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Sammanfattning 
 
De nuvarande metoderna som tillämpas av olika företag och forskare när det 
gäller om att räkna cykelvolym i olika tätorter har förbättrats över tiden. Dock 
har det aldrig varit felfri, vilket har lett till fortsatta studier och ännu mer 
utrymme att förbättra de befintliga metoderna. Därför är syftet med rapporten 
att ytterligare analysera det som redan har gjorts och hur man kan överträffa 
nuvarande förväntningar. 
 
En djupdykning i olika cyklisters beteende gjordes genom att analysera antal 
fel som inträffade vid insamling av data, samt orsaken till att dessa 
felaktigheter uppstår i första hand. Flera analyser gjordes i hela Lund stad, 
med hjälp av kommunen och applikationen TravelVu, både i hjärtat av staden 
och även i utkanten. 
 
I hopp om att ta reda på varför dessa extremvärden inträffar i första hand 
gjordes en jämförelse genom att göra en litteraturgenomgång på flera 
vetenskapliga artiklar. Olika metoder användes av var och en, vissa var mer 
lika än andra men de gav var och en tydlig inblick i hur de bedrev sin 
forskning. 
 
De flesta problemen är relaterade till kraftigt blandade trafikmiljöer som 
uppstår, speciellt under rusningstid. Hindrandet av trafik samt andra faktorer 
orsakar dessa brister under datainsamling, men som tidigare nämnt finns det 
fortfarande mer att undersöka och förbättra på vad vi redan vet. 
 
 



  

Abstract 
 
The current methods employed by different companies and researchers when 
it comes to measuring bike volume at different urban environments have been 
improving over time. However, it has never been completely flawless, leading 
to future studies and even more room to improve the existing methods. Which 
is why, the purpose of this report is to further analyze what has already been 
done and how to exceed current expectations.  
 
A deep dive into different cyclists’ behavior was conducted by analyzing the 
number of errors that occurred while gathering data, as well as the reason as to 
why these inaccuracies arise in the first place. Multiple analyzes were done 
throughout the town of Lund, with the help of the municipality and the app 
provided by TravelVu, both in the heart of the city and even on the outskirts. 
The miscalculation of data across these different urban locations differs from 
place to place but there’s also similarities between them.  
 
In hopes of finding out why these outliers happen in the first place a 
comparison was made by doing a literature review on multiple scientific 
papers. Different methods were employed by each one, some were more 
similar than others but they each provided a clear insight into how they 
conducted their research.  
 
Most of the problems are related to heavily mixed traffic environments that 
occur, especially during peak hours. The obstruction of traffic as well as other 
factors cause these deficiencies during data collection, but as previously 
mentioned, there’s still more to research and improve on what we already 
know.  
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1 Introduction 

1.1 Background 

The city known as Lund is renowned for having a high amount of bicycle trips 
daily, aiming towards becoming climate neutral by the year of 2030 (Lunds 
kommun 2024). Among the key characteristics of Lund in terms of its bicycle 
culture is the infrastructure, Lund has an extensive network of dedicated bike 
paths, as well as multiple bike parking facilities. This has led to a significant 
proportion of the residents to prefer biking as their primary mode of 
transportation, additionally the large student population contributes to the high 
rate of bicycle usage. The city continuously encourages its residents to, among 
other things, reduce carbon emissions and think in a more environmentally 
sustainable way. 
 
Modern scientific research has been observant to the importance of bikes in 
general and how impactful it has been to the society, mostly related to the 
number of bicycle trips. In some European countries bike usage is relatively 
high compared to other types of transportation, for some people it’s their daily 
routine when they for example take the bike to their school, work, home, etc. 
In Sweden, there are few studies that address the analysis of bike trips using 
crowdsourced data, one of those few examples is the scientific paper written 
by Sonja Forward, “Hållbart resande – möjligheter och hinder” (2014). Even 
fewer studies are done on urban areas, especially in the context of smaller 
cities such as Lund even though it is considered to be a city with a pronounced 
bike culture. Therefore, to address this perceived research gap, this study 
strives to understand the reasoning behind possible inaccuracies and to further 
investigate outliers in the specified models. 
 
Crowd sourced data is generated or contributed to by a significant share of the 
total population that collaborates on a large scale, usually through 
collaborative efforts or online platforms such as apps. This is a more efficient 
way of gathering data compared to the traditional way of data collection since 
the latter usually relies on smaller groups/organizations to collect information. 
Instead, it accumulates data on a wider area, for example through mass 
participation where everyone provides a piece of information. In the current 
study they were voluntarily contributing since they provided data during their 
free time without financially benefitting from it (Blohm, I, Leimeister, JM, 
and Zogaj, S 2018). In the methodology presented in the thesis, the crowd 
sourced data can be used to analyze certain bicycle behaviors, such as where 
cyclists usually cycle, the estimated volume in specific areas, possible peak 
times and other relevant indicators.  
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There are multiple different ways of collecting crowd sourced data, some of 
them involve using GPS by downloading an application or manual counting, 
but more specific methods include using pneumatic road sensors, or also 
known as pneumatic tube counters which is a general method still used by 
various organizations. The procedure can vary a lot, but the most common 
method employed is by using mobile devices to track the cyclist’s location. 
 

1.2 Purpose and objective 

In short, this paper should give an answer to how the quality and quantity of 
crowdsourced data affect the reliability of predictions for bicycle volume in 
different urban environments. This is done by tempting to gain a better 
understanding of how bike volumes are miscounted as well as what different 
methods are deployed to ensure a more accurate and detailed result. Just like 
it’s written by Ulf Paulsson in his book “Examensarbeten - Att skriva 
uppdragsbaserade uppsatser och rapporter” (2020) this paper uses previous 
knowledge that is accessible by anyone and has been scientifically approved, 
but it also aims to further improve current research within the transportation 
world and provide valuable insight. It ought to contribute with valuable 
information for instance whilst modeling traffic safety measures and for future 
research purposes, since traffic volume is the factor that is most correlated 
with traffic accidents, meaning that obtaining an accurate bike volume will 
help producing better accident prediction models. This is extremely important 
since most European countries aim towards accomplishing vision zero, which 
means to avoid fatalities or injuries that involve road accidents (Cyclomedia, 
2023).  
 
Different perspectives from different places, such as United States, Canada, 
Germany and Austria, provide a broader insight into how people analyze and 
research cyclist’s behavior. Multiple literatures sources were reviewed to 
better comprehend how cyclist volume is counted across different locations as 
well as to what the cause for error could be.  
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2 Literature review 

2.1 Tube counters 

In the report “Validation of Bicycle Counts from Pneumatic Tube Counters in 
Mixed Traffic Flows” (Brosnan, M., et al. 2015) it is written that, like the 
approach applied in the current study, that there were two different providers. 
However instead of using GPS and manual counting, like TravelVu and Lunds 
Municipality, pneumatic tube counters and standard tube counters were 
installed at different locations in the city of Minneapolis.  
 

2.1.1 Work procedure 

Tube counters, also known as pneumatic tube counters work by utilizing air 
pressure changes to detect the passage of vehicles, including bicycles. Firstly, 
a tube is stretched across the road surface which is filled with air and then 
sealed. This makes the passing vehicle compress the air inside creating a 
pressure wave that travels along the tube. Secondly, a sensor device is 
connected at the end of each tube, detecting the pressure changes caused by 
the vehicle movement, in this case bike movements. The sensor thus registers 
the pressure change. Lastly, the collected information is transmitted to a 
counting device or something similar which records the passage of vehicles.  
Collected data can include speed, number axles, direction of travel and so on. 
The recorded data is  analyzed to provide different traffic patterns, vehicle 
counts and other relevant information. 
 
The MetroCount counters, provided by Minnesota DOT, were specifically 
acquired to assess their effectiveness in counting bicycles. Concurrently, 
Timemark counters, a routine tool for Hennepin County, are regularly 
employed for comprehensive traffic volume assessments as part of statewide 
vehicular monitoring initiatives overseen by the Minnesota DOT. Installation 
of these counters was conducted by the Hennepin County engineer, who holds 
the primary responsibility for the county’s traffic monitoring program, along 
with research assistants from the University of Minnesota.  
 
Notably, MetroCount advice a tube spacing of 1 meter for classification 
counts, while Timemark recommends a roughly 3 meters separation between 
tubes. Both systems operate on a similar principle: passing vehicles or 
bicycles generate air pulses recoded as "axle hits." Subsequently, computer 
algorithms, during post-processing, classify the vehicle type or identify 
bicycles based on the time intervals between axle hits, considering the 
distance between tubes. Given the distinct interpretations of axle strikes, these 
systems enable the concurrent collection of bicycle and vehicular counts.  
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At the Portland Avenue site, two MetroCount pneumatic tube counters were 
installed in September of 2013. The tubes, spaced 1 meter apart, extended 
from the curb across one travel lane and one bike lane, which is almost 3,5 
meters. Meanwhile, at the University Avenue site, a more comprehensive 
approach involved the deployment of four pneumatic tube counters in parallel 
formation in June 2014. Standard tubes provided by the manufacturers were 
used regularly across all of the installations. 
 
In addition, Brosnan (2015) writes that the systematic refinement of bicycle 
classification methodologies, guided by manufacturer recommendations and 
innovative validation techniques, is a pivotal aspect of contemporary 
transportation research. The Hennepin County engineer strategically adjusted 
the default settings of Timemark counters to enhance their effectiveness in 
concurrently classifying bicycles and motorized vehicles.  
 
The tailored adjustments included the following modifications: 
 

 Registration of events with weaker air pulses to account for bicycles’ 
smaller mass and narrower ties, which displace less air than motorized 
vehicles. 

 Registration of events for slower-moving vehicles, aligning with the 
characteristic lower speeds of bicycles compared to motorized 
counterparts. 

 Registration of events associated with shorter axle spacing, 
acknowledging bicycles’ inherently shorter axle spacing relative to 
motorized vehicles. 

 
Additionally, Hennepin County implemented a complementary validation 
strategy by installing video cameras at each monitoring location. Student 
employees from the Minnesota Traffic Observatory meticulously reviewed the 
captured footage, noting the precise time each bicycle passed. The 
incorporation of video validation served as a robust quality assurance measure, 
contributing with to the general reliability of the automated bicycle counts. 
 
The study’s diverse configurations, surrounding sites such as Portland Avenue 
and University Avenue with varying lane configurations, required a more 
precise criteria for classification. The MetroCount system, offering a range of 
algorithms for data classification, was deployed with three distinct 
approaches:  
 

 The usage of the MetroCount algorithm ARXCycle, aligning with 
Australian standards and incorporating bicycle counts in its output.  
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 Customized classification through postprocessing of motorcycle counts 
derived from the MetroCount ARX algorithm. In this approach, 
researchers extracted events with axle bases less than 4 feet and speeds 
below 25mph. 

 Adoption of the BOCO algorithm developed by Boulder County, 
Colorado. This algorithm was specifically designed to identify bicycles 
classified as motorized vehicles within standard algorithms. 

 
 
 

2.1.2 Reliability of tube counters 
 
Following adjustments to support bicycle counting, the researchers utilized the 
standard Timemark classification output for bicycle counts, configurated to 
provide data in 15-minute bins. 
 
To validate the accuracy of the automated counts, the study followed 
established procedures from prior assessments of automated counters. Manual 
counts derived from video footage were regarded as the "standard" or best 
estimate of actual bicycle numbers. The assessment of relative accuracy 
involved the calculation of percentage differences, with the following formula: 
 

𝑑 =
(𝑎 − 𝑣 )

𝑣
 

 
 𝑑  represents the percentage difference for site i, 
 𝑎  represents the automated count for site i,  
 𝑣  represents the video-confirmed count for site i. 

 
To comprehend the reasons for inconsistencies between manual video counts 
and automated tube counts, as written by Brosnan (2015), researchers 
carefully matched time stamps from both sources. This matching process 
involved identifying matches, false positives (bikes classified by the 
automated counter but not on video), and false negatives (bicycles missed by 
the automated counter but recorded on video). The alignment of time stamps 
employed manual inspection for the Portland Avenue site, while an algorithm 
programmed in Excel facilitated the process at the University Avenue site. 
 
To quantify the absolute error rate relative to the actual number of bicycles, 
the following equation was employed: 
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𝑒 =
(𝑓 + 𝑓 )

𝑣
 

 
 𝑒  represents the absolute error rate for site i, 
 𝑓  represents false positives, 
 𝑓  represents false negatives. 

 
Brosnan (2015) also explains that an agreement rate for each configuration 
and classification scheme was determined as the percentage of instances 
where time stamps from the video and counter were in agreement. The 
absolute error rates were exclusively calculated for MetroCount devices, as 
Timemark counts were reported in 15-minute bins and lacked individual event 
inspection. To account for systematic counter errors, calibration equations 
were estimated by regressing hourly manual counts on hourly automated 
counts using ordinary least squares regression, with a forced origin through 
zero. The application of calibration equations involved adjusting hourly counts 
from the counters, and the resulting estimates were plotted against actual 
hourly volumes. 
 
The acquired result was that the comprehensive analysis of bicycle volumes 
across diverse monitoring sites and days provides a refined understanding of 
the performance of pneumatic tube counts and the associated challenges in 
accurately estimating bicycle traffic. The range of bicycle volumes, spanning 
from nine to 30 bicycles per hour across different sites sets the stage for 
evaluating the accuracy of pneumatic tube counts.  
 
The examination of estimates derived from pneumatic tube counts revealed a 
general trend of undercounts, with variations across sites, configurations, and 
classification algorithms. The observed percentage errors underscore the 
complexity of accurately capturing bicycle volumes, presenting a range from 
an undercount of 57% at the University Avenue site (with one bike lane, three 
car lanes, and a Timemark device) to a minor overcount of approximately 6% 
at the Portland Avenue site (featuring one bike lane, one car lane, a 
MetroCount device, and the BOCO classification algorithm).  
 
Lastly, a couple of key findings, according to Brosnan (2015), from this 
analysis include site-specific variations, meaning that percentage error was 
notably lower at the Portland Avenue site, especially in scenarios with lower 
overall bicycle and traffic volumes. This finding suggests a potential 
correlation between the absolute volume of both bicycles and vehicles and the 
accuracy of counts. Additionally, percentage errors were higher at the 
University Avenue site, particularly in configurations with one bicycle lane 
and three car lanes. The algorithmic performance also varied, the percentage 
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error for the three classification algorithms used with the MetroCount devices 
were generally similar, with the BOCO algorithm demonstrating the lowest 
percentage error across all sites and configurations. There were also device 
discrepancies, percentage errors for counts from Timemark devices were 
consistently higher than those from MetroCount devices, regardless of the 
classification algorithm used for MetroCount data. Further on, the agreement 
or match rates between video and counter time stamps varied widely, ranging 
from slightly less than 50% to approximately 90%. This variability 
underscores the complexity of achieving consistent alignment between 
automated counts and manually validated counts from video footage. Lastly, 
absolute error rates were notably higher than percentage error rates across all 
classifications schemes, indicating the presence of a substantial number of 
both false negatives and false positives. False negatives, indicating missed 
bicycles, were more frequent than false positives in most cases.  

2.2 Bicycle counting on a yearly scale 

The author of “A spatial modeling approach to estimating bike share traffic 
volume from GPS data” (Brown, M. J., et al. 2022) explained that the city of 
Hamilton in Ontario, Canada, provided a unique context for the exploration of 
cycling dynamics, particularly with the establishment of Hamilton Bike Share 
(HBS) in 2015. With a population of 536,917 in 2016, Hamilton represents a 
major urban center where cycling initiatives have gained prominence. HBS, 
operational year-round, distinguishes itself as one of the few Bike Share 
Systems (BSSs) in North America that perseveres through cold and snowy 
winters. As of April 2020, HBS had 132 hubs and approximately 825 GPS-
equipped bikes in operation. 
 

2.2.1 Networks specifically for cycling 

 
This study offers a detailed examination of cycling activity throughout the 
entirety of the year of 2018 with the help of GPS data. Brown (2022) discloses 
that with a dataset originally comprising of 347 079 unique GPS trip 
trajectories, the research aims to capture cycling behavior across all seasons. 
The application of the GIS-based map matching algorithm developed by 
Dalumpines and Scott (2011) and the GIS-based Episode Reconstruction 
Toolkit (GERT; Dalumpines and Scott, 2018) becomes influential in 
converting raw GPS trajectories into meaningful routes aligned with the 
existing cycling network. 
 
A fundamental aspect of the research presented involves the creation of a 
comprehensive cycling network, leveraging both road and trail data to ensure 
the accurate representation of cycling routes. The study draws on an open 
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dataset from Hamilton's Open Data Portal, enriched with bikeway information 
and trail features from McMaster Library's Maps, Data, & GIS Centre and the 
City of Hamilton. The integration of CanMap® Content Suite from DMTI 
Spatial further enhances the network's capability. 
 
Brown (2022) moreover describes that manual digitization efforts, 
concentrated in high-traffic areas such as McMaster University, were 
undertaken to create "unofficial" pathway features. These features, informed 
by satellite imagery and raw GPS tracks, are designed for the routes 
commonly utilized by HBS users. The combination of diverse data sources, 
including the 2016 Canadian Census and the City of Hamilton's parcel data, 
supplements the network with crucial population and employment 
information. This supplementary data plays a vital role in testing various 
accessibility variables. 
 
The transformation of the network into a network dataset, supported by 
ArcGIS® facilitates comprehensive analysis. Importantly, the dataset is 
configured to allow mutual travel along network links, recognizing that cyclist 
do not strictly stick to traffic rules as observed for automobiles. This subtle 
approach to network construction ensures the accurate capture of cycling trips, 
lining up with the unique dynamics of cycling in an urban environment.  
 
On top of that, Scott et al. (2021) clarifies that HSB users had preferences, that 
indicate a general inclination towards routes with cycling infrastructure. 
Building on this, Lu et al. (2018) uncovers the tendency of HSB users to 
deviate from the shortest path, opting for routes featuring designated bike 
lanes, moderate traffic bike routes, or separated bike paths. Major roads 
lacking bikeway classifications are strategically chosen as the reference level, 
considering their high automobile traffic and comparatively reduced 
attractiveness to cyclists. 
 

2.2.2 Accuracy of GPS trajectories 
 
During the processing phase, roughly 14% of invalid GPS trajectories 
(48,693) were identified and filtered out by GERT. An additional 3% of 
trajectories (11,799) were lost during the map-matching process, attributed to 
network topology or GPS errors. Following this careful processing, the total 
number of map-matched routes available for analysis amounted to 286,587.  
 
To derive the annual bike share traffic (ABST) volume for network links, the 
route features generated by the map-matching process were intersected with 
the cycling network, resulting in the creation of new route-link features. These 
features were then merged into a unified dataset and summed for each network 
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link. ABST, characterized by a positively inclined distribution with a mean of 
873 and a median of 33.  
 
Brown (2022) further delves into the substantial impact of accessibility on 
daily ridership at HSB hubs, which were calculated using the method in Scott 
and Ciuro (2019). Accessibility metrics, including population, employment, 
and hub-trip distance accessibility, are comprehensively derived, drawing on 
the 2016 Canadian census data and the unique trip patterns across the city. 
Taking the three measures into consideration, the following formula was 
employed, inspired by Hansen (1959):  
  

𝐴 = 𝑂 𝑓(𝐶 ) 

 
 𝐴  represents the accessibility link of 𝑖, 
 𝑂  represents the number of employees, residents, or the discovered 

trips in the vicinity of hub 𝑗, 
 𝐶  represents the cost of traveling linking 𝑖 and 𝑗, 
 𝑓(𝐶 ) represents an impedance function. 

 
The methodology by Scott and Horner (2008) is exercised to derive a negative 
exponential distance decay impedance function, calibrated with the decay 
parameter β determined through unique hub-to-hub trip distances. This 
distance-decay model enhances the spatial dimension of the analysis, 
capturing varying influences of trip distances on accessibility and the 
following formula was utilized: 
 
𝐼 = α exp (−𝛽𝑡 ) 
 

 𝐼  represents the number of trips for category k, 
 k represents the distance category, 
 𝛽 has an estimated value of 0.000628, 
 𝑡  represents the trip distance for category k in 100 m increments. 

 
Model estimates and summary statistics are carefully examined before and 
after implementing a spatial filter, revealing the hub-trip distance accessibility 
variable as the most influential predictor of ABST. The research identifies 
multiple correlation issues between population and employment accessibility 
measures, leading to the preference for hub-trip distance accessibility. 
Distance to the nearest hub and bus stop emerges as significant explanatory 
variables, while network distance to McMaster University and the Central 
Business District (CBD) proves less effective.  
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Following the application of the spatial filter, certain bikeway classifications 
lose significance, suggesting their initial importance may have been inflated 
by spatial autocorrelation. The spatial filter successfully reduced residual 
autocorrelation, enhancing the model’s explanatory power, as evidenced by 
the adjusted 𝑅  of 0.89. The significance of all explanatory variables at the 
0.001 level or better underscores the robustness of the spatially filtered model.  
 
Furthermore, Brown (2022) clarifies that model interpretation involves 
expressing coefficients as a percent change in ABST for a one-unit change in 
the independent variable. The investigation makes use of the natural 
logarithmic transformation of ABST, and model predictions are validated 
through repeated k-fold cross-validation. The Root Mean Squared Error 
(RMSE) of 0.97 indicates the model’s predictive value, particularly for 
planning decisions related to cycling infrastructure upgrades and new bike 
share hubs. 
 
A couple of key findings are, for example, that for every unit increase in hub-
trip distance accessibility, ABST increases by 2.63%. Secondly, as network 
distances to the closest hub increase, ABST decreases by 59.75% per 
kilometer. This finding suggests that bike share traffic is concentrated in the 
vicinity of bike share hubs, aligning with HBS policies penalizing bikes not 
returned to hubs. Thirdly, network distances to the closest bus stop show a 
30.72% decrease in ABST per kilometer, highlighting the importance of the 
directness of routes. Fourthly, major roads with a bike lane experience a 
155.23% increase in ABST compared to major roads with no bikeway 
classification, on the other hand minor roads with a bike lane see a substantial 
201.22% increase in ABST compared to the reference level. Going even 
deeper, Brown (2022) sheds light on minor roads without a bikeway 
classification witness a decline of 68.78% in ABST compared to the reference, 
likewise on the pathways in McMaster University’s campus and minor trails in 
public parks display negative coefficients, indicating decreases of 77.71% and 
87%, respectively. Lastly, paved multi-use pathways exhibit a 42.76% 
increase in ABST compared to the reference.  
 

2.3 Bicyclists’ behavior at signalized intersections 

As written in the scientific paper “Traffic flow at signalized intersections with 
large volumes of bicycle traffic” (Grigoropoulos, G., et al. 2022) the author 
analyzes motor vehicle and bicycle traffic flow at signalized intersections in 
Germany, emphasizing the data collection methodology and the subsequent 
analysis of bicyclists’ operational behavior.  
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2.3.1 Methodology and simulation 
 
Grigoropoulos (2022) discloses that before the data collection they took 
certain criteria into consideration, such as excluding high gradients and other 
environmental factors that could potentially influence bicyclists’ behavior. 
This led to them considering 32 possible intersections at six different cities 
around Germany, but eventually they decided on only collecting data on 8 
intersections to analyze traffic flow with varying cycling infrastructure.  
 
The course of action revolved around gathering information through video, 
that was strategically used at the different junctions, aiming for the highest 
possible point of view as well as an optimal viewing angle. Two systems were 
utilized: a mobile system with cameras mounted on a 12 m high mast on the 
Urban Traffic Research Car (UTRaCar), used in Berlin, and a fixed system 
with a camera on a mast or high building, used in Munich and Freiburg. The 
data collection was carried out over a day at each intersection, the periods 
ranged from 1 to 2 hours during rush hour traffic. This approach provided with 
a focused examination of bicyclists’ behavior during peak times. 
 
Additionally, Grigoropoulos (2022) addressed trajectories of bicyclists 
automatically extracted from the video data. A couple of key parameters such 
as acceleration and average speed were then derived from these trajectories to 
provide insights into operational behavior. The data classification was done as 
following: Trajectories were classified according to vehicle type, 
distinguishing between cyclists, motor vehicles and pedestrians. This shed 
light on bicyclists’ interactions and habits at signalized intersections. 
However, to ensure the accuracy of automated tracking and classification 
procedures, the trajectory data also underwent manual verification, 
successively enhancing the reliability of the accumulated data for subsequent 
investigation. However, pedestrian trajectories did not exhibit any significant 
interaction with bicyclists and this caused the pedestrian trajectories to be 
excluded from further analysis, instead mainly focusing on bicyclists and 
motor vehicle interactions.  
 
The study utilised PTV Vissim, a comprehensive software for multi-modal 
microscopic traffic flow simulation. The software incorporates dedicated 
behavior models for bicyclists, intensifying realistic lateral movements based 
on empirical observations. For instance, bicyclists riding straight across the 
intersection typically remain within the width of the bicycle lane, influencing 
motor vehicle movements. Furthermore, the simulation models account for 
different bicyclist maneuvers, such as turning left with a direct maneuver. 
Bicyclists moving into the left lane upstream, passing waiting motor vehicles, 
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and queuing in front of vehicles in the bike box are accurately represented in 
the simulations.   
 
Simulation is used to derive data that is usually not noticeable, for example, 
Angenendt et al. (2005) provides insights into the lateral positioning of 
bicyclists concerning various bicycle infrastructure, for instance bike boxes, 
bicycle lanes and paths. These findings serve as a foundation for simulation 
models, ensuring realistic lateral movements in PTV Vissim. Results on 
bicyclist speed distribution, desired speed, and acceleration behavior from 
multiple studies (Figliozzi et al., 2013; Parkin and Rotheram, 2010; Taylor, 
1993; Twaddle and Grigoropoulos, 2016) are integrated to model operational 
behavior in the simulation. The combination of empirical and literature-based 
data enhances the accuracy of the simulation, and the cumulative speed 
distribution function of bicyclists generated using the trajectory dataset from 
empirical studies serves as a validation mechanism for the simulation models. 
Further enhancing the accuracy of the simulated bicyclist behavior, aligning 
with past research.  
 

2.3.2 Simulation results and bicycle behavior 
 
Delving deeper into the results, Grigoropoulos (2022) makes it clear that video 
data were collected during the summer months to capture peak bicycle traffic, 
providing a comprehensive understanding of bicyclist behavior under 
favorable conditions. Depending on intersection conditions, video cameras 
were mounted on the UTRaCar, adjacent buildings, or masts to ensure optimal 
visibility of the intersection approaches.  
 
Initial analysis involved manually viewing video segments to gain insights 
into queuing behavior, left-turn maneuvers and adaptations based on 
infrastructures as well as signal states surrounding the junction. To ensure 
collected data integrity, more attention was given to avoid irregular or 
recurring obstructions to bicycle traffic flow caused by other road users. 
Among the results, it was noted that bicyclists approaching the intersection 
using bike boxes tended to carry out direct left turns, emphasizing the 
importance of bike boxes in facilitating this maneuver and reducing delays. In 
addition, across three intersections, bicyclists had a tendency to use dedicated 
bicycle infrastructure if available, adapting their movement in order to make 
their intended actions easier. On the other hand, if dedicated infrastructure was 
absent, bicyclists were more likely to use motor vehicle or pedestrian 
infrastructure for left turns, adjusting their behavior based on traffic signal 
state.  
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Further on, Grigoropoulos (2022) makes it clear that amidst the key findings 
of his research, acceleration from stop is an essential parameter for simulating 
driving behavior, facilitating in the calibration of traffic simulation models. A 
reasonable speed distribution is also a critical input for accurately simulating 
bicyclist performance actions. Queue density, which refers to the number of 
bicyclists per square meter in a queue in front of a stop line on a cycling 
facility, provides valuable insights for infrastructure dimensioning and traffic 
simulation models. Average discharge time, indicating the time it takes for 
each bicyclist to exit a queue at a stop line, is likely to be more efficient on 
wider cycling facilities, although it isn’t fully certain and thus further research 
was recommended. Lastly, occupancy time, which is the duration of the 
conflict area between right-turning motor vehicles and bicyclists riding 
straight across the intersection that is occupied by bicyclists, increased 
stepwise with the number of bicyclists, highlighting the impact of group size 
on conflict area occupation.  
 
Simulation models are designed to study traffic performance parameters at 
intersection approaches with different types of bicycle infrastructure. 
Simulation studies allow the investigation of increasing bicycle traffic 
volumes that may not be observable in empirical studies. The study 
distinguished between calibration of input parameters and calibration based on 
simulation output. Acceleration functions and desired speed distributions in 
PTV Vissim were calibrated based on empirical study results. Empirically 
determined queue density, average discharge time and occupancy time were 
used to calibrate lengthwise and sideways behavior models. Vehicular traffic 
was fine-tuned to reproduce discharge times and capacities in accordance with 
HBS (Hessian Bicycle Standard). Observed effect of bicycle traffic on the 
average discharge time of the first vehicle turning right was used to validate 
the simulation models.  
 
The comparison between empirical and simulation was approximately low in 
value, for example when comparing queue density on bicycle lanes, the 
relative error of the means is small (1.5%), but when comparing mean waiting 
times of motor vehicles turning right for each bicyclist crossing the 
intersection, the relative error is large (11%). Grigoropoulos (2022) describes 
that the results depended on relationships identified in observed data, 
extending beyond the range of observations. Strong matches of results to real-
world applications were approached with caution, intensifying the role of 
simulation tools when empirical data was insufficient or impractical to collect. 
 
Four simulation scenarios were analyzed, each featuring modified bicycle 
volume, vehicular volume, signal cycle length and green time ratio, with the 
presentation of diverse performance metrics. In the first scenario, it was noted 
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that the capacity of right-turning vehicular traffic decreases with increasing 
bicycle traffic volume, though this decrease was less noticeable at very high 
bicycle traffic volumes. Capacity was primarily influenced by the actual green 
time ratio, but cycle length also played a role, especially at high bicycle traffic 
volumes and low green time ratios. Different approach infrastructures, such as 
bike boxes and bicycle lanes, impacted right-turning vehicle capacity. Bike 
boxes made it easier to direct left turns for bicycles but slightly reduce the 
average capacity of right-turning vehicles compared to bicycle lanes. During 
the second scenario, capacity of left-turning vehicular traffic was strongly 
influenced by the actual green time ratio, with the effect of cycle length 
becoming more significant with higher volumes of oncoming motor and 
bicycle traffic. Capacity thresholds were identified based on oncoming motor 
and bicycle traffic volumes, indicating a reduction in capacity. Longer cycle 
lengths made capacity reduction worse during phase changes. Throughout the 
third scenario, vehicular capacity crossing the intersection was relatively 
independent of bicycle traffic volume. Bicyclists queuing on the right side of 
the bike box did not significantly impact motor vehicle movement at the start 
of the green phase. Finally, in the fourth scenario, vehicular capacity 
decreased as the number of cyclists turning left increased. The presence of a 
bike box, where left-turning bicyclists queue in front of motor vehicles, led to 
capacity reductions, especially with smaller time gaps.  
 
The point of these different scenarios, according to Grigoropoulos (2022), is 
that it highlights the intricate interactions between vehicular and bicycle traffic 
at intersections across various settings. It identifies key factors influencing 
vehicular capacity, such as bicycle volume, signal control parameters and 
intersection infrastructure. These findings provide valuable recognition for 
traffic planning and signal design, emphasizing the need for adjusting 
approaches to accommodate diverse traffic compositions and enhance overall 
intersection efficiency. In addition, the findings serve to shed light on the 
importance of balancing the needs of different road users for optimal traffic 
flow.  
 

2.4 Voluntary mass bicycling 

Throughout the year of 2015 there were multiple of cycling trips recorded in 
Vienna within a study described by Schnötzlinger, P., et al, in his scientific 
paper “Volunteered mass cycling self-tracking data – grade of representation 
and aptitude for planning” (2022). In this paper, the authors describe a varied 
approach on collecting data, such as incorporating data preprocessing, GIS 
technology and statistical analysis tools amongst other things. 
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2.4.1 Different approaches to acquire data 
 
The primary source of data in this study is the 'Bike Citizens' app, designed to 
benefit urban cycling with features such as route navigation and journey logs. 
Users consent to the anonymized usage of their trips, which are manually 
collected by the user. The dataset includes two primary components - 
'trackpoints' (point data) and 'tracks' (polyline data). Trackpoints provide 
detailed information about the cyclist's positions, while tracks encapsulate the 
entire journeys, comprising multiple trackpoints.  
 
The first and last 100 meters of each trip were cut short to anonymize data and 
prevent the identification of specific individuals. The analytical tools included 
GIS tools, ArcMap 10.4.1 and QGIS 2.8. Their main usage was for spatial 
operations and analyses. Database and spatial extensions consisted of 
PostgreSQL 9.5 and PostGIS 2.3 which were both used for efficient data 
handling, storage and spatial examinations. Python 3.6 was utilized for data 
manipulation, calculations and statistical visualizations.  
 
The dataset was improved with several key variables to enhance data cleaning 
and ease advanced analyses.  
 

 dist_BC: Distance traveled according to Bike Citizens app. 
 dist_GIS: Distance traveled measured with GIS. 
 dist_GIS200: GIS-measured distance with an additional 200 meters for 

anonymization.  
 dur_BC: Duration of the trip according to Bike Citizens.  
 dur_GIS: Duration of the trip measured with GIS. 
 dur_GIS200: GIS-measured duration with an additional time for the 

missing 200 meters. 
 v_BC: Calculated speed using dist_BC and dur_BC. 
 v_GIS: Calculated speed using dist_GIS and dur_GIS. 

 
Since data cleaning is a crucial step in the analysis of cycling trajectory data, a 
three-staged filter was employed to remove faulty or unusable data while 
preserving valuable records for subsequent analysis. The initial step involved 
deleting all tracks located outside the municipal boundary, the focus here was 
on tracks with at least one segment within the boundary, ensuring relevance 
for later analyses of traffic intensity and velocity. Identifying and deleting 
duplicate tracks was essential to assemble the dataset.  
 
The second stage aimed to effectively remove outliers by filtering tracks based 
on attribute values such as duration, distance and velocity. The study defined 
thresholds for duration, distance and velocity based on previous research 
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findings. For instance, the lower threshold for duration followed the approach 
of Froehlich and Krumm (2008), setting it at 30 seconds. Upper thresholds 
were determined through a combination of literature review and data from the 
Austrian-wide mobility survey. Literature sources such as Stopher et al. 
(2005), Segadilha and Sanches (2014), and El-Geneidy et al. (2007) informed 
the determination of the maximum average speed, set at 36 km/h in the current 
study. The upper limit for distance was determined using surveys like the 
bicycle traffic survey in Vienna (2010), with a set limit of 50 km. Duration 
limits were defined based on practical considerations and survey data.  
 
Schnötzlinger (2022) describes that the last step involved adding a 
supplementary filter to remove trips taking longer than 150 minutes. This 
filtering process, encompassing spatial and attribute-based criteria, resulted in 
a refined dataset ready for in-depth trajectory analysis.  
 
Removing tracks outside the city boundaries is a common practice to focus the 
analysis on relevant geographical areas. This step ensured that the dataset is 
confined to the study area of Vienna, resulting in a reduced but geographically 
relevant dataset. Identifying and removing duplicate tracks is essential for 
maintaining dataset integrity, duplicate tracks, often caused by recording 
errors or system glitches, can skew subsequent analyses. Tracks lacking 
geographical dimension, represented by zero length, were excluded, which in 
its turn ensured that only tracks with meaningful spatial information were 
retained for analysis. The study determined specific thresholds for duration, 
distance and speed based on literature findings and practical considerations, 
which aided in filtering out tracks with attributes outside the defined ranges, 
contributing to the overall data quality.  
 
Positional accuracy is crucial in trajectory analysis, especially in urban 
environments where satellite visibility may be obstructed. The map-matching 
algorithm was introduced to assign recorded tracks to the digital route 
network, enhancing the accuracy of position estimation. While not achieving 
100% accuracy, map-matching significantly improves the reliability of the 
dataset (Quddus et al., 2007). Challenges in accurately determining the real 
position, especially in cycling data, arise due to the narrow width and high 
mobility of bikes. Existing literature, such as Jagadeesh et al. (2004), 
highlights the difficulties in precisely determining the real position of cyclists.  
 
To analyze mean speed along chosen segments within Vienna’s cycling 
network, a careful selection of segments was conducted. Focus was placed on 
inner districts, evenly distributing segments across different facility types. 
Segment lengths were standardized to 100 meters to balance interference 
reduction and speed calculation accuracy. Prior to mean speed calculation, a 
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preliminary data cleaning was performed, filtering partial tracks based on 
distance and speed criteria and changing tracks based on direction of 
movement which ensured that only relevant and accurate data contributed to 
the mean speed analysis.  
 

2.4.2 Outcome of the acquired data 
 
The research implemented an Origin-Destination (OD) matrix to visualize the 
share of cycling traffic based on recorded tracks within Vienna’s municipal 
districts. The matrix provides insights into the connection and traffic patterns 
between different districts. Notably, the inner districts exhibited higher 
connections and significant traffic flows could be observed even between 
distant districts. Results from the analysis revealed strong traffic flows 
between districts, indicating the unified nature of these areas.  
 
Schnötzlinger (2022) further explains that to validate the reliability of GPS-
based data, discoveries from the investigation compares traffic volumes 
derived from automatic counting stations with GPS-based values. The 
comparison involved 12 cyclist counting stations in Vienna and the traffic 
volume was calculated based on the number of selected tracks per station and 
month, considering different types of days (working days, weekends and 
holidays). It revealed a clear correlation between GPS-based values and counts 
from automatic stations. High correlation coefficients (0.886-0.935) suggest a 
strong association, with the strongest correlation observed on working days. 
Despite the generally representative nature of GPS data, the examination 
acknowledges lower Direct Traffic Volume (DTV) values in GPS data 
compared to counts. While the GPS data lack precision in detailing the spatial 
distribution of cycling traffic, results draw attention to the overall illustration 
of GPS-based values. The analysis acknowledged variations in correlation 
coefficients based on the traffic volumes and density of the data point cloud, 
highlighting the impact of variations on correlation strength.  
 
The research applied linear equations to calculate a parameter describing the 
grade of representation of recorded cycling data from the mobile app 
compared to ground counts. This parameter varied spatially across counting 
stations, offering insights into the characteristics of the app data in different 
locations. The calculated parameters revealed variations in the grade of 
representation across counting stations, indicating that the spatial distribution 
of the app-recorded pathways was not entirely representative. Observations 
acknowledged the influence of spatial conditions, such as residential density 
and the availability of alternative cycling facilities, on the need for a route 
planner.  
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Temporal component of data representation was explored by calculating 
monthly coefficients, providing a better understanding into how well the app 
data represented ground counts throughout the year. Seasonal variation in data 
representation was also identified, with lower representation during the first 
quarter (January to March) and a sharp increase in April. The values declined 
in June, reaching a second low point, followed by a continuous rise, peaking 
in December. This unusual course was attributed to the initial availability of 
the app at cost, followed by a sharp increase in usage after being offered free 
of charge through a municipal cooperation.  
 
When comparing BC (Bike Citizen) calculations and survey data, only one 
station had a BC-calculated average distance travel lower than the surveyed 
one, while at other stations, BC values were consistently higher. Discrepancies 
between survey and BC data were considered, with the possibility of longer 
distances being overestimated and shorter distances underestimated due to 
personal evaluations in survey responses. Environmental design and spatial 
structure were suggested as potential factors influencing individual awareness 
of time and distance.  
 
Schnötzlinger (2022) notes that the average trip length provides limited 
insights. Counting stations showed substantial variations in trip lengths, 
influenced by spatial and environmental factors. Some observations exhibited 
a higher number of short-distance trips.  
 
Furthermore, cycling infrastructure was categorized based on organizational 
form (interaction with other transport modes) and facility type (structural 
design). The study considered on-street mixed, on-street marked, off-street 
and traffic-calmed infrastructure types. Altitude differences was also 
introduced along cycling segments as a significant external factor influencing 
speed. The digital terrain model of the City of Vienna was used to calculate 
altitude differences for selected segments. Correlations were performed to 
estimate the impact of altitude differences on speed. While altitude differences 
were considered, the need to explore variations in altitude outside the segment 
was also addressed. The influence of intersections and traffic light phases on 
speed is recognized as a potential factor not directly addressed in the analysis.  
 
Among the results, it is noted that there was a negative correlation between 
altitude differences and speed. With each additional meter in altitude or each 
additional percentage point of slope, speed decreased by 0.8 or 1.0 km/h. The 
low correlation suggests that factors beyond altitude differences contributed to 
variations in speed.  
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To analyze the impact of cycling infrastructure on speed, segments with the 
same infrastructure type and a similar number of tracks in both directions were 
selected, which ensured a focused examination of speed differences along 
specific infrastructure types. A negative correlation (-0.479) was identified 
between climbing percentage and average speed. Thus, average speed 
decreases by 1.9 km/h with each additional percentage in climbing. The 
observed scattering of values was attributed to the diversity of cycling 
infrastructure types. High average speeds were found along multi-purpose 
lanes, dedicated cycle routes and in mixed traffic. Pedestrian areas displayed 
the lowest mean speed. When aggregating by organizational form, on street-
facilities showed high average speeds, while traffic-calmed areas had the 
lowest. The results indicate that, according to Schnötzlinger (2022), cycling 
infrastructure heavily influences cycling speed. The impact of altitude 
differences as well as additional factors such as intersections and traffic lights 
impact the variations in speed.  
 

2.5 Calculating ridership with crowdsourced data 

In the scientific paper written by Jestico, B., et al, “Mapping ridership using 
crowdsourced cycling data” (2016) the author mentions that in the city of 
Victoria, BC, Canada, a high cycling rate is noticeable, making it an intriguing 
location for studying cycling patterns. Among the things explained in the 
report, it gives an overview of the cycling infrastructure, data collection 
methods and integration of manual counts and crowdsourced Strava data in 
Victoria.  
 

2.5.1 Data gathering in Victoria 
 
In 2013, 18 locations in Victoria underwent manual cyclist counts as part of 
the regional bike count program. Counts occurred during different months, 
data revealed hourly, peak and daily counts at intersections, major roadways, 
residential streets and multi-use trails. Strava, a popular fitness app, provided a 
crowdsourced cycling dataset for 2013. The dataset included a road network 
shapefile with information on the number of Strava users cycling on specific 
roadways. Strava data featured high spatial and temporal coverage, offering 
counts comparable to manual counts.  
 
A comparison was made between manual and Strava data which showed 
variations in cyclist counts at specific locations and time periods. The study 
utilized a portion of the Strava data for direct comparisons, while the larger 
dataset was used to create prediction maps for cyclist volumes at unknown 
locations. Compiling crowdsourced data into hourly intervals and aligning it 
with days of manual counts made this comparison easier.  
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Using PostgreSQL, the study summarized crowdsourced counts for each road 
segment, enabling an evaluation of the relationship between manual counts 
and crowdsourced counts. 𝑅  values from simple linear regression indicated 
the strength of this relationship, with increasing accuracy for larger time 
windows. The study then explored the usefulness of predicting cycling 
volumes in Victoria using a Generalized Linear Model (GLM). Explanatory 
variables, including time of year, were included based on their significance in 
previous studies. Crowdsourced cyclist volume data from Strava, exhibiting 
nearly continuous coverage, was a key explanatory variable. Predictions were 
made at a daily level, covering AM and PM peak traffic periods for each 
season.  
 
The GLM aimed to predict cycling volumes for all unsampled road segments 
in Victoria. Non-significant explanatory variables were removed, and 
collinearity was addressed using Variance Inflation Factors (VIF). The model 
included a cross-validation step, dividing data into 90% training and 10% 
testing subsets, repeated 100 times to assess prediction accuracy. Model error 
was evaluated through cross-validation, comparing predicted cycling volumes 
to observed volumes in the 10% testing subset. Percent differences between 
predicted and observed volumes were calculated. Classification accuracy was 
also assessed, categorizing volumes into low, medium and high classes. 
Following this, Jestico (2016) explained that maps were created using the 
prediction model and selected classification levels for all road and trail 
segments in Victoria. Maps were generated for each count season, offering a 
visual representation of cycling volume variations throughout the year.  
 

2.5.2 Results from crowdsourced data 
 
The GLM identified five significant explanatory variables associated with 
cycling volumes: crowdsourced data volumes, segment slope, posted speed 
limit, time of year and the presence of on-street parking facilities. 
Crowdsourced data volumes positively correlated with manual count volumes, 
while an increase in segment slope, higher posted speed limits and the 
presence of on-street parking were associated with decreased cyclist volumes. 
The different seasons played a crucial role, with May, July and October 
showing increased volumes compared to January. To illustrate, an increase of 
one unit in crowdsourced cyclists was linked with an estimated rise of 51 
cyclists at a given location, whereas a 1% increase in slope corresponded to a 
decrease in72 cyclists.  
 
Cross-validation using a random 90% and 10% subset revealed an overall 
average model error of 38%. Over half of the predictions (55%) had errors of 
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less than 30%. An evaluation of five different categorical scenarios for 
predicted cycling volumes was done, categorizing them into low, medium and 
high classes. Scenario 3, with low volumes (0-199), medium volumes (200-
999) and high volumes (1000+), demonstrated the highest predictive accuracy 
across all categories, with accuracies of 76%, 77% and 85% respectively. 
Prediction maps were generated for each season, classifying cycling volumes 
into low, medium and high categories based on the Scenario 3 breakdown. 
May and July exhibited overall higher volumes of cyclists on all roadways 
compared to January and October. Roadways with high volumes in the winter 
and fall generally remained high throughout the year.  
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3 Method 

3.1 Data 

 
The data on bike movements was provided by the Lund Municipality from a 
previous project, “Hitta dolda cykelpotentialer – ny förståelse av trafik genom 
att kombinera IoT med traditionella data” (2020), and the method used to 
perform this task was by counting cyclists in certain urban areas across Lund 
at specific roadway links. The following places were chosen to conduct 
bicycle counts:  
 

 Nilstorp 
 Vipeholm 
 Norra Fäladen 
 Gunnesbo 
 Klostergården 
 Lund central 

 
A total of 180 intersections were considered when performing these counts, 
this equals to 459 individual stations/points and at each of these stations, four 
15 minutes sessions of counting cyclists were accomplished spread out over 
working days, during the year of 2021. It varied between 7:30 am to 5:10 pm 
and the data received by the municipality was in both pdf and Excel format 
where the studied sections had counts distributed in different columns. 
 

3.2 Procedure 

 
The method used to predict bicycle volume was done through an app called 
TravelVu. It was installed on participants mobile phones where it would track 
their movements in real time with the assistance of GPS and afterwards the 
volunteers provided Lund Municipality with different sorts of data after using 
the application. 
 
GIS data from the TravelVu App was issued in a GIS Shapefile that consisted 
of the trip sections. Trip properties included (but was not limited to) travel 
time, measured in seconds, travel distance in meters, and trip segment ID. All 
the data collection was conducted during the year of 2021, more precisely 
between September 8th and October 17th, and the number of participating 
phones was 220 in total.  
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We identified the different intersections through Google Maps and visited 
each site to check on the environment, more specifically for data points that 
stood out the most. Aspects that were considered were for example how the 
different lanes were dimensioned, the amount of bike lanes and other relevant 
factors that could potentially affect the different cycling behaviors.  
 

3.3 Linear model 

 
A linear model is a mathematical representation of a linear relationship 
between the output and input variables. It is usually demonstrated as a linear 
combination of the input variables, each multiplied by a corresponding 
coefficient/weight, and intercept term, and a normally distributed error term.  
 
An equation for a simple linear model with a single input variable is usually 
written as: 
 
y = mx + b + ε         (1) 
 

 b is the y-intercept, it indicates the value of y when x is zero, 
 m is the inclination of the line, represents the effect of the input variable 

on the output, 
 x is the input, which is an independent variable, 
 y is the output which is a dependent variable, 
 ε is the normally distributed error term. 

 

3.4 Outliers in linear model 

 
An outlier in linear models is a data point/observation that tends to stand out 
from the rest of the dataset, potentially affecting the accuracy of conclusions 
which is later drawn from the data. The reasons could differ from point to 
point, their presence generally indicate errors in data collection, unusual 
phenomena or measurement variability. The most notable key point when it 
comes to outliers is the deviation from the norm, especially the data points that 
significantly deviate from the typical pattern or distribution of the rest of the 
data. It could either be unusually high or low values in comparison to the rest 
of the observations. Probable causes of this are for example measurement 
errors which result from errors during data collection. Natural variation is also 
a cause that occurs during rare or unique cases. This in turn influences 
measures of central tendency, which is sensitive to extreme values, and 
outliers distorts the value making it less representative of the typical 
observation in the dataset.  
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3.5 Influential data points 

A threshold is a point or a level at which something occurs or shifts, in 
regression analysis it refers to a specific value of an independent variable at 
which there is a partial change in the relationship between the dependent 
variable. It represents a critical point and is associated with non-linear 
relationships, typically in linear models the relationship between variables is 
presumed to be constant across all values of the independent variables, but 
when a threshold is present the relationship could follow different rules in 
different ranges. In general, thresholds hold a strong influence in researching 
purposes since it is a valuable concept in understanding relationships that 
exhibit non-linear behavior which helps identify more nuanced patterns in the 
data. (Fong, Y., et al. 2017) 
 
Cook’s distance is used to recognize data points that might adversely affect 
the regression model, they are considered influential data points. Its primarily 
use is to measure how much of a difference there’ll be in the model once a 
certain point is deleted, a large value typically indicates that it has a strong 
influence over the rest of the values. But it doesn’t necessarily mean that it 
must be deleted, it identifies the influential data points that stand out the most 
from the rest since there could be some other reasons as to why the value is 
either too low or too high. (Zach, 2019)  
 
The formula used to measure Cook’s distance was as following: 
 

𝐷 =
∗

∗ (
( )

)                (2) 

 
 ℎii is the ith leverage value, 
 𝑀𝑆𝐸 is the mean squared error, 
 𝑝 is the number of coefficients in the regression model, 
 𝑟i is the ith residual. 

 
Leverage refers to the influence a data point has on the estimation of the 
regression coefficients, high leverage strongly influences the slope and 
intercept of the regression line. It can indicate influential observations, but it 
doesn’t necessarily imply outliers. (Chris, M 2016)  
 
In the model applied in this study, X represents the bicycle count data from the 
TravelVu app, the aggregated counts that was obtained through the app 
installed on the participant’s phones, and Y represents the count data from the 
municipality, which was acquired through the traditional method. 
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The following formula was used to calculate the leverage: 
 

ℎ = +
̅

    (3) 

 
 𝑛 is the number of observational points,  
 𝑥  is the count data from the municipality, 
 �̅� is the mean value of the join count, 
 𝑠𝑥 is the standard deviation. 
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4 Result 

The following result is from the collected data done in 2021 throughout the 
months of September and October, with a total of 120 observations. All the 
data was analyzed with the help of Excel as well as Cook’s distance which 
measures how the values/observations in the model change depending on 
which data point is deleted. 
 

 
Figure 1: Linear model representing all the observations 
 
Figure 1 shows the linear model that represents the spatial relationship 
between TravelVu data, the y-column (Join_Count) and manual pedestrian 
count, the x-column (AggrCount). The 𝑅  measures the amount of residuals 
explained by the model, the higher value the better results, a lower value 
would mean that more covariates should be included. The existence of outliers 
usually decreases 𝑅  values since there’s a high probability for overlooked 
heterogeneity. 
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Figure 2: All the observations as well as the outliers, indicated by the red dots 
 
In total there were 13 outliers, indicated by red dots and their corresponding 
ID number in Figure 2, according to the results acquired when using Cook’s 
distance. This would mean that, their distance strays heavily from the linear 
model, while the blue dots in the figure display the rest of the observations 
that didn’t stand out as much.  
 
A common guideline is that any point with a Cook’s distance greater than 4 
divided by the total number of data points (n) is considered an outlier (Zach, 
2019). This simplified formula was used to determine which of the results 
were an outlier: 
 

𝑄 =                    (4) 

 
When inserting the values on the formula (4), the answer it gave was 
approximately 0.033, meaning that if Cook’s distance was higher than that, the 
observation should be deemed an outlier.  
 

 Q is the limit of acceptable Cook’s distance,  
 n is the number of observations. 
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5 Analysis  

5.1 Outliers nearby the center of the city 

A closer examination of the outliers presented in the previous section is 
provided here. From this examination, it's evident that certain roads like 
Stortorget, Lilla Fiskaregatan and Kyrkogatan (ID 119 (103+116+115)) are 
major routes used by various types of vehicles. Even though the intersection 
between Kyrkogatan, Lilla Fiskaregatan and Stortorget doesn’t meet the 
criteria of being an outlier, it stands out from the rest and could most likely 
have been considered one if the data wasn’t collected during the pandemic. 
Furthermore, the notable deviations in Figure 1 could be attributed to the fact 
that these roads have been around for quite some time without much operation 
and maintenance. Another factor to consider is the diverse mix of daily traffic, 
including e-bikes, scooters, motorcycles and pedestrians, passing through 
these intersections. Given that the study is specifically focused on bicycle 
volume, there might be some slight discrepancies in the calculations when 
other types of vehicles and even pedestrians are in the mix.  
 

 
Figure 3: Intersection between Stortorget with Kyrkogatan and Lilla 
Fiskaregatan, extracted from Google Maps1 
 

 
1 Google Maps - https://maps.google.com/ 
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The central location of these roads in the heart of the city means that a wide 
range of people, from professionals heading to work to students going to 
school, pass through them regularly. This urban context might introduce subtle 
errors in the data collection process, whether through the app interface or 
manual counting, potentially leading to missed or duplicated observations of 
the vehicles passing through. 
 
By utilizing Google Maps' standard traffic tool, a noticeable trend emerged, 
indicating consistently elevated traffic levels at the intersection, no matter 
which time or day it was. This observation reinforced the intersection's 
sustained crowded nature, setting it apart from others in Lund. The persistently 
high traffic volume, a characteristic feature of this junction, may have 
contributed to miscalculations or errors during the data collection phase. 
Notably, the intersection's design entails reductions in vehicle speed, 
potentially serving as a contributing factor to the inconsistencies encountered.  
 
While the traffic intensity doesn't compare to that of the central hub of Lund, a 
comparative analysis against other intersections revealed a significant 
disproportion in daily vehicular flow. Google Maps indicated higher speeds on 
alternate routes, suggesting lower traffic density and a lack for lower speed. 
This inconsistency in traffic dynamics prompts an exploration of potential 
influences on the accuracy of data collection, particularly as it relates to the 
unique traffic patterns influenced by the intersection's design. Further 
examination is warranted to make out the extent to which these nuanced traffic 
conditions may have impacted the precision of recorded data, shedding light 
on potential complexities that contribute to the observed deviations in the 
dataset. 
 
Moreover, a noteworthy outlier is the intersection between Tunavägen, 
Warholms väg and Ole Römers väg (ID 520), see figure 4. This junction 
experiences a notable volume of activity during peak hours that extends into 
morning and evening hours, due to the substantial influx of pedestrians and 
cyclists since both the university and student dorms are very close by. While 
the traffic flow at this intersection is comparatively modest in contrast to 
previously discussed outlier, its distinctive attribute resides in the proximity of 
numerous parking facilities. Notably, the nearness of a grocery store and an 
elementary school introduces a variable that plausibly may contribute to 
inaccuracies during the data collection phase. An error scenario could be 
caused by vehicles utilizing nearby parking spaces, potentially avoiding 
detection or failing to be recognized within the intersection, particularly if 
they do not resume motion promptly.  
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Figure 4: Intersection between Warholms väg, Tunavägen and Ole Römers 
väg, extracted from Google Maps2 
 
Basically, static traffic could be a reason for the extreme values in some of 
these outliers while dynamic traffic tends to give a more precise result as well 
as a clearer picture on how different people behave when it comes to cycling, 
driving or walking. 
 

5.2 Outliers on the outskirts of the city 

Another outlier that was examined in-detail is the intersection of 
Getingevägen and Scheelevägen (ID 407), which presents an interesting case, 
highlighting that data collection challenges are not confined to city centers. In 
contrast to the previously discussed intersection, this particular junction has a 
more high-capacity character primarily for vehicular traffic, with fewer 
provisions for pedestrians or cyclists. Nevertheless, the presence of a 
roundabout introduces a unique dynamic that could have influenced the 
accuracy of bicycle counts. The intricacies of the roundabout, especially the 
interaction with cars maneuvering around it, may have introduced variability 
during both application-driven data collection and the municipality's counting 
process.  
 

 
2 Google Maps - https://maps.google.com/ 
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Figure 5: Intersection between Getingevägen and Scheelevägen, extracted 
from Google Maps3 
 
The design of this intersection made it necessary to perform a peculiar 
examination of the potential impact of the roundabout's design on the 
reliability of the recorded bicycle volumes. Exploring these specific features 
provided insights into how varying road configurations, even those outside 
city centers, contribute to the complexities of data collection and the 
subsequent interpretation of outliers in the dataset. Additional investigation is 
warranted to understand the interplay between road design elements and data 
accuracy in capturing the true nature of bicycle traffic at this intersection. 
 
Delving further into the intricacies of outliers, it becomes evident that their 
origins extend beyond mere issues of infrastructure or data collection 
methodologies. The localization of the intersection itself emerges as a 
substantial factor influencing the observed variations. Specifically, the road 
next to the intersection of Spelmansvägen, Tunavägen, and Sångarevägen is 
none other than E22, renowned for its consistently high annual traffic volume 
as reported by Trafikverket. This distinctive feature introduces a potential 
layer of complexity that might impact both the municipality's data collection 
efforts and the precision of TravelVu's application. 

 
3 Google Maps - https://maps.google.com/ 
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Figure 6: Annual trafflic flow for roadway E22, extracted from Trafikverket4 
 
The busy nature of E22, distinguished by a continuous flood of vehicles, may 
influence on the accuracy of data collected in the vicinity of the intersection. 
The immense traffic flow on E22, a prominent highway, may accidentally 
introduce variations in the measurements conducted by the municipality or 
TravelVu's application. It is possible that the substantial traffic flow, or 
perhaps the swiftness with which vehicles navigate this roadway, could 
introduce a level of distortion in the recorded data. 
 
Moreover, the observed patterns might also be attributed to a phenomenon 
previously mentioned—the deceleration of vehicles passing through the 
intersection. This potential deceleration, similar to the slowdowns encountered 
in city centers, finds resonance in Google Maps' depiction of typical traffic in 
the area. The suggestion of a generally slower traffic pace, occasionally 
marked by traffic jams or disturbances, underscores the likelihood of vehicular 
deceleration at this intersection. 
 

 
4 Trafikverket - https://vtf.trafikverket.se/SeTrafikinformation 
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Figure 7: Intersection between Spelmansvägen, Tuvavägen and 
Sångarevägen, extracted from Google Maps5 
 
Fundamentally, the intersection of Spelmansvägen, Tunavägen, and 
Sångarevägen (ID 519) represents a complex combination of factors. This 
includes the notable high traffic volume along E22, potential disruptions in the 
flow of traffic, and the natural features that distinctly define a road 
intersection.  
 
This complex perspective triggers a deeper question into the unique dynamics 
of this specific location, aiming to explain the intricate factors that play a role 
in the observed deviations within the data patterns. Further investigation is 
crucial to comprehensively understand the confluence of these factors and 
their impact on data accuracy. 
 
 
 
 
 
 
 
 

 
5 Google Maps - https://maps.google.com/ 
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6 Discussion 

The methodology presented by MetroCount and Timemark shows how careful 
they are about picking the right equipment and installation protocols to ensure 
the precision of bicycle and vehicular traffic monitoring. By deploying 
MetroCount and Timemark systems, a powerful framework is established for 
investigating traffic dynamics at specific locations, contributing valuable 
insights to the broader field of transportation research. 
 
Furthermore, not only do these techniques align with the manufacturer’s 
guidelines but also demonstrates the unique characteristics of bicycle traffic. 
This method enhances the reliability and accuracy of bicycle counts but also 
contributes significantly to the advancement of transportation research, as well 
as advancing the precision of automated traffic monitoring systems. 
  
As written in the paper “A spatial modeling approach to estimating bike share 
traffic volume from GPS data” (Brown, M. J., et al. 2022) they also used a 
similar approach to the one presented in this thesis when collecting data, GPS 
and manual counting. The difference however is that the deployment of GPS 
data was not through an application like TravelVu but instead on specific 
(shared) bikes. This in its turn could have been a major factor as to why there 
were a significant difference in the results. In addition, the difference in data 
collection period length may have had an influence on the results. Usually, a 
longer period tends to give more accurate results. 
 
In addition, the paper delves into the complexity of Hamilton’s cycling 
landscape, emphasizing the integration of technology, open data, and manual 
digitization efforts to construct a detailed network dataset. The comprehensive 
nature of the represented dataset not only made it easier for accurate analysis 
but also acknowledged the distinctive attributes of cycling as a mode of 
transportation within the city. This in turn made the study significant in 
contributing to the broader discourse on urban cycling, accessibility, and the 
operational dynamics of bike share systems.  
 
Another paper that stood out was “Traffic flow at signalized intersections with 
large volumes of bicycle traffic” (Grigoropoulos, G., et al. 2022) since it 
highlighted the integration of empirical findings and existing literature into 
PTV Vissim simulation models for bicyclist behavior at intersections. By 
combining real-world observations with simulation capabilities, the study 
established a solid foundation for comprehending and forecasting interactions 
among bicyclists in various situations, ultimately contributing to improved 
intersection design and safety measures. The utilization of simulation tools 
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like PTV Vissim emerged as a valuable approach for gaining insights into 
complex traffic dynamics involving bicyclists.  
 
Further on, the study sheds light on how different infrastructures influence 
left-turn maneuvers, with a particular emphasis on the role of bike boxes and 
dedicated bicycle lanes. Results highlighted the adaptability of bicyclists 
based on available infrastructure and signal states, offering insights for 
intersection design and safety improvements. The video-based approach 
provided a detailed understanding of real-world bicyclist behavior, playing a 
part in valuable knowledge to the field of transportation studies. 
 
One more scientific paper that stood out was “Mapping ridership using 
crowdsourced cycling data” (2016) written by Jestico, B., et al, where the 
author explained the importance of the integration of crowdsourced and 
manual count data, coupled with predictive modeling. This provided a 
comprehensive approach to understanding and predicting cycling volumes, the 
methodology and findings contributed with valuable insights for urban 
planners, offering a potential tool for assessing cycling infrastructure and 
informing decisions related to sustainable transportation.  
 

6.1 Method discussion 

During the data collection, some of the data was either not calculated 
correctly, corrupted or not calculated at all which explains why the aggregated 
counts in some of the intersections are zero. There is one exception in a certain 
intersection which is in Tornavägen; where, according to the excel files 
provided by Lund Municipality, there is in fact a measured bicycle volume 
even though it says on the analysis file that the aggregated count is zero.  
 
When comparing different methods, there’s always a common theme between  
every method when collecting data; the human factor is one of the reasons as 
to why there are errors during the process. It is inevitable that we make 
mistakes during the data collection, but apart from that it is also the tools used 
to collect this sort of data, no matter what kind of method is utilized, whether 
it is pneumatic tubes, GPS, video, or manual counting: A percentage of error 
will always be visible. The amount of percentage error varies from method to 
method but one thing that is certain is that there is always room for 
improvement. Probably, in the near future after enough research and testing 
there will be a completely accurate system/technique to acquire data without 
inaccuracies.   
 
The advantages of counting bike volume with the help of applications by 
gathering crowdsourced data are many, for starters it is widely used in every 
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country since it’s one of the most reliable methods that exists. It’s also a 
cheaper and more efficient way since it doesn’t require a lot of manpower and 
installation, it’s enough to engage volunteers that want to download an 
application on their mobile devices and let the app do its work by tracking 
their movement with GPS. Most of the times it shows an accurate result, as 
previously shown in Figure 1 and 2, where only 13 out of the 120 observations 
were deemed an outlier, meaning that roughly 90% of the observations were 
correctly calculated. In comparison to other methods where people must 
manually count the volume or when having to install different equipment on 
different locations which take even more time and resources. The biggest 
disadvantages include technical errors which are not caused by the cyclist but 
rather by the application itself, e g a bug or a glitch that occurs with the app. It 
is also not fully developed and totally accurate since technology keeps 
developing over time, therefore it could provide some miscalculations. 
Overall, the advantages overweight the disadvantages and it’s more likely to 
be expanded on and further improved in the near future while the other 
methods such as using road tubes or manual/video counting, are less likely to 
not be continued. 
 
Continuing, obstruction of some sort is a major source of why there are so 
many errors during the process of acquiring data as mentioned in “Validation 
of Bicycle Counts from Pneumatic Tube Counters in Mixed Traffic Flows” 
(2015). This is a valid reason since everything surrounding the area that’s 
being monitored could in some way disturb the equipment, for example 
pedestrians interfering with the installation potentially damaging it, or errors 
caused by natural causes, non-recognizable vehicles and so on.  
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7 Conclusion 

There are multiple factors as to why the results of crowdsourced data aren’t 
always accurate, but one of the main reasons for the outliers in the data 
points/observations is because of mixed traffic. It has become evident that 
different kind of motor vehicles affect the precision during data gathering. 
Particularly when you’re trying to solely count bicycle volume, all types of 
traffic, even pedestrians, can have an impact when collecting data as everyone 
behaves differently, either when driving or walking. It becomes even worse 
during peak hours when the traffic is flooded with all kinds of automobiles, 
stationary and long queues/pauses during rush hour, which may impact the 
accuracy.  
 
Another common connection between the outliers is that most of them occur 
in the center of the city, the most probable cause for this is because of how 
heavily trafficked it is. Pedestrians, cyclists, scooters and so on all have some 
sort of disturbance effect when gathering information. Not only that but also 
intersections near high-speed roads such as motorways also have multiple 
outliers, the reason for that may be related to how fast the vehicles drive which 
could be a basis as to why the method deployed didn’t work as intended.  
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