
MASTER’S THESIS 2024

Generating Test Cases Using
Natural Language Processing
Yamen Albdeiwi, Mohammed El-Khalil

ISSN 1650-2884
LU-CS-EX: 2024-41

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-41

Generating Test Cases Using Natural
Language Processing

Testfallsgenerering med hjälp av Natural
Language Processing

Yamen Albdeiwi, Mohammed El-Khalil

Generating Test Cases Using Natural
Language Processing

(Evaluating Large Language Models for Automated Test Case

Generation)

Yamen Albdeiwi
mo4718al-s@student.lu.se

Mohammed El-Khalil
mo4382el-s@student.lu.se

February 1, 2024

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Jacek Malek, jacek.malec@cs.lth.se

mailto:mo4718al-s@student.lu.se
mailto:mo4382el-s@student.lu.se
pierre.nugues@cs.lth.se
jacek.malec@cs.lth.se

Abstract

Software testing today is a vital factor in maintaining the quality and reliability
of software products in an always-advancing technical era. Nevertheless, making
manual high-quality test documents has been historically laborious and lengthy,
which results in significant time and money consumption for the whole software
creation process. Recently, the use of transformer models has become an efficient
tool for the automation of this procedure. This thesis is based on the use of
large language models to create test case documents from feature specifications
written in natural language.

We assess different ways to improve our model’s effectiveness, such as fine-
tuning, prompt engineering, and agentic workflow methods. We carry out the
research with the use of a quantized and optimized model for memory efficiency
that demonstrates the possibility of generating good test cases even with the re-
striction of computational resources. Our approach yielded impressive results
in both the BLEU and human evaluation scores. The highest BLEU score we
achieved with our best method is 32.93, which falls within the 30-40 range, indi-
cating an understandable to good translation which in our case means the gen-
erated test cases are generally accurate and preserves the meaning of the original
test cases. This score also corresponded to our highest human evaluation score
of 3.71, demonstrating a strong correlation between the BLEU score and human
judgment. Although this is approximately 80% of the reference human evalua-
tion value of 4.68, which represents human-written and reviewed test cases, it is
still a noteworthy accomplishment.

Keywords: NLP, Test cases, Feature specification, Prompt engineering, Fine-tuning,
Transformers, Large Language Models, Mistral 7B, Hyperparameter optimization, text2text

2

Acknowledgements

To begin with, we would like to thank our supervisor from LTH, Pierre Nugues, sincerely, for
his invaluable guidance, unshakable support, and astounding professionalism which hugely
influenced the development of this Master’s thesis. Pierre’s extensive expertise in the research
field served us both as a guiding force to navigate through the complexities of the research
process and as a source of light to highlight the very themes we aimed to cover and open new
research paths.

Also, our great appreciation goes to Ingemar Larsson, AI lead within our department at
Axis Communication, who shared the idea of the agentic workflow method as an applicable
strategy for our case. Gradually, Ingemar’s advice led to a completely new way of exploration
that enabled us to make our assessment and verification of the method’s efficiency and ap-
plicability according to our purposes.

3

4

Contents

1 Introduction 7
1.1 Goals . 8
1.2 Research Expectations . 8
1.3 Scientific contributions . 9
1.4 Division of Work . 9
1.5 Method . 9

2 Background 11
2.1 Software testing . 11

2.1.1 Testing optimization . 12
2.1.2 Test Case Documents . 12

2.2 Natural Language Processing . 13
2.2.1 Text Processing and Generation . 14

2.3 Transformer’s Architecture . 17
2.3.1 Attention Mechanism . 17
2.3.2 Encoder-Decoder . 18

2.4 Large Language Models (LLMs) . 20
2.4.1 Pre-trained Language Models (PLMs) 20
2.4.2 PLMs Architecture . 21
2.4.3 Fine-tuning Large Language Models 23
2.4.4 Prompt Engineering . 26

2.5 Hyperparameter Optimization (HPO) . 28

3 Related work 31
3.1 Generation of Test Cases . 31
3.2 Large Language Models and Generation . 33

4 Data 35
4.1 Data Collecting . 35

4.1.1 Phase I . 36

5

CONTENTS

4.1.2 Phase II . 36
4.1.3 Phase III . 37

4.2 Exploratory Data Analysis . 37
4.2.1 Phase I . 38
4.2.2 Phase II . 43
4.2.3 Phase III . 46
4.2.4 Employed Test Cases . 49

4.3 Data Augmentation (DA) . 49
4.4 Dataset . 51

4.4.1 Real Data . 51
4.4.2 Real & Augmented Data . 51

5 Architecture 53
5.1 Choice of Model . 53
5.2 Mistral-7B . 53
5.3 Llama-cpp-python Integration . 60
5.4 AI Agentic Workflow . 61

6 Experiments 63
6.1 Overview of the Approach . 63
6.2 Setup & Deployment . 63

6.2.1 Defining Setup . 64
6.3 Running Experiments Strategies . 66

6.3.1 Prompt engineering approach . 67
6.3.2 Fine-tuning approach . 70
6.3.3 AI Agentic Workflow Approach 71

6.4 Evaluation . 72
6.4.1 NLG Evaluation Metrics . 73
6.4.2 Human Evaluation . 74
6.4.3 Evaluation Pipeline . 74

7 Results & Discussion 77
7.1 Fine-tuning Results . 77
7.2 Prompt Engineering Results . 78

7.2.1 Base Model with QLoRA . 78
7.2.2 Model with GGUF through Llama-cpp-python 79

7.3 Agentic Workflow Results . 80
7.4 Choosing a Final Model . 81
7.5 Building a Practical Tool . 85

8 Conclusion 87

References 89

Appendix A LLM Evaluation and Hyperparameter Optimization Pipeline 101

Appendix B Experiments Tracking 103

6

Chapter 1

Introduction

Software testing is a vital part of the software development life cycle. Almost every aspect of
modern life has some kind of integrated technology attached to it, either as an assisting tool
or a critical component of that aspect. Therefore, the software offered today to end-users
must be quality-assured in functionality, reliability, performance, and safety.

In the field of software testing, the research shows that software testing is the most costly
segment in Software development, and it could be as high as 52% of the overall software ex-
pense. The fact that large amounts are spent on obtaining quality-assured software products
shows the significance of testing processes.

One of the key elements of a reliable software testing process is good-quality test case
documents. These documents are complete and informative to assess the functionality and
performance of the software since they define the criteria for evaluating the performance of
the software based on the environment where the software is being run, how the software
runs, and what the expected results are. Thus, by following the instructions laid out in the
testing framework, the results can be interpreted to assess the accuracy of the software’s
behavior. Nevertheless, currently, the industry standard is to write these test case documents
by hand, which has been for a long time considered a time-consuming and labor consumption
process. Testing engineers need enough time to scrutinize feature or software specification
documents in order to generate test cases that are both related and ensure optimal testing
coverage. This process is by nature susceptible to human error and lack of uniformity.

Recent advancements in the natural language processing domain have resulted in the
emergence of new, innovative solutions for automatizing sub-processes within the software
testing pipeline. Specifically, the development of neural network models with transformer-
based architectures has contributed to models being proficient in tasks like text generation
and language translation. This is due to an extraordinary increase in natural language under-
standing and processing capabilities.

The arising of transformer-based models has introduced extremely efficient techniques
for the automation of test case generation, which was previously impossible. In this Master’s
thesis, motivated by the advancements of these models with their exceptional contextual

7

1. Introduction

understanding and generative capabilities, we applied large language models to generate test
case documents from written descriptions.

We investigated many diverse approaches aimed at improving our test case generation
model capabilities. Particularly, we carried out fine-tuning techniques, including and with-
out hyperparameter optimization utilizing supervised fine-tuning training to enrich the model’s
comprehension of the testing arena. Furthermore, we tried prompt engineering techniques,
namely zero-shot, one-shot, and multi-shot, used to guide the model’s generation compe-
tently. Another aspect we assessed was the effectiveness of a combination of fine-tuning
and prompt engineering, identifying where these strategies could be used together to boost
both the quality and relevance of the generated test cases. As a part of our investigation,
we aimed to attain the best computational effectiveness with no compromise on the per-
formance. Hence, all our investigations were based on the quantized model, which was op-
timized for memory efficiency, and was run on a single local consumer GPU, making our
method possible even in real-world situations with rather limited computational capabili-
ties.

We carried out our research at Axis Communications, where our objective was to ex-
plore the feasibility of generating test case documents directly from feature and specification
documents using state-of-the-art models.

At the end of our research, we concluded that optimization of smaller large language
models with 7 billion parameters is possible even with limited resources of computational
power. This has been demonstrated by creating quality test cases based on requirements
documents. We also determined that a lot of data is needed to fine-tune the language models
to increase the performance and generation quality of the model. The results of our study
have proven that when the data is not sufficient then prompt engineering is the best opti-
mization method. These findings both contribute to the knowledge base of language model
optimization and provide useful solutions to the challenges of model optimization with lim-
ited resources.

1.1 Goals
The aim of our research is to investigate the possibility of automating the test case gener-
ation process through Natural Language Processing. Further, if it is possible then we want
to find out how feasible it is to use this approach with limited hardware resources. Finally,
if the approach proves to be effective and sufficiently good through our findings. We will
implement a tool for the testing team at Axis Communications which they will be able to
utilize to automate the test case generation process.

1.2 Research Expectations
The objective of this thesis is to explore the feasibility and effectiveness of generating test
cases using Natural Language Processing (NLP). Our investigation focuses on the following
questions:

• Can a small-sized large language model (7 billion parameters) with quantization be
effectively applied in the software domain using consumer-grade GPU hardware?

8

1.3 Scientific contributions

• Is it feasible to generate test cases based on feature descriptions using a small-sized
large language model?

• How does this approach compare in effectiveness to human-written test cases that have
undergone planning and reviewing phases?

1.3 Scientific contributions
This thesis offers several interesting insights into applying NLP to software testing. First,
it shows the capability of a relatively small-sized language model (7 billion parameters) with
quantization in the software domain with the use of consumer-grade GPU hardware. Second,
it demonstrates the usefulness of a language model for generating test cases from feature
descriptions as an alternative method for automating this aspect of software testing. It also
compares the results of the test cases generated by NLP with the traditional human-written
test cases planned and reviewed, with such strengths and limitations clearly described.

The following outcomes helped to describe what is the most appropriate way to work
with the stated situations. Limited computational resources and data made fine-tuning the
worst possible option, as it only degraded the pre-trained weights. On the other hand, it
turned out that prompt engineering was the best choice. Our study revealed the type of
prompt engineering that best suits our task and generated the best performance both in
standard metrics and human evaluation metrics.

Through these contributions, this thesis contributes to the advancement of the applica-
tion of NLP techniques in the software testing area.

1.4 Division of Work
Both authors have contributed equally to both the experimentation and writing aspects of
this thesis. The division of responsibilities for specific topics is outlined in Table 1.1.

1.5 Method
The applied method in our thesis only involves conducting experiments using cutting-edge
techniques to deploy and examine different approaches. Using these experiments, we eval-
uate the effectiveness and performance of these approaches. We thoroughly describe the
approaches and the applied techniques in Chapter 6.

9

1. Introduction

Table 1.1: Division of responsibilities between the authors

Technical Topics Yamen Albdeiwi Mohammed El-Khalil
Experiment design and setup 50% 50%
Data collection and preprocessing 50% 50%
Exploratory data analysis 70% 30%
Implementation 50% 50%
Fine-tuning experiment 40% 60%
Prompt engineering experiment 40% 60%
AI agentic workflow experiment 80% 20%
Hyperparameter Optimization 50% 50%
Evaluation and analysis 50% 50%
Results interpretation 50% 50%
Implementing the final tool 20% 80%
Report Topics Yamen Albdeiwi Mohammed El-Khalil
Writing of the thesis 50% 50%
Literature study & references 50% 50%
Graphic design 50% 50%

10

Chapter 2

Background

This chapter provides essential context and background information for the research we have
undertaken. The first section delves into the domain of software testing (ST), explaining its
fundamental concepts, methodologies, and challenges associated with guaranteeing sufficient
software quality. In the realm of software testing, the section also covers testing optimiza-
tion and its different techniques for increasing efficiency and effectiveness in the ST cycle.
Transitioning from ST, the second section dives into the field of Natural Language Processing
(NLP), providing a comprehensive overview of the subject and demonstrating its application
in today’s digital world.

Further, we will discuss text processing and generation. Then, we present the numeri-
cal representation methods; Bag of Words, N-grams, and Word Embeddings. In addition,
the next section focuses on language modeling and text generation by bringing out the al-
gorithms and techniques it involves. We continue by narrowing down on the Transformer’s
architecture, explaining its attention mechanism and encoder-decoder framework. The fol-
lowing section analyzes deeply into pre-trained language models where different kinds of
architectures such as masked, causal, and prefix language models are considered for text anal-
ysis. Finally, we will explain state-of-the-art techniques for fine-tuning and optimizing Large
Language Models.

2.1 Software testing
According to Whittaker (2000), ST is the execution process of a software system with the
main objective of assessing if the software executes as outlined in its specifications and works
in its designated environment. Further, Singh and Singh (2012) state that the following five
elements: test strategy, testing plan, test cases, test data, and test environment are the essen-
tial components to ensure a successful ST process.

Generally, it is accepted that it is impossible to achieve a perfect software or system with-
out any flaws. Therefore, it is necessary to apply ST to a software or system before its release

11

2. Background

and throughout its whole development life cycle. However, it is equally important to per-
form and have high testing standards continuously. This is to decrease the risk of having
a detrimental effect when the software is being used by end-users (ISO/IEC/IEEE Interna-
tional Standard, 2013). ST is resource and time-consuming, which leads to one of the primary
challenges in the software industry. Regarding the costs, estimates have shown that up to 80%
of a software development project’s total cost is spent on testing tasks (Alaqail and Ahmed,
2018).

2.1.1 Testing optimization
As aforementioned, software testing is a crucial aspect for tech organizations developing soft-
ware, as it provides quality assurance and also accounts for a significant part of its expenses
as it amounts to more than 52% of the cost of a software development life cycle (Kiran et al.,
2019). This is because a testing process is time-consuming, labor-intensive, and monotonous
(Kiran et al., 2019). The factors mentioned above are the most significant driving factors for
the development to improve the efficiency of the ST domain.

In recent years, testing optimization has emerged as a popular research topic in the realm
of ST, which has resulted in researchers introducing several optimized testing techniques that
are more efficient in terms of both labor and computation. ST is a collective term that consid-
ers many types of testing areas and techniques, where the most common testing subdomains
are test case generation, test case selection, and test case prioritization (Gupta et al., 2019).

Test case generation: Test case generation is one of the critical activities in software testing,
and it is a task that demands a lot of work and attention. It is, therefore, quite a
complex task, and it influences the efficiency and effectiveness of the whole testing
process. According to this, this task has been the subject of much research in the area
of software testing for many years. Several methods and tools have been devised or
invented to solve this task in a better way. In this aspect, efficiency refers to having as
few test cases as possible but with the highest possible test coverage with as few human
reviewers included in the manual work of evaluating the coverage of the test cases
(Anand et al., 2013). The most prominent way of optimizing the test case generation
process is to automatize the process in a fashion that improves the test coverage or at
least does not inhibit it.

2.1.2 Test Case Documents
Test case documents are detailed descriptions of how software should be tested. Usually,
they are written in plain natural language, making them easy to understand. The documents
mainly cover topics such as the test objectives, the criteria for a successful test, and how the
tests should be executed, see Figure 2.1. Depending on the scenario, more details like code
blocks, images, and extra topics can be included in the testing documents.

Potuzak and Lipka (2023) explain that in the ST domain, testing documents play a signif-
icant role since they give clear direction and instruction to testers about objectives, criteria,
input data, expected outputs, and testing environments for consistency and comprehension.
These testing documents identify issues at an early stage and lower defects to mitigate risks
and improve overall quality. They make the testing processes efficient, thus saving time and

12

2.2 Natural Language Processing

effort, as well as allowing automated tools to produce test scripts quickly. Besides track-
ing testing activities, testing documents serve as important documentation for traceability,
which in turn helps in delivering high-quality software products.

In different stages in a software development life cycle, these documents could be found
useful in different aspects. They can be used from the beginning as guidelines for deciding the
functionality of software being developed until the end of when the software is being tested.
Furthermore, the testing document is not only useful for developers and testers. They are
also used as inputs to automated testing software to optimize the testing process by making
it more accurate and efficient by saving time and human resources (Aoyama et al., 2021).
Additionally, the documents can be used as data samples to use as references when generating
new testing documents, either by humans or machines.

 #ID - Test case title

Objective

The scope and objective of the test case

Criteras

The the criteras that needs to be fulfilled for approval

Execution

The test steps which shows how to perform this test

.

.

.

.

Additional information

Figure 2.1: A mock of a testing document

2.2 Natural Language Processing
In the 1950s, NLP came into existence at the intersection of artificial intelligence and lin-
guistics. Initially, NLP and text information retrieval (IR) were separate disciplines. The lat-
ter depends on statistical methods to index and search vast amounts of documents quickly.
However, with time, NLP and IR have started to get intertwined more and more.

Nowadays, NLP is a multidisciplinary field with a lot of unique tasks to be solved, and
researchers and developers sometimes have to widen their experience significantly (Nadkarni
et al., 2011). Among IR are text classification, text generation, language translation, and text

13

2. Background

sentiment analysis key subjects in the NLP realm. Developers attempt to utilize machine
learning, linear algebra (vector mathematics), and information theory to address most NLP
tasks. Today’s capacity of storing natural language samples such as books, articles, and tran-
scriptions digitally favors NLP advancements significantly. Proof of this is the wide applica-
tion of NLP techniques in recent years in most everyday applications, for example, spelling
corrections in standard mobile phones, machine translation engines like Google Translate,
speech engines like Apple’s Siri, and today’s mass development of interactive virtual agents
like chatbots (Ferrario and Nägelin, 2020).

In the preceding years, NLP has had major advancements that have led to transitions in
text processing approaches which for simplification purposes Ferrario and Nägelin (2020)
divide into three categories: The classical approach, modern approach, contemporary approach.

Classical Approach. The classical approach was based on the generation of bag-of-words and
bag-of-POS (parts of speech) representations of a text or document. The bag-of-words
representation reflected the number of appearances each word has in the text, while
the bag-of-POS represented the frequency of each part of speech in the text. These
representations were in numerical vectors which were fed into the NLP model and
based on these would the model make predictions (Ferrario and Nägelin, 2020).

Modern Approach. Diverting the discrete numerical vectors used in the previously outlined
method, the modern approach aims to utilize embedding algorithms that generate rep-
resentations with continuous numerical vectors. Being continuous results in signif-
icantly more mappings between word and numerical representations. This yields an
improved capability of capturing the contextual meaning of the words and encompass-
ing long-range dependencies between the words. Since the numerical vectors encapsu-
late contextual meaning, the model can generate more accurate predictions (Ferrario
and Nägelin, 2020).

Contemporary Approach. With the advancements done in the past decade in the field of
NLP, a large part of text preprocessing has been eliminated. This is because today, one
can use and train neural networks directly on the text (Ferrario and Nägelin, 2020).

This contemporary approach is extremely promising, representing a significant advance-
ment in the field. In the rest of this thesis, we will explore the challenges of how this approach
can be effectively used in the automated generation of test cases from feature specifications.
Thus, in this paper, we sample various methodologies and techniques, and we aim to show-
case the practical applicability and potential impact of this approach in the field of software
testing.

2.2.1 Text Processing and Generation
NLP systems rely on text processing and generation to understand, manipulate, and generate
human language text. As part of text processing, a wide range of tasks are carried out, such as
recognizing words, sentences, and linguistic structures and labeling them with relevant lin-
guistic attributes, to extract meaningful information from raw text data. In this section, we’ll
briefly introduce a few tasks in modern NLP to make the next section more understandable.

14

2.2 Natural Language Processing

Numerical representation of Text
The majority of NLP tasks rely on converting textual data into numerical representations to
assist the transformation of raw text data into a format in which machine learning models
can understand and process effectively. Encoding the semantic and syntactic information
extracted from text documents into numerical vectors enables computational algorithms to
operate on them. The NLP field began with the exact matching technique, where Context
Free Grammar (CFG) 1 was used for analysis. In the early days of search engine development,
complex nested if-then rules were used to build search engines. Further advancements led to
approximate matching, which ignored errors up to a certain point. As research progressed,
statistical approaches were used to focus on word frequency. Compared to grammar-based
techniques, these methods were easy to implement and improved model accuracy (Patil et al.,
2023). We will explore a few methods:

Bag of Words (BOW) In this method, the corpus is displayed as a matrix where each
sentence is a row and each unique word is a column (Harris et al., 2017). The number of rows
is determined by the number of sentences in the corpus, and the vocabulary size of the corpus
determines the number of columns. This matrix has dimensions according to the number of
sentences in the corpus. By using rows to represent each sentence or document in a corpus,
similarity scores between them can be calculated.

Nonetheless, as discussed by Patil et al. (2023), this representation is contingent on precise
matching, indicating that document similarity only works when exact words are employed.
This way, it may produce an inaccurate similarity score for documents containing the same
information but using different words or synonyms.

N-Grams This method shifts the focus from individual words to multi-word tokens, and
captures the ordering present in the window of context. Character ‘N’ indicates the size of
that window. As Katz (1987) proposed, N-gram was the first technique to define a window
to capture the ordering among words, therefore, it becomes effective when certain groups of
words carry more weight or different meanings when they appear together. Furthermore, N-
grams that occur rarely or too frequently do not carry any important meaning, thus, filtering
is needed to eliminate them.

Word Embeddings This method comes to hand due to the importance of the semantic
relation between words and the widespread use of representing words as low-dimensional
dense vectors. The embeddings are converted into a continuous vector space. Each word is
represented by a set of real numbers (see Figure 2.2), aiming to understand the meaning of
words based on their context.

In modern NLP, word embeddings can predict surrounding words and capture their rela-
tionships. Surrounding words can affect the given word and the meaning of it, which could
lead to them being context-sensitive (Patil et al., 2023). In addition, word vectors capture
their meanings and represent them using dense floating-point values, which represent both
the semantics and syntactic aspects of the word. These vectors as Patil et al. (2023) claimed
have a length between 100 and 500 dimensions.

1Context Free Grammar (CFG) is a formal grammar with production rules that can be applied to a nonter-
minal symbol without considering its context. (Cremers and Ginsburg, 1975).

15

2. Background

Text embeddings are constructed in many ways, such as the early approaches word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014), which build vector representations of doc-
uments by using document statistics (Romanus Myrberg and Danielsson, 2023). Nowadays,
embeddings are often generated by large language model encoders based on the transformer
architecture, and then the learned embeddings are used as pre-trained embeddings, which
reduces the computational cost (Vaswani et al., 2017).

Figure 2.2: Illustration of word embeddings and their visualization
in 2D (Alvarez, 2017)

Text Generation and Language Modeling (LM)
Text generation, the process of producing easy-to-comprehend and contextually relevant text
from a given input, is a critical task within NLP. It heavily depends on language models, with
transformer-based architectures being especially prominent in this domain.

Language Modeling (LM), as an unsupervised task in NLP, serves as the cornerstone for
many text generation tasks, facilitating the generation of human-like text with rich contex-
tual understanding. However, a fundamental problem for language modeling is working with
high-dimensional data curse of dimensionality 2 (Leygonie et al., 2023) which seems to be ob-
vious when modeling the joint probability distribution between multiple discrete random
variables (such as words in a sentence) Bengio et al. (2000).

Generally, a text can be modeled as a sequence of tokens t = ⟨t1, . . . , t j , . . . , tn⟩ (Li et al.,
2022), where each token is drawn from a vocabulary V (set of symbols). Therefore, it is
possible to represent a statistical model of language by the conditional probability of the
next word given all the previous words, since

2curse of dimensionality: when dealing with high-dimensional data, many supervised pattern recognition
methods may not be able to capture all relevant information. As the number of dimensions increases, exponen-
tially more data is required to maintain a similar density.

16

2.3 Transformer’s Architecture

P̂(w1
T) =

T∏
t=1

P̂(wt |w1
t−1) (2.1)

2.1: Conditional probability of the next word given all the previous
words, where wt is the t-th word, and wi

j = (wi,wi+1, . . . ,w j−1,w j)

In addition, we can iteratively sample tokens t̂i from the learned distribution pθ(ti |t<i). ,
t<i denotes all the tokens sampled before t̂i . In each iteration, we sample a token based on the
conditional probability distribution given by the model and insert the sampled token into
the sequence. By repeatedly selecting tokens based on learned probabilities, we can gradually
generate text one token at a time (Radford et al., 2019).

2.3 Transformer’s Architecture
A Transformer is a form of deep neural network first introduced in Vaswani et al. (2017). Its
architecture revolutionized the world of NLP as transformer-based models surpassed previ-
ous state-of-the-art approaches by such a huge margin in performance, which led to all the
recent cutting-edge models being based on transformer architecture (Gillioz et al., 2020).
The initial application of the transformer architecture was on machine translation, and to-
day we can see transformers being applied in most, if not all, NLP tasks. The factor that
distinguished transformers from the rest was the attention mechanism of the model archi-
tecture. Vaswani et al. (2017) describe that to the best of their knowledge transformers were
the first model architecture that solely relied on the attention mechanism to establish global
dependencies between input and output which resulted in a significant increase in efficiency,
parallelization, and cutting-edge machine translation.

2.3.1 Attention Mechanism
Niu et al. (2021) analogously describe the attention mechanism in the neural networks do-
main as the focused attention we humans have when we consciously and actively focus on a
particular assignment. The application of the attention mechanism has become more preva-
lent in neural network architectures (Niu et al., 2021).

The transformer architecture uses self-attention. Vaswani et al. (2017) describe self-
attention as an attention mechanism that uses the relation between different parts of an input
sequence to generate a representation of the sequence. From the input sequence, a query (Q)
and key-value (K,V) pair are derived and mapped to an output sequence. All these variables
are vectors where the output is the weighted sum of V and the weight assigned to a single V
is determined by the compatibility function of the Q with the corresponding K value.

Scaled Dot-Product Attention (SDPA). Vaswani et al. (2017) introduced “Scaled
Dot-Product Attention” as the attention function for the transformer architecture. Their
approach allowed for higher efficiency and effectiveness in attention computation by scal-
ing the dot product of Q and K to further apply the softmax function to obtain the at-
tention weights (see Equation 2.2). This enabled parallelization and more stable gradients

17

2. Background

during training which meant increased performance compared to the previous most com-
monly used attention functions, namely additive and multiplicative dot-product attention
in diverse NLP tasks. Vaswani et al. (2017) subsequently clarifies that the algorithms of mul-
tiplicative dot-product and SDPA are identical except for the scaling factor. In the case of
additive attention it has a similar complexity as SDPA in theory but due to highly optimized
matrix multiplication is SDPA significantly faster and memory-efficient.

Attention(Q,K,V) = softmax(
QKT
√

dk
)V (2.2)

2.2: Scaled Dot-Product Attention function (Vaswani et al., 2017)

Multi-Head Attention. Vaswani et al. (2017) demonstrated that instead of applying
single-head attention that uses the same dimension for Q, K , and V , employing multi-head
attention enables the model to target different aspects of information across different parts
of the data. This improves the model’s ability to recognize the semantic relation between the
words in the input. Multi-head attention is achieved by linearly projecting Q, K , and V mul-
tiple times repeatedly using various learned linear projections to dk, dk, and dv dimensions.
Further, the attention function is simultaneously applied to each of the various projected Q,
K , and V , which results in an output with the dimension dv (see Figure 2.3).

Figure 2.3: Visualization of the Multi-head Attention block
(Vaswani et al., 2017)

2.3.2 Encoder-Decoder
The architecture that transformers are based on differs from the previous architectures used
for sequence-to-sequence models. Formerly, the most common approach was to use recurrent
neural networks or convolutional neural networks for those kinds of tasks. When Vaswani
et al. (2017) introduced the transformer architecture which comprises two main parts: an en-
coder and a decoder, it revolutionized the playing field of model architectures as it enabled

18

2.3 Transformer’s Architecture

Figure 2.4: Visualization of the encoder-decoder architecture. The
module to the left is the encoder and the one on the right is the
decoder (Vaswani et al., 2017)

more effective and efficient learning and combined with the self-attention mechanism result-
ing in the capability to capture global dependencies between the input and output sequence.

Encoder. The main responsibility of the encoder component is to create contextualized
embeddings based on the input sequence, x = (x1...xn) which consists of symbol representa-
tions in a sequence. By utilizing the self-attention mechanism, this module carefully examines
the tokens in the input sequence. Subsequently, it establishes connections between tokens
from parts of the sequence to emphasize their relevance within the context. Through this
process, the encoder module generates embeddings that capture details, about the input se-
quence. The resulting continuous representation sequence z = (z1...zn) is then passed on to
the decoder.

Vaswani et al. (2017) describe that the encoder is composed of six stacked layers that are
identical and within every layer, there are two sub-layers, namely a multi-head self-attention
mechanism block and a fully connected feed-forward network. Each of the sub-layers is then
followed by a normalization layer (see Figure 2.4).

Decoder. The decoder’s main objective is to utilize the contextual embeddings generated

19

2. Background

from the encoder to predict an output sequence that is coherent and contextually appropri-
ate to the input sequence. The module is implemented to behave autoregressive which means
the model generates one token, yi , at a time in the output sequence. This enables it to pre-
dict the subsequent token with relevance to its preceding ones. The decoder continuously
re-feeds each outputted predicted token, yi , to maintain the relevant context in which the
next generated token yi+1 is dependent on to be able to predict a contextually relevant word
relative to the input sequence x. The self-attention mechanism used in the encoder module is
also implemented in the decoder, which plays a pivotal role in creating global dependencies
between the input and output sequence.

Figure 2.4 shows that the decoder similar to the encoder consists of six stacked layers but dif-
fers in the amount of sub-layers it comprises. The decoder has an additional sub-layer besides
the fully connected feed-forward network and the multi-attention layer that the encoder also
contains. The extra sub-layer is a masked multi-head attention block followed by a normal-
ization block, which is the layer that performs the attention mechanism on the contextual
output from the encoder to the decoder. Transformers can guarantee a generated prediction
yi to have solely relied on the known predictions preceding i : th position due to the masked
attention and the fact that the incoming contextual embeddings from the encoder are shifted
by one position (Vaswani et al., 2017).

2.4 Large Language Models (LLMs)
In this section, we discuss the pretraining of LLMs, which is an extension of our previous
discussions on their architecture and functionality. Pretraining is an essential part of LLMs,
which is the basis of their capability to comprehend and produce natural language. LLMs
go through the process of unsupervised learning, during which they learn to detect linguistic
patterns and semantic relationships that are part of the data that they are processing. This
intermediate stage of pretraining is very important, as it provides LLMs with the knowledge
and context that they need to do a lot of different tasks well. In the next subdivisions, we
discuss the pretraining objectives, dataset selection, and fine-tuning procedures, thus, giving
a brief of the complex processes in the formation of the abilities of the latest language models.

2.4.1 Pre-trained Language Models (PLMs)
Pretrained language models (PLMs) have become increasingly popular in natural language
processing in recent years. They are trained on large unsupervised corpora first and then
fine-tuned in downstream supervised tasks later on. In response to Transformer and higher
computational power, PLM architecture evolved from shallow to deep architectures (Li et al.,
2022), like BERT (Devlin et al., 2018) and OpenAI GPT (Radford et al., 2019).

Extensive research has demonstrated, as Li et al. (2022) discussed, that pre-trained lan-
guage models can store a vast amount of linguistic knowledge in their parameters and ac-
quire universal and contextual representations of language by utilizing specifically designed
objectives, such as masked token prediction 3. PLMs are therefore generally beneficial for

3Masked language modeling (MLM) first masks out some tokens from the input sentences and then trains
the model to predict the masked tokens by the rest of the token (Qiu et al., 2020).

20

2.4 Large Language Models (LLMs)

downstream tasks and can prevent training a new model from scratch. Following the success
of PLMs in other NLP tasks, researchers have proposed (?) to apply PLMs to text generation
tasks with several steps (see Figure 2.5).

Figure 2.5: A three-step process for using PLMs for text generation is
described: input representation learning, model architecture design
and selection, and model parameter optimization. (Li et al., 2022)

2.4.2 PLMs Architecture
Transformer-based encoder-decoders or single Transformers are the foundation of existing
PLMs for text generation. PLMs, such as GPT-3 (Brown et al., 2020), use a single Transformer,
the decoder only, to perform input encoding and output decoding simultaneously (Li et al.,
2022). This encompasses three key variations: masked LMs, causal LMs, and prefix LMs,
varying in the strategy of attention masking.

Masked Language Models Masked LMs use a full-attention Transformer encoder. Usu-
ally, full-attention models are trained to predict masked tokens using bidirectional informa-
tion for masked language modeling (MLM). BERT (Devlin et al., 2018) represents the most
representative model (see Figure 2.6).

However, masked LMs are seldom used for text generation tasks due to the discrepancy be-
tween pre-training and downstream generation tasks. Yang et al. (2019) conclude that BERT’s
reliance on manipulating input with masks neglects dependency between masked positions
and results in a pretrain-fine-tune discrepancy. Masked LMs are more frequently used as
encoders for text generation, leveraging their excellent bidirectional encoding abilities, as
Rothe et al. (2020) propose.

Causal Language Models Likewise to the Transformer decoder, causal LMs rely on the
diagonal mask matrix and are designed for language modeling, predicting the likelihood of
certain words in a sentence occurring. Therefore, causal LMs are straightforward for text
generation, predicting the next word based on all previous words (Li et al., 2022).

In previous studies, GPT (Radford et al., 2018) was the first causal LM for the text generation
task (see Figure 2.7). Following that, GPT-2 (Radford et al., 2019) investigated the transfer
capability of language models for zero-shot generation tasks, emphasizing the importance
of having sufficient data. Moreover, GPT-3 (Brown et al., 2020) demonstrated that massive
model parameters can dramatically improve the downstream generation tasks, with a few
examples or prompts.

21

2. Background

Figure 2.6: Illustration of BERT architecture as masked transformer
(Laskin et al., 2022)

As mentioned before, causal LMs are simple for text generation, but they have several struc-
tural and algorithmic limitations. Since they encode the tokens just from left to right, they
ignore the bidirectional information on the input side. Additionally, causal LMs are not in-
tentionally designed for the sequence-to-sequence generation tasks, thus in practice, they do
not exhibit high performance in tasks such as summarization and translation (Radford et al.,
2019).

Figure 2.7: The GPT-1 architecture laid out by Radford et al. (2019).
It is composed of 12 stacked decoders. Each decoder contains self-
attention, followed by a position-wise feed-forward network, with
normalization in between (Al-Hossami and Shaikh, 2022).

Prefix Language Models Prefix LMs, functioning on a single Transformer, use a bidirec-
tional encoding scheme for input and a natural left-to-right generation pattern for output.

22

2.4 Large Language Models (LLMs)

Through the mixture attention mask, the input text tokens can relate to each other, while
the target text tokens can only attend to all input tokens and previously generated tokens (Li
et al., 2022).

UniLM (Dong et al., 2019) was the first prefix LM (see Figure 2.8). It employed a prefix
attention mask to deal with conditional generation tasks, compared to causal LMs, similar
to the encoder-decoder architecture. UniLMv2 (Bao et al., 2020) and GLM (Du et al., 2021)
enhanced vanilla prefix masking strategy by introducing permuted language modeling 4 in
XLNet (Yang et al., 2019).

After comparing single transformer prefix LMs to transformer-based encoder-decoder LMs,
? concluded that adding explicit encoder-decoder attention is more robust in capturing con-
ditional dependencies, despite the advantages of prefix LMs.

Figure 2.8: Unified LM architecture as illustrated in Catterall et al.
(2005).

2.4.3 Fine-tuning Large Language Models
In machine learning, fine-tuning is a technique of adapting a pre-trained model to a new task
or use case. It could be considered a variant of transfer learning.5

The key idea of fine-tuning is that we save lots of time and resources since it is cheaper
and easier to build upon the capabilities of a pre-trained base model which knows relevant

4Given a sentence, instead of predicting the next word in sequence (as in traditional LMs), predict a ran-
domly permuted version of that sentence.

5Friederich (2017) defined transfer learning as the practice of using an existing model’s learned knowledge
as the basis for learning new tasks.

23

2. Background

to the downstream task than training a new model from a blank slate. Additionally, this is
extremely valuable in cases where we are dealing with deep learning models with millions or
even billions of parameters, such as LLMs.

Parameter Efficient Fine Tuning (PEFT) is an innovative solution to fine-tune large
pre-trained models without requiring extensive computational resources that are needed to
fine-tune a whole LLM (Xu et al., 2023). Freezing most layers of the large model and only
leaving the parameters in the last few layers for fine-tuning increases efficiency by reduc-
ing memory usage and the number of fine-tuning parameters while still maintaining results
good enough to be comparable to fully fine-tuned model (Tang et al., 2024). PEFT’s effective
solution enables us to fine-tune a pre-trained model to a smaller dataset to achieve better
performances on domain-specific tasks, in our case, test case generation.

Quantized Low-Rank Adaptation (QLoRA) Fine-tuning LLMs today requires a
copious amount of GPU memory due to the scale of the models. A rough estimate of memory
requirements for loading a model into a GPU with an optimizer is visualized in Table 2.1
below.

Table 2.1: The values are based on fp32 precision training and nor-
mal AdamW optimizer (Mittal and Vetter, 2014)

Type Memory Requirements
Model Weights 4 Bytes × Number of Parameters
Optimizer 8 Bytes × Number of Parameters
Gradients 4 Bytes × Number of Parameters
Forward Activations High variation, depend on many variables like sequence length

Based on the table above, regular fine-tuning of an LLM with 65 billion parameters needs
beyond 780GB of GPU memory, a capacity far more than any single GPU has today (Dettmers
et al., 2024). Smaller models with 7 billion parameters require more than 112GB of GPU
memory, which is still much more than the capacity of a single standard consumer GPU with
between 8 and 16GB of memory. To address the memory issue, Hu et al. (2021) present a
solution named Low-Rank Adaptation, LoRA, where the technique freezes the pre-trained
model weights and instead infuses trainable parameters into every layer in the architecture
in the form of rank decomposed matrices. This method significantly reduces the number of
trainable parameters with a factor of up to 10,000 times and can reduce the GPU memory
requirement up to 3 times. LoRA is elegantly implemented to have a linear design resulting
in no inference latency when the injected trainable parameters are merged with the frozen
pre-trained parameters.

Applying LoRA and hypothetically reducing the memory capacity with the highest factor
of 3 on a smaller model with 7 billion parameters would still need approximately 10GB of
GPU memory to load the model, leaving little to no memory left for fine-tuning on a single
standard consumer GPU.

Dettmers et al. (2024) introduced QLoRA which applies multiple techniques designed to
lower the GPU memory requirements for the models while maintaining the performance.
QLoRA quantizes the weight precisions of the frozen weights from the pre-train model from
32-bit into 4-bit. Through this approach, the weights of a model like Mistral-7B would need

24

2.4 Large Language Models (LLMs)

approximately 6GB of GPU memory to load into a GPU instead of 28GB. The injected pa-
rameters would still have the 32-bit precision to make it possible to fine-tune the model on
the infused weights. This approach enables us to fine-tune the model with significantly lower
GPU requirements while still maintaining the model’s pre-trained knowledge.

Supervised fine-tuning training (SFT training) Dong et al. (2023) describes super-
vised fine-tuning (SFT) as the training approach employed by LLM alignment, in which a
dataset of high-quality model outputs is constructed, and the model is fine-tuned on that
dataset directly. The “supervised” part of SFT comes from the fact that the dataset of high-
quality model outputs is a set of examples of good model behavior, and the model’s fine-
tuning process is such that the model learns to write in the same style as these examples.

At a high level, SFT looks similar to language model pretraining, in that both methods have
next token prediction as their base training task. However, the major difference is where
the data comes from. Instead of pretraining on a vast raw corpus of text, SFT learns from a
few dozen examples in each fine-tuning step. On each iteration, a number of examples are
sampled, and then the model is fine-tuned to these examples directly.

SFT avoids the risk of models becoming more specialized and losing generic problem-solving
ability in comparison to the generic fine-tuning that follows a curriculum. This is because it
fine-tunes models to copy a fine-tuned model’s style or skill, but not to solve a task.

Hence, SFT naturally becomes an essential method for fine-tuning language models. The
fine-tuning process is computationally cheaper with a factor of no less than one hundred
than the regular process of pre-training (Dong et al., 2023).

Instruction Fine-tuning Since LLMs are trained on vast text data usually sourced from
the internet (articles, scientific papers, blogs, etc) and physical documents (books, newspa-
pers, notes, etc) the fundamental training of the model aims to predict missing or subsequent
words in a provided sequence. Processing this multitude of sentences results in the model
acquiring a deep knowledge of grammar, context, and semantics, hence being able to pre-
dict the missing or subsequent word with high accuracy. However, the initial training of an
LLM only makes the model exceptional when its input consists of sequences similar to the
sequences in the data it was trained on. The model would generate reasonable outputs if
provided sentences from a news article but would perform poorly if the input sequence re-
sembles instructions to guide the model to perform a specific task. This is because the model
is trained on informative data where directive-like sentences are not frequent (Zhang et al.,
2023).

Instruction fine-tuning is an approach that addresses this deficiency. For a model to accu-
rately perform a specific task by following provided instructions, it needs to be trained on
data containing samples that bear similarities to the characteristics of the opted instructions
and the nature of the aimed task.

If such a dataset is available, then it could be utilized to adapt the parameters of the model to
align with the specific task. This is accomplished by training the model on the instructional
dataset on top of its initial training to leverage its prior knowledge from the pre-training. The
fine-tuning updates the model parameters through back-propagation during training, where
the parameters are adjusted to minimize the loss from the differences between what the model
is currently generating and what it is supposed to generate (Faisal and Anastasopoulos, 2024).

25

2. Background

The process of model parameter adjustment based on the instructional dataset is referred to
as instruction fine-tuning. This technique has several benefits, firstly leveraging the prior nat-
ural language knowledge saves a substantial amount of computational resources and time by
avoiding retraining the model from scratch. Secondly, the fine-tuning taps into the model’s
full potential by making it attuned to the intricacies and nuances of the domain of the par-
ticular task. Further, with instruction fine-tuning, it becomes easier to control the model’s
behavior and generation. Lastly, instruction fine-tuning requires less available data than reg-
ular fine-tuning and training a model from scratch, which approaches a more effective way
of specializing a model to a specific domain. Examples of domain-specific tasks are text sum-
marization, text sentiment analysis, and questioning and answering where a model performs
either of the tasks based on a set of instructions or requirements (Ding et al., 2023).

2.4.4 Prompt Engineering
Prompt engineering is a systematic approach aiming to successively improve the input fed
into an LLM, attempting to improve the quality and accuracy of the model output. Simply
explained, the core of the approach is to slowly, usually by trial and error, design a set of
instructions or a demonstration that is added to the input data that is passed to the model.
The prompt is usually added as a prefix to the data samples in the dataset, so the model
first processes the instructions in the added prompt and then proceeds to handle the data
contents of the sample and tries to generate an output according to the instructions prompt
(Arvidsson and Axell, 2023).

Chain Prompting has a straightforward yet powerful idea: using the output of a language
model to drive subsequent inputs. The whole process is just a chain of repeated episodes that
supply the model with some feedback instructions based on the generated output from the
previous prompt. The introduction of this feedback mechanism into the input pipeline of
the model in chain prompting is what creates a mechanism for iterative refinement of the
model’s output for coming closer and closer to the desired outcome. At every step in the
chain, the model receives feedback in the form of corrections, guidance, or reinforcement
signals, and these are intended to steer the model in the direction of generating outputs that
meet criteria or objectives better and more closely. With this continuous refinement process,
chain prompting empowers language models to produce outputs that are more contextual
coherent, relevant, and accurate (Wu et al., 2022).

It promises a lot as a method of optimizing pre-trained LLMs as it offers many benefits.
Firstly, by iteratively incorporating feedback, chain prompting enables the refinement of
generated outputs across iterations. Here, the model gains a chance to learn from its own
mistakes and adapts its behavior to better deliver the desired outputs. Further, by imple-
menting a feedback loop, chain prompting allows the model to gain a deeper comprehension
of the context and requirements of the task. This improved contextuality allows the model to
generate higher-quality outputs. For the same reasons, chain prompting provides a flexible
framework, which could be adapted to suit different purposes and objectives. Given the feed-
back to the model, which may prioritize specific criteria or improve performance in certain
use cases, this approach is appropriate for a wide number of tasks (Ekin, 2023).

Lastly, rather than fine-tuning a model with limited or low-quality data which is a more
computationally expensive and complex process the incorporation of feedback iteratively,

26

2.4 Large Language Models (LLMs)

and chain prompting will enable efficient model optimization.

Single and Multi-shot Prompting A single-shot prompting language model receives
only one prompt, which is an instruction followed by one example. The model generates
its response from this input only, and its result ideally follows the instruction and the given
example. This technique is very specific and efficient, which makes it useful in quick inquiries
or single instances examples. Thus, it may cause a limitation of the model to capture non-
repetitive contexts or produce diverse outputs because it acts only according to the provided
prompt (Maclaren, 2024).

While with multi-shot prompting, you feed the language model several examples or pieces
of details in one prompt. Users engage with the model by presenting various examples or
contexts simultaneously. This method allows for the inclusion of diverse and detailed infor-
mation into a single conversation, which aims to translate into richer and contextual outputs
(Maclaren, 2024).

Increasing the context in the input often boosts the coherence of the generated sentences
with regard to the desired output, as in multi-shot prompting, where you can add multiple
samples to one prompt, causing the model to have a better comprehension and create a closer
response. In a similar way, a single-shot prompt that is carefully created and equipped with
sufficient context can often enhance the model’s answer by directing its concentration to
certain aspects of the task (Sivarajkumar et al., 2024).

In the prompt engineering space, there is a need to be aware of the specifics as well as the
pros and cons of single-shot and multi-shot approaches for exerting full control of language
models in order to attain the intended goals. Adding more context and examples assists the
model in creating outputs that are aligned with the user’s precision and goals.

Directional Stimulus Prompting (DSP) Li et al. (2024) introduced a prompt engi-
neering technique of directional stimulus prompting. The approach involves providing hints
in the form of the desired structure or guidance, which have their roles to play in directing
the language model towards producing the desired outcome.

For instance, if a downstream task is to generate test case documents, the hint could be
specifying the right document outline. The prompt could include guidelines such as ‘The test
case document should have the following sections: test case title, description, steps, expected
results, and notes.’ By doing this, the model could familiarize itself with the way the test case
document is organized, including the logic structure and used notations.

Through this directional and stimulus guidance, this prompt provides a way of organizing the
model’s output to ensure that it will consistently remain in alignment with the set purpose or
criteria. Giving such crucial signals in the prompt makes the prompt engineer able to align
the model with the desired content and setting.

Consequently, the model creates outputs that suit the required formatting or structure and
can even give task-specific instructions. Lastly, directional-stimulus prompting is a useful
tool in promoting the generation of output that simultaneously meets the user’s satisfaction
and objectives.

27

2. Background

2.5 Hyperparameter Optimization (HPO)
Since the aforementioned PEFT methods overcome the need for a large amount of computer
power, but leave a big selection of model parameters untouched, such methods are sensitive
to the choice of hyperparameters. However, human-based selection of hyperparameters is
a time-consuming task, but it can dramatically improve model performance (Tribes et al.,
2023). As Bergstra et al. (2011a) discussed, finding better hyperparameters should enhance
the performance, therefore HPO is considered a crucial step in bringing some efficiency.

Optimization techniques are common strategies applied to improve the performance
of machine learning models. They aim to minimize or maximize a predefined metric during
training, thus enhancing the model’s ability to generalize and perform well on unseen data.

Early stopping algorithms are used during optimization to stop a trial, which is pre-
dicted to have poor performance (produce a suboptimal final result) since running the trial
until it finishes will be inefficient.

Neural Network Intelligence (NNI) is an open-source automated machine learning
(AutoML) toolkit that can automate HPO, dispatch, and run experiments’ trial jobs gener-
ated by tuning algorithms to search the best hyperparameters (Gridin, 2022). NNI has vari-
ous built-in optimization estimators which are called tuners, and two built-in early stopping
algorithms which are called assessors.

In this thesis, we initially examined two optimization techniques, Random Search and
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011b). Furthermore, random search is
based on randomly selecting hyperparameter values from predefined ranges, but it does not
benefit from any information gained during the optimization process, thus it may require a
vast number of trials to find the optimal values.

On the other hand, TPE is based on the Bayesian technique building a probability dis-
tribution of promising hyperparameter values based on the performance of previous trials.
Thereby, it selects the next values by balancing exploration and exploitation.

Moreover, as Bergstra et al. (2011b) discussed, TPE models P(x|y) and P(y) where x rep-
resents hyperparameters and y is the evaluation result. It defines P(x|y) using two densities
as follows:

p(x|y) =
l(x) if y < y∗

g(x) if y ≥ y∗,

where l(x) is the density formed by using the observations such that the corresponding loss
was less than y∗, and g(x) is the density formed by using the remaining observations.

In contrast, for the assessors, we explored the two supported by NNI, namely Median
Stopping Rule and Curve Fitting Rule (Gridin, 2022). The median-stopping rule stops the opti-
mization for a trial if the value of the running trial is less than the median value of the running
averages of all completed trials. Alternatively, the curve-fitting rule peeks at the performance
curve, and given a set of executed trials, it performs regression on the curve to predict the
final objective value of the current trial. Thereafter, if the probability of overstepping the
optimal value is found low, then it stops the optimization (Golovin et al., 2017).

28

2.5 Hyperparameter Optimization (HPO)

Thus, we chose TPE as our optimization technique since it is a better approach. Since
it focuses on promising regions of the search space and, subsequently, converges to better
outcomes with fewer evaluations than random search. Additionally, we decided to use the
median-stopping rule as our assessor.

29

2. Background

30

Chapter 3

Related work

This chapter will provide an in-depth analysis of research efforts done in test case generation,
as well as using Large Language Models (LLMs) for text generation. This is a way of gaining
insight into the current state of this research, thereby providing the essential groundwork
for our investigation. Namely, it focuses on the details of test case generation and the use of
LLMs for test case generation. It is our intention to explore these topics in more depth so
that the strengths and weaknesses of the current domain will be clearly outlined.

3.1 Generation of Test Cases
Previous research has explored the capability of generating test cases using NLP.

Salman (2020) delved into the exploration of generating test cases from specification
documents using NLP. In his investigation, he utilized the NLP methodologies of K-nearest
neighbor (KNN) and linear support vector (LinearSVC) classifiers. Salman’s approach in-
volved parsing and analyzing test case specifications in natural language to generate feature
vectors that later were mapped to test scripts. The mapping was further used as input and
output in a multi-label text classification process using the aforementioned classifiers. The
study showed that LinearSVC in combination with data augmentation was the optimal tech-
nique which yielded the best results, as high as 89% F1 score.

Gupta (2023) investigated the possibility of improving the efficiency of test automation
processes by applying NLP techniques. Gupta used test specification documents as his data
source. He extracted keywords from these documents by utilizing NLP techniques to use as
input data, and the output would be the document from which the keywords were extracted.
Further, he deployed algorithms including naive Bayes, K-nearest neighbor, linear support
vector machine, and Random Forest where the Random Forest algorithm yielded the highest
accuracy of 94%. The study proved a higher efficiency in the test automation processes and
demonstrated the beneficial role of NLP in this domain.

31

3. Related work

Wang et al. (2020) provided an innovative system-level automatic test case generation so-
lution using NLP. In their work, they adopt Use Case Modeling for System-level, Acceptance Tests
Generation (UMTG), an approach that generates executable system test cases for acceptance
testing by leveraging the behavioral information in use case (UC) specifications written in
natural language. UMTG was based on the state-of-the-art algorithms at that time in natural
language processing to automatically identify test scenarios and generate formal constraints
that described conditions that led to the execution of these scenarios. This work utilizes
NLP to build Use Case Test Models from UC specifications, which lack an explicit control
flow and enable the model-based identification of UC scenarios, which represent sequences
of steps within the model. According to two industrial case studies, the ability of UMTG is
substantiated by translating 95 percent of the use case specification steps into formal con-
straints for test data generation. Additionally, UMTG created an additional set of test cases
that cover the test scenarios experts applied manually as well as incorporate these critical
scenarios.

Ansari et al. (2017) endorse an automated approach for producing test cases from behav-
ioral specs by means of Natural Language Processing (NLP). Their system eases the process by
pulling out specific information from Software Requirement Specification (SRS) documents
and converting it into test cases. Their approach involves three main steps: input, processing,
and output. Next, the functional requirement documents will serve as input, which will be
analyzed through NLP in order to identify the critical scenarios and situations. Test cases are
built in the context of the scenarios and conjunctive statements. The nouns are used as test
data, the ‘if’ statements are used as test steps, and the ‘then’ statement is used as the result
expected. An algorithm describes the iterative process of analyzing the documents, separat-
ing useful data from noise, and thus generating test cases. They demonstrate in their paper
how the applicability of the system could be benchmarked against the randomly generated
test cases for different scenarios. This proved that their proposed system is able to convert
requirements into working tests.

Lafi et al. (2021) introduced an elegant approach for generating test cases from use case
descriptions. Their suggested solution uses Unified Modeling Language (UML) which is the
structured modeling language, consisting of interrelated diagrams. UML helps developers in
the process of defining, visualizing, constructing, and documenting the necessary elements of
software systems, such as objects, and non-software systems like business processes. It starts
with taking textual information from UML use case descriptions as the basic input for the
method. The data gathered then is applied to create a control flow graph and a Natural Lan-
guage Processing (NLP) table, which are the critical elements needed to know the system and
its dependencies. With certain specialized algorithms, the control flow graph would then be
generated to illustrate different execution paths in the software. The nodes in the graph rep-
resent the fundamental building blocks of code, whereas the arcs indicate the way the code
flows between these blocks. Parallel to this, the NLP table assigns a node in the flow chart
to each action in the use case scenario. Afterward, the method applies yet another algorithm
to produce detailed test scenarios aimed at checking the system’s functional faultiness com-
pletely. Ultimately, the test paths and NLP table are transformed into automated test cases.
Every test case is assigned a route and acts as a sequence of steps recorded from the control
flow graph and the NLP table.

32

3.2 Large Language Models and Generation

3.2 Large Language Models and Generation
In the past years, the realm of NLP has taken a huge leap, propelled by the introduction of
transformers presented in Vaswani et al. (2017). Transformers paved the way for the develop-
ment of LLMs, which redefined the landscape of NLP. LLMs are today’s state-of-the-art NLP
solutions. They are built on the aforementioned deep learning network architecture concept
named transformers, which will be discussed more deeply in the architecture chapter 5. LLM
models vary a lot in size depending on their complexity, but they are usually considerably
larger compared to model standards previous to LLMs. For example, OpenAI’s famously
known GPT3 model has 175 billion parameters and consists of 96 layers, which is far larger
than anything we have seen before (Kublik and Saboo, 2022).

LLMs possess extraordinary abilities to recognize contexts and capture long-range depen-
dencies between words due to their architecture, and therefore have very broad applicability.
One of the most common applications is text generation, which is what we will be utilizing
in our work. When an LLM is trained on vast data, it is evaluated on its capacity to forecast
the subsequent words or tokens within a provided sequence by analyzing the given sequence
and then applying various statistical and probabilistic techniques (Zhang et al., 2023).

In our literature study, to the best of our efforts and knowledge, we did not identify
studies exploring the possibility of generating test cases in natural language using LLMs.

Wang et al. (2024) analyzed 102 studies that were found relevant to the field of using LLMs
for software testing. The undertaken investigation was conducted from the perspectives of
LLMs and software testing to lay a road map for future research in that area. The study also
summarizes and highlights the key challenges and potential opportunities for future work.
The research resulted in a comprehensive review of using LLMs in software testing, which
explains that LLMs have proven to be successful when applied in the software testing domain.
The LLMs were mainly incorporated in a testing task through fine-tuning of the model or
prompt engineering. Further, it mentions that the primary challenge today lies in obtaining
high testing coverage and that LLMs are only applied to a subset of an entire testing cycle.

Nevertheless, None of these studies match exactly our objectives. However, as shown in
other experiments, LLMs produced extremely valuable results in fields related to our task,
such as test case selection from test specifications, where Ayenew and Wagaw (2024) adopted an
AI-enabled approach to Cloud RAN test automation, showing the potential of NLP tech-
niques to automatically select test cases from instructions. Additionally, Yang et al. (2022),
investigated a low-cost approach for test case generation by leveraging the GPT-3 engine,
which concluded that their framework TestAug saves the manual efforts in creating the test
suites.

Moreover, there are several survey papers on text generation leveraging pre-trained lan-
guage models (PLMs). For instance, El-Kassas et al. (2020) studied the current application of
PLMs to the field of text summarization. Zaib et al. (2020) examined the use of PLMs with
a focus on question-answering systems with dialog systems. However, these studies did not
address the core approach, which is text generation (Li et al., 2022).

33

3. Related work

34

Chapter 4

Data

In this study, we extracted the dataset from the company’s documentation. It comprises
feature and service documentation and their corresponding test case documents, as an initial
dataset was not provided. The documents were available on the internal network as web
pages, and to collect the needed data we had to scrape the document pages. We examined
three approaches to use as scraping methods, the first option was to manually download
HTML screenshot dumps of the web pages containing the documents. The second approach
was to scrape the pages through different internal APIs which could retrieve the HTML
contents of the pages or lastly use the Python library requests. We initially chose to proceed
with the first option to ensure an easy, quick start and to avoid API and authentication
complications in the beginning phase of data collecting.

The documents that contained the sought-after data exhibited categorical distinctions,
characterized by variations in structure, content, and interrelations among them. A fea-
ture document provides a comprehensive overview of a new feature, including its purpose,
applications, use cases, and limitations. In contrast, a service document delves into compre-
hensive details regarding the functionality and configuration of a service, exhibiting greater
complexity and having more technical content than a feature document.

The first observation we made was that the quantity of test case documents exceeded that
of feature and service documents by a significant margin. This implied that a feature/service
document could have multiple corresponding test cases and that some test cases do not have
an obvious mapping, see Table 4.5.

4.1 Data Collecting
As aforementioned, we initially collected the data by manually downloading HTML snap-
shot dumps of the web page containing the documentation. We emphasize that the selected
approach was only used initially as, during the working process, we revised the data collect-
ing step in different phases when more data needed to be scraped and the techniques differed

35

4. Data

in the different phases.
The second objective after the scraping was to parse the HTML contents to extract the

relevant data for our dataset. For this, we utilized the Python library BeautifulSoup (Richard-
son, 2024) to navigate through the HTML contents and extract the desired data.

4.1.1 Phase I
In the first phase, we only applied the data-collecting process to the feature documents and
their corresponding test case documents. The reason we prioritized the feature documents
initially was based on their lower complexity and greater ease of parsing. This enabled us
to swiftly acquire an adequate dataset with a sufficient size to use for the first iteration of
examining the capabilities of the model, which was our main objective at this stage of the
study.

Authentication was necessary to access the feature documents, which rendered the re-
quest library in Python unusable and did not have an API. Therefore, we manually down-
loaded HTML snapshot dumps of the documentation pages, which we later parsed using the
Python library BeautifulSoup to extract relevant information. In the case of the feature doc-
uments, there were only five subheadings that we deemed to have relevant information, the
subheadings were: description, purpose, usage instructions, limitations, and decisions.

The database containing all the test case documents had an API which we utilized in
combination with cURL (Stenberg, 2024) to filter and extract the relevant test cases related
to the acquired feature documents. We identified that the majority of the contents in the
test case documents were relevant, therefore all the contents were extracted and parsed (see
Figure 4.1).

4.1.2 Phase II
In the next step of the data collection, our focus shifted and targeted the service documents.
To access these documents, we were only required to be connected to the internal network,
which made it possible for us to scrape these documents using Python’s request library (Reitz,
2023) without running into authentication issues. We used the same method as in Phase I to
acquire the related test cases for the service documents.

We found that all the subheadings of the service documents contained valuable informa-
tion, and therefore when parsing the documents we extracted all content from each scraping.
Each document consisted of two main subsections, the guide, and the API sections. The guide
section exhibited a descriptive tone, while the API section adopted more technical content,
comparable to a specification document. Due to the extended length, increased complexity,
and inflated amount of test cases corresponding to a single service document, we decided
to further divide each primary subsection into multiple sub-subsections. This enabled us to
be more accurate in mapping test cases because every test case could be mapped to a more
specific and relevant part of the service document. Those mappings could be considered to
become a single sample in the dataset.

Further dividing the long service documents into smaller sections helped us evade future
problems regarding the model’s limited input window size.

36

4.2 Exploratory Data Analysis

Image

Image

FEATURE DOCUMENT Test case

Figure 4.1: Visual example of a feature document with one of its
corresponding test case documents.

4.1.3 Phase III
In the previous data-collecting phases, based on a feature and service document, we tried to
find relevant test case documents. This resulted in test cases remaining unlabeled. In this
phase, based on these unlabeled test case documents, we searched for documents that could
be mapped to some of these test cases, not necessarily feature or service documents.

4.2 Exploratory Data Analysis
Exploratory Data Analysis (EDA) consists of several techniques including data cleaning, uni-
variate analysis, bivariate analysis, and multivariate analysis. These techniques can include
statistical measures such as mean, median, standard deviation, variance, correlation coeffi-
cient, and various graphical methods like histograms, box plots, scatter plots, heatmaps, and
pair plot matrices.

According to Otero-Escobar and Velasco-Ramírez (2023), exploratory data analysis is an
approach to extract the information contained in the data and summarize the main charac-
teristics of the data. It is considered a crucial step in any data science project and falls in the

37

4. Data

second phase of understanding the data.
The insights gained from performing thorough EDA can lead to making informed deci-

sions regarding feature selection, transformation, engineering, or even removal. This ensures
better model performance, reduced complexity, and improved interpretability.

4.2.1 Phase I
We conducted EDA on the procured feature documents along with their associated test cases,
utilizing various Python libraries, encompassing Seaborn (Waskom, 2021), Sweetviz (de Kock
et al., 2022), and Pandas (Wes McKinney, 2010). We introduced a fresh feature description
highlighting the primary focus – analyzing data centered around word count per section and
subsection – to initiate our investigation. This descriptive approach allowed us to scrutinize
and extract valuable insights from the dataset effectively (see Table 4.1).

Table 4.1: Feature descriptions with their corresponding shortcuts

Shortcut Feature Description
fd_len The length of the feature document
fd_desc The length of the ‘Description’ section in the feature document
fd_purp The length of the ‘Purpose’ section in the feature document
fd_howto The length of the ‘How to use’ section in the feature document
fd_deci The length of the ‘Decision’ section in the feature document
fd_limit The length of the ‘Limitations’ section in the feature document
n_testcases The number of test cases the feature document has
tc_len The length of the test case
tc_obj The length of the ‘Objective’ section in the test case
tc_appcri The length of the ‘Approval Criteria’ section in the test case
tc_limit The length of the ‘Limitations’ section in the test case
tc_exc The length of the ‘Execution’ section in the test case

Subsequently, we generated a heatmap to examine the correlation coefficients of these
feature descriptions (Figure 4.2). From the heatmap analysis, we gleaned the following in-
sights concerning the correlations:

Feature documentation relation with their subsections: There is a significant positive cor-
relation between the length of feature documentation (measured by the number of
words) and the subsection “How to”. This correlation is somewhat lower with the sub-
section “Purpose” and even less pronounced with the subsection “Limitations”. Con-
versely, the length of feature documentation shows a modest positive correlation with
the subsection “Decision” and a less pronounced correlation with “Description”.

Test cases in relation with their subsections: There is a significant positive correlation be-
tween the length of the test case (measured by the number of words) and both subsec-
tions “Objective” and “Approval Criteria”. This correlation is somewhat lower with
the subsections “Limitations” and “Execution”.

Feature documentation relation with test cases: The length of feature documentation cor-
relates positively with all test case properties, but the correlation is small.

38

4.2 Exploratory Data Analysis

Figure 4.2: Correlation heatmap between the features in phase I.

Additionally, we created a visual representation displaying the linkage between the length
of feature documentation and all other features to acquire deeper knowledge and understand-
ing (Figure 4.4). Findings indicated that no discernible effect (correlation value of 0.32) exists
between the length of the feature documentation and the number of generated test cases for
a specific feature. Furthermore, the “Purpose” subsection within the feature documentation
also appears unaffected by this relationship (Figure 4.3). Besides, the distribution patterns
(Figure 4.4) for both test case length and feature documentation length reveal diversity. In
feature documents, the central tendency typically spans around 408 words, while for test
cases, the middle value falls around 150 words.

Moreover, we used bar plots to gain insights into the distribution of feature documen-
tation subsections and the size of each subsection (Figure 4.5). The same approach was ap-
plied to test cases (Figure 4.6). The analysis revealed that in existing feature documentation,
the predominant content is associated with the “How to” subsection, with a relatively lesser
emphasis on the “Purpose” subsection. Meanwhile, in existing test cases, the predominant
content aligns with the “Approval Criteria” subsection, with a comparatively lesser empha-
sis on the “Execution” and “Limitation” subsections. Lastly, we took a deeper look inside all
subsections to get a better understanding of them, for this we used box plots (see Table 4.2).

39

4. Data

Figure 4.3: Histogram plots of all features.

Table 4.2: Box plot for subsections for both feature documents and
test cases.

Boxplot parameters Box Median Minimum Maximum Outliers
Feature description 10-60 30 0 100 2
Feature purpose 0-50 ≈ 0 0 ≈ 150 5
Feature limitations 0-90 ≈ 10 0 ≈ 205 2
Feature how to use 75-550 ≈ 240 0 ≈ 1200 0
Feature decision 0 0 0 0 5
Test objective 10-22 ≈ 15 0 ≈ 35 2
Test approval criteria 90-190 ≈ 130 0 ≈ 350 3
Test approval limitation 10-40 ≈ 15 0 ≈ 80 3
Test execution 5-50 ≈ 30 0 ≈ 110 5

40

4.2 Exploratory Data Analysis

Figure 4.4: Distribution patterns for the length of feature documen-
tation and its relation to all other features using Sweetviz.

41

4. Data

Figure 4.5: Distribution of feature documenta-
tion subsections and the size of each subsection.

Figure 4.6: Distribution of test cases subsections
and the size of each subsection.

Figure 4.7: Phase I: Distribution of feature documentation and test
cases with their subsections and the size of each subsection.

42

4.2 Exploratory Data Analysis

4.2.2 Phase II
In this phase, mirroring Phase I, we performed EDA on the acquired service documents and
their respective test cases, utilizing the previously mentioned libraries. We applied the same
feature description methodology; however, service documents lack subsections found in fea-
ture documents. Our focus was exclusively on the segmented sections, centering our analysis
once more on word count. Similarly, the corresponding test cases employed identical fea-
tures, given their uniform structure (see Table 4.3).

Table 4.3: Feature descriptions with their corresponding shortcuts

Shortcut Feature Description
service_len The length of the service document
n_testcases The number of test cases the service section has
tc_len The length of the test case
tc_obj The length of the ‘Objective’ section in the test case
tc_appcri The length of the ‘Approval Criteria’ section in the test case
tc_limit The length of the ‘Limitations’ section in the test case
tc_exc The length of the ‘Execution’ section in the test case

In the following step, we generated a heatmap to examine the associations of both cate-
gorical and numerical coefficients of these feature descriptions (Figure 4.8). From the heatmap
analysis, we gleaned the following insights:

Service documentation relation with test cases: The length of service documentation corre-
lates positively with all test case properties, but the correlation is small.

Test cases in relation to their subsections: There is a significant positive correlation between
the length of the test case and its subsections.

Additionally, we created a visual representation displaying the linkage between the length
of service documentation and all other features to acquire deeper knowledge and understand-
ing (Figure 4.9). The results revealed that there is no noticeable impact between the length
of the service documentation and the quantity of generated test cases for a particular service
(correlation value of 0.21). Besides, the distribution patterns (Figure 4.9) for both test case
length and service documentation length reveal diversity. In service documents, the central
tendency typically spans around 1431 words, while for test cases, the middle value falls around
1091 words.

Furthermore, we employed bar plots to explore the distribution of test cases and the sizes
of their subsections (Figure 4.10). The examination unveiled that within the current test
cases, the predominant content corresponds to the “Execution” subsection, with a relatively
lower emphasis on the “Approval Criteria” subsection.

43

4. Data

Figure 4.8: Associations heatmap in phase II: Squares are categorical
associations (uncertainty coefficient & correlation ratio) from 0 to 1.
The uncertainty coefficient is asymmetrical, (i.e., ROW LABEL val-
ues indicate how much they provide information to each LABEL at
the TOP). Circles are the symmetrical numerical correlations (Pear-
son’s) from -1 to 1. The trivial diagonal is intentionally left blank for
clarity (de Kock et al., 2022).

44

4.2 Exploratory Data Analysis

Figure 4.9: Phase II: Distribution patterns for the length of feature
documentation and its relation to all other features using Sweetviz.

Figure 4.10: Distribution of test cases subsections and the size of
each subsection.

45

4. Data

4.2.3 Phase III
In this stage, akin to Phase II, we conducted EDA on the recently obtained specification doc-
uments and their corresponding unlabeled test cases, employing the previously mentioned
libraries. We implemented the same feature description methodology utilized in Phase II (see
Table 4.4).

Table 4.4: Feature descriptions with their corresponding shortcuts

Shortcut Feature Description
specification_len The length of the specification document
n_testcases The number of test cases the service section has
tc_len The length of the test case
tc_obj The length of the ‘Objective’ section in the test case
tc_appcri The length of the ‘Approval Criteria’ section in the test case
tc_limit The length of the ‘Limitations’ section in the test case
tc_exc The length of the ‘Execution’ section in the test case

Then, we generated a heatmap to examine the correlation coefficients of these feature
descriptions (Figure 4.11). From the heatmap analysis, we gleaned the following insights:

Specification documentation relation with test cases: There is a small correlation between
the length of specification documentation and two properties of test cases (number of
test cases, and test case subsection “objectives”).

Test cases in relation to their subsections: There is a significant positive correlation between
the length of the test case and its subsections.

Additionally, we created a visual representation displaying the linkage between the length
of service documentation and all other features to acquire deeper knowledge and understand-
ing (Figure 4.12). The results revealed that there is an impact between the length of the speci-
fication documentation and the quantity of generated test cases for a particular specification
(correlation value of 0.42). Besides, the distribution patterns (Figure 4.12) for both test case
length and specification documentation length reveal diversity. In specification documents,
the central tendency typically spans around 484 words, while for test cases, the middle value
falls around 277 words.

Bar plots were also used to determine the distribution and sizes of test case subsections
(Figure 4.13). During the examination, it was revealed that within the current test cases, a
relatively lower emphasis is placed on the “Approval Criteria” subsection than on the “Exe-
cution” subsection.

46

4.2 Exploratory Data Analysis

Figure 4.11: Correlation heatmap between the features in phase III.

47

4. Data

Figure 4.12: Phase III: Distribution patterns for the length of feature
documentation and its relation to all other features using Sweetviz.

Figure 4.13: Distribution of test cases subsections and the size of
each subsection.

48

4.3 Data Augmentation (DA)

4.2.4 Employed Test Cases
We initially had 884 test cases to manage. After performing data filtering and sorting, about
half of them remained unlabeled, primarily because clear mappings were not evident (see
Table 4.5). We also plotted histograms to analyze distributions for all used test cases with
their subsections (Figure 4.14), we noted that the 884 test cases collectively comprise 156,000
words. The majority of these words are found in the “Execution” subsection, totaling 57,486
words, followed by the “Approval Criteria” subsection with 48,353 words, albeit to a lesser
extent.

Table 4.5: Summary of employed test cases: Merged test cases refer
to situations where multiple test cases are associated with the same
document (specification, feature, or service).

All Test Cases Phase I Phase II Phase III
Total Mapped Unlabeled Mapped Merged Mapped Merged Mapped Merged
884 404 480 102 43 275 32 27 18

Figure 4.14: Histogram plots of all test cases

4.3 Data Augmentation (DA)
Collecting annotated datasets is a challenging task, time-consuming, and could be impossible
in some cases. Thus, strategies for increasing the diversity of training data without explic-
itly collecting new data have recently seen increased interest, especially in the NLP domain
due to the popularity of large-scale neural networks that demand large amounts of training
examples.

49

4. Data

Despite these challenges, DA strategies have played an essential role in NLP, since they
either add slightly modified copies of existing data or create synthetic data. As Feng et al.
(2021) discussed, the augmented data distribution should be similar to the original and aim
to enhance the performance and reduce overfitting.

DA has different techniques and methods such as Rule-based (Choi et al., 2024), Example
interpolation (Chen et al., 2022), and Model-based techniques (Feng et al., 2021). Since we are
working with seq2seq models and due to our downstream task, the very last one-mentioned
technique is most relevant to us.

Model-based Label-Guided involves using a language model (LLM) and leveraging un-
paired or single-sided data samples that contain information about the label, but lack corre-
sponding input data typically found in a supervised learning setting. By using these unlabeled
test cases along with appropriate prompts, we can generate corresponding inputs (feature
descriptions) through the LLM. Consequently, this allows us to create new data samples by
sampling the augmented inputs with their corresponding real labels.

Back-translation has been widely adopted in NLP tasks, and it involves translating a
sequence into another language and then back into the original language using a pre-trained
language model (Sennrich et al., 2015). Usually, a base pre-trained model is used to be fine-
tuned to translate from different specific languages to another. For example, one version
of a base model could be trained to translate from English to German and another version
of the same base model could be trained to translate from German to English. Two tweaked
versions of a base model that translates back and forth between two languages can be utilized
to modify a text without changing its context. The difference between the original text which
is the input to the back-translation pipeline and the modified version which is the outputted
text would be synonym changes and sentence structures, see Figure 4.15 below.

Previously, tea used for

Buddhist monks to stay awake during meditation

had been primarily

In the past, tea used for

Buddhist monks to stay awake during meditation

was mostly

English -> French

English <- French

Input

Output

Autrefois, le thé avait

été utilisé

 .

 .

Figure 4.15: Demonstration of a back-translation pipeline

Model-based Document-Level Paraphrasing This approach refers to the process of
generating multiple variants of a document using LLM. This technique aims to preserve the
overall structure and context of the original document while introducing different versions
in its content (Gangal et al., 2022). Since some data samples were too big for the LLM to
rephrase in one go, this method was combined with chunking.

50

4.4 Dataset

4.4 Dataset
Since we aim to generate test cases from documentation, the dataset for fine-tuning the model
is required to have a structure where the feature and specification documents are provided
as input and their corresponding test cases as output. We investigated different alternatives
regarding the format of the dataset where the most interesting options were JSON, CSV, or
Pandas (Wes McKinney, 2010) data frame format. Data frames were created using Pandas,
while datasets were created using JSON and CSV.

4.4.1 Real Data
Here we collected 4 different datasets (see Table 4.6) according to the previous phases, as
follows:

Feature documents to test cases: This dataset contains the data we collected in phase I.

Service documents to test cases: This dataset contains the data we collected in phase II.

Specification documents to test cases: This dataset contains the data we collected in
phase III.

Merged documents to test cases: The aforementioned datasets have been merged into one.

Table 4.6: Summary statistics of all real datasets.

Statistics Phase I Phase II Phase III Merged
Doc TC Doc TC Doc TC Doc TC

Count 43.00 43.00 32.00 32.00 18.00 18.00 93.00 93.00
Mean 3226.69 2663.20 14502.09 11379.34 4291.38 2230.11 7312.47 5578.48
STD 2572.56 2309.03 15999.88 11497.18 3262.05 1671.70 10900.21 8084.63
MIN 66.00 22.00 808.00 1200.00 748.00 422.00 66.00 22.00
25% 1311.00 969.50 5504.75 4734.25 1779.00 1069.25 1827.00 1369.00
50% 2554.00 2245.00 10747.00 7812.50 2998.50 1736.00 3871.00 3030.00
75% 4958.50 3048.50 14988.00 13791.50 6598.00 3269.25 8934.00 6788.00
MAX 10604.00 9682.00 78220.00 61023.00 10560.00 7340.00 78220.00 61023.00

4.4.2 Real & Augmented Data
At this point, after we generated the augmented data from all three aforementioned different
DA approaches, we merged all datasets into 3 different datasets as follows:

Small dataset As presented in Table 4.5 we found a total of 884 test cases from which we
were able to map 404 to an input document. The remaining 480 test case documents were
utilized with the label-guided DA method to generate 480 new data samples. The new data
samples were merged with the original dataset, resulting in a dataset with a size of 560 after
filtration.

51

4. Data

Medium dataset The second dataset was acquired by applying the augmentation method
we defined as back-translation above. We applied 8 back-translation pipelines where English
was the original language and the following languages were the ones translated to and from
Chinese, French, German, Swedish, Italian, Spanish, Russian, and Dutch. This approach
resulted in a dataset with a size of 4112 samples when combined with dataset I from the
previous augmentation approach.

Large dataset In the last method we extracted test case documents from all the depart-
ments in the company which amounted to approximately, 10,350 documents. After filtration,
we had 9541 test cases from which 480 had already been used in the first DA approach, mean-
ing we had 9061 test case documents at our disposal to apply the Model-based Label-Guided
augmentation technique to expand our dataset to approximately 9600 data samples.

It is also worth noting that the test dataset consists of 76 samples taken from the real data
is the same every time to be able to maintain comparable results.

Table 4.7: Summary statistics of all datasets

Dataset Shape Dataset Split
Small (560, 2) train: 387, validation: 97, test: 76
Medium (4112, 2) train: 3228, validation: 808, test: 76
Large (9541, 2) train: 7569, validation: 1893, test: 76

52

Chapter 5

Architecture

In this chapter, we focus on the architecture of the system beginning with the section titled:
“Choice of Model”. Here, the selected model will be introduced and an explanation of the
decision-making process will be given. After this, we will proceed to the “Selected Model”
section which will include a comprehensive description of the model’s architecture. This
section will include the main parts and operations of the model to provide the reader with
comprehensive information regarding its structure and functioning. Furthermore, we also
outline the integrations of Lllama-cpp-python and AI agentic workflow with our selected
model.

5.1 Choice of Model
To predict the next token in a sequence, we need a good autoregressive language model,
which takes into account both the previous tokens and the token itself. We decided that
the most suitable model for our task was Mistral 7b (Jiang et al., 2023). The motivation
behind our choice is solely based on the model’s proven performance where it outperforms
all other models of its size, like llama 2 7b, on all benchmarks. It also outperforms larger
models like llama 2 13b and competes well with other larger models (Lunney et al., 2006).
Therefore we decided to move forward with the best-performing Mistral 7B version which
is the instruction-trained variation. Mistral-7b-Instruct-v0.2 is fine-tuned on an instruction
dataset and Figure 5.1 shows the performance of the model compared to other LLMs on the
MT-Bench.

5.2 Mistral-7B
Mistral-7B is a causal language model consisting of a transformer decoder block only. It
is a cutting-edge language model since it embraces the transformer-based architecture while

53

5. Architecture

Figure 5.1: Mistral-7B-Instruct achieves a score of 6.84 on the MT-
Bench. As demonstrated, this score beats models like Llama 2 13B
chat, and Llama 2 7Bchat (Minaee et al., 2024).

successfully delivering both robust performance and efficiency while maintaining the balance
model property during the rapidly evolved NLP domain (Jiang et al., 2023). In this section, we
dive into its architectural details. However, before we can understand the model architecture,
we need to cover a few techniques:

Grouped-query attention (GQA) Ainslie et al. (2023) introduced a generalization of
multi-query attention (MQA) 1 where an intermediate number of key-value heads is used, still
achieving quality close to multi-head attention (MHA) in a comparable speed value to MQA
(see Figure 5.2).

GQA divides query heads into subgroups, where each subgroup shares a single key head and
value head, interposing between MHA and MQA (see Figure 5.3). Thus, it helps keep the
same proportional decrease in bandwidth and capacity as model size increases (Ainslie et al.,
2023).

Additionally, there is no optimal number for the number of groups, since it could be any-
where between more than one and less than the number of query heads. However, Ainslie
et al. (2023) commented on this and concluded that increasing the number of groups from
MQA only results in modest slowdowns initially, with increasing cost as we move closer to
MHA.

Moreover, due to encoder representations being computed in parallel, memory bandwidth is
not the primary bottleneck. Ainslie et al. (2023) pointed out that GQA is not applied to the
encoder self-attention layers.

Sliding window attention (SWA) This method draws advantage from the stacked lay-
ers of a transformer to attend information wider than the window size, hence, it still allows
one token to watch tokens outside the window. In addition, it reduces the number of dot
products to perform, and thus, the performance during training and inference (Jiang et al.,
2023).

1Shazeer (2019) explained that MQA significantly reduced the size of the tensors thus the memory band-
width requirements of incremental decoding, through sharing the keys and values across all the various attention
heads “queries heads”.

54

5.2 Mistral-7B

Figure 5.2: Uptrained MQA offers better tradeoff than MHA-Large
with improved quality and speed, while GQA is even better than
MHA-XXL with comparable quality and similar speed gains (Ainslie
et al., 2023).

Figure 5.3: Overview of all three attention methods: MHA, GQA,
and MQA (Ainslie et al., 2023).

Since some “interactions” between the tokens will not be captured, SWA may lead to degra-
dation in the performance of the model. However, focusing on the local context, related to
the size of the window, is enough for most cases. If we consider a book, the words used in a
paragraph of a chapter are related to other paragraphs of the same chapter, but may not be
relevant to chapter 1.

To provide further explanation, we have the following sentence, “The cat sat on the” as seen in
Figure 5.4. Since we are building an autoregressive model, we begin by using causal attention
(also known as vanilla attention), which generates the first matrix on the left. However,
it is worth noting that in this matrix, the word “the” (last row) has attended to the entire
sentence. This is where SWA comes into play. We can address this issue by applying SWA
with a window size of 3. Now, the word “the” can only attend itself and 2 previous words,
namely “on” and “sat”.

Moreover, with a sliding window size W = 3, every layer adds information about (W−1) = 2
tokens, which indicates that after N layers, we will have an information flow in the order of
W × N .

Rolling Buffer Cache This method limits the cache size using a rolling buffer cache.

55

5. Architecture

Figure 5.4: Vanilla attention followed by a sliding window attention
with a window size of 3 (Jiang et al., 2023).

Since for each time step i, the corresponding keys and values are stored in a position i
mod W of the cache, where W is the fixed size of the cache, then when the position I is
larger than W , all past values in the cache are overwritten to stop the cache from increasing
(Jiang et al., 2023).

Sigmoid Linear Unit (SiLU) is an activation function used in neural networks.

SiLU(x) = x · σ(x) (5.1)

5.1: Sigmoid Linear Unit function, where σ(x) represents the sig-
moid function: σ(x) = 1

1+e−x

The SiLU function has been adopted in various deep-learning architectures, including trans-
former models. Due to its smoothness, it helps in gradient-based optimization during train-
ing, thus faster convergence and potentially better performance compared to other activation
functions such as Rectified Linear Unit (ReLU) (see Figure 5.5) or Sigmoid (Elfwing et al., 2018).

Architectural details As seen from Table 5.1, Mistral-7B has 32 encoder layers 2 where
each head is attending to 128 dimensions, then the hidden dimension size is 14336 which we
can derive simply from multiplying the embedding vector dimension with a factor of 3.5, i.e.
14336
4096 = 3.5.

The number of query attention heads is 32 while the number of heads for key and value is 8.
In addition, the inequality between both comes from GQA, and we can note that the number
of query groups here is 8, i.e., every 4 query attention heads (32

8 = 4) have a single key and
value head.

2The reason behind the name “encoder layers” is because they are structured like transformer encoder layers
which do not have linear and softmax layers, however here in Mistral-7B the normalization layers come before
the attention and the feed-forward layers.

56

5.2 Mistral-7B

Figure 5.5: The activation functions of the SiLU and the ReLU
where zk is the input to hidden unit k (Elfwing et al., 2018).

Moreover, it is worth naming that Mistral-7B uses Rotary Positional Encodings on attention
heads for both query and key, since it introduces rotational transformations to the positional
encoding vectors, allowing the model to learn richer representations of token positions.

Next, the window of Mistral-7B has a fixed size W = 4096 for the attention calculation
and the rolling buffer cache. Additionally, the model was trained upon a context length of
8192 tokens/words, determining the size of the input sequence that the model can effectively
process.

Also, Mistral-7B has a vocabulary size of 32,000, which indicates the total number of unique
tokens that the model can recognize and generate during training and inference 3.

As a final note, Mistral-7B does not deploy Sparse Mixture of Experts (SMoE) which Pham
et al. (2024) explained as a variation of the mixture of experts architecture where only a subset
of the available experts are activated or used for each input instance. This sparsity constraint
helps reduce computational costs and memory requirements while still allowing the model
to benefit from the diversity of expert opinions.

3Inference is the deployment phase of the machine learning pipeline, where the model applies what it has
learned during training to real-world data (Wachter and Mittelstadt, 2019).

57

5. Architecture

Figure 5.6: Overview of Mistral-7B architecture gained using
state_dict function.

Table 5.1: Mistral-7B structure based on Figure 5.6.

Parameter Description Value
dim Size of the embedding vector 4096
n_layers Number of encoder layers 32
head_dim dim / n_heads 128
hidden_dim Hidden dimension in the feedforward layer 14336
n_heads Number of attention heads (Q) 32
n_kv_heads Number of attention heads (K,V) 8
window_size sliding window size for the attention calculation and Rolling Cache 4096
context_len Context on which model was trained upon 8192
vocab_size Number of tokens in the vocabulary 32000
num_experts_per_tok Number of expert models for each token N / A
num_experts Number of expert models N / A

58

5.2 Mistral-7B

RMS NORM

Embeddings

+

+

RMS NORM

RMS NORM

Softmax

Feed Forward SiLU

Self-Attention with Sliding Window Attention, Grouped

Query Attention, and Rolling Buffer KV-Cache

Linear

32x

Q K V

Rotary Positional Encoding

Input

Figure 5.7: Overview of Mistral-7B architecture.

59

5. Architecture

5.3 Llama-cpp-python Integration
The main goal of the llama-cpp library is described by Lin et al. (2023) as to enable LLM
inference with minimal setup and state-of-the-art performance on a wide variety of hardware
locally and in the cloud, in pure C/C++. Additionally, to leverage this library in this thesis, we
used the Python bindings for llama-cpp (Lambert et al., 2010) known as llama-cpp-python.

llama-cpp-python supports different techniques such as:

Chat completion helps the model format the messages into a single prompt using pre-
registered chat formats such as llama-2, or by providing a custom chat handler object. This
includes adding the beginning of sentence token <s>, the start of the instruction [INST], and
the end of the instruction [/INST].

Additionally, llama-cpp-python allows creating chat completion during inference using cre-
ate_chat_completion function. It generates a chat completion from a list of messages, with a
predefined temperature 4, a max number of new tokens to generate, a penalty for repeated
tokens, and a response format such as JSON object.

Speculative decoding is defined by Leviathan et al. (2023) as an algorithm to sample
from autoregressive models faster without any output changes, by computing several tokens
in parallel. This method makes the inference phase faster since transformers decoding M
tokens take M serial runs of the model.

First, providing a small and cheap draft model whose goal is to generate a candidate sequence
of M tokens (a draft). Next, feeding all these tokens to the target (big) model in a batch is as
fast as feeding in one token (see Figure 5.8).

Thereafter, the big model goes through the sequence and sample tokens. Samples that agree
with the draft allow the model to immediately skip forward to the next token. However, the
samples that do not match the draft, make the model throw the draft away and take the cost
of throwing. The key here is that the draft tokens get accepted most of the time because even
a small draft model can predict them. While the hard tokens where the big model disagrees
fall back to the original speed (Leviathan et al., 2023).

Figure 5.8: Speculative decoding method (Stern et al., 2018).

4Temperature is a hyperparameter that controls the level of randomness or creativity in the generated text
(Renze and Guven, 2024).

60

5.4 AI Agentic Workflow

Supporting GPT-Generated Unified Format (GGUF) models GGUF is described
by Haaralahti (2024) as a quantization method that allows using of the CPU to run an LLM
but also offload some of its layers to the GPU for a speed-up (see Table 5.2). However, in
llama-cpp-python, it is feasible to offload all the layers to the GPU using the parameter
n_gpu_layers = −1, which shortens the inference time.

Table 5.2: Quantized models of Mistral-7B-Instruct-v0.2 with
GGUF (Hong et al., 2017). RAM figures below assume no GPU of-
floading. If layers are offloaded to the GPU, this will reduce RAM
usage and use VRAM instead.

Model Name Quant
Method

Bits Max RAM
Required

Information

mistral-7b-
instruct-
v0.2.Q5_K_M.gguf

Q_5_K_M 5 7.63 GB Uses Q6_K for half of the atten-
tion.wv and feed_forward.w2 tensors,
else Q5_K. Recommended as it pre-
serves most of the model’s perfor-
mance.

mistral-7b-
instruct-
v0.2.Q8_0.gguf

Q_8_0 8 10.20 GB is almost indistinguishable from
float16. High resource use and slow.

5.4 AI Agentic Workflow
Since LLMs have recently shown promising outcomes in decision-making and planning ca-
pabilities compared to humans, LLM-based agents, as Guo et al. (2024) described, have been
rapidly developed to understand and generate humanlike instructions.

In addition to the escalating advancement of AI agents, a more iterative approach, known
as agentic workflow, has been widely employed to execute tasks by utilizing these agents in
combination with LLMs. Moreover, different collaborative working systems, such as Crew
AI (Hassan et al., 2024), come into play, allowing teams of AI agents to efficiently work
together to accomplish various complex tasks.

In this model, each team member operates as an agent, empowered to make decisions and
take actions aligned with the overall goals of the task. Each agent has predefined skills and
a particular job, along with search tools that can be provided (see Figure 5.9), enabling ev-
erything from simple searches to complex interactions and effective teamwork among agents
(Hassan et al., 2024).

61

5. Architecture

Figure 5.9: Overview of the agentic workflow model with three AI
agents with different tasks and tools, working with an LLM to ac-
complish an end goal (Guo et al., 2024).

62

Chapter 6

Experiments

This chapter describes the methodology of the proposed approach as well as the experiments
done in this thesis. An overview of the approach is described, to begin with, then it is followed
by a section where the setup and deployment are defined. Subsequently, the next section
focuses on the evaluation methodology and the chosen metrics to measure the performance
of each experiment.

6.1 Overview of the Approach
The goal of this thesis is to design, implement, and evaluate an approach that automates the
process of test case generation based on feature descriptions written in natural language. In
addition, the proposed approach is implemented as a tool that from a given unseen feature
description generates suggestions of natural language test cases that could be used for testing
different features.

The approach leverages NLP techniques to generate test cases written in natural language
and following specific guidelines, given feature descriptions written in natural language as
well. First, we parse the feature descriptions to use them later while formatting the prompt.
Then, we define a format prompt function to apply to the parsed feature descriptions to
create the input. The created input is then given to the chosen model to generate suggested
test cases, which are then parsed to get clear test cases written in natural language (see Figure
6.1).

6.2 Setup & Deployment
We used Python to implement the proposed approach due to its popularity and its useful
machine-learning packages. In this section, we present the tools we used in the study.

63

6. Experiments

Feature Description

Text analysis
using NLP

Input

Prompt format

LLM

Parse output

Output

Test Cases

Figure 6.1: The stages of the proposed approach

6.2.1 Defining Setup
It is crucial to establish a default setup that ensures consistency and reproducibility in train-
ing our selected LLM. In this stage, we define a default setup for all experiments to streamline
the training workflow.

Model Deployment on Single GPU In this part of the study, the direction turned to
applying the model for fine-tuning purposes on a single GPU. The only available hardware
for this study was an RTX 4080 16GB GPU.

To be able to load and fine-tune the model effectively on the allocated GPU, it was neces-
sary to resolve memory constraints. Initially considering 8-bit quantization with QLoRA,
it became clear that this approach did not give enough memory headroom for fine-tuning
operations. As a result, we decided to go for a more targeted approach and implement 4-bit
quantization.

After applying QLoRA with 4-bit quantization, the model experienced significant compres-
sion while still maintaining all the required parameters for effective fine-tuning. The post-
quantization statistics of the model are shown in Table 6.1:

These statistics demonstrate how well quantization works in reducing the memory footprint
of the model and how in combination with PEFT enables fine-tuning tasks on a single con-
sumer GPU. With the combined use of advanced techniques like QLoRA and PEFT, we were
able to find a good balance between computational efficiency and model performance, mak-
ing efficient fine-tuning procedures possible under our circumstances.

64

6.2 Setup & Deployment

Table 6.1: Number of trainable parameters after QLoRA

Instance Number of Parameters
Total trainable parameters for Mistral 7B Instruct 7, 284, 252, 672
Trainable parameters after 4-bit Quantization with QLoRA 42, 520, 576
Trainable parameter ratio 0.58373%

Defining default training arguments involves specifying the standard configurations
and parameters used during the training process. These arguments cover different aspects
such as save strategy, evaluation strategy, training batch size, evaluation batch size, number of epochs,
logging steps etc. Additionally, default training arguments serve as a starting point for cus-
tomization, allowing us to optimize the parameters later, based on specific requirements and
knowledge from observations.

Defining default hyperparameters provides predefined values for a set of chosen hy-
perparameters to initialize an experiment before optimizing the values (see Tables 6.2 and
6.3).

Table 6.2: A set of chosen hyperparameters with their corresponding
predefined values for fine-tuning approach

Hyperparameter Predefined Value
LoRA Rank 16
LoRA Dropout 0.1
LoRA Alpha 16
Noise Embedding Alpha 0
Optimizer paged_adamw_32bit
Learning Rate 2 × 10−4

Learning Scheduler Type cosine
Weight Decay 0.001
Warmup Ratio 0.05

Table 6.3: A set of chosen hyperparameters with their corresponding
predefined values for directional stimulus prompting approach

Hyperparameter Predefined Value
Temperature 0.8
Max Tokens 5012
Number of Predicted Tokens 20
top_p 0.95
top_k 40

Defining callback functions which also serve as powerful tools for monitoring and
controlling the training process. We used two callback functions, one to save the checkpoint
of the model and the other one to stop training when the specified metric worsens for an
integer called patience evaluation calls.

65

6. Experiments

Listing 6.1: Callback functions
class PeftSavingCallback(TrainerCallback):

def on_save(self, args, state, control, **kwargs):
checkpoint_path = os.path.join(args.output_dir,

f"checkpoint-{state.global_step}")
kwargs["model"].save_pretrained(checkpoint_path)

if "pytorch_model.bin" in os.listdir(checkpoint_path):
os.remove(os.path.join(checkpoint_path,

"pytorch_model.bin"))

callbacks = [PeftSavingCallback,
EarlyStoppingCallback(early_stopping_patience=2)]

Choosing and loading the trainer implies selecting the appropriate trainer with its
arguments to prepare the model for the training process. We used the SFT trainer with chosen
datasets for both training and validation, together with a predefined PEFT configuration, and
a tokenizer.

Listing 6.2: SFT trainer with its arguments
trainer = SFTTrainer(

model=model,
train_dataset=train_data,
eval_dataset=eval_data,
peft_config=peft_config,
dataset_text_field="text",
tokenizer=tokenizer,
args=training_arguments,
callbacks=callbacks,
packing=False,
max_seq_length=4096)

6.3 Running Experiments Strategies
To run different experiments, we applied various strategies to efficiently analyze and evaluate
each experiment. These strategies include three techniques, fine-tuning, prompt engineer-
ing, and an AI agentic workflow. Additionally, we used experiment tracking and logging
tools to monitor and record the results of each experiment, enabling thorough analysis and
comparison of model performance under different conditions.

We did the monitoring experiments through a development platform, Weights & Biases
(Stiny, 1992), that allows users to gain insights into model behavior, visualize, and track in
real-time different aspects of the model training process.

66

6.3 Running Experiments Strategies

6.3.1 Prompt engineering approach
In this section, we will touch on the different experiments we conducted using diverse prompt
engineering techniques. We initially started by applying prompt engineering with different
shots. We proceeded with our prompt engineering approach by applying the prompt chaining
technique and finally we utilized the directional stimulus technique with the deployment of
llama-cpp-python.

Prompting experiments with different shots
Zero-shot: In this prompt, we did not provide any instructions nor additional information

or context besides what we wanted the model to do, see the code in Listing 6.3 below:

Listing 6.3: Zero-shot prompt template function
def zero_shot_format(name_of_the_feature):

return f"""
<s>[INST]

Generate test cases for this feature:
{name_of_the_feature}

[/INST] \n""".strip()

Half-shot: We described the model’s supposed behavior and provided the input document
with specific instructions defining the expected structure of the output. The structure
in our case is the different sections of the test document and their order, see Listing
6.4.

Listing 6.4: Half-shot prompt template function
def half_shot_format(datapoint):

return f"""<s>[INST]
You are an AI software testing assistant who is going

to generate test case documents based on the
specification documents given in the square
brackets

[{datapoint[’documentations’]}]
Each test case document should have the following

structure and subsections:
Test Case Title \n
Objective \n
Approval Criteria \n
Limitations \n
Execution \n
[/INST] \n""".strip()

One-shot: The one-shot prompt had the same structure and contents as the half-shot prompt
but was appended with an example of an input and output, see Listing 6.5.

Listing 6.5: One-shot prompt template function

67

6. Experiments

def one_shot_format(datapoint):
return f"""<s>[INST]
You are an AI software testing assistant who is going

to generate test case documents based on the
specification documents given in the square
brackets

[{datapoint[’documentations’]}]
Each test case document should have the following

structure and subsections:
Test Case Title \n
Objective \n
Approval Criteria \n
Limitations \n
Execution \n

Here is an example of a feature specification with
its corresponding test cases:

specification: {example[’documentation’]}
test cases: {example[’testcases’]}
[/INST] \n""".strip()

Chain prompting experiment

In our prompt engineering approach, one of the experiments we conducted utilized the chain
prompting technique to guide the model into generating higher-quality test cases. We for-
matted around a dozen prompts to be used in prompt chains. With our constructed prompts,
we created different combinations and lengths of prompt chains which were fed into the
model to find the most optimal length and combination of prompts.

The prompts were constructed to guide the model with feedback on the previously gen-
erated test cases. The prompts would include guiding instructions informing the model of
what it should improve in the next generated test cases, see Listing 6.6.

Listing 6.6: Example of a guiding prompting in the chain
guiding_prompt = f"""The previous test case documents were not

relevant enough to the feature specification document I
provided above.

Rewrite the test case documents and make them heavily based on the
section <How to use> from the specification document I provided.

The test case documents should still have this structure and the
following subsections:

Test Case Title \n
Objective \n
Approval Criteria \n
Limitations \n
Execution \n"""

68

6.3 Running Experiments Strategies

Llama-cpp-python prompting experiments
In this experiment, we applied the directional stimulus prompting technique to examine if
it improves the model output. Moreover, as we discussed the benefits of using llama-cpp in
the architecture chapter, we decided to leverage them with directional stimulus prompting.

First, we downloaded from Hugging Face two models in GGUF format, mistral-7b-instruct-
v0.2.Q5_k_M and mistral-7b-instruct-v0.2.Q8_0 (see Table 5.2). Then, we used llama-2 as the
chat format, since it includes the same special tokens our model uses. Thereafter, we defined
a list of messages to use in the chat completion function and guided the model with a specific
response format, as seen below.

Listing 6.7: List of guided messages with half-shot approach
messages=[

{
"role": "system",
"content": """You are an AI software testing assistant who

is going to generate test cases based on the
specification documents.

The test cases you generate should be heavily
based on the <How To Use> section in the
specification document.

Generate more than one test case if needed.
Each test case document should have the

following structure and subsections:\n
Test Case Title \n
Objective \n
Approval Criteria \n
Limitations \n
Execution \n""",

},
{"role": "user", "content": row[’documentations’]}

Moreover, we selected a collection of hyperparameters (refer to Table 6.3) that exert the
most significant influence on the model (see Table 6.4). In addition, we relied on LlamaPrompt-
LookupDecoding (?) as a draft model for speculative decoding.

Listing 6.8: Guiding the model with a specific response format
response_format={

"type": "json_list",
"schema": {

"type": "object",
"properties": {

"test_case_title": {"type": "string"},
"objective": {"type": "string"},
"approval_criteria": {"type": "string"},
"limitations": {"type": "string"},
"execution": {"type": "string"},

},
"required": ["test_case_title", "objective",

69

6. Experiments

"approval_criteria", "limitations", "execution"],
},

}

Table 6.4: A set of chosen hyperparameters with their corresponding
effect for llama-cpp prompting experiments

Hyperparameter Effect
Temperature Controls randomness, higher values increase diversity.
Max Tokens The maximum number of tokens to generate.
Number of Pre-
dicted Tokens

Number of predicted tokens for the draft model.

top_p The cumulative probability cutoff for token selection. Lower values mean
sampling from a smaller, more top-weighted nucleus (Holtzman et al.,
2019).

top_k Sample from the k most likely next tokens at each step. Lower k focuses
on higher probability tokens (Sinha et al., 2020).

6.3.2 Fine-tuning approach
In this approach, we used our pre-trained model. We leveraged the knowledge encoded in
it, followed by fine-tuning it on our predefined datasets to update its weights on our down-
stream task which is generating test cases. Moreover, we wanted to experiment with fine-
tuning in combination with prompt engineering and with/without HPO.

Fine-tuning with half-shot
Here, we applied the aforementioned half-shot prompt function to all training and validation
data, then we fine-tuned the model using this data.

Listing 6.9: Applying half-shot prompt on both training and valida-
tion data before fine-tuning

X_train = pd.DataFrame(X_train.apply(half_shot_format, axis=1),
columns=[’text’])

X_eval = pd.DataFrame(X_eval.apply(half_shot_format, axis=1),
columns=[’text’])

Fine-tuning with default parameters involves fine-tuning with minimal adjustments
to the default parameters. This approach is often used when the downstream task is akin to
the task the model was originally trained on.

The default parameters mentioned in Table 6.2 are used for this method. Furthermore, we
will define their effects to gain insight into how each one affects the model (see Table 6.5).

Fine-tuning with HPO aims to systematically explore the hyperparameter with a search
space, using different HPO techniques. By running different trials, with various values for

70

6.3 Running Experiments Strategies

Table 6.5: A set of chosen hyperparameters with their corresponding
effect

Hyperparameter Effect
LoRA Rank determines the rank of low-rank approximation used in LoRA. Higher

ranks demand better GPUs (more VRAM) but may capture more com-
plex patterns in the data.

LoRA Dropout refers to dropout probability used in LoRA. It helps prevent overfitting.
LoRA Alpha regularization strength parameter for LoRA. Higher values result in in-

creasing the penalty on large weights, thus controlling model complexity
and preventing overfitting.

Noise Embedding
Alpha

As Jain et al. (2023) discussed, noisy embedding instruction fine-tuning
alpha adds noise to the embedding vectors during training. This has been
proven to improve performance on modern instruction datasets. It has
been proved by Jain et al. (2023) that LLaMA-2 Chat benefits from addi-
tional training with NEFTune.

Optimizer determines the update rule used to apply weight adjustments during train-
ing. Different optimizers may perform differently based on their proper-
ties. Here, as the initial optimizer, we chose paged_adamw_32bit, a variant
of AdamW optimizer designed specifically to train LLMs and help with
limited memory resources.

Learning Rate interprets, during optimization, the step size taken. Higher values may
lead to converge faster, but may also result in instability or overshooting.

Learning Sched-
uler Type

refers to how the learning rate changes throughout training. It can affect
convergence speed.

Weight Decay involves adding a penalty term to the loss function for large weights. It
helps prevent overfitting.

Warmup Ratio determines the relative importance of positive and negative examples in
the loss calculation.

the predefined hyperparameters, one could choose the trial with the best evaluation metric
result. For this approach, we used NNI as an HPO platform.

6.3.3 AI Agentic Workflow Approach
In this thesis, we used Crew AI to build an AI agentic workflow with a team (crew) consisting
of four agents with different skills, roles, and tasks as the following:

Expert Interpreter Has the role of feature document interpreter, where its goal is to
analyze the provided feature, extract all relevant details, and compose a comprehensive de-
scription to use in writing the test cases.

Test Case Writer Has the objective of generating test cases based on the provided feature
documentation. It delivers multiple test cases with the desired structure.

Test Case Evaluator Its goal is to assess the quality of the generated test cases by the test
case writer. In addition, it should provide constructive feedback for improvement.

71

6. Experiments

Final Test Case Writer Is an expert in writing final test case documents. It compiles
and formats the final version of the test case document based on the evaluated test cases.
This agent refines the document structure, ensures consistency, and produces a polished and
ready-to-use test case document.

After that, we chose a sequential task execution for the crew. Moreover, regarding the
model, Crew AI allows integration of local LLMs only through Ollama1 since it is preferred
for local LLM integration, offering customization and privacy benefits (Hassan et al., 2024).
Hence, we downloaded Ollama and pulled Mistral 7B to run it locally.

Subsequently, we implemented a pipeline to automate the use of the crew by first gener-
ating test cases for each sample in the test dataset, and then evaluating each generated sample.
It is noteworthy to mention that Crew AI permits each agent to be represented and operated
by an LLM, with the default being “GPT-4” if no other LLM is specified. However, in this
thesis, we chose Mistral 7B pulled from Ollama for all agents.

Listing 6.10: Defining the crew.
crew = Crew(

agents=[expert_interpreter, test_case_writer,
test_case_evaluator, final_test_case_writer],

tasks=[expert_interpreter_task, test_case_writer_task,
test_case_evaluator_task, final_test_case_writer_task],

verbose=2,
process=Process.sequential,
max_rpm=10,
share_crew=False

)

Approach Limitations
During the agentic workflow approach, we had different restrictions that tied us. We could
not enable the memory parameter, a feature that comprises short-term memory, long-term
memory, entity memory, and newly identified contextual memory, each serving a unique
purpose in aiding agents to remember, reason, and learn from past interactions (Hassan et al.,
2024) for the crew due to limited GPU.

Moreover, we encountered challenges in facilitating delegation among the agents, a fea-
ture that empowers them to assign tasks or queries to one another. This functionality ensures
that the most appropriate agent addresses each task. However, we faced frequent connection
loss errors, potentially linked to the company’s infrastructure. However, these errors did not
occur when running Crew AI from home.

6.4 Evaluation
Evaluation is a crucial aspect of machine learning, providing insights into the performance
and robustness of the employed models. By evaluating, the quality of the model output can
be evaluated against some predefined criteria.

1https://github.com/ollama/ollama

72

https://github.com/ollama/ollama

6.4 Evaluation

In natural language generation (NLG), a sub-field of NLP is associated with building
software systems that can produce coherent and readable text (Reiter and Dale, 1997). The
evaluation is challenging since NLG tasks are open-ended. For instance, for the same input,
the NLG model can generate multiple appropriate responses (Celikyilmaz et al., 2020).

Therefore, when it comes to most NLG tasks, human evaluation remains the superior
standard. However, it is expensive, time-consuming, and labor-intensive. Hence, NLG eval-
uation approaches developed recently serve a critical role in guiding system development and
ensuring that generated text fulfills the desired quality standards for its intended use case.

6.4.1 NLG Evaluation Metrics
Common evaluation metrics such as training loss and validation loss provide valuable insights
into a model’s performance and efficiency. However, they are not always suitable for NLG
tasks because they are open-ended. Unlike tasks like classification, NLG involves generating
text, which poses challenges for traditional metrics.

Additionally, supervised training generally concentrates on minimizing a loss function
such as cross-entropy. However, in many applications, we are interested in performing well
on metrics that pertain to the application (Song et al., 2016). Hence, appropriate evaluation
metrics ensure that the model meets the required objectives and produces reliable results in
real-world applications.

BLEU stands for Bilingual Evaluation Understudy (Papineni et al., 2002) and is a metric
that is used to measure how good a machine translation is using human reference translations.
It evaluates the accuracy of n-grams of varying lengths (from 1 to 4 words) in the candidate
against the reference translations. The brevity penalty is introduced into BLEU to avoid
giving high scores to overly short translations. The final score is an integer between 0 and
1 where the higher the number the closer the candidate translations are to the reference
translations. BLEU gets used very often but has also been criticized for not taking meaning
or context into account, and too often assigns high scores to low-quality translations. Table
6.6 shows the different interpretations of various ranges of BLEU score.

Table 6.6: BLEU Scores Interpetation (Stufflebeam, 2001)

BLEU Score Interpretation
< 10 Almost useless
10-19 Hard to get the gist
20-29 The gist is clear, but has significant grammatical errors
30-40 Understandable to good translation
40-50 High-quality translations
50-60 Very high-quality, adequate, and fluent translations
> 60 Quality often better than human translations

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation (Lin, 2004) and
metric for evaluation of the quality of summaries or machine translation in comparison to one
or more reference text. It computes coverage of n-grams, sequences of words or word pairs
in candidate and reference documents. There are key variants of ROUGE: ROUGE-N – the

73

6. Experiments

N-gram overlap-based approach; ROUGE-L – the Longest common subsequence to consider
for word order. ROUGE focuses mostly on recall because it measures the percentage of the
reference text contained in the candidate text; however, ROUGE can also calculate precision
and F1-score. This makes ROUGE useful for evaluating content coverage and coherence in
summarization and translation.

METEOR the Metric for Evaluation of Translation with Explicit Ordering (Lavie et al.,
2004). It evaluates machine translation by using correlations between candidate translation
and reference translation with precision and recall. It uses Word Alignment for aligning
words between candidate and reference texts and for identifying variations through stem-
ming and synonymy matching. F1 scores are generated by METEOR, which is a harmonic
mean of precision and recall. It also poses a penalty on word order variations to correct for
fluency and coherence.

Similarity scores In the context of text generation, a similarity score measures how sim-
ilar or related a generated text is to a given reference text or set of texts. Two popular scores
were used in this thesis, Levenshtein distance, Jaccard, and spaCy. The first one is also known
as the edit distance, it measures the minimum number of single-character edits (insertions,
deletions) required to change one sequence into another (Celikyilmaz et al., 2020). Jaccard’s
similarity, on the other hand, calculates the degree to which something is similar by dividing
its intersection by its union. Furthermore, spaCy doc similarity (Zhelezniak et al., 2019) uses
an average of word vectors to estimate semantic similarity based on cosine similarity.

6.4.2 Human Evaluation
Involving humans as judges, as Celikyilmaz et al. (2020) discussed, is the most natural way
of evaluating a system. In this study, we asked humans in various roles (senior, junior, and
experienced engineers) to rate different test cases.

Our human evaluation approach was based on eight different samples, where six of them
belong to already existing features while the remaining two correspond to completely new
features that do not have written test cases yet. Additionally, for the already existing fea-
tures, we mixed real (human-written) test cases with the generated test cases gained from
our models to make it a bit challenging for the judges, encouraging them to analyze the given
test cases properly.

Thereafter, for each test case, we asked the judges to set a score based on the following
criteria:

Score ∈ [1, 10], where


1 means irrelevant test case/obviously machine-written,
5 means human-written test case/valid test case,
> 5 means very accurate and much better than a human-written version.

6.4.3 Evaluation Pipeline
To measure all aforementioned evaluation metrics, we built a pipeline to get a closer look at
the model performance (see Figure 6.2). It involves several stages, starting with generating

74

6.4 Evaluation

test cases (candidates) for the entire test dataset (76 samples), and then extracting all real test
cases (references) for each sample in the same dataset.

Next, to resolve the problem of references and candidates that may have different lengths
in terms of the number of test cases, we had to apply padding or flattening depending on the
used metric and which technique it benefits most.

For padding, we explored two distinct methods. Firstly, employing the “copy” approach,
which involves appending a randomly selected test case from the same list to the shorter list,
aligning its length with the longer list. Secondly, employing a “pad token” strategy, where the
shorter list is padded with the chosen pad token <PAD> to achieve the same parity in length
with the other list.

Thereafter, we evaluated each sample on all six metrics, and then we calculated the aver-
age score of the entire test dataset for each metric to get an overall score.

number of generated
test cases == number

of references test cases

Padding/Flattening

Evaluating

YesNo

Generated test cases

One generated sample

BLEU

METEOR

ROUGE

SIMILARITY

References test cases

One reference sample

Figure 6.2: The evaluation pipeline we designed to get valuable in-
sights into the model performance.

75

6. Experiments

76

Chapter 7

Results & Discussion

In this chapter, we report the results of our different experiments. First, we dive into out-
comes from fine-tuning the basic model, in which manual QLoRA quantization techniques
are involved. Next, we discuss experiments that utilized prompt engineering on the base
model and through the llama-cpp-python framework that uses GGUF quantization, aimed
at improving the model’s performance. Lastly, we present the results from the experiments
performed with the agentic workflow approach, determining how effective this method is
on our downstream task.

It is important to mention that the contents of the result tables below only represent the
highest-performing experiments. Significantly more experiment trials have been conducted,
but we will only focus on the main findings.

Our mission is to identify which engineering techniques are most successful and how
they are related to the quality of text generated. Finally, we cover the pathways for future
study and exploration in this section. In all the tables presented in this chapter, "Matched"
indicates the number of samples from the test dataset where the number of generated test
cases matches the number of reference test cases for that sample.

7.1 Fine-tuning Results
In this subsection, we present the findings and the results of our fine-tuning experiments.
First, the results of fine-tuning the model revealed unexpected outcomes, where it performed
much worse than the pre-trained base model which had a BLEU score of 30.18. Despite
our efforts to refine the model through fine-tuning on domain-specific data, the model kept
getting worse, the more data it got. As demonstrated in Table 7.1, there is a significant drop
in performance scores when comparing the model fine-tuned on the small dataset to the one
fine-tuned on the medium dataset.

These results raise questions about the efficiency of this approach for the given down-
stream task. We hypothesize that this is because we built the datasets using the base model

77

7. Results & Discussion

through different data augmentation techniques, due to the lack of data. Hence, we con-
clude that the fine-tuning process damaged the model weights. Further investigation is rec-
ommended to identify the underlying factors contributing to this discrepancy.

Table 7.1: Fine-tuning result table on Mistral 7B Instruct v0.2 with
3 epochs

Dataset Matched Loss BLEU Meteor Rouge Similarity

Small Dataset 17 Train: 0.57 22.48 0.18 R1: 0.24 Lev: 0.22
R2: 0.05 Jacc: 0.71

Val: 0.76 RL: 0.13 spaCy: 0.8
RLsum: 0.23

Medium Dataset 49 Train: 0.4 7.33 0.13 R1: 0.13 Lev: 0.09
R2: 0.04 Jacc: 0.51

Val: 0.34 RL: 0.08 spaCy: 0.49
RLsum: 0.12

Large Dataset 43 Train: 0.65 9.31 0.12 R1: 0.18 Lev: 0.1
R2: 0.05 Jacc: 0.42

Val: 0.76 RL: 0.1 spaCy: 0.45
RLsum: 0.16

7.2 Prompt Engineering Results
Our experiments on prompt engineering offered promising results, proving the efficacy of
appropriate prompts in enhancing model performance. Through systematic variation of
prompts, we observed significant improvements in the generated test cases. Specifically,
cases where prompts were finely tuned to guide the model or where the model hinted by
the prompts toward desired outputs showed improved performance compared to unguided
approaches. These findings demonstrate the crucial role of prompt design in optimizing
model behavior and hold promise for advancing the field of NLP.

7.2.1 Base Model with QLoRA
DSP with few-shots
Our conducted experiments using prompt engineering to apply few-shot learning with DSP
techniques implied that the provision of contextual examples leads to the generation of
higher-quality text. Table 7.2 below demonstrates the results acquired in different metrics
applying a varying number of shots. Thus, we are observing that executing a few shots is
helping us to generate more consistent output figures as well as improving the BLEU, Rouge,
and Similarity scores.

On the other hand, it is worth mentioning that although increasing the number of shots
usually leads to better performance, our results do not necessarily indicate that increasing

78

7.2 Prompt Engineering Results

the number of shots translates into improved performance. From Table 7.2, we can see that
1-shot achieved the highest scores in all metrics. As the shots were incrementally increased
from 1-shot, we found that 2-shots, 3-shots, and 4-shots reduced the scores. Due to hardware
resource limitations, we were not able to experiment with 5-shots on the model we quantized
with QLoRA, see Table 7.2.

Table 7.2: DSP with few-shot prompt engineering result table on
Mistral 7B Instruct v0.2 with QLORA

Shots Matched BLEU Meteor Rouge Similarity

Zero-shot 5 4.2 0.138 R1: 0.23 Lev: 0.194
R2: 0.05 Jacc: 0.704
RL: 0.15 spaCy: 0.73

RLsum: 0.0

Half-shot 27 19.77 0.13 R1: 0.29 Lev: 0.13
R2: 0.06 Jacc: 0.70
RL: 0.16 spaCy: 0.76

RLsum: 0.27

1-shot 42 30.18 0.24 R1: 0.30 Lev: 0.23
R2: 0.08 Jacc: 0.72
RL: 0.18 spaCy: 0.79

RLsum: 0.28

2-shot 27 29 0.22 R1: 0.29 Lev: 0.22
R2: 0.07 Jacc: 0.71
RL: 0.17 spaCy: 0.77

RLsum: 0.27

3-shot 29 29.96 0.22 R1: 0.298 Lev: 0.21
R2: 0.07 Jacc: 0.71
RL: 0.17 spaCy: 0.77

RLsum: 0.27

4-shot 27 29.34 0.22 R1: 0.284 Lev: 0.21
R2: 0.07 Jacc: 0.70
RL: 0.17 spaCy: 0.75

RLsum: 0.27

5-shot CUDA Out Of Memory Error

7.2.2 Model with GGUF through Llama-cpp-python
DSP with few-shot
This experiment looks at the impact of a different number of shots with DSP applied using
llama-cpp-python and both 5-bit and 8-bit GGUF quantization on Mistral 7B Instruct.

79

7. Results & Discussion

There is a remarkable trend of better performance as the number of shots increases. It is
demonstrated in Table 7.3 that the metrics Matched, BLEU, Rouge, and Similarity improved
while increasing the number of shots. Nevertheless, we found that, regarding the 5-bit model,
once a specific point is reached, further increments in the number of shots cause performance
to reach a plateau level or even decline. Additionally, for the 8-bit, as Table 7.4 indicates, the
half-shot had the best BLEU score, and the more shots we gave the model, the worse the scores.
We did hyperparameter optimization on the half-shot model, where we ran 50 trials with a
search space for the hyperparameters described in Table 6.4. We gained a slight performance
improvement with a BLEU score of 32.925, the highest achieved score so far.

A observation worth mentioning is the successful implementation of the 5-shot scenario
with llama-cpp-python GGUF quantization that proves the efficiency of optimization meth-
ods in tackling computation indispensability. This approach made better use of memory,
resulting in high-resolution shot experiments, with higher bit quantization compared to
QLoRA on base model approach.

The above findings point out that shot number optimization together with the use of
optimization techniques is key to high-quality text generation.

Prompt chaining with DSP and few-shots
The designed experiment conducts prompt chaining with few-shots and DSP techniques.
The impact of diverse chain lengths and shot sequences on the model’s capability to generate
high-quality results is investigated.

Across the tested scenarios, a notable trend emerges: The increment of chain lengths
along with a number of shots results in better results in measured metrics. Additionally, for
the 1-3-shot situation with a chain length of 1 and 3 shots, the model has a BLEU score of
29.52. Moreover, extending the chain length while keeping the number of shots at the same
level leads to an improvement in the results, which is illustrated in Table 7.5. An increase in
chain length and number of shots by 1 further improved the results. This indicates that only
increasing chain length improves the model performance, and adding an increase in shots
adds to the improvements.

The results here imply that prompt stacking, along with few-shot and DSP methods,
could lead to an improvement in the text generation’s quality.

7.3 Agentic Workflow Results
In this experiment, the obtained results (refer to Table 7.6) did not yield the same level of
success as observed in other experiments, notably the prompt engineering trials, owing to
the constraints and limitations we encountered. Analysis of the results reveals that the one-
shot prompt achieved the highest BLEU score, while increasing the number of shots did not
notably improve model performance.

It’s worth noting that the strength of the agentic workflow primarily lies in the tools
provided to each agent. However, the implementation of these tools was hindered by the ne-
cessity to handle private data, thereby preventing their display in public domains such as web
searches, which are among the most powerful tools available. Moreover, there remains ample
opportunity for further exploration with this approach. The crew could potentially comprise

80

7.4 Choosing a Final Model

Table 7.3: Mistral 7B Instruct v0.2 in GGUF format with Q_5_K_M
as quantization method using Llama-cpp-python

Shots Matched BLEU Meteor Rouge Similarity

Half-shot 10 31.37 0.22 R1: 0.29 Lev: 0.22
R2: 0.054 Jacc: 0.71
RL: 0.15 spaCy: 0.78

RLsum: 0.274

1-shot 34 31.35 0.24 R1: 0.30 Lev: 0.22
R2: 0.065 Jacc: 0.71
RL: 0.16 spaCy: 0.79

RLsum: 0.28

2-shot 31 31.48 0.235 R1: 0.30 Lev: 0.227
R2: 0.062 Jacc: 0.716
RL: 0.16 spaCy: 0.791

RLsum: 0.276

3-shot 25 31.60 0.23 R1: 0.30 Lev: 0.23
R2: 0.07 Jacc: 0.72
RL: 0.167 spaCy: 0.79

RLsum: 0.283

4-shot 31 29.92 0.23 R1: 0.30 Lev: 0.22
R2: 0.065 Jacc: 0.71
RL: 0.163 spaCy: 0.79

RLsum: 0.28

5-shot 20 29.78 0.22 R1: 0.292 Lev: 0.22
R2: 0.06 Jacc: 0.71
RL: 0.16 spaCy: 0.77

RLsum: 0.272

3-shot with HPO 26 32.33 0.23 R1: 0.30 Lev: 0.23
R2: 0.061 Jacc: 0.71
RL: 0.161 spaCy: 0.79

RLsum: 0.282

diverse agents assigned tasks beyond those defined in this thesis, opening new avenues for
experimentation and refinement.

7.4 Choosing a Final Model
The choice of the best model from our prompt engineering experiments was made after tak-
ing into account several aspects. Our aim was to find the best techniques and settings that
showed the most promising results in the context of our study. The choice was based on the
fact that prompt engineering always performed better than other methods that were being

81

7. Results & Discussion

Table 7.4: Mistral 7B Instruct v0.2 in GGUF format with Q_8_0 as
quantization method using Llama-cpp-python

Shots Matched BLEU Meteor Rouge Similarity

Half-shot 8 32.17 0.215 R1: 0.296 Lev: 0.22
R2: 0.0055 Jacc: 0.71
RL: 0.155 spaCy: 0.78

RLsum: 0.276

1-shot 35 30.44 0.24 R1: 0.29 Lev: 0.23
R2: 0.067 Jacc: 0.71
RL: 0.163 spaCy: 0.79

RLsum: 0.28

2-shot 36 31.59 0.232 R1: 0.297 Lev: 0.232
R2: 0.061 Jacc: 0.715
RL: 0.159 spaCy: 0.791

RLsum: 0.279

3-shot 24 30.66 0.227 R1: 0.293 Lev: 0.22
R2: 0.06 Jacc: 0.71
RL: 0.161 spaCy: 0.78

RLsum: 0.274

4-shot 23 30.51 0.23 R1: 0.30 Lev: 0.22
R2: 0.065 Jacc: 0.72
RL: 0.164 spaCy: 0.788

RLsum: 0.279

5-shot 30 28.74 0.22 R1: 0.29 Lev: 0.22
R2: 0.06 Jacc: 0.71
RL: 0.16 spaCy: 0.78

RLsum: 0.272

Half-shot with HPO 9 32.925 0.212 R1: 0.292 Lev: 0.226
R2: 0.053 Jacc: 0.71
RL: 0.152 spaCy: 0.775

RLsum: 0.272

considered.
In order to continue with the human evaluation, we selected from the three following

approaches that showed the most promising results in model performance:

• DSP with Few-shot Prompting on the Base Model with QLoRA

• DSP with Few-shot Prompting on GGUF Model through llama-cpp-python

• DSP with Few-shot and Chain Prompting on GGUF Model through llama-cpp-python

We were trying to diversify the results and compare the performance of these models by
using standard metrics such as BLEU and ROUGE against the real-life evaluations of the hu-

82

7.4 Choosing a Final Model

Table 7.5: Prompt chaining using Mistral 7B Instruct v0.2 in GGUF
format with Q_5_K_M

Chain length & Number of shots Matched BLEU Meteor Rouge Similarity

1 & 3-shots 27 29.52 0.208 R1: 0.28 Lev: 0.22
R2: 0.05 Jacc: 0.71
RL: 0.15 spaCy: 0.78

RLsum: 0.26

2 & 3-shots 26 30 0.21 R1: 0.28 Lev: 0.21
R2: 0.05 Jacc: 0.71
RL: 0.15 spaCy: 0.78

RLsum: 0.26

3 & 4-shots 28 31.15 0.21 R1: 28 Lev: 0.21
R2: 0.05 Jacc: 0.71
RL: 0.15 spaCy: 0.78

RLsum: 0.26

Table 7.6: Agentic workflow few-shot result table on Mistral 7B In-
struct v0.2 pulled from Ollama

Shots Matched BLEU Meteor Rouge Similarity

1-shot 24 24.05 0.178 R1: 0.206 Lev: 0.203
R2: 0.025 Jacc: 0.7
RL: 0.18 spaCy: 0.74

RLsum: 0.114

2-shot 14 23.04 0.171 R1: 0.195 Lev: 0.20
R2: 0.07 Jacc: 0.69
RL: 0.105 spaCy: 0.75

RLsum: 0.184

3-shot 13 22.7 0.175 R1: 0.197 Lev: 0.19
R2: 0.024 Jacc: 0.69
RL: 0.109 spaCy: 0.76

RLsum: 0.186

4-shot 12 22.2 0.178 R1: 0.197 Lev: 0.19
R2: 0.026 Jacc: 0.7
RL: 0.109 spaCy: 0.75

RLsum: 0.186

5-shot 19 23.2 0.166 R1: 0.197 Lev: 0.197
R2: 0.023 Jacc: 0.7
RL: 0.108 spaCy: 0.74

RLsum: 0.188

83

7. Results & Discussion

man testers. This method helped us to find out whether higher metric scores were associated
with better model performance or if some other factors should be taken into account, with
metrics acting as guides.

After the analysis, the results showed that there is a strong connection between the higher
scores in standard metrics and the increased human evaluation scores. The model with the
best metric scores always won in the human assessment tests, thus proving the usefulness of
these metrics as the predictors of the model’s performance.

In our human evaluation process, we included real test cases randomly in the sample pool
to establish the reference value for human evaluation metrics based on the quality of the
existing test cases. Our highest human evaluation score was about 20 percent less than the
reference value, see Table 7.7. Even though this variation occurred, these test cases were still
usable as the reference value was based on real test cases that had been reviewed and validated
before, so the quality of the baseline was ensured.

Through this entire process of model selection and evaluation, we were able to obtain
valuable insights into the performance of various prompt engineering techniques and their
real-world applicability.

Table 7.7: Human evaluation result table on the top three optimiza-
tion approaches

Human Evaluation Scores
Reference score for real test cases: 4.68

Approach Human Evaluation Score/BLEU Score

DSP with Few-shot Prompting on the Base
Model with QLoRA

3.44/30.18

DSP with Few-shot Prompting on GGUF
Model through llama-cpp-python

3.71/32.93

DSP with Few-shot and Chain Prompting
on GGUF Model through

llama-cpp-python

3.45/31.15

To sum up, our detailed evaluation process has been the foundation of the discovery
of the most suitable model for the generation of contextually relevant and usable test case
documents based on the given specification documents. After carefully examining different
techniques and configurations, it turned out that the DSP model with half-shot prompting on
the 8-bit (Q8) GGUF Model through llama-cpp-python always beat the others. This method
not only got the best scores in the standard metrics such as BLEU and ROUGE but also did
well in the human evaluation metrics. We are sure that it can fulfill the difficult conditions
of our task, thus, showing the effectiveness of our quick engineering method in improving
the model performance for real-life applications.

84

7.5 Building a Practical Tool

7.5 Building a Practical Tool
We developed a tool (see Figure 7.1) that utilizes our optimized model to automate the process
of test case generation from feature documents. The tool takes two arguments, firstly a path
to a txt file that contains the feature document text and the second argument is a value that
decides if the tool should use GPU or not. The tool extracts the text from the txt file, applies
our optimized prompt template, and subsequently feeds the prompt to our highest-scoring
model. The response from the model is then saved in an output folder as a txt file containing
the generated test cases. The test cases generated in the text file can serve as a draft version.
Test engineers can refine them to create a final document of test cases, which can then be
integrated for use as functional test cases.

Feature Description.txt

Input

Output

Test Cases.txt

Tool

Duration approx.
30 seconds

GPU

Duration up to
20 minutes

CPU

Mistral 7B Instruct v0.2  
in GGUF with 8-bit quantization

Figure 7.1: A diagram of the pipeline for the tool

85

7. Results & Discussion

86

Chapter 8

Conclusion

Our thesis focuses on the use of NLP techniques in the software testing domain, providing
valuable insights into their performance and downsides. We evaluate three main approaches:
fine-tuning, prompt engineering, and AI agentic workflow, conducting over 615 experiment
runs with various settings. Additionally, we implemented a primary pipeline for LLM eval-
uation and hyperparameter optimization (see Appendix A). ’

Our approach achieves a high BLEU score of 32.93 which is higher than BLEU score for the
state-of-the-art machine translation from English-to-German which is 28.4 and approaches
the BLUE score for the state-of-the-art machine translation from English-to-French which
which is 41.0 (Vaswani et al., 2017). A BLEU score in the range of 30-40 typically indicates
an understandable to good translation 1.

In human evaluations, our approach received a score of 3.71, which is 20% lower than
the human-written reference score of 4.68 (see Table 7.7). Notably, the same approach that
yielded our highest BLEU score also achieved the highest human evaluation score, highlight-
ing a strong connection between the BLEU score and human judgment. This demonstrates
the potential effectiveness of our method since our generated test cases did not undergo any
planning or review phases that human-written test cases have undergone.

Reflections on research expectations. For completeness, we reiterate our research
expectations and provide the corresponding answers and reflections.

• Can a small-sized large language model (7 billion parameters) with quantization be
effectively applied in the software domain using consumer-grade GPU hardware?

– Our research demonstrates that a small-sized large language model (7 billion pa-
rameters) with quantization can be effectively utilized with consumer-grade GPU
hardware. We evaluated two different quantization methods, QLoRA and GGUF

1This range indicates that the translated text is generally accurate and preserves the meaning of the original
text, though it may still contain some errors or less natural phrasing compared to human translation.

87

8. Conclusion

format. Through these methods, we successfully applied Mistral 7B on the available
single GPU we had for this thesis, which is RTX 4080 with 16 GB VRAM.

• Is it feasible to generate test cases based on feature descriptions using a small-sized large
language model?

– The comparison of results suggests that further work on NLP-generated test cases
is needed. Despite the superiority of machine-generated test cases in certain as-
pects, there are also cases where traditional human-written test cases remain ad-
vantageous. Particularly in relation to the specific details found in the planning
and review phases. Nevertheless, the potential for leveraging NLP technologies for
automating the testing process within the area of software testing is very high –
this could be a promising direction for future developments.

• How does this approach compare in effectiveness to human-written test cases that have
undergone planning and reviewing phases?

– This thesis demonstrates that machine-generated test cases can approach the effec-
tiveness of human-written ones. During human evaluation, our approach scored
3.71, compared to 4.68 for human-written test cases. Additionally, our method
achieved a BLEU score of 32.93, surpassing the state-of-the-art machine translation
from English-to-German, which scored 28.4, and approaching the state-of-the-art
English-to-French translation, which scored 41.0.

Future work. Future research in this area might put in focus a number of areas that would
be helpful for further improvement of the quality of NLP-generated test cases. With that,
research into higher and more complex LLMs can prove potentially useful, for example by
focusing on further enhancing test case generation. Secondly, replacing older mathemati-
cal approaches with state-of-the-art quantization algorithms and optimization algorithms
could help boost performance and speed on commodity-grade hardware. Further research
might be useful to investigate why fine-tuning was not suitable in this case and the possible
improvements and modifications that can be made to make this approach more effective.

In addition, the AI agentic workflow could be explored by incorporating variations of crew
structure and even perhaps the use of crew tools that contribute to coordination between
the agents and increased efficiency. Additionally, introducing human-in-the-loop interaction
with the AI agents would improve the performance to a large extent. There is an opportunity
to use a much bigger real dataset to increase overall performance, as our thesis was based only
on 93 real data samples, while the rest was augmented.

Furthermore, a solid future strategy could also include the use of RAG to be able to consider
and read the specifications of some of the features in the other types of formats besides text
(i.e., web pages, pictures, and diagrams) and therefore create test cases in appropriate formats
accordingly.

88

References

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F., and Sanghai, S. (2023).
Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245.

Al-Hossami, E. and Shaikh, S. (2022). A survey on artificial intelligence for source code: a
dialogue systems perspective. arXiv preprint arXiv:2202.04847.

Alaqail, H. and Ahmed, S. (2018). Overview of software testing standard iso/iec/ieee 29119.
International Journal of Computer Science and Network Security (IJCSNS), 18(2):112–116.

Alvarez, J. E. (2017). A review of word embedding and document similarity algorithms ap-
plied to academic text. Master’s thesis, University of Freiburg.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman,
M., Harrold, M. J., McMinn, P., Bertolino, A., et al. (2013). An orchestrated survey of
methodologies for automated software test case generation. Journal of systems and software,
86(8):1978–2001.

Ansari, A., Shagufta, M. B., Sadaf Fatima, A., and Tehreem, S. (2017). Constructing test
cases using natural language processing. In 2017 Third International Conference on Advances
in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pages 95–
99.

Aoyama, Y., Kuroiwa, T., and Kushiro, N. (2021). Executable test case generation from spec-
ifications written in natural language and test execution environment. In 2021 IEEE 18th
Annual Consumer Communications & Networking Conference (CCNC), pages 1–6.

Arvidsson, S. and Axell, J. (2023). Prompt engineering guidelines for LLMs in requirements
engineering. Master’s thesis, Gothenburg University.

Ayenew, H. and Wagaw, M. (2024). Software test case generation using natural language
processing (nlp): A systematic literature review. Artificial Intelligence Evolution, pages 1–10.

89

REFERENCES

Bao, H., Dong, L., Wei, F., Wang, W., Yang, N., Liu, X., Wang, Y., Piao, S., Gao, J., Zhou, M.,
and Hon, H.-W. (2020). Unilmv2: pseudo-masked language models for unified language
model pre-training. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org.

Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model.
In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing
Systems, volume 13. MIT Press.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011a). Algorithms for hyper-parameter
optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011b). Algorithms for
hyper-parameter optimization. Advances in neural information processing sys-
tems, 24. URL: https://www.analyticsvidhya.com/blog/2023/08/
fine-tuning-large-language-models/.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.

Catterall, W. A., Perez-Reyes, E., Snutch, T. P., and Striessnig, J. (2005). International union
of pharmacology. xlviii. nomenclature and structure-function relationships of voltage-
gated calcium channels. Pharmacological reviews, 57(4):411–425.

Celikyilmaz, A., Clark, E., and Gao, J. (2020). Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799.

Chen, H., Han, W., Yang, D., and Poria, S. (2022). Doublemix: Simple interpolation-based
data augmentation for text classification. arXiv preprint arXiv:2209.05297.

Choi, J., Jin, K., Lee, J., Song, S., and Kim, Y. (2024). Softeda: Rethinking rule-based data
augmentation with soft labels. arXiv preprint arXiv:2402.05591.

Cremers, A. and Ginsburg, S. (1975). Context-free grammar forms. Journal of Computer
and System Sciences, 11(1):86–117. URL: https://www.sciencedirect.com/science/
article/pii/S0022000075800511.

de Kock, N., Rautenbach, V., and Fabris-Rotelli, I. (2022). Towards an open source python
library for automated exploratory spatial data analysis. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, 43:91–98.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2024). Qlora: Efficient fine-
tuning of quantized llms. Advances in Neural Information Processing Systems, 36.

90

https://www.analyticsvidhya.com/blog/2023/08/fine-tuning-large-language-models/
https://www.analyticsvidhya.com/blog/2023/08/fine-tuning-large-language-models/
https://www.sciencedirect.com/science/article/pii/S0022000075800511
https://www.sciencedirect.com/science/article/pii/S0022000075800511

REFERENCES

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
URL: https://arxiv.org/abs/1810.04805.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C.-M., Chen, W.,
et al. (2023). Parameter-efficient fine-tuning of large-scale pre-trained language models.
Nature Machine Intelligence, 5(3):220–235.

Dong, G., Yuan, H., Lu, K., Li, C., Xue, M., Liu, D., Wang, W., Yuan, Z., Zhou, C., and Zhou,
J. (2023). How abilities in large language models are affected by supervised fine-tuning
data composition. arXiv preprint arXiv:2310.05492.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M., and Hon, H.-
W. (2019). Unified language model pre-training for natural language understanding and
generation. Advances in neural information processing systems, 32.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., and Tang, J. (2021). Glm: General lan-
guage model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360.

Ekin, S. (2023). Prompt engineering for chatgpt: a quick guide to techniques, tips, and best
practices. Authorea Preprints.

El-Kassas, W., Salama, C., Rafea, A., and Mohamed, H. (2020). Automatic text summariza-
tion: A comprehensive survey. Expert Systems with Applications, 165:113679.

Elfwing, S., Uchibe, E., and Doya, K. (2018). Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural Networks, 107:3–11. Special
issue on deep reinforcement learning.

Faisal, F. and Anastasopoulos, A. (2024). Data-augmentation-based dialectal adaptation for
llms. arXiv preprint arXiv:2404.08092.

Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., and Hovy, E. (2021).
A survey of data augmentation approaches for nlp. arXiv preprint arXiv:2105.03075.

Ferrario, A. and Nägelin, M. (2020). The art of natural language processing: classical, modern
and contemporary approaches to text document classification. Modern and Contemporary
Approaches to Text Document Classification (March 1, 2020).

Friederich, S. (2017). Fine-tuning. The Stanford encyclopedia of philosophy. URL: https:
//plato.stanford.edu/entries/fine-tuning/.

Gangal, V., Feng, S. Y., Alikhani, M., Mitamura, T., and Hovy, E. (2022). Nareor: The nar-
rative reordering problem. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10645–10653.

Gillioz, A., Casas, J., Mugellini, E., and Khaled, O. A. (2020). Overview of the transformer-
based models for nlp tasks. In 2020 15th Conference on Computer Science and Information
Systems (FedCSIS), pages 179–183.

91

https://arxiv.org/abs/1810.04805
https://plato.stanford.edu/entries/fine-tuning/.
https://plato.stanford.edu/entries/fine-tuning/.

REFERENCES

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017). Google
vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pages 1487–1495.

Gridin, I. (2022). Nni recipes. In Automated Deep Learning Using Neural Network Intelligence:
Develop and Design PyTorch and TensorFlow Models Using Python, pages 357–377. Springer.

Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N. V., Wiest, O., and Zhang, X.
(2024). Large language model based multi-agents: A survey of progress and challenges.
arXiv preprint arXiv:2402.01680.

Gupta, A. (2023). Test case selection from test specifications using natural language process-
ing. Master’s thesis, Stockholm University.

Gupta, N., Sharma, A., and Pachariya, M. K. (2019). An insight into test case optimization:
Ideas and trends with future perspectives. IEEE Access, 7:22310–22327.

Haaralahti, E. (2024). Utilization of local large language models for business ap-
plications. URL: https://aaltodoc.aalto.fi/server/api/core/bitstreams/
1b63c648-44b3-46a9-9385-059d2584abea/content.

Harris, D., Martin, G. M., Perera, I., and Poskitt, D. S. (2017). Construction and visual-
ization of optimal confidence sets for frequentist distributional forecasts. arXiv preprint
arXiv:1708.02234.

Hassan, A. E., Lin, D., Rajbahadur, G. K., Gallaba, K., Cogo, F. R., Chen, B., Zhang, H.,
Thangarajah, K., Oliva, G. A., Lin, J., et al. (2024). Rethinking software engineering in
the era of foundation models: A curated catalogue of challenges in the development of
trustworthy fmware. arXiv preprint arXiv:2402.15943.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2019). The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751.

Hong, C.-H., Spence, I., and Nikolopoulos, D. S. (2017). Gpu virtualization and scheduling
methods: A comprehensive survey. ACM Computing Surveys (CSUR), 50(3):1–37.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021).
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

ISO/IEC/IEEE International Standard, S. t. (2013). Iso/iec/ieee international standard -
software and systems engineering —software testing —part 1:concepts and definitions.
ISO/IEC/IEEE 29119-1:2013(E), pages 1–64.

Jain, N., Chiang, P.-y., Wen, Y., Kirchenbauer, J., Chu, H.-M., Somepalli, G., Bartoldson,
B. R., Kailkhura, B., Schwarzschild, A., Saha, A., et al. (2023). Neftune: Noisy embeddings
improve instruction finetuning. arXiv preprint arXiv:2310.05914.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l., Bres-
sand, F., Lengyel, G., Lample, G., Saulnier, L., et al. (2023). Mistral 7b. arXiv preprint
arXiv:2310.06825.

92

https://aaltodoc.aalto.fi/server/api/core/bitstreams/1b63c648-44b3-46a9-9385-059d2584abea/content
https://aaltodoc.aalto.fi/server/api/core/bitstreams/1b63c648-44b3-46a9-9385-059d2584abea/content

REFERENCES

Katz, S. (1987). Estimation of probabilities from sparse data for the language model com-
ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech, and Signal Processing,
35(3):400–401.

Kiran, A., Butt, W. H., Anwar, M. W., Azam, F., and Maqbool, B. (2019). A comprehensive
investigation of modern test suite optimization trends, tools and techniques. IEEE Access,
7:89093–89117.

Kublik, S. and Saboo, S. s. (2022). GPT-3: Building Innovative NLP Products Using Large Language
Models, 1st ed, volume 1. O’Reilly Media, Incorporated.

Lafi, M., Alrawashed, T., and Hammad, A. M. (2021). Automated test cases generation from
requirements specification. In 2021 International Conference on Information Technology (ICIT),
pages 852–857.

Lambert, E., Fiers, M., Nizamov, S., Tassaert, M., Johnson, S. G., Bienstman, P., and Bo-
gaerts, W. (2010). Python bindings for the open source electromagnetic simulator meep.
Computing in Science & Engineering, 13(3):53–65.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S., Steigerwald, R., Strouse, D., Hansen,
S., Filos, A., Brooks, E., et al. (2022). In-context reinforcement learning with algorithm
distillation. arXiv preprint arXiv:2210.14215.

Lavie, A., Sagae, K., and Jayaraman, S. (2004). The significance of recall in automatic metrics
for mt evaluation. In Machine Translation: From Real Users to Research: 6th Conference of
the Association for Machine Translation in the Americas, AMTA 2004, Washington, DC, USA,
September 28-October 2, 2004. Proceedings 6, pages 134–143. Springer.

Leviathan, Y., Kalman, M., and Matias, Y. (2023). Fast inference from transformers via specu-
lative decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR.

Leygonie, R., Lobry, S., Vimont, G., and Wendling, L. (2023). Transforming multidimen-
sional data into images to overcome the curse of dimensionality. In 2023 IEEE International
Conference on Image Processing (ICIP), pages 700–704.

Li, J., Tang, T., Zhao, W. X., Nie, J.-Y., and Wen, J.-R. (2022). Pretrained language models for
text generation: A survey. arXiv preprint arXiv:2201.05273.

Li, Z., Peng, B., He, P., Galley, M., Gao, J., and Yan, X. (2024). Guiding large language models
via directional stimulus prompting. Advances in Neural Information Processing Systems, 36.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text summa-
rization branches out, pages 74–81.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and Han, S. (2023). Awq: Activation-aware
weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978.

Lunney, D., Vieira, N., Audi, G., Gaulard, C., de Saint Simon, M., and Thibault, C. (2006).
Mass measurements of the shortest-lived nuclides a la mistral. International Journal of Mass
Spectrometry, 251(2-3):286–292.

93

REFERENCES

Maclaren, U. (2024). Do you know when to use 0-shot, 1-shot, or multi-shot
prompts (e.g. give it 1 or more examples)? URL: https://anilktalla.
medium.com/prompt-engineering-1-shot-prompting-283a0b2b1467#:~:
text=1.,example%20can%20guide%20the%20output.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. In Bengio, Y. and LeCun, Y., editors, 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., and Gao, J.
(2024). Large language models: A survey. arXiv preprint arXiv:2402.06196.

Mittal, S. and Vetter, J. S. (2014). A survey of methods for analyzing and improving gpu
energy efficiency. ACM Computing Surveys (CSUR), 47(2):1–23. URL: https://arxiv.
org/abs/1904.09751.

Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W. (2011). Natural language process-
ing: an introduction. Journal of the American Medical Informatics Association, 18(5):544–551.

Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention mechanism of deep learning.
Neurocomputing, 452:48–62.

Otero-Escobar, A. D. and Velasco-Ramírez, M. L. (2023). Study on exploratory data analysis
applied to education. In 2023 IEEE International Conference on Engineering Veracruz (ICEV),
pages 1–5.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-
uation of machine translation. In Isabelle, P., Charniak, E., and Lin, D., editors, Proceed-
ings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

Patil, R., Boit, S., Gudivada, V., and Nandigam, J. (2023). A survey of text representation and
embedding techniques in nlp. IEEE Access, 11:36120–36146.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word repre-
sentation. In Moschitti, A., Pang, B., and Daelemans, W., editors, Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Linguistics.

Pham, Q., Do, G., Nguyen, H., Nguyen, T., Liu, C., Sartipi, M., Nguyen, B. T., Ramasamy, S.,
Li, X., Hoi, S., et al. (2024). Competesmoe–effective training of sparse mixture of experts
via competition. arXiv preprint arXiv:2402.02526.

Potuzak, T. and Lipka, R. (2023). Current trends in automated test case generation. In 2023
18th Conference on Computer Science and Intelligence Systems (FedCSIS), pages 627–636. IEEE.

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., and Huang, X. (2020). Pre-trained models for nat-
ural language processing: A survey. Science China Technological Sciences, 63(10):1872–1897.

94

https://anilktalla.medium.com/prompt-engineering-1-shot-prompting-283a0b2b1467#:~:text=1.,example%20can%20guide%20the%20output.
https://anilktalla.medium.com/prompt-engineering-1-shot-prompting-283a0b2b1467#:~:text=1.,example%20can%20guide%20the%20output.
https://anilktalla.medium.com/prompt-engineering-1-shot-prompting-283a0b2b1467#:~:text=1.,example%20can%20guide%20the%20output.
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751

REFERENCES

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training. OpenAI blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Reiter, E. and Dale, R. (1997). Building applied natural language generation systems. Natural
Language Engineering, 3(1):57–87.

Reitz, K. (2023). Requests: Http for humans™. URL: https://requests.readthedocs.
io/en/latest/. (Accessed on 06/18/2024).

Renze, M. and Guven, E. (2024). The effect of sampling temperature on problem solving in
large language models. arXiv preprint arXiv:2402.05201.

Richardson, L. (2024). Beautiful soup documentation. URL: https://www.crummy.com/
software/BeautifulSoup/bs4/doc/.

Romanus Myrberg, N. and Danielsson, S. (2023). Question-answering in the financial do-
main. Master’s thesis, Lund University.

Rothe, S., Narayan, S., and Severyn, A. (2020). Leveraging pre-trained checkpoints for
sequence generation tasks. Transactions of the Association for Computational Linguistics,
8:264–280.

Salman, A. (2020). Test case generation from specifications using natural language processing.
Master’s thesis, KTH Royal Institute of Technology.

Sennrich, R., Haddow, B., and Birch, A. (2015). Improving neural machine translation models
with monolingual data. arXiv preprint arXiv:1511.06709.

Shazeer, N. (2019). Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Singh, S. K. and Singh, A. (2012). Software testing. Vandana Publications.
URL: https://fall14se.wordpress.com/wp-content/uploads/2017/12/
software-testing-yogesh-singh.pdf.

Sinha, S., Zhao, Z., ALIAS PARTH GOYAL, A. G., Raffel, C. A., and Odena, A. (2020). Top-
k training of gans: Improving gan performance by throwing away bad samples. Advances
in Neural Information Processing Systems, 33:14638–14649.

Sivarajkumar, S., Kelley, M., Samolyk-Mazzanti, A., Visweswaran, S., and Wang, Y. (2024).
An empirical evaluation of prompting strategies for large language models in zero-shot
clinical natural language processing: Algorithm development and validation study. JMIR
Medical Informatics, 12:e55318.

Song, Y., Schwing, A., Urtasun, R., et al. (2016). Training deep neural networks via direct
loss minimization. In International conference on machine learning, pages 2169–2177. PMLR.

Stenberg, D. (2024). Documentation overview. URL: https://danielsieger.com/blog/
2023/04/24/framework-for-better-documentation.html.

95

https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://fall14se.wordpress.com/wp-content/uploads/2017/12/software-testing-yogesh-singh.pdf
https://fall14se.wordpress.com/wp-content/uploads/2017/12/software-testing-yogesh-singh.pdf
https://danielsieger.com/blog/2023/04/24/framework-for-better-documentation.html
https://danielsieger.com/blog/2023/04/24/framework-for-better-documentation.html

REFERENCES

Stern, M., Shazeer, N., and Uszkoreit, J. (2018). Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31.

Stiny, G. (1992). Weights. Environment and planning B: Planning and design, 19(4):413–
430. URL: https://www.andrew.cmu.edu/course/48747/subFrames/readings/
Stiny.weights.pdf.

Stufflebeam, D. (2001). Evaluation models. New directions for evaluation, 2001(89):7–98.

Tang, Y., Zhang, R., Guo, Z., Ma, X., Zhao, B., Wang, Z., Wang, D., and Li, X. (2024). Point-
peft: Parameter-efficient fine-tuning for 3d pre-trained models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 5171–5179.

Tribes, C., Benarroch-Lelong, S., Lu, P., and Kobyzev, I. (2023). Hyperparameter optimiza-
tion for large language model instruction-tuning. arXiv preprint arXiv:2312.00949.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wachter, S. and Mittelstadt, B. (2019). A right to reasonable inferences: re-thinking data
protection law in the age of big data and ai. Colum. Bus. L. Rev., page 494.

Wang, C., Pastore, F., Goknil, A., and Briand, L. C. (2020). Automatic generation of accep-
tance test cases from use case specifications: an nlp-based approach. IEEE Transactions on
Software Engineering, 48(2):585–616.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., and Wang, Q. (2024). Software testing
with large language models: Survey, landscape, and vision. IEEE Transactions on Software
Engineering.

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software,
6(60):3021.

Wes McKinney (2010). Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 – 61.

Whittaker, J. A. (2000). What is software testing? and why is it so hard? IEEE software,
17(1):70–79.

Wu, T., Jiang, E., Donsbach, A., Gray, J., Molina, A., Terry, M., and Cai, C. J. (2022).
Promptchainer: Chaining large language model prompts through visual programming. In
CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–10.

Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L. (2023). Parameter-efficient fine-tuning
methods for pretrained language models: A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Yang, G., Haque, M., Song, Q., Yang, W., and Liu, X. (2022). Testaug: A framework for
augmenting capability-based nlp tests. arXiv preprint arXiv:2210.08097.

96

https://www.andrew.cmu.edu/course/48747/subFrames/readings/Stiny.weights.pdf
https://www.andrew.cmu.edu/course/48747/subFrames/readings/Stiny.weights.pdf

REFERENCES

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). Xlnet:
Generalized autoregressive pretraining for language understanding. Advances in neural in-
formation processing systems, 32.

Zaib, M., Sheng, Q. Z., and Emma Zhang, W. (2020). A short survey of pre-trained language
models for conversational ai-a new age in nlp. In Proceedings of the Australasian computer
science week multiconference, pages 1–4.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu,
F., et al. (2023). Instruction tuning for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Zhelezniak, V., Savkov, A., Shen, A., and Hammerla, N. Y. (2019). Correlation coefficients
and semantic textual similarity. arXiv preprint arXiv:1905.07790.

97

REFERENCES

98

Appendices

99

Appendix A

LLM Evaluation and Hyperparameter Opti-
mization Pipeline

As part of this thesis, we built a pipeline (see Figure A.1) to automate multiple functions, such
as generating responses, evaluating them, utilizing the NNI framework for hyperparameter
optimization, and finally choosing the best model with the highest BLEU score.

The pipeline is broken down as follows:

LLM and Test Data Loading The pipeline starts by loading a chosen LLM and a test
dataset. We built the LLM based on the chosen draft model, the quantized GGUF model,
and the chat format template, using llama-cpp-python. Then we loaded both the test dataset
and the example-shots dataset for prompt engineering.

Response Generation The LLM then generates, with a given prompt, responses for each
sample within the test dataset. Additionally, we defined a search space for the hyperparam-
eters, a tuner, and an assessor for the HPO phase later.

Evaluation The generated responses are evaluated using predefined metrics. Then, the
BLEU score of each sample evaluation is reported to the NNI as an intermediate result.

Intermediate BLEU Score Reporting The median BLEU score is used as the default
metric for the NNI, where the objective of the tuner is to maximize this metric. Moreover,
the assessor here works as the early stopping mechanism.

Average BLEU Score Calculation Once all the samples in the test dataset are evalu-
ated, the pipeline calculates the average BLEU score for the entire trial. This score is then
reported to NNI as the final result.

Best Model Selection Finally, the pipeline picks the model that achieved the highest
BLEU score during the optimization process as the best model.

101

A. LLM Evaluation and Hyperparameter Optimization Pipeline

Test dataset

Feature
documentations

LLM

Draft
LLM

mistral-7b-instruct-
v0.2.Q8_0.gguf

Chat
format

llama-cpp-python

Reference
testcases

Example-shots
dataset

Generate
responses

Evaluate

BLEU

Extract

One reference sampleOne feature sample

1-5 shots

Prompt

NNI HPO Intermediate result

Average BLEU score

Entire test dataset

Hyperparameters
search space

TPE tunerMaximize

NNI HPO Final result

Final model

Pick the best trial

Medianstop
assessor

Default
hyperparams

Figure A.1: The LLM evaluation and HPO pipeline created during
this thesis.

102

Appendix B

Experiments Tracking

In our HPO experiments, specifically for the top two promising models, we meticulously
document various aspects, through NNI, to ensure comprehensive analysis and reproducibil-
ity. The first step involves defining the search space, which includes specifying the range and
type of hyperparameters to be optimized. For each experiment, we record the specific hyper-
parameter settings tested, the corresponding model performance metrics, and any notable
observations.

We also generate and analyze graphs to visualize the results (see Figures B.6, & B.5), such as
performance trends over different hyperparameter values, convergence rates, and comparison
plots of different optimization techniques. These graphs help in identifying the most effec-
tive hyperparameter configurations and understanding their impact on model performance.
Additionally, we document the computational resources used, the duration of each experi-
ment, and any encountered issues or anomalies. This detailed tracking approach ensures that
the experiments are comprehensive, and the insights gained are valuable for improving the
outcome of this thesis.

Listing B.1: Defining the search space for lama-cpp-python ap-
proach.

temp_list = np.arange(0,1.5 + 0.1, 0.1).tolist()
search_space_llama_cpp = {

’temperature’: {’_type’ : ’choice’, ’_value’ :temp_list},
’max_tokens’: {’_type’ : ’choice’, ’_value’ :[1024, 2048, 4096,

8192, 16384]},
’num_pred_tokens’: {’_type’ : ’choice’, ’_value’ :[5, 10, 15, 20,

25, 30]},
’top_p’: {’_type’ : ’uniform’, ’_value’ :[0, 1]},
’top_k’: {’_type’ : ’choice’, ’_value’ :[1, 5, 10, 15, 20, 25, 30,

35, 40]}

}

103

B. Experiments Tracking

Mistral-7B-Instruct 5-bit-GGUF HPO with 3-shot In this experiment, we ran our
pipeline with 80 trials and a predefined search space. This experiment took around two days
(see Figure B.1) and the best trial had a 32.33 BLEU score with a specific combination of
hyperparameter values, as Table B.1 demonstrates. Even though each trial had a BLEU score,
we looked at its intermediate results and graphs to see how it did compared to other trials
(see Figure B.2).

Figure B.1: Overview of Mistral-7B-Instruct 5-bit-GGUF HPO with
3-shot experiment.

Figure B.2: Hyperparameters graph together with intermediate re-
sults for all trials. Default refers to the BLEU score.

Table B.1: Hyperparameters values of best trail for Mistral-7B-
Instruct 5-bit-GGUF HPO with 3-shot.

Hyperparameter Chosen Value
Temperature 1.5
Max Tokens 8192
Number of Predicted Tokens 30
top_p 0.74312
top_k 40

104

Mistral-7B-Instruct 8-bit-GGUF HPO with half-shot In this experiment, we ran
our pipeline with 50 trials and a predefined search space. This experiment took around one
day (see Figure B.3) and the best trial had a 32.925 BLEU score with a specific combination of
hyperparameter values, as Table B.2 demonstrates. Even though each trial had a BLEU score,
we looked at its intermediate results and graphs to see how it did compared to other trials
(see Figure B.4).

Figure B.3: Overview of Mistral-7B-Instruct 8-bit-GGUF HPO with
half-shot experiment.

Figure B.4: Hyperparameters graph together with intermediate re-
sults for all trials. Default refers to the BLEU score.

Table B.2: Hyperparameters values of best trail for Mistral-7B-
Instruct 8-bit-GGUF HPO with half-shot.

Hyperparameter Chosen Value
Temperature 0.9
Max Tokens 4096
Number of Predicted Tokens 15
top_p 0.7859
top_k 10

105

B. Experiments Tracking

Figure B.5: Computational resources tracking over 615 runs using
Wandb.

Figure B.6: Evaluation metrics tracking over 615 runs using Wandb.

106

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-05-31

EXAMENSARBETE Testfallsgenerering med hjälp av Natural Language Processing
Generating Test Cases Using Natural Language Processing
STUDENTER Yamen Albdeiwi, Mohammed El-Khalil
HANDLEDARE Pierre Nugues (LTH)
EXAMINATOR Jacek Malek (LTH)

Testfallsgenerering med hjälp av Natural
Language Processing

POPULÄRVETENSKAPLIG SAMMANFATTNING Yamen Albdeiwi, Mohammed El-Khalil

Testfallsgenerering är en kritisk del av programvarutestning, men är arbetsintensiv
och är benägen till mänskliga fel. Transformerbaserade språkmodeller möjliggör au-
tomatisering av denna process. Detta arbete introducerar metoder för att optimera
språkmodeller med begränsade resurser för testfallsgenerering från specifikationsdoku-
ment.

Programvarutestning är en avgörande aspekt för
teknikorganisationer som utvecklar programvara.
Det utgör mer än 52% av kostnaden för en pro-
gramvaruutvecklingslivscykel. Det mest framträ-
dande sättet att optimera processen för testfall-
sproduktion är att automatisera den på ett sätt
som förbättrar testtäckningen, eller åtminstone
inte hämmar den.

I detta arbete utforskar vi möjligheterna att
automatisera genereringen av testfall från speci-
fikationsdokument med stora språkmodeller. Vi
använde kvantiserings- och optimeringstekniker
samt använde fine-tuning, prompt engineering och
AI Agentic Workflow för att optimera modellpre-
setandan.

Vi använde ovanstående tekniker på Mis-
tral 7B Instruct, en framstående språkmodell
från Mistral AI, för att automatisera testfalls-
generering. Medan språkmodeller fortsätter att
öka i storlek och komplexitet, har även kraven på
minnesresurser gjort det. Därav har vår modellval
baserats på juridiska och hårdvarubegränsningar.

Resultaten visade att fine-tuning metoden
kräver mycket tillgängliga data av hög kvalitet
för ens att övervägas som ett alternativt för att
optimera en modell för en specifik uppgift. Vi

Feature Description

Text
analysis

Input

Prompt format

Parse output

Output

Test Cases

LLM

lyckades uppnå de bästa resultaten med hjälp
av prompt engineering när vi undersökte och
tillämpade flera olika prompttekniker, såsom Few-
shot prompting, Prompt Chaining och Directional
Stimulus Prompting. Med vår bästa modell lyck-
ades vi generera testfall som var endast 20% sämre
än de handskrivna testfallen som har genomgått
planerings- och granskningsfaser. Slutligen im-
plementerade vi ett verktyg som idag används av
testingenjörerna på Axis Communications för att
generera testfall som är bra nog att användas som
draft version och endast genomgå en kort gransk-
ning innan dem kan tillämpas.

	Introduction
	Goals
	Research Expectations
	Scientific contributions
	Division of Work
	Method

	Background
	Software testing
	Testing optimization
	Test Case Documents

	Natural Language Processing
	Text Processing and Generation

	Transformer's Architecture
	Attention Mechanism
	Encoder-Decoder

	Large Language Models (LLMs)
	Pre-trained Language Models (PLMs)
	PLMs Architecture
	Fine-tuning Large Language Models
	Prompt Engineering

	Hyperparameter Optimization (HPO)

	Related work
	Generation of Test Cases
	Large Language Models and Generation

	Data
	Data Collecting
	Phase I
	Phase II
	Phase III

	Exploratory Data Analysis
	Phase I
	Phase II
	Phase III
	Employed Test Cases

	Data Augmentation (DA)
	Dataset
	Real Data
	Real & Augmented Data

	Architecture
	Choice of Model
	Mistral-7B
	Llama-cpp-python Integration
	AI Agentic Workflow

	Experiments
	Overview of the Approach
	Setup & Deployment
	Defining Setup

	Running Experiments Strategies
	Prompt engineering approach
	Fine-tuning approach
	AI Agentic Workflow Approach

	Evaluation
	NLG Evaluation Metrics
	Human Evaluation
	Evaluation Pipeline

	Results & Discussion
	Fine-tuning Results
	Prompt Engineering Results
	Base Model with QLoRA
	Model with GGUF through Llama-cpp-python

	Agentic Workflow Results
	Choosing a Final Model
	Building a Practical Tool

	Conclusion
	References
	Appendix LLM Evaluation and Hyperparameter Optimization Pipeline
	Appendix Experiments Tracking
	Tom sida

