of 5 and 128 sur-
fels per probe.

In figure 4.30 we see a more zoomed in part of the same scenes shown in figure 4.29. Here
we can see that the Fibonacci lattice in figure 4.30b is able to place probes under the skull
and around the top, while in figure 4.30a we can see that the latitude-longitude method is
unable to do the same. This is most likely due to the chosen splitting range of 1

4 and 1
2 of the

total number of surfels, and the fact that the latitude-longitude lattice was unable to split
the node in the region marked as 4 in figure 4.29a.

With a more lenient splitting range we would expect the latitude-longitude lattice to be
able to place probes under the skull due to its concentration in the poles, but at a cost of
more probes being added to the scene. This further points to the need for more experiments
with different splitting ranges.

44

4.5 Discussion

(a) Lat-Long (b) Fibonacci

Figure 4.30: Comparison of probe placements in the Cornell-
BoxWithSkull scene with a maximum octree depth of 5 and 128 sur-
fels per probe, zoomed in on the skull.

4.5 Discussion
In this section we discuss the different measurements from the previous sections and the
validity of our results.

4.5.1 Visual Quality
From figure 4.6 we can see the final image of the scene with the skull which looks reasonable.
We can see that the DDGI system accurately demonstrates bounced light illuminating, for
example, the right side of the skull and the taller box with green light, and this effect is more
easily seen in figure 4.5. We can also see this effect in the top of the room where light bounces
from the respective side walls.

The image is not perfect, however, as there are artifacts present, mainly the small circles
that can be noticed along the walls and the dark regions that look like shadows. We suspect
that these artifacts are caused by the way we sampled the probes as described in sections 3.2.4
and 3.3. To reduce the circle artifact we clamped the falloff used to scale a probe’s contri-
bution when the hit point is inside the volume covered by the probe. See figure 4.31 for an
example of what happens when we do not clamp the falloff. Additionally, we further reduced
the contribution by the volume spanned by the probe in order for the system to scale as our
octree subdivides. The reason for this is that, after subdivision, the same volume is poten-
tially covered by more probes. If no scale factor would be used then the luminance of the
volume would increase as we continued to subdivide the octree.

Another artifact is the dark regions that look like shadows, which can be seen on the left
side of the room in figure 4.5. We believe these issues arise due to the discretization of probe
placement by the octree and our sampling technique. If a probe is placed in a region blocked
by geometry relative to the primary ray hit, it will fail the visibility check. This results in a
sharp falloff between hit points that can see probes and those that cannot.

From the visual comparisons of the scene with the skull in figure 4.6 we can see that the
skull model is more accurately lit in the octree implementation, capturing the dark regions

45

4. Evaluation

of the models eyes and teeth giving it a more realistic feel. We can also see that the visual
artifacts of the small white boxes which are most noticeable on the box behind the skull are
gone.

Figure 4.31: Figure that shows what happens if we do not clamp the
falloff of the probe contributions.

4.5.2 Execution Times
As figures 4.9 to 4.20 show, the execution time of the primary ray hit is quite high which
increases with the depth of the tree. This is most likely due to how we sample the probes
mentioned in sections 3.2.4 and 3.3, since we iterate through all active probes for each hit
and perform visibility checks for each. This is a costly operation and does not scale well with
the number of active probes in the scene.

When animating we can see from figures 4.10 to 4.12 and figures 4.16 to 4.18 that this
is exacerbated. This is most likely because the octree updates its regions where the splitting
condition criterion has changed during animation, and new probes might be placed or old
ones removed. We suspect that the spikes have to do with our linear search of the buffers
from we allocate, where we currently iterate linearly through the buffers until a free element
is found. This is not optimal, and an improvement would be to try only a certain number of
times before rejecting.

If we focus our attention on the other shader passes, we can see from figures 4.13 and 4.14
and figures 4.19 and 4.20 that the total time for the probe grid is higher in all cases then the
combined time for the memory and light update shader stages for the octree. We believe this
is in part due to the fact that we do not handle missed surfels, leading to a reduced amount
of time spent in the light update shader. This time could be reduced further by enabling
the use of multiple threads for the different compute shader passes, allowing multiple surfel
placements and lighting calculations to be done in parallel and then synchronized, instead of
only utilizing one thread per thread group. We did however not enable this part of our imple-
mentation since we wanted to keep the measurements fair when comparing to the previous
system.

46

4.5 Discussion

4.5.3 Probe Counts and Surfel Hits
From the results shown in figures 4.27 and 4.28, we can see that the number of probes placed
is significantly lower than for the probe grid case. This is expected since the octree is able
to subdivide and only place probes where they are needed. It should be noted that for the
different depth values of the octree the maximum number of probes placed is a power of 8,
in which case it then devolves into a probe grid of a certain dimension.

From the results we see that in the case of depth 2 we have already reduced the probe
count by more than half, and even more at depth 3. From preliminary tests we saw that the
reduction was larger the deeper we allowed the tree to be and eventually stopped subdividing.
However, this is most likely affected by the splitting range as well.

4.5.4 Latitude-Longitude and Fibonacci Lattices
When comparing the results in figure 4.27 we can see that the number of probes placed is
slightly lower for the Fibonacci lattice. We can also see that the average surfel hit fractions
are higher in figure 4.28. This happens regardless of the way we have constructed the latitude-
longitude lattice.

Since our splitting condition is based on the amount of placed surfels we can visual-
ize where each lattice is able to place more surfels. In figure 4.29 we see that the use of a
latitude-longitude lattice results in the top and bottom of the scene getting more probes.
This is something we would expect since the points on this type of lattice get concentrated
toward the poles. However, this should be taken with a grain of salt, since this could also be
partly affected the splitting condition range. It also shows that the Fibonacci lattice is able
to perform slightly better than the latitude-longitude lattice in a more constrained environ-
ment.

4.5.5 Validity
As with most evaluations, there are some limitations to our results. The most notable is the
number of configurations tested as well as the number of scenes used. We only ran the full
tests on octrees with maximum depths of 2 and 3, and the number of surfel placements were
limited to 64 and 128. We recognize that additional scenes and configurations, especially
for the splitting condition, could have given us a better understanding of how the system
behaves.

Furthermore, we can also see from the measurements that in some cases the system exe-
cution time looks like it is increasing. This was a concern of ours that the system might be
unstable, but we believed it was due to the test doing a 45-degree rotation instead of a full
revolution, meaning that the scene did not look the same. This lead us to introduce an addi-
tional test to test the stability of the system which can be seen in appendix B. Additionally,
we only tested the system on a single machine, which means that the results might not be
generalizable to other machines.

47

4. Evaluation

48

Chapter 5

Conclusions

This chapter will conclude our thesis by answering the research questions posed in the in-
troduction. We will also discuss possible future work that could be done to improve our
implementation.

5.1 Answers to Research Questions
• How well does the new system for probe and surfel placement reduce the number of

placed probes while retaining a similar, or producing a better, visual quality compared
to the previous system in a more complex environment?
From the results we can see that the octree is successfully able to reduce the amount
of probes from 9261 to around 30 at depth 2 and 80 at depth 3, keeping similar values
during animation. This is a significant reduction in the number of probes needed while
still maintaining a reasonable visual quality. However, this came at a great expense in
terms of performance in the hit shader.

• How significantly does the choice of spherical lattice affect the surfel placement?
The results also showed that the use of a Fibonacci lattice did, on average, slightly
improve the surfel hit fractions in contrast to the use of a latitude-longitude lattice,
resulting in better probe placements. We do note, however, that this improvement is
only marginal, and the visual differences were also miniscule.

5.2 Future Work
There exist several areas of improvement for the current implementation of our thesis. This
section lists some possible future works.

49

5. Conclusions

5.2.1 Probe Lighting and Sampling
As described in section 3.3, the current system does not have an optimal solution when it
comes to processing and sampling the probes and this is the main reason for the high exe-
cution times. It would be better if only a subset of all probes in the scene were considered
for a hit point. We believe that using the octree or an auxiliary structure to encode which
probes are visible from a given hit point would be a good solution to this problem. We see
this as the most important area to improve in order to make the system more efficient, since
the vast majority of the frame time is taken up by the closest hit shader and not the octree
update shaders.

5.2.2 Splitting Condition
As it currently stands, we are using a simple splitting condition to determine when a node
in the octree should subdivide or be left as a leaf. This condition is based on the surfel hit
fraction for a probe as a range of a lower and upper bound. This condition could be improved
since it does not account for situations where we could lose information about the geometry
in the scene. One such example would be when a node in the octree is very close to a wall
and decides to subdivide. After subdividing the new children might be inside geometry or
not see the wall anymore. Taking other aspects than just the number of surfels placed into
account when deciding to split, such as surface properties, could also be a way of improving
the system.

5.2.3 Ground Truth
In order to evaluate the visual quality of our implementation, we simply empirically com-
pared the images produced by our system to the previous. Having a better way to measure
visual quality by, for example, having access to a ground truth image, would allow for a more
accurate evaluation of the image quality and how well the new system performs in that re-
gard.

50

References

[1] Tomas Akenine-Möller, Eric Haines, Naty Hoffman, Angelo Pesce, Michał Iwanicki,
and Sébastien Hillaire. Real-Time Rendering 4th Edition. A K Peters/CRC Press, Boca
Raton, FL, USA, 2018.

[2] Elmer Dellson. Dynamic diffuse global illumination using probes and surfels, 2023.
Student Paper.

[3] Sergey Egelsky. Human skull. https://sketchfab.com/3d-models/human-skull-
b0251e48e906418ebae34b7f811ca065, 2019.

[4] Álvaro González. Measurement of areas on a sphere using fibonacci and latitude–
longitude lattices. Mathematical Geosciences, 42(1):49–64, Jan 2010.

[5] Jie Guo, Zijing Zong, Yadong Song, Xihao Fu, Chengzhi Tao, Yanwen Guo, and Ling-Qi
Yan. Efficient light probes for real-time global illumination. ACM Trans. Graph., 41(6),
nov 2022.

[6] Henrik Halén, Andreas Brinck, Kyle Hayward, and Bei Xiangshun. Global illumination
based on surfels, 2021.

[7] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, aug
1986.

[8] Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan McGuire.
Dynamic diffuse global illumination with ray-traced irradiance fields. Journal of Com-
puter Graphics Techniques (JCGT), 8(2):1–30, June 2019.

[9] Donald Meagher. Octree encoding: A new technique for the representation, manipula-
tion and display of arbitrary 3-d objects by computer, 10 1980.

[10] Microsoft. Compute pipeline. https://learn.microsoft.com/en-us/windows/
uwp/graphics-concepts/compute-pipeline. Accessed: 2024-06-02.

[11] Microsoft. Directx raytracing (dxr) functional spec. https://microsoft.github.i
o/DirectX-Specs/d3d/Raytracing.html. Accessed: 2024-06-02.

51

https://learn.microsoft.com/en-us/windows/uwp/graphics-concepts/compute-pipeline
https://learn.microsoft.com/en-us/windows/uwp/graphics-concepts/compute-pipeline
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

REFERENCES

[12] Microsoft. Queries. https://learn.microsoft.com/en-us/windows/win32/di
rect3d12/queries. Accessed: 2024-06-07.

[13] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: sur-
face elements as rendering primitives. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’00, page 335–342, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[14] Martin Roberts. How to evenly distribute points on a sphere more effectively than the
canonical fibonacci lattice. https://extremelearning.com.au/how-to-evenl
y-distribute-points-on-a-sphere-more-effectively-than-the-canon
ical-fibonacci-lattice/. Accessed: 2024-06-03.

[15] Nikolay Stefanov. Global illumination in tom clancy’s the division. https://www.yo
utube.com/watch?v=04YUZ3bWAyg. Accessed: 2024-06-07.

[16] Hongqi Zhang. Design and implementation of a global illumination rendering system
based on surfels. In 2023 8th International Conference on Intelligent Informatics and Biomed-
ical Sciences (ICIIBMS), volume 8, pages 548–553, 2023.

52

https://learn.microsoft.com/en-us/windows/win32/direct3d12/queries
https://learn.microsoft.com/en-us/windows/win32/direct3d12/queries
https://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
https://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
https://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
https://www.youtube.com/watch?v=04YUZ3bWAyg
https://www.youtube.com/watch?v=04YUZ3bWAyg

Appendices

53

Appendix A

Average Probe Counts and Surfel Hits

Here follows a set of heatmaps showing the average probe counts and average surfel hit frac-
tions as measured from the different scenes and configurations.

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBox - Samples (64) - Avg. ProbeCount

33 29 33 28

86 80 86 76

30

40

50

60

70

80

Figure A.1: Average probe counts for CornellBox using 64 surfels
per probe.

55

A. Average Probe Counts and Surfel Hits

Static LatLong 128

Static Fibonacci 128

Animating LatLong 128

Animating Fibonacci 128

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBox - Samples (128) - Avg. ProbeCount

33 30 33 29

86 81 85 79

30

40

50

60

70

80

Figure A.2: Average probe counts for CornellBox using 128 surfels
per probe.

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBox - Samples (64) - Avg. Surfel Hit (%)

0.33

0.33

0.34 0.33

0.33

0.35

0.36 0.36

0.33

0.335

0.34

0.345

0.35

0.355

0.36

Figure A.3: Average surfel hit fractions for CornellBox using 64 sur-
fels per probe.

56

Static LatLong 128

Static Fibonacci 128

Animating LatLong 128

Animating Fibonacci 128

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBox - Samples (128) - Avg. Surfel Hit (%)

0.33

0.33

0.33

0.33

0.350.36

0.36 0.36

0.33

0.335

0.34

0.345

0.35

0.355

0.36

Figure A.4: Average surfel hit fractions for CornellBox using 128
surfels per probe.

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (64) - Avg. ProbeCount

32 31 32 30

89 83 88 80

30

40

50

60

70

80

Figure A.5: Average probe counts for CornellBoxWithSkull using
64 surfels per probe.

57

A. Average Probe Counts and Surfel Hits

Static LatLong 128

Static Fibonacci 128

Animating LatLong 128

Animating Fibonacci 128

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (128) - Avg. ProbeCount

32 32 32 31

89 84 88 83

40

50

60

70

80

Figure A.6: Average probe counts for CornellBoxWithSkull using
128 surfels per probe.

Static LatLong 64

Static Fibonacci 64

Animating LatLong 64

Animating Fibonacci 64

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (64) - Avg. Surfel Hit (%)

0.33

0.34

0.35 0.33

0.34

0.35

0.36 0.36

0.33

0.335

0.34

0.345

0.35

0.355

0.36

Figure A.7: Average surfel hit fractions for CornellBoxWithSkull
using 64 surfels per probe.

58

Static LatLong 128

Static Fibonacci 128

Animating LatLong 128

Animating Fibonacci 128

Surfel Placement Strategy

2

3

O
ct

re
e

D
ep

th

CornellBoxWithSkull - Samples (128) - Avg. Surfel Hit (%)

0.34

0.34

0.33

0.34

0.36

0.36

0.36

0.36

0.33

0.335

0.34

0.345

0.35

0.355

0.36

Figure A.8: Average surfel hit fractions for CornellBoxWithSkull
using 128 surfels per probe.

59

A. Average Probe Counts and Surfel Hits

60

Appendix B

Additional Measurements

Here follows an additional measurement in order to test the stability of the octree. In an
effort to minimize the amount of data we only show this from one configuration. The test
rotated the objects in the scene for one full revolution around their vertical axis over 150
frames and then paused for 50 frames. This was repeated three times for a total of 600 frames.
In figure B.1, the marked data points are the current probe count in the scene after each
rotation.

0 100 200 300 400 500 600

Frame Nr.

20

40

60

80

100

P
ro

be
C

ou
nt

CornellBoxWithSkull(10 Runs)
Depth-3 SurfelSamples-128
SamplingStrategy-Fibonacci

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

A
ni

m
at

io
n

be
gi

n

A
ni

m
at

io
n

en
d

X 200
Y 89

X 400
Y 89

X 580
Y 89

Figure B.1: Probe count over time for the CornellBoxWithSkull
scene using 128 surfels per probe and a Fibonacci surfel placement
method.

61

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-06-13

EXAMENSARBETE Improving Probe and Surfel Placement for Dynamic Diffuse Global Illumination
STUDENTER Patrik Fjellstedt, Martin Antoniev
HANDLEDARE Michael Doggett (LTH), Calle Lejdfors (AMD)
EXAMINATOR Per Andersson (LTH)

Smartare placering av ljussonder för
ljussättning av 3D-grafik

POPULÄRVETENSKAPLIG SAMMANFATTNING Patrik Fjellstedt, Martin Antoniev

Vi har i det här examensarbetet utvecklat en metod som på ett smartare sätt placerar
ljussonder i en tredimensionell virtuell värld för att beräkna ljus som reflekterats. Den
nya metoden lyckades markant minska antalet ljussonder i en enkel testvärld till färre
än en hundradel av det ursprungliga antalet och ändå ge liknande ljussättning.

En av de större svårigheterna och tidskrävande
problemen att lösa när det handlar om tredimen-
sionell datorgrafik, är att ljussätta den virtuella
världen på ett sätt som är övertygande för det
mänskliga ögat. Det har på grund av detta
tillkommit en rad olika lösningar genom tiderna,
där en av dem är användningen av ljussonder.

En ljussond kan liknas vid en kamera som ser
i alla riktningar omkring sig och placeras i den
virtuella världen för att samla in och beskriva det
reflekterade ljuset som den kan se, vilket i sin
tur sedan kan användas för att ljussätta delar av
världen med ljus som reflekterats.

Hur kan man då gå tillväga för att placera ljus-
sonderna i världen? Ett väldigt enkelt sätt är att
lägga dem i ett tredimensionellt rutnät med litet
avstånd mellan dem. Problemet med detta är att
det snabbt blir många ljussonder som inte tillför
mycket alls till världens ljussättning. I många
fall hade man egentligen kunnat använda flertalet
färre ljussonder och uppnå liknande resultat, och
på så sätt även spara på resurser.

I det här arbetet har vi utgått från ett system
där ljussonderna placerades i just ett sådant rut-
nät och utvecklat en metod för att istället plac-
era dem på ett smartare sätt. Detta kunde vi

åstadkomma genom att även låta ljussonderna
bestämma ifall deras närliggande omgivning är in-
tressant eller ej, och på så sätt antingen behålla
ljussonder, placera fler, eller ta bort dem.

Bilden ovan visar ett exempel på hur vår metod
på ett klokt sätt kan placera ljussonder, marker-
ade i rött, där den övre delen av världen får färre
då där finns ett större tomrum. Bilden visar också
att ljussonderna lyckats se, bland annat, ljuset
från taket som reflekterats på de färgade väggarna,
vilket sedan använts till att färglägga andra delar
av världen.

	Introduction
	Research Questions
	Project Scope
	Contribution

	Background and Theory
	Real-Time Computer Graphics
	The Rendering Equation
	Direct Illumination
	Global Illumination

	Scene Discretization
	Octrees
	Light Probes
	Surface Elements
	Axis-Aligned Bounding Boxes

	Spherical Lattices
	The Latitude-Longitude Lattice
	The Fibonacci Lattice

	Shader Programs
	Closest Hit Shaders
	Compute Shaders

	Previous System
	Probes
	Surfels

	Related Work

	Implementation
	Buffer Resources
	Octree
	Probes
	Surfels and Surfel Batches
	Leaf Indices and States
	Probe Indices

	Shader Programs
	Memory Update
	Light Update
	Build Probe Indices
	Closest Hit

	Technical Challenges

	Evaluation
	Evaluation Approach
	Configurations
	Scenes
	Test Method

	Visuals
	Execution Times
	Cornell Box
	Cornell Box with Skull

	Probe Counts and Surfel Hits
	Cornell Box with Skull
	Visualization of Probes in the Scene

	Discussion
	Visual Quality
	Execution Times
	Probe Counts and Surfel Hits
	Latitude-Longitude and Fibonacci Lattices
	Validity

	Conclusions
	Answers to Research Questions
	Future Work
	Probe Lighting and Sampling
	Splitting Condition
	Ground Truth

	References
	Appendix Average Probe Counts and Surfel Hits
	Appendix Additional Measurements

