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Abstract

Analysis and visibility of complex software systems is becoming increasingly
more important and at the same time difficult to achieve. Comprehensive and
extensive analyses of the popular operating system Linux can consequently prove
invaluable. There are currently several options to choose from when analysing
the Linux kernel, but all have one common denominator; analyses are based on
events, system calls or function call stacks.

With this thesis, we propose using a source code level probe-based approach
by adapting the Ericsson-developed tool Did My Code Execute? for kernel space
use, to gain a new way of performing analyses on the kernel. We show that it is
possible to use such an approach and provide a framework of considerations to
make when writing kernel space probes and how to extract the collected data in
an emulated environment. Additionally, we show that it is possible to generate
a source code level trace of the kernel and show what performance implications
probing different parts of the Linux kernel has.
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Chapter 1

Introduction

An important aspect of software development is analysis and visibility. As the complexity
of computer systems increases, so does the importance of comprehensive analyses, which
simultaneously, becomes more challenging to achieve. This is especially true for an operating
system such as Linux. Luckily, there are several powerful tools [3, 15, 23, 28, 29] capable of
comprehensive analyses.

Unfortunately, these tools mostly let the user listen to events and system calls or trace
the call stack. While useful for debugging and finding potential security flaws, they omit
some detail, as they are unable to analyse specific lines of code. This is where Did My Code
Execute? [30] (DMCE) might offer some respite. DMCE use static analysis to insert user-
defined software probes on every valid C/C++ expression, which could then be used to collect
and output important information about how the program runs and behaves.

1.1 Research questions
To tell whether a probe-based approach is a viable method of profiling the Linux kernel, we
aim to answer the following research questions by experimenting and implementing kernel-
adapted probes for common analysis use cases.

• RQ 1: To what extent is it possible to statically instrument the kernel code with probes using
DMCE? How can problems encountered with the probe analyser/writer be handled?

• RQ 2: How can we design and write probes for common analysis use cases, e.g. heatmap and
trace, in kernel space?

• RQ 3: Can DMCE’s probe-based approach be used to trace the Linux kernel with reasonable
accuracy? How can we handle run-time performance issues caused by the overhead introduced
by the instrumentation?
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1. Introduction

1.2 Contribution
The results of this thesis are meant to provide a new perspective on what analysis can be
made when profiling and evaluating the performance of the Linux kernel. More specifically,
we provide a framework as an extension of the tool Did My Code Execute? (DMCE) to create
probes capable of running in the Linux kernel itself, along with a couple of example probes
for common analysis use cases. The framework and provided probes (see appendix C) may be
further expanded upon or used independently, or alongside existing profiling tools, to gain a
deeper understanding of how we can perform analysis on operating systems such as Linux.

DMCE is a tool used and developed by Ericsson, built for instrumenting C/C++ code
bases using a probe-based approach. By default, DMCE provides probes e.g. creating a trace
(including the multi-core case) of a program or a heatmap of what parts of the code run
the most. It offers great scaling with large systems along with source-code level accuracy,
providing invaluable feedback about a program’s behaviour, what parts may cause issues and
where there is room for improvement. The result of our work has provided feedback and
minor patches to DMCE which made its way into version 2.0.0, released in March of this
year.

1.3 Related work
Linux is perhaps the most widely used operating system in today’s industry, and thus, pro-
filing and analysing the kernel is not a new endeavour, but an ongoing and important one
nonetheless. Being able to efficiently track down potential flaws that may pose security risks
is invaluable. Hung (2023) [16] shows that their runtime fuzzer can effectively be used to
expose bugs and vulnerabilities in the Linux kernel. On the topic of fuzzing, Li et. al. (2023)
[22] present a way of exposing logical bugs using the eBPF [12] Verifier with promising results.
Developing techniques like Hung’s, Ryan et al.’s (2023) [26] probabilistic lockset analysis to
detect race conditions and Chen et al.’s (2023) [3] AI approach to analysing execution paths
generated with ftrace (built-in tool for tracing function calls within the kernel), is therefore
an important step for developing safer systems. Furthermore, Waly & Ktari [29] presents
a complete framework for a declarative scripting language to work with event-tracing and
recognising patterns in execution more easily.

Among the mentioned tools, several other alternatives to profiling the kernel also exist,
including LTTng [23], SystemTap [28], DTrace [15] and eBPF. LTTng offers a simple command
line interface to enable the recording of all or specified kernel events and system calls, while
both SystemTap and DTrace provide a scripting-based tool to insert user-defined probes that
may execute on specified events and system calls. The tool eBPF works similarly to SystemTap
but makes use of the bpf system and its own compiler instead of a kernel module [11, 25]. This
allows eBPF programs to run inside the kernel safely without a need to modify the kernel’s
source code. An advantage of using eBPF over SystemTap is that eBPF has access to more
trace points than SystemTap [11].

The relation to our work with DMCE is the level of abstraction the different tools op-
erate on. Most tools, including eBPF and SystemTap, execute alongside, within the kernel,
i.e. it does not modify the kernel itself but extends it with user-defined event listeners on
predefined trace-points and hooks placed by kernel developers [11]. This means that kernel

8



1.4 Contribution statement

developers are responsible for the quality and quantity of available points in the kernel to
instrument. DMCE however, works by instrumenting the source code itself i.e. modifying it
without breaking the logical flow of the code (see section 2.5 for more details). Put differently,
the user-defined probes with DMCE run in the kernel on a line-of-code level, offering addi-
tional insight into the behaviour of the instrumented code and may complement information
gathered with other tools.

1.4 Contribution statement
In the beginning, we worked closely together to set up environments and create a proof of
concept, that is, build and run a probed kernel, collect data and extract it. When setting up
data extraction we wrote our own separate kernel modules to try different ways of extracting
the data. Further, we worked individually to implement different probes, i.e. Jesper worked
with trace and Andreas with heatmap. When facing common probe related issues such as
probe-recursion (see section 3.3.2) we combined forces to find a solution.

When gathering data for evaluation, Andreas performed the measurements related to the
number of probes inserted and the number of executed probes in different configurations.
Jesper measured the boot times of the kernel while probed.

As for the report, individual contributions are specified in table A.1 in appendix A, and
roughly reflects the division in practical work.
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Chapter 2

Background

This chapter serves to give an introduction to the tools used and important concepts for the
following chapters.

2.1 The C language
C is a programming language developed in 1972 [27]. It allows low-level manipulation of the
computer and serves as an abstraction of assembly, and has been widely used for programs
that require high performance and control, such as operating systems and embedded systems,
including the Linux kernel. Below we describe some concepts of C that are relevant to both
DMCE and how the kernel is structured.

The C preprocessor handles the first step in compiling a C program [14]. Commands to
the preprocessor begin with the symbol # and are called directives. There are several different
directives, including macros and conditional compilation.

A macro is defined using the #define-directive, as shown below. It associates a name with
some content. Later, whenever that name is used, it is replaced by the macro content. There
are two types of macros that can be distinguished between, object-like macros and function-
like macros. A function-like macro differs from an object-like macro in that after the macro
name, there is a list of arguments that may be used in the macro [14]. The code snippet below
shows the definition of an object-like macro FOO, and a function-like macro BAR.

#define FOO 15
#define BAR(x, y) (x + y)

Conditional compilation can be performed using the #if-, #ifdef- and #ifndef-directives.
They are used in conjunction with the #else- and #endif-directives and take a constant expres-
sion which is evaluated by the preprocessor to determine whether a block of code is included
in the compilation or not [14]. The following block of code shows conditional compilation
depending on whether the macro FOO evaluates to 15 or not.
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2. Background

#if FOO == 15
/* code is compiled if FOO has the value 15 */
#else
/* code is compiled if FOO does not have the value 15*/
#endif

After the preprocessor has resolved directives, it passes a modified version of the source
code to the next compilation phase. The rest of the compilation creates an representation of
this code known as an Abstract Syntax Tree(AST), which is used to generate machine code.
As a result of this, the preprocessor directives, such as macros, cannot be seen in the generated
AST, only the code they result in. This has implications for modifying the source code based
on the AST, which is done by DMCE, described more in section 2.5.

In addition to what is defined in the C standard, compilers can provide their own ex-
tensions to the language. This can e.g. be in the form of built-in functions, or attributes.
Attributes can be used to define special properties of variables, which changes how the com-
piler handles them during compilation [4]. As an example, GCC provides a section attribute
which allows the programmer to specify which section of the executable file a variable should
be placed in [6]. The code fragment below shows the declaration of an integer that will be
placed in the section INITDATA, using the GCC section attribute.

int foo __attribute__((section("INITDATA")));

2.2 The Linux kernel
The Linux kernel is the open-source project at the heart of every Linux distribution [1]. It
contains the core functionality required to control the underlying hardware as well as manage
things like process scheduling and system calls. The kernel code is divided into distinct sub-
systems, where each subsystem is responsible for one piece of functionality, such as memory
management, or networking. The kernel is mainly written using the C programming lan-
guage and assembly, but since kernel version 6.1, it also contains Rust, to a small degree[19].
A wide variety of computer architectures are supported by Linux[17], which is made possible
by the kernel being highly configurable at build time. Using the open source tool cloc [10]
shows that the 6.8.0-rc1 version of the kernel contains 25.7 million lines of code, of which
17.9 million, almost 70%, is code for drivers.

The kernel runs in a much different environment than user space programs. It is respon-
sible for managing the system’s resources and has unrestricted access to all hardware. A user
space program on the other hand runs on top of the kernel and may rely on a lot of func-
tionality provided by the kernel via e.g. system calls or a standard library provided by the
programming language. Thus, the kernel do not have access to these as itself is the provider
of that functionality. Put differently, the kernel must provide all of its own functionality.

It is very important that the generated machine code does exactly what the programmer
intends it to do, thus the compiler plays a very important part in making the kernel work.
The Linux kernel uses the GNU Compiler Collection, GCC, and is very closely tied to it, as
it uses several compiler extensions, such as statement expressions and specifying attributes
for symbols.
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2.3 Quick Emulator

2.3 Quick Emulator
For our work, we have needed to build and run many kernel images. To reduce the time
per iteration cycle we have used the emulator called Quick Emulator [24], or simply QEMU,
which is a generic open-source software capable of virtualisation and emulating a processor.
It supports several host architectures and an even wider variety of target architectures, such
as Arm, x86, and Power. It achieves emulation with good performance through dynamic
translation, in which it translates a piece of code in the target binary only the first time it is
encountered.

QEMU has two separate modes in which it can run, system and user mode emulation.
During system emulation, an entire machine is emulated, including CPU, memory, and pe-
ripheral devices. This mode is able to run programs which are designed to run on bare metal,
such as an operating system. User mode emulation is available for Linux and BSD and emu-
lates only a CPU, which allows running a program compiled for one CPU on another CPU.

During system emulation, QEMU is capable of booting a Linux kernel without needing
to create a full bootable image, by using the -kernel option. This makes it a very useful tool
for testing during kernel development as it reduces the time per iteration cycle, i.e. instead
of loading the kernel to hardware, we can run it directly in QEMU.

QEMU has a monitor, a mode that can be switched to during emulation, which provides
commands for manipulating the virtual machine and its environment. Some examples are
resetting the system, starting a GDB server, and dumping the virtual memory to a file.

2.4 Program analysis
Program analysis is the process of analysing software to extract information regarding the
properties of the program [13]. Program analysis can be divided into two different types,
static and dynamic.

Static program analyses are performed purely by analysing the source code. During a
static program analysis, it is very useful to have a good representation of the semantic struc-
ture of the target program. This is often achieved by constructing an Abstract Syntax Tree
(AST) similar to when compiling the program. The AST is a tree representation of the pro-
gram structure and how expressions and symbols relate to each other. A common application
of static program analysis is to detect potential issues or redundancies when writing code.
Another, and perhaps less seen, application can be found in optimising compilers. Con-
versely, dynamic analysis entails gathering and extracting information during the execution
of a program.

2.5 Did My Code Execute?
Did My Code Execute? [30], or DMCE for short, is a static and dynamic program analysis tool
for C/C++ programs, developed at Ericsson and open-sourced on GitHub. It uses clang-check,
a tool from LLVM, to generate an AST and performs static program analysis on the generated
AST to insert software probes on valid expressions using the C/C++ comma operator [14]. The
comma operator is a binary operator which evaluates its operands in order and then returns
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2. Background

the value and the type of the last operand. The probes are meant to act as instrumentation
and thus not modify the logic and control flow of the original program, i.e. so long as the
probe code does not intentionally produce side effects directly impacting this. Below follows
an example of how a probed line may look:

Original:
int foo = create_some_value_from(bar);

Instrumented:
int foo = (DMCE_PROBE(0), create_some_value_from(bar));

Where DMCE_PROBE(0) is the call to the probe’s code with probe number zero, and
create_some_value_from(bar) a call-expression to a user-defined function returning an integer
value. In this example, the probe would execute first and gather relevant information fol-
lowed by the variable foo being assigned the result of the function call.

The probes themselves may be tailored to one’s needs but have all one thing in common;
they collect information of interest to create some sort of report for a given analysis use
case. Probes and programs for creating and viewing reports for common analysis use cases
[30] are included with DMCE and consist of e.g heatmap, trace (including multi-core trace)
and racetrack (race-condition provocation, which does not create data in the same sense as
the others). There are two steps to instrument a project or parts of a project. Firstly, one
may use the dmce-set-profile command to set a profile, specifying which probe to use during
the instrumentation. The command also offers several options to include or exclude specific
constructs, variables and lines of code. This is useful since one can then adjust the scope of
probing or remove instrumentation that causes e.g. compilation errors or large amounts of
overhead relative to the other probed lines. Additionally, one may point out specific files
or directories to put on the include-path for the analyser, in case it does not find it by itself.
After setting a profile, running the command dmce inserts all probes. Then, it is only a matter
of compiling and running the project as normal.

DMCE will create a reference file as to where in the code each probe is located and after
running the instrumented code, produce a report in binary format. These two files are then
used together with the appropriate DMCE tool to view the report, e.g dmce-summary-bin for
heatmap reports and dmce-trace-viewer for trace probes.

During this work, we will investigate how well the existing design of DMCE works when
probing the kernel, whether it can be improved, as well as creating variants of the existing
probes for use in kernel space.

14



Chapter 3

Method

In this section we will first explain the general method used during this work, and how the
research questions were answered. After this, we will describe specific problems that were
discovered while using the method, and which need to be solved.

3.1 General method
In order to investigate how well DMCE can insert probes into the kernel and problems related
to this, we insert probes using existing DMCE functionality and check what problems arise.
To start with, the pre-existing stub probe is inserted, which is an empty probe. This probe is
chosen as it doesn’t cause any compilation problems due to the probe implementation. This
allows us to find issues that are purely related to probe insertion. Any issues found this way
are investigated to determine what is their cause, and how they potentially can be solved or
worked around.

Another part of the work is concerned with constructing probes that work inside the
kernel. The probes we wish to construct already have corresponding implementations in user
space by DMCE. As a start, these implementations are examined to give an understanding
of the fundamental concepts that the probes need to implement to function. After this, an
iterative process is followed, where one piece of functionality is implemented at a time. This
is done by reading about the relevant parts of the kernel and possibly compiler extensions,
and comparing alternatives.

The last part of the work is specifically about tracing the kernel. We will measure the
performance of the trace probe by measuring the time it takes to boot the kernel will using
the trace probe and compare it to baseline boot time when not probed. If it is determined that
the trace probe causes performance degradation, different implementations will be compared
in order to determine bottlenecks and improve performance. Additionally, we will look into
whether there are any methods of reducing the performance overhead outside of the probe
implementation.
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3. Method

3.2 Probing the kernel
Some of the issues that arise are related to the static analysis of the kernel code, and how the
probes should be inserted.

3.2.1 Building the kernel
A fundamental prerequisite for probing the source code of a program is to determine the
structure of the program. As mentioned before, DMCE uses the tool clang-check to produce
an AST as a representation of the program. This representation is then analysed in order to
find where probes may be inserted. Generating an accurate AST is therefore very important
for valid probing. The way the kernel is built causes issues when generating the AST.

Typically, a file of C source code consists of a number of include-directives for external
declarations, local declarations within the file, and definitions of functions and variables. As
such a file contains all the declarations it needs, it is able to be analysed independently of
other source files. In the Linux kernel, there exist files which do not include declarations of
external functions it uses. Instead, these files are themselves included in other files which
contain the necessary declarations. This often happens for architecture specific code, as it
allows subsystems to be divided up into generic code and code that needs to be provided
for each supported architecture. The consequence of this is that it is impossible to generate a
correct AST for this code if it is analysed independently. In such a case, clang-check generates
recovery symbols, that will be ignored.

Using a macro can look identical to calling a function, so in the case where the clang-check
finds ambiguity and a declaration or definition can not be found, it treats it as a function
call. This can cause a probe to be inserted for a macro, which may cause issues, as described
above.

A similar situation occurs when clang-check preprocesses and resolves the directives re-
lated to conditional compilation. As explained in 2.1, the conditional compilation depends
on a constant expression evaluated at build time. This is commonly used in the kernel when
handling configuration, as it allows unused functionality to be completely left out of compi-
lation.

A problem might arise if clang-check is not given enough information to be able to resolve
the condition correctly, either due to the issue of missing declarations described above or due
to macros being defined by the compiler at build time, such as by using the -D option in GCC.
This may cause clang-check to discard part of the AST that is in fact used during compilation,
leading to fewer probes being inserted than possible. It does, however not lead to any invalid
probes. This problem can be alleviated by providing clang-check with build information.
This can be done by constructing a file describing the compile command used for each file of
source code. Such a file can be generated using a Python script in the Linux kernel repository
located, at the time of writing, at scripts/clang-tools/gen_compile_commands.py.

3.2.2 Probe notation
Actually inserting probes into the source code is not a trivial challenge. An inserted probe
should run immediately before the expression probes, and it must not affect program flow in
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3.3 Writing kernel-friendly probes

any way, except for execution time. DMCE solves this by using the comma operator, which
requires that both operands are expressions. The comma operator is inserted so that the left
operand is a call to the probe, and the right operand is an expression that was found in the
AST constructed by clang-check. As mentioned before, a macro is interpreted as a function
call by clang-check when the macro definition is not found, which can lead to a macro being
used as an operand for the comma operator. As a macro can resolve to some arbitrary content,
this is not necessarily a valid expression, which is not allowed in the comma operator. These
kinds of macros are common in the kernel, and as such, cause problems when using DMCE
to insert probes.

Another way of solving this, which avoids the problem of probing macros that resolve
to non-expressions is using compiler-specific syntax. This makes an assumption about the
build-environment of the program that is being probed, so it is not the solution for a general
probing tool, however in this case we are probing the Linux kernel specifically, which is
tightly coupled to using GCC, so GCC extensions is something we can rely on using. GCC
provides a special syntax called statement expression [7]. A statement expression consists of
a compound statement inside a parenthesis. A statement expression evaluates the compound
statement as normal but additionally returns the value of the last statement if the surrounding
context expects an expression. Practically, this is very similar to using the comma operator,
with the difference being that if the last statement in the statement expression does not return
a value, it only generates a build error if the surrounding context expects a value, unlike the
comma operator which always results in an error if the right-hand side is not an expression.
The code fragment below illustrates using the statement expression syntax.

int foo = ({DMCE_PROBE(0); create_value_from(args);});

Using this probe notation might increase the number of inserted probe.

3.3 Writing kernel-friendly probes
There are many considerations when designing a probe. Together with the unique environ-
ment of the Linux kernel, such as the lack of a standard library, this results in several aspects
that need to be considered. Below, we talk about the most prominent issues faced and how
one might work around them when adapting DMCE probes to run in kernel space.

3.3.1 The allocation consideration
In order to gather data, we obviously need somewhere to store it. Preferably, we would use a
shared or global variable containing or pointing to an array of a suitable type for the infor-
mation we would like to collect. This could be as simple as e.g. an array of integers but also
a custom data structure for potentially more interesting use cases.

The probes available by default in DMCE (located under probe-examples in the repository
[30]) uses either statically declared arrays (whose data is aggregated at program termination)
or pointers. In the probes using pointers, the allocation is done atomically by using mkdir as
a locking mechanism by having the first probe create a directory before allocating memory
and writing a pointer to this memory as an environment variable. The following probes then
detects that the directory is already created, and read this pointer from the environment
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variable. Thus a pointer to memory is shared between all instrumented files. This approach
is not quite applicable in kernel space as environment variables do not exist. Similarly, mkdir
does not exist in the same sense as in user space. Thus we need to make use of kernel space
mechanisms to achieve the same.

There are several ways to do this, one of which makes use of the extern keyword in C. By
declaring our probe’s buffer as extern, we tell the probes to look elsewhere for a definition
of the symbol. The symbol still needs to be defined somewhere, and a possible location to
do this could be in an in-tree kernel module, meaning a module that is compiled together
with the rest of the kernel. This is described more in section 3.4. Another way to use extern is
with a pointer for our data buffer, to which we then allocate memory. Since this buffer will
be shared between all instrumented files, it should only be allocated once. In the single-core
case this is trivial, but as for the multi-core case one approach would be to use an atomic
variable declared extern in the same way the buffer to make sure the allocation only happen
once.

DMCE is meant to be agnostic of any build-system [30], however, since the kernel-preferred
compiler is GCC we can make use of its compiler attributes for our buffer and condition vari-
able. The attribute relevant to our problem is namely, weak. The weak attribute is typically
used in libraries to mark functions as overrideable and puts the variable in global statically
allocated memory. This allows us to see the same symbol everywhere and, in the ISO C stan-
dard [14], guaranteed to be zero-initialised.

Using the GCC attribute with our variables is what we ended up going forward with.
The reason for this is that we then do not need to take care of atomically allocating memory
and zero-initialising. Another advantage with this method is that we do not need a kernel
module or any other location to initially declare our variables.

3.3.2 The recursion excursion

As mentioned in section 2.2 we rely on functionality implemented in the kernel. This brings
with it one consideration; what happens if we instrument the same functionality as we are
using in the probes? Recursion. There are a couple of ways to mitigate this issue, described
below, as we will see the per-kthread approach exploiting compiler attributes is the more
robust and the one we moved forward with.

To illustrate the problem, consider the simple probe seen in listing 3.1 (includes and de-
fines are omitted for brevity) whose only purpose is to tell us when it has been executed.
Examining what code executes during a call to printk in this way, we will eventually run into
a situation like the one illustrated in figure 3.1 where execution happens recursively.

Listing 3.1: Example of a probe using printk.
1 static void dmce_probe_body(unsigned int probenbr) {
2 printk("Probe␣number␣%u␣executed!", probenbr);
3 }
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Figure 3.1: Illustration of logical flow when probing printk while
also using printk in the probe.

One way to mitigate these situations is to introduce a static variable (i.e. it exists per-
file) to keep track of when we have entered the probe body and conversely, exited (see listing
3.2). This means that we can simply perform a check whether the original probing instance is
finished or not, and thus return before we reach the critical section causing recursive probe-
calls.

Listing 3.2: Example of a naive recursion prevention.
1 static int is_probing = 0;
2 static void dmce_probe_body(unsigned int probenbr) {
3 if (is_probing)
4 return;
5 is_probing = 1;
6 // Critical section
7 is_probing = 0;
8 }

However, since the guard variable exist on a per-file level, it does not take into account
the case where more than one core executes code from the same file. That is, a race condition
on our guard variable occurs causing one or more of the probe executions to skip its critical
section, as illustrated in figure 3.2. The results of this would be incomplete or fragmented
data. Similarly, the same issue would occur with just one core, as a single core may have mul-
tiple threads of execution. Put differently, if one thread gets preempted just after "is_probing
= 1" in the aforementioned figure, all other threads will skip the critical section until the first
thread is allowed to continue.

An approach that might solve these issues would be a per-kthread or per-process recur-
sion guard. Instead of a variable that several threads of execution may tamper with simul-
taneously, we optimistically assume an upper bound for the maximum number of kthreads
spawned during the kernel’s lifetime and set that as the size of a globally shared array of
integers where we use the current process id for indexing. In the example seen in listing
3.3, current is a macro that expands to inline assembly that returns a pointer to a task_struct
which in turn contains the process id of the currently executing kthread. This means that if
the same kthread tries to recursively enter a probe, it will check against its own, and no other
kthread’s, recursion guard and return before hitting the critical section of the probe.
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Figure 3.2: Logical flow illustrating a scenario where per-file recur-
sion prevention fails and loses data due to a race-condition on the
variable is_probing.

Listing 3.3: Example of a probe using a per kthread recursion pre-
vention.

1 # define DMCE_MAX_NUM_KTHREADS 1024 * 16 // Optimistic assumption
2 int __attribute__ ((weak)) dmce_recursion_guard[

DMCE_MAX_NUM_KTHREADS ];
3
4 static void dmce_probe_body(unsigned int probenbr) {
5 pid_t pid = current ->pid;
6 if (dmce_recursion_guard[pid])
7 return;
8 dmce_recursion_guard[pid] = 1;
9 // Critical section

10 dmce_recursion_guard[pid] = 0;
11 }

At first glance the example code seen in listing 3.3 seems to create a relatively large array
with uninitialised values for each file (which could result in never reaching the critical section
of a probe), however, in C, global variables without an explicit initialisation are implicitly
initialised to zero[14]. Additionally, the weak attribute tells the compiler (in the kernel case,
GCC) that it may overwrite this symbol if we see multiple declarations [5], resulting in ev-
eryone seeing the same symbol.
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3.3.3 Timestamps
Something that a probe might want to do is to collect timestamps of when it was called,
such as when making a trace probe. The kernel provides the ktime interface for timekeeping,
which provides up to nanosecond resolution. There are several different functions which use
different clocks and provide different granularities [18].

There exist so-called fast variants of the functions. These are safe to call from any context,
which is beneficial for the probes, as the probes may be inserted anywhere in the source code.
The downside of these is that the time is allowed to jump under certain conditions, which is
not allowed using the base versions. Another fast alternative to read timestamps is to utilise
architecture-specific instructions with inline assembly, e.g. rdtsc for x86(_64) and mrc p15 on
ARM.

Another variant is the coarse variant, which instead of giving nanosecond resolution, is
updated every so-called jiffy. The frequency of this can be configured when building the
kernel and is, for the newest kernel version at the time of writing, limited to either 100Hz,
250Hz, or 1000Hz. As a result, the best resolution of this variant of the functions is a mil-
lisecond.

Since the probes might be called very often, it is important that generating timestamps
does not take too much time. Depending on the probe, it might also be important that the
timestamps are generated with a high enough granularity. Exploring the different variants is
therefore important when constructing the probes.

3.4 Extracting the probe data
A part of any analysis is getting a hold of the generated data. Using the amenities of QEMU
and its monitor tools, the method we moved forward with was dumping the kernel memory
to a file on the host machine, though we did explore several options.

When using DMCE with user space programs, DMCE registers an on-exit callback for the
respective terminating signals that ultimately writes all gathered data in binary format to a
file with a known location on disk. The kernel equivalent callbacks, e.g.register_reboot_notifier,
register_die_notifier and register_panic_notifier, will call all registered functions one at a time
when the system is shutting down or rebooting, a process unexpectedly died or a panic has
occurred respectively. Writing to a file directly from the kernel is possible but is considered
bad practice and is thus discouraged [21]. Additionally, one major issue is that a panic oc-
curring indicates that things have gone terminally wrong and executing code as normal is
no longer possible. Thus writing to a file at this point might not be possible or, even worse,
cause a corruption of the file system.

An alternative is to implement an input/output control (ioctl) kernel module that writes
the gathered data to disk on demand using the existing internal file systems. This could then
be used together with a symbolic link between the guest and host machine to extract it from
the emulator. Our implementation of such kernel modules can be found in appendix B.

Even so, we still have one issue to address; what happens if the kernel enters a panic
before we have the opportunity to export our data through our module? Since we are in fact
running the kernel through an emulator, we have access to its toolbox of commands via the
QEMU monitor, regardless of whether the emulated kernel panics or not. In particular, the
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QEMU monitor offers us the command memsave, which takes a virtual memory address, a
size and a file path as arguments. Given a known address and size, this command allows us to
dump the raw memory from this address up to a certain size directly into a file on the host.
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Chapter 4

Evaluation

In this chapter we will go over our solutions to problems presented above, some concrete
results and provide a basis for answering our research questions with a discussion.

4.1 Experimental setup
The setup used consists of virtualisation-enabled machines. The most interesting is a com-
puter with an Intel(R) Xeon(R) CPU E5-2680 v4 2.40 GHz with 56 logical cores and 128GB
memory. The other two are laptops with Intel(R) Core(TM) i5-1145G7 2.60GHz with 8
logical cores and 32GB memory, and Intel(R) Core(TM) i5-1245U with 12 logical cores 1.60
GHz and 16GB memory respectively.

For QEMU, we used version 8.1.4 and 6.2.0 and ran mainly the qemu-system-x86_64 emu-
lator with flags allowing it to use all available cores, 1GB of memory and kvm enabled. The
kernel version used for testing and probe development is 6.8.0-rc1 and 6.8.0-rc6 with default
configurations for x86(_64) targets.

The setup for DMCE and its dependencies is git version 2.34.1, GNU bash, version 5.1.16(1)-
release, Python 3.10.12, and clang-check (llvm) version 17.

The described hardware and software will be used to run and test instrumented kernel
images. The probe implementations of the trace and heatmap use cases will be evaluated in-
crementally to arrive at a final implementation, as will the extraction of the gathered data.
Furthermore, they will be used to gather data about how the kernel behaves when certain
parts are instrumented to illustrate the feasibility of instrumenting the kernel using DMCE.

4.2 Results
To help answer RQ 1 we began trying to compile and run the kernel with a minimally invasive
probe, a stub, that simply returns when called. This proved successful and proved that the
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kernel can indeed run when instrumented in this manner. However, it did not work without
some tweaking. The kernel contains a lot of intricate macros and constructs that, when
DMCE and clang-check do not find a declaration, are treated as call expressions. When said
macros are then expanded during compilation, they become incompatible with the comma
notation used for probe insertion. One such example would be if the macro in question
encapsulates its code within a do-while loop as seen below.

#define SOME_MACRO(arg) \
do { \

// Some interesting macro code \
} while(0);

If SOME_MACRO is interpreted as a call-expression during static analysis due to e.g.
not being found by clang-check, its expansion causes compilation issues as it is not a C-
expression, and thus should be excluded from probing. Ultimately, we ended up with a rather
long list of constructs (see figure 4.4) that cause these compilation issues, which we in turn
tell DMCE to ignore when inserting probes.

To tackle RQ 2 we started implementing probes using available kernel mechanisms in-
stead of the C standard library. In particular, we put most of our effort into a trace and
heatmap probe respectively since a heatmap is more or less an extension of coverage and trace
enables more in-depth analysis. In sections 3.3 & 3.4 we brought up different problems en-
countered while working on our implementations. The first of the problems is how we al-
locate buffers for storing information gathered during runtime. For this, we opted for the
approach exploiting the C standard and compiler attributes for weak symbols. This gave us
a zero-initialised buffer shared among all probes which we could easily find the address and
size of by either printing it with printk or having a gander in the appropriate ELF-file. The
address and size were then used together with the QEMU monitor’s command memsave to
dump the buffer’s memory to a file on the host machine’s disk, which happens to work well
with DMCE as raw binary is the preferred format.

Before discovering the amenities of the QEMU monitor, however, we explored the ker-
nel module route for extracting the probe data. That is, declaring the buffer as a pointer
to an external symbol, that in turn was declared in the module. This led us to implement
two versions of a kernel module (implementations can be found in appendix B) capable of
outputting the data to disk; both using a symbolic link between host and guest machines,
but using the dev- and proc-filesystems respectively. Both approaches yielded the same result,
i.e. data on the host machine’s disk, but the proc version needed to take the kernel version
into account when setting up the structures needed for the file operations. However, The
kernel module approach suffers from one fatal flaw; how do we extract the probe data if the
kernel panics? This prompt is the seed that resulted in the aforementioned solution using
the QEMU monitor. Nevertheless, using a pointer for our buffer entails explicitly allocating
memory for it. To ensure only allocating to it once, we once again exploited the C standard
and GCC’s attributes to create a shared and atomic flag to indicate whether the buffer was
being or had been allocated.

This brings us to the next problem faced when implementing the probes; recursion. As
described in section 3.3.2, when probing subsystems the probes themselves have a depen-
dency to, we risk seemingly endless recursion. We examined several options, i.e. per-file,
per-cpu and per-kthread approaches to recursion prevention. Ultimately, we found that the
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per-kthread approach was most reliable as it prevents the same process or task from getting
stuck in recursion without potentially interfering with other processes or tasks. For an im-
plementation of this, we refer to listing C.1 in appendix C. In the implementation, we make
use of the macro current which expands to some inline assembly which ultimately returns
a pointer to a task_struct, in which we can find the current kthread’s process id. Addition-
ally, similar to how the main buffer is shared among all files by exploiting the C standard and
compiler attributes, an array keeping track of each process’ probing status with an optimistic
upper bound is used to ensure that we do not generate bogus data as a side effect of running
our probe from different files.
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Probed system Timestamp Cores Average boot time[s]
None N/A 1 8.3389664
None N/A 4 11.8409898
None N/A 8 12.7012772
None N/A 12 13.4008224

Scheduler frequent 1 9.5897324
Scheduler frequent 4 15.2275568
Scheduler frequent 8 20.8250404
Scheduler frequent 12 24.6956386
Scheduler coarse 1 9.4316688
Scheduler coarse 4 13.3019116
Scheduler coarse 8 14.1654928
Scheduler coarse 12 13.9971258
Scheduler rdtsc 1 9.695497
Scheduler rdtsc 4 13.185071
Scheduler rdtsc 8 14.959568
Scheduler rdtsc 12 15.355636
Locking frequent 1 8.8024434
Locking frequent 4 12.2985034
Locking frequent 8 13.003216
Locking frequent 12 13.873114
Locking coarse 1 8.7193754
Locking coarse 4 11.6472528
Locking coarse 8 12.7189084
Locking coarse 12 13.6294404
Locking rdtsc 1 8.884228
Locking rdtsc 4 11.902195
Locking rdtsc 8 13.306985
Locking rdtsc 12 13.228649

Entry frequent 1 8.403948
Entry frequent 4 11.884388
Entry frequent 8 13.328205
Entry frequent 12 13.418529
Entry coarse 1 8.659519
Entry coarse 4 11.764442
Entry coarse 8 12.951333
Entry coarse 12 14.111808
Entry rdtsc 1 8.417612
Entry rdtsc 4 11.295550
Entry rdtsc 8 12.519886
Entry rdtsc 12 13.759620

Table 4.1: Average boot times for probe statuses and number of
cores. The boot is considered done when the init process is started.
The stated boot times are the averages of five boots per configura-
tion.
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Probe hits Probe location (file:line)
trace 46914801

36364448 kernel/trace/trace_events.c:2757
5264112 kernel/trace/trace_events.c:2766
3326824 kernel/trace/trace_events.c:2758

sched 3176112
98618 kernel/sched/core.c:7394
60151 kernel/sched/core.c:559
60105 kernel/sched/core.c:603

locking 1840213
97586 kernel/locking/rwsem.c:1346
97586 kernel/locking/rwsem.c:1347
97586 kernel/locking/rwsem.c:1622

rcu 847171
79537 kernel/rcu/rcu_segcblist.h:82
63073 kernel/rcu/tree.c:227
54151 kernel/rcu/rcu_segcblist.h:95

entry 196268
88513 kernel/entry/common.c:177
88513 kernel/entry/common.c:186

4333 kernel/entry/common.c:104
printk 112404

6817 kernel/printk/printk_ringbuffer.c:357
5692 kernel/printk/printk_ringbuffer.c:366
3537 kernel/printk/printk_ringbuffer.c:436

events 76138
23860 kernel/events/core.c:4337
23857 kernel/events/core.c:4341
23856 kernel/events/core.c:4144

irq 11284
1106 kernel/irq/settings.h:117
1095 kernel/irq/chip.c:504
1095 kernel/irq/handle.c:206

cgroup 6286
260 kernel/cgroup/pids.c:66
258 kernel/cgroup/cgroup.c:770
166 kernel/cgroup/cgroup.c:6401

futex 1813
268 kernel/futex/core.c:786
268 kernel/futex/core.c:787
141 kernel/futex/core.c:1091

dma 424
335 kernel/dma/swiotlb.c:816

6 kernel/dma/direct.c:577
6 kernel/dma/direct.c:578

Table 4.2: Table showing the three probes executing the most in
each kernel sub-directory during a typical boot with 4 cores. Sub-
directories which did not produce data are omitted for brevity.

To provide answers for RQ 3, we tweaked the implementation of the trace probed and
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observed the run-time performance of the probed kernel. In the case of noticeable perfor-
mance issues, we analysed what could be the underlying cause, by both utilising our heatmap
probe and investigating implementation details. We also studied how useful the produced
traces were by looking at how much of the source code had been probed.

Table 4.1 shows the time it took to boot when different subsystems have been probed and
when emulating different numbers of cores. The probe used is the trace probe, with three
different methods used to measure timestamps, the high resolution ktime_get_mono_fast_ns,
the coarser but faster ktime_get_coarse_ns, as well as the x86 assembly instruction rdtsc. The
subsystems chosen to be measured are the scheduler, the locking subsystem, and the entry
subsystem since probes in these subsystems get called a lot more frequently than other sub-
systems, apart from trace, as can be seen in table 4.2.

To understand the performance impact on a higher level we used our heatmap probe to
pinpoint what probes run the most. We used the command dmce-summary-bin with the flag
"–filter", which takes the output of a heatmap probe and outputs a list of source code lines
which account for a given percentage of all probe hits. By adding this list to the DMCE filter,
this removes the probes accounting for that percentage of all probe hits. Figure 4.1 shows the
number of executed probes as a function of the percentage of probe hits removed this way.
In this case, the graph shows that very few probes (in the trace sub-directory, as seen in table
4.2, as well as one other file, kallsyms.c) caused the majority of the probe hits. While 4921
probes executed during boot, 47% of the hits were caused by 3 probes, and 79% were caused
by 20 probes, meaning that the remaining 4901 probes accounted for only 21% of total probe
hits. In order to verify that removing the most frequently executed probes this way translates
directly to removing overhead, we measured the boot time when different when different
percentages of probe hits have been filtered away, shown in figure 4.3. While there is some
variation, the figure shows the trend that the boot time decreases linearly with the amount
of probe hits filtered, showing that this is an effective way of removing overhead generated
by the probes. Further, we ran the same test but without including the trace sub-directory
and kallsyms.c, as they make up a vast majority of the total probe hits, and as seen in figure
4.2, which from the negative slope beginning almost immediately, shows that the overhead is
more evenly distributed among the executed probes.

Due to the trouble DMCE has while constructing the AST using clang-check, as described
in 3.2.1, some parts of the code might not be probed, leading to a lower probe coverage. This
may impact the usefulness of the traces since larger chunks of code may have been executed
between two traces, due to expressions there not being recognized in the source code. How-
ever, it stands to argue that the trace might still be usable in the sense that it is still possible
to tell that the code between to trace entries have executed.

If the trace probe is used to determine the underlying cause of a crash, another factor in
the usefulness of the trace is how quickly trace entries stop being generated after the error
occurs. This is desirable since we are mainly interested in knowing what lead to the error, not
what happened afterwards. When the kernel detects an error it starts a panic and continues
executing panic code. To limit the number of traces collected after the error is triggered,
we want to stop tracing early during the panic. We found through testing that this can be
achieved either by registering a callback function to the panic_notifier_list, as described in
3.4, that disables tracing, or by manually creating a breakpoint at the very start of the panic
function that tells DMCE to disable tracing.
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Figure 4.1: Graphs illustrating the number of executed probes in
the kernel directory as a function of the percentage of total probe
hits removed. The number of hits for each probe is measured from
a typical boot with four cores. The y-axis for the left-most graph
has a smaller interval to more clearly show where the drop in probe
amounts occurs. The right-most graph uses the same data set as the
left-most, but on the x-axis interval 80-100 to make up for what the
left-most does not show.

4.3 Discussion

4.3.1 RQ 1
To answer the question "To what extent is it possible to statically instrument the kernel code with
probes using DMCE?" and consequently "How can problems encountered with the probe analy-
ser/writer be handled?", we will discuss our findings while experimenting and how we ap-
proached problems arising along the way.

With the framework DMCE provides it is possible to instrument the vast majority of the
kernel and its subsystems. The subsystem that proved difficult to probe, however, was the
timekeeping. Inserting stub probes that do nothing seemed to work without any issue (likely
due to the compiler optimising away the, in reality, dead code), but as soon as we tried using
e.g. the heatmap probe, the kernel would panic early on during boot. A potential reason for
this issue while probing might be the usage of the sequence counter consistency mechanism
in this subsystem. Slightly simplified, this mechanism ensures the consistency of a resource
by having a sequence number associated with the resource that is incremented whenever the
resource is updated. A reader is then able to ensure the consistency of this resource by reading
the sequence number, then reading the resource, and finally the sequence number again. If the
read sequence numbers differ, it means that the resource has been updated and the process is
retried [20]. The situation where this might cause an issue is when multiple probes are called
while reading from the resource, and the probes take a significant amount of time to run.
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Figure 4.2: Graphs illustrating the number of executed probes in the
kernel directory (excluding trace and kallsyms.c) as a function of the
percentage of total probe hits removed. The number of hits for each
probe is measured from a typical boot with four cores. The y-axis
for the left-most graph has a smaller interval to more clearly show
where the drop in probe amounts occurs. The right-most graph uses
the same data set as the left-most, but on the x-axis interval 80-100
to make up for what the left-most does not show.

If this happens, it is more likely that a writer has updated the sequence number, in which
case the reader must retry its critical section, and as a result run the probes again. Since the
timekeeping subsystem handles resources that are periodically updated, if the time spent by
the probes in a critical section exceeds the period of an update, it could essentially cause an
infinite loop of the reader. Whether this potential issue actually occurs is not something we
managed to determine, so further analysis of this and possible solutions are left for future
work.

It is not certain that exactly every expression gets instrumented in a given subsystem. The
kernel contains a myriad of convoluted macros and constructs that DMCE, by default, will try
to ignore. The reason for the reluctance to instrument macros is simply their unpredictability
in what they will expand to. Additionally, as described in section 3.2.1, the way some parts
of the kernel are built, DMCE will sometimes miss certain macros, mistaking them for a call
expression and thus insert a probe anyway. Depending on the resulting macro expansion,
this may render the comma notation invalid and cause the compilation to fail. A collection
of macros that we found to be causing such issues can be seen in figure 4.4. The list might
seem quite large, but we found that a significant portion of these macros are only used once
or twice (most likely for readability). Some of them however are synchronisation-related,
e.g. READ_ONCE & lock_acquire, which may be used to a broader extent, meaning we lose
accuracy relative to the amount of synchronisation. Instead of using comma notation, the
GCC extension statement expressions allow a larger portion of these macros to be probed.
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Figure 4.3: Graph illustrating the boot times when the kernel has
been probed with our trace probe and increasing percentages of total
probe hits have been filtered out. Each data point is the average
of five measurements while booting with four cores. The boot is
considered done when the init process is started.

4.3.2 RQ 2
We will answer this question (How can we design and write probes for common analysis use cases
(e.g. heatmap & trace) in kernel space?) by revisiting the problems described in section (3.3) and
discuss them in combination with the solutions we found and implemented.

Several kernel-related issues must be taken into account when writing probes for the
kernel. More specifically, only use functionality already implemented in the kernel while
also avoiding recursion if we were to probe said functionality, and store and allocate our data
buffer appropriately in a global context to ease the process of then extracting it.

Writing code in kernel space differs considerably from writing programs intended to
run in user space. First and foremost, we no longer have access to the amenities of the C
standard library, or any other library for that matter. In other words, we must rely on our
own proficiency in C and the functionality provided by the kernel itself. An example of
this presents itself when we need to allocate a bunch of memory. In userland, we simply call
e.g. malloc or calloc and tell them how much memory we want. Within the kernel, however,
there are additional things to consider. In most cases (and generally preferred) we can use
kmalloc similarly to malloc but with an extra flag telling the system how we want to allocate
it (most commonly GFP_KERNEL). However, this does not work in every case. Kmalloc only
guarantees to allocate up to 128KB [9], possibly causing issues if the amount we allocate
exceeds this, depending on the build configuration and target architecture. The number of
probes and memory needed may vary considerably depending on the scope of a given probing.
In other words, since we know we might exceed this limit, it is better to use e.g. vmalloc which
instead guarantees at least the amount we allocate in contiguous virtual memory. Another
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RCU_LOCKDEP_WARN,kfree_rcu,kvfree_rcu_mightsleep,
kexec_flush_icache_page, spin_acquire,lock_acquire_exclusive,
spin_release,lock_acquire,lock_release,SCHED_WARN_ON,
kthread_init_work,LIST_HEAD,update_rt_rq_load_avg,rcu_sleep_check,
update_idle_cfs_rq_clock_pelt,update_rt_rq_load_avg,u64_u32_store,
WRITE_ONCE,rcu_sleep_check,schedstat_inc,u64_u32_load_copy,
__schedstat_set,kthread_init_work,mutex_init,
lockdep_set_class_and_name,set_current_state,spin_lock_init,
SCHED_WARN_ON,rcu_assign_pointer,WRITE_ONCE,lock_acquire,
mutex_acquire_nest,lock_contended,set_current_state,lock_release,
mutex_release,lockdep_init_map,__set_current_state,wait_var_event,
__bpf_prog_array_free_sleepable_cb,lockdep_set_class_and_name,
kprobe_flush_task,sched,likely,for_each,foreach,BUG,unreachable,cpu,
barrier,BLANK,rmb,irq,rdmsr,raw_spin_lock_init,arch_end_context_switch,
smp,pte_unmap,preempt,lock_cmos,free_vm86,wmb,dev_level_ratelimited,
dev_warn_ratelimited,dev_level_once,dev_warn_once,spin_lock_init,
mutex_init,deactivate_mm,init_rwsem,might_sleep,setup_thread_stack,
mt_set_external_lock,rcu_dereference,READ_ONCE

Figure 4.4: A comma-separated list of macros that were not success-
fully detected by DMCE to be macros, and which caused compila-
tion failure when used with the comma operator due to not expand-
ing to an expression.

thing to consider when explicitly allocating the data buffer is of course to not do it more
than once. This is not in any way unique to probing in kernel space but does require its
own way of achieving it. Unlike the provided user space solution which makes use of the
lock mkdir provides, we can make use of an atomic flag declared with the weak attribute
described in section 3.3.2, thus granting the same atomicity as the mkdir lock. However,
atomically checking a condition every time a probe executes, may prove slow if our probes
are hit increasingly often. Compare this with table 4.2, where we can see that different parts
of the kernel hit significantly more probes during boot than others. To optimise this, at least
a bit, we opted to use a local static variable on top of the shared atomic one, to exploit the
speculative branching of some architectures using the unlikely macro.

Since we are indeed confined to kernel space and using kernel mechanisms, an important
question to ask oneself when writing a probe is "Will I ever use this probe to probe the mechanisms
I am using within the probe?". If the answer is "no", then we do not have to worry, but if the
answer is "yes", "maybe" or any other positively affirming expression, we need to consider
probe recursion and bogus probe hits. As described in section 3.3.2, there are different ways
to approach this, but as we found in section 4.2, only the latter is suitable. This prevents both
endless recursion as well as producing data as a side effect of probing.
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4.3.3 RQ 3
To answer the questions Can DMCE’s probe-based approach be used to trace the Linux kernel with
reasonable accuracy? and How can we handle run-time performance issues caused by the overhead
introduced by the instrumentation?, we analyse the trace probe, the traces it produces, and its
effects on kernel performance as well as identify the bottlenecks of the introduced overhead.

In short, we found that DMCE’s probe based approach is capable of generating traces
with relatively high accuracy, e.g. the loss of probes due to manual filtering overhead did
not affect the trace sufficiently to render the trace unusable. Furthermore, the performance
loss caused by introduced overhead was found to depend on what parts of the kernel was
probed as well as implementation details of the probe. Additionally, filtering out the probes
responsible for the most overhead improves performance without affecting the trace much.

It was found that the trace probe is capable of causing a significant performance penalty,
as can be seen in table 4.1. When running on a single-core system, the overhead of using
the trace probe was reasonably low, the difference between the unprobed boot time and the
slowest configuration was only 15%. However, the performance quickly degrades as the num-
ber of cores increases, when running on 12 cores, the overhead of the slowest configuration
compared to the unprobed kernel was 84%. Interestingly, the large difference in performance
was only seen when probing the scheduler, not when probing other subsystems, such as lock-
ing, which is also shown in table 4.1. The scheduler is the subsystem where the probes are
called the most frequently during boot, aside from trace, as shown in table 4.2, so it is not
surprising that it causes the largest performance degradation. However, if the performance
was directly related to the number of times the probes were called, it would not explain how
the locking subsystem, which calls its probes 58% as often as the scheduler does, only has an
overhead of 3.5% while running on 12 cores, as compared to the 84% overhead when probing
the scheduler.

The largest source of performance issues was found to be the collection of timestamps
using the high-resolution function ktime_get_mono_fast_ns. When using the faster, less pre-
cise function ktime_get_coarse_ns or the assembly instruction rdtsc instead, the performance
overhead significantly decreases. When probing the scheduler and using 12 cores, the over-
head while using ktime_get_coarse_ns is only 4.4%, and the overhead while using rdtsc is 14.6%.
While ktime_get_coarse_ns leads to the highest performance, it also causes a deterioration in
the quality of the traces.

DMCE sorts all trace entries based on their timestamps, so if the granularity of the times-
tamps is not high enough, the final order of the entries might not be the same order as they
occurred while the kernel ran as many trace entries can get the same timestamp. As men-
tioned in section 3.3.3, the resolution of the timestamps using the function ktime_get_coarse_ns
is at best one millisecond. One of the traces we gathered using this method of collecting
timestamps showed that over 1000 trace entries might have received the same timestamp. In
this case, it was impossible to follow the control flow of the execution that was traced.

The x86 instruction rdtsc provides as high resolution as ktime_get_mono_fast_ns, but with
a significantly lower performance overhead, so it seems to be the best choice when building
the kernel for the x86 architecture. This shows that architecture-specific code in the probes
can be used to improve the run-time performance of the probes, but a non-architecture-
specific function should be used as a fallback when there is no such suitable mechanism for
the architecture.
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Implementation details aside, another efficient way to identify performance bottlenecks
is to utilise a heatmap probe in combination with dmce-summary-bin’s "–filter" flag, as de-
scribed in section 4.2. We see from the linear trend of figure 4.3 that removing the probes
causing a certain percentage of all probe hits directly reduce the overhead caused by prob-
ing. Combining this with figure 4.1, we see that a very small number of probes account for
a large part of the overhead generated by the probes. In this case, these few probes can be
excluded to significantly improve performance while barely affecting the probe coverage and
the usefulness of the trace.

In section 4.2, two different ways of pausing tracing during kernel panic are discussed.
Inserting a breakpoint at the start of the panic function has the advantage of happening ear-
lier than registering a callback to the panic_notifier_list, as this happens after some setup of the
panic environment has been executed. As such, using breakpoints leads to fewer unnecessary
traces, which simplifies the process of analysing the traces and discovering what caused the
panic. In cases where there exists some pre-existing knowledge regarding where the error
happens, a breakpoint may be inserted even earlier than when the panic function is called,
as the kernel only starts to panic when the error is detected, not when it is caused.The disad-
vantage of using breakpoints is that they need to be manually inserted into the source code.
As such, this solution does not fit if there is a need for the trace probe to work by default,
however, when modifying the source code is acceptable, using breakpoints does work well.
Our trace probe, shown in appendix C, uses the panic_notifier_list.

4.4 Limitations
4.4.1 Emulated environment
One relevant point to consider is the very fact that we are running our probed kernel images
in an emulated environment. While the purpose of an emulator is to provide an environment
that reflects the targeted hardware, it still does not run on said hardware when performing
tests. In other words, there is no guarantee that a probed kernel would run on an actual
machine with a specific architecture just because it can in an emulator.

This also impacts performance measurements. When measuring the boot times, see ta-
ble 4.1, this is done in the emulator, which runs on the host machine and is subject to being
scheduled by the host operating system. Although QEMU is fully capable of emulating mul-
tiple cores, it is not a guarantee that QEMU will get access to all cores at the same time, and
guaranteed that it will not be interrupted while running. In contrast, booting the kernel on
a dedicated machine gives it complete control over all cores.

4.4.2 Static analysis
At the time of writing, there is no way to use DMCE without having a dependency to clang-
check. In other words, the only available AST to look for expression in is the one generated
by clang-check. A successful, or rather complete, probing of any given source code is there-
fore assuming clang-check can handle it all. DMCE does in fact handle GCC’s torture tests
[8], but sometimes need the user to point out include-directories to look for declarations
in when generating the AST. This becomes increasingly problematic as the build systems
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grow more complex. An example of this (briefly mentioned in section 3.2.1) can be found
within architecture-specific and build configuration code, where certain .c-files are directly
included (without include-directives in themselves) in another source file. It turns out this
is a compilation-time optimisation when building using different configurations. In general,
including .c-files directly is considered bad practice and thus should not be all too common.
However, in special cases, such as the kernel, it is most certainly something to consider when
evaluating the performance of static analysis.

This, in turn, begs another question; to what degree must a given project be able to be
probed to produce sufficient value? For the use cases we have implemented, i.e. heatmap and
trace, "good" instrumentation would be at least one inserted probe per edge of the control-flow
graph [2] within the scope of the probing. This would mean that every possible execution path
within our probing scope could be traced. But what if some of the paths cannot be probed
for some previously discussed reason; how useful is the instrumentation then? There will be
some loss in accuracy, but not necessarily enough to make a trace unusable. What constitutes
an unusable trace would be trace entries with a sufficiently large gap in between them such
that it is difficult or impossible to tell what code has been run in the meantime. Looking
at the graphs in figures 4.1 & 4.2, for example, we can see that the most significant drop in
probe amounts happens around the upper half of the 80-100% interval of removed overhead.
That said, even if we intentionally remove instrumentation causing the most overhead, the
risk of a trace becoming unusable is low.

4.4.3 Changes to the internal Linux kernel API
The internals of the kernel are free to change whenever there is a technical reason for it, as
long as the external API is maintained. Since our probes use internal kernel functions, the
probes may no longer be valid in a future release of the kernel. Similarly, the probes are not
guaranteed to function for older kernel versions either, since the functionality they may rely
on might not have been implemented yet. This is due to the level of abstraction that DMCE
operates on, i.e. in the source code itself. This would not be a problem with something like
eBPF that does not modify and run in the kernel, but due to its higher abstraction level, it
may leave out some details that DMCE would not.

An example of this can be seen in the proc-version of our kernel modules (see listing B.1).
The module contains conditional pre-processor directives to determine whether the kernel
version is sufficiently high to use proc operations, which were added in kernel version 5.6.0.
In other words, if we did not take this into account and opted to only use the proc operations
API, the module would not compile for versions lower than 5.6.0 and thus be useless unless
changed.
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Chapter 5

Conclusions

In this section, we summarise our findings and discuss what a continuation of this work
might entail.

5.1 Summary of results
Through experimentation and implementation of kernel probes based on the available user
space probes in DMCE, we show that it is possible to instrument the Linux kernel’s source
code with this approach (except e.g. time-keeping), and with relative ease collect the gen-
erated data in an emulated environment using the provided toolbox of the emulator and
custom kernel modules.

We provide a framework for how to approach writing a probe when instrumenting the
kernel, by discussing the problems we have stumbled upon, and propose possible solutions to
said problems. Furthermore, we present what considerations to make regarding the extrac-
tion of the collected data and what scenarios one or the other is more suitable.

Additionally, we show that it is possible to generate a source code level trace from the
kernel. The overhead and performance implications vary with the rate at which the probes
are hit, and what parts of the kernel have been probed.

5.2 Future work
Our work is intended to serve as a basis for how to make use of a source code level probe
approach when performing analyses on the Linux kernel. That said, some possible improve-
ments and ideas can be expanded upon. We have implemented probes for a couple of use
cases, but what use cases there are, is limited only by imagination (and possibly hardware).
One idea might be to combine the traces generated by DMCE with other sophisticated anal-
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ysis tools such as bpftrace1.
One of the issues we encountered is that the way the kernel is built makes clang-check

struggle with constructing a complete AST. Finding a way to mitigate this issue would both
improve the probe coverage, leading to more useful analyses and reduce the number of invalid
probes inserted.

One limitation of our work is that it only tackles extracting the probe data when using
an emulator to run the probed kernel. It would be very valuable to investigate a solution for
achieving this on actual hardware, i.e. bootstrapping the instrumented image. A possibility
for this is by loading a crash kernel on panic to extract the binary probe data.

Lastly, it was found probing some files caused the kernel to stop working, either by gen-
erating a panic or simply freezing during boot, such as when probing the timekeeping sub-
system. While we have hypotheses as to potential issues, further investigation to determine
the cause would be beneficial as this might allow more of the kernel to be probed.

1https://bpftrace.org/
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This appendix contains a table specifying individual contributions to the report.
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Section Andreas Jesper
Abstract X
Introduction
- Contribution X
- Related work X
Background
- C/C++ X
- The linux kernel X
- QEMU X X
- Program analysis X
- DMCE X X
Method
- Probing the kernel X
- Writing kernel friendly probes X X
- - The allocation consideration X
- - The recursion excursion X
- - Timestamps X
- Extracting the probe data X
Evaluation
- Experimental setup X
- Results X X
- Discussion X X
- - RQ 1 X X
- - RQ 2 X
- - RQ 3 X
- Threats to validity X X
- - Emulated environment X X
- - Static analysis limitations X
- - Changes to the internal Linux kernel API X X
Conclusion
- Summary of results X
- Future work X

Table A.1: Table underlining who had the most responsibility for a
given part of the report (two X’s = roughly equal responsibility).
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Appendix B

Kernel modules

In this appendix are our respective kernel module implementations. One utilising the proc
system and the other the dev system.

Listing B.1: Kernel module using the proc system to output data
gathered by DMCE

1 /* BEGIN DMCE MODULE */
2 # include <linux/kernel.h>
3 # include <linux/module.h>
4 # include <linux/proc_fs.h>
5 # include <linux/uaccess.h>
6 # include <linux/version.h>
7 # include <linux/minmax.h>
8 # include <linux/init.h>
9 # include <linux/atomic.h>

10 # include <linux/printk.h>
11 # include <linux/vmalloc.h>
12 # include <asm/page.h>
13
14 # define DMCE_RACE_TRACK_K 1
15
16 # define PROCFS_NAME "dmce"
17 # define PROCFS_MAX_SIZE (1024 * 1024 * 8)
18
19 #if LINUX_VERSION_CODE >= KERNEL_VERSION (5, 6, 0)
20 # define HAVE_PROC_OPS
21 #endif
22
23 static struct proc_dir_entry *proc_file;
24 static size_t procfs_buffer_size = 0;
25
26 #if DMCE_RACE_TRACK_K
27 int nbr_probes;
28 atomic_t dmce_buffer [1024];
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29 #else
30 extern int nbr_probes;
31 extern atomic_t dmce_buffer [];
32 #endif
33
34 static ssize_t proc_read(struct file *fp , char __user *buf , size_t

buf_len , loff_t *offset) {
35 if (* offset) {
36 pr_debug("procfs_read:␣END\n");
37 *offset = 0;
38 return 0;
39 }
40
41 int *dmce_tmp_buffer = vmalloc(sizeof(atomic_t) * nbr_probes);
42
43 for (size_t i = 0; i < nbr_probes; i++) {
44 dmce_tmp_buffer[i] = atomic_fetch_add (0, &dmce_buffer[i]);
45 }
46
47 procfs_buffer_size = min(sizeof(atomic_t) * nbr_probes , buf_len

);
48
49 if (copy_to_user(buf + *offset , dmce_tmp_buffer + *offset ,

procfs_buffer_size)) {
50 vfree(dmce_tmp_buffer);
51 return -EFAULT;
52 }
53 vfree(dmce_tmp_buffer);
54
55 *offset += procfs_buffer_size;
56
57 pr_info("procfs_read:␣read␣%lu␣bytes\n", procfs_buffer_size);
58 return procfs_buffer_size;
59 }
60
61 static ssize_t proc_write(struct file *fp , const char __user *buf ,

size_t buf_len , loff_t *offset) {
62 procfs_buffer_size = min(PROCFS_MAX_SIZE , buf_len);
63
64 if (copy_from_user(dmce_buffer , buf , procfs_buffer_size))
65 return -EFAULT;
66
67 *offset += procfs_buffer_size;
68
69 pr_info("procfs_write:␣write␣%lu␣bytes\n", procfs_buffer_size);
70 return procfs_buffer_size;
71 }
72
73 #ifdef HAVE_PROC_OPS
74 static const struct proc_ops proc_file_fops = {
75 .proc_read = proc_read ,
76 .proc_write = proc_write ,
77 };
78 #else
79 static const struct file_operations proc_file_fops = {
80 .read = proc_read ,
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81 .write = proc_write ,
82 };
83 #endif
84
85 int __init init_module(void) {
86 proc_file = proc_create(PROCFS_NAME , 0644, NULL , &

proc_file_fops);
87 if (NULL == proc_file) {
88 proc_remove(proc_file);
89 pr_alert("error:␣could␣not␣create␣/proc/%s\n", PROCFS_NAME)

;
90 return -ENOMEM;
91 }
92
93 pr_info("/proc/%s␣created\n", PROCFS_NAME);
94
95 return 0;
96 }
97
98 void __exit cleanup_module(void) {
99 proc_remove(proc_file);

100 pr_info("/proc/%s␣removed\n", PROCFS_NAME);
101 }
102
103 module_init(init_module);
104 module_exit(cleanup_module);
105
106 MODULE_LICENSE("GPL");
107 MODULE_DESCRIPTION("In-tree␣dmce␣proc␣module");
108 /* END DMCE MODULE */

Listing B.2: Kernel module using the dev system to output data gath-
ered by DMCE

1 # include <linux/kernel.h>
2 # include <linux/init.h>
3 # include <linux/module.h>
4 # include <linux/kdev_t.h>
5 # include <linux/cdev.h>
6 # include <linux/atomic.h>
7 # include <linux/minmax.h>
8
9 MODULE_LICENSE("GPL");

10 MODULE_DESCRIPTION("Driver␣for␣extracting␣data␣from␣DMCE␣trace");
11
12 # define MAX_TRACES_TO_RETURN 10000
13
14 typedef struct {
15 uint64_t timestamp;
16 uint64_t probenbr;
17 uint64_t cpu;
18 } dmce_probe_entry_t;
19
20 extern dmce_probe_entry_t dmce_buffer [];
21 extern atomic_t dmce_buffer_size;
22 extern atomic_t no_probe;
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23
24 static dev_t dev;
25 static struct cdev my_device;
26
27 static struct class *my_class;
28
29 // Prevent traces while open , otherwise reading traces can create

new traces , creating a loop
30 static int dmce_trace_open(struct inode *, struct file *){
31 atomic_set (&no_probe , 1);
32 return 0;
33 }
34
35 static int dmce_trace_release(struct inode *, struct file *){
36 atomic_set (&no_probe , 0);
37 return 0;
38 }
39
40 static ssize_t dmce_trace_read(struct file *file , char __user *

user_buffer ,
41 size_t size , loff_t *offset)
42 {
43 if(* offset < 0){
44 return 0;
45 }
46
47 int buffer_size = atomic_read (& dmce_buffer_size);
48 printk(KERN_ALERT "dmce_trace:␣%d␣trace␣events\n", buffer_size)

;
49 if(buffer_size >= MAX_TRACES_TO_RETURN){
50 buffer_size = MAX_TRACES_TO_RETURN - 1;
51 }
52
53 const size_t elems_left = buffer_size - *offset;
54 if(elems_left <= 0){
55 return 0;
56 }
57
58 const size_t size_of_elem = sizeof(dmce_probe_entry_t);
59 const size_t num_elems_fit = min(size / size_of_elem ,

elems_left);
60 const size_t bytes = num_elems_fit*size_of_elem;
61
62 if (copy_to_user(user_buffer , dmce_buffer + *offset , bytes)){
63 printk(KERN_ALERT "dmce_trace:␣copy_to_user␣failed\n");
64 return -EFAULT;
65 }
66 *offset += num_elems_fit;
67
68 return bytes;
69 }
70
71 // Can be used for giving commands to the DMCE trace (start , stop ,

etc .)
72 static ssize_t dmce_trace_write(struct file *file , const char

__user *user_buffer ,
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73 size_t size , loff_t *offset)
74 {
75 char *str = kmalloc(size + 1, GFP_KERNEL);
76 unsigned long bytes_left = copy_from_user(str , user_buffer ,

size);
77 if(bytes_left > 0){
78 // handle incoming command
79 }
80 str[size] = ’\0’;
81 printk(KERN_CRIT "dmce_trace:␣received␣(%s)\n", user_buffer);
82 kfree(str);
83 return size;
84 }
85
86 static const struct file_operations fops = {
87 .owner = THIS_MODULE ,
88 .open = dmce_trace_open ,
89 .release = dmce_trace_release ,
90 .read = dmce_trace_read ,
91 .write = dmce_trace_write ,
92 };
93
94 static int __init dmce_trace_init(void)
95 {
96 int error;
97
98 if ((error = alloc_chrdev_region (&dev , 0, 1, "dmce_trace")) <

0) {
99 printk(KERN_ERR

100 "dmce_trace:␣Couldn ’t␣alloc_chrdev_region ,␣error =%d\
n",

101 error);
102 return 1;
103 }
104
105 my_class = class_create("mydriverclass");
106 device_create(my_class , NULL , dev , NULL , "dmce_trace");
107 cdev_init (&my_device , &fops);
108
109 error = cdev_add (&my_device , dev , 1);
110 if (error) {
111 printk(KERN_ERR
112 "dmce_trace:␣Couldn ’t␣cdev_add ,␣error =%d\n",

error);
113 return 1;
114 }
115
116 return 0;
117 }
118
119 static void __exit dmce_trace_exit(void) {
120 class_destroy(my_class);
121 }
122
123 module_init(dmce_trace_init);
124 module_exit(dmce_trace_exit);
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Appendix C

Probe implementations

This appendix contains implementations of the trace and heatmap probes.

Listing C.1: Kernel adapted heatmap probe implementation
1 # ifndef __DMCE_PROBE_FUNCTION_BODY__
2 # define __DMCE_PROBE_FUNCTION_BODY__
3
4 # include <linux/slab.h>
5 # include <linux/atomic.h>
6 # include <linux/printk.h>
7 # include <linux/string.h>
8 # include <linux/syscalls.h>
9

10 # define DMCE_BUF_SIZE (sizeof(atomic64_t) * DMCE_NBR_OF_PROBES)
11 # define DMCE_MAX_NUM_KTHREADS_HOPEFULLY (1024 * 16)
12 # define DMCE_NO_RECURSE 1
13
14 atomic64_t __weak dmce_buffer[DMCE_NBR_OF_PROBES ];
15 atomic_t __weak dmce_buffer_allocated;
16 int __weak dmce_anti_recurse_check[DMCE_MAX_NUM_KTHREADS_HOPEFULLY

];
17 int __weak nbr_probes;
18
19 static int done_init = 0;
20
21 static void dmce_probe_body(unsigned int probenbr) {
22 #if DMCE_NO_RECURSE
23 pid_t kthread_id = current ->pid;
24 if (unlikely(dmce_anti_recurse_check[kthread_id ]))
25 return;
26 #endif
27
28 if (unlikely (! done_init)) {
29 if (! atomic_fetch_inc (& dmce_buffer_allocated)) {
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30 nbr_probes = DMCE_NBR_OF_PROBES; // Propagate to dmce
kernel module

31 printk("dmce_probe:␣dmce_buffer␣allocated␣at␣address␣
with␣size:␣0x%px␣%lu", &dmce_buffer , (long unsigned)
DMCE_BUF_SIZE);

32 }
33 done_init = 1;
34 }
35
36 #if DMCE_NO_RECURSE
37 dmce_anti_recurse_check[kthread_id] = 1;
38 #endif
39 atomic64_fetch_inc (& dmce_buffer[probenbr ]);
40 #if DMCE_NO_RECURSE
41 dmce_anti_recurse_check[kthread_id] = 0;
42 #endif
43 }
44 #endif

l

Listing C.2: Kernel adapted trace probe implementation
1 # ifndef __DMCE_PROBE_FUNCTION_BODY__
2 # define __DMCE_PROBE_FUNCTION_BODY__
3
4 # include <linux/atomic.h>
5 # include <linux/slab.h>
6 # include <linux/smp.h>
7 # include <linux/ktime.h>
8 # include <linux/sched.h>
9 # include <linux/notifier.h>

10 # include <linux/reboot.h>
11 # include <linux/panic_notifier.h>
12 # include <linux/fs.h>
13 # include <linux/string.h>
14 # include <linux/compiler_attributes.h>
15
16 # define DMCE_MAX_HITS 1000
17 # define DMCE_NUM_CORES 12
18
19 # define DMCE_MAX_NUM_KTHREADS_HOPEFULLY (1024*16)
20
21 typedef struct {
22 uint64_t timestamp;
23 uint64_t probenbr;
24 uint64_t cpu;
25 } dmce_probe_entry_t;
26
27 dmce_probe_entry_t __weak dmce_buffer[DMCE_MAX_HITS*DMCE_NUM_CORES

];
28 unsigned int __weak dmce_buffer_indices[DMCE_NUM_CORES ];
29
30 int __weak no_probe;
31 atomic_t __weak init_done;
32 int __weak init_done_local = 0;
33 int __weak dmce_anti_recurse_check[DMCE_MAX_NUM_KTHREADS_HOPEFULLY
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];
34
35 int __weak dmce_probe_callback(struct notifier_block *nb , unsigned

long event , void *_args);
36 int __weak dmce_probe_callback(struct notifier_block *nb , unsigned

long event , void *_args){
37 WRITE_ONCE(no_probe , 1);
38 return NOTIFY_DONE;
39 }
40
41 struct notifier_block __weak dmce_callback_block = {
42 .notifier_call = dmce_probe_callback ,
43 .priority = 10, // High priority to stop probing quickly
44 };
45
46 void __weak dmce_probe_body(unsigned int probenbr)
47 {
48 pid_t kthread_id = current ->pid;
49 if(unlikely(dmce_anti_recurse_check[kthread_id ])){
50 return;
51 }
52
53 if(unlikely(READ_ONCE(no_probe))){
54 return;
55 }
56
57 dmce_anti_recurse_check[kthread_id] = 1;
58
59 if(unlikely (! init_done_local)){
60 // init
61 if(! atomic_fetch_or (1, &init_done)){
62 int ret;
63 ret = atomic_notifier_chain_register (&

panic_notifier_list , &dmce_callback_block);
64 if(ret){
65 pr_crit("dmce_trace:␣couldn ’t␣register␣panic␣

notifier");
66 }
67 }
68 init_done_local = 1;
69 }
70
71 const unsigned int core_id = smp_processor_id ();
72 const unsigned int index = dmce_buffer_indices[core_id ]++ %

DMCE_MAX_HITS;
73 const unsigned int actual_index = core_id*DMCE_MAX_HITS + index

;
74
75 dmce_buffer[actual_index ]. timestamp = ktime_get_mono_fast_ns ();
76 dmce_buffer[actual_index ]. probenbr = probenbr;
77 dmce_buffer[actual_index ].cpu = core_id;
78
79 dmce_anti_recurse_check[kthread_id] = 0;
80 }
81 #endif
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Appendix D

Trace example

Figure D.1: Figure illustrating how a trace can be viewed. The top
left segment displays a list of all collected trace events, while the
bottom left shows the surrounding code of the probed line.
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Probing the Inner Machinery of the
Linux Kernel

POPULÄRVETENSKAPLIG SAMMANFATTNING Andreas Bartilson, Jesper Kristiansson

The computer is more prevalent than ever and they all have an operating system. With
security becoming increasingly important, so does the ability to perform comprehensive
analyses of the systems enabling our digital infrastructure. We present a new way to
instrument the Linux kernel by adapting the Ericsson tool Did My Code Execute?.

If you have ever used a computer you have un-
doubtedly used an operating system to run pro-
grams to do work or everyday things. To do these
things with relative ease, the software must be re-
liable and safe, which has become increasingly im-
portant in the modern digital society. As is true
for most things, to improve reliability and safety,
we require the ability to analyse the structure and
behaviour of systems to identify flaws and risks
that need to be fixed.

To analyse programs (specifically those written
in the programming languages C and C++), an
open-source tool such as Ericsson’s Did My Code
Execute? (DMCE) can be used. By analysing the
source code it inserts probes on lines of code that
execute simultaneously as the code and can gather
(almost) any information we would like. Our the-
sis applies this approach and adapts DMCE to
run in the operating system’s code, specifically the
Linux kernel.

We successfully adapt DMCE to probe the ker-
nel and show that it is possible to generate a trace
of the code execution. Additionally, this can be
done without much performance overhead and in
cases where the overhead proves substantial, we
found that this can be mitigated without a signif-

icant loss in accuracy or coverage.
On the way, we found that several problems

need to be considered when using this approach
on an operating system kernel rather than a nor-
mal program. Normally when writing software,
there usually exists a standard library of functions
that the programmer can use to simplify develop-
ment. The operating system does not have this
standard library, so we explore how the probes,
and extraction of data generated by the probes,
can be adapted to only use functionality already
defined in the operating system’s code base. This
in turn becomes another problem; what happens if
we probe the functionality we are using within the
probes? We get stuck in an endless loop as we en-
ter probe after probe. This however we found can
be worked around by, given an ID of the thread
executing, keeping track of whether we are already
inside a probe or not.

So how do we get the information out of the
running instrumented kernel? In the case it does
not crash, we can use custom kernel modules to
utilise the built-in file systems. If it does crash,
however, we found that it is possible to dump all
memory to a file, and with a known location, we
can extract the data we collected.
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