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Abstract

Originally introduced in 2020, Neural Radiance Fields (NeRFs) have become a
great area of interest within the research community. NeRFs combine neural
networks with volumetric rendering in order to synthesize new images of 3D
scenes by training on a sparse set of 2D images. The neural network describes
the scene as a continuous field and as such must be sampled from in order to ren-
der the final image. The computational cost of inference on these samples is very
high, which incentivizes reducing the number of samples to a minimum while
maintaining image quality. We explore a method of accelerating the rendering of
NeRFs through the usage of Bounding Volume Hierarchies that are constructed
from point clouds exported from a pre-trained model. From the point clouds,
we utilize K-Means to group the points into clusters, from which we instantiate
our bottom-level bounding boxes. We experiment with varying point cloud sizes
and cluster counts, along with different tree construction methods. By modify-
ing a CUDA-based ray tracer we are able to efficiently compute intersection
points which we use to place samples where the density exceeds some threshold
value. The reduction in samples results in a significant decrease in rendering
times while maintaining the overall image quality, however, some artifacts be-
come visible in close-ups of specific scenes. We limit our work to that of bounded
scenes and note that there are many interesting areas for future research.

Keywords: Graphics, Neural Radiance Fields, Bounding Volume Hierarchies, Ray March-
ing
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Chapter 1

Introduction

This thesis explores the field of Neural Radiance Fields (NeRFs). NeRFs use neural networks
(NN) in combination with volumetric rendering in order to achieve realistic rendering of 3D
scenes, having trained the network only on a set of 2D images. The field is rapidly evolving;
initially proposed by Mildenhall et al. [11], recent developments have achieved impressive
improvements in training speeds, rendering times, as well as quality [5]. Despite this, there is
still lots of room for improvement. Rendering performance is crucial for many applications,
such as gaming and virtual reality. The rendering of NeRFs requires taking many samples, of-
ten millions per image, each requiring a forward pass through the neural network. While the
network architecture is fairly simple for a neural network, millions of samples become very
computationally demanding. Reducing the number of samples taken is therefore a crucial
task. We propose using a Bounding Volume Hierarchy, or BVH for short, in order to constrict
the sampling space, thereby improving rendering times.

1.1 Research Questions
The purpose of this thesis is to answer the following research questions:

• What impact does the usage of BVHs have on the rendering times and image quality
of NeRF-rendered scenes.

• How can BVHs be constructed to optimize NeRF rendering times while retaining im-
age quality.
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1. Introduction

1.2 Project Scope
NeRFs can be used to reconstruct two different types of scenes, bounded scenes and un-
bounded scenes. Bounded scenes are constricted to sample only a limited region of space
both during training and rendering, ensuring that all learned information is captured in this
region. Many real-world scenes are more accurately described as unbounded scenes, which
are difficult to confine. Such scenes require more adaptive methods of sampling in order to
accurately capture all relevant scene information while still maintaining computational effi-
ciency. The scope of this thesis is limited to bounded 3D scenes. Furthermore, it only focuses
on the rendering of such scenes, not the training of the networks.

1.3 Contribution to the State of Knowledge
Our contributions to the state of knowledge can be summarized as follows:

• A methodology for constructing Bounding Volume Hierarchies from pre-trained NeRFs
by exporting point clouds and clustering the points using K-Means.

• Demonstrated the possibility of integrating BVH-based ray tracing in the Nerfstudio
framework.

• Provided a demonstration of the effects on rendering performance and image quality
using a wide variety of point cloud sizes and cluster counts across diverse datasets.

• A comparison of the rendering performance of different split heuristics used during
BVH construction.

• Achieved a significant speedup in NeRF rendering performance while maintaining
image quality on most datasets. On average the FPS is increased ∼ 7X using Nerfacto
and ∼ 16X using Vanilla-Nerf.
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Chapter 2

Background and Theory

This chapter covers the background and theory that this project is based on. It will cover
what NeRFs are, and explain volumetric rendering, ray marching, and bounding volume
hierarchies. Furthermore, a section about previous work will describe other efforts that have
been made to reduce the amount of samples needed.

2.1 Neural Radiance Fields
Neural Radiance Fields (NeRFs), originally introduced by Mildenhall et al. [11], are deep
neural networks, which create a continuous 5D representation of the scene. The neural net-
work takes as input a 5D vector, composed of a 3D position (x, y, z) and a viewing direction
(θ, ϕ), and outputs a color in RGB along with a density. NeRFs utilizes a positional encoding
f : R3 → Rn, where n ≫ 3, that maps the position and viewing direction into a higher
dimensional space before passing it through the neural network, allowing it to learn more
high-frequency components of the scene.

First, the positional encoding of the 3D position passes through 8 fully-connected lay-
ers of 256 units each, all using a ReLU activation function, which retains positive outputs
and makes negative outputs zero. This positional encoding is also concatenated to the fifth
layer’s activation output, which is often referred to as a skip connection or shortcut connec-
tion. Such layers are beneficial for deep neural networks in that they mitigate the vanishing
gradient problem [6], and prevent information from being lost in the earlier layers. Following
these 8 layers is another layer that outputs the density at the position, and a 256-dimensional
vector. This vector is concatenated with the positional encoding of the viewing direction,
before being passed to a final layer of 128 units, which outputs the RGB value. It should
be emphasized that this structure ensures that the density is only a function of the 3D po-
sition, while the color also depends on the viewing direction. Figure 2.1 shows the model
architecture.

The final trained neural network then becomes a continuous function that describes the
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2. Background and Theory

color and density of any point in the 3D scene, viewed from a particular viewing angle.

Figure 2.1: Visualization of the NeRF architecture. The green boxes
signify inputs, while the red boxes denote outputs. The blue boxes
are the layers of the neural network. Black solid arrows denote the
usage of a ReLU activation function, orange arrows no activation,
and dashed arrows a sigmoid activation function. The + denotes vec-
tor concatenation. Source: Mildenhall et al. [11].

In order to render the final image, NeRFs rely on the principles of volumetric render-
ing, which is distinctly different from traditional, surface-based rendering. In surface-based
rendering, 3D objects are represented as surfaces, commonly using triangle meshes. These
triangle meshes contain all the necessary information to render the final image. In volumet-
ric rendering, on the other hand, there is a continuous field representing the scene or object.
As such, the field must be discretely sampled. This is done by shooting a ray through each
pixel, sampling the scene along the ray, and then accumulating the sampled values in order
to compute the RGB value of the pixel. This process is known as ray marching. In principle,
this means estimating the following integral:

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t), d) dt (2.1)

where r(t) is a point at distance t from the origin along the ray, C(r) the accumulated
color of the ray, σ(r(t)) the density at the point, c(r(t), d) the emitted color at the point in
the direction, d, of the ray and T (t) the transmittance from tn to t. tn and t f represent the
near and far bounds of the scene.

This integral can be estimated using N sampled points as follows:

Ĉ(r) =
N∑

i=1

Ti(1 − exp(−σi(ti+1 − ti)))ci (2.2)

where ti is the distance along the ray of sample i.
The original sampler proposed by Mildenhall et al. [11] is referred to as a hierarchical

sampler. It entails training two networks concurrently, one designated as “coarse” and one
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2.2 Improvements to NeRFs

“fine”. The coarse network is first evaluated by querying 64 samples to the neural network.
Using the output from this network, each sample is assigned a weight that describes how
much the sample contributes to the final color. After the samples are normalized, they are
used to create a piecewise constant probability density function (PDF) along the ray, indi-
cating where to sample further. By sampling from the PDF, we get an additional 128 samples.
These samples are then combined with the initial 64 samples, which are then queried to the
fine network. The outputs of the fine network are then used to render the final image.

One of the main issues with the original NeRF implementation is the slow rendering
times, which can be several seconds per frame. The high computational cost stems from the
fact that each sample gets passed through a deep fully-connected neural network. Another
contributing factor is the high dimensionality of the input to the NN, as the 5D samples are
mapped into a 60-dimensional space, which also puts a high demand on the GPU memory.
In order to achieve high-quality renders, a total of 192 samples are passed through the fine
network for each pixel in the image, in addition to the 64 samples passed through the course
network. For an image rendered in a 1920×1080 resolution, this results in (192+64)×1920×
1080 = 530, 841, 600 forward passes. The fact that each ray gets assigned a fixed number of
samples, although it might only pass through a very short section of density, or even none at
all, presents a potential area of optimization.

2.2 Improvements to NeRFs
Since the publication of the original NeRF paper, the field has been rapidly evolving. Many
papers have been published introducing unique methods of optimization, often combining
numerous techniques to improve training times, rendering times, and image quality. This
section will briefly present a selection of them.

2.2.1 Camera Pose Refinement
Training a NeRF requires a set of 2D images along with their respective camera poses, which
is defined by a camera-to-world matrix consisting of a rotation and a translation. These
camera poses are estimated and as such may contain errors, which may result in a loss of
quality and artifacts. A method that mitigates this error is that of camera pose refinement
— where the camera pose parameters are treated as trainable parameters [18]. During the
training of the NeRF, the loss gradients are computed and backpropagated jointly with the
NeRF parameters.

2.2.2 Per Image Appearance Conditioning
The images used for training a NeRF may contain variations caused by weather, lighting,
and camera exposure. Martin-Brualla et al. [10] describes a method that attempts to model
such variations using what are referred to as “appearance embeddings”. By capturing such
variations in a trained appearance embedding for each input image instead of capturing them
in the NeRF model itself, renders may become more realistic, especially using real-world
training images.
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2. Background and Theory

2.2.3 Proposal Sampling
The proposal sampler was first introduced by Barron et al. [3]. Alongside the NeRF, an ad-
ditional neural network is trained, the proposal network. The proposal network is a much
smaller MLP compared to the NeRF and is not trained with the images the NeRF is trained
on. Rather, it is trained on the weight distribution generated by the NeRF and only predicts
density without RGB. Initially, the samples are placed uniformly along the ray, which are
then passed through the proposal network, which outputs a weight vector that describes the
density distribution along the ray. Samples are then taken from this distribution, which can
again be passed to the proposal network to further refine the distribution. This is done for a
fixed number of iterations and allows for the initial uniform samples to be condensed down
to a much smaller number of samples.

2.2.4 Scene Contraction
Unbounded scenes present a challenge for NeRFs as samples need to be allocated efficiently
to both near and distant objects. This becomes computationally expensive if distant objects
use the same sampling density as near objects. Scene contractions efficiently deal with this
issue by contracting the scene into a bounding box. This can be done in a number of ways
[3, 16], however, the key concept is that distant objects are contracted more aggressively as
opposed to near objects. This essentially means that fewer samples are allocated to distant
objects, as they need less precision to be rendered.

2.3 Bounding Volume Hierarchies
A bounding volume hierarchy (BVH) is a hierarchical structure consisting of bounding volumes
[1]. A bounding volume is a volume encapsulated by some simple geometry, for example, a
box or a sphere. The idea is that the simple geometry is easier to perform calculations on than
what it encloses, resulting in a much higher performance of a program. Such calculations can
be, amongst other things, intersection tests, which is what this project will be using it for. If
a ray does not intersect with the bounding box, there is no need to perform intersection tests
with the objects it encapsulates. The usage of BVHs can therefore drastically reduce the num-
ber of intersection tests that need to be performed, which is at the root of the performance
gains.

The hierarchy is constructed as a tree consisting of nodes. The top node, or root node, has
children, which in turn have children of their own, all leading down to the leaf nodes at the
bottom of the tree. The leaf nodes themselves are what contain the actual geometry which we
are interested in. An illustration of this can be found in Figure 2.2, where a simple 2D scene
consisting of three objects has been divided into a BVH. There are many ways of constructing
this tree, some methods being real-time, while others can take a considerable amount of time.
However, using a hierarchical structure with bounding volumes can potentially let you skip
some, or in special cases even close to all, calculations that need to be performed each frame,
which often makes the time spent constructing it worthwhile. In general, the usage of a
hierarchical structure brings the complexity from O(n) to O(log n), as it then becomes a
binary search problem.
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2.3 Bounding Volume Hierarchies

Figure 2.2: Example of a scene divided into a bounding volume hi-
erarchy structure. The scene is to the left while the tree structure of
this can be seen to the right.

While there are many ways of creating the bounding volumes that surround the geometry
and make out the nodes in the hierarchy tree, we have decided on using axis-aligned bounding
boxes. When the geometry has been encapsulated by these bounding volumes, they have to be
split up into subsets in some way to create the tree structure. Determining how to perform
this split most effectively, while having it be as fast to traverse as possible, is an entire research
topic itself, but the two common methods we will be using are surface area heuristics (SAH)
and median split. The following sections will describe these three concepts in more depth.

2.3.1 Axis-Aligned Bounding Boxes
Axis-aligned bounding boxes, or AABBs, are boxes that can be defined as having normals on
each face that coincide with the basis axes of the scene, which means that each box will be
oriented the same way no matter where in the scene it is. Every AABB can be described by
two points, the maximum and minimum x, y, and z coordinates [1]. A picture showing this
can be found in Figure 2.3.

In the context of this project, AABBs will be used to define where in the scene density
can be found. The idea is that intersection tests with the AABBs are computationally cheap
compared to a forward pass through the neural networks, and therefore having the placement
of density predetermined by these boxes results in fewer unnecessary samples being placed
such as the samples to the coarse network described in Section 2.1.

To utilize the AABBs, intersection tests are performed which determine where in 3D
space each ray intersects the enveloping density, and effectively where the sampling should
start and end. There exist different methods to perform ray-AABB intersection tests, a pop-
ular one being the “Slab” method introduced by Kay and Kajiya [8].
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2. Background and Theory

Figure 2.3: Example of an AABB, with the maximum and minimum
coordinate points on it marked as blue dots. Figure based on an
image from Akenine-Moller et al. [1].

2.3.2 Median Split

The median split partitioning method is a fairly simple method that involves two stages [4].
In the first stage, it is determined which axis (x, y, z) to split the primitives on. This can be
done in numerous ways, for instance by selecting the axis with the greatest extent, as follows:

k = arg max
i

(maxi −mini) (2.3)

where maxi and mini are the maximum and minimum values along axis i, respectively.
Once the partitioning axis has been determined, it needs to be determined where along the
axis the splitting is to be done. First, the centroids of the objects that are to be partitioned
are computed along the partitioning axis. The splitting position is then simply determined as
the median value of these centroids. As such, the objects will be evenly distributed amongst
the two splits, resulting in a balanced tree. Determining the median can be done in O(log n)
by sorting the points which result in a fairly fast construction time in the context of this
thesis. An example of the resulting split when using median split can be found in Figure 2.4.
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2.3 Bounding Volume Hierarchies

Figure 2.4: Example of the resulting partitioning using a median
split. In this case, the Y-axis has the greatest extent and is there-
fore the partitioning axis.

2.3.3 Surface Area Heuristics
Surface area heuristics is a method in which the cost of performing a certain split is approx-
imated to determine the best division of nodes. The cost of the split is calculated as the
sum of the left and right AABBs surface area times the amount of nodes inside the AABB,
respectively [7, 9]. The cost at each split is therefore computed as follows:

CSAH = Nle f t · Ale f t + Nright · Aright (2.4)

where CSAH is the cost of the split, Nle f t and Nright is the number of leaf nodes in the left and
right split respectively and Ale f t and Aright is the surface area of the AABBs respectively. The
surface area of the AABBs can be calculated as:

A = 2 · (x · y + x · z + y · z) (2.5)

where x, y, and z are the absolute values of the difference between the max and min values
of the x, y, and z coordinates respectively. To determine what split is the best one to use, an
exhaustive search is done where for each axis, the midpoint of every leaf node is used as a
suggested split point. Pseudocode for the SAH method can be found as Algorithm 1.
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2. Background and Theory

Algorithm 1 SAH split method

bestAxis← init
bestPos← init
bestCost ← MaxInt
for all axes do

for all AABBs do
candidatePos← aabb.centroid
cost ← EvaluateSAHCost(node, axis, candidatePos)
if cost < bestCost then

bestPos← candidatePos
bestAxis← axis
bestCost ← cost

end if
end for

end for
axis← bestAxis
splitPos← bestPos

2.4 Related Work
Wadhwani and Kojima [17] introduce a caching mechanism, effectively reducing the num-
ber of samples by reusing previous network outputs. To make the caching feasible in terms
of memory requirements, they split the NeRF into two networks, one position-dependent
and one direction-dependent. This approach achieves frame rates of 200 FPS on powerful
consumer-level GPUs.

Neff et al. [13] are able to reduce the number of samples per ray to only 4, by placing them
around the area of the first ray-surface intersection. This is done using a separate network
that predicts the sample locations.

Another way of reducing the number of samples produced is by utilizing occupancy grids,
as done by Instant-NGP [12]. This method uses a grid that represents the scene and, while
training, saves and updates the density value of each grid cell. Another grid is simultaneously
updated to hold a single bit value representing if the grid cell is considered occupied or not.
The density value that is saved in the first grid gets a threshold which determines the bit
value. When sampling is performed, the occupancy bit is checked, and if it is set to low, no
sample is placed and the ray marching continues.
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Chapter 3

Implementation

In this chapter, we describe the implementation details of our work, such as BVH construc-
tion and sampling scheme. The majority of the code is written in Python and is adapted
to the Nerfstudio framework, the basics of which will also be introduced. We also explain
the adaptations made to the CUDA-based cubvh ray-tracer and bring up some challenges
encountered during implementation. Furthermore, we explain how we evaluate our imple-
mentation, including what datasets we use.

3.1 Nerfstudio
To implement our solution, without having to build a NeRF implementation completely
from scratch, we have turned to the tool Nerfstudio. There are a lot of different types of
NeRF implementations that have been developed by a variety of researchers and developers.
Nerfstudio brought these implementations together into one open-source library, as well as
modularize the components of NeRFs. The modularization has made it more user-friendly
and facilitated the growth of a community in which people can more easily build on each
other’s contributions and combine different components. The library consists of many im-
plementations, stretching from the original NeRF model to its own implementation that
combines ideas from different articles. The library is well documented and has tutorials on
how to get started which makes setting up the environment needed easy.

3.1.1 Methods
We evaluate our sampler on two methods built into Nerfstudio. The first one is called
“Vanilla-Nerf”, which is an implementation following the NeRF description in Section 2.1.
The second one is called “Nerfacto”, described by Tancik et al. [16], which implements several
improvements from different research papers in order to achieve much better training and
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3. Implementation

rendering performance, at a slight cost to the image quality. All the improvements mentioned
in Section 2.2 are part of the Nerfacto model.

We train one model for each dataset for both Vanilla-Nerf and Nerfacto. During training,
we simply use the original sampler, as our sampler only works during inference. We then use
these pre-trained models, but replace the sampler with ours, leaving all other components
intact.

3.1.2 Nerfstudio Pipeline
The modularization made by Nerfstudio has resulted in a pipeline that consists of two main
parts, a DataManager, and a Model [16]. The different parts of the pipeline will be described
below, with an overview of it shown in Figure 3.1.

Figure 3.1: The pipeline used by Nerfstudio. Source: Tancik et al.
[16].

DataManager
The DataManagers main task is to take data, which in the context of NeRFs is a set of 2D im-
ages with accompanying information about the camera’s 3D position and angle, and convert
this into RayBundles which is a format the Model can understand. The reasoning behind the
DataManager is that it should be possible to use many types of programs to produce the input
data. Previously most NeRF projects only supported COLMAP, which can be challenging to
set up, but with Nerfstudio support for tools such as Polycam, Record3D, and Metashape has
been added.

RayBundle and RayGT
A RayBundle is a data structure that discretizes the 3D space the NeRF works in. The content
of the RayBundle is in its most basic form Tensors of origins, directions, and pixel areas. This
information stored in the RayBundle is later needed in the Model to produce RaySamples
in the Samplers. RayGT, which is short for Ray Ground Truth, contains the ground truth
values needed during the training of the Model to calculate the losses in the Loss Dict. The
RayBundles are used in the forward pass of the Model.

Model
In the pipeline, the Model consists of the parts that make any NeRF unique. They all take
RayBundles as input, but depending on the NeRF, the Sampler, Field, Renderer, Encoder,
and even the RayOutput will be different. The RayOutput can contain a lot of different
values (also called quantities), but usually has at least RGB values and density for each ray
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inputted with the RayBundle. In our case we also return the amount of samples for each Ray
as well as the sample positions (for debugging purposes).

Sampler
The sampler is the main component we have made changes to. Nerfstudio provides many
samplers, some more complex than others. The Vanilla-Nerf model uses a uniform sampler
for the coarse network, which simply places the samples at uniform distances along the ray.
The fine network uses a PDF sampler, which samples from a distribution defined by the out-
puts of the coarse network, as described in Section 2.1. Nerfacto instead utilizes the proposal
sampler, which is implemented as described in Section 2.2.3.

Field
At the core of every NeRF, there is a neural network. Different NeRFs use different types of
neural networks, and these can be defined in the field part of the pipeline. The field will in
the most typical case take RaySamples as input, and return the RGB values and density.

3.2 Construction of Bounding Volume Hier-
archies

We employ a bottom-up approach to generating the BVH. Leaf nodes are created first, which
are then iteratively split into parent nodes using a heuristic function that estimates a good
splitting position. The leaf nodes are constructed from the clusters of a point cloud of the
scene.

3.2.1 Point Cloud Generation
Bounding Volume Hierarchies are commonly used to organize a discrete set of geometrical
objects. In our case, there is no explicit set of objects, but rather a continuous field. It is
therefore necessary to discretize this field, which can be done in a number of ways. In our
implementation, this is done by exporting a point cloud of the scene. This point cloud is
generated by placing random samples in the scene and keeping the ones where the density is
above a certain threshold value. Nerfstudio has a built-in method to produce point clouds
this way, which is what we use in our implementation.

There are other methods to discretize the field, such as by exporting a mesh of the scene,
which is also a built-in functionality in Nerfstudio. Some early exploration of this method
did however result in inferior image quality, which we attribute to the mesh not perfectly
enveloping all the density (most of which is placed right on the edge of the model). Instead,
it focuses on creating a smooth, good-looking, surface, resulting in a loss of information.
While simply expanding the mesh in the direction of the normal helped alleviate this issue,
it required such a substantial expansion that the performance suffered greatly. We therefore
chose to utilize a point cloud, as it seems to more accurately capture the density of the scene.
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Figure 3.2 demonstrates an image rendered from a model trained on the Lego dataset.
Figure 3.3 visualizes the points exported from the model, using a point cloud size of 3,000,000
points. One can clearly see the structure of the object, with very few outliers.

Figure 3.2: Rendered image of the Lego dataset.

Figure 3.3: Point cloud generated from a Nerfacto model trained on
the Lego dataset. The point cloud consists of 100,000 points ran-
domly sampled from a point cloud of 3,000,000 points.
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3.2.2 K-Means Clustering

K-Means is an iterative clustering algorithm, popular for its efficiency and simplicity. It is
commonly initialized by randomly assigning each data point to a cluster. At each following
iteration, the cluster centroid gets recalculated from the newly assigned data points, and each
data point is reassigned to the closest cluster centroid based on the Euclidean distance.

We utilize a GPU-accelerated K-Means implementation from the cuML project [14]. For
each point cloud, the K-Means algorithm is run three times, each time using a different ini-
tiation seed. The algorithm then returns the best result as measured by inertia, which is the
sum of the squared distances of each point to its assigned cluster centroid.

We explored different implementations of K-Means before deciding on the cuML imple-
mentation. The reason for this choice relies on two key benefits. Firstly, the GPU-acceleration
improves performance greatly for our largest point clouds and as the number of clusters in-
creases, making it possible to explore even larger sizes. Secondly, it is a batched implementa-
tion. This is crucial as the GPU-acceleration relies on samples being able to fit into the GPU
memory. Using batching, we do not need to fit all samples into memory simultaneously.

3.2.3 Leaf Node Creation

The leaf node AABBs are constructed from the point cloud clusters. From each cluster, the
maximum and minimum values along each axis (x, y, z) is computed. The resulting maximum
(x, y, z) and minimum (x, y, z) points defines the resulting AABB.

In order to evaluate the constructed leaf nodes, the Euclidean distance between the max-
imum and minimum points of each AABB is computed:

d =
√

(xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2. (3.1)

The largest distance d is then compared to a threshold value that depends on the point
cloud size and the number of clusters. If it exceeds the threshold, K-Means is repeated as
explained in Section 3.2.2, up to five times. If all attempts exceed the threshold, the result
with the smallest value d is used for the tree construction.

In Figure 3.4 the leaf nodes generated from a very small cluster count are displayed, along
with the points from which they are generated. The points are plotted using a different color
for each cluster. While it shows a significant reduction in the area of interest for sampling,
each AABB still contains a fairly large portion of empty space. As the number of clusters
grows, they will more closely bind the object, effectively reducing the empty space being
captured.
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Figure 3.4: Visualization of the clusters generated by K-Means and
the resulting leaf nodes using a very small number of clusters on the
Lego dataset. The different clusters are assigned different colors.

3.2.4 Tree Construction
From the leaf nodes, the tree is constructed bottoms-up using either median split or SAH,
as explained in Sections 2.3.2 and 2.3.3 respectively, depending on which of the methods we
evaluated. The resulting tree is a binary tree, where each node is defined by an AABB as well
as a pointer to its left and right child.

To facilitate the usage of the BVH in the cubvh project, as described in Section 3.3, the
tree is saved as a tensor to a file. The tensor consists of the three x, y, and z coordinates of
the min and max values as well as the index in the tensor of the left and right child of each
node. To indicate that a node is a leaf node, the index value for the left and right child is set
to -1. The resulting tensor has eight values for each node (three each for the min and max
coordinates plus two for the children).

3.3 CUDA-based Ray Tracing
The ray tracing is done using a modified CUDA-based ray tracer from the cubvh project
[2]. The project includes methods for constructing BVHs and for performing ray tracing for
batches of rays. In order to gain greater control of the construction, we decided to construct
our BVHs in Python using the same tree representation as in cubvh. Furthermore, the cubvh
project focuses on ray tracing objects using a mesh representation, which then utilizes ray-
triangle intersections. As our scene is not represented by meshes but rather by the bounding
boxes themselves combined with the NeRF, it was necessary to modify the ray tracing portion
as well. These modifications are explained in greater detail in Sections 3.3.1 and 3.3.2.
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3.3.1 Bounding Volume Hierarchy Representation
The original cubvh project had an implemented BVH construction method, but since we
wanted to focus on two specific methods, SAH and median split, we decided not to use this.
We used our own BVH construction implementation from Python, as explained in Section
3.2, and saved the tree as a tensor to a file. We then imported and converted this into an array
which was in turn used to construct a BVH using their internal representation. By doing it
this way we made sure the BVH had the intended structure while still being able to utilize
the GPU acceleration provided by the cubvh project.

3.3.2 Ray Intersection
The ray intersection implemented in the original project was unfortunately not suited for our
needs. While it was very fast, we required intersections with the bounding boxes themselves,
not the meshes they were intended to encapsulate. Furthermore, the intersection method
only returned the nearest intersection (and could be modified to also return the furthest
without too much work), but we needed the intersections with all leaf nodes of the BVH. In
order to achieve this, prior to the ray tracing we pre-allocate memory for up to 128 intersec-
tions for each ray. This seems to work well in our testing but is admittedly a fairly arbitrary
number and should probably be adapted to the size of the BVH. Each intersection is stored as
two float32 values, representing the intersection entry and the intersection exit. Therefore,
each ray needs 1024 bytes pre-allocated for this purpose. Additionally, we return an integer
for each ray storing the number of registered intersections.

3.4 Sampling Scheme
We utilize an adaptive sampling scheme which allows for a different number of samples for
each ray being traced. For each ray-AABB intersection, samples are placed uniformly be-
tween the intersection entry and exit using a fixed sampling distance of 10−3. The number
of samples to place along the ray within a particular AABB is computed as follows:

N = min
(⌈ texit − tentry

10−3

⌉
, 100

)
(3.2)

The first sample is always placed at the intersection entry, and the remaining N − 1 sam-
ples are placed using the given sampling distance. This sampling strategy presents multiple
benefits. Firstly, it allows us to completely skip sampling along rays that do not have any
intersections at all. This is quite helpful for scenes composed of objects in “empty space”,
where this will occur for a notable portion of the rays. Secondly, it allows us to use fewer
samples along rays that only pass through a small portion of occupied space.

The sampling strategy also presents some downsides. While it may lead to fewer samples
for some rays as compared to a sampling strategy with a fixed sample size, it may also lead to
many more, if the ray has a long distance of travel in occupied space. It also makes memory
usage unpredictable, as rays are processed in batches where the number of samples in each
batch may vary greatly. Finally, the approach will lead to extra samples being taken in areas
where AABBs overlap. This is demonstrated in Figure 3.5.
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It should be emphasized that the sample placement is done per ray-AABB intersection,
independent of one another, and an intersected AABB will always get at least one sample,
as can be seen in Equation 3.2. As the number of clusters grows and—correspondingly—the
cluster sizes decrease, it may lead to a situation where the clusters are so tightly packed such
that the sampling distance will effectively decrease if the distances between AABBs become
smaller than the sampling distance.

Figure 3.5: Sample positions along a ray intersecting two slightly
overlapping AABBs. The overlap is exaggerated to demonstrate that
sampling is done per AABB and ray, which may lead to extra sam-
pling in areas where AABBs overlap. For the larger cluster counts,
there are rarely more than one or a few samples per AABB.
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3.5 Description of the Datasets
We evaluate our method on a synthetic dataset, referred to as the “Blender dataset”, which
was first used by Mildenhall et al. [11]. In actuality, this consists of eight different datasets,
each composed of 2D images of an object, viewed from different camera angles and positions.
The objects are of varying complexity, and all of them are of a bounded nature. In the middle
of each scene is one or multiple objects, surrounded by empty space.

3.6 Evaluation Metrics
To evaluate the implementations’ performance we have decided on some relevant metrics to
use. We evaluate the image quality using three different metrics, Peak Signal-to-Noise Ratio
(PSNR), Learned Perceptual Image Patch Similarity (LPIPS), and Structural Similarity Index
(SSIM). We also measure the rendering time in order to compute the frames per second (FPS).

The evaluations are made using an evaluation script built into Nerfstudio. It compares
200 ground truth images (which are provided with the dataset) to the images rendered by
the NeRF, and gives the average PSNR, LPIPS, and SSIM image quality metrics as well as the
average FPS.

3.6.1 Image Quality
While simply looking at the rendered image can give a lot of information, there can be minute
details that are easily missed by the naked eye. We have therefore chosen to use the same image
quality metrics used by the original NeRF paper, which are PSNR, LPIPS, and SSIM. While
each of these methods on their own might not be perfect, as discussed by Zhang et al. [19],
together they should give some indication as to the quality of the produced image, especially
when comparing between the models themselves. The metrics all use a ground truth image to
get a number representing the difference. While a higher value on PSNR and SSIM represents
better quality, for LPIPS it is better if the value is lower.

3.6.2 Rendering Speed
The speed of the rendering will be measured in frames per second (FPS). This metric is com-
monly used in computer graphics as it gives an idea of how smooth the experience is for the
user. While movies are generally produced with a refresh rate of 24 FPS, the video game com-
munity strives to get as high a number as possible, some not accepting less than 144 FPS,
or even 240 FPS in competitive scenarios [15]. When working with FPS it is important to
realize that it is not a linear measure, but a reciprocal one [1]. This means that when you,
for instance, take the arithmetic mean of FPS values, you get a number that is not the actual
mean FPS. Instead, to get a correct value, you have to first compute the frame time, then take
the mean of the frame times and lastly convert it back to FPS.
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3.7 Technical Challenges
When implementing the different methods described above we encountered many chal-
lenges, the biggest of which was memory usage and performance. Initially, we created a
PyTorch-based ray tracer, where the GPU-acceleration is conditioned on the usage of vector-
ized operations. This turned out to be very difficult when tracing multiple rays intersecting
different AABBs, as some operations seemed to require using for loops instead. One also had
to be careful not to trigger CPU-GPU synchronization, which for instance would occur when
resizing a tensor. As the GPU executes operations asynchronously, other operations may be
executed in parallel on the CPU. However, if a GPU operation is dependent on the result of
an operation executed on the CPU, the operations need to be synchronized, which can be
time-consuming. We spent a lot of time optimizing our PyTorch-based ray tracer by doing
our best to make operations vectorized and avoiding synchronization.

While our PyTorch-based ray tracer did result in improved performance, the cost of
traversing the BVH was unnecessarily high. We noticed that the performance peaked us-
ing around 64 bottom-level AABBs, after which it rapidly decreased. It is common for BVHs
to be used to encapsulate millions of triangles, so the fact that our implementation peaked
with so few AABBs was a clear indication that it was not optimal. We also noticed that we
could simply flatten the BVH to a depth of 0, and still get similar performance. This indi-
cated that the performance gains were not due to the usage of a BVH, but rather due to the
still significant reduction in the number of samples.

For these reasons, we decided to look into CUDA. We opted to use the cubvh project, a
ray tracer written in CUDA, and modified it to fit our requirements.
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Chapter 4

Results

This chapter presents the results of our experiments. It would be infeasible to provide all our
measurements, and we will therefore reduce the dimensionality by focusing on specific vari-
ables in each section. In Section 4.2 we focus on determining which model and split method
performs the best using a fixed point cloud size and number of clusters, the determination
of which is discussed in Section 5.4. In the following sections, we focus only on this split
method and model, while instead looking at other variables. Then in Section 4.3 we show the
effects of varying the point cloud size and number of clusters for a couple of the evaluated
datasets. In Sections 4.4 and 4.5 we demonstrate the effects of varying the point cloud size
using a fixed cluster count of 2048. Finally, in Section 4.6 we display close-up renders of each
dataset.

4.1 Experimental Setup
The evaluations were conducted on an HP Z2 Tower G9 Workstation Desktop PC with the
following specifications:

• CPU: 12th Gen Intel® Core™ i7-12700

• GPU: NVIDIA GeForce RTX 4070 Ti

• RAM: 16 GB

• OS: Ubuntu 22.04.3 LTS
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4.2 Split Method and Model Comparisons
Tables 4.1 and 4.2 show a comparison of SAH and median split. The comparison is done
using 2048 clusters and 1,000,000 points, but tables with all clusters and point clouds for the
Nerfacto model can be found in Appendix A. The different trees were constructed entirely
from scratch, including K-Means. We see a slight increase in FPS using SAH and Nerfacto,
while no difference is seen using Vanilla-Nerf. No meaningful difference is seen in image
quality for the two models.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑Data set
SAH Median SAH Median SAH Median SAH Median

chair 23.19 23.19 0.852 0.853 0.061 0.061 17.10 16.22
drums 18.23 18.22 0.820 0.820 0.112 0.112 12.86 12.49
ficus 19.48 19.48 0.874 0.874 0.095 0.095 4.34 4.32

hotdog 21.83 21.81 0.865 0.864 0.107 0.108 10.86 10.84
lego 25.17 25.17 0.884 0.884 0.043 0.043 12.61 12.35
mic 21.62 21.62 0.905 0.905 0.053 0.053 18.48 16.87
ship 20.70 20.68 0.737 0.737 0.178 0.178 6.27 6.27

Average 21.46 21.27 0.848 0.848 0.093 0.092 9.32 9.26
Baseline 19.20 0.834 0.172 1.27

Table 4.1: Comparison of SAH and median split methods with Ner-
facto as the model. Baseline uses the default Proposal Sampler.

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑Data set
SAH Median SAH Median SAH Median SAH Median

chair 31.43 31.42 0.956 0.956 0.033 0.033 1.45 1.47
drums 24.25 24.25 0.911 0.911 0.081 0.080 0.86 0.86
ficus 29.32 29.32 0.959 0.959 0.033 0.033 0.47 0.47

hotdog 32.58 32.49 0.952 0.952 0.058 0.059 1.28 1.28
lego 32.09 32.09 0.960 0.960 0.021 0.021 1.00 1.01

materials 28.74 28.73 0.942 0.942 0.039 0.039 0.49 0.49
mic 32.24 32.21 0.979 0.978 0.023 0.023 0.96 0.95
ship 27.89 27.88 0.851 0.851 0.123 0.124 0.83 0.83

Average 29.82 29.80 0.939 0.939 0.051 0.052 0.80 0.80
Baseline 30.63 0.946 0.045 0.050

Table 4.2: Comparison of SAH and median split methods with
Vanilla-Nerf as the model. Baseline uses the default uniform sam-
pler for the coarse network and PDF-sampler for the fine network.
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4.3 Graphs
This section shows visualizations of the evaluations on different point clouds and cluster
counts. We focus on the results of the Nerfacto model using SAH as the tree construction
method for conciseness and due to its superior results as demonstrated in Section 4.2.

4.3.1 Lego
The plots in Figure 4.1 demonstrate that for a majority of the data points, our sampler
achieves a slight increase in PSNR and a substantial improvement in FPS, as compared to
the original sampler used in Nerfacto. The FPS peak using 2048 clusters and a point cloud
of 100,000 points is due to there being too few points for each cluster, resulting in gaps in
the rendered object. This can also be seen in the drop in PSNR at that point. Both the FPS
and PSNR seem to benefit from a larger number of clusters, as long as the point cloud is
of sufficient size. Below the plots are two rendered images of the Lego dataset, the left one
for 100,000 points and the right one for 1,000,000 points. In the left image, a noticeable
difference in quality can be seen, perhaps most notable around the “floor” of the model. Each
rendered image’s corresponding points in the plots can be found through the red lines.

Figure 4.1: FPS and PSNR for the Lego dataset using the Nerfacto
model with SAH as the tree construction method, along with ren-
dered images from two of the data points. The baseline in purple is
the Nerfacto model using its original sampler.
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4.3.2 Ficus
As in the Lego dataset, Figure 4.2 also shows a peak in FPS at the smallest point cloud and
cluster count for the Ficus dataset. What is more notable is that the PSNR also peaks at
this point, where the Lego dataset started showing artifacts. This seems to indicate that the
quality of the point cloud is starting to deteriorate. It should also be noted that the increase
in FPS is not as substantial.

Figure 4.2: FPS and PSNR for the Ficus dataset using the Nerfacto
model with SAH as the tree construction method, along with ren-
dered images from two of the data points. The baseline in purple is
the Nerfacto model using its original sampler.
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4.3.3 Ship
Figure 4.3 demonstrates the simultaneous FPS peak and PSNR dip familiar from Section 4.3.1
at 2048 clusters and 100,000 points. The graph seems to follow the same behavior, where a
larger number of clusters is superior as long as the point cloud is sufficiently large. In this
dataset, we can however see that the PSNR output from the evaluation of our model is lower
than that of the Nerfacto baseline.

Figure 4.3: FPS and PSNR for the Ship dataset using the Nerfacto
model with SAH as the tree construction method, along with ren-
dered images from two of the data points. The baseline in purple is
the Nerfacto model using its original sampler.
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4.4 Comparison of Point Cloud Sizes
Figure 4.4 demonstrates the average metrics across the different datasets when using a fixed
cluster count of 2048 for varying point cloud sizes. We see a rather steep decline in FPS as
the number of points increases, while the image quality metrics seem to taper out somewhere
around 1,000,000 points. The standard deviation of the frame rate also decreases slightly for
larger point clouds. The image quality metrics (PSNR, SSIM, LPIPS) have some slight differ-
ences between SAH and median split, in this case mostly due to there being some datasets in
which one of the methods does not have an evaluation for a point cloud size, while the other
one does.

Figure 4.4: Average metrics of the different point cloud sizes for me-
dian split and SAH using the Nerfacto model using a cluster count
of 2048. The X-axis uses a logarithmic scale. The vertical lines are
the standard deviation at each point cloud size.
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4.5 Visualization of Leaf Nodes
This section demonstrates the AABBs generated from the clustered point clouds exported
from one model trained on the Lego dataset and one trained on the Ficus dataset. The purpose
is to visualize the areas where samples will be allocated.

When using a small point cloud consisting of 100,000 points, gaps can be noticed between
the AABBs, as seen in Figure 4.5 where some of the gaps are marked with red circles. This is
especially noticeable when comparing to the AABBs generated from the larger point cloud
created using 1,000,000 points, which is found in Figure 4.6. Notice however that in the
latter figure, some slight noise is starting to appear, which is highlighted with the red circles.

In some models, such as the one created from the Ficus dataset, a considerable amount
of noise, mainly at the outer parts of the scene, is caught by the point clouds. This noise
obstructs the ficus itself, as seen in Figures 4.7 and 4.8. From the Lego dataset, the difference
in noise caught by the larger and smaller point clouds is minimal, but when comparing the
Ficus dataset figures the swelling is much more obvious.
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Figure 4.5: The bounding boxes of the leaf nodes constructed af-
ter K-Means for the Lego dataset and Nerfacto model. Constructed
from 100,000 points and using 2048 clusters. The red circles high-
light gaps in the object.
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Figure 4.6: The bounding boxes of the leaf nodes constructed af-
ter K-Means for the Lego dataset and Nerfacto model. Constructed
from 1,000,000 points and using 2048 clusters. The red circles high-
light the noise in the object.

35



4. Results

Figure 4.7: The bounding boxes of the leaf nodes constructed after
K-Means for the Ficus dataset and Nerfacto model. Constructed
from 100,000 points and using 2048 clusters.
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Figure 4.8: The bounding boxes of the leaf nodes constructed after
K-Means for the Ficus dataset and Nerfacto model. Constructed
from 1,000,000 points and using 2048 clusters.
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4.6 Close-up Renders
Figure 4.9 shows close-ups of all datasets. The images in the first two columns are rendered
using our sampler using a point cloud size of 1,000,000 points and 2048 clusters, and the sec-
ond two using the default samplers. Some interesting artifacts appear in the hotdog dataset
and the ship dataset. Notice that the structure of the bounding boxes is showing on the plate
of the hotdog. Also, some white spots are appearing in the water underneath the ship as well
as a white box in the middle of the ship itself. The ficus rendered using the Nerfacto method
with the original sampler has quite some noise in the background, which does not appear
in the other images. Furthermore, the Vanilla-Nerf method with the original sampler seems
to be missing some of the tracks on the Lego dataset. Apart from these artifacts, the overall
quality appears to be quite similar across the different models.

In Figure 4.10 we compare the quality of images rendered using 1,000,000 points and
10,000,000 points, both using 2048 clusters. The artifacts mentioned in the previous para-
graph are noticeably reduced, however still present to some extent. However, notice the white
box in the center of the ship in the Ship dataset becoming larger, using 10,000,000 points
and the Vanilla-Nerf model.

Finally, in Figure 4.11 we use a point cloud size of 1,000,000 for all images, and compare
the image quality using 512 and 2048 clusters. This does not seem to have any significant
effects, if any, on the artifacts.
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Nerfacto
(Ours)

Vanilla-Nerf
(Ours) Nerfacto Vanilla-Nerf

Figure 4.9: Comparison of images rendered using our BVH-based
sampler and the original samplers of Nerfacto and Vanilla-Nerf. In
the example we use 1,000,000 points and 2048 clusters.

39



4. Results

Nerfacto 1M
(Ours)

Nerfacto
10M (Ours)

Vanilla 1M
(Ours)

Vanilla 10M
(Ours)

Figure 4.10: Comparison of images rendered using 1,000,000 and
10,000,000 points, all with 2048 clusters.
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Nerfacto 512 Nerfacto 2048 Vanilla 512 Vanilla 2048

Figure 4.11: Comparison of images rendered using 512 and 2048 clus-
ters, all with 1,000,000 points.
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Chapter 5

Discussion

5.1 Rendering Performance and Quality Im-
pact

Compared to the baseline models, our evaluations show a large improvement in rendering
times. On some of the models we also see a noticeable improvement in the image quality
metrics, however this should be taken with a large grain of salt. The trained models contain
a fair bit of noise, manifesting as floaters at the other parts of the scene. As we specify a
bounding box from which to export the point clouds, this seems to effectively cut away a
large portion of this noise, which has a tremendous impact on the quality. In the ship model
there was more or less no noise present, and there we see that our model has slightly decreased
image quality, which is probably closer to the truth. This belief is also strengthened by the
close-ups in Section 4.6. When close enough to the objects in the scene, artifacts appear in
some of the data sets. This mainly seems to be an issue that occurs when an object has a very
thin representation in the NeRF, such as for the plate in the hotdog dataset, or the water
surface in the ship dataset. As the samplers used during training place a fixed number of
samples along each ray, it is likely that when a ray intersects a very thin surface, there will
be a high concentration of samples placed at the intersection point. It is then possible that
each sample has a fairly low density, but when they are accumulated during rendering, the
densities add up close to one. When we render using our sampler, we will likely reduce the
sampling density so drastically that the accumulated density is much lower, resulting in a
translucent appearance.

We notice that increasing the point cloud size seems to reduce the artifacts to some ex-
tent, although it does not eliminate them. This might be because a larger point cloud more
accurately captures where the density is allocated in the NeRFs representation of the scene.
This is further proven by the visualization of leaf nodes in Section 4.5 where the ficus leaf
nodes, when using the larger point cloud in Figure 4.8, appear to have swollen up compared
to using the smaller point cloud in Figure 4.7. We had a theory that decreasing the number
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of clusters might alleviate the issue as well, due to the larger bounding boxes, but our results
show that this is not the case.

In Section 4.6 we also notice that a white box is appearing on the ship when using the
Vanilla-Nerf model. We believe this is caused by K-Means failing to converge to a sufficient
result. As explained in Section 3.2.3, we repeat K-Means up to five times in an attempt to
catch such results. The strategy we implemented is however not foolproof. When K-Means
fails to converge, this usually manifests as one or multiple bounding boxes being exceedingly
large, capturing large areas of empty space. The sampling strategy described in Section 3.4
places samples step by step within a bounding box until we hit the specified upper limit. If
a bounding box encapsulates a lot of empty space, this limit may be hit before any density is
reached, such that all samples are placed in empty space. It is then expected that this would
result in a completely white pixel.

5.2 Comparison of Split Methods
We see a slight increase in rendering speed while using SAH as the split method when com-
pared to median split. This does however result in a substantial increase in the construction
time of the BVH due to the more complex heuristic function. The slight variations in the
quality metrics are only due to the fact that during evaluation, the trees are constructed from
scratch, including K-Means clustering. As K-Means is random in its initiation, this may re-
sult in different leaf nodes. Technically there should be no difference in quality if the trees
were constructed using the same leaf nodes, as it would result in the same sampling positions.
It would have been more correct to save the leaf nodes and use the same ones for both split
methods, however, this was realized too late in the process.

We believe that the main reason why there is no substantial difference between SAH and
median split is due to K-Means resulting in highly uniform clusters, such that the AABBs
generated will have similar surface areas. As seen in Figures 4.5 and 4.6, the floor consists of
very many uniform AABBs rather than one large AABB, which probably would not result
in a substantial increase in the number of samples. Aside from the usage of larger AABBs
resulting in fewer intersection tests, this could also lead to SAH creating trees that are better
optimized, and thus getting a more substantial difference in FPS performance compared to
median split.

5.3 Comparison of Models
Our model which is based on the Nerfacto model in Nerfstudio has much better performance
when compared to the one based on Vanilla Nerf. This is expected, as there are several other
improvements in Nerfacto apart from the sampler which contributes to its superior perfor-
mance. The benefit of using Vanilla Nerf is still its better image quality, which is also present
using our sampling method.

Notice that while we improved the FPS of the Nerfacto model by a factor of about seven,
the Vanilla-Nerfacto model had a speed-up of on average 16 times.
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5.4 Variations in Point Cloud Quality

5.4 Variations in Point Cloud Quality
As seen in Sections 4.3 and 4.5, while the Lego dataset seems to only benefit from increasing
the point cloud size, the Ficus dataset does not. This likely originates from the fact that
the Lego dataset has little to no noise within the bounding box from which the point cloud
is exported, while the Ficus dataset has a substantial amount of noise. This noise is further
amplified as the point cloud size grows. This explains the behavior we see in Figure 4.2, which
is both higher image quality and better rendering times using the smaller point cloud. Our
interpretation of this is that noisier models may benefit from smaller point clouds, while
models with little to no noise would benefit from much larger ones.

We decided to use the same scene bounding box size for all the datasets when exporting
the point cloud. Because the point cloud generation is part of a pre-processing stage, these
values could be optimized to fit the models a lot tighter which would result in the noise being
cut away and the bounding boxes enclosing these noisy areas therefore never being created.
This would probably result in the graphs for models similar to the Ficus one becoming a lot
more like the Lego graph and therefore, making our implementation more reliable.

Worth mentioning is that we believe the substantial amount of noise on the Ficus dataset
originates from the leaves being very thin, and the NeRF therefore having a hard time pin-
pointing exactly where the density is located.

5.5 Limitations
Our work focuses on bounded scenes of synthetic datasets. Unbounded scenes rely on con-
cepts such as scene contraction, which we determined early on would present a different
challenge, as the exported point clouds would then also be effectively unbounded. Many of
the datasets also contain a lot of empty space. This is clearly to our benefit, as it means that
we are able to cut away a large portion of samples just due to this fact. The rendering times
are closely related to how densely packed the scenes are, so the performance would likely
decrease in scenes with a high density of objects, as we only employ uniform sampling within
the bounding boxes.

As can be seen in the graphs in Section 4.3, for some datasets there are missing points.
This is due to the GPU running out of memory during evaluation. We found it difficult to see
any pattern in this behavior and therefore chose to simply omit those points from the results.
It is however clear that it occurs more frequently in datasets where the leaf nodes occupy a
larger portion of the scene, such as Ficus (see Figures 4.2 and 4.8). This likely results in too
many samples for the GPU to process concurrently.
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5. Discussion

5.6 Future Research
There exist many interesting areas of improvement in our work. This section covers some of
the areas where we see a lot of potential.

5.6.1 Unbounded Scenes
As discussed in Section 5.5, unbounded scenes seem to require creative ways of exporting
and handling the point clouds. It may be that it is sufficient to only increase the size of the
bounding box from which the point cloud is generated, but it remains unclear how one would
determine the limits. Many of the interesting use cases for NeRFs, such as for Virtual Reality,
are constructed from unbounded scenes, so this is a clear area of future interest.

5.6.2 Different Sampling Schemes
We simply employ uniform sampling within the bounding boxes, which is fairly trivial. This
does not take into account the distribution of density within the bounding boxes, such that
samples are allocated to areas of greater density. This presents the possibility of further reduc-
ing the number of samples and increasing the image quality. It would be especially beneficial
for scenes with a high density of objects, in which our method would allocate too many sam-
ples for efficient rendering. As proven by Neff et al. [13], a very small number of samples
may suffice if they are placed close to the first surface. It would therefore be very interesting
to experiment with only computing the first intersection, and placing a smaller number of
samples around this position. Although we did some slight experimentation with this ap-
proach at a time when we only computed the first intersection, we were not able to achieve
sufficient quality as the first “surface” might just be noise.

5.6.3 Tree Construction
We utilize K-Means in order to instantiate the leaf nodes from which we construct the BVH
bottom-up. As discussed in Section 5.2, this results in fairly uniformly sized leaf nodes, which
might not be optimal, therefore it would be interesting to explore other methods of instan-
tiating the leaf nodes. Furthermore, other heuristic functions for effective splitting can be
explored which might allow for more efficient traversal.

5.6.4 Hardware Accelerated Ray Tracing
While the CUDA-based ray tracer utilizes GPU-acceleration, allowing for much faster per-
formance than the initial PyTorch-based ray tracer, CUDA is optimized for a general-purpose
acceleration of computations. Many modern GPUs have specific hardware for ray tracing,
and even BVH, which we do not utilize in this project. By using a ray tracer that utilizes such
hardware, we would likely be able to speed up the rendering further. This poses an excellent
opportunity for future study.
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Chapter 6

Conclusions

Our work demonstrates the potential for a large improvement in rendering speeds with lim-
ited effect on image quality, although some datasets with thin surfaces suffer from artifacts,
by utilizing BVHs in order to reduce sampling frequency. The approach does however come
with challenges, such as finding the optimal point cloud size, which seems to vary depending
on the dataset. In most cases, it seems to be beneficial to use a larger number of clusters
during K-Means as long as the point cloud is of sufficient size. This does however present
a practical upper limit, as the point cloud quality appears to deteriorate at some point and
K-Means becomes exceedingly expensive to execute. The deterioration of the point cloud
quality appears to occur at a lower number of points for more densely packed scenes. We
conclude that there seems to be a small increase in rendering performance when constructing
the BVH using the surface area heuristic when compared to median split. This does however
result in a substantial increase in the construction time, so there is a trade-off between the
increase in rendering performance and the increase in pre-processing time. We recognize
interesting areas of future research, especially that of unbounded scenes, and utilizing ray
tracing hardware.
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6. Conclusions
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Appendix A

Evaluation Tables

The tables in this section present the same data that is shown in the graphs in Section 4.3,
along with the LPIPS and SSIM metrics, for each dataset. Each metric is heat-mapped from
yellow (best) to blue (worst). The best metrics are highlighted in bold. Missing values are
marked as “N/A”.
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A. Evaluation Tables

SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.4K

32 25.24 0.886 0.041 4.44 25.24 0.886 0.041 4.32
64 25.24 0.887 0.041 6.13 25.25 0.886 0.041 6.10
128 N/A N/A N/A N/A 25.22 0.886 0.041 7.74
256 25.13 0.885 0.043 9.89 25.13 0.885 0.043 9.65
512 24.92 0.882 0.046 11.62 24.94 0.882 0.046 11.12

1024 24.37 0.875 0.057 13.88 24.35 0.875 0.056 13.48
2048 23.11 0.858 0.080 16.38 23.09 0.859 0.081 15.60

316.5K

64 25.27 0.887 0.041 6.01 25.27 0.887 0.041 5.94
128 25.26 0.887 0.040 7.42 25.26 0.887 0.040 7.23
256 25.23 0.886 0.041 9.03 25.25 0.886 0.041 8.78
512 25.20 0.886 0.041 10.53 25.19 0.886 0.041 10.38

1024 25.09 0.884 0.043 12.37 25.09 0.884 0.043 12.35
2048 24.80 0.878 0.050 14.32 24.79 0.879 0.050 14.10

1.0M

32 25.26 0.886 0.041 4.37 25.26 0.886 0.041 4.32
64 25.27 0.887 0.041 5.59 25.27 0.887 0.041 5.53
128 25.28 0.887 0.041 7.02 N/A N/A N/A N/A
256 25.27 0.887 0.040 8.47 25.27 0.887 0.041 8.27
512 25.27 0.887 0.041 9.79 25.27 0.887 0.040 9.51

1024 25.25 0.886 0.041 11.29 25.24 0.886 0.041 11.09
2048 25.17 0.884 0.043 12.61 25.17 0.884 0.043 12.35

3.2M

64 25.25 0.887 0.041 5.19 25.25 0.887 0.041 4.97
128 25.27 0.886 0.041 6.78 25.27 0.886 0.041 6.51
256 25.28 0.887 0.041 8.16 25.27 0.887 0.041 7.79
512 25.29 0.887 0.041 9.22 25.29 0.887 0.041 8.98

1024 25.27 0.887 0.041 10.46 25.28 0.887 0.041 10.05
2048 25.25 0.886 0.041 11.70 25.26 0.886 0.041 11.20

10.0M

32 25.23 0.886 0.042 4.03 25.23 0.886 0.042 3.99
64 25.26 0.886 0.041 5.26 25.26 0.886 0.041 5.19
128 25.25 0.886 0.041 6.58 25.25 0.886 0.041 6.50
256 25.25 0.886 0.041 7.77 25.26 0.886 0.041 7.70
512 25.27 0.886 0.041 8.80 25.27 0.886 0.041 8.67

1024 25.27 0.886 0.041 9.84 25.27 0.886 0.041 9.89
2048 25.27 0.886 0.041 10.54 25.27 0.886 0.042 10.97

Table A.1: Evaluation metrics for the lego dataset.
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SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.0K

32 23.32 0.856 0.057 7.23 23.32 0.856 0.057 7.22
64 23.29 0.856 0.057 10.33 23.29 0.856 0.057 10.26
128 23.28 0.855 0.057 12.68 23.28 0.855 0.058 12.75
256 23.24 0.854 0.059 14.59 23.25 0.854 0.059 14.39
512 23.18 0.853 0.063 16.13 23.18 0.853 0.062 15.50

1024 23.00 0.849 0.069 18.05 23.01 0.850 0.069 17.26
2048 22.62 0.842 0.084 19.60 22.61 0.842 0.083 18.80

316.2K

32 23.33 0.856 0.057 7.34 23.33 0.856 0.057 7.34
64 23.30 0.856 0.057 9.68 23.30 0.856 0.057 9.56
128 23.29 0.855 0.057 12.33 23.29 0.855 0.057 12.01
256 23.26 0.855 0.058 14.00 23.26 0.855 0.058 13.21
512 23.22 0.854 0.060 15.43 23.23 0.854 0.060 14.63

1024 23.19 0.853 0.062 16.89 23.18 0.853 0.061 15.49
2048 23.12 0.850 0.065 18.35 23.11 0.850 0.065 17.77

1.0M

32 23.31 0.856 0.057 5.91 23.31 0.856 0.057 5.89
64 23.30 0.856 0.057 9.35 23.30 0.856 0.057 9.20
128 23.30 0.855 0.057 11.59 23.30 0.855 0.057 11.23
256 23.27 0.855 0.058 13.32 23.27 0.855 0.058 12.63
512 23.25 0.854 0.058 14.50 23.24 0.854 0.059 14.14

1024 23.22 0.854 0.060 15.29 23.22 0.854 0.060 15.41
2048 23.19 0.852 0.061 17.10 23.19 0.853 0.061 16.22

3.2M

32 23.32 0.856 0.057 5.93 23.32 0.856 0.057 5.90
64 23.30 0.856 0.057 8.22 23.30 0.856 0.057 8.16
128 23.30 0.855 0.057 10.94 23.30 0.855 0.057 10.80
256 23.28 0.855 0.058 12.39 23.28 0.855 0.058 11.92
512 23.26 0.855 0.058 13.82 23.26 0.855 0.058 13.33

1024 23.24 0.854 0.059 14.90 23.24 0.854 0.059 14.56
2048 23.22 0.853 0.060 15.97 23.21 0.853 0.060 15.30

10.0M

32 23.28 0.856 0.058 3.45 23.28 0.856 0.058 3.45
64 23.30 0.855 0.057 5.13 23.30 0.855 0.057 5.12
128 23.30 0.856 0.057 9.76 23.30 0.856 0.057 9.64
256 23.28 0.855 0.058 11.60 23.28 0.855 0.058 11.15
512 23.26 0.855 0.058 13.17 23.26 0.855 0.058 12.88

1024 23.23 0.854 0.059 14.35 23.23 0.854 0.059 13.57
2048 23.22 0.854 0.060 15.33 23.23 0.854 0.060 14.57

Table A.2: Evaluation metrics for the chair dataset.
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A. Evaluation Tables

SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.0K

32 18.27 0.821 0.111 1.91 N/A N/A N/A N/A
64 18.27 0.821 0.111 3.03 18.27 0.821 0.111 3.07
128 18.26 0.821 0.110 4.96 18.26 0.821 0.110 4.84
256 18.25 0.821 0.110 8.23 18.25 0.821 0.111 8.10
512 18.24 0.821 0.111 11.54 18.24 0.821 0.111 11.17

1024 18.19 0.818 0.115 14.40 18.19 0.818 0.115 14.29
2048 18.04 0.810 0.126 17.08 18.04 0.810 0.126 16.35

315.8K

64 18.28 0.821 0.111 2.16 N/A N/A N/A N/A
128 18.26 0.821 0.111 4.26 18.26 0.821 0.111 4.26
256 18.26 0.821 0.111 7.04 18.26 0.821 0.111 6.82
512 18.25 0.821 0.111 9.73 18.25 0.821 0.111 9.57

1024 18.23 0.820 0.111 12.43 18.23 0.820 0.111 11.78
2048 18.21 0.818 0.113 14.93 18.21 0.818 0.113 14.07

999.2K

64 N/A N/A N/A N/A 18.28 0.821 0.111 1.94
128 18.27 0.821 0.111 3.17 18.27 0.821 0.111 3.57
256 18.26 0.821 0.111 5.90 18.26 0.821 0.111 6.12
512 18.25 0.821 0.111 8.57 18.26 0.821 0.111 8.43

1024 18.24 0.820 0.111 11.04 N/A N/A N/A N/A
2048 18.23 0.820 0.112 12.86 18.22 0.820 0.112 12.49

3.2M

128 18.27 0.821 0.112 2.85 18.27 0.821 0.112 2.85
256 18.27 0.821 0.111 4.84 18.27 0.821 0.111 4.82
1024 18.24 0.820 0.112 9.38 18.24 0.820 0.112 9.37
2048 18.23 0.820 0.112 10.84 18.23 0.820 0.112 11.17

10.0M

256 18.26 0.821 0.112 4.17 18.26 0.821 0.112 3.93
512 18.25 0.820 0.112 6.19 18.25 0.820 0.112 6.27

1024 18.24 0.820 0.112 8.31 18.25 0.820 0.112 8.14
2048 18.22 0.819 0.113 9.64 18.23 0.819 0.113 9.70

Table A.3: Evaluation metrics for the drums dataset.

56



SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.5K

256 19.55 0.875 0.093 2.42 19.54 0.875 0.094 2.46
512 19.57 0.876 0.093 3.78 19.55 0.875 0.093 3.69

1024 19.59 0.876 0.091 5.42 19.60 0.876 0.091 5.43
2048 19.63 0.876 0.090 7.86 19.64 0.876 0.091 7.69

316.1K

256 19.50 0.875 0.095 2.05 N/A N/A N/A N/A
512 19.50 0.875 0.094 2.97 19.50 0.875 0.094 2.97

1024 19.53 0.875 0.093 4.08 19.52 0.875 0.093 4.16
2048 19.56 0.875 0.091 5.66 19.55 0.875 0.091 5.59

999.4K

256 19.47 0.874 0.096 1.82 N/A N/A N/A N/A
512 19.47 0.874 0.096 2.56 N/A N/A N/A N/A

1024 19.48 0.874 0.095 3.38 19.49 0.874 0.095 3.38
2048 19.48 0.874 0.095 4.34 19.48 0.874 0.095 4.32

3.2M

256 19.44 0.874 0.097 1.54 N/A N/A N/A N/A
512 N/A N/A N/A N/A 19.44 0.874 0.097 2.16

1024 19.43 0.873 0.097 2.82 19.43 0.873 0.097 2.80
2048 19.42 0.873 0.097 3.53 19.42 0.873 0.097 3.53

10.0M
512 19.40 0.873 0.099 1.83 19.40 0.873 0.098 1.85

1024 19.38 0.873 0.098 2.40 19.40 0.873 0.098 2.44
2048 19.38 0.873 0.099 3.04 19.37 0.872 0.099 3.02

Table A.4: Evaluation metrics for the ficus dataset.
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A. Evaluation Tables

SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

101.3K

32 22.08 0.879 0.078 3.70 N/A N/A N/A N/A
64 22.07 0.879 0.079 4.50 22.07 0.879 0.079 4.50
128 22.04 0.878 0.083 6.07 N/A N/A N/A N/A
256 22.00 0.876 0.087 7.53 22.01 0.876 0.087 7.43
512 21.88 0.871 0.100 9.67 21.96 0.871 0.100 9.36

1024 21.65 0.858 0.124 11.84 21.59 0.857 0.126 11.57
2048 20.60 0.828 0.161 14.39 20.62 0.828 0.160 14.03

317.7K

32 21.80 0.879 0.080 3.39 N/A N/A N/A N/A
64 21.85 0.879 0.080 4.32 21.85 0.879 0.080 4.30
128 21.83 0.878 0.081 5.40 21.83 0.878 0.082 5.36
256 21.82 0.877 0.084 6.92 N/A N/A N/A N/A
512 N/A N/A N/A N/A 21.94 0.875 0.089 8.44

1024 21.85 0.868 0.104 10.34 21.85 0.868 0.104 10.27
2048 21.67 0.855 0.122 12.41 21.69 0.854 0.122 12.05

1.0M

128 21.79 0.878 0.081 5.34 21.78 0.878 0.081 5.23
256 21.77 0.877 0.084 6.53 N/A N/A N/A N/A
512 21.85 0.876 0.086 7.87 21.83 0.875 0.088 7.92

1024 21.87 0.872 0.097 9.39 21.88 0.871 0.097 9.27
2048 21.83 0.865 0.107 10.86 21.81 0.864 0.108 10.84

3.2M

64 N/A N/A N/A N/A 21.68 0.878 0.081 3.93
128 21.66 0.878 0.082 5.13 21.66 0.878 0.082 5.11
256 21.66 0.877 0.083 6.26 21.64 0.877 0.083 6.11
512 21.65 0.876 0.086 7.53 21.68 0.876 0.086 7.49

1024 21.67 0.873 0.094 8.82 21.68 0.873 0.094 8.74
2048 21.66 0.868 0.102 10.11 21.69 0.868 0.102 9.92

10.0M

64 N/A N/A N/A N/A 21.61 0.878 0.081 4.03
128 21.59 0.878 0.082 4.97 21.59 0.878 0.082 4.95
256 21.59 0.877 0.083 6.16 N/A N/A N/A N/A
512 21.57 0.876 0.086 7.24 21.58 0.876 0.085 7.20

1024 21.59 0.873 0.093 8.38 21.59 0.873 0.092 8.27
2048 21.60 0.870 0.099 9.37 N/A N/A N/A N/A

Table A.5: Evaluation metrics for the hotdog dataset.
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SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.1K

32 20.47 0.858 0.079 4.36 20.47 0.858 0.079 4.34
64 20.41 0.856 0.079 6.36 N/A N/A N/A N/A
128 20.24 0.854 0.081 7.16 20.24 0.854 0.081 7.07
256 20.25 0.853 0.082 8.87 20.27 0.853 0.082 8.79
512 20.23 0.850 0.085 10.13 20.23 0.850 0.085 9.98

1024 20.14 0.846 0.090 11.68 20.13 0.846 0.090 11.56
2048 20.04 0.838 0.103 13.89 20.05 0.838 0.102 13.03

316.7K

32 20.50 0.858 0.079 4.48 20.50 0.858 0.079 4.51
64 20.34 0.855 0.080 5.70 20.34 0.855 0.080 5.66
128 20.23 0.854 0.081 6.87 20.23 0.854 0.081 6.82
256 20.22 0.853 0.081 8.21 20.18 0.852 0.082 8.03
512 20.16 0.850 0.084 9.14 N/A N/A N/A N/A

1024 20.11 0.848 0.086 10.30 20.11 0.848 0.086 10.02
2048 20.10 0.846 0.090 11.74 20.11 0.846 0.090 11.43

999.9K

32 20.50 0.858 0.079 4.83 20.50 0.858 0.079 4.82
64 20.36 0.855 0.080 5.53 20.36 0.855 0.080 5.51
128 20.21 0.853 0.081 6.65 20.21 0.853 0.081 6.59
256 20.17 0.852 0.082 7.85 20.15 0.852 0.082 7.56
512 20.09 0.850 0.083 8.49 20.09 0.850 0.083 8.33

1024 20.03 0.848 0.085 9.33 20.04 0.848 0.086 9.13
2048 N/A N/A N/A N/A 20.00 0.846 0.088 10.13

3.2M

32 20.15 0.856 0.081 2.32 20.15 0.856 0.081 2.32
64 20.40 0.855 0.080 4.65 N/A N/A N/A N/A
128 20.18 0.853 0.081 6.20 N/A N/A N/A N/A
256 20.11 0.851 0.082 7.36 20.11 0.851 0.082 7.24
512 20.07 0.849 0.083 7.91 20.04 0.849 0.083 7.86

1024 19.96 0.847 0.086 8.67 19.96 0.847 0.086 8.53
2048 19.92 0.845 0.088 9.47 19.92 0.845 0.088 9.33

10.0M

32 20.44 0.857 0.080 2.07 20.44 0.857 0.080 2.07
64 20.39 0.855 0.080 4.26 20.39 0.855 0.080 4.25
128 20.17 0.853 0.081 5.59 20.17 0.853 0.081 5.54
256 20.10 0.851 0.082 6.96 20.11 0.851 0.082 7.00
512 20.02 0.849 0.084 7.56 20.01 0.849 0.084 7.47

1024 19.92 0.846 0.086 8.21 19.92 0.846 0.086 8.07
2048 19.85 0.845 0.088 8.95 N/A N/A N/A N/A

Table A.6: Evaluation metrics for the materials dataset.
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A. Evaluation Tables

SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.2K

32 21.71 0.908 0.048 6.51 21.71 0.908 0.048 6.45
64 21.70 0.908 0.049 11.00 21.70 0.908 0.049 10.71
128 21.69 0.907 0.049 13.59 21.69 0.907 0.049 13.31
256 21.65 0.907 0.050 15.90 21.65 0.907 0.050 15.13
512 21.58 0.906 0.053 17.79 21.58 0.906 0.053 17.05

1024 21.45 0.903 0.058 19.01 21.46 0.903 0.058 18.26
2048 21.19 0.897 0.069 20.25 21.20 0.898 0.070 19.48

316.1K

32 21.73 0.908 0.049 4.47 21.73 0.908 0.049 4.45
64 21.72 0.908 0.049 7.60 21.72 0.908 0.049 7.56
128 21.69 0.907 0.049 13.15 21.69 0.907 0.049 12.50
256 21.67 0.907 0.049 15.29 21.67 0.907 0.049 14.77
512 21.65 0.907 0.050 16.76 21.65 0.907 0.050 15.71

1024 21.61 0.906 0.052 18.16 21.60 0.906 0.052 17.31
2048 21.53 0.904 0.055 19.15 21.52 0.903 0.055 17.65

999.9K

32 N/A N/A N/A N/A 21.74 0.908 0.049 4.95
64 21.73 0.908 0.049 9.89 21.73 0.908 0.049 9.70
128 21.72 0.908 0.049 12.45 21.72 0.908 0.049 11.97
256 21.70 0.907 0.049 14.63 21.69 0.907 0.049 13.84
512 21.68 0.907 0.050 16.00 21.68 0.907 0.050 15.22

1024 21.65 0.906 0.052 17.27 21.65 0.906 0.052 15.89
2048 21.62 0.905 0.053 18.48 21.62 0.905 0.053 16.87

3.2M

32 21.74 0.908 0.049 4.65 21.74 0.908 0.049 4.63
64 21.72 0.908 0.049 9.26 21.72 0.908 0.049 9.18
128 21.71 0.907 0.049 11.86 21.71 0.907 0.049 11.71
256 21.70 0.907 0.050 14.01 21.70 0.907 0.049 13.48
512 21.68 0.907 0.050 15.57 21.69 0.907 0.051 14.94

1024 21.66 0.906 0.052 16.59 21.66 0.906 0.052 15.42
2048 21.65 0.906 0.052 17.44 21.65 0.906 0.053 16.53

10.0M

32 21.74 0.908 0.049 3.31 N/A N/A N/A N/A
64 21.72 0.908 0.049 5.95 21.72 0.908 0.049 5.91
128 21.71 0.907 0.049 11.57 21.71 0.907 0.049 11.00
256 21.70 0.907 0.050 13.60 21.70 0.907 0.049 13.34
512 21.69 0.907 0.050 15.02 21.69 0.907 0.050 14.61

1024 21.67 0.906 0.052 16.13 21.67 0.906 0.052 15.89
2048 21.66 0.906 0.053 14.92 21.66 0.906 0.052 16.26

Table A.7: Evaluation metrics for the mic dataset.
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SAH MedianPoints Clusters PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

PSNR
↑

SSIM
↑

LPIPS
↓

FPS
↑

100.5K

32 20.95 0.756 0.165 3.10 20.95 0.756 0.165 3.10
64 20.90 0.755 0.166 3.82 20.90 0.755 0.166 3.81
128 N/A N/A N/A N/A 20.82 0.752 0.168 4.45
256 20.68 0.747 0.174 5.41 20.71 0.747 0.174 5.46
512 20.43 0.737 0.184 6.65 20.38 0.736 0.184 6.70

1024 19.79 0.719 0.200 8.27 19.79 0.719 0.200 8.23
2048 18.57 0.689 0.228 10.41 18.52 0.689 0.229 10.34

317.4K

32 N/A N/A N/A N/A 20.96 0.757 0.165 2.92
64 20.93 0.756 0.165 3.49 20.93 0.756 0.165 3.49
128 20.89 0.754 0.166 3.90 20.89 0.754 0.166 3.91
256 20.83 0.751 0.169 4.62 20.82 0.750 0.170 4.73
512 20.74 0.745 0.174 5.64 20.74 0.744 0.174 5.53

1024 20.59 0.736 0.181 6.54 20.60 0.736 0.180 6.48
2048 20.23 0.721 0.190 7.88 20.25 0.722 0.190 7.73

1.0M

64 20.96 0.756 0.166 3.25 20.96 0.756 0.166 3.25
128 N/A N/A N/A N/A 20.93 0.755 0.166 3.71
256 20.88 0.753 0.168 4.28 20.87 0.752 0.170 4.20
512 20.85 0.749 0.171 4.88 N/A N/A N/A N/A

1024 N/A N/A N/A N/A 20.79 0.744 0.175 5.47
2048 20.70 0.737 0.178 6.27 20.68 0.737 0.178 6.27

3.2M

128 20.93 0.755 0.166 3.48 N/A N/A N/A N/A
256 20.88 0.753 0.169 3.84 20.89 0.753 0.168 3.85
512 N/A N/A N/A N/A 20.86 0.750 0.171 4.29

1024 20.82 0.747 0.173 4.69 20.83 0.747 0.173 4.72
2048 20.79 0.743 0.174 5.27 20.79 0.743 0.174 5.24

10.0M

128 N/A N/A N/A N/A 20.93 0.755 0.167 3.31
256 20.89 0.754 0.169 3.53 N/A N/A N/A N/A
512 20.88 0.751 0.171 3.98 N/A N/A N/A N/A

1024 20.84 0.749 0.172 4.26 N/A N/A N/A N/A
2048 N/A N/A N/A N/A 20.82 0.746 0.175 4.38

Table A.8: Evaluation metrics for the ship dataset.
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Fotorealistisk grafik blir ännu snabbare

POPULÄRVETENSKAPLIG SAMMANFATTNING Jonathan Permfors, Daniel Kärde

Medan datorspel klarar av att rita virtuella 3D-vyer i snabb hastighet, förblir det en
utmaning att återskapa 3D-vyer från den verkliga världen. Ny forskning har lyckats
uppnå fotorealistiska återskapningar genom att använda artificiell intelligens, men
arbete pågår fortfarande för att göra återskapningen snabbare.

Att återskapa 3D-scener från den verkliga världen
har flertalet användningsområden, en sådan är ar-
tificiell verklighet. Föreställ dig att kliva in i en
historisk plats, eller att gå på en virtuell husvis-
ning. Detta har i en lång tid varit en svår uppgift,
men kan snart bli mer tillgänglig tack vare en ny
teknik som använder sig av artificiell intelligens
(AI). De uppnår fotorealism genom att ta 2D-
bilder på en vy och träna AI-modellen på dem.
Den färdiga AI-modellen kan sedan förutstå fär-
gen vid givna 3D-positioner. Genom att skjuta
virtuella strålar genom vyn och förfråga AI:n om
färgen vid positioner längs strålen kan nya bilder
skapas. Eftersom AI-modellerna är relativt stora
blir varje förfrågan kostsam, och det är därför till-
talande att göra detta vid så få positioner som
möjligt utan att påverka bildkvaliteten.

Vårt arbete utforskar en metod för att åstad-
komma detta genom att kapsla in objekten i vyn i
boxar, och enbart förfråga AI-modellen om färg för
positioner inom dessa områdena. För att beräkna
var strålarna beskär boxarna används en teknik
som kallas strålfölning, vilket är ett välutforskat
område inom datorgrafik, därmed finns det fler-

talet tekniker för att påskynda strålfölningen. Vi
använder oss av en sådan teknik som arrangerar
boxarna i en hierarki. Detta tillåter oss att an-
vända ett mycket större antal boxar och därmed

representera objekten i vyn mer precist, vilket
möjliggör ännu färre förfrågningar till AI-modell.
Genom denna process uppnår vi en markant snab-
bare återskapning av vyn, med liten eller ingen ef-
fekt på bildkvaliteten i de flesta vyer vi utvärderat.
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