
MASTER’S THESIS 2024

Exploring AI-Assisted Software
Development at Scania: The
Role of Prompt Engineering
and Regulatory Compliance
Julia Bäcklund

ISSN 1650-2884
LU-CS-EX: 2024-39

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-39

Exploring AI-Assisted Software
Development at Scania: The Role of
Prompt Engineering and Regulatory

Compliance

Utforska AI-assisterad mjukvaruutveckling
på Scania: betydelsen av promptteknik och

regelefterlevnad

Julia Bäcklund

Exploring AI-Assisted Software
Development at Scania: The Role of
Prompt Engineering and Regulatory

Compliance

Julia Bäcklund
julia@backlund.se

June 25, 2024

Master’s thesis work carried out at Scania CV AB.

Supervisors: Maria Erman, maria.erman@scania.com
Markus Borg, markus.borg@cs.lth.se

Examiner: Emma Söderberg, emma.soderberg@cs.lth.se

mailto:julia@backlund.se
mailto:maria.erman@scania.com
mailto:markus.borg@cs.lth.se
mailto:emma.soderberg@cs.lth.se

Abstract

Generative AI is revolutionizing industries worldwide, and no company wants
to miss the innovation train. This thesis investigates the potential of AI-assisted
development at Scania, focusing on enhancing code generation through prompt
engineering and ensuring compliance with the EU AI Act. The study employs
a methodology containing three phases: initial exploration of AI integration at
Scania, testing of various prompt engineering techniques using an AI-assistant
from Azure AI Studio, and an analysis of the broader implications, including
regulatory compliance with the EU AI Act.

The research identifies opportunities for AI to enhance efficiency, particu-
larly through the use of generative AI in code generation. Among various prompt
engineering techniques evaluated, Few-shot, Hybrid, Chain of Thought (CoT),
and Least to Most Prompting emerge as the most effective in enhancing the accu-
racy and utility of generated code. These techniques prove important in optimiz-
ing the performance of Azure AI Studio’s AI-assistant across a series of dynamic
programming problems, highlighting the potential for tailored AI implementa-
tions to meet specific organizational needs while adhering to strict security and
privacy standards.

Furthermore, the study explores the implications of the EU AI Act, investi-
gating the need for companies to align AI deployments with forthcoming regula-
tions, particularly in high-risk applications such as autonomous vehicles—relevant
for Scania’s industry. The findings suggest that while the AI-assistant used for
code generation falls outside the direct scope of high-risk AI systems, its imple-
mentation must still prioritize transparency, data governance, and user trust to
comply with broader regulatory and ethical standards.

In conclusion, the thesis demonstrates that prompt engineering can enhance
the capability of AI-assistants in software development, while also ensuring that
these advancements align with the stringent requirements of the EU AI Act.
Future work should continue to refine these techniques and explore their appli-
cability in other areas of AI-assisted development.

Keywords: AI, Artificial Intelligence, LLM, Large Language Models, Prompt Engineer-
ing, Code Generation, Generative AI, AI in Software Development, EU AI Act, AI Com-
pliance, AI-assisted Development, Azure AI Studio

2

Acknowledgements

I would like to thank all the interviewees, both from Scania and the PhD student, who shared
their valuable insights on the various topics in this thesis. Although their contributions are
anonymous, I deeply appreciate their involvement in sharing experiences and perspectives
which have been instrumental in the content and depth of this research.

I am also thankful for my supervisors Markus Borg at LTH and Maria Erman at Scania
for their unwavering support and insightful feedback throughout the course of this thesis.
Their guidance was crucial in shaping the research direction and methodology, making this
thesis project both educational and rewarding.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Related Work . 8

1.2.1 Prompt Engineering . 9
1.2.2 Code Generation with Generative AI 9
1.2.3 Compliance with the EU AI Act 10

1.3 Purpose . 11
1.4 Delimitations and Scope . 11
1.5 Structure of Thesis . 12

2 Theory 13
2.1 ChatGPT or Azure AI Studio AI-assistant 13
2.2 Large Language Models and the GPT-3.5 Model 14
2.3 Prompt Engineering . 15

2.3.1 Prompting Techniques . 15
2.4 EU AI Act . 17

3 Method 19
3.1 Phase 1 . 20

3.1.1 Interviews . 20
3.1.2 Choosing Assignment . 21

3.2 Phase 2 . 22
3.2.1 Prompt Engineering . 24

3.3 Phase 3 . 31
3.3.1 Literature Review . 31
3.3.2 Interview . 31

4 Results and Analysis 33
4.1 Phase 1 . 33

4.1.1 Interviews . 33

5

CONTENTS

4.2 Phase 2 . 35
4.2.1 Code Generation with AI-assistant 35

4.3 Phase 3 . 40
4.3.1 Providers vs Deployers . 40
4.3.2 Identifying High-Risk AI Systems 41
4.3.3 Impact on Autonomous Vehicles (AVs) 43

5 Discussion 45
5.1 RQ1: What are the potential value areas for AI-assisted development at Sca-

nia in the near term? . 45
5.2 RQ2: How can prompt engineering be used to enhance code generation with

generative AI in tasks relevant to Scania? 48
5.3 RQ3: What are the broader implications of integrating AI-assisted develop-

ment at Scania, including compliance with the EU AI Act? 50
5.4 Future Research . 51
5.5 Limitations and Threats to Validity . 52

6 Conclusion 55

References 57

Appendix A Detailed Results From Phase 2 Evaluation 63

Appendix B Interview Framework 69
B.0.1 Phase 1 Description . 69
B.0.2 Overall Structure of Interviews . 69
B.0.3 Interview . 70

6

Chapter 1

Introduction

This chapter presents the groundwork for exploring AI-assisted development at Scania, fo-
cusing on the integration of Artificial Intelligence (AI), particularly through Large Language
Models (LLMs), in enhancing software development practices. The background section in
this chapter reviews the current adoption of AI in software development, emphasizing Sca-
nia’s approach and the industry-wide impact. Related work examines significant research on
generative AI, prompt engineering, and the EU AI Act. The purpose and research questions
outline the thesis’s objectives and investigative scope. Delimitations clarify the study’s focus,
and the structure provides an overview of the thesis’s chapters.

1.1 Background
In this time of rapid technology evolution, AI, and particularly LLMs, has developed at a
transformative pace. Incorporating LLM-based solutions into development practices is be-
coming increasingly common. This trend is highlighted in JetBrains’ yearly survey, which
gathers insights from developers globally, indicating that 77% of developers use ChatGPT
and 46% use GitHub Copilot, both LLM-based tools, in their development practices [13].
Incorporating AI into development practices has evolved from following a trend to being
perceived as a necessity for companies to stay competitive in the market. This integration
of LLMs is driven by smart, adaptive, and automated solutions that have the potential to
improve efficiency, accuracy, and innovation in various industries. Exploring the use of AI-
assisted development is vital in order to leverage AI capabilities and has the possibility to
enhance traditional development practices. The exploration is also needed to understand
the limitations and potential risks with AI integration, ensuring a balanced and responsible
approach to its adoption.

Scania CV AB is a leading manufacturer in the heavy-duty vehicle industry, specializing
in trucks and buses for heavy transport applications. Scania was founded in 1891 and has a
long-standing history of innovation and excellence in the automotive sector. The company is

7

1. Introduction

renowned for its focus on sustainability, advanced technology, and commitment to quality.
Today, Scania is investing in AI and new technologies as a means to stay at the forefront
of development in the industry and AI-assisted development is a current topic undergoing
discussion. There are numerous possibilities, but the importance of a thorough exploration
of which areas have the most potential and how an effective implementation can be executed
is vital in order to make knowledge-based decisions on what type of AI-assisted development
to incorporate at Scania.

The topic of the benefits and limitations of implementing AI-assisted development is a
popular research subject, where specific AI tools, like for example GitHub Copilot and Chat-
GPT, have been researched in order to determine their effectiveness [24] [25]. Although, de-
spite the growing use of these tools, there is a gap in research on using prompt engineering to
enhance the performance of generative AI in code generation. Most existing research focuses
on comparing AI tools and their effectiveness in different areas, with some attention given to
the general use of prompt engineering [7]. Yet, there is little detailed exploration of prompt
engineering for code generation. As companies increasingly integrate AI into their work-
flows, understanding how to best apply generative AI technology and utilize methodolo-
gies like prompt engineering becomes key. This thesis evaluates several prompt engineering
techniques to enhance code generation capabilities with generative AI. Figure 1.1 provides a
schematic overview of these techniques, detailing the input, LLM, different prompting tech-
niques, and the output process. Additionally, the thesis examines the broader implications
of using AI, particularly in light of the upcoming EU AI Act.

Figure 1.1: Prompt engineering processes.

1.2 Related Work
The subsections in this related work section presents relevant research for this thesis on the
topics of prompt engineering, generative AI, and the EU AI Act.

8

1.2 Related Work

1.2.1 Prompt Engineering
Prompt engineering has rapidly evolved into a crucial technique for optimizing the perfor-
mance of LLMs, thereby enhancing their effectiveness across diverse applications, from pro-
gramming aids to educational interfaces. The field involves designing and refining input
prompts to guide LLMs in producing responses that are accurate, relevant, and contextually
appropriate. Initial methods such as role-prompting and various shot techniques – zero-
shot, one-shot, and few-shot – lay the groundwork by providing structured context that
enhances response quality [3]. Building upon foundational techniques to prompt engineer-
ing, advanced methodologies like the Chain of Thought (CoT) and P-Tuning have further
pushed the boundaries of prompt engineering. CoT prompting, for instance, guides models
through logical reasoning steps, greatly improving task performance that requires deep ana-
lytical thinking [3]. Similarly, P-Tuning integrates trainable prompt embeddings to address
the variability and instability typical of discrete prompts, which are fixed, unchanging text
inputs, ensuring more consistent and reliable model responses.

Empirical studies such as those conducted by Denny et al. [7] explore the application
of prompt engineering in educational settings, demonstrating how refined prompts can en-
hance the problem-solving capabilities of models like GitHub Copilot in introductory pro-
gramming contexts. These studies show that prompt engineering offers practical benefits
and enhances education by promoting computational thinking among learners. The work of
White et al. [32] presents a Prompt Pattern Catalog which offers a comprehensive compila-
tion of effective prompt engineering strategies that serve as reusable solutions for common
challenges faced when integrating with LLMs. This catalog not only enhances the practical
deployment of these models but also standardizes best practices that can be adapted across
different domains, emphasizing the versatility and critical importance of prompt engineer-
ing.

Lastly, the exploration of specific innovations like P-Tuning and the detailed guides pro-
vided for effective prompt engineering with tools like ChatGPT encapsulate the specialized
developments within the field [8]. These contributions highlight the depth of research and
the focused efforts to refine LLM interactions, ensuring that these models not only under-
stand and generate human-like text but do so in a way that increasingly aligns with user
expectations and needs.

1.2.2 Code Generation with Generative AI
Generative AI (GenAI) technologies, particularly Large Language Models (LLMs) such as
ChatGPT, have revolutionized various domains, including software engineering. The inte-
gration of these technologies facilitates tasks ranging from simple code snippet generation to
complex software testing and debugging, highlighting a shift towards more automated and
efficient development processes. This section explores significant contributions to the field,
examining efficacy, challenges, and potential of GenAI in code generation through various
scholarly works.

Initial studies, such as by Sakib et al. [25], reveal strengths in structured domains like
tree-based and divide-and-conquer algorithms achieving success rates up to 71.88% in pro-
gramming challenges. The same study also indicates that the debugging capabilities remain
limited, with a success improvement rate of only 36.7% after feedback. This highlights a crit-

9

1. Introduction

ical area for future enhancements, especially in complex problem domains such as greedy
algorithms and dynamic programming where the model’s performance noticeably weakens.
Further research by Nejjar et al. [20] provides deeper practical insights. These studies un-
derscore the variability in performance based on the nature of the coding tasks and the spe-
cific requirements of scientific computing and software engineering. They also discuss the
importance of prompt engineering and hybrid approaches that blend traditional software
engineering techniques with LLM capabilities to mitigate issues like output hallucination,
which refers to the generation of logical yet incorrect or irrelevant responses by the model,
and improve reliability. Innovation in prompt engineering techniques, as explored by Peng,
X. [22] and Nguyen et al. [21], shows that refining prompts and integrating user feedback can
significantly enhance the practical utility of LLMs in real-world applications. These stud-
ies highlight how adaptive learning strategies and user-centric design can help tailor GenAI
tools to better meet the nuanced demands of software developers. This aligns with the fo-
cus of the experiment in this thesis, where similar approaches will be applied to evaluate the
effectiveness and improvement of using prompt engineering for AI-assisted code generation.

Despite the promising advancements, challenges still persist, particularly in terms of the
robustness and reliability of code generation techniques. The study by Mastropaolo et al.
[16] illustrates how variations in natural language descriptions can lead to inconsistent out-
puts, emphasizing the need for clearer and more precise inputs to achieve optimal results.
Additionally, studies by Yan et al. [33] and Scoccia et al. [26] delve into user experience and
perceptions, highlighting mixed results in effectiveness and trustworthiness. These mixed
results apply to ChatGPT’s ability to consistently generate accurate and functionally reliable
code across various programming challenges. The first study evaluates ChatGPT’s perfor-
mance across different levels of programming difficulty, finding that while the model excels
in simpler, well-defined tasks, it struggles with more complex problems that require advanced
logical or algorithmic reasoning. The second study gathers qualitative insights from early
users who integrate ChatGPT into their coding workflows, revealing a range of experiences
where some users praise its speed and utility in generating draft codes or suggestions, while
others express concerns over inaccuracies and safety. These findings indicate ongoing chal-
lenges in ensuring that the code generation is not only technically correct but also practically
useful and secure in diverse development environments.

As generative AI continues to evolve, so too does its application in code generation. The
insights gathered from these studies not only enhance our understanding of the current land-
scape but also chart a course for future research endeavors. Emphasizing the need for inno-
vation in prompt engineering, user interaction, and model training, the body of research
supports a thoughtful integration of GenAI tools into software development processes. This
integration should be strategic, aiming to complement rather than replace human expertise.

1.2.3 Compliance with the EU AI Act
The European Union has introduced the AI Act to establish a comprehensive regulatory
framework that governs the development and deployment of artificial intelligence across its
member states. This legislation aims to ensure that AI technologies are safe, transparent,
and aligned with human rights and privacy standards. It categorizes AI systems based on
risk, from minimal to unacceptable, requiring varying levels of compliance. High-risk ap-
plications, like those used in critical infrastructure and sensitive sectors, face the strictest

10

1.3 Purpose

controls to prevent harm and ensure reliability and transparency. [9]
The EU AI Act requires robust compliance measures, especially for high-risk AI systems.

According to the study by Walters et al. [31], these systems must undergo thorough pre-
market assessments to verify their adherence to the EU’s strict requirements on data gov-
ernance, transparency, and technical documentation. Providers must ensure that the data
feeding into AI systems is free of biases and that these systems are capable of being audited
post-deployment.

The integration of the EU AI Act into the AI development and deployment represents a
pivotal step towards safe, accountable, and ethically aligned AI systems. As the Act catego-
rizes AI applications according to risk, it places specific obligations on both providers and
users to ensure their AI systems operate within a secure and lawful framework. The related
work discussed in this section underscores the ongoing efforts to address the challenges posed
by the AI Act, particularly in the areas of software development and compliance. As develop-
ers and businesses work towards integrating these regulatory requirements, they contribute
to a broader understanding of how AI can be deployed responsibly and effectively. Looking
ahead, the continuous evolution of AI technologies will likely need further adaptions and
refinements to these regulations to make sure that AI development is both innovative and in
line with legal standards. This ongoing conversation between technology and regulation is
essential for creating a space where AI can evolve while still protecting societal and ethical
values.

1.3 Purpose
This thesis investigates the utilization and future opportunities of AI-assisted development
at Scania, aiming to pinpoint areas where AI can boost efficiency and ensure compliance
with regulations like the EU AI Act. The study progresses through phases, from identifying a
suitable AI application to implementing and evaluating a proof-of-concept focused on code
generation using prompt engineering.

Research Questions the thesis aims to answer the following research questions regarding the
integration and impact of AI-assisted development at Scania:

• What are the potential value areas for AI-assisted development at Scania in the
near term?

• How can prompt engineering be used to enhance code generation with generative
AI in tasks relevant to Scania?

• What are the broader implications of integrating AI-assisted development at Sca-
nia, including compliance with the EU AI Act?

1.4 Delimitations and Scope
This thesis is centered on exploring prompt engineering for code generation and the broader
implications of the EU AI Act on AI-assisted development at Scania. This research specifi-
cally evaluates the effectiveness of various prompt engineering techniques such as zero-shot,

11

1. Introduction

one-shot, few-shot, role prompting, and a hybrid approach, applied to dynamic program-
ming problems using the Azure AI Studio AI-assistant with the GPT-3.5 turbo model. This
thesis aims to provide insights into prompt engineering within a specific technological setup,
ensuring the relevance and applicability of the findings to Scania’s operational needs.

1.5 Structure of Thesis
This thesis is structured into six main chapters, along with references and appendices.

Chapter 1: Introduction sets the stage by presenting the background, purpose, delimitations
and scope, and the overall structure of the thesis.

Chapter 2: Theory delves into the critical concepts underpinning this research, including
examination of ChatGPT versus and alongside Azure AI Studio, the EU AI Act, the
fundamentals of Large Language Models, and the theory behind Prompt Engineering.

Chapter 3: Method outlines the methodology employed in this research, structured into
three distinct phases: initial interviews and selection of the assignment, the practi-
cal application and evaluation of prompt engineering techniques with an AI-assistant
adapted for code generation in a controlled setting, and a final phase that encompasses
the broader implications and potential future directions.

Chapter 4: Results and Analysis presents the outcomes of the studies in the three different
phases of the thesis, followed by an analysis of the results.

Chapter 5: Discussion reflects on the findings and connects them to the related work sec-
tions as well as answers the three research questions. This chapter also discusses av-
enues for future research and presents limitations and threats to validity for the results.

Chapter 6: Conclusion summarizes the thesis’s key findings, contributions to the field, and
the potential impact on AI-assisted development practices, particularly at Scania.

12

Chapter 2

Theory

This chapter outlines the foundational theories and methodologies related to the use of LLMs
in software development, with a focus on prompt engineering and the regulatory environ-
ment by the EU AI Act. This chapter sets the stage for deeper exploration on the topics
introduced.

2.1 ChatGPT or Azure AI Studio AI-assistant
Azure AI Studio is a platform within Microsoft’s Azure ecosystem, designed to expedite
and streamline AI development processes. It combines Azure’s AI infrastructure, machine
learning capabilities, cognitive services, and the OpenAI service, thereby providing a versa-
tile environment for businesses to tailor AI solutions specific to their operational demands
[17]. This architecture facilitates data upload, artifact storage, and the deployment of models
which introduces a unique level of isolation and security. Each AI project operates within
a distinctly isolated data container, a separation that ensures that data and resources are
compartmentalized, reducing the risk of unauthorized access [18]. Azure AI Studio leverages
managed virtual networks and resources controlled by Microsoft, such as computing power
and data storage, to ensure its isolation features. This means it uses a secured network to
protect the communication between its components and other Azure services, keeping data
safe within a defined boundary.

Azure OpenAI, underpinned by Microsoft’s Azure AI Services, caters primarily to en-
terprise needs, providing robust security features, including network isolation and private
model access. One of Azure OpenAI’s standout features is its adaptability to allow orga-
nizations to choose specific AI models, such as the GPT models, tailored to their unique
requirements. By providing access to the GPT models Azure AI Studio enables detailed ex-
perimentation within a secure cloud and development environment. This setup enables users
to leverage the full potential of GPT models while maintaining complete control over the
ecosystem, something that competing services like AWS or Google Cloud, or even OpenAI’s

13

2. Theory

direct offering such as ChatGPT, cannot provide.
In comparison between Azure OpenAI and ChatGPT, ChatGPT’s public interface pro-

vides an accessible platform for engaging with generative AI, albeit with less emphasis on
control and security measures inherent to Azure OpenAI. This distinction makes Azure
OpenAI, and by extension, Azure AI Studio, more suited to enterprises looking for a se-
cure, customizable AI development environment that can accommodate sensitive data and
adhere to regulatory standards.

Figure 2.1: A screenshot of Azure AI Studio AI-assistant interface.

2.2 Large Language Models and the GPT-
3.5 Model

LLMs are transformative tools in artificial intelligence, engineered to understand and gen-
erate human language by leveraging large amounts of textual data. Among the most promi-
nent LLMs are the Generative Pre-trained Transformers (GPT), developed by OpenAI. These
models utilize a deep learning architecture known as the transformer, which excels in captur-
ing the complexities of language through patterns learned from extensive training datasets.
Each iteration of GPT, including the GPT-3.5 model, aims to refine its predecessor’s capa-
bilities, enhancing both the depth and width of language comprehension and generation.
This continuous development highlights how the model is getting better at performing tasks
ranging from simple text completion to complex problem solving across various domains.

GPT-3.5, as part of the GPT series, benefits from incremental improvements over pre-
vious models, specifically tailored to handle more sophisticated language tasks. This model
incorporates the latest techniques in machine learning, such as Reinforcement Learning from
Human Feedback (RLHF), to fine-tune its responses based on quality feedback from human
trainers. Despite these enhancements, GPT-3.5, like other LLMs, demonstrates variability in
performance across different tasks. Its capabilities shine in structured settings but may strug-
gle in more dynamic or ambiguous scenarios, such as those involving complex reasoning or

14

2.3 Prompt Engineering

creative content generation [34]. While GPT-4 is known for being the most advanced in terms
of intelligence, GPT-3.5 offers advantages in terms of speed and cost-efficiency, making it a
more accessible option [27]. For this thesis, GPT-3.5 was selected after discussions with Sca-
nia, weighing the trade-offs. Its faster processing capabilities, still great performance levels,
and lower cost made it the appropriate choice.

Dynamic programming represents a challenge for the GPT-3.5 model, requiring a level of
problem-solving that tests the model’s limits in iterative and recursive thinking [25]. Dynamic
programming problems involve breaking down a problem into simpler sub-problems, solving
each of these once, and storing their solution. By reusing these solutions, the model needs to
efficiently solve complex problems that require combining results from previous steps, a task
that is both memory and computation-intensive.

In software engineering, LLMs like GPT-3.5 can assist in coding, testing, and debug-
ging, offering innovative approaches to traditional software tasks. However, the integration
of these AI tools also brings challenges such as managing incorrect or irrelevant outputs,
known as hallucinations, and ensuring that AI-generated code adheres to quality and safety
standards [10].

The discussion of LLMs, particularly GPT-3.5 and its comparison with GPT-4, reveals the
nuanced development of these models. While they offer unprecedented capabilities in lan-
guage processing, their application in specialized fields like code generation demands contin-
uous innovation in training methods and model handling. The exploration of these model’s
capabilities and limitations through research-supported analysis provides an understanding
of their current state and future potential in AI-driven applications.

2.3 Prompt Engineering
Prompt engineering is the practice of strategically crafting inputs (prompts) to optimize the
performance of LLMs like GPT-3.5. It plays a crucial role in achieving accurate and spe-
cific responses from models, enabling them to understand and execute tasks effectively. This
technique is essential for harnessing the full potential of LLMs in a variety of applications,
from customer service to complex problem-solving. The primary motivation for prompt en-
gineering arises from the need to guide LLMs towards desired outcomes without extensive
retraining. It allows for flexible adaption of models to new tasks, leveraging their genera-
tive capabilities to produce tailored outputs. This is particularly valuable in scenarios where
training data is scarce or specific tasks are too niche for general models. Prompt engineering
aims to enhance the efficiency and applicability of LLMs across different domains by refin-
ing their responses to fit contextual needs. However, challenges such as prompt instability
– where small changes in the prompt can lead to different outcomes – make this a complex
task. Addressing these issues requires a deep understanding of both the model’s mechanics
and the task at hand. [35] [14]

2.3.1 Prompting Techniques
In the following subsections, the theory behind the prompting techniques evaluated in this
thesis is presented. Each technique described below is supported by the following sources:
[32] [35] [14].

15

2. Theory

Zero-shot Learning:
Zero-shot learning involves presenting a model with a task it has not explicitly been trained
to perform. For instance, while a LLM like GPT-3.5 may not be explicitly trained on dynamic
programming problems, it can still attempt to generate solutions based on its understanding
of coding and problem-solving strategies. This technique tests the model’s ability to gener-
alize from its training. Effective prompt engineering can refine this process by optimizing
the initial prompts, thereby enhancing the model’s responses without the need for specific
examples.

One-shot and Few-shot Learning:
One-shot and few-shot learning techniques demonstrate tasks to the model with one or a
few examples, respectively. For instance, in one-shot learning the AI-assistant might be pro-
vided with a specific dynamic programming problem and a corresponding solution. This
helps the model learn the correct format and expected output for that type of problem. In
few-shot learning, it receives several similar examples, each presenting a different dynamic
programming problem with its respective solution. These methods refine the model’s ability
to interpret and solve new problems based on these examples, enhancing its capability to
handle similar tasks more effectively with minimal data.

Role Prompting:
Role prompting assigns a persona to the model, guiding it to respond from the perspective
of a specified role, such as a customer support agent or a software engineer. This technique
tailors the model’s output to align with the expectations and knowledge base of the role,
enhancing relevance and specificity in its response.

Chain of Thought (CoT) Prompting:
CoT prompting encourages the model to articulate intermediate steps when tackling a prob-
lem, enhancing its ability to handle complex reasoning tasks. By structuring prompts to
include sequential steps, this technique helps models generate more logical and detailed re-
sponses.

Least to Most Prompting:
This technique involves gradually increasing the complexity of prompts, starting with sim-
pler aspects and adding more details through subsequent prompts. It is effective for complex
problem-solving where building upon foundational responses is necessary.

Prompt engineering is not just a theoretical practice but a crucial component of deploying AI
in real-world scenarios. It bridges the gap between a model’s general capabilities and specific
application requirements, ensuring that AI tools are both effective and adaptable to diverse
needs. The theory and application of prompt engineering demonstrate its significant role in

16

2.4 EU AI Act

maximizing the effectiveness of LLMs. By understanding and implementing various prompt-
ing techniques, developers and researchers can better utilize AI to meet specific performance
criteria.

2.4 EU AI Act
The European Union Artificial Intelligence Act (EU AI Act) sets a comprehensive framework
for the regulation of AI systems, specifically focusing on the implications for AI-assisted
development within the EU. This legislative framework is critical in shaping the development
and deployment of AI technologies, ensuring that they adhere to safety, transparency, and
ethical standards. The EU AI Act categorizes AI systems based on their potential risk levels,
from unacceptable to minimal risk. This classification significantly impacts developers and
providers, as it determines the regulatory compliance required [30]. High-risk AI systems,
such as those used in critical infrastructure or in sensitive sectors like employment and public
services, are subject to the most rigorous regulations [30]. These include mandatory pre-
market assessments and adherence to robust data governance standards to prevent biases
and ensure transparency and fairness. [5]

In the field of AI-assisted development, particularly when navigating the complex inter-
play between technological innovation and regulatory compliance, understanding the spe-
cific conditions of the EU AI Act is crucial. In the following section, selected articles from
the EU AI Act that are particularly related to AI-assisted development are presented. These
articles are chosen because they address the challenges and responsibilities that developers
must manage when integrating AI into various applications. Each article highlights different
aspects of regulatory compliance, from biometric categorization to risk management and
transparency requirements. By examining these articles, developers can gain insights into
how to align their projects with EU regulations, ensuring that their AI solutions are both
innovative and complaint with established legal standards.

• Article 16 (Biometric Categorization): This article regulates AI systems that catego-
rize individuals based on biometric data. It is vital for developers to ensure that these
systems do not maintain biases or lead to discriminatory practices. [29]

• Article 26 (Risk-Based Approach): This article introduces a framework that neces-
sitates a tiered compliance structure for AI systems based on their risk levels, em-
phasizing the importance of aligning AI system development with specific regulatory
requirements to mitigate risks associated with AI applications. [29]

• Article 50 and 53 (High-Risk AI Systems and Provider Obligations): These articles
outline the criteria for defining a system as high-risk and establish the obligations
for AI providers, including risk management and compliance documentation. These
requirements are crucial for developers at the initial stages of AI system design and
throughout the development process. [29]

• Article 55 (Transparency and Information Provision): This article mandates that providers
ensure transparency and provide comprehensive information about the AI system’s ca-
pabilities and limitations. [29]

17

2. Theory

For AI developers, especially those involved in creating or deploying high-risk AI sys-
tems, the EU AI Act necessitates a deep integration of compliance and ethical consider-
ations into every phase of the AI development life-cycle. This includes ensuring that AI
systems are designed with capabilities for record-keeping, human oversight, and that they
meet high standards of accuracy, robustness, and cybersecurity. [5] Scania is dedicated to
being a responsible organization that adheres to the highest development standards for their
automotive software. Discussing this thesis in light of the EU AI Act underscores Scania’s
commitment to integrating these regulations and ethical guidelines into its AI-assisted de-
velopment strategies, ensuring that innovations not only advance technological capabilities
but also align with strict legal and moral standards.

18

Chapter 3

Method

This chapter details the methods employed to conduct this research, structured into three
different phases as outlined in Figure 3.1. Each phase addresses a specific research question,
employing tailored methods to gather data and insights important for the thesis. The figure
illustrates the alignment of each research question with the corresponding phase and de-
scribes the methodologies implemented, ranging from interviews and setting up AI systems
to literature reviews.

Figure 3.1: Structure of thesis project.

19

3. Method

3.1 Phase 1
The initial phase of this thesis was dedicated to exploring the utilization and future op-
portunities for AI-assisted development within Scania, with a particular focus on software
development practices. This exploratory phase was guided by the intent to identify potential
areas where AI technologies could enhance efficiency, quality, and innovation, as well as to
discover opportunities for AI-assisted development that could deliver substantial value to
Scania. The exploration was constrained to areas related to software development, such as
code generation, code completion, testing, and refactoring.

This phase involved consultations and interviews with Scania’s IT department personnel,
spanning various roles such as a scrum master, a developer, a solution architect, and a product
owner. These individuals were selected based on their direct involvement or strategic insights
into AI-assisted development practices. The selection process was facilitated through collab-
oration with the supervisor at Scania, aiming to encompass a wide array of experiences, per-
ceptions, and anticipations regarding the use of AI in software development. The interview
framework, detailed in Appendix B, was designed to extract in-depth information about the
interviewees’ experience with AI tools, their view on the potential of AI within their domain,
and any obstacles to the adoption of external AI tools. This approach was informed by the
classification from Fan et al.’s LLM review article [10], especially when discussing potential
assignments for AI applications, thereby ensuring the inquiries were grounded in recognized
areas of software application development.

3.1.1 Interviews
Participants the exploratory phase involved interviews with four individuals from Scania,

each bringing unique perspectives and experiences related to AI-assisted development.
This selection was based on purposive sampling, a method where participants are cho-
sen because of their specific characteristics or knowledge that align with the themes of
the research [2]. The participants included:

• Scrum Master/Machine Learning Engineer bringing 1.5 years of experience with
LLMs and a total of 4 years in machine learning. The participant is pioneering
the use of secure AI solutions at Scania, focusing on the Azure OpenAI API for
enhanced data privacy. Their work is exploratory, aiming to set new standards
in AI application and data handling within the company. Beyond professional
endeavors, they recognize the significant productivity potential of generative AI,
advocating for widespread familiarity with these tools among Scania employees.

• Developer holding 2 years of practical experience with AI/LLMs and a broader
5-year background including studies and research. The participant is working
on using local open-source smaller language models to ensure data privacy and
security, highlighting a commitment to innovation within Scania’s security en-
vironment. They see potential in leveraging ChatGPT for solving complex cod-
ing problems and GitHub Copilot for automating mundane tasks to streamline
development processes. Highlighting the importance of striking a balance be-
tween advancing technological adoption and adhering to industry-specific secu-
rity standards.

20

3.1 Phase 1

• Product Owner relatively new to AI/LLMs but have recognized the potential
and challenges of integrating external AI tools within the company, particularly
around security concerns and the organization’s scale. The participant advocates
for the strategic use of AI in enhancing coding practices and efficiency, seeing
great value in AI’s ability to improve code quality and support development pro-
cesses. Their insight underlines a forward-thinking approach to embedding AI
technology in Scania’s future, particularly emphasizing its importance in recruit-
ment and operational efficiency.

• Solution Architect holding 2-3 years of experience with AI and LLMs, partic-
ularly in the context of cloud-native application architecture. The participant
plays a crucial role in evaluating and implementing AI tools like GitLab Duo,
GitHub Copilot, and AWS CodeWhisper at the company, with a focus on secu-
rity, data privacy, and compliance with laws and regulations. This participant
emphasizes the responsible use of AI to enhance development efficiency, code
quality, and automation while ensuring that developers are well-informed about
the technology’s potential risks and benefits, underlining the importance of AI
in driving Scania’s future in software innovation responsibly.

Interview Structure the interviews were conducted individually via Microsoft Teams, each
lasting approximately 40 minutes. The format included both open and closed ques-
tions, tailored to align with the interviewees’ expertise and role-related experience with
AI and LLMs.

Prepared Questions and Tailoring the questions were designed to extract insights into the
current use and potential future applications of AI within Scania. The approach was
flexible, allowing for adjustments based on the interviewees’ backgrounds and areas of
expertise. For instance, discussion with the product owner emphasized the evaluation
of GitLab Duo and potential obstacles to its integration, while conversations with
developers focused on areas of AI application most relevant to their work.

3.1.2 Choosing Assignment
The assignment selected for this research focuses on the evaluation of prompt engineering
techniques to optimize the use of an AI-assistant for code generation tasks considered rele-
vant for Scania. This entails setting up a custom AI-assistant environment using Azure AI
Studio, ensuring isolation and enhanced security for the use of Scania’s data. As previous re-
search shows that the potential of prompt engineering, which is a low-cost technique, to sub-
stantially improve the success rate for code generation tasks, the research aims to explore the
most effective methods of prompt engineering, including the evaluation of user and system
prompts, as well as various prompting patterns. This exploration is intended to identify how
prompt engineering can be applied to maximize the efficiency and utility of AI-assistants in
software development tasks within the company. The motivation behind selecting this spe-
cific area of research emerged from a combination of insights from interviews with Scania’s
IT department personnel and discussions with supervisor at Scania. The dialogues under-
scored a recognized potential in AI-assisted development, particularly in the realm of code
generation, where an interest from developers was noted alongside hesitation due to security

21

3. Method

concerns related to external tools like GitHub Copilot and GitLab Duo. The cautious yet
hopeful response to AI tools at Scania highlighted the need for a secure and efficient way to
use AI in software development. This lead to the identification of a novel research gap: the
application of prompt engineering within an isolated AI-assistant environment by Azure AI
Studio.

Security and data privacy concerns, universally expressed across interviews, significantly
shaped the decision to utilize Azure AI Studio for creating a more secure AI-assistant en-
vironment. This setup not only meets with Scania’s strict data security requirements but
also facilitates a more unrestricted exploration of user and system prompts using propri-
etary data, circumventing the restrictions present when using public platforms like ChatGPT.
The evident gap in knowledge and practice concerning the optimal use of AI-assistants and
prompt engineering at Scania further motivated the choice of assignment. A comprehensive,
research-based approach to optimizing AI-assistant interactions had yet to be undertaken by
the organization. This research is anticipated to contribute to the efficiency, security, and
innovation of Scania’s AI initiatives, enabling a more strategic and informed deployment of
AI-assistants for development tasks.

Prompt engineering emerges as a particularly relevant area for investigation due to its po-
tential to maximize the utility of AI-assistants already available within Scania. This relevance
is amplified by the organization’s current AI landscape, where the deployment of other exter-
nal tools presents challenges, including the time required to integrate such technologies into
a large-scale environment and security considerations. Scania highly values the ability to use
AI-assistants within a controlled environment like Azure AI Studio, which facilitates secure
and efficient AI-assisted development. Therefore, optimizing the use of existing in-house AI
capabilities through prompt engineering presents a practical and immediate opportunity for
enhancing productivity and innovation.

The foundational framework for this research will be built upon existing studies and
published patterns in prompt engineering. While the assignment will not directly contrast
against specific studies, it will draw inspiration from established methodologies for evaluat-
ing prompt engineering, adapting these to the unique context and technological ecosystem
at Scania. This approach not only ensures the research is grounded in proven scientific prin-
ciples but also tailors the exploration to meet the specific needs and challenges faced by the
organization.

3.2 Phase 2
The primary objective of Phase 2 was to explore and evaluate the effectiveness of prompt
engineering techniques to enhance code generation capabilities, particularly for dynamic
programming problems, using Azure AI Studio’s AI-assistant. This phase was pivotal in un-
derstanding how tailored prompt strategies could significantly improve the performance of
generative AI models in code generation tasks. Given the need for strict security control over
AI operations within Scania, the decision was made to utilize Azure AI Studio for evaluating
prompt engineering techniques. Despite Scania’s general use of AWS services, the specific
requirements for employing powerful LLMs, particularly the GPT models, necessitated a
shift from AWS to Azure. Azure AI Studio, integrated within Microsoft’s ecosystem, offers
exclusive access to these models with unparalleled control. This choice was influenced by

22

3.2 Phase 2

Azure’s unique handling of sensitive data and its compliance with strict ISEC-regulations,
essential for Scania’s operational protocols. Unlike other platforms, Azure ensures that user
data – including prompts, outputs, and training data – is neither accessible to other cus-
tomers nor used to enhance the performance of OpenAI’s or Microsoft’s models [19]. This
privacy guarantee, detailed by Microsoft, emphasizes that inputs and outputs are not used
for model training or improving services, ensuring that Scania’s data remains private and
secure. Additionally, a key feature of Azure AI Studio that influenced its selection was its
capability to allow modifications to the system prompt. This functionality was critical for
implementing some of the prompt engineering techniques such as Role-prompting and the
Hybrid approach. The ability to tailor system prompts is not universally available in all gen-
erative AI tools, making Azure AI Studio particularly suitable for this aspect of the research.

The approach for Phase 2 began with an initial evaluation of the AI-assistant’s code gen-
eration capabilities, without any prompt engineering techniques applied. A series of dynamic
programming problems, sourced from LeetCode, serves as the test bed for this investigation.
According to studies by Sakib et al. [25], the GPT models have previously faced challenges in
solving complex programming problems, particularly those categorized as Greedy and Dy-
namic Programming. Based on this insight, dynamic programming was selected for evalua-
tion. This choice was driven by the need to test the AI-assistant’s ability to tackle complex
decision-making processes and test the LLM’s ability to handle tasks that resemble real-world
scenarios where decisions build progressively on earlier outcomes, which was considered rel-
evant for Scania.

The initial phase of testing involved submitting these problems to the AI-assistant with-
out employing any specialized prompt engineering techniques, documenting its success in re-
solving the problems through the generated code’s performance against Leetcode’s test cases.
Subsequent to this baseline evaluation, various prompt engineering methods were employed,
including zero-shot, one-shot, few-shot, role prompting, and a hybrid of few-shot and role
prompting techniques. The effectiveness of these techniques was assessed based on the qual-
ity of the generated code, specifically its ability to pass the test cases provided by LeetCode.
This metric provided a quantitative basis for assessing the quality and practical utility of the
code generated by the AI-assistant under different prompting conditions. This approach al-
lowed for a comparative analysis of the impact of each prompt engineering strategy on the
AI-assistant’s code generation efficiency.

Setting up AI-assistant through Azure AI Studio
The AI-assistant was set up within Azure AI Studio in collaboration with a development
team at Scania, ensuring that the configuration aligns with specific requirements and stan-
dards necessary for the application. The following settings were applied during the setup
process:

• Model Deployment: gpt-35-turbo

• Session History: 10 past messages included (default)

• Maximum Response Length: 800 characters (default)

• Temperature: 0.7 (default)

23

3. Method

• Top P: 0.95 (default)

• Frequency Penalty: 0 (default)

• Presence Penalty: 0 (default)

The choice of deploying the GPT-3.5 turbo model was a decision that was made in con-
sultation with the development team and supervisor at Scania. The model was selected due
to its fast processing capabilities, good performance levels, and cost efficiency, making it a
suitable choice for our needs.

3.2.1 Prompt Engineering
This section delves into the specific prompt engineering techniques used in this study. Fig-
ure 3.2 provides detailed insights into each prompting technique evaluated in this thesis. The
visual representation serves as a guide to the subsequent sections on the various prompting
techniques, which include zero-shot, one-shot, few-shot, role prompting, and a hybrid ap-
proach.

Figure 3.2: Prompting techniques.

Types of Prompt Engineering Techniques Used
Zero-shot the model is given a task without giving task-specific examples. The model gen-

erates the response based on only the prompt and the knowledge it has from previous
training.

• Example of user prompt: "Give me the code in JavaScript to solve this problem: Given
an integer array nums and an integer k, find three non-overlapping subarrays of length
k with maximum sum and return them. Return the result as a list of indices representing
the starting position of each interval (0-indexed). If there are multiple answers, return
the lexicographically smallest one."

24

3.2 Phase 2

One-shot the model is given one task-specific example in the prompt. In contrast to zero-
shot this approach provides an example that the model can use as a reference to struc-
ture the response.

• Example of user prompt: "Give me the code in JavaScript to solve this problem: Given
an integer array nums and an integer k, find three non-overlapping subarrays of length
k with maximum sum and return them. Return the result as a list of indices representing
the starting position of each interval (0-indexed). If there are multiple answers, return
the lexicographically smallest one.
Example 1:
Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]

Few-shot the model is given multiple task-specific examples in the prompt.

• Example of user prompt: "Give me the code in JavaScript to solve this problem: Given
an integer array nums and an integer k, find three non-overlapping subarrays of length
k with maximum sum and return them. Return the result as a list of indices representing
the starting position of each interval (0-indexed). If there are multiple answers, return
the lexicographically smallest one.
Example 1:
Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5]. We
could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographical larger.
Example 2:
Input: nums = [1,2,1,2,1,2,1,2,1], k = 2
Output: [0,2,4]"

Role Prompting assigns a specific role to the AI by changing the system prompt, guiding its
responses in a more focused manner.

• Default system prompt: "You are an AI assistant that helps people find information."

• Example of system prompt: "You are an experienced developer who specializes in
JavaScript development with 10+ years of experience with solving complex algorithmic
problems."

Hybrid Approach combining few-shot and role prompting leverages the strengths of both
techniques.

• Example of system prompt: "You are an experienced developer who specializes in
JavaScript development with 10+ years of experience with solving complex algorithmic
problems."

• Example of user prompt: "Give me the code in JavaScript to solve this problem: Given
an integer array nums and an integer k, find three non-overlapping subarrays of length
k with maximum sum and return them. Return the result as a list of indices representing
the starting position of each interval (0-indexed). If there are multiple answers, return
the lexicographically smallest one.

25

3. Method

Example 1:
Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5]. We
could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographical larger.
Example 2:
Input: nums = [1,2,1,2,1,2,1,2,1], k = 2
Output: [0,2,4]"

Programming Problems Used for Evaluation
This thesis utilized a selection of programming problems sourced from LeetCode, a online
platform designed to help its users enhance their coding skills through practice and participa-
tion in coding challenges. LeetCode offers a comprehensive database of coding problems, cat-
egorized by difficulty and the type of algorithms they involve, such as dynamic programming,
arrays, strings, and others. Each problems on LeetCode is accompanied by a description, a
list of test cases, and a discussion board where community members can share and discuss
solutions [1]. The selection of programming problems for this thesis focused, as previously
mentioned, on dynamic programming problems. The problems were chosen to attempt to
test the model’s ability to solve problems that involve complex decision-making and opti-
mization over sequences or arrays. The criteria for choosing these problems were twofold:

1. Relevance to Dynamic Programming: The initial filter applied was to select problems
classified under the dynamic programming category on LeetCode. This category is ex-
tensive, containing of 499 number of problems that require breaking down a complex
problem into simpler sub-problems and utilizing the solutions to these sub-problems
to create a solution to the overall problem.

2. Challenge for the LLM: The selection of dynamic programming problems from Leet-
Code, categorized as easy, medium, or hard, involved a preliminary test to assess the
initial difficulty for the LLM used in this thesis. The aim was to determine the AI-
assistant’s base capability by presenting each problem in its raw form, using only the
problem description without prompt engineering techniques applied. The AI-assistant
was tasked to generate code that would pass all of the provided test cases. Most of the
problems that proved challenging enough to meet the criteria, and thereby necessitat-
ing the use of prompt engineering techniques, fell into the medium or hard categories.
This approach was designed to ensure that the 20 selected problems would sufficiently
challenge the LLM’s capabilities. Note, not all available dynamic programming prob-
lems from LeetCode were tested; the selection process was stopped once 20 challenging
problems were identified. This number was chosen to give a balance between provid-
ing enough data to analyze the different prompt engineering techniques and managing
the workload for the evaluation within the time constraints.

The 20 dynamic programming problems that were chosen for this evaluation, together
with description of the problem, an example test case, and an explanation of what the prob-
lem entails, are presented in Table 3.1 and 3.2.

26

3.2 Phase 2

Table 3.1: Dynamic programming problems used for evaluation (Part
1)

Problem
ID

Description Test Case Input Expected
Output

Explanation

1 Determine if a string
is a scrambled version
of another.

s1 = "great", s2 = "rgeat" true Given two strings of equal
length, determine if one is
a scrambled version of the
other by recursively splitting
and optionally swapping the
substrings.

2 Find the minimum
inserts to clear a
Zuma board given
’board’ and ’hand’
strings.

board = "WRRBBW",
hand = "RB"

-1 Determine the least number
of inserts from ’hand’ re-
quired to clear a Zuma board
represented by ’board’, by
forming and eliminating trios
of the same color.

3 Calculate the mini-
mum cost to buy spe-
cific items using reg-
ular prices and dis-
count bundles with-
out exceeding needed
quantities.

price = [2,5], special =
[[3,0,5],[1,2,10]], needs
= [3,2]

14 Evaluates how to smartly
combine regular item prices
and special bundle offers to
minimize the total cost for a
predefined shopping list.

4 Count decoding ways
for a message with
digits and ’*’.

s = "*" 9 Investigates all possible
interpretations of a digit-
and-wildcard-encoded
message, considering ’*’ can
represent any digit from 1 to
9.

5 Find minimum opera-
tions to duplicate ’A’ n
times on a notepad.

n = 3 3 Calculates the optimal se-
quence of copy and paste ac-
tions needed to expand a sin-
gle ’A’ to ’n’ copies with min-
imal steps.

6 Identify three max-
sum, non-overlapping
subarrays of length k.

nums =
[1,2,1,2,6,7,5,1], k
= 2

[0,3,5] The task involves determin-
ing the optimal placement of
three fixed-length windows
on an array to maximize the
aggregate sum, ensuring these
windows do not overlap.

27

3. Method

7 Count integers up to
n valid and altered by
180° digit rotation.

n = 10 4 Evaluates how many numbers
within a given range change
to a different valid number
when each digit is rotated by
180 degrees, excluding those
that stay the same or become
invalid.

8 Maximize score from
partitioning nums
into ≤k subarrays by
their averages.

nums = [9,1,2,3,9], k =
3

20.00000 Focuses on dividing an array
into up to k segments to max-
imize the combined average
of these segments, accounting
for every element.

9 Shortest instruction
sequence to reach
target from 0 with
acceleration and
reverse.

target = 3 2 Determines the minimal set
of acceleration and reverse in-
structions required to navi-
gate a car from start to a spec-
ified target on an infinite line.

10 Sum of unique charac-
ters in all substrings of
s.

s = "ABC" 10 Calculates the cumulative
count of unique characters
across all possible substrings
of a given string, including
repetitions.

Table 3.2: Dynamic programming problems used for evaluation
(Part 2)

Problem
ID

Description Test Case Input Expected
Output

Explanation

11 Shortest path length
to visit all nodes in an
undirected graph.

graph =
[[1,2,3],[0],[0],[0]]

4 Identifies the minimal length
path that allows visiting each
node in an undirected graph,
permitting revisits and edge
reuse.

12 Count valid permuta-
tions for ’D’ and ’I’
pattern in s.

s = "DID" 5 Calculates the number of
ways to arrange a sequence of
integers to match a pattern
of increases (’I’) and decreases
(’D’), considering all integers
within a given range.

13 Determine outcome
of a graph-based game
between Mouse and
Cat.

graph =
[[2,5],[3],[0,4,5],[1,4,5],
[2,3],[0,2,3]]

0 Assesses the strategic naviga-
tion of Mouse and Cat within
an undirected graph, leading
to outcomes based on opti-
mal moves towards victory or
draw conditions.

28

3.2 Phase 2

14 Count playlists avoid-
ing repeats within k
songs for goal tracks
from n.

n = 3, goal = 3, k = 1 6 Explores how to construct
unique playlists from a set
number of songs, ensuring
each is played at least once
and adhering to a speci-
fied separation constraint
between repeats.

15 Find smallest string
containing all words
as substrings.

words =
["catg","ctaagt","gcta",
"ttca","atgcatc"]

"gctaagttcat
gcatc"

Determines the shortest pos-
sible concatenation of a given
set of words where each word
must appear as a substring,
avoiding redundant overlaps.

16 Minimize deletions
for lexicographic
order in string array.

strs =
["babca","bbazb"]

3 Aims to achieve column-wise
lexicographic sorting of
a string array with min-
imal character deletions,
preserving row integrity.

17 Least operators to ex-
press x equaling target
under constraints.

x = 3, target = 19 5 Calculates the minimum
number of basic arithmetic
operations required to
transform a given number
into a target value, adhering
to conventional operation
precedence.

18 Count integers up to
n with repeated digits.

n = 20 1 Quantifies numbers within a
specified range that contain
one or more duplicate digits,
highlighting the prevalence of
repetition.

19 Max sum of two non-
overlapping subarrays
with lengths firstLen
and secondLen.

nums =
[0,6,5,2,2,5,1,9,4],
firstLen = 1, sec-
ondLen = 2

20 Identifies the arrangement of
two fixed-size, distinct seg-
ments within an array to
achieve the highest combined
sum, ensuring no overlap be-
tween the segments.

20 Smallest remaining
stone weight after
successive smashes.

stones = [2,7,4,1,8,1] 1 Determines the minimal
possible weight of the last
stone after conducting a
series of pairwise smashes,
with stones diminishing or
being eliminated based on
relative weights.

29

3. Method

Evaluation of Prompt Engineering Techniques
The evaluation of the prompt engineering techniques was conducted through a process where
each user prompt, corresponding to a specific problem and technique, was tested 10 times
to assess consistency and reliability. This testing involved a total of 1000 prompts, covering
the 20 programming problems across the 5 different techniques. For each series of 10 repe-
titions of a single user prompt, the code generated by the AI-assistant was directly tested on
the LeetCode platform against all the available test cases for that problem. The number of
test cases for each problem ranged between two and three test cases. In Tables 3.1 and 3.2,
examples of test cases used to evaluate each problem and technique are shown. This approach
highlights the reliability and efficacy of each prompting technique in producing correct and
consistent code solutions.

Evaluation of Advanced Prompt Engineering Techniques
This part of the methodology is centered around the use of advanced prompt engineering
techniques to refine the interaction with the Azure AI Studio AI-assistant, aiming to ele-
vate its code generation and debugging performance. This choice was driven by the need to
overcome limitations observed with simpler prompting methods during initial trials. The
simpler prompting techniques – Zero-shot, One-shot, Few-shot, Role-prompting, Hybrid –
provided foundational insights but were sometimes insufficient for complex problem-solving
scenarios. To address these gaps, more advanced methodologies like Chain of Thought (CoT)
and Least to Most Prompting were introduced [4]. These methods are designed to enhance
the model’s reasoning and output precision, particularly in tasks that require deeper analyt-
ical capabilities or involve multiple logical steps. The following approach was taken for this
evaluation:

1. Initial Assessment: Evaluation of problems identified through initial trials, of simpler
prompt engineering techniques, as needing further investigation. These problems were
pinpointed based on their low success rates in passing all the test cases, across the
simpler prompting techniques.

2. Systematic Conversations: To address these challenging problems, the methodology
incorporates advanced prompt engineering methodologies such as Chain of Thought
(CoT) and Least to Most Prompting:

(a) Chain of Thought Prompting: This method involves guiding the LLM through
a series of logical steps to arrive at a conclusion. By executing prompts that en-
courage step-by-step reasoning, such as "Let’s think step by step", the model is
encouraged to process and produce more detailed and accurate outputs [4].

(b) Least to Most Prompting: Starting with a simpler aspect and progressively in-
troducing more complexity, this method initially presents the AI-assistant with
faulty or incorrect code from prior unsuccessful attempts under simpler tech-
niques. This setup simulates simpler problem-solving scenarios, where the AI-
assistant is tasked with identifying and correcting initial errors as a founda-
tional step. Subsequent prompts gradually increase in complexity, asking the
AI-assistant to enhance functionality, optimize performance, or correct errors
[4].

30

3.3 Phase 3

3. Iterative Refinement: Each interaction with the AI-assistant is treated as an iterative
process, where feedback from the previous responses is used to refine and adjust the
prompts. This interaction aims for continuous improvement and fine-tuning of the AI-
assistant’s responses, leading towards a correct solution of the programming problem.

3.3 Phase 3
The final phase of the thesis marks the culminating stage of the research, where the broader
implications of integrating AI-assisted development at Scania are evaluated. This phase was
designed to synthesize insights from both literature reviews and an interview to answer the
third research question: "What are the broader implications of integrating AI-assisted devel-
opment at Scania, including compliance with the EU AI Act?". To address this, the phase is
structured into two key activities: a comprehensive literature review and a targeted expert
interview.

3.3.1 Literature Review
In this phase, the literature review will focus on the EU AI Act and its implications for AI-
assisted development at Scania. The review will specifically examine the Act’s impact on
providers and deployers, and explore the implications of using LLMs, such as the GPT mod-
els, and AI environments like Azure AI Studio. Sources for this review will primarily include
the EU AI Act itself, supplemented by relevant academic and industry-specific literature
identified through consultations with a PhD student specializing in this area.

3.3.2 Interview
To enrich the understanding of the EU AI Act’s implications, an interview was conducted
with a PhD student, who specializes in this legislation. His research focuses on quality as-
surance and trustworthiness in the integration of machine learning models into software,
particularly in the light of new regulatory frameworks like the EU AI Act. While the in-
terviewee has no direct connection to Scania, his expertise provided valuable insights into
how these regulations could impact AI development and deployment across various sectors.
The interview was conducted in an informal setting and aimed to capture broad insights and
recommendations for further reading.

31

3. Method

32

Chapter 4

Results and Analysis

This chapter presents the results and analysis from the conducted research, organized into
the three phases, each focusing towards addressing specific research questions as illustrated in
Figure 3.1. Each section of this chapter delves into the outcomes of the respective phases, ana-
lyzing the collected data and providing insights into the effectiveness of the applied method-
ologies.

4.1 Phase 1
The initial phase of this research was important for understanding the current landscape of
AI tool integration within Scania, particularly how these technologies are perceived and uti-
lized by its users. Through a series of interviews with developers and project managers, this
study aimed to uncover not only the existing use of AI applications but also the challenges
and opportunities that Scania faces as its digital transformation journey. The insights gath-
ered from these interviews are important for shaping the subsequent phases of this research,
focusing on prompt engineering and the implementation of secure AI usage. Below are key
findings from these interviews.

4.1.1 Interviews
An interesting revelation was the identification of a gap in utilizing AI to enhance develop-
ment practices securely and efficiently. It was noted by the developer interviewed that some
developers are tentatively employing AI tools like ChatGPT within controlled settings, in-
dicative of a broader need for formal guidelines on secure and effective AI usage. This sce-
nario presents a distinct opportunity for this research to investigate prompt engineering and
secure AI usage protocols, potentially offering valuable insights to Scania by addressing these
requirements.

33

4. Results and Analysis

"We are not saying we shouldn’t use AI, but we try to tell people to use it in
the right way. That needs a different maturity I would say, to understand the
challenges." - Solution Architect

Additionally, findings from the interviews highlighted a cautious yet optimistic perspec-
tive on the future role of AI in software development practices at Scania. There was clear
recognition of ongoing proof-of-concept projects for tools like GitLab Duo and Microsoft
Copilot, alongside an emphasis on organizational and regulatory challenges that decelerate
the adoption of external AI technologies. Despite these hurdles, there was a consensus on
the significant, yet untapped, potential of AI, particularly in areas of code generation and
automated testing, to transform conventional software development processes.

"I think everyone has to become familiar at some point with these tools because
it’s an enormous productivity boost that you can get." - Developer

Key Information Gathered The interviews revealed a dynamic landscape of AI applications
and interest within Scania. Highlights include:

• Ongoing research and development efforts focusing on both custom AI-assistants
and external AI tools.

• A recognized need for broader knowledge and understanding of AI and machine
learning across the organization.

• The challenges of integrating external AI tools into Scania’s operations, influ-
enced by industry specifics and organizational size.

• The use of ChatGPT by developers, signaling interest in the efficient and secure
deployment of AI-assistant technologies.

• Different perspectives on the future potential of AI in enhancing development
practices, highlighting specific areas such as code generation, testing, debugging,
and refactoring as key opportunities for AI to deliver substantial value to Scania.

These discussions underscored the importance of aligning AI tool adoption with Sca-
nia’s strategic goals, considering security, data privacy, and the organizational learning
curve.

"We need to have very good transparency on what models are being used
and what is being done with the data." - Product Owner

Challenges and Unique Insights The interviews offered unexpected insights that influenced
the thesis’s direction, such as the extent of personal ChatGPT usage among partici-
pants and the ongoing evaluations of various AI tools. These findings highlighted the
complexity of adopting external AI technologies in large, traditional companies transi-
tioning towards more digital and IT-centric operations. Additionally, the recognition
of a knowledge gap and the need for widespread AI awareness within the company
pointed towards potential areas for further research and development.

34

4.2 Phase 2

4.2 Phase 2
The second phase of this thesis presents an evaluation of various prompt engineering tech-
niques to enhance code generation using an AI-assistant. This phase focuses on testing and
comparing the effectiveness of five different simpler prompting techniques: Zero-shot, One-
shot, Role prompting, Few-shot, and a Hybrid approach. Each technique was applied to a
set of 20 dynamic programming problems. This phase also explores more advanced prompt
engineering techniques through an iterative process tailored to address the problems that re-
mained unsolved after applying the simpler techniques. These advanced techniques include
Chain of Though Prompting and Least to Most Prompting.

4.2.1 Code Generation with AI-assistant
The Table 4.1 presents a comparison of five simpler prompt engineering techniques—Zero-
shot, One-shot, Role prompting, Few-shot, and Hybrid—evaluated across 20 dynamic pro-
gramming problems. Each cell in the table displays the percentage of trials (out of ten rep-
etitions) in which the AI-assistant generated code that successfully passed all the test cases
for each problem. A percentage less than 100% typically indicates that during the 10 trails,
the AI-assistant variably produced one of two types of code solutions - one correct and one
incorrect. Notably, in situations where the success rate was 100% the LLM consistently gen-
erated the correct solutions across all repetitions. In contrast, for lower success rates, the
LLM alternated between correct and incorrect solutions, reflecting a challenge in achieving
constant code generation.

The percentages help highlight the consistency of each prompting technique in achieving
correct solutions under repeated tests, thus accounting for variability in the AI-assistant’s
performance. Meaning of the colors in the table:

• Green highlights good performance where the technique succeeded in more than 75%
of trials.

• Yellow indicates moderate performance with success rates between 50% and 75%.

• Orange reflects poorer outcomes, with success in 25% to 50% of cases.

• Red denotes a very poor performance, where success was achieved in less than 25% of
trials.

A comparison between the success rates of the five different prompting techniques, illus-
trated using a bar-graph, can be seen in Figure 4.1. Additionally, in Appendix A the Tables
A.1, A.2, A.3, A.4, A.5, present the detailed results for each technique evaluated - the number
of test cases passed for each of the 10 repetitions.

Advanced Prompt Engineering techniques
As indicated in Table 4.1, certain problems resulted in very poor performance for all of the
prompt engineering techniques evaluated. An analysis of the complexities of these more
complex programming problems is interesting to understand why these resulted in lower
success rates:

35

4. Results and Analysis

Table 4.1: Comparing prompt engineering methods.

Problem Zero-shot One-shot Role prompting Few-shot Hybrid Total Test Cases
1 0% 100% 100% 100% 100% 3
2 20% 10% 20% 20% 10% 3
3 50% 60% 80% 70% 50% 2
4 50% 90% 80% 80% 80% 3
5 40% 40% 50% 70% 90% 2
6 40% 50% 60% 40% 40% 2
7 60% 80% 40% 80% 70% 3
8 50% 90% 80% 90% 60% 2
9 10% 40% 50% 0% 50% 2
10 0% 0% 0% 0% 0% 3
11 50% 80% 70% 90% 100% 2
12 10% 50% 10% 50% 60% 2
13 0% 0% 10% 10% 10% 2
14 70% 90% 60% 100% 100% 3
15 0% 0% 0% 20% 0% 2
16 0% 0% 0% 0% 0% 3
17 0% 0% 10% 10% 10% 3
18 60% 100% 80% 100% 100% 3
19 0% 60% 40% 80% 60% 3
20 0% 0% 0% 0% 0% 2

Median 15.0 50.0 45.0 60.0 55.0 -
Mean 25.5 47.0 42.0 50.5 49.5 -

1. Find the Minimum Inserts to Clear a Zuma Board (Problem 2)

(a) Complexity: This problem is comparable to a combinatorial puzzle where the
player must strategically place pieces (from the hand) onto the board to elimi-
nate consecutive groups of three or more same-colored pieces. The complexity
arises from the multiple possible placements and the need to predict the cascad-
ing effects of each move.

(b) Challenge for AI-assistant: This task requires the LLM to engage in forward-
thinking and strategy formulation, simulating various future states of the board
for each potential action. This level of strategic depth and prediction can be
challenging for LLMs without enhancements for sequential reasoning.

2. Sum of Unique Characters in All Sub-strings of a String (Problem 10)

(a) Complexity: This problem requires understanding and manipulating sub-strings
to calculate unique character counts across all possible combinations. The LLM
must handle nested loops of logic and data accumulation, which is computation-
ally intensive and complex in terms of state management and memory usage.

(b) Challenge for AI-assistant: Keeping track of dynamic data states (like updating
character counts) across multiple sub-strings is not straightforward without ex-

36

4.2 Phase 2

Figure 4.1: Performance of the prompt engineering techniques. The
bars represent the average success rates, with error bars indicating
the standard deviations.

plicit programming constructs, which can be difficult to generate correctly in a
one-shot or even few-shot prompting context.

3. Graph-Based Game Outcome Between Mouse and Cat (Problem 13)

(a) Complexity: Involves graph theory and game theory where optimal strategies
must be calculated for two players with opposing goals. The solution requires
not only understanding the graph structure but also predicting opponent moves,
which involves recursion or backtracking.

(b) Challenge for AI-assistant: Requires deep strategic thinking and potentially sim-
ulating multiple future states, tasks that exceed simple logic or loop structures
and require advanced reasoning about the graph and game dynamics.

4. Finding Smallest String Containing All Words as Sub-strings (Problem 15):

(a) Complexity: This problem involves a variation of the shortest common super-
sequence problem, which is NP-hard (a classification used in computational com-
plexity theory to describe problems that are at least as hard as the hardest prob-
lems in NP, where NP stands for ’nondeterministic polynomial time’). The prob-
lem requires generating a string that contains every given word as a sub-string

37

4. Results and Analysis

in the shortest possible form, demanding complex overlap management and per-
mutation handling.

(b) Challenge for AI-assistant: Involves high complexity in string manipulation, per-
mutation, and optimization, which are challenging to encode properly through
basic prompting without algorithmic guidance.

5. Minimize Deletions for Lexicographic Order in String Array (Problem 16):

(a) Complexity: Requires dynamic programming or greedy algorithms (a class of al-
gorithms that build up a solution piece by piece, always choosing the next piece
that offers the most immediate benefit) to minimize deletions while maintain-
ing order. It involves handling data in different forms (arrays and strings) while
ensuring that the sequence of characters is maintained in alphabetical order.

(b) Challenge for AI-assistant: Multi-dimensional optimization with a focus on or-
der and minimization presents a challenge in logical structuring for an LLM with-
out explicit algorithmic strategies.

6. Least Operators to Express Number Equaling Target (Problem 17):

(a) Complexity: Involves finding the minimum number of operations to reach a tar-
get number from a base using only multiplication, division, addition, and sub-
traction. This problem can become especially complex depending on the range
and operations allowed.

(b) Challenge for AI-assistant: Requires numerical precision, operational order aware-
ness, and potentially recursive calculation strategies, which are difficult for the
LLM to generate accurately without deep mathematical modeling.

7. Smallest Remaining Stone Weight After Successive Smashes (Problem 20):

(a) Complexity: This problem involves elements of both simulation and optimiza-
tion, where stones must be reduced in weight through a series of decisions on
which stones to smash together.

(b) Challenge for AI-assistant: Simulating a series of events and adapting to ongoing
changes in the data set (like the weights of stones) can be challenging. This pro-
cess often requires repetitive and decision-based logic that may go beyond what
standard prompting techniques can handle.

For these challenging cases, a more interactive approach was adopted to further engage
with the Azure AI Studio AI-assistant in an attempt to bridge the gap between the initial
unsuccessful attempts and achieving a successful code generation or debugging.

For each problem, the following information is conveyed:

• Problem Description: A brief recap of the problem statement.

• Iteration Overview: A concise description of each iterative step taken, including key
adjustments to prompts and notable feedback provided to the AI-assistant.

• Outcomes: The outcome of each iteration, highlighting any improvements in the AI-
assistant’s response or successful resolution of the problem.

38

4.2 Phase 2

The prompting techniques used for this iterative process was:

• Chain of Thought Prompting: Step-by-step reasoning.

• Least to Most Prompting: Gradually increasing complexity, initially providing the AI-
assistant with incorrect code from previous unsuccessful attempts (with the simpler
prompt engineering techniques).

To illustrate this process, the iterations of two problems are presented in Table 4.2 and
Table 4.3, one for each advanced technique tested. Finally, the overall results of this iterative
process for each identified problem are presented in Table 4.4. As indicated in this table, the
results for the advanced prompting techniques are presented for the method that required
the fewest iterations to achieve a successful outcome, i.e., the generated code passed all of
the required test cases. For each problem, both Chain of Thought (CoT) and Least to Most
Prompting techniques were evaluated, but only the technique that led to a solution with the
minimum iterations were documented in the result table. This approach was taken to high-
light the most efficient prompting method for overcoming the specific challenges presented
by each problem. Among these problems, problem 17 remained unsolved which can be due
to its requirements for complex mathematical optimization and abstract reasoning, which
can be challenging for LLM trained primarily on textual data.

Table 4.2: Chain of Thought Prompting - Example Problem 10

Iteration User Prompt AI-assistants Response
1 Explain step-by-step

how to calculate the sum
of unique characters for
substrings of ’ABC’.

List all substrings, cal-
culate unique characters
for each, then sum these
values.

2 Detail your calculation
for each substring.

For ’A’, ’B’, ’C’, each has
1 unique character. ’AB’,
’BC’, each has 2, and
’ABC’ has 3.

3 Sum the unique charac-
ters from all substrings
as you explained.

The total is 1+1+1+2+2+3
= 10.

4 Now, provide a code
snippet that performs
the calculations you de-
scribed.

Generates the necessary
code to implement the
calculation steps.

39

4. Results and Analysis

Table 4.3: Least to Most Prompting - Example Problem 13

Iteration User Prompt AI-assistants Response
1 Here is an initial code

snippet for solving the
Mouse and Cat game
problem, but it contains
errors. Can you iden-
tify the issues and sug-
gest corrections?

Identifies problems in
the logic and suggests
corrections.

2 Improve the code by
adding basic checks for
winning conditions.

Enhances the code by
incorporating initial
game-winning logic.

3 Finalize the function by
implementing a recur-
sive strategy to antici-
pate future moves.

Completes the function
with a detailed and
strategic approach,
considering multiple
future moves.

Table 4.4: Result of Problem Solving Iterations

Problem ID Iterations Success Advanced technique
2 3 Yes Least to Most Prompting
10 4 Yes CoT Prompting
13 3 Yes Least to Most Prompting
15 3 Yes Least to Most Prompting
16 3 Yes Least to Most Prompting
17 5 No -
20 2 Yes CoT Prompting

4.3 Phase 3
The final phase of this thesis delves into the relationship between artificial intelligence appli-
cations and the regulatory landscape shaped by the European Union’s AI Act. This phase is
important for understanding how the Act’s strict regulations influence Scania’s deployments
of AI technologies like Azure AI Studio and particularly in roles that differentiate between
AI providers and deployers.

4.3.1 Providers vs Deployers
In the evolving landscape of artificial intelligence regulation, the EU AI Act plays a pivotal
role by establishing clear rules and responsibilities for different stakeholders. Distinguishing
between the roles of providers and deployers is crucial because each group interacts with AI
technologies at different stages of their life-cycle and thus has distinct capabilities to influ-
ence AI system behaviour and outcomes. In the context of the EU AI Act, the implications
for AI systems providers and deployers are differentiated to ensure that each entity along the

40

4.3 Phase 3

AI value chain fulfills specific responsibilities that align with their operational roles.

For Providers:
Providers are primarily developers, creators, or manufacturers of AI systems. Under the EU
AI Act, they bear the most comprehensive obligations, especially when it comes to ensuring
the compliance of their AI systems before they are placed on the market. Providers are for
example responsible for:

1. Conducting thorough risk assessments and ensuring their systems meet the required
safety, transparency, and accountability standards as stipulated by the regulation, ac-
cording to Article 9 of the EU AI Act [29].

2. Creating detailed documentation that covers the entire life-cycle of the AI systems,
including data handling, training methodologies, and operational protocols to ensure
compliance with fundamental rights and safety requirements, according to Article 10
of the EU AI Act [29].

3. Implementing and maintaining a high level of data governance and ensuring that their
AI systems are free from biases that could lead to discrimination, according to Article
10(d) of the EU AI Act [29].

For Deployers:
In comparison, deployers are entities (companies, organizations, or individuals) that utilize
AI systems within their operational processes. Although their obligations are less extensive
than those of providers, deployers must for example ensure:

1. Proper implementation and use of AI systems in accordance with the Act’s require-
ments, which includes ensuring the systems operate as intended without violating the
regulatory standards, according to Article 29 of the EU AI Act [29].

2. Deployment of AI systems in a manner that respects the privacy and rights of individ-
uals, which involve adhering to transparency requirements and providing necessary
information to end-users about the AI system’s capabilities and limitations, according
to Article 30 of the EU AI Act [29].

3. Regular monitoring and reporting on the performance and impact of deployed AI
systems to ensure ongoing compliance with the EU AI Act and addressing any issues
related to the impact on fundamental rights or public safety, according to Article 31
of the EU AI Act [29].

4.3.2 Identifying High-Risk AI Systems
The EU AI Act introduces a legal framework that impacts the landscape of AI usage within
the EU. This necessitates an understanding of how to identify high-risk AI systems which
is essential for ensuring that AI applications operate safely, respect fundamental rights, and
adhere to strict regulatory requirements.

41

4. Results and Analysis

Importance of Identification
Identifying high-risk AI systems is crucial because these systems often operate in sensitive
areas where their failure or malfunction could pose significant risk to public safety, privacy,
and fundamental human rights. The classification aids in ensuring compliance with the reg-
ulatory framework and serves to protect EU citizens from potential harms of unchecked AI
technologies. By categorizing AI systems according to their risk levels, the Act aims to foster
innovation while ensuring that technological advancements do not come at the expense of
ethical standards and public trust. [11]

Knowing how to identify high-risk systems is important for any entity using AI systems.
This knowledge allows entities to determine whether their systems are subject to strict reg-
ulatory requirements or not. It also informs them of the specific obligations they must meet,
such as ensuring transparency, maintaining data governance, and providing adequate human
oversight. Understanding whether an AI system is high-risk also influences strategic deci-
sions about system design, deployment, and ongoing compliance measure, to ensure entities
can prepare to meet legal and ethical standards.

How to Identify High-Risk Systems
To determine whether an AI system is high-risk under the EU AI Act, the following steps
can be taken.

1. Audit of AI Inventory: Entities can begin by conducting a detailed audit of their AI
tools to identify each system’s functionalities and applications. This inventory helps
in assessing which systems fall under the Act’s scope.

2. Risk Category Assessment:

(a) Unacceptable Risk: Operators must check if their AI systems fall under any of the
categories explicitly prohibited by the Act, such as systems that use subtle, hidden
techniques or those that exploit vulnerabilities of specific groups of people.

(b) High-Risk Evaluation: If the AI system is not prohibited, the next step is to
determine if it qualifies as high-risk. This involves assessing if the system sig-
nificantly impacts safety or fundamental rights. High-risk categories include AI
used in critical infrastructures, educational tools, employment and task manage-
ment, law enforcement, and other sectors where risk to public safety and rights
is substantial.

(c) General Purpose AI (GPAI): For systems categorized under GPAI, additional
assessments are required to determine if they pose systemic risk, necessitating
more stringent compliance requirements.

3. Compliance Requirements: If an AI system is classified as high-risk it is subject to
rigorous obligations including, but not limited to, ensuring data governance, drafting
technical documentation, keeping detailed records, providing transparency, ensuring
human oversight, and maintaining high standards of accuracy, robustness, and cyber-
security.

42

4.3 Phase 3

4. Lower Risk and Transparent Operations: Systems identified with minimal risk are
subject to fewer controls but are encouraged to adopt best practices through voluntary
codes of conduct. Systems that interact directly with users must clearly disclose their
AI-driven nature to ensure transparency.

[11]

Classification of Azure AI Studio AI-assistant
The Azure AI Studio AI-assistant, equipped with the GPT-3.5 model and utilized for prompt
engineering and code generation tasks in this thesis, does not fall directly under the high-
risk category as defined by the EU AI Act. This conclusion is drawn from both an expert
interview with a PhD student specializing in this legislation and their scholarly article on
the subject [30]. The GPT-3.5 model’s versatility allows it to perform a broad range of tasks
beyond code generation, qualifying as a General Purpose AI (GPAI). Its primary application
for this thesis is for internal development tasks such as debugging and code generation limits
its direct impact on public safety or fundamental rights, thus positioning it as a low-risk
entity under the current regulatory framework. Although, as a low-risk or GPAI system, the
AI-assistant still adheres to general obligations of the EU AI Act, aimed at ensuring ethical
AI usage, transparency, and accountability. This includes maintaining clear communication
about the AI’s role within operational processes, complying with data protection laws, and
ensuring the fairness and non-discrimination of outputs.

4.3.3 Impact on Autonomous Vehicles (AVs)
The EU AI Act classifies AI systems in AVs as high-risk, therefore necessitating stringent
adherence to regulatory requirements. For Scania, this classification entails a thorough as-
sessment and implementation strategy to ensure that all AI-driven functionalities in their ve-
hicles - from navigation system to collision avoidance technologies - comply with the highest
safety standards set by the EU. This can involve pre-market testing, continuous monitoring,
and updates to meet safety benchmarks, reflecting the Act’s focus on protecting consumers
and ensuring public safety. [12]

To help manage potential risk associated with AI systems in AVs, such as unexpected
system failures or security breaches, Scania can adopt a proactive risk management strategy
that address both current regulatory requirements but are also adaptable to future changes in
the legislative landscape. [12] The EU AI Act is likely to evolve over time, especially as tech-
nological advancements and societal expectations shift. For Scania, staying informed about
potential modifications and being flexible in adapting business and development strategies
accordingly is essential.

43

4. Results and Analysis

44

Chapter 5

Discussion

This chapter delves into the discussions surrounding the three research questions, examining
the potential value areas for AI-assisted development at Scania, the application of prompt
engineering to enhance code generation, and the broader implications of integrating AI-
assisted development at Scania, particularly in the light of the EU AI Act. Each section aims
to synthesize the findings from the data gathered during the research, analyze the results, and
connect these to the related work discussed in Chapter 1.2. Future research directions and
potential threats to validity of the study’s findings are also discussed.

5.1 RQ1: What are the potential value ar-
eas for AI-assisted development at Sca-
nia in the near term?

The main goal of this discussion section is to evaluate how AI-assisted development could
bring value to Scania in the near term, based on the findings from the initial phase.

The initial phase of this thesis was dedicated to exploring the current utilization and
future potential of AI-assisted development at Scania, particularly focusing on software de-
velopment practices. This phase was important for understanding how AI technologies are
currently being integrated within Scania and identifying the key areas where these technolo-
gies could enhance operational efficiency, quality, and innovation. The exploration of the
first phase aimed to pinpoint opportunities where AI applications could deliver substantial
value, especially in fields related to code generation, code completion, testing, and refactor-
ing.

Through a series of interviews with various stakeholders from Scania’s IT department,
including a scrum master, a developer, a solution architect, and a product owner, a view of
the perceived benefits, challenges, and expectations surrounding AI-assisted development
was formed. These stakeholders provided valuable insights into the practical aspects of AI

45

5. Discussion

integration, reflecting both the optimistic prospects and the cautious approach necessitated
by industry-specific constraints and organizational culture.

The initial phase revealed that Scania’s IT department is engaging with a range of AI
tools in various stages of proof-of-concepts and pilot testing. These tools include GitLab
Duo, GitHub Copilot, Microsoft 365 Copilot, AWS Code Whisperer, and to a lesser extent,
ChatGPT. Each tool is being explored for its potential to enhance efficiency and address
specific needs within the company.

While the full benefits of these AI tools at Scania are yet to be quantified due to the be-
ginning stage of their integration, the anticipated advantages are clear. These AI implemen-
tations are expected to speed up development processes, enhance the accuracy of code, and
free up developer time for more complex tasks. The strategic deployment of these tools is also
seen as a means to keep Scania competitive and aligned with industry innovations. Although,
the integration of these external AI tools has not been without its challenges. Technical and
organizational hurdles, particularly around data security and compliance with European data
retention policies, have slowed the integration process. For instance, concerns about GitLab
Duo’s data polices have necessitated careful evaluation before wider implementation. Ad-
ditionally, organizational challenges such as managing expectations and communicating the
progress and purpose of AI projects have emerged, highlighting the need for internal com-
munication and education about AI capabilities and limitations.

The stakeholders interviewed at Scania, from developers to solution architects, recog-
nize the potential of AI to transform their workspace but also emphasize the importance
of cautious and informed implementation. There is a consensus that while the adoption of
external AI tools presents opportunities, it also requires thorough evaluation to ensure they
meet Scania’s security standards. Moreover, there is an expressed need for more educational
initiatives to bridge the knowledge gap on AI usage within the company. Looking forward,
the stakeholders interviewed are optimistic about the role of AI at Scania, expecting it to
increasingly influence various operational areas. They anticipate that future developments
such as potential adjustments in GitLab’s service policies and the broader integration of AI
tools, will further empower Scania’s workforce and enhance operational efficiencies.

This forward-looking perspective underscores a commitment to not only adopting AI
technology but doing so in a manner that is secure, efficient, and aligned with the company’s
long-term strategic goals.

The information gathered from the interviews highlights a shared optimism about the
transformative potential of AI. The following section synthesizes these insights, focusing on
the most promising value areas for AI-assisted development: code generation and testing and
custom AI implementations.

Code Generation and Testing
At Scania, AI’s integration into code generation and testing processes has the potential to
enhance efficiency. Tools like GitHub Copilot, GitLab Duo, and similar AI-assisted tech-
nologies are viewed as pivotal in automating and accelerating these tasks. According to in-
sights from the developer interview, these tools can reduce the time developers spend on
routine coding tasks, allowing them to focus on more complex, value-adding activities. The
automated testing capabilities of AI, particularly through the use of LLMs, can streamline
the creation of test cases for software development. For example, an LLM can automati-

46

5.1 RQ1: What are the potential value areas for AI-assisted development at Scania in the near
term?

cally generate test scenarios based on the specifications and expected behaviours described
in development documents [28]. As highlighted in the related work section, generative AI
technologies have been identified as transformative in various software engineering tasks
[20], underscoring the critical role they play in both accelerating development cycles and
enhancing the quality of software deliverables.

Moreover, the introduction of prompt engineering for code generation presents another
layer of optimization for these AI tools. By fine-tuning how developers interact with AI-
assistants, prompt engineering can maximize the accuracy and relevance of generated code.
The exploration of prompt engineering techniques aligns with Scania’s goal to leverage ex-
isting generative AI tools more effectively, ensuring that these tools not only integrate into
development workflows but also adhere to stringent security and data privacy standards.

Custom AI Implementations

Custom AI solutions, tailored specifically to meet Scania’s security and privacy requirements,
represent another area of development. Custom implementations are beneficial for Scania
for maintaining data integrity and compliance but also for building trust in AI tools across
the organization, thereby facilitating their broader acceptance and use. The proposed AI-
assistant environment using Azure AI Studio exemplifies this approach by leveraging cus-
tomizable features such as choice of model deployment, parameter settings, and integration
with secure and private Azure endpoints. The customization here refers not to the training
of the model on company-specific data, but to the flexibility of configuring and utilizing
AI tools that maintain data integrity and adhere to strict compliance and security frame-
works. This view of customization emphasizes the tailored application of AI technologies to
fit specific operational contexts.

This approach is aligned with the findings from the related work section, which discusses
the importance of adapting AI technologies to meet specific operational needs while address-
ing regulatory requirements, a theme explored in studies by Mastropaolo et al. [16].

Both code generation and custom AI implementations reflect the insights and concerns raised
during the interviews with Scania’s IT department personnel. The cautious yet optimistic at-
titude towards AI, coupled with a clear recognition of its potential benefits, underscores the
need for a balanced approach that considers both innovative potential and necessary precau-
tions. By focusing on these tailored solutions and educational initiatives, Scania can harness
AI’s capabilities to not only enhance its software development practices but also ensure these
advancements align with the company’s strategic objectives and compliance requirements.

47

5. Discussion

5.2 RQ2: How can prompt engineering be
used to enhance code generation with
generative AI in tasks relevant to Sca-
nia?

The second phase of this thesis focused on examining how prompt engineering can improve
code generation with generative AI models for tasks that are relevant to Scania.

Prompt engineering was identified as a key area for research because of its ability to fine-
tune the outputs of AI models to meet specific needs, thus ensuring that the AI-generated
code is accurate and effectively generated. The research was driven by the hypothesis that
tailored prompt strategies could improve the AI model’s efficiency in solving complex pro-
gramming challenges. The focus on security and operational efficiency underscores how this
phase aligns with Scania’s broader goals. By improving how AI models and developers in-
teract through adjusted prompts, the research aims to enhance the usefulness of AI tools for
code generation tasks within a secure and managed setting.

The techniques that were examined during phase 2 included Zero-shot, One-shot, Role
Prompting, Few-shot and a Hybrid method. Table 4.1 illustrates the success rates for each
technique across twenty distinct programming problems, sourced from LeetCode. Overall,
the Hybrid and Few-shot techniques demonstrated higher effectiveness, achieving full success
(100% pass rate) in several cases, while Zero-shot generally showed the lowest success rates.

The comparative analysis of prompt engineering techniques revealed notable variations
in performance:

• Zero-shot: Demonstrated the lowest effectiveness with a median success rate of 15%
and a mean of 25.5%. This indicates that without any contextual examples, the LLM
struggled to generate correct solutions.

• One-shot: Showed a moderate improvement over Zero-shot, with a median success
rate of 40% and a mean of 43%. This inclusion of a single example seems to aid the
model’s understanding sufficiently to handle a broader range of problems more effec-
tively.

• Role-prompting: Yielded mixed results similar to One-shot, with a median of 40%
and a mean of 38.5%. The success of Role Prompting appears to be dependent on the
specific context of the problem, indicating that its utility may be limited to scenarios
where the role aligns closely with the task’s requirements.

• Few-shot: This method generally offered more consistent and higher success rates,
with a median of 40% and the highest mean of 46.5%. Multiple examples provided in
the prompts clearly helped the AI understand and solve the problems more effectively,
demonstrating its robustness across a range of problems.

• Hybrid: Combining elements from Few-shot and Role Prompting, the Hybrid method
did not consistently outperform all other methods but showed a slightly higher median
success rate of 45% and a mean of 44%. This suggests that while the Hybrid approach

48

5.2 RQ2: How can prompt engineering be used to enhance code generation with generative AI in
tasks relevant to Scania?

can be highly effective, its performance may vary depending on how well the combined
elements are executed and the specific nature of the problems.

In Figure 4.1, a comparison between the success rates of the different prompting tech-
niques is displayed alongside their respective standard deviations, reflecting significant vari-
ability in each technique’s performance across the multiple test scenarios. Given the diverse
nature of the dynamic programming problems tackled, the high standard deviations across
all techniques are not surprising. Each problem’s characteristics and the AI-assistant’s re-
sponse to specific prompts could lead to wide fluctuations in success rates, thus explaining
high standard deviations across all prompting techniques. These results underscore the im-
portance of selecting the right technique based on the specific nature of the task rather than
a one-size-fits-all approach.

The accumulated performance data, shown in Figure 4.1 suggest that more detailed and
contextual prompting strategies like Few-shot and Hybrid tend to provide better results in
code generation tasks, particularly in complex or nuanced programming scenarios. Few-shot’s
consistently higher mean success rate underlines the importance of providing the AI with a
clear and comprehensive understanding of what is required, reducing ambiguity that might
hinder accurate code generation.

Out of the 20 dynamic programming problems, 7 had very poor success rates by all of
the simpler prompting techniques. These problems are complex due to their requirement for
advanced logical reasoning, a deep understanding of mathematical or algorithmic principles,
and the ability to manage and manipulate data states dynamically. Because these problems
often require multi-step reasoning, recursive thought processes, and handling of complex
data structures, simpler prompting techniques fail to guide the AI-assistant. Therefore, in
addition to the five simpler prompting techniques, two more advanced prompt engineering
techniques Chain of Thought (CoT) Prompting and Least to Most Prompting were inves-
tigated to enhance the AI-assistant’s problem-solving capabilities in the more challenging
scenarios. These techniques are seen in Table 4.4 as useful in overcoming the limitations of
the more simpler prompt methods.

• Chain of Thought Prompting proved effective in guiding the AI-assistant through
complex logical sequences, significantly improving the AI-assistant’s ability to handle
tasks requiring deep analytical reasoning. For instance, in Problem 10, this technique
led to a successful resolution after four iterations, demonstrating its ability to incre-
mentally improve the LLMs performance by structuring its reasoning process.

• Least to Most Prompting was effective in scenarios where a problem needed to be
broken down into simpler, more manageable parts. This approach was beneficial in
progressively refining the AI-assistant’s responses by initially presenting a less complex
problem and then gradually increasing the complexity. For example, in Problem 13, this
method required three iterations to achieve success, showing its strength in situations
requiring adjustments and refinements.

For Scania, the integration of prompt engineering techniques into AI-assisted code gener-
ation processes not only offers improvements in the reliability and accuracy of AI-generated
code but also reflects the broader implications discussed in the foundational research. This
investigation aligns with the insights presented by Denny et al. [7] and White et al. [32],

49

5. Discussion

demonstrating that simpler techniques such as Few-shot and Hybrid enhance the AI-assistant’s
ability to generate precise code. These methods, through the use of multiple examples or a
combination of strategies, provide the AI-assistant with a nuanced understanding of com-
plex programming scenarios, leading to higher quality outputs. Particularly, the Few-shot
technique, by offering several contextual examples, helps develop a deep understanding of
the task, which is crucial in complex environments where precision is paramount. Similarly,
the Hybrid approach blends Few-shot and Role Prompting to leverage the strengths of both
contextual depth and role-specific guidance.

Moreover, the integration of advanced techniques such as Chain of Thought (CoT) Prompt-
ing and Least to Most Prompting extends the benefits of prompt engineering, refining the
AI-assistant’s problem-solving capabilities beyond simpler methods. These more advanced
strategies address the limitations where simpler methods falter, particularly in handling com-
plex problems like those involving deep analytical reasoning and data manipulation, as high-
lighted by Sakib et al. [25] in their discussion on the potential of GenAI in software engineer-
ing. Therefore, by integrating the findings of this research with the established theories from
the literature, Scania can leverage AI more effectively and use technological innovations to
produce improvements in productivity and innovation. The combined use of Few-shot, Hy-
brid, CoT, and Least to Most Prompting techniques improves the AI-assistant’s capabilities
in code generation which aligns with the strategic implementation of generative AI high-
lighted in the related works on the subject. This approach addresses the research question
by demonstrating the effectiveness of both simpler and advanced prompt engineering tech-
niques in enhancing AI-driven development at Scania.

5.3 RQ3: What are the broader implications
of integrating AI-assisted development
at Scania, including compliance with the
EU AI Act?

In the final phase of this thesis, phase three, the exploration centered on understanding the
broader implications of AI-assisted development at Scania, particularly within the frame-
work of the EU AI Act. This investigation was important for understanding how the legisla-
tive landscape influences AI integration strategies, ensuring that AI deployments not only
enhance technological capabilities but also adhere to stringent safety, transparency, and ethi-
cal standards mandated by the EU. As detailed in the related work section 1.2, the EU AI Act
sets a comprehensive regulatory framework that categorizes AI systems based on risk levels
and defines specific compliance requirements, particularly for high-risk applications [9]. For
Scania, a leader in heavy-duty manufacturing, the act plays a crucial role in steering the de-
velopment and deployment of AI technologies. This affects various sectors of the business,
ranging from production processes to the development of autonomous vehicle technologies.
Understanding these regulations is valuable to Scania to effectively harness AI’s potential
while navigating the complexities of compliance and risk management. The objective of this
discussion is to synthesize the insights gathered from the research and interview focusing on
the use of the AI-assistant from Azure AI Studio for code generation. This synthesis aims to

50

5.4 Future Research

evaluate the strategic implications of integrating this AI-assisted development tool at Scania,
in light of the regulatory framework established by the EU AI Act. The discussion will also
consider the implications of the Act’s classification of autonomous vehicles (AVs) as high-
risk, exploring how this classification might affect Scania’s broader AI strategies.

Compliance with the EU AI Act
As a deployer of AI systems, particularly the Azure AI Studio AI-assistant for code genera-
tion, Scania must adhere to some obligations under the EU AI Act that ensure safety, trans-
parency, and responsible data governance. The Act categorizes AI applications based on their
potential risk, imposing stricter compliance measures on high-risk applications, which typi-
cally include AI systems used in critical infrastructures or sensitive sectors. The AI-assistant
from Azure AI Studio doesn’t directly fall under these high-risk categories, but the role of
deployer of this AI system still includes maintaining standards of transparency and data han-
dling to comply with the broader principles of the Act [30]. In the use of the AI-assistant
from Azure AI Studio, Scania can also leverage Azure OpenAI Services’ built-in content
filtering system to enhance compliance and safety measures. This system scrutinizes both
input prompts and output completions for potentially harmful content across several cate-
gories, including hate speech, sexual content, violence, and self-harm. The content filtering
systems can support Scania’s adherence to ethical standards and also align with the EU AI
Act’s requirement for transparency and accountability in AI deployments.

Provider vs. Deployer Responsibilities
Under the EU AI Act, Scania’s responsibilities are distinct based on its role as either a
provider or deployer. As a deployer, Scania can utilize AI systems like the Azure AI Studio
AI-assistant for internal code generation tasks. In this role, Scania is primarily responsible for
ensuring that this AI tool is implemented and used within the company’s operational frame-
work according to regulatory standards. This includes adhering to transparency, monitoring
of AI performance, and ensuring systems operate within set ethical guidelines without direct
involvement in the development or initial testing phases of the AI models [15]. This contrasts
with Scania’s role as a provider of AI systems in high-risk applications like autonomous ve-
hicles, where the responsibilities are more extensive due to the potential impact on public
safety. This distinction is important as it necessitates different compliance requirements un-
der the EU AI Act, where high-risk systems, such as those used in AVs, require thorough
life-cycle management from development to deployment to ensure safety and compliance
[9].

5.4 Future Research
This thesis explored the use of AI-assisted development at Scania, focusing particularly on
prompt engineering and the broader implications of the EU AI Act on AI deployment. The
utilization of AI-assisted development at Scania and adherence to regulatory compliance
present a broad scope for future research. The following areas could be particularly interest-
ing for future research:

51

5. Discussion

Extended Application of Prompt Engineering
The potential of prompt engineering to improve AI-generated code has been demonstrated
with dynamic programming problems using Azure AI Studio. Future studies can investigate
extending these techniques to a broader range of programming tasks and other software de-
velopment activities. A comparative analysis of the effect of different GPT models in prompt
engineering could for example be of interest. This analysis could explore how various itera-
tions, such as newer versions of the GPT series, impact the efficacy of prompt engineering
technologies. Research could also assess the application of prompt engineering in areas be-
yond code generation, such as automated documentation and error analysis, to further boost
productivity and innovation within Scania’s software development processes.

Long-Term Studies on AI Deployment
To fully grasp the extended impacts of the potential of AI integration within Scania, it is im-
portant to conduct extended studies. These would track the long-term effect of AI-assisted
development on productivity, innovation, and regulatory compliance, providing valuable in-
sights into the long-term benefits and evolving challenges. By monitoring outcomes over ex-
tended periods, Scania could better understand how AI technologies adapt to and influence
changes in software development practices, market dynamics, and regulatory landscapes.
Furthermore, extended data collection could help identify trends, optimize processes, and
formulate strategies to maximize the effectiveness of AI tools in fostering sustainable inno-
vation and maintaining compliance with industry standards.

Implications of High-Risk AI Classification under the EU AI Act
Given the classification of AI systems in autonomous vehicles (AVs) as high-risk under the
EU AI Act, it is critical to conduct an in-depth analysis of the regulatory implications for Sca-
nia. Future research could aim to develop comprehensive risk assessment and management
strategies tailored specifically to AVs. This includes examining how upcoming modifications
to the act might impact the deployment and utilization of AI within this high-stakes field.

5.5 Limitations and Threats to Validity
This research considers various aspects of validity throughout the design, execution, and anal-
ysis phases to ensure the integrity and applicability of the findings. However, like all research,
this study faces certain limitations and threats to validity that may influence the interpre-
tation and generalization of the results. The classifications and guidelines from Cruzes et
al. [23] and Runeson et al. [6] were used to make the classification of the different types of
validity identified for this thesis:

1. Construct Validity concerns whether the operational measures used truly reflect the
theoretical constructs they are intended to represent. In this study:

(a) Operational Definitions and Measures: The implementation of prompt engi-
neering techniques and the evaluation of their effectiveness through repeated

52

5.5 Limitations and Threats to Validity

trials are designed to mirror the real-world applications of these methods in en-
hancing code generation. While the use of LeetCode’s dynamic programming
problems helps standardize the testing environment, questioning whether pass-
ing these pre-defined test cases translates to a successful implementation in in-
dustrial applications highlights a potential limitation in construct validity. This
measure may not fully capture the complexity and variability of real-world soft-
ware development tasks, which could limit the generalizability of the results.

(b) Interpretation of ’AI-assistant’: The construct of an ’AI-assistant’ was central in
the discussions with the interviewees. Variations in understanding what consti-
tutes an AI-assistant among the participants could influence the validity of the
conclusions drawn from these interactions. Clarifying whether all parties shared
the same definition and expectations of the AI-assistant’s capabilities and limi-
tations is crucial.

2. Internal Validity related to the cause-and-effect conclusions drawn from the study,
ensuring that the results attributed to the experimental manipulations are indeed due
to them and not other factors.

(a) Repeated Trials: By performing ten repetitions for each user prompt, the study
aims to minimize the effects of random variations in AI performance. Addition-
ally, the iterative testing employed for problems that resisted initial solutions
further exemplified an iterative approach to problem-solving. However, the in-
herent variability in generative AI responses could still influence the consistency
of the results, potentially complicating the effects attributed to different prompt-
ing techniques.

3. External Validity addresses the generalizability of the findings beyond the specific con-
ditions of the study.

(a) Selection of Tools and Technologies: The exclusive use of Azure AI Studio and
the GPT-3.5 model may limit the applicability of the findings to other AI plat-
forms or newer models, such as GPT-4, which could behave differently or offer
different features.

(b) Scope of Application: The study employed multiple trials with different prompt
engineering techniques to triangulate findings and provide a more comprehen-
sive view of the effects of prompt engineering on code generation. This approach
helped validate the results through varied application contexts within the same
framework. However, the focus on code generation for dynamic programming
problems, while relevant to Scania’s needs, may not translate directly to other
programming tasks or domains where AI-assisted development could be applied.

4. Reliability concerns the consistency of the study’s results when replicated under sim-
ilar conditions.

(a) Documentation and Procedures: Detailed documentation of the experimental
setup and the explicit coding of all procedures enhance the study’s reliability.
However, any ambiguity in the LLM’s output interpretation or slight variations
in the setup by future researchers could yield different results.

53

5. Discussion

54

Chapter 6

Conclusion

The research in this thesis unfolded in three structured phases, each focusing on a different
aspect of AI integration within Scania’s operational and regulatory framework.

Key Findings
• Phase 1 identified value areas for AI-assisted development at Scania as code gener-

ation and automated testing, and the development of custom AI implementations.
These areas were recognized for their potential to enhance operational efficiency and
innovation within Scania’s software development practices.

• Phase 2 highlighted that both simpler prompt engineering techniques, like Few-shot
and a Hybrid approach, and advanced techniques such as Chain of Thought (CoT) and
Least to Most Prompting, are effective in improving the accuracy and functionality of
AI-generated code. These methods proved valuable in addressing complex program-
ming challenges that standard AI outputs could not resolve.

• Phase 3 revealed that while the Azure AI Studio AI-assistant employed does not fall
directly under high-risk categories defined by the EU AI Act, AI systems used in au-
tonomous vehicles (AVs) do. This distinction underscores the importance of aligning
AI development and deployment strategies with strict regulatory standards to ensure
compliance and safety.

The potential of expanding prompt engineering techniques suggests a promising direc-
tion for further research, particularly in extending these methods beyond code generation
to broader software development applications. Further studies might explore integrating
these techniques into various AI-assisted tools and LLMs. This integration, carried out by
for example researchers and developers, could involve adapting existing prompt engineering
techniques to new contexts or AI platforms, thereby enhancing the usability and efficacy of
AI-assisted development tools.

55

6. Conclusion

The findings also emphasize the need for Scania to navigate the complexities of regula-
tory compliance thoughtfully, especially as AI technologies become increasingly integrated
into high-risk areas like AVs. Future practices should continue to balance innovation with
adherence to regulatory standards, ensuring responsible and effective use of AI technologies.

To conclude, by leveraging advanced prompt engineering techniques and aligning with
regulatory requirements, Scania can enhance its AI-assisted software development capabili-
ties and maintain a competitive edge in the industry.

56

References

[1] Leetcode problems. LeetCode, 2024. Accessed: 2024-05-17.

[2] Baltes, S. and Ralph, P. Sampling in software engineering research: a critical review and
guidelines. https://doi.org/10.1007/s10664-021-10072-8.

[3] Chen, B., Zhang, Z., Langrené, N, and Zhu, S. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive re-
view. https://search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=edsarx&AN=edsarx.2310.14735&site=eds-live&scope=site.

[4] Chen, B., Zhang, Z., Langrené, N., and Zhu, S. Unleashing the potential of prompt
engineering in large language models: a comprehensive review. arXiv:2310.14735.

[5] European Commission. Overview of the eu ai act. https://ec.europa.eu/
overview-eu-ai-act, 2024. Accessed: 2024-04-17.

[6] Daniela S. Cruzes and Lotfi ben Othmane. Threats to validity in empirical software
security research. https://sintef.brage.unit.no/sintef-xmlui/bitstream/
handle/11250/2470488/SINTEF_ESORICS_STM_2017.pdf?sequence=1, 2021.

[7] Denny, P., Kumar, V., and Giacaman, N. Conversing with copilot: Exploring prompt
engineering for solving cs1 problems using natural language. 2023. https://dl.acm.
org/doi/abs/10.1145/3545945.3569823?casa_token=4_m9lBToI2MAAAAA:
ApWGifnz49Q0DJ6oQmZ3G6KZZh30VYRQ0Nb8u88ARefpmYlwgJnecrdZhC_
0sG5DBfDB29tewzTN92I.

[8] Ekin, S. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best
practices. AuthoreaPreprints.

[9] EU Artificial Intelligence Act. High-level summary of the eu artificial intelligence act.
https://artificialintelligenceact.eu/high-level-summary/, 2024. Ac-
cessed: 2024-04-17.

57

https://doi.org/10.1007/s10664-021-10072-8
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2310.14735&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2310.14735&site=eds-live&scope=site
arXiv:2310.14735
https://ec.europa.eu/overview-eu-ai-act
https://ec.europa.eu/overview-eu-ai-act
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2470488/SINTEF_ESORICS_STM_2017.pdf?sequence=1
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2470488/SINTEF_ESORICS_STM_2017.pdf?sequence=1
https://dl.acm.org/doi/abs/10.1145/3545945.3569823?casa_token=4_m9lBToI2MAAAAA:ApWGifnz49Q0DJ6oQmZ3G6KZZh30VYRQ0Nb8u88ARefpmYlwgJnecrdZhC_0sG5DBfDB29tewzTN92I
https://dl.acm.org/doi/abs/10.1145/3545945.3569823?casa_token=4_m9lBToI2MAAAAA:ApWGifnz49Q0DJ6oQmZ3G6KZZh30VYRQ0Nb8u88ARefpmYlwgJnecrdZhC_0sG5DBfDB29tewzTN92I
https://dl.acm.org/doi/abs/10.1145/3545945.3569823?casa_token=4_m9lBToI2MAAAAA:ApWGifnz49Q0DJ6oQmZ3G6KZZh30VYRQ0Nb8u88ARefpmYlwgJnecrdZhC_0sG5DBfDB29tewzTN92I
https://dl.acm.org/doi/abs/10.1145/3545945.3569823?casa_token=4_m9lBToI2MAAAAA:ApWGifnz49Q0DJ6oQmZ3G6KZZh30VYRQ0Nb8u88ARefpmYlwgJnecrdZhC_0sG5DBfDB29tewzTN92I
Authorea Preprints
https://artificialintelligenceact.eu/high-level-summary/

REFERENCES

[10] Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., and Zhang,
J.M. Large language models for software engineering: Survey and open problems. 2023.
arXivpreprintarXiv:2310.03533.

[11] Osman Gazi Güçlütürk. How to identify high-risk ai systems ac-
cording to the eu ai act. https://www.holisticai.com/blog/
identify-high-risk-ai-systems-according-to-eu-ai-act, 2024. Ac-
cessed: 2024-05-02.

[12] Osman Gazi Güçlütürk and Bahadir Vural. Driving innovation: Navigating the eu
ai act’s impact on autonomous vehicles. https://www.holisticai.com/blog/
driving-innovation-navigating-eu-ai-acts-impact-on-autonomous-vehicles,
2024. Accessed: 2024-05-03.

[13] Jet Brains. The state of developer ecosystem 2023. https://www.jetbrains.com/
lp/devecosystem-2023/.

[14] Liu, X. et al. Gpt understands, too. doi:10.1016/j.aiopen.2023.08.012.

[15] D. Maninger, K. Narasimhan, and M. Mezini. Towards trustworthy ai software
development assistance. https://search-ebscohost-com.ludwig.lub.lu.se/
login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2312.
09126&site=eds-live&scope=site, 2023. Accessed: 21 December 2023.

[16] A. Mastropaolo et al. On the robustness of code generation techniques: An empirical
study on github copilot. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 2149–2160, 2023.

[17] Microsoft. Azure ai studio. https://azure.microsoft.com/en-us/products/
ai-studio.

[18] Microsoft. Azure ai studio architecture. https://learn.microsoft.com/en-us/
azure/ai-studio/concepts/architecture.

[19] Microsoft. Data, privacy, and security for azure openai service. https://learn.
microsoft.com/en-us/legal/cognitive-services/openai/data-privacy.

[20] Nejjar, M., Zacharias, L., Stiehle, F., and Weber, I. Llms for science: Usage for code
generation and data analysis. 2023. arXivpreprintarXiv:2311.16733.

[21] N. Nguyen and S. Nadi. An empirical evaluation of github copilot’s code suggestions. In
2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), pages
1–5, 2022.

[22] Peng, X. Software development in the age of intelligence: embracing large language
models with the right approach. frontiers of information technology electronic engi-
neering. 2023.

[23] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study re-
search in software engineering. https://link.springer.com/article/10.1007/
s10664-008-9102-8, 2008. Accessed: 2024-05-18.

58

arXiv preprint arXiv:2310.03533
https://www.holisticai.com/blog/identify-high-risk-ai-systems-according-to-eu-ai-act
https://www.holisticai.com/blog/identify-high-risk-ai-systems-according-to-eu-ai-act
https://www.holisticai.com/blog/driving-innovation-navigating-eu-ai-acts-impact-on-autonomous-vehicles
https://www.holisticai.com/blog/driving-innovation-navigating-eu-ai-acts-impact-on-autonomous-vehicles
https://www.jetbrains.com/lp/devecosystem-2023/
https://www.jetbrains.com/lp/devecosystem-2023/
doi:10.1016/j.aiopen.2023.08.012
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2312.09126&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2312.09126&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2312.09126&site=eds-live&scope=site
https://azure.microsoft.com/en-us/products/ai-studio
https://azure.microsoft.com/en-us/products/ai-studio
https://learn.microsoft.com/en-us/azure/ai-studio/concepts/architecture
https://learn.microsoft.com/en-us/azure/ai-studio/concepts/architecture
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
arXiv preprint arXiv:2311.16733
https://link.springer.com/article/10.1007/s10664-008-9102-8
https://link.springer.com/article/10.1007/s10664-008-9102-8

REFERENCES

[24] Peng. S, et al. The impact of ai on developer productivity: Evidence from github
copilot. 2023. https://search-ebscohost-com.ludwig.lub.lu.se/login.
aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.06590&
site=eds-live&scope=site.

[25] Sakib, F.A., Khan, S.H., and Karim, A.H.M. Extending the frontier of chatgpt: Code
generation and debugging. 2023. https://arxiv.org/abs/2307.08260.

[26] G. L. Scoccia. Exploring early adopters’ perceptions of chatgpt as a code generation
tool. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW), pages 88–93, 2023.

[27] GumGum Tech. Comparative analysis of gpt models: Choosing the best
gpt model for your use case. https://medium.com/gumgum-tech/
comparative-analysis-of-gpt-models-choosing-the-best-gpt-model-for-your-use-case-cab220cce885,
2023. Accessed: 2024-05-17.

[28] Workbox Technology. Ai-powered test automation: Future
of software testing. https://medium.com/@workboxtech/
ai-powered-test-automation-future-of-software-testing-76b072b4bbfc,
2021. Accessed: 2024-05-17.

[29] European Union. The european union artificial intelligence act. https://ec.europa.
eu/EU-AI-Act, 2024. Accessed: 2024-04-17.

[30] Matthias Wagner, Markus Borg, and Per Runeson. Navigating the upcoming european
union ai act. IEEE Software, 41(1):19–24, 2023.

[31] J. Walters et al. Complying with the eu ai act. https://search-ebscohost-com.
ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=
edsarx&AN=edsarx.2307.10458&site=eds-live&scope=site, 2023. Ac-
cessed: 29 December 2023.

[32] White, J. et al. A prompt pattern catalog to enhance prompt engineering with chat-
gpt. https://search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=edsarx&AN=edsarx.2302.11382&site=eds-live&scope=site.

[33] D. Yan, Z. Gao, and Z. Liu. A closer look at different difficulty levels code generation
abilities of chatgpt. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1887–1898, 2023.

[34] Wayne Xin Zhao et al. A survey of large language models. https://github.com/
RUCAIBox/LLMSurvey, 2024. Accessed: 2024-04-17.

[35] Zhou, Y. et al. Large language models are human-level prompt engineers.
https://search.ebscohost.com/login.aspx?direct=true&AuthType=
ip,uid&db=edsarx&AN=edsarx.2211.01910&site=eds-live&scope=site.

59

https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.06590&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.06590&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.06590&site=eds-live&scope=site
https://arxiv.org/abs/2307.08260
https://medium.com/gumgum-tech/comparative-analysis-of-gpt-models-choosing-the-best-gpt-model-for-your-use-case-cab220cce885
https://medium.com/gumgum-tech/comparative-analysis-of-gpt-models-choosing-the-best-gpt-model-for-your-use-case-cab220cce885
https://medium.com/@workboxtech/ai-powered-test-automation-future-of-software-testing-76b072b4bbfc
https://medium.com/@workboxtech/ai-powered-test-automation-future-of-software-testing-76b072b4bbfc
https://ec.europa.eu/EU-AI-Act
https://ec.europa.eu/EU-AI-Act
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2307.10458&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2307.10458&site=eds-live&scope=site
https://search-ebscohost-com.ludwig.lub.lu.se/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2307.10458&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.11382&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2302.11382&site=eds-live&scope=site
https://github.com/RUCAIBox/LLMSurvey
https://github.com/RUCAIBox/LLMSurvey
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2211.01910&site=eds-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.2211.01910&site=eds-live&scope=site

REFERENCES

60

Appendices

61

Appendix A

Detailed Results From Phase 2 Evaluation

Table A.1: Results for Zero-shot Technique (number of test cases
passed for each repetition)

ID 1 2 3 4 5 6 7 8 9 10 RES
1 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 0%
2 1/3 3/3 1/3 1/3 1/3 3/3 1/3 0/3 0/3 0/3 20%
3 0/2 2/2 2/2 2/2 0/2 2/2 2/2 0/2 0/2 0/2 50%
4 3/3 3/3 3/3 1/3 3/3 1/3 1/3 1/3 1/3 3/3 50%
5 1/2 2/2 1/2 2/2 1/2 1/2 2/2 1/2 1/2 2/2 40%
6 2/2 2/2 1/2 1/2 1/2 2/2 2/2 1/2 1/2 1/2 40%
7 3/3 3/3 3/3 3/3 3/3 2/3 3/3 2/3 2/3 2/3 60%
8 2/2 0/2 2/2 2/2 0/2 0/2 0/2 2/2 0/2 2/2 50%
9 2/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 10%
10 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 0%
11 2/2 1/2 1/2 2/2 2/2 2/2 2/2 1/2 1/2 1/2 50%
12 1/2 1/2 2/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 10%
13 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0%
14 3/3 1/3 3/3 3/3 1/3 1/3 3/3 3/3 3/3 3/3 70%
15 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0%
16 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
17 0/3 0/3 0/3 0/3 0/3 2/3 0/3 0/3 0/3 0/3 0%
18 3/3 3/3 3/3 0/3 3/3 3/3 0/3 3/3 0/3 0/3 60%
19 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 2/3 0%
20 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0%

63

A. Detailed Results From Phase 2 Evaluation

Table A.2: Results for One-shot Technique (number of test cases
passed for each repetition)

ID 1 2 3 4 5 6 7 8 9 10 RES
1 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 3/3 10%
3 0/2 2/2 0/2 2/2 0/2 2/2 2/2 2/2 2/2 0/2 60%
4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 1/3 3/3 3/3 90%
5 1/2 2/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2 2/2 40%
6 0/2 2/2 1/2 0/2 0/2 2/2 1/2 2/2 2/2 2/2 50%
7 0/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 1/3 80%
8 2/2 2/2 2/2 2/2 2/2 2/2 1/2 2/2 2/2 2/2 90%
9 0/2 2/2 0/2 2/2 0/2 2/2 2/2 0/2 0/2 0/2 40%
10 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
11 0/2 2/2 2/2 2/2 2/2 2/2 0/2 2/2 2/2 2/2 80%
12 1/2 2/2 2/2 2/2 1/2 1/2 2/2 2/2 1/2 1/2 50%
13 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0%
14 3/3 0/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 90%
15 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0%
16 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
17 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 0%
18 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
19 2/3 3/3 3/3 2/3 2/3 3/3 3/3 3/3 2/3 3/3 60%
20 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0%

64

Table A.3: Results for Role-prompting Technique (number of test
cases passed for each repetition)

ID 1 2 3 4 5 6 7 8 9 10 RES
1 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
2 0/3 1/3 1/3 1/3 3/3 3/3 1/3 0/3 1/3 1/3 20%
3 2/2 2/2 2/2 2/2 0/2 0/2 2/2 2/2 2/2 2/2 80%
4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/3 1/3 3/3 80%
5 1/2 1/2 1/2 1/2 2/2 2/2 2/2 1/2 2/2 2/2 50%
6 2/2 2/2 0/2 2/2 2/2 0/2 2/2 0/2 0/2 2/2 60%
7 3/3 2/3 2/3 3/3 2/3 2/3 2/3 3/3 3/3 2/3 40%
8 0/2 2/2 2/2 2/2 2/2 2/2 0/2 2/2 2/2 2/2 80%
9 2/2 2/2 1/2 0/2 2/2 2/2 2/2 0/2 1/2 1/2 50%
10 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 0%
11 1/2 2/2 2/2 2/2 1/2 2/2 1/2 2/2 2/2 2/2 70%
12 0/2 0/2 0/2 0/2 0/2 0/2 2/2 0/2 0/2 0/2 10%
13 1/2 1/2 1/2 1/2 2/2 1/2 1/2 1/2 1/2 1/2 10%
14 1/3 3/3 1/3 3/3 3/3 3/3 3/3 1/3 3/3 1/3 60%
15 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0%
16 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
17 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 3/3 0/3 10%
18 3/3 3/3 3/3 3/3 3/3 3/3 3/3 0/3 0/3 3/3 80%
19 0/3 0/3 3/3 0/3 3/3 0/3 3/3 3/3 0/3 1/3 40%
20 1/2 1/2 1/2 0/2 1/2 1/2 1/2 1/2 1/2 1/2 0%

65

A. Detailed Results From Phase 2 Evaluation

Table A.4: Results for Few-shot Technique (number of test cases
passed for each repetition)

ID 1 2 3 4 5 6 7 8 9 10 RES
1 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
2 1/3 1/3 0/3 1/3 2/3 3/3 3/3 0/3 0/3 1/3 20%
3 2/2 2/2 0/2 0/2 2/2 0/2 2/2 2/2 2/2 2/2 70%
4 3/3 3/3 3/3 1/3 1/3 3/3 3/3 3/3 3/3 3/3 80%
5 1/2 2/2 2/2 2/2 2/2 2/2 2/2 1/2 2/2 1/2 70%
6 2/2 2/2 0/2 2/2 0/2 2/2 0/2 0/2 0/2 0/2 40%
7 3/3 3/3 3/3 2/3 3/3 3/3 3/3 1/3 3/3 3/3 80%
8 2/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 90%
9 0/2 1/2 1/2 0/2 1/2 0/2 0/2 0/2 1/2 0/2 0%
10 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 0%
11 2/2 2/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 90%
12 1/2 2/2 1/2 2/2 2/2 2/2 1/2 1/2 1/2 2/2 50%
13 0/2 0/2 0/2 0/2 0/2 0/2 2/2 0/2 0/2 0/2 10%
14 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
15 0/2 0/2 0/2 0/2 0/2 2/2 0/2 0/2 0/2 2/2 20%
16 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
17 1/3 1/3 1/3 1/3 1/3 3/3 1/3 1/3 1/3 1/3 10%
18 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
19 0/3 3/3 3/3 3/3 0/3 3/3 3/3 3/3 3/3 3/3 80%
20 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0%

66

Table A.5: Results for Hybrid Technique (number of test cases
passed for each repetition)

ID 1 2 3 4 5 6 7 8 9 10 RES
1 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
2 2/3 2/3 2/3 2/3 3/3 2/3 2/3 2/3 2/3 2/3 10%
3 0/2 0/2 0/2 2/2 2/2 0/2 0/2 2/2 2/2 2/2 50%
4 1/3 3/3 3/3 1/3 3/3 3/3 3/3 3/3 3/3 3/3 80%
5 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 1/2 90%
6 0/2 2/2 2/2 0/2 0/2 0/2 2/2 0/2 0/2 2/2 40%
7 2/3 3/3 2/3 3/3 3/3 3/3 3/3 3/3 2/3 3/3 70%
8 0/2 0/2 2/2 2/2 2/2 0/2 2/2 2/2 0/2 2/2 60%
9 0/2 0/2 2/2 2/2 0/2 2/2 2/2 0/2 2/2 0/2 50%
10 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 0%
11 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 100%
12 2/2 1/2 2/2 1/2 2/2 1/2 2/2 2/2 2/2 1/2 60%
13 1/2 2/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 10%
14 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
15 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0%
16 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0%
17 0/3 0/3 0/3 0/3 0/3 0/3 0/3 3/3 0/3 0/3 10%
18 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 100%
19 3/3 3/3 3/3 3/3 3/3 0/3 3/3 0/3 0/3 0/3 60%
20 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0%

67

A. Detailed Results From Phase 2 Evaluation

68

Appendix B

Interview Framework

B.0.1 Phase 1 Description
The initial phase will consist of exploratory work and research to identify areas within Scania
where AI-assisted development can offer significant value. This will be achieved through
consultation and interviews with Scania developers and experts. The goal is to choose an
assignment within a specific domain at Scania where an AI application could be beneficial.
We will use the classification of software application areas presented in Fan et al.’s LLM review
article as input to the discussion [3], e.g., code generation, code completion, refactoring, or
test case generation.

B.0.2 Overall Structure of Interviews
• Interviews will be conducted in English or Swedish depending on the preference of the

interviewee.

• Interviews will be conducted on site at the Scania office (Södertälje or Stockholm) or
on MS Teams, depending on the preference of the interviewee.

• The interviews will be recorded if consent is provided by the interviewees. The record-
ings will not be shared with anyone and will only be used for the purpose of writing
notes after the interviews and will then be deleted.

• Interview questions will be sent to the interviewee prior to the interview.

• Notes will be sent to the interviewee after the interview so they have the possibility to
add or comment.

69

B. Interview Framework

B.0.3 Interview
Formal Introduction

• I am writing my master thesis on the topic of exploring the current use and future
potential of AI-assisted development at Scania.

• The first phase in my thesis contains a process of gathering information from Scania
employees regarding this topic.

• As an individual interviewee, you are guaranteed anonymity, no company names will
be published in the resulting report.

• After the interview you will get the notes where you have the chance to remove any
information or clarify yourself.

Before starting: Do you consent to the interview being recorded?

Background (Warm-up)
• Graduation year? Educational background?

• When did you join Scania? What is your role at Scania today? How long in that role?

• Previous relevant roles?

• Years of experience with AI/LLMs?

• How proficient would you consider yourself when it comes to generative AI and LLMs?

Part 1
• Can you tell me about your experience with AI at Scania?

– What AI/LLM-based tools are you using today?

– How is the development going in this area at Scania today?

• Do you think the transport industry (Scania’s industry) is facing more challenges with
incorporating AI tools into their practices in comparison to other industries? Why?

• What has been your experience in terms of the learning curve associated with AI/LLM-
based tools?

• Within your team/part of the organization, how do you think AI/LLM-based tools can
be beneficial to use?

– Within which area of use do you think the tool can offer significant value?

• Are there any specific integration challenges when combining AI tools with existing
software systems and databases at Scania?

70

• How does Scania ensure data security and privacy when using AI/LLM-based tools?

• (Developer) If you could decide, which AI tools would you want Scania to provide?

Part 2
• Are there any AI/LLM-based tools in particular that you have considered incorporat-

ing within your part of the organization?

– Is there a roadblock for this process? (Scania policies? Rules & Regulations?
Time-consuming? Lack of knowledge?)

• Can you think of a specific assignment that you would want to examine whether gen-
erative AI/LLM-based tools could support?

• (Show picture below B.1) Regarding the application of LLMs for general activities/processes
in software development, could these alternatives be of interest for your part of the or-
ganization?

Figure B.1: Classification of Software Application Areas from Fan
et al.’s LLM review article [10]

71

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-06-03

EXAMENSARBETE Exploring AI-Assisted Software Development at Scania:
The Role of Prompt Engineering and Regulatory Compliance
STUDENT Julia Bäcklund
HANDLEDARE Markus Borg (LTH), Maria Erman (Scania)
EXAMINATOR Emma Söderberg (LTH)

AI i praktiken: Utforskar nya möjligheter
inom mjukvaruutveckling och
regelefterlevnad hos Scania

POPULÄRVETENSKAPLIG SAMMANFATTNING Julia Bäcklund

Genom att införa prompt engineering i AI assisterad mjukvaruutveckling har detta
examensarbete vid Scania identifierat metoder för att förbättra effektiviteten och
kvaliteten i genererad kod. Resultaten belyser även att den AI-assistent som an-
vänts inte klassificeras som ett högrisk AI-system enligt EU AI akten, vilket bidrar till
att förstå vilka krav och föreskrifter som behöver beaktas vid användning av AI inom
industrin.
Detta examensarbete har utforskat metoder för
att effektivisera och förbättra kvaliteten på kod-
generering genom avancerad prompt engineering.
Studien har fokuserat på att anpassa användnin-
gen av generativ AI för att möta behoven av
hög produktivitet och högkvalitativ kod, centrala
behov för Scanias mjukvara utvecklingsprocesser.
Målet för utvärderingen var att genom att opti-
mera hur AI används för att generera kod kunna
minska tidsåtgången för utveckling samtidigt som
precision och effektivitet förbättras. Ett mål som
är viktigt inom en industri där kraven på regel
kompatibilitet och teknisk precision är höga.

Under utvärderingen användes flera olika
prompt engineering-tekniker, inklusive zero-shot,
one-shot, few-shot, role prompting, hybrid teknik
(en kombination av few-shot och role prompting)
samt avancerade metoder som Chain of Thought
och Least to Most prompting. Dessa metoder tes-
tades för att identifiera de mest effektiva sätten
att förbättra AI-assistentens förmåga att generera
tekniskt korrekt och användbar kod.

Av de traditionella metoderna som evaluerades

presterade few-shot och hybrid metoderna bäst
i att förbättra resultatet av kodgenereringen då
dessa tekniker effektivt utnyttjade fler exempel för
att ge LLM:en djupare kontext och därmed mer
exakt kod.

Ett oväntat inslag i studien var hur små vari-
ationer i utformningen av prompts kunde ha
stor inverkan på AI-assistentens förmåga att lösa
avancerade programmeringsuppgifter. Detta un-
derstryker betydelsen av att noggrant överväga
hur AI-system tränas och interagerar med män-
niskor samt vilka effekter detta kan ha på den
slutgiltiga produktens kvalitet.

	Introduction
	Background
	Related Work
	Prompt Engineering
	Code Generation with Generative AI
	Compliance with the EU AI Act

	Purpose
	Delimitations and Scope
	Structure of Thesis

	Theory
	ChatGPT or Azure AI Studio AI-assistant
	Large Language Models and the GPT-3.5 Model
	Prompt Engineering
	Prompting Techniques

	EU AI Act

	Method
	Phase 1
	Interviews
	Choosing Assignment

	Phase 2
	Prompt Engineering

	Phase 3
	Literature Review
	Interview

	Results and Analysis
	Phase 1
	Interviews

	Phase 2
	Code Generation with AI-assistant

	Phase 3
	Providers vs Deployers
	Identifying High-Risk AI Systems
	Impact on Autonomous Vehicles (AVs)

	Discussion
	RQ1: What are the potential value areas for AI-assisted development at Scania in the near term?
	RQ2: How can prompt engineering be used to enhance code generation with generative AI in tasks relevant to Scania?
	RQ3: What are the broader implications of integrating AI-assisted development at Scania, including compliance with the EU AI Act?
	Future Research
	Limitations and Threats to Validity

	Conclusion
	References
	Appendix Detailed Results From Phase 2 Evaluation
	Appendix Interview Framework
	Phase 1 Description
	Overall Structure of Interviews
	Interview

