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Abstract

Soil erosion is a significant challenge in Rwanda, particularly within the Nyagako 

sub-catchment, where this study focuses on a delimited area. This research investigates the 

sources and contributing factors of soil erosion using GIS analysis, turbidity measurements, 

and sediment fingerprinting with a deconvoluted MixSIAR (D-MixSIAR) model in R. The 

objectives were to identify erosion-prone areas, assess various factors' impacts, and evaluate 

the methodology's efficacy. Results revealed that the most downstream region (Zone C) is the 

most erosion-prone, contributing 70-80% of the total sediment, while CA (alluvium and 

colluvium deposits) as the most erosion-prone source per hectare across the zones. The most 

upstream region (Zone A) was the second-highest contributor, with GG as the major 

contributing source, accounting for 60.9% at Zone A's outlet and 11.3% at the final outlet. A 

strong positive correlation was found between soil erosion and the cultivation-forest ratio, 

while steep gradients showed a negative correlation. Turbidity analysis highlighted the impact 

of mining activities and rainfall events on erosion rates, with backtracking indicating 

significant contributions from sub-catchments A1 and A5. This research offers a 

methodological approach to assess soil erosion within challenging environments with limited 

resources, providing valuable insights for future soil erosion assessment.
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1. Introduction

1.1. Soil Erosion: Global Issue and Local Challenges in Rwanda

Soil erosion is a severe global challenge, affecting millions of hectares and leading to 

considerable loss in agricultural productivity, soil carbon reserves, and increasing 

sedimentation in aquatic ecosystems. A particularly alarming issue is the disparity between 

the rates of soil erosion and soil formation, endangering soil health and future sustainability 

on a global scale. Factors such as intensive farming, deforestation, and changes in land use 

significantly contribute to this problem by removing the natural vegetation that safeguards 

against erosion (Food and Agriculture Organization of the United Nations & 

Intergovernmental Technical Panel on Soils, 2015). As climate change amplifies extreme 

weather events, an increase in soil erosion globally is expected, exacerbating its impact on 

ecosystem services and human well-being. Additionally, this intensification of soil erosion is 

further compounded by land use changes, which also contribute to the alteration of 

biogeochemical cycles, thus feeding back into the cycle of climate change (Eekhout & de 

Vente, 2022). 

In Rwanda, soil erosion is considered as the most serious environmental issue (Government 

of Rwanda & IUCN, 2022), with numerous regions in Rwanda experiencing soil erosion rate 

at critical levels, where the national averages reach 25 tonnes per hectare each year. Soil 

erosion causes considerable losses in agricultural productivity and topsoil, leading to a 

significant economic impact on the agricultural GDP and necessitating costly soil fertility 

replenishments through fertilizers. This environmental challenge not only threatens the 

nation's food security but also imposes a substantial financial burden on restoring soil health 

and productivity (Government of Rwanda & IUCN, 2022). Rwanda, situated in Central 

Africa, features a varied terrain from the Congo-Nile ridge's steep slopes to the less rugged 

eastern plains. The country's geomorphology includes high-altitude areas like the volcanic 

Birunga chain, with the highest peak at Karisimbi volcano (4,507 meters), contributing to its 

steep river gradients and pronounced topographical diversity. Rwanda's landscape is shaped 
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by differential erosion, with "hard" quartzitic rocks forming steep, prominent mountains 

above softer, schist-based valleys. The climate is temperate featuring two main rainy seasons 

and the potential for varied precipitation patterns across different regions due to its altitude 

variation. This intricate combination of steep topography, diverse geology, and distinct 

climatic zones makes Rwanda highly susceptible to soil erosion, posing challenges for land 

management and conservation. Only 26% of the land at risk of erosion is currently protected 

through measures like contour bank terraces and forest coverage, leaving the majority of 

vulnerable land still exposed to erosion threats (Government of Rwanda & IUCN, 2022). 

Heavy rainfall, saturated local soils, followed by a small earthquake is enough to trigger a 

catastrophic debris of avalanches, torrents, and earthflows within the following 24 hours. An 

example of this kind of catastrophic event occurred in western Rwanda in early May 1988, 

leading to significant loss of life, property, and livelihood. exacerbated soil loss, averaging 34 

tons per hectare on cropped runoff plots (Byers III, 1992). The impacted area's Nyamutera 

River transported 567,000 tons of suspended sediment to its mouth between May 7 and May 

13, indicating a significant basin-wide decrease in sediment yield. The susceptibility of 

regions like Nyakinama to similar extreme weather events, exacerbating existing soil loss 

issues. Given that contemporary land use practices worsened the severity of the 1988 event. 

There is an urgent need for applied research to develop technologies that reduce soil loss, 

improve soil fertility, and mitigate the impacts of heavy rainfall events.

Implementing sustainable management and agricultural practices in Rwanda, especially in 

areas like the Sebeya catchment area, presents significant challenges. Farmers in this region 

face severe soil erosion consequences, including property damage, loss of life, and reduced 

crop yields, yet the broad adoption of soil conservation measures remains limited (Majoro et 

al., 2020). Barriers related to finances and knowledge hinder the widespread application of 

soil erosion control measures (SECM), emphasizing the necessity for government 

intervention. Such intervention should aim to equip farmers with both the technical 

know-how and the financial support needed to adopt and implement key practices that 

2



promote sustainable agriculture effectively (Majoro et al., 2023). Effective soil erosion 

management requires both preventive legislation for afforestation and a shift towards dry 

season farming to protect vulnerable soils. Additionally, empowering affected communities 

with the knowledge and financial support to implement early-stage erosion control measures 

is crucial for long-term environmental sustainability (Igwe et al., 2017). 

A previous study in 2016 investigated factors influencing the adoption of soil conservation 

techniques in the Gatebe sector of northern Rwanda, where poor land management practices 

have led to soil erosion and declining soil fertility. Through surveys and data analysis, it was 

found that while many farmers were aware of the causes of soil erosion, challenges such as 

over-cultivation on steep farmlands, limited resources, and insufficient training hindered 

effective soil conservation. Land acquisition methods significantly influenced adoption rates, 

with those owning or inheriting land being more likely to adopt conservation practices. The 

study underscores the importance of policymakers enhancing farmer awareness and 

promoting efficient soil conservation strategies through training and support programs 

(Nahayo, Pan, & Joseph, 2016). However, there is a high commitment to addressing soil 

erosion in Rwanda. Strategic planning, targeted interventions, and investment in sustainable 

land and water resource management have been implemented, to control erosion and enhance 

agricultural productivity and resilience against environmental challenges (Government of 

Rwanda & IUCN, 2022). 

The districts of Muhanga, Ngororero, and Gakenke are the most exposed, experiencing 

annual soil losses of 46 tonnes, 45 tonnes, and 33 tonnes per hectare, respectively 

(Government of Rwanda & IUCN, 2022). Muhanga district is further ranked as the 

second-highest erosion risk area, encompassing 53,352 hectares, which accounts for 82% of 

the district's total area, where the Nile Nyabarongo Upper Catchment (NNYU) experiences 

the most severe erosion, affecting 45,961 hectares (Government of Rwanda & IUCN, 2022).
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Another previous study in 2016 conducted a sediment fingerprinting analysis of the NNYU to 

identify potential hotspots of soil erosion. According to the study, the upstream areas of 

Nyagako sub-catchment were identified as one of the most erosion-prone areas. Moreover, 

the study recommended further research in the areas that were identified as potential hotspots, 

where the next step should be to validate the sediment fingerprinting result, confirm the 

erosion contribution, and identify the causes (GLOWS-FIU, 2016).

1.2. Aim & Objectives

The general aim of this master thesis is to investigate the sources and contributing factors of 

soil erosion within the Nyagako sub-catchment area and develop an efficient methodology for 

targeting erosion-prone areas. The purpose of this aim is to facilitate strategic planning for 

soil conservation investments and other mitigation actions against soil erosion.

 The objectives are the following:

● Identify Erosion-Prone Areas: Identify areas within the Nyagako sub catchment that 

are most susceptible to soil erosion, aiming to prioritize them for further investigation.

● Assess Contributing Factors to Soil Erosion: Investigate the influence of physical, 

biological and anthropogenic factors on soil erosion rates within the Nyagako sub 

catchment.

● Evaluate Methodological Efficacy: Analyze the contribution fractions and 

limitations of the sediment fingerprinting method, in accurately capturing soil erosion 

processes, further compare with the measuring of turbidity and previous studies, 

aiming to identify methodological improvement.
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1.3. Thesis Outline 

This master thesis project was conducted in the Nyagako sub-catchment in Muhanga District 

and at the University of Rwanda in Kigali, Rwanda in 2023. The report begins with a 

presentation of soil erosion dynamics and influencing factors, followed by an overview of the 

methodology, including the links and combinations between the methods and objectives. 

The methods used in this study to identify erosion-prone areas within the Nyagako 

sub-catchment utilizes GIS analysis, sediment fingerprinting analysis, and turbidity 

measurements. The contributing factors to soil erosion are assessed by examining the 

topographic and geographic characteristics of the study site through GIS, complemented by 

fieldwork observations. The potential causes and correlations are analyzed by comparing the 

results from the different methods and the potential drivers. Lastly, the efficacy of the 

methodologies used are discussed. The report concludes with a summary of the key findings 

and recommendations.

1.4. Limitations

The primary limitation of this study lies in the difficulty of accurately measuring and 

converting the most relevant contributing factors into a model that provides reliable 

interpretations. Where several constraints have impacted the results, including a limited 

budget, a restricted timeframe, and the challenging environment in which the project was 

conducted. These factors have made the execution of the comprehensive and mixed-method 

approach demanding. Despite this, the project's methodology and analysis are comprehensive, 

employing both straightforward analysis and advanced mixing models to assess soil erosion. 

All the analyses used in this study come with inherent limitations and uncertainties that must 

be considered when interpreting the results. For instance, the GIS analysis suffers from 

limited information about the data collection and processing methods executed, however, 

University of Rwanda is a reliable source where similar study with the same data is used and 
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was thereby used in this study. The turbidity analysis was hindered by some losses of samples 

due to pore collection practice, which led to a smaller dataset and increasing uncertainties 

during the analysis. Similarly, the fingerprinting analysis faced limitations due to the 

restricted amount of collected data and measurements. Additionally, the sample preparation 

phase was not performed under optimal conditions, increasing the potential for 

contamination.
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2. Background on Soil Erosion

2.1. Soil Erosion Dynamics  

Soil erosion is loosely defined as the transformation of soil into suspended sediment. It is a 

natural process that occurs without any anthropogenic activities (Svoray, 2022). Soil erosion 

occurs in a dual-phase process that involves the separation of single soil particles from the 

larger soil body and their movement by erosive forces like water flow and wind. A third 

phase, known as deposition, takes place when there is no longer enough energy to carry these 

particles further (Morgan, 2005).

Water-induced soil erosion can be categorized into several types: sheet erosion, caused by the 

impact of raindrops and surface runoff forces; gully erosion, characterized by small channels 

typically 15 to 20 cm deep; channel erosion, affecting the banks and beds of streams; flood 

erosion, resulting from the flow of floodwaters across plains; and mass movement, 

encompassing landslides, slope failures, and avalanches (Jain & Singh, 2003).

Rainsplash stands as the primary agent for soil detachment. The impact of raindrops on an 

exposed soil surface can displace soil particles, propelling them through the air for several 

centimeters. Repeated exposure to heavy rainfall significantly undermines the soil's integrity 

(Morgan, 2005). Raindrop splash erosion involves the detachment, transport, and 

accumulation of soil particles upon impact, primarily driven by raindrops on hillslopes. 

Studies suggest that slope and wind intensify splash erosion and transported distance (Marzen 

& Iserloh, 2021). The intensity of storms and rainfall is expected to rise due to global 

warming, potentially hastening the natural erosion rates in catchment areas (Jain & Singh, 

2003). Additionally, the soil undergoes fragmentation through weathering, both from physical 

changes like wetting and drying cycles, freeze-thaw actions, and frost, as well as through 

biochemical reactions (Morgan, 2005).
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Julien (2010) argues that human actions often speed up soil erosion. For example, agricultural 

activities, such as plowing and tilling practices makes the soil more prone to erosion. The 

removal, cutting, or burning of vegetation diminishes the protective ground cover which 

enhances the erodibility of the soil. Harmful sediment is not the only consequence, but also 

significantly harms agricultural land by decreasing the fertility of the soil. In certain 

situations, the rate of erosion can exceed natural geological erosion rates by a factor of 100 to 

1,000 times (Julien, 2010).

Furthermore, Jain and Singh (2003) describes that unregulated deforestation, forest fires, 

overgrazing, inadequate tillage methods, and unsustainable agricultural and land management 

practices expedite soil erosion, leading to a significant rise in sediment input into waterways. 

The accumulation of sediment in river channels or reservoirs poses numerous challenges, 

including elevated streambeds, heightened flood risks, obstruction of navigation routes, and 

reduced storage capacity in reservoirs (Jain & Singh, 2003). Mining activities can also 

significantly increase sediment levels in natural waterways. Sediment from mine dumps and 

spoil banks can erode into nearby streams long after mining has stopped, due to natural 

rainfall. Additionally, mining gravel from streams can lead to serious channel disturbances, 

including head cutting upstream, which can cause stability concerns for nearby roads and 

bridges (Julien, 2010).

Suspended sediment stands as one of the most significant and intrusive pollutants in water 

systems, affecting water quality through factors like turbidity and serving as a carrier for 

chemicals and other pollutants. Fine sediment also harms infrastructure, such as dams and 

turbines, and disrupts aquatic habitats, including areas critical for the spawning (Owen et al., 

2016). When a dam is built, it alters the flow dynamics and sediment transport capacity 

significantly. The wider reservoir slows down the flow velocity and reduces turbulence, 

leading to sediment deposition. Larger particles and bed load settle near the reservoir 

entrance, while smaller particles may remain suspended or pass through the dam. This 

sediment deposition reduces reservoir storage, disrupts water supply, irrigation, and harms 
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ecosystems of the river by burying vegetation and affecting biotic life due to reduced water 

clarity and sunlight penetration (Jain & Singh, 2003).

Rill Erosion

The formation of rills is understood to occur where surface runoff consolidates into small 

flow paths often because of small surface variations, plant cover, or animal tracks on natural 

slopes, and due to plowing on farmlands (Bryan, 2000; Morgan, 2005). Where flow paths 

merge, intensifying erosion and forming narrow flow channels, which increases the flow, 

features such as vortices and turbulence emerge, indicating increasing water velocity from 

subcritical to supercritical states (Morgan, 2005). This progression is gradual, influenced by 

factors like soil particle size and sediment concentration in the water, rather than a sudden 

shift at a specific Froude number threshold (Morgan, 2005).

Gully Erosion

Gully erosion involves the formation of relatively permanent, steep-sided watercourses that 

experience temporal flows during rainstorms. These formations exhibit erratic behavior with 

larger sediment loads and rapid changes in slope, often associated with accelerated erosion 

and landscape instability. Gully formation is initially starting with small depressions due to 

localized weakening of vegetation cover, which then enlarges into channels as water 

concentrates and erodes the soil. This process involves both surface erosion and subsurface 

flow, contributing to significant landscape changes. Gullies can also result from the collapse 

of subsurface pipes or tunnels, especially in environments with steep hydraulic gradients and 

soils of high infiltration capacity. The erosive power of gullies is considerable, but their 

impact varies widely depending on local conditions and storm characteristics, making their 

contribution to total soil loss difficult to predict without specific local data (Morgan, 2005). 
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2.2. Factors In�uencing Soil Erosion

Rainfall 

Soil erosion is significantly influenced by rainfall, primarily due to the detaching power of 

raindrops hitting the soil surface and the contribution of runoff. The intensity of rainfall is a 

crucial factor, particularly for erosion by overland flow and rills (Morgan, 2005). 

High-intensity rainfall leads to increased runoff and the duration of rainfall significantly 

surpassing the soil's infiltration capacity and enhancing erosion (FAO, 2019). Rainfall 

erosivity (R) is the estimated capacity of a rainfall to cause soil erosion (McGehee, Flanagan, 

Srivastava, & Nearing, 2021) and a key factor in the RUSLE model (Zeghmar et al., 2024). 

The RUSLE model will be further explained in the methodology. 

Vegetation 

Vegetation reduces the impact of raindrops on the soil surface, enhances soil structure through 

root growth, and increases water infiltration, all of which reduce erosion risk (FAO, 2019). 

The plant cover plays a vital role in dissipating the energy of running water by adding 

roughness to the flow, which reduces its velocity. The level of roughness associated with 

different types of vegetation depending on factors such as plant morphology, density, and 

height relative to the flow depth (Morgan, 2005). The RUSLE model assesses this as the 

cover management factor (C) and several studies show various methods employed to 

calculate and quantify the factor (Zeghmar et al., 2024).

Topography

Slope length and steepness directly influence the velocity of runoff and its erosive power. 

Steeper and longer slopes are more susceptible to erosion (FAO, 2019). Moreover, while 

raindrops scatter soil particles in various directions on flat surfaces, the tendency shifts on 

sloping terrain, where more soil is dispersed downslope than upslope, a tendency that 

amplifies with steeper slopes (Morgan, 2005). The LS factor, which combines the effects of 

10



slope length (L) and slope steepness (S), is a critical determinant of soil loss within the 

RUSLE model (Zeghmar et al., 2024).

Soil characteristics

Soil characteristics, including texture, structure, organic matter, and permeability, critically 

impact its vulnerability to erosion. Specifically, soils rich in sand, lacking in organic matter, 

or with compromised structure are highly susceptible to erosion. These properties play a 

pivotal role in the generation of runoff and the erodibility of soil and the soil's ability to 

absorb water, with texture being a primary determinant. The susceptibility of soil to erosion is 

significantly determined by particle size and the stability of soil aggregates; silt-dominated 

and loamy soils face higher erosion risk, whereas clay and sand-rich soils are more 

erosion-resistant due to their cohesiveness and particle size. Moreover, the resilience and 

integrity of soil aggregates, affected by clay content and organic matter, are essential for 

erosion resistance, as they enhance surface roughness and reduce erosion potential. Both 

natural and anthropogenic activities modify soil aggregate condition and surface texture, 

altering erosion susceptibility over time. Although the RUSLE's soil-erodibility factor (K) 

attempts to consolidate these aspects, it is critiqued for not fully capturing the complexities of 

rill formation and erosion in diverse landscapes (FAO, 2019).

Soil conservation

In agriculture, practices such as crop rotation, cover cropping, and conservation tillage can 

significantly reduce soil loss by maintaining soil structure, improving water infiltration, and 

reducing runoff. These practices help to protect the soil surface from the impact of raindrops 

and reduce the velocity of surface runoff, thereby minimizing erosion. Engineering measures, 

on the other hand, include structural interventions like terracing, contour plowing, and the 

construction of check dams and retention basins. These measures are designed to physically 

alter the landscape to slow down water flow, encourage infiltration, and capture sediment 

before it can be transported off-site (Morgan, 2005). The P factor represents the effect of land 
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use and farming practices on soil erosion. Soils with robust vegetation cover are better 

protected, mitigating climatic impacts. Additionally, it considers practices such as contour 

farming and strip cropping, which reduce soil erosion risk by managing water runoff and 

sediment movement on slopes (Zeghmar et al., 2024).
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3. Methodology

This chapter will present the methodology. First, by giving a review of the study site and its 

geological and topographical features – potential drivers of soil erosion. Next, the 

development of the sediment fingerprinting analysis will be presented, followed by the 

fieldwork and turbidity analysis, and finally, how the analysis of potential causes of soil 

erosion will be addressed. An overview of the methodology is presented in figure 3.1.

Figure 3.1. Overview of the methodology.
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The methodology consists of three major analyses; GIS-, turbidity- and sediment 

fingerprinting analysis. Both the turbidity and sediment fingerprinting analysis include 

fieldwork – measurements and collection of samples. Prior to the fieldwork, preparatory 

investigation was mainly substantiated through GIS analysis. However, the GIS analysis is 

utilized throughout the project, interpreting and validating the modeling results. 

3.1. Study Site Description

The project was conducted in Nyagako sub catchment of the Nile Nyabarongo Upper 

Catchment (NNYU), which is part of the southern province of Rwanda, see figure 3.2. It is 

shared by the Muhanga, Mushirio, Nyarusange and Nyamabuye Sectors in the Muhanga 

District.
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Figure 3.2 Water Bodies in Rwanda. The smaller figure is an enlargement of the Nyagako sub-catchment, 
indicated by the red highlighted area. Created by author, 2023 (Source: University of Rwanda).

Delimitation, zone division and sampling points

The full extent of Nyagako sub-catchment was not included in the project due to limited 

access and resources; instead, the most upstream regions were prioritized, which was 

highlighted as erosion-prone hotspots in the study by GLOWS-FIU (2016). The study site 

was segmented into three zones: A, B, and C. Zone A (1517 hectares) is the uppermost region 

of the catchment, Zone B (1148 hectares) is in the mid-part, and Zone C (1589 hectares) is in 

the downstream end, see figure 3.3.

15



Figure 3.3 Study site, zones and sample locations. Created by author, 2023 (Source: University of Rwanda).

The segmentation identified four key locations – zone outlets and meeting points – referred to 

in the project as nodes, where sediment samples were collected. Node 1, Node 2, and Node 4 

represent the sediment sample locations from Zone A, Zone B, and Zone C, respectively. 

Node 3 represents the sediment sample location for the mixture of Zone A and Zone B. 

Location of soil samples are presented in the figure with red dots.  

Catchment delineation 

The catchment delineation for the study area was conducted as demonstrated in the catchment 

delineation procedures outlined by van der Kwast and Menke (2020) in QGIS for 
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Hydrological Applications: Recipes for Catchment Hydrology and Water Management. A 

high-resolution 10x10m Digital Elevation Model (DEM) was used. The dataset, managed by 

the Geospatial Data Abstraction Library (GDAL), was provided by the University of Rwanda. 

The last modification date is recorded as March 12, 2010. The initial step involved 

reprojecting the DEM to match the Coordinate Reference System (CRS) of the project, 

ensuring data consistency and spatial accuracy. Once the DEM was reprojected, it was then 

subset using the 'Clip Raster by Extent' function found under 'Raster extraction', trimming the 

DEM to the precise area of interest. Following this, the refined DEM underwent a sink filling 

and spike removal process to correct for any data anomalies. This was accomplished using the 

'Fill sinks (Wang & Liu)' tool within the SAGA 'Terrain Analysis - Hydrology' module, which 

is instrumental in preparing the terrain model for hydrological analysis. The next phase 

involved the derivation of stream networks through the 'Strahler order' tool, also part of 

SAGA's 'Terrain Analysis - Channels' suite. This process was done for understanding the flow 

patterns and stream hierarchy within the catchment. The final step of catchment delineation 

utilized SAGA's 'Upslope Area' tool, again within the 'Terrain Analysis - Hydrology' module.

Topography 

The topography of the Nyagako sub-catchment reveals a distinctly hilly landscape. Elevations 

within the catchment exhibit considerable variation, ranging from 1474 to 2184 meters above 

sea level. This variation in elevation is adding a dynamic aspect to the catchment's hydrology, 

prominently featuring the Nyagako river network, which meanders through the terrain, shapes 

the catchment's geomorphology and influences sediment transport, see figure 3.4.
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Figure 3.4 Elevation map of Nyagako sub-catchment. Created by author, 2023 (Source: University of Rwanda). 

Lithology 

The lithology of the study site encompasses three lithological units, denoted as CA, GG, and 

QS, see figure 3.5. These will be used as the sources for the fingerprinting analysis. CA 

represents undifferentiated colluvium and alluvial materials, while GG denotes acidic rocks 

such as granite, gneiss, tonalite, and areas rich in pegmatite. QS comprises quartzite and shale 

formations, including schists, argillites, ardoises, and phyllites. The site is predominantly 

characterized by QS (56.5% of the total area), followed by GG (36%), and CA (7.5%).
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Figure 3.5 Lithology map of the study site, including zones and sample sites. Soil samples represented with red 
dots and sediment samples with green heptagons. Created by author, 2023 (Source: University of Rwanda).

Land use and land cover

The land use and land cover (LULC) of the study site are predominantly agricultural, 

accounting for approximately 67% of the land use. Agricultural practices are diverse, 

including irrigation, terraces, and closed agriculture. Forest cover comprises 24% of the area, 

with a significant presence of plantation forestry, which may be managed for timber 

production and erosion control. Additionally, 9% of the land is non-cultivated, encompassing 

open lands with natural vegetation, built-up areas, and a landfill. The map in figure 3.6, with 

its diverse color palette, delineates each land use category, offering an overview of how the 

catchment's land is utilized and managed.
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Figure 3.6 Land use and land cover map of the study site in Nyagako sub-catchment. Base map provided by 
University of Rwanda and location of landfill, terraces, and mining activity added by the author.

Mining activities are identified at 23 locations across the catchment. These sites vary in their 

operational status and legality, ranging from officially sanctioned mining operations to 

unauthorized or informal extractions. Such activities can significantly impact the turbidity 

and total suspended load within the river, altering hydrological systems and potentially 

affecting water quality.

The LULC distributions were analyzed for each source (lithology type) in the three zones; 

A-C. LULC was segmented into three main categories: Forest, Cultivated, and 

Non-cultivated, as defined by the LULC map. Specifically, 'Cultivated' encompassed areas 
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designated for irrigation, terraces, and closed agriculture; 'Forest' was defined by regions of 

forest plantation; and 'Non-cultivated' included open land, built-up areas, and landfills. This 

tripartite classification facilitated a detailed investigation of land use dynamics on soil erosion 

to analyze possible causes of soil erosion.

Slope distribution: mapping and categorization 

The slope distribution map was created by using the DEM (10x10m) raster layer. The 'Slope' 

function from the 'Raster terrain analysis' toolset calculated the terrain gradient. Then, the 

'Reclassify by table' option under 'Raster analysis' reclassified the resulting slope values. The 

categorization was set according to the slope angle classifications from the study 

'USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, 

Rwanda' by Karamage et al., (2016), which identified slopes as 'Very Gentle to Flat' (<5°), 

'Gentle' (5°-<15°), 'Steep' (15°-<30°), and 'Very Steep' (>30°). 

Revised Universal Soil Loss Equation (RUSLE)

RUSLE is an established method to assess and identify soil erosion-prone zones within a GIS 

environment. It utilizes five key factors: rainfall erosivity, soil erodibility, topography, cover 

management, and conservation practice, the model is empirical and further used to estimate 

the annual average soil loss (Zeghmar et al., 2024). For this study, data based on RUSLE 

from the Rwanda Land Degradation Monitoring and Assessment 2022 dataset, created by 

PKabatha (2023) was used as a complement to validate the MixSIAR and turbidity result.

3.2. Sediment Fingerprinting Analysis

The fundamental concept of sediment fingerprinting is that the characteristics of the sediment, 

such as concentrations of geochemical elements or activity of radionuclides, indicate its 

source (Owens et al,. 2016). It has been widely adopted across various fields to study 

numerous catchments around the world since its early development in the 1970s and 1980s 
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(Smith, Karam, & Lennard, 2018), employing a diverse array of physical and biogeochemical 

tracers at different catchment scales (GLOWS-FIU, 2016). The global challenges due to soil 

erosion has increased the development of geochemical, radiochemical and isotopic 

fingerprinting techniques (Blake et al,. 2018). Utilizing sediment fingerprinting methods, 

alongside data on sediment transport and budgeting, can yield significant insights into 

landscape dynamics and offer valuable information that can inform the management of river 

basins and coastal areas (Owens et al., 2016).

The use of geomorphological information is valuable for selecting the tracing approach. In 

catchments with heterogeneous lithologies, i.e. diverse rock compositions, a strategy based on 

geochemical element concentrations would be reasonable for distinguishing between sources, 

corresponding to specific geological signatures, including features as steepness in the upper 

regions with hard rock versus hillsides composed of softer, more easily weathered materials 

(Evrard et al., 2022). It is recommended to keep the number of sources for discrimination to a 

minimum, with a guideline suggesting a cap at four sources (Evrard et al., 2022; Lees, 1997). 

Typically, un-mixing models require at least (n – 1) distinct tracers for a contribution from n 

sources in a mixture. Ideally, every source should be uniquely identified by at least one tracer 

that effectively distinguishes it from the others (Evrard et al., 2022). Thereby, the choice of 

sources for this study is based on the three lithology units in the catchment, where 

geochemical elements are used as tracers.     

Tracer screening process 

The tracer selection is an important and critical step for a successful estimation of the source 

contribution in the sediment (Chalaux-Clergue et al., 2024) and the accuracy can be 

significantly influenced by the selection of tracers (Smith, Karam, & Lennard, 2018). 

Sediment fingerprinting relies on tracers that remain unchanged during transport and that can 

be statistically distinguished between sources, ensuring accurate identification of sediment 

origins while excluding environmentally variable elements (Wilkinson et al., 2013). 
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Tracers that remain unchanged during transport from source areas to deposition sites are 

considered as conservative (Smith, Karam, & Lennard, 2018). Non-conservative behavior of 

a tracer is primarily assigned with two key phenomena. Firstly, there's the potential for 

particle size sorting along the transportation route, influenced by various factors such as the 

extent of runoff, the severity of rainfall, the flow of the river (Chalaux-Clergue et al., 2024). 

To mitigate the effects of particle size sorting on the characteristics of sediment, the fraction < 

63 μm is typically isolated by sieving of both the sources and the sediment sample for 

analysis (Evrard et al., 2022). According to the Wentworth scale, the sediment includes 

colloid (0 - 1 μm), clay (0 - 3.9 μm) and silt (3.9 - 62.5 μm) (Haldar & Tišljar, 2014). 

Secondly, biogeochemical activities can occur as particles are transported. It is influenced by 

the extent the tracers undergo biogeochemical processes, including dissolution, adsorption, 

oxidation, and reduction (Chalaux-Clergue et al., 2024). For this study, only samples with 

fractions < 63 μm were used.  

To evaluate the conservative nature of a tracer, the most conventional approach is by 

comparing the range of source soil samples concentration to the sediment samples mean 

concentration (Wilkinson et al., 2013). This is often referred to as a “range test”, which is 

often analyzed through generated box plots for upstream sources and their corresponding 

sediment sample across all tracers, with the mean sediment concentration evaluated to 

determine whether they are predominantly aligned within the range of the mean concentration 

of the upstream sources (James et al., 2023). Any sediment’s tracers’ mean concentration that 

did not align within the source range shall be excluded. Although, it's important to note that 

range tests, by their nature, do not provide a quantitative confirmation of the complete 

absence of non-conservative behavior (Chalaux-Clergue et al., 2024). 

A range test was performed in this study to assess the conservative behavior of each potential 

tracer element after the raw geochemical dataset was examined and sorted elements in order 

that showed high concentration performance and the samples were also sorted into potential 

source groups, based on the geographical information and field observations, such as sample 
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location and lithology, in appendix A1. The elements in table A1.1 were excluded from 

further analysis because they had a high degree of ‘non-detected values’, denoted ‘ND’, 

suggesting that the actual concentration is unknown of that element. According to other 

studies (James et al. 2023), tracer elements that deviated too much from the expected range or 

clearly had poor performance are excluded from further analysis.

A common method to assess the tracer's ability to differentiate among the sources 

(discrimination capacity), is the non-parametric Kruskal–Wallis H test. The outcome of this 

test reveals whether there is a significant difference between at least one group and others and 

helps in identifying tracers that can effectively differentiate between various sources 

(Chalaux-Clergue et al., 2024; Evrard et al., 2022). Any significant differences between the 

elements, where all tracer elements that had a p-value larger than 0.05, should be removed 

from further analysis. Another method is to check the tracer if it has higher intrasource 

variance than intersource variance, if so, it should be removed (James et al. 2023). Both of 

these methods were applied in this study. 

A Shapiro-Wilk test was applied in the screening process to remove tracers that were not 

normally distributed, in alignment with the model's presumption that mixture tracer data 

follow a normal distribution, as stated by Stock et al. (2018). 

After assessing conservative behavior and discriminant power, it is common to conduct a 

principal component analysis (PCA), to provide an overview of the variance in the tracers and 

samples (Chalaux-Clergue et al., 2024). PCA can be used to simplify complex datasets by 

examining variances within and between sources, enabling the identification of distinct 

geochemical sources (James et al., 2023). A PCA was performed in this study. 

Model development 

A Bayesian mixing model was developed with the R package MixSIAR (Stock et al. 2018) to 

evaluate the contribution of sources in mixtures through tracer elements. Based on observed 
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tracers in the soil and sediment samples, the MixSIAR model generates expected 

contributions from different sources associated to each node, through so-called posterior 

proportion contributions. 

Bayesian mixing models were first developed as a statistical tool in ecological studies to 

estimate diets of animals (Hopkins and Ferguson, 2012) by using stable isotopes as tracers to 

evaluate the proportion of various prey (sources) in the diet of a consumer (mixture). 

However, these models are also applied in other research areas, including tracking animal 

migration, identifying sources of pollutants, tracing nutrient transfers between ecosystems 

and sediment erosion by fingerprinting analysis (Stock et al., 2018). These models are based 

on Bayesian inference, a statistical approach that updates the probability of hypotheses based 

on new evidence. This process incorporates prior knowledge or beliefs with new data, 

enabling the estimation of probability distributions on model parameters, treating unknown 

parameters and observable data as random variables, and computing the distribution of these 

parameters conditioned on the observed data (Prieto Tejedor, 2017). In the context of mixing 

models, Bayesian methods estimate how much each potential source contributes to a mixture 

by considering prior knowledge about the sources and the observed data from the mixture 

(Blake et al., 2018). 

R software is a powerful tool for conducting Bayesian data analysis, especially for complex 

models. It is highly valued in the Bayesian community for its versatility, extensive resources, 

and being free of charge. Bayesian Markov Chain Monte Carlo packages like JAGS are 

integrated within R, enhancing its utility in Bayesian data analysis (Kruschke, 2015). For this 

study, the tracer screening process and MixSIAR modeling were performed using R version 

4.3.1, R Core Team, (2023). 

Markov Chain Monte Carlo (MCMC) is an algorithm used for estimating complex 

statistical models through simulation of random samples. It operates akin to a guided 

exploration, making decisions at each step by evaluating the likelihood of moving to a new 
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position versus staying at the current one. JAGS, which stands for Just Another Gibbs 

Sampler, is a specific program designed to implement these MCMC methods. It allows users 

to efficiently conduct Bayesian data analysis by building and running MCMC samplers for 

complex hierarchical models. The integration of JAGS within R, facilitated by packages like 

rjags and runjags, enhances the capacity for Bayesian data analysis, demonstrating the 

powerful synergy between MCMC methods and computational tools (Kruschke, 2015).

MixSIAR is an open-source R package developed by Stock et al., (2018) to perform 

Bayesian statistical computations through JAGS for its capabilities of generating MCMC 

samples, which is essential for estimating the contributions of different sources in a mixing 

system. One of the main features of MixSIAR according to Stock et al., (2018) is its ability to 

include both fixed and random effects as covariates, which helps in accounting for variability 

in mixture proportions (Stock et al., 2018). Additionally, evaluate the relative support for 

various models by using information criteria (Stock et al., 2018). Through MixSIAR, the 

developers aim to unify mixing model tools and provide a foundation for future 

improvements in the analysis of mixing systems (Stock et al., 2018). Although Bayesian 

mixing models through the MixSIAR framework have been effectively applied in various 

river basin studies to discern sediment sources, their comparative analysis between mixtures 

and sources tends to be restricted to specific catchments, with diagnostic precision decreasing 

as the scale expands (Blake et al., 2018).

To assess the source apportionment in river basins, a hierarchical mixing model approach 

named 'Deconvolutional MixSIAR' (D-MixSIAR) has been developed, which expands 

MixSIAR's capabilities to explicitly consider the 'structural hierarchy' inherent in a river basin 

or catchment. D-MixSIAR operates by sequentially employing the MixSIAR mixing model to 

consecutive sediment mixture points (nodes), such as those found downstream of a complex 

river network. Importantly, within D-MixSIAR, the data contributed as an upstream mixture 

is organized as a source at a downstream node (Blake et al,. 2018).
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Each node was first modeled separately, employing three tracers that were selected based on 

the tracer screening process. Three sources, labeled CA, GG and QS, were defined based on 

the lithology in the study site and each has a geochemical composition of the tracer element 

that passed the tracer screening process. In all MixSIAR model implementations, a residual 

error term was used, acknowledging the uncertainties in the measurements, and all source 

contributions were treated as equally likely. The MCMC parameters were typically 

configured as follows: a chain length of 1000000, a burn-in period of 700000, a thinning 

interval of 300, and three parallel chains.  

Based on the MixSIAR model result, each upstream node was then deconvoluted according to 

the D-MixSIAR framework, by Blake et al. (2018). This process involved decomposing the 

posterior proportion contributions from an upstream node into designated source groups. This 

process enabled an identification of contribution from upstream source to the composition at 

the downstream nodes. This cumulative aspect underscores the interconnectedness of the 

catchment's sediment dynamics and emphasizes the importance of considering the catchment 

as an integrated system when interpreting sediment sources and their contributions. A 

conceptual overview of the model structure is presented in figure 3.7. 
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Figure 3.7 Conceptual design of the D-MixSIAR model structure, illustrating the hierarchical mixing process. 
Node 1-4 represents the progressive stages of mixture. ‘CAx’, ‘GGx’ and ‘QSx’ represent the source groups 
selected and the corresponding upstream sources. The dashed lines represent sub-catchment boundaries.  

At Node 1, which represents the outlet of Zone A, a mixture of upstream sources CA1, GG1, 

and QS1 is observed. Similarly, Node 2 corresponds to the combined upstream source of CA2, 

GG2, and QS2. However, Node 3 lacks its own distinct upstream sources of CA, GG, or QS; 

instead, it relies on Node 1 and Node 2 as additional upstream sources. These sources can be 

deconvoluted into their respective components (CA, GG, or QS) using the posterior 

contribution output from MixSIAR. For Node 3, the contributions from Node 1 and Node 2 

were calculated as follows in Eq.1:

CA3 = PNode1  CA1 +  PNode2  CA2· ·

GG3 = PNode1  GG1 +  PNode2  GG2 (Eq.1)· ·

QS3 = PNode1  QS1 +  PNode2  QS2· ·
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Where, PNode1, PNode2,  represent the proportion contribution 

from Node 1, Node 2 and CAx,GGx and QSx represent the 

deconvoluted proportion contribution of each source at its 

node.

Similarly, for Node 4, the contribution from upstream sources and Node 3 were determined as 

in Eq.2:

CA4´ = PNode3  CA3 + CA4·

GG4´ = PNode3  GG3 + GG4 (Eq.2)·

QS4´ = PNode3  QS3 + QS4·

Here, PNode3 represents the proportion contribution from 

Node 3 and CA3, GG3 and QS3 are the deconvolved proportion 

contribution result. 

This means that the sediment at Node 4 encapsulates the contribution from all upstream 

processes, intermixing local inputs (CA4, GG4 and QS4) with those transported from Node 3. 

The final deconvolved result at Node 4 is CA4´, GG4´ and QS4´.

The average value and standard deviation of samples representing upstream sources for each 

respective node were utilized in the MixSIAR modeling, consistent with the sample design 

and MixSIAR framework. The input data for both the source, mixture and discriminant input 

in each MixSIAR model is detailed in the appendix A2.

When analyzing the results from the MixSIAR modeling, it is crucial to examine the entire 

posterior distribution graph. The interpretation of what source is contributing the most 

relative and depending on what values that are highlighted. The modes, corresponding to the 

graph's peaks, represent the most frequently occurring contribution fractions and suggest 
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potential ultimate distribution contributions from the sources. Unlike the mean, the mode is 

not affected by extreme values, making it a reliable measure of central tendency, especially 

when the data include outliers that could skew the mean. The median, denoting the central 

contribution, is particularly useful in distributions that are asymmetrical or include outliers, as 

it provides a more accurate reflection of the typical value. Meanwhile, the mean calculates an 

average of all potential contributions modeled. It is essential to recognize the variation and 

spread of these values, as indicated by the range of the confidence intervals. Generally, the 

posterior distribution plots show a relatively high standard deviation, which indicates a degree 

of uncertainty in the results. 

A comparative analysis was performed between the proportional contributions derived from 

the posterior outputs of the MixSIAR models and the estimated turbidity levels at 

corresponding nodes and the potential land use degradation map (RUSLE). This comparison 

seeks to align and validate the result.

3.3. Fieldwork

The fieldwork was conducted over six days, spanning from 20th of September to 10th of 

December 2023. It included two field visits and four sampling campaigns. The field visits 

aimed to lay the necessary logistical groundwork for ongoing research, assess the 

accessibility of key locations, and observe the land use and terrain. Observations made during 

these visits led to adjustments in the project's objectives and identification of sites for the 

sampling campaigns. 

Four campaigns were conducted, three sediment sample campaigns and one soil sample 

campaign. The aim of the campaigns was to collect data for the sediment fingerprinting 

analysis according to the D-MixSIAR modeling design. Sediment samples were collected 

along the river at four nodes during the same day at three different occasions. Measurements 

of the turbidity from connected streams and the main river were also carried out during the 
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sediment campaigns. The strategy for the soil sample campaign was to collect soil samples 

around the study site to get a broad geochemical representation of the catchment, where the 

primary focus was to collect subsoil, although topsoil was often collected as a complement.

Sampling strategies

Finding a balance in the quantity of samples to gather is essential, considering the limitations 

of time, budget, and logistical challenges. Nonetheless, it's advantageous to collect as many 

samples as possible. A greater volume of source samples invariably leads to a stronger 

foundation for analysis, modeling, and debate (Evrard et al., 2022; Clarke & Minella, 2016). 

In Addition, the understanding of erosion and sedimentation processes by residents can assist 

in pinpointing critical areas of erosion and sedimentation, potentially streamlining fieldwork 

to be more effective with fewer samples required (Evrard et al., 2022). Moreover, the point at 

which sediment samples are collected during a flood event can significantly influence the 

outcomes of sediment fingerprinting analyses, given that the origin of sediments passing 

through catchment exits can change dramatically throughout runoff episodes (Evrard et al., 

2022).

 Soil sampling 

A  total of 33 soil samples were collected to ensure a representative sampling of the 

catchment (see figure 3.3 in section 3.1 – Study Site Description). This collection resulted in 

10 samples from the topsoil layer and 23 from the subsoil layer. Notably, the topsoil samples 

were primarily obtained in conjunction with the subsoil samples or when the subsoil layer 

was not accessible. This approach was adopted to accommodate the initial uncertainty 

regarding the optimal sampling strategy and to maintain consistency with the sediment 

samples. The target was to collect samples that contained representative mineral composition 

of the location. The soil samples were collected in zip bags that were purchased from a 

pharmacy in Kigali. The amount of soil collected was determined arbitrary, but in general as 
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much as the zip bag could contain. Excavated land, gullies and channel banks made it 

possible to collect subsoil samples, see figure 3.8.

Figure 3.8 Top left: Gully where a soil sample was collected. Top right: Collected soil sample in zip bag from 
excavated land. Bottom left: Channel bank where a soil sample was collected. Bottom right: Both top and 
subsoil illustrated.

32



Sediment sampling 

A total of 13 sediment samples were collected, with three samples at each node, except for 

node 4, where four samples were collected. The sediment samples were collected by using 

clean PET bottles, where each sample ranged from approximately 4.5 to 5 liters per sample, 

see figure 3.9.

Figure 3.9 Sediment sampling at Node 3. 

Sampling occurred in the middle of the river at a depth of a few centimeters. At least three 

sediment samples per node were collected, following recommendations from previous studies 

on sampling of mixtures in relation to the upstream sources (Blake et al,. 2018).
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Sample preparation

All samples went through preparation before further analysis. 

The soil samples were air dried in an oven at 105° C for at least 24 hours and then sieved 

through  (< 63 μm) pore size, see figure 3.10. Some of the samples had to be gently 

disaggregated by using a pestle and mortar. 

Figure 3.10 Left: Air-dried soil samples. Right: Sieved soil samples through < 63 μm pore size.

The sediment samples were sieved through  < 63 μm pore size, then heated on a stove to 

remove the water. When almost all water had been evaporated, the remainder of the sample 

was transferred to a plate to be finalized in the oven at 105° C, see figure 3.11. The final 

sediment sample was then gently removed from the plate by hand using a plastic glove.  

34



 

Figure 3.11 Left: Evaporation of sediment sample. Right: Evaporated sediment sample.

After the sample preparation, the next step was to analyze all of the samples through a 

‘Handheld X-ray Fluorescence (XRF) analyzers: X-MET8000 range’ at a duration of 60 

seconds to get the geochemical composition, see figure 3.12. 

Figure 3.12 X-ray Fluorescence (XRF) - analysis.

35



Turbidity measurements

Turbidity measurements were conducted upstream of the outlet of a sub-catchment, within the 

stream originating from the sub-catchment, and at points further downstream where mixing 

had taken place, as indicated by the sub-catchments in figure 3.13. 

Figure 3.13 Sub-catchments for the turbidity sampling in the study site within Nyagako sub-catchment. Created 
by author, 2023 (Source: University of Rwanda). 
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The measurements were conducted using a 2100P ISO Portable turbidimeter, supplied by the 

University of Rwanda. Prior to measurement, the turbidimeter underwent calibration using 

distilled water. In cases where sample turbidity exceeded 1000 NTU, dilution was necessary. 

This involved removing half of the sample and compensating with distilled water. The 

measurement was either done directly in the field or in the laboratory, see figure 3.14.

Figure 3.14 Measuring turbidity in situ (Nyagako sub-catchment).

Additionally, TSS (total suspended solids) measurements were taken as a complement to the 

turbidity measurements. The measurements of the TSS showed a linear correlation to the 

turbidity measurements and are presented in the appendix A1. 
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To compute turbidity contribution fractions, principles of mass conservation and the mass 

balance equation was applied, an equation (Eq. 3) was derived, based on the measured 

turbidity levels: 

Where,  is the resulting turbidity level from the mixing of 𝑐

two streams with different turbidity levels, denoted as  𝑐
1
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This represents a linear combination of the two turbidity 

levels, weighted by the proportion in which they are mixed. 

The parameter ‘α’ is the fraction of the total flow that 

comes from , which in (Eq.4) can be expressed as: 𝑄
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3.4. Potential Causes of Soil Erosion

The analysis of potential causes and correlations to soil erosion was conducted using outputs 

from GIS analysis, turbidity measurements and computations, and fingerprinting modeling 

results. The analysis explored the following correlations:

Contribution Per Hectare vs. Average Slope Gradient: Estimations of soil erosion 

contribution per hectare were plotted against the average slope gradient for each source (CA, 

GG, and QS) to examine the influence of topography on soil erosion in the study site.

38



Contribution vs. Cultivation-Forest Ratio Correlation: The relationship between the 

per-hectare contribution of soil erosion and the ratio of cultivated land to forested land was 

analyzed to reveal the potential differential contributions to soil erosion based on land use 

dynamics.
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4. Results

The results are presented in the following sequence: First, a review of the results of the 

contribution models are presented, and analysis of the potential land degradation distribution 

based on RUSLE. Next, the potential drivers of soil erosion, where LULC distribution is 

combined with distribution of the lithology and zones, Including, potential impact from 

mining activity and rainfall events are addressed. Finally, results from the analysis of the 

potential causes and correlation of soil erosion are presented. 

4.1. Contribution Modeling Result 

Fingerprinting analysis result 

The result from the tracer screening process is summarized in table 4.1 and the result from the 

PCA is plotted in figure 4.1. A more detailed presentation of the results from the tracer 

screening process can be found in the appendix A1.

Table 4.1 Summarized results from the tracer screening process from left (start) to right. Elements that passed a test 
were further analyzed in the next stage. The once that failed was not further analyzed  

Elements of 
significance 

Conservative 
behavior

Discriminant 
power

Normal 
distribution Evaluation

Start 
→

XRF 
result → Range 

test → Kruskal-
Wallis test

Intrasource vs 
Intersource → Shapiro-

Wilk test → PCA 

Passed: Si, Al, Fe, 

K, Ti, Ca, P, 

Zr, Rb, Nb, 

Mn, Zn and 

Pb. 

Si, Al, Fe, K, 

P, Rb, Mn, 

Zn and Pb. 

Si, Al, Fe, 

K and Mn

Si, Al and Fe Si, Al and 

Fe

Si, Al and 

Fe

Failed: Ba, Sr, Mg, 

As, Cu, Sb, 

Cr, Ta, Co 

and Ni.

Ti, Ca, Zr 

and Nb 

P, Rb, Zn 

and Pb. 

K and Mn

41



Figure 4.1 Plot of the principal components for tracers Si, Al and Fe, plotted with the sediment samples at 
nodes(1-4) for comparison. CA: undifferentiated colluvium and alluvial material, GG: Granit/acidic rocks; 
granite, gneiss and tonalite, areas rich in pegmatite, QS: Quartzite and shale; schistes, argilites, ardoises and 
phyllites. Ellipses represent 75% of group variability.

The PCA graph illustrates the distribution among the samples, how they are distinguished 

from each other based on their geochemical signature of the resulting tracers; Si (Silicon), Al 

(Aluminum) and Fe (Iron). The principal components (PC1 and PC2) explain a significant 

proportion of the variance in the dataset (59% and 34.87%, respectively). The plot 

demonstrates groupings among sources (CA, GG and QS) and sediment samples from 

different nodes (1-4), which may reflect differences in geochemical composition. The arrows 

representing Si, Al and Fe indicate their influence on the PCA; their direction and length 

suggest how each contributes to the variance captured by PC1 and PC2. Overlapping ellipses 

between different sources suggest similar geochemical signatures, while distinct ellipses 

imply different compositions. The closeness of samples within each ellipse indicates 
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similarity within that group. CA, GG and QS are three groups that each have distinctly 

separated geochemical signatures. CA has higher concentrations of Si, while GG and QS have 

higher Al and Fe respectively. 

The output from the MixSIAR modeling are the posterior distribution graphs for each node

 (1-4), illustrating the relative contribution from the upstream sources (figure 4.2). The 

densities of these distributions are scaled so that their area sums to one, providing a 

normalized view of the source contributions. Table 4.2 shows the statistical summary 

associated with figure 4.2.

Table 4.2 Statistical summary of the MixSIAR result for Node 1-4. 

Source Mode Median Mean SD 2.5% 25% 75% 97.5%

Node 1

CA 0.033 0.097 0.135 0.126 0.004 0.430 0.188 0.466

GG 0.832 0.651 0.609 0.242 0.070 0.449 0.810 0.952

QS 0.069 0.212 0.256 0.202 0.008 0.092 0.374 0.758

Node 2

CA 0.456 0.397 0.403 0.215 0.031 0.233 0.557 0.832

GG 0.053 0.160 0.205 0.169 0.005 0.070 0.302 0.622

QS 0.444 0.390 0.392 0.202 0.037 0.239 0.536 0.789

Node 3
PNode1 0.797 0.733 0.712 0.180 0.269  0.605 0.846 0.982

PNode2 0.203 0.267 0.288 0.180 0.018 0.154 0.395 0.731

Node 4

CA 0.221 0.228 0.237 0.131 0.020 0.138 0.323 0.659

GG 0.080 0.203 0.237 0.174 0.011 0.096 0.344 0.659

PNode3 0.182 0.236 0.260 0.172 0.012 0.122 0.367 0.649

QS 0.266 0.262 0.265 0.130 0.032 0.0175 0.352 0.535
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Figure 4.2 Posterior distributions of sediment source contributions at Nodes 1-4. This figure illustrates the 
scaled posterior density distributions of the upstream sources. 
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Node 1: The posterior distribution clearly indicates that GG is the dominant contributor, with 

the mode at 83%. The median and mean are also high, at 65 and 61%, respectively. However, 

the 95% confidence interval ranging from 7% to 95.2% reveals a high variability in the 

contribution from GG. In contrast, the contribution from CA is considerably less, with the 

mode at only 3%. The narrower 95% confidence interval for CA, from 0.4% to 46.6%, 

suggests less variability and greater certainty that the contribution from CA  is lower at Node 

1. QS has a moderate contribution with a mode at 6.9%. The 95% confidence interval for QS, 

from 0.8% to 75.8%, is less wide than GG's, indicating a moderate level of uncertainty in its 

contribution.

Node 2: The posterior distribution of sources indicates a different pattern of sediment 

contribution than what was observed for Node 1. Here, sources CA and QS emerge as the 

primary contributors, while GG shows a lesser influence. The mode for CA is at 46%, 

indicating that it has the strongest contribution of the three sources. Both the median and 

mean of CA is at 40% and the wide 95% confidence interval from 3.1% to 83.2% indicating 

significant variability. Conversely, GG presents a much smaller mode of 5%, suggesting 

lower contribution. The median and mean, at 16 and 21% respectively, further affirm GG’s 

minor role in the sediment composition at Node 2. Its 95% confidence interval spans from 

0.5% to 62.2%, reflecting a wide range of potential contributions but generally on the lower 

end. QS stands out as a substantial contributor, alongside CA, with a mode of 44%. Both the 

median and mean are around 39%, implying consistent contributions from this source. The 

standard deviation for QS, at 0.202, and a 95% confidence interval ranging from 3.7% to 

78.9%, indicate high variability, yet with a narrower range than CA, suggesting slightly more 

certainty in QS's contributions at Node 2.

Node 3: The statistical summary and the posterior distribution graph combined gives a 

comprehensive understanding of the sediment proportion contribution from Node 1 and Node 

2 to Node 3. The mode for contribution from Node 1 is 80%, which indicates that the 

contribution to the sediment at Node 3 is predominantly from Node 1. This high mode is 
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supported by both the median at 73 and the mean at 71%, suggesting a strong central 

tendency and reliability in the estimates. The standard deviation (SD) is relatively small at 

0.180, indicating that the contributions are fairly consistent. Moreover, the 95% confidence 

interval, ranging from 26.9% to 98.2%, shows a wide range of possible values but with a high 

degree of certainty that at least 26.9% of the contributions come from PNode1 at the lowest end. 

The contribution from PNode2 mirrors the result from PNode1, meaning that the contribution 

ratio between the nodes is either approximately 1:4 or 3:7. This is important for the 

interpretation of the final contribution of the full study site. 

Node 4: The posterior distribution output from ‘PNode3’, which consists of the combined 

contribution from Node 1 and Node 2, has a mode of 18%, a median of 24%, and a mean of 

26%, suggesting that the most common value is slightly lower than the center of the 

distribution. The standard deviation of 0.172 indicates moderate variability in contributions. 

The percentile distribution shows a fairly narrow range, with the vast majority (97.5%) of 

contributions being below 65%. CA has a mode of 22%, a median of 23% and mean of 0.237. 

The standard deviation is 0.131. The contributions are generally consistent, with 97.5% of 

values not exceeding 66%. GG has a mode of 8%, considerably lower than the median (20%) 

and the mean (24%). The standard deviation of 0.174 signifies a moderate spread of data. 

Contributions from GG extend to a higher range, with 97.5% of values below 0.659. QS has a 

mode of 27%, which is the highest among the contributions at Node 4, and is very close to the 

median of 26% and the mean of 27%. This narrow clustering of the central tendency 

measures indicates a stable contribution. With a standard deviation of 0.130, the QS 

contributions exhibit less variability, as reflected in the 97.5th percentile value of 0.535, a 

narrower spread of values compared to other sources.

The result from the deconvoluted MixSIAR mixing model resulted in the posterior 

distribution graphs (Figure 4.3 and Table 4.3) for Node 3 and 4, illustrating the contribution 

from each source.
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Table 4.3 Statistical Summary of the D-MixSIAR result. 

Source Mode Median Mean SD 2.5% 5% 95% 97.5%

Node 3

CA 0.142 0.190 0.211 0.126 0.033 0.047 0.451 0.512

GG 0.527 0.504 0.495 0.201 0.103 0.145 0.807 0.846

QS 0.214 0.270 0.294 0.165 0.044 0.066 0.615 0.673

Node 4

CA 0.282 0.287 0.292 0.128 0.066 0.093 0.511 0.553

GG 0.313 0.351 0.366 0.167 0.087 0.117 0.663 0.731

QS 0.336 0.340 0.341 0.132 0.093 0.125 0.560 0.603

Figure 4.3 Posterior distributions of sediment source contributions at Node 3 and 4.

At Node 3, the deconvolution analysis in the D-MixSIAR framework integrates sediment 

contributions from upstream Nodes 1 and 2, offering insights into the compounded sediment 

dynamics. The posterior distribution for Node 3 indicates that GG is the leading contributor, 
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with a mode of 53%. This reflects the cumulative impact of upstream processes, where GG’s 

prominence at Node 1 notably influences its continued dominance downstream. The median 

and mean, at 50%, confirm GG’s substantial influence on the sediment profile at this juncture, 

which is supported by the relatively low standard deviation of 0.201. Conversely, the 

contributions from CA are less pronounced, with a mode of 14%. The median and mean 

values, 19 and 21% respectively, and confidence intervals ranging from 3.3% to 51.2%, 

suggest that CA, while less significant than GG, still contributes a notable portion of sediment 

to Node 3. QS shows a moderate level of influence with a mode of 21%, a median of 27%, 

and a mean of 29% – these figures position QS as a secondary but important contributor. The 

spread of QS contributions, with a standard deviation of 0.165 and a 95% confidence interval 

from 4.4% to 67.3%, points to a large variability that could be influenced by the differing 

source contributions from Nodes 1 and 2.

Finally at Node 4, the deconvolution analysis within the D-MixSIAR framework integrates 

sediment contributions from upstream Node 3, which itself integrates contributions from 

Nodes 1 and 2. Therefore, the results for Node 4 are not solely a reflection of local 

contributions but are also influenced by the upstream deconvolution process. The posterior 

distribution reveals a balanced mix of sediment contributions from the three sources, without 

a single source clearly dominating the composition. CA has a mode of 28%, a median of 

28.7% and a mean of 29.2%, and the wide 95% confidence interval from 6.6% to 55.3% 

points to a significant degree of uncertainty. GG has a mode of 31%, median at 35.1% and 

mean at 36.6%, which implies a tendency for GG's contributions to be slightly higher than 

CA's. The confidence interval for GG, which stretches from 8.7% to 73.1%, reflects even 

greater variability than for CA. For QS, mode, median and mean are all at 34%, indicating a 

distribution that is relatively symmetrical around this central value. The confidence interval 

for QS, extending from 9.3% to 60.3%, denotes a moderate level of uncertainty in its 

contributions.
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Turbidity analysis result

Turbidity measurements of streams from three campaigns are presented in figure 4.4, showing 

varying levels of turbidity in streams from smaller subcatchment. The turbidity is measured in 

Nephelometric Turbidity Units (NTU) and indicates how clear the water is; higher turbidity 

means more particles are present.

Figure 4.4 Turbidity measurements from streams. Created by author, 2023.
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Campaign 1: Zone A shows ‘high’ (500-2000 NTU) and ‘very high’ turbidity (2000-7710 

NTU) input from A1 and A5 respectively, indicating a high presence of suspended particles. 

The subareas A2 and A4 had  ‘very low’ turbidity levels (0-50 NTU) and A3 and A6 had 

‘low’ turbidity levels (100-500 NTU) respectively. Zone B had moderate turbidity. The 

measurements in C3 and C4 had ‘moderate’ (500-2000 NTU) to ‘very high’ turbidity 

respectively. During the measurements in Zone C, there were weather changes in these areas 

that led to high precipitation which probably increased the turbidity in these areas in the 

comparison to the measurements in the other zones. 

Campaign 2: During this campaign, most of the samples were rejected, due to dirty 

containers, which increased the biotic activity and further altered the turbidity of the sample. 

The turbidity from the outlet of Zone A was ‘high’. Zone B's turbidity was ‘moderate’ as it 

was during the first campaign, which was expected, due to the similar conditions as during 

the first campaign. The turbidity measurements Zone C had a ‘high’ and ‘low’ contribution 

from C2 and C3 respectively. The high turbidity from C2 was not expected because the 

influence from heavy rainfall was not a factor, which indicates that other land disturbing 

activities are present from the area. C3 however had lower turbidity contribution compared to 

the first campaign, suggesting that rainfall events truly are an important factor on the 

turbidity. 

Campaign 3: Zone A shows that A1 and A5 contain a ‘very high’ and ‘high’ turbidity 

respectively, which is similar to the first campaign. The other areas in Zone A were 

contributing with low turbidity. The contribution from Zone B was still moderate and the 

contribution from Zone C was low from all areas. The result during the final campaign 

indicates land disturbing activities. 

The response of the stream input is illustrated with bar charts in figure 4.5, where each chart 

is the average turbidity at each sampling point.
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Figure 4.5 Average turbidity at sampling point. A1-6 represents streams contributing to the main river in Zone 
A, ‘Upstream A5-6’ is the turbidity just before the input of the stream, while ‘Mix A2-6’ represents the mixture 
after input. Same principle goes for the samples in Zone C. The amount of sampling occasions for each sampling 
point is denoted with ‘*’. 

Zone B does not have any measured streams. Node 1-4 is the output from each zone, except 

Node 3 that represents the mixture of Node 1 and 2. All samples collected during the rainfall 

event were excluded because of its high influence noted in the previous section. Note that 

some of the sample points have only measurements from one or two occasions, while the 

maximum number of sample occasions are three. This result indicates that turbidity 

decreases, as more streams with low turbidity are mixed into the river. However, the average 

measurement of ‘Mix A4’ shows an increase in turbidity which is not expected because of the 

low turbidity input from A4.
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Estimated turbidity contribution fractions from Node 1, Node 2, streams in Zone C, and 

upstream sources in Zone C are presented in table 4.4. 

Table 4.4 Estimation of turbidity contribution from streams and upstream.  
Location Average Turbidity fraction (%) Type
Node 1 66 Upstream (Main river)
Node 2 34 Stream (Tributary) 
Node 3 100 Downstream (Main river)

Upstream C1 95 Upstream (Main river)
C1 5 Stream (Tributary) 

Mix C1 100 Downstream (Main river)
Mix C1 48 Upstream (Main river)

C2 52 Stream (Tributary) 
Mix C2 100 Downstream (Main river)

Upstream C3 74 Upstream (Main river)
C3 26 Stream (Tributary) 

Mix C3 100 Downstream (Main river)
Mix C3 63 Upstream (Main river)

C4 37 Stream (Tributary) 
Mix C4 100 Downstream (Main river)

Estimation of the turbidity contribution fractions from each zone to the final output at Node 4 

is presented in table 4.5. 

Table 4.5 Result of the turbidity contribution fractions and NTU.

Zone Turbidity Contribution fraction (%) NTU
Zone A 14.0 66
Zone B 7.1 33

Zone A+B 21.1 99
Zone C 78.9 369
Node 4 100 468
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MixSIAR and turbidity comparison

A comparison between the estimated contribution fractions based on the turbidity 

measurements and the fingerprinting model outputs is presented in figure 4.6. 

Figure 4.6 Comparison of the estimated contribution fractions from the turbidity computations and MixSAIR 
models. 

The difference between the contribution fraction result at nodes from the turbidity analysis 

and MixSIAR modeling result is 4.5% in Zone A, 0.4% in Zone B, 4.8% in Zone A+B and 

4.9% in Zone C. This result indicates that there is a correlation between the turbidity 

contribution and the source contribution. The similarity in the result between the two 

independent methods also serves to validate the results – indicating that both methods give 

reliable estimates of the relative source contributions. 
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MixSIAR and RUSLE comparison   

The land degradation map over Rwanda created by PKabatha (2023), based on the Revised 

Universal Soil Loss Equation (RUSLE), was employed to create a map of land degradation 

potential in  the study site, see figure 4.7. The associated classification coverage in hectares 

for each zone are presented in table 4.6.

Figure 4.7 Estimated land degradation of the study site within Nyagako sub-catchment, developed using the 
Revised Universal Soil Loss Equation (RUSLE). Created by author, 2023 (Source: PKabatha, 2023). 
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Table 4.6 Land degradation potential distribution in hectare and percentage for each zone of the study site.

Land Degradation Potential Zone A Zone B Zone C

Very Low Degradation: 3 ha (0.2%) – –

Low Degradation: 126 ha (8%) 77.6 ha (7%) 63.6 ha (5%)

High Degradation: 566.7 ha (38%) 519.7 ha (46%) 478.3 ha (35%)

Very High Degradation: 809.7 ha (54%) 546.7 ha (49%) 1046.1 ha (75%)

The land degradation assessment reveals significant soil erosion issues, especially in Zone A 

and C. All three zones predominantly exhibit high to very high land degradation. Zone C has 

the largest fraction of ‘Very High Degradation’, corresponding to 75% of the total area in 

Zone C. Zone A and Zone B have a similar fraction of ‘Very High Degradation’, 54 and 49%, 

respectively. This suggests that Zone C is the most erosion prone area according to RUSLE, 

similar to the MixSIAR and turbidity result,  although there is not a direct comparens as 

between MixSIAR and the turbidity. 

4.2. Potential Drivers of Soil Erosion  

LULC combined with lithology and zones

Three stacked bar graphs for each zone in figure 4.8 illustrate the lithology type distribution 

including the LULC distribution.
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Figure 4.8 Land use distribution across the lithology types CA, GG and QS for each zone: A-C.
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The distribution of the lithology types across the zones varies, except that CA is consistently 

lowest. For Zone A, QS is slightly more distributed than GG, while dominated in Zone C, 

where GG and CA are almost evenly distributed. GG is the dominating lithology type in Zone 

B. Dominantly cultivated is a major land use in all zones across the lithology types. Although, 

irrigation is the most dominant source of CA. Forest plantation land is the second most 

prevalent land use. Other land use types like closed agriculture, terraces, irrigation, open land, 

built-up areas, and landfill represent smaller proportions of land use and are not consistently 

present across all zones. While there is some variation in land use between lithology types, 

especially for minor land use types. The distribution patterns are consistent across the zones. 

LULC distribution for each source across the different zones A-C, categorized into Forest, 

Cultivated, and Non-cultivated, is depicted in Figure 4.9.
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Figure 4.9 Land use distribution for each source (CA, GG and QS) across the zones A-C.
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This result illustrates the cultivation-forest ratio for each source across the zones. The 

cultivated land use contribution is consistently lower in ‘Zone A’ among all of the sources and 

increases gradually for each zone, except for Zone C in GG. Both forest and non-cultivated 

land use is dominating in the source of QS, with a gradual decrease from zone A to C. Forest 

cover is generally higher in Zone A, among the sources.

Slope distribution 

The slope distribution is delineated into four categories based on their slope gradient. The 

intricacies of these slope classifications are visually captured in figure 4.10, which presents a 

detailed map of the slope distribution across the study site. 

Figure 4.10 Slope distribution of the slope categories: ‘Very Gentle to Flat’, ‘Gentle’, ‘Steep’ and ‘Very Steep’. 
Created by author, 2023 (Source: University of Rwanda).  
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The majority of the catchment, accounting for 54.7%, falls into the 'Steep' slope category with 

gradients ranging from 15° to 30°. These areas are particularly susceptible to rapid surface 

runoff and may pose significant challenges for land management practices. In contrast, 24.4% 

of the catchment features 'Gentle' slopes, with angles between 5° to 15°, potentially favoring 

agricultural activities due to lower erosion risks and easier cultivability. The 'Very Steep' 

slopes, characterized by angles exceeding 30°, comprise 15.8% of the site. This category is 

likely to experience the highest rates of soil erosion and may also present natural habitats less 

disturbed by human activity due to the difficulty of access and utilization. Remarkably, only a 

small fraction, 5.1%, is characterized as 'Very Gentle to Flat' slopes with angles less than 5° –  

these areas may serve as zones of sediment deposition because they are located in the lowest 

part of the valley and are exposed to flooding and channel collapse during high flow.

Comparison with modeling result

Table 4.7 summarizes the results used for the analysis of causes of soil erosion. It presents the 

contribution fractions for each source and zone, size of area, corresponding contribution per 

area, average slope gradient, and cultivated-forest ratio. Table 4.7 is presented as a 

complement for interpreting the result in the following sections. 
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Table 4.7 Summarized results of the contribution fractions and potential causes of soil erosion.

Source
Final 

Contribution*
Contribution 

in zone Area (ha)
Contribution 
in zone /ha**

Avg. slope 
gradient

Cultivation-
forest ratio

Zone 
A

CA 2.5% 13.5 ± 12.6 121 0.11% 12° 4.39
GG 11.3% 60.9 ± 24.2 631 0.10% 17° 2.90
QS 4.7% 25.6 ± 20.2 765 0.03% 23° 1.24

18.5% 100% 1516 19.8°

Zone 
B

CA 3.0% 40.3 ± 21.5 86 0.47% 14° 9.15
GG 1.5% 20.5 ± 16.9 737 0.03% 18° 3.82
QS 2.9% 39.2 ± 20.2 325 0.12% 25° 1.59

7.5% 100% 1148 20.2°

Zone 
C

CA 23.7% 32.1 ± 12.6 111 0.29% 13° 12.68
GG 23.7% 32.1 ± 20.1 163 0.20% 16° 3.61
QS 26.5% 35.9 ± 16.5 1316 0.03% 22° 3.05

73.9% 100% 1589 21.1°

All 
zones

CA 29.2% - 318.3 0.09% 12° 8.74
GG 36.6% - 1530.7 0.02% 18° 3.44
QS 34.1% - 2404.6 0.01% 23° 1.96

100% 4253.6 18°

* Final contribution fraction per source and zone (+ ‘All zones’) at Node 4. 
** Note, final contribution are used for ‘All zones’.  

The relationship between the contribution per hectare and the average slope angle is scatter 

plotted in figure 4.11.
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Figure 4.11 Scatter plot of contribution per hectare against the average slope angle for each zone and for the full 
study site (All zones).

An inverse correlation is observed, with an increasing slope angle corresponding to a 

decreasing contribution per hectare. Source-specific slope contributions are as follows: CA 

predominantly falls within an 11-14° range, GG within 16-19°, and QS within 22-26°. 

Notably, the contribution in Zone B for CA is substantially higher (0.47%) compared to the 

other zones.

The scatter plot in figure 4.12 illustrates the correlation between soil erosion contribution per 

hectare and the cultivation-forest ratio, with sources differentiated by color and zones by 

symbols:
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Figure 4.12 A detailed correlation scatter plot highlighting the relationship between per-hectare soil erosion 
contribution and cultivation-forest ratios, segregated by the sources CA, GG and QS and zones.

There is a trend wherein areas with a higher cultivation-forest ratio tend to exhibit an 

increased contribution of soil erosion. The distribution of the sources indicate that the 

cultivation-forest ratio is generally higher for CA, then GG and lowest for QS. 

Additional drivers from �eld observations 

Mining activities, both legal and illegal, were observed in all three zones. The most 

significant visual as was noted in the upstream regions of Zone A, see figure 4.13. Mining 

sites were frequently directly within the main river or adjacent to streams. Resources such as 

coltan, wolfram, or sand for construction were among those extracted from these sites. 
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Figure 4.13 Impact from mining activity in Nyagako catchment. Top pictures: Mining site in Zone C. Bottom 
left: Junction between outlet from A1 and A2 in Zone A. Bottom right: Junction between A3 and upstream mix 
of A1 and A2 in Zone A. 

During the first sediment campaign, a heavy rainfall event occurred, altering the run off, see 

figure 4.14. Rill erosion and runoff within gullies started to occur. This had a clear impact on 

the turbidity and possibly the sediment sample collected at node 4.  
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Figure 4.14 Impact of rainfall in Nyagako catchment. Top: Increasing run off from agricultural land in Zone C. 
Bottom: The left picture is influenced by rainfall, the right picture is the same location (C4 in Zone C) with no 
recent influence by rainfall event. The red dots indicate the location of the same rock in the river for comparison.
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5. Discussion

5.1. Erosion-Prone Zones and Sources 

The highest contribution per hectare was from CA in Zone B, corresponding to a contribution 

of 0.47% per hectare. The second highest was CA in Zone C (0.29%), followed by GG in 

Zone C (0.20%). However, according to the final contribution per hectare at Node 4, the 

result revealed that CA in Zone C has the highest contribution per hectare, corresponding to a 

contribution of 0.21% per hectare, followed by GG in Zone C (0.15%). Overall, CA showed 

the highest contribution per hectare across all zones, which suggests that areas with CA have 

the highest erosion rate.

Both the sediment fingerprinting and turbidity analysis estimated that Zone C had the highest 

contribution to Node 4, estimated to 78.8% and 73.9% respectively, followed by Zone A, at 

14.0% and 18.5%, and Zone B, with 7.1% and 7.5%. In addition, according to the land 

degradation map provided by PKabatha in 2023, Zone C has the highest potential for land 

degradation among the zones, with 1046.1 hectares classified as ‘Very High Degradation’, 

corresponding to 75% of the area in Zone C, and 478.3 hectares as ‘High Degradation’ 

(35%). In comparison, Zone A has 809.7 hectares classified as ‘Very High Degradation’ 

(54%), and 566.7 hectares as ‘High Degradation’ (35%), indicating it has the second highest 

land degradation potential. Zone B has 546.7 hectares classified as ‘Very High Degradation’ 

(49%) and 519.7 hectares as ‘High Degradation’ (46%). This aligns with zone-based 

contribution estimation from both the sediment fingerprinting and turbidity analysis.  

According to the mean value of the posterior proportion output from the D-MixSIAR model 

result, the final contribution fraction from the different lithology types (i.e. the output from 

Node 4) was relatively even distributed: CA at 29.2 ± 12.8% , GG at 36.6 ± 16.7%, and QS at 

34.1 ± 13.2%. It is important to note that GG has a mode of 31%, while QS has a mode of 

37%, this implies that QS’s most frequent contribution fraction is higher than GG’s. However 

67



there is not an obvious difference, which implies that physical and/or chemical, anthropogenic 

factors interplay and equalize the contribution among the sources.

The mean values of the posterior proportion output from Node 3 – CA (21.1 ± 12.6%) , GG 

(49.5 ± 20.1%) and QS (29.4 ± 16.5%) – suggest that GG is the most significant contributing 

upstream source. Both the mode (52.7%) and median (50.4%) are close to the mean value, 

which indicates an even distribution graph. Although, there is relatively high standard 

deviation, which adds some uncertainty. However, this result suggests that GG within Zone C 

should have a low contribution. The MixSIAR result, which estimates the contribution from 

each zone, confirms that suspicion, especially by the mode value for GG (8%), which 

represents the most frequently posterior contribution value.  

Tracing the contribution of GG further upstream (Zone A and  Zone B), there are strong 

indications that the major contribution originates from Zone A, estimated to correspond to 

11.3% of the final contribution at Node 4. The contribution of GG in Zone A has a mode of 

83.2% and a mean value (60.9 ± 24.2%). The mean posterior distribution output for the other 

sources in Zone A; CA and QS was (13.5 ± 12.6%) and (25.6 ± 20.2%) respectively. 

The study by GLOWS-FIU (2016), made different choices regarding source selection 

compared to this study. The decision not to replicate the same set of sources stemmed from 

the observation during PCA iteration, which revealed a more distinct source distribution and 

affiliation among CA, GG, and QS in this study. However, despite these disparities, 

significant similarities and correlations persist between the source sets, warranting some 

comparison. The study by GLOWS-FIU identified that 'Bb/Ng' (Bumbugo/Nyabugogo 

formations) emerged as the dominant contributor for the catchment, constituting 

approximately 36-60% of the total contribution. This source primarily comprises quartzite 

and sandstone. In this study, this source distribution aligns with the source group QS, which 

accounts for approximately 34.1% of the total contribution. Similarly, ‘Gd’ (Granitoides 

divers) contributing less than 22% and 'Gdm' (Granites to Mica) contributed approximately 
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9-29%, which in this study collectively correspond to the GG source group, contributing 

approximately 36.6%. However, a notable departure lies in the inclusion of CA as a source 

group in this study, corresponding to the geological type 'Ho' in the study by GLOWS-FIU 

(2016). It is worth noting that the distribution of  'Ho' was not as widespread as CA. ‘Ho’ was 

omitted as a source due to its association with alluvial deposits, which were perceived as less 

advantageous for accurate source identification due to their complex mixture of upstream 

origins.

Further important disparities between these studies are that this study does not cover the full 

extent of Nyagako sub-catchment and is not conducted during the same temporal periods and 

coverage. The sampling period for this study was from September to December, which also 

included the shorter rainy season (October to November), while the GLOWS-FIU study was 

conducted from the end of January to the end of April, when the longer rainy season occurs 

(March to May). Additionally, methodological distinctions are apparent, with this study 

employing a deconvoluted MixSIAR mixing model approach, as opposed to the 

GLOWS-FIU study's pooling of all soil samples from the catchment against sediment 

samples solely at the catchment's outlet. Therefore, a direct comparison of the results would 

not be adequate for any direct conclusion or validation of the previous result, although the 

comparison of the results is valuable for future similar studies.  

5.2. Contributing Factors 

The analysis of the contributing factors highlighted a significant role of LULC distribution. 

Given the crucial role of vegetation, especially forest cover, it was decided to simplify the 

classification of LULC into three main categories: forest, cultivation, and non-cultivated land. 

This approach aimed to uncover potential correlations between soil erosion and the ratio of 

cultivation to forested areas. 
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The results revealed a positive trend, indicating that higher ratios of cultivated to forest areas 

were associated with greater contributions per hectare. This trend suggests that regions with a 

higher intensity of agricultural activities relative to forest cover are more prone to soil 

erosion. This finding aligns with existing literature, which emphasizes the pivotal role of 

vegetation in mitigating soil erosion. As noted by Morgan (2005), plant cover effectively 

dissipates the energy of flowing water by introducing roughness to the flow, thereby reducing 

its velocity. The degree of roughness varies depending on factors such as plant morphology, 

density, and height in relation to the flow depth. Additionally, the GLOWS-FIU study 

highlighted that open agriculture plays a significant role in sediment levels due to its 

extensive coverage, and the combination of these activities with localized rainfall events can 

further intensify sediment contribution. 

Another observed trend was that the lithology sources – QS, GG, and CA – had an increasing 

trend of cultivation-forest ratio in consecutive order (i.e., QS has a lower cultivation ratio than 

GG, and GG has a lower ratio than QS). The explanation for this might be connected to the 

average slope gradient. Steepness and slope length are known to have a strong influence on 

soil erosion (FAO, 2019). The analysis of the topography of the study site revealed a highly 

hilly landscape, with elevations varying considerably from 1474 to 2184 meters above sea 

level. The average slope gradient for each source and zone was estimated, revealing the 

features among the sources: QS had an overall slope gradient of 23°, GG 18°, and CA 12°. 

This suggests that QS are generally located on higher elevations with steeper slopes, while 

CA are located deeper down in the valleys with lower slopes, and GG are situated somewhere 

in between. The connection to the positive contribution trend of the lithology sources in the 

order QS, GG, and CA regarding the cultivation-forest ratio could be that it is more difficult 

to cultivate on steeper slopes, fertile soil often already has been eroded and deposited deeper 

in the valleys where the slope gradient is lower. Therefore, forest plantations are more 

suitable for the steeper regions to mitigate further erosion.  
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GLOWS-FIU (2016) found that mining activities greatly amplify sediment production, 

especially during specific rainfall events at the site. In this study mining activities were 

observed to have a significant effect on the sediment contribution, evident from the turbidity 

measurements, particularly in sub-catchments A1 and A5 in Zone A. An interesting 

observation was a reduction in turbidity during the third campaign, which could be indicating 

less mining activity since it was a Sunday, which is typically associated with reduced work 

activity. 

The impact of heavy rainfall events on soil erosion was observed, particularly evident in 

turbidity measurements during the comparison of each campaign for sub-catchment C3-C4 in 

Zone C. However, despite C3 experiencing significant rainfall during the first campaign, it 

exhibited higher turbidity levels during the second campaign, even in the absence of rainfall. 

Several factors could explain this discrepancy. Firstly, the difference in rainfall duration 

between C3 and C4 during the turbidity measurements could have influenced the results. 

Secondly, due to time constraints and permission to use the turbidimeter in situ, the turbidity 

measurements were conducted only once or twice at each sampling point – the first campaign 

in situ and the second and third campaign off-site, at the soil laboratory. Conducting the 

turbidity measurements off-site during the second and third campaigns may have made the 

samples more susceptible to biotic activity, resulting in the cancellation of many samples. 

Additionally, it is possible that there were human error issues with sample collection during 

the second campaign, leading to inaccuracies in the turbidity measurements. Ideally, 

conducting at least three in situ measurements at each location would have provided more 

accurate results. However, the study was conducted during dry conditions to ensure 

consistency across campaigns, albeit heavy rainfall events are known to be the primary driver 

of soil erosion. Despite this limitation, the findings shed light on the potential impact of 

rainfall variability on soil erosion dynamics. 
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GG in Zone A

Upon further investigation to explain the prominent contribution of GG in Zone A, an 

analysis of correlating factors such as the cultivation-forest ratio and average slope gradient 

among the sources did not resolve any significant correlation to the general trends, suggesting 

that other factors may be influencing soil erosion dynamics. 

The cultivation-forest ratio for each source in Zone A was estimated to be 4.39 for CA, 2.90 

for GG, and 1.24 for QS, pointing towards a higher expected contribution from CA. Similarly, 

considering the average slope gradient for each source; CA (12°), GG (17°) and QS (23°), 

according to the general trend, one would also anticipate the highest contribution from CA. 

Furthermore, the turbidity measurements indicated a significant input of turbidity in area 'A1' 

as well as from 'A5,' which implies substantial land disturbance within these locales. The 

LULC map identified 10 mining activities in area 'A1' and 1 in area 'A5'. However, the 

location of these mining sites does not correspond with the distribution of GG and rather 

correspond to the distribution of QS. Either new or unrecorded (illegal) mining sites could be 

occurring within the area of ‘A1’ and ’A5’ (where GG are distributed), could potentially 

explain the high contribution of GG. Another potential source that could influence the result 

is an observed landfill in Zone A. 

CA as the primary contributor per hectare

The discrepancy in distribution among the sediment sources, with CA emerging as the 

primary contributor despite its lower coverage compared to QS and GG, raises important 

questions about the validity of the fingerprinting results. QS covers the largest area, 2404.6 

hectares, which represents 56.5% of the total area, followed by GG, 1530.7 hectares (36%), 

while CA accounts for a smaller portion of the study area, 318.3 hectares (7.5%). This 

incongruity prompts a closer examination of the factors influencing sediment contribution to 

ensure the accuracy and reliability of the analysis.
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CA encompasses both alluvium and colluvium, representing sediment deposits transported 

and deposited by water and mass-gravity movement, respectively. Alluvium typically 

accumulates in channelized watercourse systems like gullies, streams, and floodplains, 

leading to well-sorted and stratified deposits. On the other hand, colluvium consists of 

sediments moved primarily by gravity, often found on slopes and their bases (Miller & 

Juilleret, 2020). Given these characteristics, CA is inherently exposed and susceptible to 

erosion, which could explain why its contribution per hectare exceeds that of other sources.

Zone C as the major contribution region 

As previously established, Zone C contributes significantly to the final sediment output, 

accounting for approximately 70-80% of the total. Upon closer examination of the 

contribution fractions from Zone C, an analysis of the modes reveals a distinct pattern. The 

mode contribution of QS is the highest, about 26.6%, with the GG following 22.1% and 8% 

of GG, 18.2% originating from the upstream zones. The coverage of QS within Zone C is 

almost 12 times larger than CA and more than 8 times larger than GG in Zone C. This 

substantial difference underscores QS as the most significant contributing source at the Zone 

C outlet, suggesting that its actual contribution may even exceed the estimate. However, the 

average slope gradient is relatively large 22°, compared to the other sources 16° and 13° for 

GG and CA, respectively. As indicated by the general trend, a greater slope gradient 

correlates with a lower cultivation-forest ratio and, consequently, a lower contribution.

Overall, Zone C exhibits the highest cultivation-forest ratio among all sources, except for GG 

in Zone B, however being very close to the same ratio in Zone C. Additionally, Zone C has 

the highest average slope gradient, this might be an indication that extensive cultivation on 

steep slopes might trigger alluvial and colluvial erosion processes.
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5.3. Evaluation of the Methodology

The methodology provided valuable insights for future investigations addressing soil erosion 

for different points of views, and the combination of the methods complemented the 

interpretation of the result.   

The GIS-analysis was an essential tool, from the preparatory investigation for the fieldwork 

and project design and to the interpreting of the result. The existing land degradation map, 

based on RUSLE, provided support and insights. Applying a RUSLE model has a lot of 

potential to provide insights and understanding of the soil erosion dynamics. It is a relatively 

simple and widely approved model (Zeghmar et al., 2024). The limitation by utilizing GIS is 

that it relies on data points and layers, which is important to validate and confirm. This 

suggests that more investments on data collection correlating to the factors employed in the 

RUSLE model would be valuable. 

The turbidity analysis generated valuable information that complemented and validated the 

fingerprinting results. It was furthermore an efficient method to map and back track smaller 

sub-catchments of interest and indications of anthropogenic land disturbance, like mining 

activity and highlighted the impact from rainfall events.

The sediment fingerprinting analysis successfully generated posterior density plots illustrating 

the distribution of contributions from the selected sources. The standard deviations (SD) and 

percentile ranges provide a sense of the variability and uncertainty in these estimates. The 

variability in source contributions underscores the complexity of sediment transport and 

deposition in the catchment and the influence of upstream activities and natural processes. 

The accuracy of the result is difficult to validate and confirm. However, the correlations to the 

turbidity analysis and land degradation map validate the result regarding the zone 

contribution. Furthermore, the comprehensive tracers screening process assures the quality of 

the data underlying the results. The fingerprinting method, compared to the RUSLE model 

and turbidity analysis, estimates what the sediment in the river contains and its lithological 

74



origin, while the turbidity analysis can identify the direction of the origin of the soil erosion 

and RUSLE can identify the contributing areas.

Regarding the sampling strategy

This study was mainly focusing on collecting subsoil, because it has less content of organic 

matter and humus, although topsoil was often collected as a complement. Both layers have 

particle content of sand, silt and clay. The topsoil is more exposed to anthropogenic activity, 

which could contaminate the lithogenic source (Kříbek er al., 2010). 

The goal of the soil collection was to obtain the geochemical signature of the lithology at the 

study site. During the analysis of the samples for the tracer screening process, the distinction 

between topsoil and subsoil was always considered. However, there was no obvious 

discrepancy between their geochemical signatures. The low variation in the composition of 

geochemical elements between topsoil and subsoil could be due to limitations in soil 

formation. Additionally, the confining deposits from alluvial and colluvial sources further 

limit soil development (Smith et al., 2018).

More soil samples from the zones would have been preferred. For instance, no soil samples of 

CA were collected in Zone B, so the average result for CA representing the whole study site 

was used to complement the MixSIAR modeling for Zone B. Similarly, the average result for 

QS was used in Zone B, and the average result for GG was used in Zone C due to a lack of 

soil samples representing those sources and zones.

Due to limited access, budget, and experience, it was difficult to reach and collect samples 

from all locations of interest. Furthermore, the final selection of sources was not determined 

prior to the soil sample collection campaigns; instead, the process was based on trials with 

different combinations using the geographical information available, which resulted in a lack 

of soil samples. Also, soil samples that were very close to a source boundary and had a strong 
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correlation to the geochemical signature of the neighboring source, were further on 

considered as part of that neighboring source. 

The sample preparation was not performed in the most clinical environment, where several 

factors could influence and contaminate the result. The equipment, such as sieves, container, 

and plates were cleaned with distilled water before usage. Other issues were to keep a 

consistent temperature during the evaporation process of the sediment samples and keep away 

dust from entering the pot. Another method of removing the water from the sediment sample 

would be to let the sediment sample settle for at least 24 hours, and then remove the water by 

siphoning and centrifuging (Smith et al., 2018). 

A limitation of the XRF analysis of the samples was that the samples were only performed 

once. The elements Ba, Sr, Mg, As, Cu, Sb, Cr, Ta, Co and Ni were removed from further 

analysis before the tracer screening process because they were not detected in a sample that 

was used. This issue might have been solved by more XRF measurements. Two soil samples 

were also excluded from the analysis because of a composition that deviated from the 

expected values.

About tracer screening process

The tracer screening process aims to select an optimal subset of tracers that maximize sample 

source discrimination while avoiding redundancy. The goal is to identify the smallest set of 

tracers that provides the most information about the differences between sources (Collins & 

Walling, 2002). However, other studies suggest that sediment fingerprinting research should 

strive to utilize the broadest possible range of tracers for source separation. This approach is 

limited only by the requirement to maintain conservative properties in those tracers, and 

employing a larger number of tracers, as opposed to a smaller set, leads to a reduction in 

errors when compared to synthetic mixtures (Smith, Karam, & Lennard, 2018).
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The tracer screening process for this study resulted in selecting the elements Silicon (Si), 

Aluminum (Al), and Iron (Fe). This is a geochemically reasonable result, considering that 

these elements have a very high abundance in the upper continental crust by weight: Si (≈ 

29.6%), Al (≈ 7.9%), and Fe (≈ 4.1%), with Oxygen (O) being the most abundant element at 

approximately 47.0% (Yaroshevsky, 2006).

Other elements with a relatively high abundance in the upper continental crust are Sodium 

(Na) (2.2%), Calcium (Ca) (2.9%), and Magnesium (Mg) (1.7%) (Yaroshevsky, 2006). These 

elements exhibit high solubility in water and are prone to dissolving when sediment is 

submerged, and they tend to react under varying environmental conditions (Chalaux-Clergue 

et al., 2024), which might be why they did not pass the screening process. Aluminum (Al) 

and Silicon (Si) show a lower tendency to react under varying environmental conditions, 

making them more reliable as tracers (Chalaux-Clergue et al., 2024).

5.4. Recommendations for Erosion Control Measures 

To mitigate soil erosion in the Nyagako sub-catchment area, this study suggests implementing 

targeted soil conservation measures in the most erosion-prone area, Zone C, to reduce 

sediment contribution at the outlet. Furthermore, the promotion of reforestation and 

sustainable agricultural practices could help balance the cultivation-forest ratio, leading to the 

mitigation of soil erosion in cultivated areas. Additionally, regulating and monitoring mining 

activities in sub-zones A1 and A5 could lead to  reduced turbidity and sediment contribution. 

Lastly, address the significance contribution of CA by stabilizing the channelized 

watercourses and slope bases. 

5.5. Recommendations for Erosion Analysis and further Research 

For future assessments on soil erosion, this study recommends enhancing GIS and turbidity 

monitoring, and to continue using GIS analysis for detailed mapping and monitoring of 
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erosion-prone areas. Furthermore, turbidity measurement programs should be expanded to 

track and mitigate the impacts of rainfall events and land disturbances on soil erosion. 

When conducting this study, several interesting themes and research areas for further 

investigations were identified. Recommendations for further research are to conduct 

additional studies to understand the unexplained GG contributions from Zone A, investigate 

the contamination from landfills affecting the river system, address the significant 

contributions from CA by further research on how to stabilize alluvium and colluvium 

deposits from erosion. Furthermore, evaluate erosion management strategies, and conduct 

fingerprinting analysis during and after rainfall events, and also collect more soil samples in 

the catchment area to get more detailed data to map the geological signature and erosion 

dynamics.
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6. Conclusion

This study investigated the sources and contributing factors of soil erosion in the Nyagako 

sub-catchment by employing GIS-analysis, conducting a sediment fingerprinting analysis and 

measuring turbidity. Zone C (1589 hectare), the most downstream region, was identified as 

the most erosion prone zone, corresponding to approximately 70-80% of the contribution at 

the outlet of the study site. 

The most contributing source per hectare throughout was the source corresponding to CA;  

0.11% per hectare in Zone A, 0.47% per hectare in Zone B and 0.29% per hectare in Zone C. 

CA encompasses both alluvium and colluvium deposits and often accumulates in channelized 

watercourse systems and slope base, respectively. Zone A was identified as the second 

highest contributing region, where the source of GG represented the major contributor 

corresponding to approximately 60.9% of the contribution at the outlet of Zone A and 11.3% 

of contribution at the final outlet. Further analysis of the correlation between the general trend 

of the contributing factor did not motivate the relatively large contribution of GG from Zone 

A. However, the sub zones ‘A1’ and ’A5’ indicated high turbidity contribution, suggesting 

impact from mining activity. Another reason could be impact from the landfill in the zone, 

contaminating the river.     

The major contributing factor was identified as the cultivation-forest ratio, where there was a 

strong positive correlation between the contribution per hectare and cultivation-forest ratio for 

the respective zones and source groups. On the other hand, the steepness gradient showed a 

negative correlation to the contribution per hectare, which could be explained by less 

cultivating activity or higher degree of forest plantation occurring in the steeper regions.

The study's methodology provided valuable insights into soil erosion dynamics by combining 

the different methods, enhancing result interpretation. Sediment fingerprinting revealed 

source contribution and the variability in different regions, illustrating the complexity of soil 

erosion. GIS analysis was crucial for preparatory investigation, project design, result 

79



interpretation, and validation. The correlation between MixSIAR, turbidity measurements, 

and the land degradation map (RUSLE) validated the results of each method. In addition, 

turbidity analysis complemented the fingerprinting results by mapping sub-catchments – 

identifying anthropogenic disturbances – and highlighting rainfall impacts.

In summary, this study illustrates the value of a multi-faceted approach in assessing soil 

erosion. By integrating GIS analysis, sediment fingerprinting, and turbidity measurements, it 

achieves a comprehensive understanding of the contributing factors and erosion-prone 

regions and sources of soil erosion in the Nyagako sub-catchment. The findings emphasize 

the significant roles of land use and anthropogenic activities, such as mining, in influencing 

soil erosion. The methodologies and insights gained from this study can inform future soil 

conservation efforts and help in the strategic planning of erosion mitigation measures. 

Additionally, the study highlights the need for continued research and data collection to refine 

the understanding of soil erosion processes and improve the accuracy of predictive models.
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Appendix

A.1 XRF-Analysis Result

The provided tables present raw data obtained from the XRF analysis. Part A in Table A1.1a 

includes elements with the most significant results, which underwent the tracer screening 

process. Part B in table A1.1b lists elements that did not yield significant results, with "not 

detected" (ND) values recorded. Samples SS20 and SS2 were not used in the final analysis 

because they deviated from expected values.. 
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Table A1.1a. PartA: Sorted raw dataset from the X-ray Fluorescence (XRF) measurements. 
Sample id Zone Source Si Al Fe K Ti Ca P Zr Rb Nb Mn Zn Pb

SS14 A CA 22.025 13.265 10.332 3.035 1.029 0.191 0.101 0.089 0.031 0.009 0.032 0.011 0.008
ST17 A CA 21.784 12.358 13.492 1.986 0.936 0.484 0.200 0.089 0.032 0.017 0.180 0.018 0.015
SS12 A GG 21.488 15.731 8.544 2.857 0.580 0.219 0.105 0.046 0.049 0.009 0.050 0.010 0.009
SS15 A GG 21.632 17.573 7.373 1.794 0.566 0.158 0.073 0.044 0.019 0.007 0.024 0.005 0.006
ST16 A CA 22.928 12.137 9.816 2.746 1.496 0.315 0.172 0.126 0.032 0.014 0.093 0.011 0.009
SS11 A GG 20.357 14.147 11.420 2.623 0.511 0.363 0.150 0.037 0.037 0.009 0.039 0.014 0.007
ST13 A GG 21.445 14.241 9.827 2.691 0.781 0.244 0.112 0.066 0.043 0.009 0.110 0.012 0.008
SS18 A CA 23.098 11.840 10.582 2.049 0.643 0.245 0.044 0.039 0.031 0.009 0.033 0.015 0.008
ST19 A GG 21.106 14.160 9.105 2.642 2.027 0.313 0.126 0.033 0.015 0.007 0.081 0.013 0.007
SS20* A GG 24.511 18.775 2.083 2.143 0.000 0.188 0.053 0.008 0.038 0.005 0.009 0.005 0.006
SS21 A GG 19.857 16.936 10.718 1.993 0.463 0.221 0.120 0.036 0.025 0.006 0.040 0.008 0.011
SS22 A QS 19.309 15.562 12.692 2.075 1.133 0.198 0.086 0.073 0.020 0.008 0.044 0.012 0.007
SS23 A QS 19.180 15.515 13.601 1.954 1.105 0.216 0.103 0.075 0.019 0.010 0.043 0.009 0.007

Up6_C1 Node1 – 20.399 16.929 8.079 2.726 0.288 0.745 0.135 0.014 0.051 0.005 0.095 0.012 0.011
Up6_C2 Node1 – 20.564 16.751 8.326 2.514 0.076 0.634 0.250 0.015 0.041 0.004 0.058 0.013 0.013
Up6_C3 Node1 – 21.799 18.692 5.679 1.724 0.161 0.442 0.099 0.013 0.039 0.003 0.046 0.006 0.007

ST5 B GG 22.044 15.373 9.168 1.655 0.748 0.340 0.133 0.088 0.037 0.012 0.075 0.011 0.011
SS6 B GG 20.596 17.875 9.796 0.783 0.373 0.136 0.084 0.042 0.025 0.010 0.036 0.006 0.010
SS7 B GG 21.446 17.728 8.804 0.880 0.393 0.147 0.079 0.039 0.023 0.009 0.035 0.006 0.007
ST8 B GG 21.471 15.928 8.573 1.707 0.903 0.267 0.128 0.049 0.030 0.012 0.102 0.012 0.009
SS9 B GG 22.697 17.123 5.420 2.455 0.472 0.179 0.052 0.037 0.038 0.005 0.036 0.006 0.004
SS10 B GG 21.634 14.301 10.947 1.614 1.139 0.231 0.147 0.072 0.022 0.013 0.069 0.011 0.009
SS27 B QS 19.801 14.682 12.877 2.925 0.659 0.201 0.242 0.059 0.040 0.006 0.030 0.006 0.012
ST29 B GG 22.581 13.726 8.365 2.898 0.599 0.600 0.165 0.074 0.044 0.010 0.099 0.015 0.009

Stream6_C1 Node2 – 18.998 11.900 11.583 3.990 0.407 1.434 0.246 0.024 0.060 0.009 0.217 0.019 0.009
Stream6_C2 Node2 – 20.205 13.240 10.291 2.909 0.449 1.817 0.112 0.024 0.044 0.008 0.172 0.023 0.010
Stream6_C3 Node2 – 20.286 11.051 9.547 3.231 0.306 2.238 0.246 0.020 0.044 0.008 0.223 0.022 0.008

Mix6_C1 Node3 – 20.514 14.169 8.553 2.690 0.345 1.471 0.170 0.019 0.045 0.006 0.150 0.015 0.010
Mix6_C2 Node3 – 20.706 16.699 8.553 2.127 0.197 0.728 0.216 0.017 0.039 0.004 0.076 0.010 0.009
Mix6_C3 Node3 – 22.239 17.530 5.461 1.987 0.127 0.624 0.108 0.014 0.037 0.004 0.053 0.008 0.007

ST1 C QS 18.002 13.632 16.408 3.939 0.810 0.264 0.150 0.051 0.043 0.008 0.019 0.012 0.008
SS2* C QS 24.588 15.081 3.367 5.024 0.494 0.174 0.086 0.072 0.036 0.003 ND ND 0.004
SS3 C QS 17.225 15.747 14.794 4.106 0.358 0.192 0.155 0.033 0.041 0.004 0.009 0.010 0.010
SS4 C QS 18.407 15.325 15.583 2.368 0.376 0.149 0.121 0.032 0.023 0.003 0.022 0.006 0.003
SS24 C CA 21.426 13.216 11.393 4.561 0.470 0.220 0.134 0.046 0.066 0.006 0.045 0.016 0.003
SS30 C CA 23.842 11.889 8.036 2.901 1.435 0.374 0.138 0.112 0.034 0.011 0.332 0.015 0.008
SS31 C CA 24.706 12.933 7.048 2.836 1.007 0.224 0.102 0.103 0.028 0.008 0.088 0.007 0.007
SS32 C QS 20.447 13.621 12.994 2.369 1.134 0.200 0.109 0.079 0.026 0.010 0.087 0.010 0.009
ST33 C CA 22.247 10.493 11.272 2.940 1.224 0.443 0.217 0.163 0.026 0.012 0.109 0.015 0.009
ST25 C QS 18.460 12.366 12.120 2.670 0.783 0.543 0.347 0.045 0.051 0.015 0.079 0.022 0.011
SS26 C GG 22.316 18.816 4.642 2.091 0.055 0.193 0.056 0.017 0.037 0.005 0.016 0.006 0.004
SS28 C QS 20.076 15.462 12.171 2.500 0.664 0.155 0.222 0.056 0.040 0.005 0.029 0.005 0.007

Mix11_C1 Node4 – 20.234 14.076 11.503 3.014 0.875 0.400 0.181 0.044 0.043 0.010 0.117 0.013 0.008
Mix11_C2 Node4 – 20.763 13.592 10.020 2.827 0.258 1.469 0.171 0.022 0.041 0.007 0.165 0.023 0.012
Mix11_C3 Node4 – 21.495 15.939 7.406 2.238 0.194 0.973 0.111 0.019 0.032 0.005 0.109 0.011 0.006
Mix11_SC Node4 – 20.319 12.920 10.529 3.311 0.458 1.687 0.154 0.027 0.046 0.007 0.188 0.017 0.007

*Samples SS20 and SS2 was not used in the final analysis
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Table A1.1b. Part B: Sorted raw dataset from the X-ray Fluorescence (XRF) measurements.
Sample id Zone Source Ba Sr Mg As Cu Sb Cr Ta Co Ni

SS14 A CA 0.065 0.010 0.903 0.003 0.004 0.008 0.053 0.006 0.000 0.007
ST17 A CA 0.060 0.011 0.000 ND 0.005 0.015 0.052 ND 0.016 ND
SS12 A GG 0.057 0.006 0.828 0.000 ND 0.010 0.039 0.009 0.000 ND
SS15 A GG 0.054 0.006 0.493 ND ND 0.009 ND 0.006 0.010 ND
ST16 A CA 0.055 0.009 0.882 0.003 0.004 0.010 0.033 0.008 0.000 0.006
SS11 A GG 0.083 0.005 1.637 0.000 0.007 ND 0.051 ND 0.000 0.009
ST13 A GG 0.067 0.008 1.417 0.001 ND 0.006 ND ND ND ND
SS18 A CA 0.057 0.009 0.415 0.008 ND 0.010 0.041 0.010 0.000 ND
ST19 A GG 0.056 0.006 1.131 0.003 0.000 0.010 0.058 0.012 0.000 0.010
SS20 A GG ND 0.002 0.000 0.000 ND ND ND 0.004 0.000 ND
SS21 A GG 0.053 0.008 0.631 0.003 0.006 ND 0.046 0.007 0.006 0.007
SS22 A QS 0.048 0.004 0.699 0.002 0.008 0.006 0.048 0.009 0.000 0.011
SS23 A QS 0.056 0.004 ND 0.003 0.004 0.006 0.048 0.008 0.007 0.006

Up6_C1 Node1 – 0.051 0.026 0.850 0.004 0.008 0.006 0.044 ND 0.000 0.008
Up6_C2 Node1 – 0.056 0.041 1.180 0.004 0.011 0.006 ND 0.011 0.006 0.013
Up6_C3 Node1 – 0.031 0.014 0.368 0.004 0.006 ND ND 0.009 0.004 0.006

ST5 B GG 0.033 0.008 0.578 0.000 ND 0.012 0.031 0.007 0.000 ND
SS6 B GG 0.036 0.005 0.462 0.000 ND 0.006 ND 0.007 0.006 0.005
SS7 B GG 0.030 0.003 ND ND 0.004 0.004 ND 0.008 0.000 ND
ST8 B GG 0.050 0.005 1.023 0.000 ND ND 0.033 0.006 ND 0.007
SS9 B GG 0.049 0.004 0.797 0.001 ND 0.009 0.031 0.007 0.000 0.000
SS10 B GG 0.049 0.006 0.633 0.002 ND 0.012 0.040 0.010 0.000 ND
SS27 B QS 0.080 0.032 0.509 0.005 0.011 ND 0.044 0.000 0.007 ND
ST29 B GG 0.053 0.009 1.266 0.000 0.000 0.006 ND ND 0.000 0.008

Stream6_C1 Node2 – 0.059 0.023 2.535 0.008 0.009 0.009 0.072 0.012 0.015 0.016
Stream6_C2 Node2 – 0.073 0.024 0.995 0.007 0.022 0.016 ND ND 0.000 0.014
Stream6_C3 Node2 – 0.071 0.032 4.137 0.003 0.013 0.012 0.044 0.014 0.014 0.007

Mix6_C1 Node3 – 0.055 0.028 2.341 0.004 0.009 0.006 0.022 0.010 0.007 0.007
Mix6_C2 Node3 – 0.049 0.044 0.779 0.007 0.009 0.006 ND 0.008 0.000 0.010
Mix6_C3 Node3 – 0.033 0.015 0.798 0.004 0.006 0.008 ND 0.009 0.000 0.005

ST1 C QS 0.077 0.014 ND 0.025 ND 0.010 0.059 0.011 0.000 0.013
SS2 C QS 0.067 0.009 0.339 0.004 ND 0.007 0.052 0.006 ND 0.006
SS3 C QS 0.063 0.030 0.756 0.034 ND 0.007 0.042 ND 0.000 0.007
SS4 C QS 0.052 0.011 0.520 0.001 ND 0.009 0.053 0.007 0.000 0.009
SS24 C CA 0.079 0.004 0.444 0.006 0.006 0.005 0.035 0.011 ND 0.006
SS30 C CA 0.054 0.011 1.262 0.002 0.008 0.011 0.037 ND 0.010 ND
SS31 C CA 0.038 0.007 0.675 0.002 0.005 0.005 ND 0.006 0.009 ND
SS32 C QS 0.068 0.006 0.877 0.004 0.007 0.009 0.043 0.007 0.005 0.011
ST33 C CA 0.071 0.008 2.399 0.003 0.009 0.011 0.056 ND ND ND
ST25 C QS 0.074 0.006 4.471 0.000 0.000 0.024 0.081 0.018 0.022 0.013
SS26 C GG ND ND 0.704 ND 0.000 0.007 0.032 0.004 0.005 ND
SS28 C QS 0.074 0.029 ND 0.007 0.010 0.007 0.033 0.006 0.000 ND

Mix11_C1 Node4 – 0.064 0.010 1.104 0.001 0.007 0.009 0.050 0.011 0.000 0.007
Mix11_C2 Node4 – 0.075 0.032 1.415 0.005 0.015 0.008 0.062 0.012 0.000 0.012
Mix11_C3 Node4 – 0.040 0.022 1.152 0.007 0.011 0.008 ND 0.012 0.000 ND
Mix11_SC Node4 – 0.048 0.025 1.386 0.007 0.012 0.009 0.055 0.009 0.000 0.006
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A.1.1 Tracer Screening Process Result

The raw geochemical dataset of the samples was sorted into potential source groups by 

location and different lithology as presented in table A1.1a-b . The elements were sorted from 

the ones that showed high concentration performance and the elements that were not detected 

were removed. The elements that were removed were; Barium (Ba), Strontium (Sr), 

Magnesium (Mg), Arsenic (As), Copper (Cu), Antimony (Sb), Chromium (Cr), Tantalum 

(Ta), Cobalt (Co), and Nickel (Ni). The other remaining elements were Silicon (Si), 

Aluminum (Al), Iron (Fe), Potassium (K), Titanium (Ti), Calcium (Ca), Phosphorus (P), 

Zirconium (Zr), Rubidium (Rb), Niobium (Nb), Zinc (Zn), and Lead (Pb). The remaining 

elements were further analyzed through the ‘range test’, see figure A1.1. 

Figure A1.1. Range test result: If the tracer element is conservative then the frame is green, it is when the 
downstream node value is in the concentration range of the upstream samples, otherwise it is red and thereby 
non-conservative. A represents samples from Zone A, B from Zone B and C from Zone C.  
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The result from the range test failed the elements; Ti, Ca, Zr and Nb. The analysis of these 

elements indicated a non-conservative behavior and were thereby not analyzed further. 

The Kruskal-Wallis test results for the remaining elements are presented in table A1.2. For all 

elements, where the p-values are less than 0.05 (highlighted with green), are suggesting that 

there are statistically significant differences in median values among the sources, indicate 

significant differences in the distributions of Si, Al, Fe, K and Mn across the sources CA, GG 

and QS, especially for Si, Al and Fe. In contrast, P, Rb, Zn and Pb are not showing any 

distinct distribution between the sources (p-value greater than 0.05, highlighted in red).

Table A1.2. Results for evaluation of differences in distribution 
between the sources, based on the Kruskal-Wallis test.  

Element ChiSquared DF P-Value

Si 20.55 2 0.000035

Al 18.12 2 0.000117

Fe 18.12 2 0.000116

K 7.171 2 0.027726

P 3.811 2 0.148753

Rb 0.290 2 0.865050

Mn 6.039 2 0.048820

Zn 5.706 2 0.057661

Pb 0.041 2 0.979946

The intrasource variance of the remaining elements, as detailed in Table A1.3, illustrates the 

variability for each element in different sources (CA, GG, and QS). Higher values indicate a 

greater degree of variability for the given element associated with a particular source, 

pointing to a broader range of concentrations. Notably, Iron (Fe) displays significant 

variability within sources, particularly in CA and GG, which suggests diverse concentrations 

within these source categories.
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Table A1.3. The intrasource variance of each tracer within each source.

Source Si Al Fe K Mn

CA 1.23 0.83 4.05 0.62 0.0102

GG 0.66 2.88 3.73 0.47 0.0010

QS 1.10 1.40 2.39 0.59 0.0007

The intersource variance of the remaining elements in table A1.4 highlights the average 

variability of each element across the different sources (CA, GG, and QS). High values, like 

those for Fe, suggest this element's concentration significantly varies between sources, which 

could be useful for distinguishing between them. Low values indicate less variability between 

sources, potentially making it less useful for differentiating the sources. 

Table A1.4. The intersource variance summary. 

Element Intersource Variance

Si 2.45

Al 2.47

Fe 4.37

K 0.145

Mn 0.001

Due to their higher intrasource variance relative to the intersource variance, Potassium (K) 

and Manganese (Mn) were excluded from further analysis. The elements that continue to be 

analyzed as tracers are Silicon (Si), Aluminum (Al), and Iron (Fe).

The result of the Shapiro-Wilk test for Si, Al, and Fe shows no significant evidence to reject 

the null hypothesis of normality for any of the tracers (table A1.5). The p-value is well above 

the common alpha level of 0.05, indicating no significant deviation from normality. The 

distribution of tracers values is considered to be normally distributed. This is conducive to 

analyses or models assuming normality of data (Stock et al. 2018).
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Table A1.5. The result of the Shapiro-Wilk test.

Tracer W-Statistic p-value

Si 0.91298 0.2014

Al 0.95550 0.6835

Fe 0.94534 0.5296

The W statistic in the Shapiro-Wilk test shows the measure of normality, assessing how well a 

dataset conforms to a normal distribution. All of the tracer’s seem to resemble a normal 

distribution. 

A. 1.2 Sampling Locations 

The following tables present the sampling locations for the sediment samples in table A1.6, 

soil samples in table A1.7, and TSS and turbidity measurements in table A1.8. 

Table A1.6. Sediment sample collections, time and location. 
Location Dates of Collection

Sampling 
point Mixture Easting Northing 2023-10-18 2023-11-11 2023-11-29 2023-12-10

Upstream 6 Node 1 467373 4773351 X X X –
Stream 6 Node 2 467396 4773342 X X X –

Mix 6 Node 3 467381 4773429 X X X –
Mix 11 Node 4 463682 4774407 – – – X
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Table A1.7. Soil sample collection, horizon, location and date. 
Location

Sample id Collection id Soil Horizon Easting Northing Collected

ST1 S_top1 topsoil 468256 4776222 2023-11-29

SS2 S_sub2 subsoil 468076 4776763 2023-11-29

SS3 S_sub3 subsoil 468232 4776241 2023-11-29

SS4 S_sub4 subsoil 468412 4776236 2023-11-29

ST5 S_top5 topsoil 469930 4774895 2023-11-29

SS6 S_sub6 subsoil 469916 4774826 2023-11-29

SS7 S_sub7 subsoil 470290 4774036 2023-11-29

ST8 S_top8 topsoil 470348 4774026 2023-11-29

SS9 S_sub9 subsoil 470465 4773994 2023-11-29

SS10 S_sub10 subsoil 469573 4772412 2023-11-29

SS11 S_sub11 subsoil 470037 4771941 2023-11-29

SS12 S_sub12 subsoil 469519 4771202 2023-11-29

ST13 S_top13 topsoil 469258 4769898 2023-11-29

SS14 S_sub14 subsoil 469319 4769630 2023-12-10

SS15 S_sub15 subsoil 469293 4769904 2023-12-10

ST16 S_top16 topsoil 469374 4769666 2023-10-19

ST17 S_top17 topsoil 469294 4769638 2023-10-19

SS18 S_sub18 subsoil 469253 4769879 2023-11-29

ST19 S_top19 topsoil 468525 4770312 2023-10-19

SS20 S_sub20 subsoil 466765 4771340 2023-12-10

SS21 S_sub21 subsoil 466239 4771504 2023-11-29

SS22 S_sub22 subsoil 467040 4773270 2023-12-10

SS23 S_sub23 subsoil 467048 4773267 2023-10-19

SS24 S_sub24 subsoil 467362 4773466 2023-12-10

ST25 S_top25 topsoil 464996 4772324 2023-11-29

SS26 S_sub26 subsoil 463738 4773604 2023-11-29

SS27 S_sub27 subsoil 469668 4775759 2023-11-29

SS28 S_sub28 subsoil 463841 4774989 2023-11-29

ST29 S_top29 topsoil 469573 4772412 2023-11-29

SS30 S_sub30 subsoil 466527 4774354 2023-12-10

SS31 S_sub31 subsoil 465851 4774586 2023-12-10

SS32 S_sub32 subsoil 464977 4774603 2023-12-10

ST33 S_top33 topsoil 466471 4774432 2023-10-19
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Table A1.8. Turbidity measurements, time and location. 
Campaign 1 Campaign 2 Campaign 3

Location
Date: 2023-10-18 2023-11-11 2023-12-10

Sampling 
point

Turbidity 
(NTU)

TSS 
(mg/l)

Turbidity 
(NTU)

TSS 
(mg/l)

Turbidity 
(NTU)

TSS 
(mg/l) Easting Northing

Upstream 1 3120 2920 – – 3537 3759 469364 4769646
Stream 1 26 13 – – 54 42 469328 4769640

Mix 1 1340 1630 – – 2202 1984 469341 4769662
Stream 2 58 37 – – 24 15 469283 4769872

Mix 2 – – – – 854 905 469239 4769890
Stream 3 35 28 – – 15 10 468539 4770252

Mix 3 – – – – 1565 1622 468532 4770291
Upstream 4 952.5 – – – – – 468328 4770710

Stream 4 1250 1090 – – 1226 1232 468287 4770712
Mix 4 2530 2600 – – 1999 1876 468280 4770753

Upstream 5 1450 – – – – – 468087 4770964
Stream 5 60 – – – 19 8 468106 4770985

Mix 5 900 910 – – 1403 1490 468075 4770993
Upstream 6 950 877 1155 1095 1423 1510 467373 4773351

Stream 6 363 274 383 335 215 188 467396 4773342
Mix 6 763.5 703 1081 972 819 827 467381 4773429

Upstream 7 587 519 – – 787 799 466510 4774121
Stream 7 289 253 – – 40 36 466487 4774133

Mix 7 565 559 – – 757 786 466491 4774172
Stream 8 92 84 – – 33 28 465990 4774478

Mix 8 247 271 – – 450 435 465886 4774523

Upstream 9 – – 349 335 – – 465930 4774499

Stream 9 445 419 1833 1184 37 28 464843 4774639

Mix 9 – – – – 501 477 464656 4774514

Upstream 10 10280 9080 – – – – 464224 4774416

Stream 10 7710 7700 74 64 44 35 464212 4774400

Mix 10 7320 6030 262 252 412 431 464183 4774427

Mix 11 9840 8400 409 380 526 512 463682 4774407
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A.2 MixSIAR Model Input Data 

The following tables present the input data for the MixSIAR modeling, according to the 

sample design and MixSIAR framework. Source inputs are presented in table A2.1,  mixture 

inputs in table A2.2 and discriminant input in table A2.3. The mean value and standard 

deviation of the samples representing upstream sources of the corresponding node. Note that 

CA* and QS*, in model 2 and GG* in model 4 are using a generalized mean value, based on 

all of the samples in the catchment that represent that specific source. 

Table A2.1. Source input for the MixSIAR models.  
Source.m1.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

CA 22.459 0.651 12.400 0.614 11.055 1.655 4

Model 1 GG 20.981 0.716 15.464 1.524 9.498 1.475 6

QS 19.245 0.092 15.539 0.033 13.146 0.643 2

Source.m2.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 2
CA* 22.757 1.111 12.666 0.913 10.246 2.011 8
GG 21.781 0.780 16.008 1.109 8.725 1.703 5
QS* 18.990 1.027 14.657 1.329 13.693 1.735 9

Source.m3.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 3
mix.1 20.921 0.765 17.457 1.073 7.361 1.462 3
mix.2 19.830 0.721 12.064 1.104 10.473 1.030 3

Source.m4.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 4

mix.3 21.153 0.945 16.133 1.750 7.522 1.785 3
CA 23.055 1.489 12.133 1.233 9.438 2.226 4

GG* 21.477 0.686 15.975 1.186 8.764 1.966 14
QS 18.769 1.243 14.359 1.351 14.012 1.835 6

* Synthetic source, meaning the average of all of the samples corresponding to the particular source 
was used, due to lack of samples representing the source in the particular zone if the number of 
samples was ( n  ≤ 1). 
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Table A2.2. The mixture input for the MixSIAR models. 
mix.1.Comb.copy.csv Sample ID Campaign Si Al Fe

Model 1
Up6_C1 1 20.399 16.929 8.079
Up6_C2 2 20.564 16.751 8.326
Up6_C3 3 21.799 18.692 5.679

mix.2.Comb.copy.csv Sample ID Campaign Si Al Fe

Model 2
Stream6_C1 1 18.998 11.900 11.583
Stream6_C2 2 20.205 13.240 10.291
Stream6_C3 3 20.286 11.051 9.547

mix.3.Comb.copy.csv Sample ID Campaign Si Al Fe

Model 3
Mix6_C1 1 20.514 14.169 8.553
Mix6_C2 2 20.706 16.699 8.553
Mix6_C3 3 22.239 17.530 5.461

mix.4.Comb.copy.csv Sample ID Campaign Si Al Fe

Model 4

Mix11_C1* 1 20.234 14.076 11.503
Mix11_C2 2 20.763 13.592 10.020
Mix11_C3 3 21.495 15.939 7.406
Mix11_SC SC** 20.319 12.920 10.529

* Collected after a rainfall event, which might affect the result.
** SC refers to the ‘soil campaign’, which could affect the result.
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Table A2.3. Discriminant input for the MixSIAR models.  

discr.m1.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n
CA 0 0 0 0 0 0 4

Model 1 GG 0 0 0 0 0 0 6
QS 0 0 0 0 0 0 2

discr.m2.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 2
CA 0 0 0 0 0 0 8
GG 0 0 0 0 0 0 5
QS 0 0 0 0 0 0 9

discr.m3.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 3
mix.1 0 0 0 0 0 0 3
mix.2 0 0 0 0 0 0 3

discr.m4.Geo5.csv Source MeanSi SDSi MeanAl SDAl MeanFe SDFe n

Model 4

mix.3 0 0 0 0 0 0 3
CA 0 0 0 0 0 0 4
GG 0 0 0 0 0 0 14
QS 0 0 0 0 0 0 6
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