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Abstract

Retrieval Augmented Generation (RAG) is an increasingly popular machine
learning technique combining the realm of Large Language Models (LLMs) with
an Embedding Model based Information Retrieval System. This enables trace-
able, fact-based LLM generated answers, which is critical for professional tasks.
The retrieval component of a RAG-system is crucial for accuracy, and open-
source embedding models provide a solid foundation for successfully implement-
ing such systems. However, for highly domain-specific text, a steep decrease in
retrieval performance is observed, reducing RAG’s effectiveness across special-
ized landscapes.

Fine-tuning open-source embedding models on domain-specific corpora could
significantly enhance RAG’s applicability by adapting the retrieval system to
specific domains. For this purpose, various approaches to domain adaptation
of dense retrieval systems were explored, aiming to optimize retrieval perfor-
mance on a corpus consisting of highly technical car repair and diagnosis manu-
als. The investigated techniques included multiple text-splitting strategies, syn-
thetic data generation, LLM-based data processing, hard negative mining, and
several different fine-tuning methods. Evaluation was conducted on both syn-
thetic and human-annotated data.

Peak performance was reached for a system utilizing an LLM for mining
of hard negatives, creating an expanded dataset used for staged fine-tuning of
the embedding model with Multiple Negatives Ranking loss followed by Online
Contrastive loss. Overall, fine-tuning the embedding model on synthetic data
was shown to yield statistically significant improvements in performance across
both synthetic and human annotated queries. Moreover, the fine-tuned model
outperformed a much larger base embedding model.

Keywords: RAG, open-source, fine-tuning, LLM, Embedding model, Information Re-
trieval
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Chapter 1

Introduction

1.1 Background
In the past few years substantial advancements have been made in the field of Large Language
Models (LLMs). LLMs excel in their ability to interpret and generate human-like text, and are
often trained on large amounts of public data, such as books, web pages, and other internet
sources. This diverse training data typically yields a model with broad knowledge, capable of
producing impressive results in multiple different fields [1][2].

However, even the most recent and state-of-the-art Large Language Models do not come
without drawbacks and flawed instances of generated answers. One commonly occurring
problem is LLMs’ tendency to produce hallucinations, which is generated text not consistent
with real-world facts [3].

Further, for domain-specific usage of LLMs, for example in a professional medical or
technical setting, the data suitable for training is often private, and might be consistently
updated with new information. In such professional settings, it is of course of utmost im-
portance that hallucinations are avoided: the generated answers must be up to date, and it is
crucial that the source of the information can be obtained. If the model does not have access
to information needed to answer a certain query, this should be clear in the LLM output
rather than the output being hallucinated and incorrect.

Retrieval-Augmented Generation, RAG, is a technique used in natural language pro-
cessing first introduced in 2020 meant to tackle the challenges discussed above [4]. RAG
combine, as the name suggests, retrieval methods with a generative LLM component. With-
out the use of RAG technology, the LMM is stuck at a specific time determined by the time
stamp on the data used for training. With the introduction of RAG, the retrieval part can
bring the model into the present.

The idea is that the model has access to a corpus, a large information base, which is up-
dated continuously and thus kept up to date. Rather than retraining and fine-tuning the LLM
as new data becomes available, which of course given the computational cost is unsustainable
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1. Introduction

Figure 1.1: The RAG architecture. A vector database, containing
corpus embeddings, is used for semantic search. A user query is em-
bedded, and sent to the vector database from which relevant docu-
ments are retrieved. The user query, along with the retrieved doc-
uments and a system prompt is then used as input to a generative
large language model.

if data updates are common occurrences, the retrieval part of the system is leveraged.
The corpus data, consisting of documents or similar textual content, serves as input to

an embedding model. This model transforms the data into dense vector representations,
which are subsequently stored in a vector database. Similarly, the query issued by the user
is embedded, whereupon a search in the vector database is performed to find the vector
representations that most closely resemble the users intent. The closest context matches are
then retrieved, and together with the user query passed as input to the generative part of the
RAG. The end result thus becomes an LLM generated answer complemented by the domain-
specific information present in the corpus, effectively reducing the risk of hallucinations and
enabling the model to use present information.

Retrieval-augmented generation is a cost-effective and low-risk technique suitable for
improving the performance of generative AI models. Further, it is easy to implement and
can be constructed as a composite architecture of pre-trained embedding and LLM models.
The retrieval sub-system used is crucial for the final overall performance of a RAG system,
as this determines the relevancy of the documents used in the text generation step.

For domain specific tasks, optimizing the retrieval performance introduces additional
challenges, as the corpus might contain text very dissimilar to the data the embedding model
has been pre-trained on. The performance of the embedding model then drops drastically,
as the model can not grasp semantic relationships in for example a technical manual.

10



1.2 Research Objective

Further, domain specific corpora are in the majority of cases unlabeled, meaning there are
no queries matched to relevant documents. A common approach to tackling this is synthetic
data generation, which then also becomes an integral part of improving retrieval systems [5].

Domain adaptation of existing pre-trained dense retrieval systems presents an interesting
research objective, where fine-tuning of an embedding model using modern training tech-
niques, Hard Negative Mining, as well as data generation and processing is central for ob-
taining state-of-the-art performance.

1.2 Research Objective
This thesis aims to investigate and compare a range of different approaches to domain adap-
tation of dense retrieval systems, with the objective of improving and optimizing retrieval
performance. This includes optimizing the training data, the system architecture and the
embedding model fine-tuning methods for retrieval performance. Evaluations of the perfor-
mance were conducted both subjectively in the case of query quality, and quantitatively using
standard retrieval system metrics such as recall, normalized discounted cumulative gain, and
mean reciprocal rank on both synthetic and human annotated test data.

We limit this research by investigating dense retrieval adaptation for only one domain.
Technical car repair manuals provided by Operation CHARM [6] have been used as data
resources for implementation, training and evaluation.

1.2.1 Research Questions
Based on the research objective, the following research questions were formulated:

RQ1: Given a large, unlabeled, domain-specific set of documents, what is the most effective
set of techniques to achieve good retrieval performance?

RQ2: Is synthetic training data a viable option for fine-tuning an embedding model on a
technical domain?

RQ3: Can a small fine-tuned embedding model outperform a much larger "off-the-shelf" em-
bedding model?

1.3 Scientific contribution
This thesis is a contribution to the Natural Language Processing community’s ongoing work
on how to optimize retrieval performance in highly domain-specific fields, with RAG-systems
being an important application. We propose a pipeline that utilizes a Large Language Model
for data generation, data processing, and Hard Negative Mining. Further, our proposed sys-
tem includes a two step fine-tuning process of the embedding model, training first on positive
examples and then incorporating contrastive learning.

11



1. Introduction

1.4 Related work
Kexin Wang et al. [7] present a similar approach to ours. In comparison to our approach
where we utilize gpt-3.5-turbo to generate queries, the authors instead use the pre-trained
T5 encoder-decoder for this task. Similar to our approach the most similar passages are
retrieved, using an existing dense retrieval model, which will serve as negative passages. An
existing Cross-Encoder is then used to score each (query, passage)-pair and train a dense
retrieval model on these generated, pseudo-labeled queries using Margin MSE Loss, similar
to our approach. We use an LLM in addition to this to evaluate the relevance of the retrieved
passages serving as negatives before scoring them.

The work by Lee Xiong et al. [8] also relates to the work conducted during this thesis.
The authors introduce a method to select hard negatives for enhancing dense text retrieval.
Similar to our work, the authors propose doing this by employing Approximate Nearest
Neighbors (ANN) to efficiently find hard negatives. Embeddings are computed for all text
samples, and ANN algorithms are used to identify negatives that are closest to the anchor
(query) sample in the embedding space. In comparison to our work, the authors also propose
Approximate nearest neighbor Negative Contrastive Learning (ANCE), which updates the
ANN index. This means the index is periodically updated in the background without inter-
rupting the training process, ensuring that it remains reasonably up-to-date with the current
state of the model.

The paper ’How to Train Your DRAGON: Diverse Augmentation Towards Generalizable
Dense Retrieval’ [9] presents an approach to curating training data for dense retrieval under
the framework of Data Augmentation. The authors mean that synthetic query generation
and pseudo-labeling relevancy with a cross encoder are sub-optimal methods for improving
dense retrieval tasks, and instead propose using multiple small retrieval models rather than
one strong Cross-Encoder for label relevancy supervision. In the paper, a base embedding
model is used to retrieve a list of candidate passages for each query. Several different embed-
ding models are then utilized to retrieve additional relevant passages for the same query. The
passages retrieved by all models are then combined and the ones that meet a certain relevance
threshold are labeled as positives. The process is then performed iteratively to refine the pos-
itive labels, with the aim to avoid false negatives and improve contrastive learning. Further,
training data queries are generated in a divers manner, generating both synthetic questions
and using cropped sentences from the passages. This is a more cost-efficient pipeline com-
pared to our work, as we use a proprietary LLM for label supervision. In addition, the au-
thors use a much larger number of training queries for fine-tuning, 28 000 000 compared to
our largest training dataset consisting of 15 000 queries. The findings presented by the au-
thors are in line with our observations; improving performance on tasks the model has been
trained for, using for example knowledge distillation for relevancy labeling, often comes at
the expense of Zero-Shot learning effectiveness. An increase in training data diversity instead
presents as an efficient method for improving retrieval in Zero-Shot learning settings.

Hansi Zeng et al. present in the paper ’Curriculum Learning for Dense Retrieval Distilla-
tion’ [10] an approach to improve knowledge distillation. The authors build on the framework
of using a Cross-Encoder re-ranker by implementing a curriculum in which the difficulty level
of the training data produced by the teacher model is increased as the student embedding
model learns. Similar to our work, dense embeddings and a Cross-Encoder model are used
for optimizing knowledge intensive retrieval.

12



1.5 Outline

1.5 Outline
This thesis is structured into six main chapters, where chapter 1 provides the background
and motivations for the conducted research, as well as a section on related work, the research
objective and the research questions. In chapter 2, the theory and concepts behind the mod-
els, techniques and methods used are described. The methods used in the thesis pipeline are
presented and explained in chapter 3, with an overview provided in figure 3.1. Chapters 4, 5,
6 include the results obtained, a discussion of the findings, suggestions for future work, and
the project conclusions involving circling back to the research questions. In appendices B, C,
and D additional results and further details regarding the data are presented.
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Chapter 2

Domain Adaptation of Dense Retrieval
Systems

The retrieval part is central when developing a RAG-system, especially when intended for
domain specific use cases. At the heart of the retrieval system lies the embedding model,
which generates semantic vector representations of the corpus. There are numerous pre-
trained embedding models available for use, both open-source and proprietary. These models
can be fine-tuned on domain-specific data, with the intent of optimizing their performance
in the same domain. To successfully perform this domain adaptation it is crucial to use high
quality training data, suitable hyperparameters for training and a comprehensive evaluation
method. Below follows a chapter which provides an introduction to the theory behind these
concepts.

2.1 Embedding models
Embedding models refer to a category of machine learning models designed to transform
complex data into numerical values interpretable for a computer. These models are essential
in modern machine learning, and are integral for performing a variety of different tasks such
as text generation, semantic search, and computer vision.

The transformation is performed by taking high dimensional input, such as images, hu-
man written text etc., and via the model converting this data into lower dimensional dense
vectors, where the components of the vector can be thought of as features of the input. These
dense vectors are called embeddings, see figures 2.1 and 2.2. Dense retrieval is essentially a re-
trieval system where data, such as text, is represented as dense vectors. With modern model
architectures such as transformers, and particularly sentence transformers for natural lan-
guage processing tasks, it is possible to capture the semantic meaning, textual relationships
and context within the sentence embeddings (dense vectors). This allows for semantic pro-
cessing of text, where synonyms ideally are encoded similarly. With this, we are no longer

15



2. Domain Adaptation of Dense Retrieval
Systems

Figure 2.1: Em-
bedding model
input and out-
put.

Figure 2.2: 2D
representation
of an embedding
vector space.

limited to lexicon search (sparse retrieval), and can expect the model to interpret text in a
human-like manner [5][11]. These types of embedding models for natural language process-
ing were used for implementing a retrieval system during this thesis. Section 3.3.1 provides
detailed information on the specific models selected.

Embedding models used for natural language processing perform tokenization before
generating the embeddings. Tokenization is the process of breaking down input sequences,
such as a text passage, into smaller units called tokens, often words or parts of words, for
which an embedding can be generated. Depending on the embedding model, different tok-
enizers are used, and the same sentence can be tokenized in several ways. Identical sentences
could thus be transformed into different numbers of embeddings by different tokenizers. An
example of this is shown in figures 2.3 and 2.4, where the tokenizer used in GPT 3 divides
the text in more tokens than the tokenizer for GPT 3.5 and GPT 4 [1]. Section 3.2.2 describes
how this concept was taken into account when processing data.

2.1.1 The transformer
The transformer architecture was first introduced in 2017 [12], and has since essentially
shifted the machine learning world from Recurrent Neural Networks (RNNs) to self-attention
feed forward networks when dealing with sequential data.

Transformers not only boost the performance of Natural Language Processing (NLP)
tasks, but are also more computationally feasible, as they can process the input data in paral-
lel, as opposed to recurrent networks. One of the issues with RNNs is that they become quite
inefficient when elements, such as words or tokens, are far apart in the input sequence, as
the recurrent connections result in a computational chain where earlier inputs are subdued
when the chain grows.

Transformers overcome this challenge by utilizing a multi-headed self-attention mech-

16



2.1 Embedding models

Figure 2.3: Example tokenization with the tokenizer used in GPT 3.

Figure 2.4: Example tokenization with the tokenizer used in GPT
3.5 and GPT 4.

anism (figure 2.5), where each word or token in the sequence is independently processed
together with all other words or tokens, whilst avoiding the feed-back connections.

Before the attention mechanism is used, an encoder generates numerical vector embed-
dings with fixed-sized dimensions for each token in the input text. It is these vector embed-
dings that are used to compute the attention scores, which are a measure of how much each
word’s interpretation should be impacted by other words in the input. The attention scores
are calculated via a number of mathematical operations, where similar embeddings generate
a higher score.

The original transformer model is built on an encoder-decoder architecture, where the
foremost substructure is used to generate numerical vectors representative of the input, with
deep contextual understanding. The decoder instead mirrors the encoder, and can, based
on the encoded output it receives, generate new text. An example usage of such a system is
translation, where a passage in English can be used as input to the transformer which then

17



2. Domain Adaptation of Dense Retrieval
Systems

outputs the same passage in another language.
For retrieval tasks, the generative part of the model is usually not of interest. Instead, the

semantically rich vector embeddings can be used directly and put into a vector space, where
semantic search can be performed based on metrics such as cosine similarity.

Figure 2.5: (right) Scaled Dot-Product Attention. (left) Several
parallel-running attention layers creating a Multi-head Attention
mechanism.

Figure 2.6: The original Transformer architecture.

18



2.1 Embedding models

2.1.2 Bidirectional Encoder Representations from
Transformers (BERT)

A model which extends and optimizes the transformer architecture for embedding genera-
tion is BERT, short for Bidirectional Encoder Representations from Transformers. As the
goal with BERT is to create or generate a language model, and not actually output text, it
only uses the encoder component of the transformer architecture. BERT is very similar to
the encoder layer of the original transformers, where the self-attention mechanism is utilized
allowing for bidirectional, or rather non-directional, input reading instead of sequential pro-
cessing. Differences between BERT and the encoder part of the original transformer includes
some hyperparameter changes, an increased number of self-attention heads as well as a mask-
ing mechanism [13].

2.1.3 Sentence Transformers
BERT excels in generating contextual embeddings for words that capture semantics such as
synonyms, and produces impressive results in tasks where word granularity is important.
However, for document retrieval tasks, it is preferable to work with sentence embeddings,
where a single vector embedding is able to represent the semantic and contextual content
of a complete word sequence rather than just one token or word. This approach simplifies
the retrieval process by allowing comparisons between entire text passages and queries rather
than individual words, making semantic search feasible.

Sentence transformers [14] is a Python framework built on BERT for producing state-
of-the-art sentence and text embeddings. The models presented in section 3.3.1 are sentence
transformers, and are used within this framework.

Figure 2.7: The pooling mechanism in Sentence Transformer models
enables capturing the semantic meaning of an entire text passage in
a single embedding.

The sentence embeddings are created based on the word embeddings generated by a

19
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BERT-model. This is achieved through pooling of the word embeddings. The pooling strat-
egy used varies between different embedding models, and common techniques include max or
mean pooling. Max pooling is performed by taking the maximum value of each dimension of
the word embeddings and using these values for the sentence embedding, while mean pooling
involves taking the element-wise arithmetic mean of the word-level embeddings. Another
pooling approach, utilized in the models presented in section 3.3.1, is to use the last hidden
state of the “[cls]” token, which is a token added at the beginning of every input sequence
in models like BERT. As the model processes the input, the token accumulates and the last
state captures a contextual representation of the entire text sequence, making it a suitable
embedding for the input passage [15].

2.1.4 Bi-Encoders
A Bi-Encoder is a specific type of embedding model structure designed to compare the simi-
larity between two text sequences. It is essentially an architecture consisting of two identical
embedding models, for example two Sentence Transformers, where each model takes one
text sequence as input. The model then outputs the respective text embeddings, whereupon
the cosine similarity for the two embeddings is calculated and passed as the final output [15].
The cosine similarity for two vectors A and B is given by:

cosine similarity = cos(θ) =
A · B
∥A∥ ∥B∥

(2.1)

2.1.5 Cross-Encoders
Cross-Encoders are a class of models supported by the Sentence Transformers library [14].
Although Cross-Encoders are not embedding models in the sense that they do not output
any embeddings, their architecture contains many of the components present in embedding
models. In contrast to a Sentence Transformers based embedding model, Cross-Encoder
takes as input two text sequences simultaneously which are then processed together. Instead
of producing embeddings of the texts, the Cross-Encoder returns a similarity score between
0 and 1, where a high score indicates high text similarity between the two text sequences.

The model architecture makes use of Bidirectional Encoder Representations from Trans-
formers (BERT), which processes both sequences together and then outputs encoded data
which is passed as input to a classifier. The classifier then outputs a similarity score.

Cross-Encoders achieve better performance than Bi-Encoders in finding semantic simi-
larity in text pairs, but using this for retrieval is not scalable. As no embeddings are produced,
a similarity search would have to be performed by sending each search query into the model
together with each passage in the database. This would mean that for every single query there
would be as many calls to the Cross-Encoder as there are documents in the database [15].

Instead, Cross-Encoders are more commonly used for re-ranking, and they are often re-
ferred to as re-rankers in these contexts. An example usage would be to retrieve the top 100
documents in a database for a query using an embedding model. The retrieved documents are
then much less in number than the documents in the database, and it is feasible to calculate
a similarity score between the query and all retrieved documents. As the Cross-Encoder pro-
vides more accurate similarity scores, the documents can then be re-ranked in relevancy based
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Figure 2.8: The Bi-Encoder compared to the Cross-Encoder archi-
tecture.

on the knowledge of the Cross-Encoder, which would in theory then give a better relevancy
ranking [15].

Another common use case for Cross-Encoders is knowledge distillation. The Cross-
Encoder is then used as a teacher model for a student embedding model. The less accurate
embedding model learns from the Cross-Encoder by using Cross-Encoder outputs as pseudo-
labels for passage relevancy in the training data [7]. This topic is discussed more in depth in
the fine-tuning section 2.3. Further, the employment of knowledge distillation during this
project is detailed in section 3.3.5.

2.2 Data Processing and Generation
2.2.1 Parsers and Chunking
Embedding models are limited in how many tokens (words or parts of words) they can process
per call. This number varies greatly between different embedding models, where some models
only take a maximum of 512 tokens while others can process more than 30 000 tokens per
request [11].

When working with a large corpus consisting of documents of different lengths, it is
crucial to ensure that no passage sent to the embedding model exceeds the specified maximal
number of tokens, as this will result in the later part of the document not being included in
the generated embedding. To achieve this on a large scale, text parsers performing so called
chunking can be used.

Parsers take the input documents and return smaller passages, with the text length ad-
justed to fit within the context window for the embedding model. There are a plethora of
different chunking approaches and parsers to choose from. Selecting the right parser class
for a specific task can be tricky, and is heavily context based. Below follow short descriptions
of different approaches to chunking.

A token splitter is a basic type of parser, which strictly divides the text based on the
token count. From this follow predictable chunk sizes, as all passages except the last one
from a document will be precisely as long as the specified number of tokens. However, this
also means that sentences or even words will be cut short, and divided into different passages
[16]. This is often not ideal, as context is lost.
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Sentence splitters try to overcome this problem by prioritizing keeping sentences to-
gether above generating passages with a precise token length. These types of parsers are com-
monly used, as they allow for more reasonable chunking without increasing either expenses
or computational cost [17].

A recently proposed chunking technique is semantic text splitting [18]. The idea behind
this method is to integrate an LLM in the chunking step. The LLM evaluates documents and
identifies main themes in the text, whereupon the text splitting is performed based on what
semantically makes sense. To preserve as much semantic meaning as possible, each passage is
composed of the largest semantic unit that fits within the specified maximum token length
[19].

Both a sentence splitter and a semantic text splitter were used "off the shelf" when per-
forming text chunking, as will be described in section 3.2.2.

2.2.2 Synthetic Query Generation
When dealing with high volumes of unlabeled domain-specific data, fine-tuning of an embed-
ding model and evaluating the performance are not straightforward tasks. In a RAG-system
setting, the retriever should return documents that are relevant for the user query sent to the
system. When teaching the embedding model to generate embeddings that position queries
close to text passages answering them in the vector database, it is natural to use training data
formatted as Query (Q), RelevantPassage (P+), where the relevant passage serves as the
label for the query. Doing this manually, i.e. to have domain experts annotating each passage
with a relevant query, is both extremely expensive and time-consuming for large datasets. It
is, in most cases, simply not feasible.

Synthetic query-answer labeling is a technique, used during this project to generate train-
ing, validation, and test data as described in section 3.2.3, that can transform an unlabeled
corpus into useful training data with the format (Q, P+) by utilizing an LLM. Each text
passage in the corpus is sent to the LLM together with a tailored prompt, and a query that
can be answered by the passage is generated. The prompt, as well as other parameters such
as temperature have a large impact on the quality of the resulting data. The temperature
determines, in the context of generative LLMs, the randomness of the generated output. A
lower temperature value (closer to 0) results in more deterministic output text, as the stan-
dard deviation of the probability distribution for the next generated token is proportional
to the selected temperature. Experimenting with different prompts and hyperparameters is
thus a large part of the work required to successfully employ synthetic query-answer label-
ing, where a good synthetic query generation approach needs to result in the use of synonyms
and produce questions that contain words or phrases not occurring in the original passage
[20][21].

Both open-source models and proprietary LLMs such as GPT are viable options for this
task, and can be determined based on data complexity, requirements and cost limits. Gener-
ated synthetic query labels can also be used for generating validation and test data, although
with some caution as human annotated test datasets reflect reality better and are prefer-
able. Overall, the use of synthetic query-answer labeling allows for scalability and robustness
in domain adaptation of retrieval systems. The integration of this technique makes RAG a
viable solution in domain-specific areas where manual annotation would not have been an
option, leading to improvements in content relevance, quality, and model performance across
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specialized data landscapes [22][7].

2.2.3 Prompt Engineering
Prompt Engineering is an important field in natural language processing. It is in short the
method used for efficiently communicating with language models, instructing them in their
tasks. Basic techniques used in prompt engineering include role-based prompting, giving
task context, providing examples of what the output should look like, asking the model for a
"chain-of-thought", and writing clear instructions that do not leave room for misunderstand-
ings. Prompting often becomes an iterative process, where slight changes to the prompt are
made gradually in order to reach the requirements set for the generated outputs [23]. An
example prompt for synthetic query generation is given in section 3.2.3. Prompt engineer-
ing was utilized for multiple different tasks during this project, described further in sections
3.2.1, 3.2.3, 3.3.4, and 3.4.

2.2.4 Contrastive Learning and
Hard Negative Mining

Conventionally, the training data used to train or fine-tune a model consists of examples, such
as queries, and respective labels, such as passages. This teaches the model what is correct: it
learns to embed (Q, P+) such that they are close to each other in a vector space.

Contrastive learning is a training approach where the model is not only taught which
passage is positive for a query, but also which passages are negative, i.e. not relevant for the
query. With a supervised contrastive training approach, training data not only has to be
labeled with relevant passages, but also with irrelevant ones. The training data should then
have the following triplet format: (Q, P+, P−). From this, the model learns to push Q and
P+ closer together in the vector space, whilst Q and P− are forced further apart [24]. In table
2.1 an example of such a triplet is presented.

Query What is the capital of France?
Positive Passage Paris is the capital of France.
Negative Passage The Eiffel-tower is a Parisian tourist attraction.

Table 2.1: Triplet training example for Contrastive Loss.

The model does not need to be trained on all examples that are negative for a query. Most
of the negative passages are already far away enough from the query and are easy for the model
to determine as non-relevant, and it is more efficient to focus on the hard negative examples.
Hard negatives are defined as negative examples that are closer given a selected distance to
the query than the positive example.

Dist(Q,P−) < Dist(Q,P+) (2.2)

By including hard negative examples in our training data, see section 3.3.6, the model
decreases its loss not only by bringing (Q, P+) closer together, but also by increasing the
distance between (Q,P−) so that the positive passage lies closer to the query than the negative
passage.
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Contrastive learning on negative examples that are not closer to the query than the posi-
tive example, but that are still not far enough away given their irrelevancy, can also be useful
for improving performance. Such training samples, which were used during this project as
will be explained in section 3.3.4, are referred to as semi-hard negatives, and they are defined
in the following way:

Dist(Q,P−) < Dist(Q,P+) + margin (2.3)

where the margin is a parameter for certain loss functions that still penalize negatives with
a distance to the query not larger than that of the positive plus the margin [25][7].

Hard Negative Mining is the process of finding the hard or semi-hard negative examples
in order to utilize them in the training data. There are different approaches to this, and it
becomes a complex task when working with an unlabeled corpus. The approaches investi-
gated during this projects were novel and adjusted to the specific task, and will be explained
in detail in section 3.3.4.

2.3 Fine-tuning an open-source Embedding
Model

Many open-source embedding models have been trained on billions or even hundreds of bil-
lions of tokens. This training process is referred to as pre-training, and is often performed
on one or multiple large diverse training datasets. The training data is usually unlabeled,
resulting in this stage being unsupervised or self-supervised. During pre-training, the model
learns general structures, features and patterns of text [26].

In order to domain-adapt such pre-trained open-source embedding models, an additional
training stage can be performed: fine-tuning. Fine-tuning is ideally performed on a smaller,
labeled, dataset within the domain of the intended use, which is in accordance with our
methods presented in sections 3.3.2 and 3.3.6. This process adapts the model to a new spe-
cific task, and improves the performance in that domain [27]. During fine-tuning, a separate
validation dataset representative of the training data should be used to optimize hyperpa-
rameters. Additional data not seen or used during training should be saved for testing, to
avoid data leakage and get an accurate evaluation. This approach has been taken, and will be
further detailed in sections 3.1.2 and 3.6.

2.3.1 Loss Functions for Embedding Model Fine-tuning
The Sentence Transformers library provides a large selection of loss functions for fine-tuning
of embedding models [28]. Which loss functions are suitable is heavily dependent on the task
and the data. Below, three loss functions appropriate for domain adaptation, used according
to what will be described in sections 3.3.2, 3.3.3, 3.3.5, and 3.3.6, are presented.

Multiple Negatives Ranking Loss is the default loss function for fine-tuning with the
Sentence Transformers library. This loss function expects as input (Q, P+)-pairs, with no
labels. During training, all passages in the batch that are not labeled as the positive example
are used as negative examples for the queries, i.e. if Pi is the positive example for Qi , all P j
where j̸=i are considered negative. From this, we get that the batch size impacts the number
of training samples, as more negative training examples are used for each query if there are
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more samples in the batch. Multiple Negatives Ranking Loss often yield better performance
when the batch size is increased [29].

The mathematical representation of this loss function is as follows:
Let s(Qi , Pi) denote the cosine similarity between query and passage embeddings. The scal-
ing of the similarity score is denoted as:

s′(Qi,P j) = scale · s(Qi,P j) (2.4)

For each query Qi , the softmax over all similarities is computed as:

P(Pi | Qi) =
exp(s′(Qi,Pi))∑n

j=1 exp(s′(Qi,P j))
(2.5)

The loss for each query-positive-passage pair (Qi , Pi) is the negative log-likelihood:

Loss(Qi,Pi) = − log(P(Pi | Qi)) (2.6)

Summing over all pairs in the batch, the total loss is:

Total Loss =
1
n

n∑
i=1

− log
(

exp(s′(Qi,Pi))∑n
j=1 exp(s′(Qi,P j))

)
(2.7)

Online Contrastive Loss requires training data on the format (Q, P+, label = 1) or (Q,
P−, label = 0). This loss function calculates the distance between each provided (query,
passage) sample, and calculates the loss only on the hard negatives (negatives that are close)
and hard positives (positives far apart). The default distance metric used for calculations is
the cosine distance, but this can be altered to a different metric by passing it as a parameter to
the loss function. This loss function also has a threshold parameter, where negative samples
are allowed at distances larger than the threshold from the query. The threshold value selected
can highly impact the success of the fine-tuning [30]. The Online Contrastive Loss is given
by:

Online Contrastive Loss =
1
n

n∑
i=1

[
yi · d2

i + (1 − yi) ·max(0,m − di)2
]
, (2.8)

where y is the label (0 or 1), m is the predefined threshold, and d is the distance between the
query embedding and the passage embedding.

Margin Mean Square Error loss is another loss function used for contrastive learning.
It expects triplets as input, (Q,P+,P−) labeled with a margin float value. The margin is
commonly calculated using a Cross-Encoder as a teacher model, where the margin is the dif-
ference between the Cross-Encoder similarity score for (Q,P+) and (Q,P−). The loss is then
calculated as the mean square error between the margin and the embedding cosine similarity
difference between the positive and negative example. This is a form of knowledge distilla-
tion where the idea is that the Cross-Encoder is better at determining passage relevancy for
a query, and that the embedding model should learn to generate embeddings in line with the
Cross-Encoders similarity judgment. If the Cross-Encoder similarity score is close to the em-
bedding model’s similarity scores, then that sample incurs a small loss [31]. Mathematically,
this can be represented as follows:

MarginMSELoss = MSE (|embed_sim(Q, P+) − embed_sim(Q, P-)| ,
|crossencoder_sim(Q, P+) − crossencoder_sim(Q, P-)|)

(2.9)
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2.3.2 Hyperparameters
Hyperparameters include all non-trainable parameters in the fine-tuning stage. Optimizing
these is an important part of training, and the optimization is typically performed based
on the validation loss. To streamline this process, there are AI developer platforms, such
as Weights and Biases [32], that provide tools for tracking and visualizing machine learn-
ing experiments. With such tools, sweeps can be performed [33]. Sweeps are a form of grid
search, where all specified combinations of hyperparameters are tested and the best perform-
ing model can be chosen.

Below follows an overview of important hyperparameters when fine-tuning an embed-
ding model, that were optimized using sweeps as will be further detailed in section 3.6, with
a short explanation of their meaning.

Number of Epochs is a hyperparameter that refers to the number of complete passes
through the entire training dataset during the training process. In each epoch, all training
samples are used to update the weights in order to minimize the loss function. Increasing the
number of epochs allows the model to learn more thoroughly from the data, with the risk of
overfitting to the training data. Setting the number of epochs to a lower number may instead
lead to underfitting, where the complexity of the data isn’t adequately captured. Finding the
optimal number of epochs usually involves minimizing the validation loss.

Batch Size refers to the number of training samples in each batch. The weights are up-
dated by minimizing the loss function computed over all samples in one batch. A larger
batch size hence means fewer weight updates per epoch, but each update incorporates more
samples. The batch size can significantly impact training efficiency and performance, espe-
cially for certain loss functions such as Multiple Negatives Ranking loss. Larger batches can
stabilize the training process and improve convergence, but they also require more memory
and computational resources.

Evaluation Steps determines a fixed interval at which the model’s performance is eval-
uated on the validation data. For example, if evaluation steps are set to 50, the model is
evaluated after every 50:th batch is processed. Evaluating the model periodically helps mon-
itor the training process and detect overfitting.

Learning Rate is a crucial hyperparameter that controls the amount by which the model’s
weights are updated during training. It determines how big of a step is taken in the negative
gradient’s direction. Setting the learning rate to a large value allows the model to converge
faster, with the risk of overshooting the optimal solution. A lower learning rate allows for
more fine adjustments, but may result in slow convergence or the model getting stuck in
a local minima. When setting the learning rate the optimization algorithm used should be
taken into account, as vastly different learning rates are suitable depending on the optimizer.

Distance Function is the method used to calculate the distance between embeddings
when training an embedding model. Common distance functions include the cosine distance
(1-cosine similarity) and the euclidean distance.

Loss Function determines what should be minimized during training. Some common
examples for embedding model loss functions are discussed in section 2.3.1.

Optimization Algorithm is the algorithm used for the training optimization process.
These algorithms include how the model weights are adjusted to minimize the loss. A com-
monly used optimizer for training and fine-tuning embedding models is AdamW [34], a vari-
ant of the Adam optimizer which incorporates weight decay corrections.
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2.3.3 Zero-shot Learning (ZSL)
Zero-shot learning (ZSL) is a machine learning scenario in which an AI model is trained
to recognize and categorize objects or concepts without having seen any examples of those
categories or concepts beforehand. ZSL facilitates the transfer of knowledge from related
domains [35]. This is a beneficial method when evaluating AI models on domain specific
tasks. By training the model only on samples and classes that are unseen in the test data,
the model’s performance within the domain can be accurately evaluated. ZSL evaluation was
conducted for a number of test datasets, as will be described in section 3.7.2.

2.4 Vector Database
When dealing with large data volumes, such as a text corpus, numerous embeddings rep-
resenting all the data are generated. Finding the most similar embedding, i.e. the relevant
document, to a query then means comparing the embedding distance between the query and
all corpus embeddings. One way to streamline this process, used in the system implemented
during this project as will be described in section 3.5, is to use a vector database. Vector
databases are databases specialized for storing and efficiently retrieving dense, high dimen-
sional, vector data. Together with the embedding model, the vector database serves as the
final, ready-to-use, retrieval system, visualized in figure 2.9.

Figure 2.9: (left) Storing corpus embeddings in the vector database.
(right) A search query is sent to the system and relevant documents
are retrieved from the vector database.
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There are a lot of vector database alternatives available for use. An example of such is
the open-source library Faiss [36], developed primarily by the fundamental AI research team
of Meta. Vector Database libraries usually contain algorithms that can efficiently perform
similarity search among vectors of any size.

Similarity search is performed by the vector database building a data structure from a
given set of vectors with dimension d. When a new vector, for example an embedded query,
of the same dimension is added, the following operation is performed:

j = arg min
i
∥x − xi∥, (2.10)

where ∥x − xi∥ is the distance (often the Euclidian or Cosine distance) between query em-
bedding x and corpus embeddings xi .

This is essentially a K-nearest neighbor search, where the number of nearest neighbors
returned, K, is a parameter that can be adjusted according to wants and needs. Motivations
behind the parameter choice for the implemented system will be presented in section 3.5.

2.5 Evaluating Retrieval System Performance
When designing an information retrieval system, it is critical to be able to evaluate it with
insightful metrics. Realistic results are achieved when evaluation is performed on data not
used in training or tuning of the model, and separate test data should be kept for this purpose.
An important parameter when evaluating performance is the number of documents retrieved
per search query. Depending on the intended use and the required precision, we can choose
to retrieve only the document deemed most relevant by our system, or the 10, 100 etc. most
relevant ones. It is of course a harder task for the system if the number of retrieved document
is decreased, which is reflected in the evaluation scores.
In information retrieval, the system should return relevant documents to a search query,
where the order of the returned documents are based on relevancy. The evaluation scores
should thus be higher if a relevant document is retrieved as the first compared to the tenth
one.
Retrieval evaluation can be categorised into two subgroups; order-aware and order-unaware
metrics. Order-aware metrics return different scores based on the ranking of the documents,
whereas order-unaware metrics only measure whether a relevant document is retrieved or
not [27].

2.5.1 Metrics
This section covers some of the most common metrics used when evaluating information
retrieval, including both order-aware and order-unaware examples. The metrics presented
below were used for evaluation of retrieval performance of our implemented system, with
some additional adjustments which will be further explained in section 3.7.1.

Mean Reciprocal Rank (MRR) is an order-aware metric, calculated as:

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

(2.11)
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where |Q| is the total number of queries, and ranki is the rank position of the first relevant
result for the i-th query.

Normalized Discounted Cumulative Gain (NDCG) is another order-aware metric cal-
culated as:

NDCG =
1
|Q|

|Q|∑
i=1

DCGi

IDCGi
(2.12)

where |Q| is the total number of queries, DCGi is the Discounted Cumulative Gain
(DCG) for the i-th query, and IDCGi is the Ideal Discounted Cumulative Gain (IDCG)
for the i-th query.

DCG is calculated as:

DCGi =

p∑
j=1

2reli j − 1
log2( j + 1)

(2.13)

where p is the number of results, and reli j is the relevance score of the j-th result for the i-th
query.

IDCG is calculated as:

IDCGi =

p∑
j=1

2rel∗i j − 1
log2( j + 1)

(2.14)

where rel∗i j is the relevance score of the j-th result in the ideal ordering for the i-th query.
Hit-rate is an order-unaware metric that measures the percentage of queries for which a

relevant document was retrieved. The hit-rate is calculated as follows:

Hit Rate =
|R ∩ H |
|R|

, (2.15)

where R is the total number of relevant items and H is the total number of items retrieved.
Another standard metric used for evaluating information retrieval systems is Recall. Re-

call is calculated by dividing the number of true positives with the number of true positives
and false negatives.

Recall =
True Positives

True Positives + False Negatives
(2.16)

2.5.2 Bootstrapping
A dataset, although consisting of many samples, is usually only a subset of the entire data
population: the dataset is in itself a sample. Even when evaluating on a test set where data
leakage has been avoided, the measured evaluation metrics are not statistically certain, as the
actual performance is only approximated from the data population sub-sample.

Bootstrapping, as shown in figure 2.10, is a simple and straight-forward method that al-
lows for estimation of the sampling distribution. A bootstrap sample is generated from a
dataset of size N by randomly selecting M samples with replacements from that dataset. The
bootstrap sample can hence contain duplicate samples, while other samples are "out-of-bag",
i.e. not present. This process is repeated many times, resulting in multiple new datasets
containing different samples. Evaluation and metrics calculation is then performed on all
generated datasets, and a histogram of the bootstrap means can be created. The histogram
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Figure 2.10: A Bootstrap sample is generated by randomly sampling
with replacement.

provides an estimate of the sample distribution, and can be used to derive confidence in-
tervals of the measured results. For example, the 95% confidence interval can be obtained
by finding the 2.5:th and 97.5:th percentiles of the bootstrap distribution. By doing this, an
estimate of the uncertainty around the results is provided which helps determine statistical
significance [37].

Bootstrapping for confidence interval generation was used when evaluating our retrieval
system, where further details of the implemented approach will be described in section 3.7.1.
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Chapter 3

Method

This chapter details the methods and techniques employed during this thesis. The chapter
is structured based on the final pipeline used for domain adaptation of the retrieval system.
However, it should be noted that the work was iterative, and involved refining the individual
methods over time. Figure 3.1 displays an overview of the main steps and methods utilized
for creating the final dense retrieval system.

Figure 3.1: Overview of methods used in the project pipeline to suc-
cessfully adapt a dense retrieval system to car repair and diagnosis
manuals from the CHARM corpus.
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3. Method

3.1 Selecting the Domain-specific Dataset
In order to explore techniques for domain adaptation of a retrieval system, a domain-specific
dataset used for implementations and experiments had to be defined. Requirements for the
dataset included highly technical or concept heavy unlabeled text, and enough text for train-
ing, validation and testing. The embedding model was also investigated to ensure that it had
not been pre-trained on the selected dataset or similar data. The dataset, CHARM, suggested
by Modulai AB, fulfilled these requirements and was thus selected.

3.1.1 CHARM - Car repair manuals
Operation CHARM (Collection of High-quality Auto Repair Manuals) [6] provides a highly
technical, domain-specific dataset consisting of Manuals for Repair and Diagnosis of various
car models from different car brands. The data is structured in a hierarchical way, with the
root being a list of car brands, branching to car models for a specific brand, and then car
components for that model such as the airbag etc. with repair and diagnosis text and images.
Appendix D displays example documents from the CHARM corpus.

3.1.2 The Sub-datasets
In typical machine learning fashion, training, validation, and test data are needed for fine-
tuning an embedding model for domain adaptation. CHARM provides diagnosis and repair
manuals for over 50 different car brands, and for a number of car models from different years
for each brand. Six car models from six different car brands were selected randomly for the
construction of training and validation data; Saab 2010 9-3 FWD, Hyundai 2008 Accent,
Chrysler 2013 200, Volvo 2006 C70, Fiat 2012 500, and Lexus 2011 CT 200h Hybrid. These
car models will henceforth be referred to by the car brand name alone, or by the car brand
and the model year. The validation data is for all datasets an accurate representation of the
matching training data, as the validation data was gathered by random sampling from the
same dataset as the training data. Samples included in validation were naturally not included
in training. Based on the aim to investigate the impact of training data size and diversity (the
number of different car brands included in a training dataset), six different training datasets
and the corresponding validation datasets, with a varying number of training examples and
diversity were constructed. In table 3.1 a summary of these datasets is presented, where the
training and validation size refers to the number of (query, passage)-pairs:

Test data needs to remain completely unseen during training to avoid data-leakage, as
stated in section 2.5. This could have been achieved by randomly selecting and removing
samples from the datasets listed above, creating test datasets with the same origin as training
and validation data. However, a more interesting research objective is to investigate if the
fine-tuning increases performance across the whole domain, i.e. if the model trained on the
car models above is able to generalize across car manuals from other models or even brands.
For this purpose, two models from new car brands; Ford 1992 Aerostar and Jaguar 2002
S-Type, as well as a different Saab model (Saab 2004 9-5 Aero), were selected to construct
the synthetic test datasets. These datasets allow for testing and comparison of generalization
abilities over different domain widths: within the same car brand and for "never-seen-before"
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No. of Car
models

Car Brands Training Size Validation Size

1 Saab (2010) 2500 1000
2 Saab (2010), Hyundai (2008) 2500 1000
3 Saab (2010), Hyundai (2008), Chrysler (2013) 2500 1000
3 Saab (2010), Hyundai (2008), Chrysler (2013) 5000 1000
3 Saab (2010), Hyundai (2008), Chrysler (2013) 7500 1000
6 Saab (2010), Hyundai (2008), Chrysler (2013),

Volvo (2006), Fiat (2012), Lexus (2011)
15000 3500

Table 3.1: Datasets used during training and validation.

car brands. For each test-set, between 1300 and 1600 queries were generated. In order to cre-
ate a more difficult task for the model without having to go through the time-consuming
process of generating more queries, the vector database was populated with additional docu-
ments, without a matching query. Given this, the model had to distinguish between a larger
set of documents, and the probability of randomly retrieving the correct document is signifi-
cantly reduced, allowing for a more fair assessment of the model’s abilities. For each test-set,
all documents in the vector database originated from the same car model as the one used for
the synthetic query generation. This is motivated by the fact that not all queries mention
the specific car model they are generated from. For example, a query generated from a Ford
airbag manual could be about airbags in general, making it impossible for the model to, based
on semantics, know if it should retrieve airbag related documents from Ford, Saab, or Jaguar.
Further, this approach is realistic: when searching for information about their car, the car
owner knows which specific car models manual to look in. The synthetic test-sets that were
generated are presented in table 3.2.

Car model Number of (Q,P)-pairs Number of Passages in Database
Saab (2004) 1333 6063
Ford (1992) 1592 7602
Jaguar (2002) 1332 4692

Table 3.2: Synthetic Test Datasets used for Evaluation.

Evaluating on synthetic data is an efficient method for getting insight into the model’s
ability to generalize and its performance, especially if the synthetic queries have been prompted
in a way making them realistic. Despite this, nothing can with certainty be said about how
the model would perform on real, human queries. In order to test this, two human anno-
tated test datasets were created. First, queries were generated using a prompt crafted based
on the requirements that they should be human-like, realistic and general. In the prompt, ex-
ample questions found on car repair forums were used. With these, still synthetic but more
human-like queries as a basis, human annotation was performed. We manually went through
all queries; changing the wording, making them shorter, more diverse, and more general.
Data from two different car models (two models also used for the synthetic test datasets),
Saab 2004 9-5 Aero and Jaguar 2002 S-Type, was humanly annotated, creating two small test
datasets with 100 queries in each. Thirty human annotated queries from the Jaguar dataset
is presented in Appendix C.1. Additional documents with no matching queries were added
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to the vector database in these cases as well. As human annotation was performed on both a
car brand unseen during training (ZSL) and a car model from a brand used in training, the
model’s ability to generalize across varying domain widths could be investigated. In table 3.3
follows a summary of the resulting human annotated test datasets.

Car model Number of (Q,P)-pairs Number of Passages in Database
Saab (2004) 100 1696
Jaguar (2002) 100 4970

Table 3.3: Human Annotated Test Datasets used for Evaluation.

3.2 Data Processing
The data was scraped from the CHARM documents into json-files, where the links leading to
the corpus were marked as titles, followed by the text from that page. Images were naturally
excluded, leading to some documents with text mainly referring to these images becoming
irrelevant. To minimize this issue, a lower character limit of 200 was set, where documents
containing less text were removed. This approach does not guarantee a 100% efficient filter-
ing, but was assessed as reducing the problem significantly based on manual inspection of
the corpus.

A choice was made to keep all the titles, i.e. the page-paths as part of the corpus docu-
ments. This decision was based on the paths giving context to the text, as early experiments
indicated that the task for the embedding model would be unrealistic when excluding the ti-
tle. However, as the titles were organized as search-paths, often containing specific diagnosis
error codes and not semantically organized text, a concern about lexicon rather than seman-
tic search being utilized by the model was raised. Upon further inspection, it was found that
queries generated based on documents including these titles often contained the specific er-
ror codes mentioned, confirming the concerns about lexicon search. When conducting early
experiments on this data, the performance on the synthetically generated queries was found
to be very high. This further increased concerns as human-written queries would in the ma-
jority of cases not be able to rely on lexicon search, as it is reasonable to assume they are more
general in nature.

Grounded on these observations, an additional, LLM-based data-processing method was
added to the pipeline, with the purpose of generating more human-like queries for the train-
ing data and creating a harder task for the model, enabling fine-tuning based on semantics
rather than specific words or error codes. This method, Path Summarizing is discussed in more
depth in the following section 3.2.1.

3.2.1 Summarizing the Paths
As previously motivated in section 3.2, leaving the titles in their original state resulted in
the synthetically generated queries being unrealistically detailed, creating too easy a task for
the model where the performance increase would not be transferred to real, human-written
queries. Removing the titles completely would on the other hand create a task that was too
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hard, as the text passages would lack essential context. Finding a golden middle way was thus
necessary when moving forward, where the paths were kept - but on a modified form.

Changing the paths manually was not an option, given the size of the dataset. Instead, a
Large Language Model was used to streamline the process. OpenAI’s model GPT-3.5-turbo
[38] was selected, motivated by the fact that this model do not require any access to powerful
GPUs, as the model does not run locally as opposed to open-source alternatives. The cost
is despite the proprietary model very low; with an input-cost of $0.5 per 1M tokens and an
output cost of $1.5 per 1M tokens, which put the total cost for this task at less than a couple
of US dollars.

Using the OpenAI API, code was implemented where the title for each document was
sent to GPT-3.5-turbo together with a prompt describing the task for the model. The aim
of this process was to get the model to generate short summaries of the titles, leaving out
specific diagnosis error codes and changing the text structure from paths to running text
with comprehensible sentences.

The first tests were performed using a simple summarization prompt, simply asking the
model to provide concise summaries of the title. Crafting a good prompt is an iterative
process, and repeated tweaks to the prompt were performed while manually inspecting the
results produced. Techniques such as role-based prompting and providing concrete examples
of what the end result should look like were utilized in the final prompt.

When a prompt that produced results satisfying our requirements had been crafted, the
titles for all documents in our datasets were processed in this manner. New documents where
the old titles had been replaced with the generated summarized titles were created and used
moving forward.

3.2.2 Document Chunking
The documents were divided into chunks of text, passages. This is a crucial step in order
to avoid information loss, see section 2.2.1, as embedding models have a limit in how many
tokens they can take per call.

Two different chunking approaches, Sentence Splitting [17] and Semantic Splitting [19],
were tested. For this, two classes provided by LlamaIndex were utilized. LlamaIndex is a data
framework specifically designed for building applications based on LLMs.

The Semantic Splitter takes an LLM as a parameter, and OpenAI’s gpt-3.5-turbo[38] was
selected based on the same criteria as for path summarizing. Both splitters also take chunk
size as a parameter, corresponding to the maximum number of tokens allowed in one chunk.
Since tokenization is performed differently depending on the tokenizer used, it was critical
to match the tokenizer used when splitting to the tokenizer later used in the embedding
model.

The two chunking approaches were tested on a set of documents. Based on visual in-
spection of the resulting text passages and preliminary experiments assessing the impact on
performance, the Sentence Splitter proved to yield better results and was thus used in sub-
sequent stages.

An issue arose due to the chunking, as many of the resulting passages lost their title, lead-
ing to context loss. This occurred when the documents contained more text than specified
by the maximum chunk size. As all documents began with a summarized path (title), no pas-
sages created from that document except the first one contained the title. This was solved
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by implementing code for extracting the title from a document prior to chunking, and then
adding it back at the beginning of all passages created from that document. This also meant
that the chunk size had to be adjusted in order to not exceed the maximum number of tokens
allowed by the embedding model when the title was added to the passages.

3.2.3 Synthetic Query Generation
The CHARM dataset is an unlabeled corpus, meaning the documents, which later are divided
into passages, do not include any matching queries. In order to perform supervised fine-
tuning of a retrieval system, labeled data is needed.

Synthetic query-answer labeling is a feasible choice for transforming the corpus into data
that can be used for training, as well as evaluation. For each text passage, OpenAI’s gpt-
3.5-turbo model [38] was used to generate synthetic queries. One query was generated for
each passage, with the answer to the query being present in the originating passage. The
parameter choice of only generating one query per passage was motivated by the nature of
the data: many of the passages are short and it would not make sense to expect two or more
reasonable, diverse, queries from such a short text.

Successfully prompting the model is an essential part of generating high quality queries
useful for fine-tuning. The end goal was to generate queries that felt human-like, were diverse
in sentence structure, concise, and not extremely specific (such as referencing the manual in
the query).

As a starting point, a pre-defined default prompt from a LlamaIndex class was used. The
default prompt is shown below, giving some context to how prompts can be structured.

DEFAULT_QA_GENERATE_PROMPT_TMPL = """\
Context information is below.

---------------------
{context_str}
---------------------

Given the context information and no prior knowledge,
generate only questions based on the below query.

You are a Teacher/ Professor. Your task is to setup
1 question for an upcoming
quiz/examination. The questions should be diverse in nature
across the document. Restrict the questions to the
context information provided."
"""

The resulting queries generated with the default prompt did not meet our requirements;
they were not human-like in nature, very detailed, and long. Prompting is, as previously
stated in section 2.2.3, an iterative process, and a "trial-and-error" process of tweaking the
prompt was thus performed. Progress was made, where important improvements included
changing the role from Teacher/Professor to an Automotive Technician, formulating the task
differently, and specifically stating that the generated queries should be short and concise.
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Summarizing the titles before performing synthetic query generation also contributed to
more realistic queries. In appendix C.2, thirty example queries generated from documents
with non-summarized paths and a sub-optimal prompt are presented. These can be compared
to the queries in appendix C.3, which were generated with a tweaked prompt from documents
with summarized paths.

3.3 The Embedding Model

3.3.1 Selecting an Embedding-model
When selecting an embedding model to fine-tune and use in the implemented retrieval sys-
tem, the important factors to consider do not, given our research aim, include finding the
highest performing or most state-of-the-art model available. Instead, the main focus was on
finding a sufficiently good model with a relatively low computational cost, as GPU resources
were limited. This approach also proves useful for situations where computational resources
are limited and sufficient performance needs to be reached by utilizing a smaller, but well
fine-tuned model.

The choice of excluding proprietary models such as those provided by OpenAI was made.
OpenAI does not provide fine-tuning possibilities for their best performing embedding mod-
els, and with the additional costs aspect taken into account the option of fine-tuning an older
OpenAI embedding model was excluded as well.

Hugging Face [39], which is a machine learning community and platform, provides a
leader-board [40] with embedding models for natural language processing tasks ranked based
on massive text embedding benchmarks. From this leader-board the model "bge-small-en-
v1.5" [41] developed by Beijing Academy of Artificial Intelligence (BAAI) was selected. This
model is built on the sentence transformer architecture previously described in section 2.1.
The model is small compared to most other text embedding models on the leader-board,
but still performs well across a variety of tasks. Further, BAAI also provides much larger
embedding models, with "bge-large-en-v1.5" [42], being the best performing one suitable for
comparisons with the smaller version. The model "bge-large-en-v1.5" was thus selected as a
benchmark, leading to the following research question: Can the smaller fine-tuned model out-
perform the larger, not fine-tuned model?

In table 3.4 follows a summary of the size, input token limit and number of embedding
dimensions for both models.

Model Name Model size Max Tokens Memory Usage Dimensions
bge-small-en-v1.5 33 Million Parameters 512 0.12 GB 384
bge-large-en-v1.5 335 Million Parameters 512 1.25 GB 1024

Table 3.4: bge-small-en-v1.5 (used for fine-tuning) is around 10 times
smaller than bge-large-en-v1.5 (used as a benchmark).
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3.3.2 Fine-tuning the Embedding Model
"Bge-small-en-v1.5" was fine-tuned with a Sentence Transformers provided Multiple Nega-
tives Ranking Loss function [29] on the six curated and synthetically labeled training datasets
presented in section 3.1.2. The training data thus consisted of (Q,P+)-pairs, and varied in
number of training samples and training sample diversity across the datasets. Multiple Neg-
atives Ranking Loss was used, as this is a common and suitable choice of loss function for
data on this format when training embedding models in dense retrieval settings.

3.3.3 Staged fine-tuning
Fine-tuning of the embedding model was performed in two stages: after the initial fine-
tuning with Multiple Negatives Ranking Loss, a second training step utilizing a loss function
for contrastive learning was used.

Experiments where the initial fine-tuning was excluded and the model only was trained
with contrastive loss were conducted, but yielded worse accuracy. Given this, contrastive
fine-tuning was mainly performed on initially fine-tuned embedding models.

Two different contrastive loss functions from the sentence transformers library were used;
Margin MSE loss [31] and Online Contrastive loss [30]. As these loss functions requires the
training data on a different format than for initial fine-tuning, additional data processing
steps, including Hard Negative Mining and margin calculations, were necessary. The follow-
ing sections 3.3.4 and 3.3.5 describe these steps.

3.3.4 Mining Hard Negatives
Contrastive loss is built on the premises that labeled hard negative passages are present in
the training data. This is often not the case, and we then need to perform Hard Negative
Mining, i.e. finding and labeling the hard negatives.

Determining which passages are hard negatives for the queries can be a challenge. Manual
labeling is not only extremely time-consuming for large datasets, but also requires expertise
in the domain. Two automated alternative approaches were instead tested.

For both approaches, the non fine-tuned embedding model "bge-small-en-v1.5" was used
to retrieve the 10 most relevant passages according to the model’s embedding similarity
scores, for each query in the training dataset. The hope was to find a hard or semi-hard neg-
ative example among these 10 retrieved passages. Using a "bge-small-en-v1.5" model for this
is a natural choice, as we want to find negative passages that are hard for the model intended
for fine-tuning. Deciding whether to use the base "bge-small-en-v1.5" model or an initially
fine-tuned version was more challenging. As synthetic query-answer labeling is performed
in such a manner that each passage only is labeled as a positive for one query, there is a risk
of false negative passages. Minimizing the occurrence of passages not labeled as positives,
but still being relevant for the query, being retrieved and labeled as hard negatives and then
explicitly used contrastively during training, was a priority. Given this, the non fine-tuned
model was used, as this model theoretically should be worse at retrieving relevant passages.

The first, most straight forward approach tested, was to after the retrieval step loop
through the retrieved passages in reversed order. As there is only one labeled positive passage
for each query, at least 9 of the retrieved passages for each query were not labeled positives.
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In the cases where the model failed to retrieve the positive example, all 10 retrieved pas-
sages were not labeled positives. Starting from the bottom of the retrieved list, the first
non-positive labeled passage was explicitly labeled as a hard negative. Looping in reversed
order was another choice made for the purpose of avoiding labeling passages that are actually
positive as negative. This is based on the assumption that the probability of a false negative
being retrieved as number 10 is lower than it being retrieved as number 1.

The second, more advanced approach tested, was utilizing an LLM. OpenAI’s gpt-3.5-
turbo [38] was once again selected, as a replacement for a domain expert. For each query, all
10 passages retrieved were sent to the LLM together with a prompt. The LLM was instructed
to answer with ’True’ if the passage contained information that could answer the query and
’False’ if it did not contain information that could answer the query. The 10 retrieved doc-
uments for each query were sorted from most relevant to least relevant. The first passage
which the LLM assessed as ’False’ in this list was added as a hard negative passage to that
query. The usage of an LLM was implemented with the aim to avoid labeling false negatives
(passages not labeled as positives but still relevant to the query) as hard negatives.

Two datasets, one for each of the above described approaches, both containing 7500
triplets on the format (Q, P+, hardnegativepassage(P−)) were created from the training
dataset with 7500 (Q, P+)-pairs sampled from three different car brands. All staged fine-
tuning experiments were performed on only these training datasets, due to the computational
power and costs associated with mining hard negatives.

3.3.5 Knowledge Distillation and Margin Calculations
One of the loss functions used for contrastive learning, Margin MSE Loss [31], requires the
triplets in the training data to be labeled with a margin. Labeling with a margin, calculated
with a teacher model such as a larger embedding model or a Cross-Encoder, is a form of
knowledge distillation, see section 2.3.1, where the assessment of the teacher model is used as
the ground truth. There are of course no guarantees that the teacher model’s judgements are
correct, and the process is thus referred to as pseudo-labeling.

We tested a few different models for margin calculation, but as preliminary experiments
indicated that model choice had a limited impact on performance, "Bge-reranker-base" [43],
a Cross-Encoder model from BAAI within the same class as our embedding models, was
selected.

The margin was calculated by sending query and positive or negative passage simultane-
ously as input to the Cross-Encoder. The cross encoder similarity score for (Query, Passage)
was then received as output. We denote the similarity score as p − score for (Q, P+)-pairs,
and as n − score for the (Q, P−)-pairs. The margin was then calculated as follows for all
triplets in the training dataset: margin = p_score − n_score. From this, yet another train-
ing dataset was created, consisting of the triplets labeled with the calculated margins.

3.3.6 Fine-tuning on hard negatives
For the second fine-tuning stage, in which contrastive learning, see section 2.2.4, was per-
formed, two different loss functions were tested.

Margin MSE Loss, see equation 2.9, was used for training on the (triplet, margin −
labeled) dataset. Selecting this loss function was motivated by the margin not labeling pas-
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sages as strictly relevant or non-relevant, but instead labeling passages with a relevancy score
between 0 and 1 [7]. This is an advantage given the issue with possible false negatives in the
dataset.

Online Contrastive Loss, see equation 2.8 was used interchangeably with Margin MSE
Loss. Fine-tuning with this loss function required the training data passages to be labeled as
strictly positive or negative, and such a dataset was constructed using the previously mined
hard negatives. Online Contrastive loss was selected over Contrastive Loss [44], as it trains
only on negatives that are closer than the specified margin, and positives which are further
apart, often yielding better results [30].

3.4 Final Prompts
3.4.1 Path Summarization Prompt
The final prompt used for path summarization was established as follows:

SUMMARIZATION_PROMPT_TEMPLATE: str = (
"You are an Automotive Technician with expertise in giving

concise and general summaries. As an example, ’A L L
Diagnostic Trouble Codes ( DTC )/Testing and Inspection/B Code
Charts/B1368/Airbag Control/Monitor Scantool Data’ should be

summarized as ’Diagnostic Trouble Codes for Testing and
Inspection of Airbag Control with Monitor Scantool Data’.
Avoid including specific code charts and troubleshooting codes
. Do not cite the original text. Restrict the summary to the
context information provided."

)

The example provided in the prompt closely resembles the results obtained after summariza-
tion. Below follows an example of a path before summarization:

• "Lighting and Horns/Door Switch/Description and Operation/Switch, Door, Front,
Right (54FR)/"

And after summarization:

• "Description and Operation of Door Switch for Front, Right, Lighting and Horns."

In a majority of the cases the model succeeded in removing trouble codes and strange
sentence structures, while the context was kept to facilitate the search.

3.4.2 Synthetic Query-Answer Labeling Prompt
The final prompt used for generating synthetic queries was:

PROMPT_TEMPLATE = """\
Context information is below.
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---------------------
{context_str}
---------------------

Given the context information and not prior knowledge.
generate only questions based on the below query.

You are a Automotive Technician helping customers with their cars.
Your task is to setup \

1 domain specific questions that could be asked by one of your
customers. The questions should be diverse in nature \

across the document. The questions should be kept short and general.
Restrict the questions to the \

context information provided."
"""

This prompt resulted in more human like queries compared to what was generated with
the default prompt, facilitating domain adaptation. However, a majority of the queries still
begins with "How". In Appendix C.3 thirty examples of the synthetic queries generated with
the above prompt are presented. The queries are generated from a dataset that combines data
from Saab, Hyundai and Chrystler.

3.4.3 Prompt for LLM-based Hard Negative Mining
The final prompt for evaluating if passages were positives or negatives when performing Hard
Negative Mining was established as:

HNM_PROMPT: str = (
"You are an Automotive Technician evaluating document relevance

for technical automotive queries. For the query, determine if
the relevant information mentioned are provided in the CHARM
document. Respond ONLY with ’True’ if the document contains
the necessary information to answer the query. If the document
does not contain the specific information requested in the

query, respond ONLY with ’False’. You are under no
circumstances allowed to answer anything other than ’True’ or
’False’."

)
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To streamline the process of selecting negative passages the model was instructed to an-
swer only with True or False. This resulted in output that could easily be evaluated while
keeping the output token count low to minimize costs.

3.5 Vector database
FAISS (Facebook AI Similarity Search) [36] was used for implementing a vector database
in our retrieval system. FAISS offers efficient algorithms for similarity search, scalable in-
dexing, and various clustering and quantization techniques enabling high performance and
low memory usage, making it an appropriate choice for RAG applications. Further, FAISS
is highly customizable and optimized for both CPU and GPU usage, making it versatile for
different deployment environments. Additionally, there are complete Wrappers for Python,
and it is thus easy to implement and set up.

Similarity search is performed by FAISS building a data structure in RAM from a given
set of vectors with dimension d. When a new vector, for example an embedded query, of the
same dimension is sent as input FAISS performs similarity search based on the Euclidean
distance. Our implementation allowed for all queries in a test set to be given to FAISS in
one file, after which the 10 most relevant passages (the closest embeddings) for each query
could be retrieved from the vector database.

Retrieving the top 10 passages, and not for example only the closest or the 100 closest pas-
sages, was a parameter selection made based on both performance and system effectiveness.
With an increased number of retrieved passages, the hit rate was of course much higher and
even the base model (non fine-tuned model) often succeeded, making comparisons between
different models more difficult. Further, a lower number of retrieved passages would not
allow for as comprehensible assessment of the order-aware metrics, as only the retrieved pas-
sages are taken into account when evaluating the ranking. Retrieving 10 passages per query,
corresponding to about 0.2% of the samples in the vector database, means significantly re-
ducing the text a user would have to go through, creating an effective system while still not
giving the embedding model an extremely difficult task.

3.6 Experimental Set-up
The experimental set-ups are presented in table 3.5. The tabulated "bge-small-en-v1.5" em-
bedding models, fine-tuned with different approaches, were used in the implemented re-
trieval system and evaluated on all synthetic and human annotated test datasets. Training
size refers to the number of (Q, P+)-pairs or (Q, P+, P−)-triplets in the training data, and
diversity refers to the number of different car models included in the training data. For all
cases were staged fine-tuning was performed, the number of training-sample pairs used for
the initial fine-tuning is equal to the number of triplets used for contrastive fine-tuning.

Grid search was performed for hyperparameter optimization. This was done by running
Sweeps [33] with Weights and Biases [32]. Hyperparameters, outputs and metrics were logged
with Weights and Biases during the sweeps, and hyperparameter values were selected accord-
ing to what yielded the highest accuracy on the validation datasets.
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Training size Diversity Initial fine-tuning Contrastive fine-tuning
0 0 no no
2500 1 yes no
2500 2 yes no
2500 3 yes no
5000 3 yes no
7500 3 yes no
15000 5 yes no
7500 3 yes Margin MSE Loss on non-LLM mined hard neg-

atives
7500 3 yes Margin MSE Loss on LLM mined hard nega-

tives
7500 3 yes Online Contrastive Loss on non-LLM mined

hard negatives
7500 3 yes Online Contrastive Loss on LLM mined hard

negatives

Table 3.5: List of considered settings, training datasets, and loss
functions for fine-tuning the "bge-small-en-v1.5" embedding model.
The first row corresponds to the non fine-tuned base model.

The final optimal hyperparameters for Multiple Negatives Ranking Loss are listed in
table 3.6

Hyperparameters Value
Number of Epochs 2
Batch size 32
Learning Rate 2·10−5

Evaluation Steps 50
Optimizer AdamW
Distance/Similarity Function Cosine Similarity

Table 3.6: Hyperparameters used when fine-tuning with Multiple
Negatives Ranking Loss.

A further increased batch size would likely yield even better performance, but due to
memory limits the sweeps could not be performed on batch sizes larger than 32.

The optimized hyperparameters for Online Contrasive Loss and Margin MSE Loss are
presented in table 3.7.

3.7 Evaluation
3.7.1 Evaluation Measures
Three metrics explained in section 2.5.1 were used for evaluation; Mean Reciprocal Rank
(MRR), Normalized Discounted Cumulative Gain (NDCG), and hit-rate. These are all stan-
dard metrics for evaluating information retrieval systems, and give a comprehensive insight
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Hyperparameters Margin MSE Loss Online Contrastive Loss
Number of Epochs 5 5
Batch size 32 16
Learning Rate 2·10−5 2·10−5

Evaluation Steps 50 50
Optimizer AdamW AdamW
Distance/Similarity Function Pair-wise Dot Score Cosine Distance
Threshold - 0.7

Table 3.7: Hyperparameter values used for contrastive learning.

into the model performance. The hit-rate was calculated based on if the relevant passage was
retrieved in the top 10 for its matching query: if yes, it was counted as a hit. For NDCG@10
and MRR@10, the scores were calculated using only the top 10 retrieved passages. As a result,
a score of zero is obtained for a query regardless of if the relevant passage is ranked in 11:th or
1000:th place. This approach was intentional, as the aim was to reward the model only if it
managed to place the relevant passage among the 10 retrieved ones. The measures obtained
for each test dataset are the average of the scores given for all queries in that test dataset.

Recall is another standard metric used for evaluation information retrieval system. How-
ever, since there is only one positive passage per query in the test data, recall becomes equiv-
alent to hit-rate.

Bootstrapping on the test data was performed for all evaluations in order to generate
confidence intervals used to determine the statistical certainty of our findings. This was
carried out by randomly constructing 100 bootstrapped samples from each test set for each
evaluation, and then calculating the performance metrics for all bootstrapped samples in a
test set. All bootstrapped samples were created to have the same size as the original test set,
corresponding to the case M = N in section 2.5.2.

3.7.2 Zero-Shot Learning (ZSL)
In order to investigate how well the fine-tuned embedding models were adapted to the do-
main, Zero-Shot Learning (ZSL), see section 2.3.3, was performed. As stated in section 3.1.2,
two of the synthetic and one of the human annotated test datasets consisted of car brands
unseen during training; the Jaguar datasets and the Ford dataset. By evaluating the perfor-
mance on these datasets, the ability of the fine-tuned embedding models to perform Zero-
Shot learning could be assessed.

3.7.3 Standard Testing
Section 3.1.2 also mentions that one synthetic and one human-annotated test dataset included
a car brand seen during training, specifically the Saab 2004 test datasets. Note that all data in
the test datasets were unseen during training, as the training data included documents from a
different Saab model (Saab 2010). The goal of including such test datasets was to investigate
how performance differs when evaluating on classes seen during training compared to classes
unseen during training but within the same domain.
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3.7.4 Benchmarking Against bge-large-en-v1.5
The performance of "bge-large-en-v1.5", the 10 times larger embedding model stated in sec-
tion 3.3.1 as a selected benchmark, was calculated for all five test-sets. The model was taken
"off-the-shelf", and not fine-tuned. The same evaluation metrics and strategies as mentioned
above were used.
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Chapter 4

Results

4.1 Retrieval Performance
In this section follow the results obtained when evaluating and comparing the retrieval per-
formance for various embedding models fine-tuned with different approaches. Important to
note is the fact that the results obtained for the different test datasets are not numerically
comparable, as each test dataset presents different levels of task difficulty. The number of
text passages present in the vector database varies between the test datasets, and further,
some of the datasets evaluate zero shot learning while others do not. Comparisons should
instead be made between the performance of different embedding models within one test
dataset, and on the percentage increase seen after fine-tuning.

4.1.1 Synthetic Test Datasets
Tables B.1, B.2, and B.3 display a summary of the performance metric values obtained for
differently fine-tuned embedding models across the three synthetic test datasets. The metrics
are calculated as the average of all queries in a test dataset.

The embedding model that optimized performance across the synthetic data was fine-
tuned in stages, first with Multiple Negatives Ranking Loss on 7500 (Q, P+)-pairs and then
with Online Contrastive Loss on 7500 LLM mined (Q, P+, P−)-triplets.

Table 4.1 features the percentage increases in Hit-rate@10, MRR@10, and NDCG@10
between the "bge-small-en-v1.5" and the best performing fine-tuned model for the three syn-
thetic test datasets. In table 4.2, the percentage increases from "bge-large-en-v1.5" to the same
optimized model are shown. The percentage increases are calculated as:

Percentage Increase =
(

New Value −Old Value
Old Value

)
× 100%
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Hit-Rate@10 MRR@10 NDCG@10
Ford
Small base model score 0.605 0.325 0.392
Optimized model score 0.708 0.393 0.468
Percentage Increase 16.5% 20.9% 19.4%
Jaguar
Small base model score 0.680 0.400 0.467
Optimized model score 0.763 0.461 0.531
Percentage Increase 12.2% 15.3% 13.7%
Saab 2004
Small base model score 0.686 0.408 0.474
Optimized model score 0.809 0.520 0.589
Percentage Increase 17.9% 27.4% 24.3%

Table 4.1: Percentage increases and scores from the base model (bge-
small) to the optimized fine-tuned model for the three synthetic test
datasets.

Hit-Rate@10 MRR@10 NDCG@10
Ford
Large base model score 0.647 0.325 0.392
Optimized model score 0.708 0.393 0.468
Percentage Increase 9.4% 14.6% 12.5%
Jaguar
Large base model score 0.686 0.409 0.475
Optimized model score 0.763 0.461 0.531
Percentage Increase 11.2% 12.7% 11.8%
Saab 2004
Large base model score 0.695 0.422 0.487
Optimized model score 0.809 0.520 0.589
Percentage Increase 16.4% 23.2% 20.9%

Table 4.2: Percentage increases and scores from the large base model
(bge-large) to the optimized fine-tuned model for the three synthetic
test datasets.

For all three synthetic test datasets we found that retrieval performance with "bge-small-
en-v1.5" was increased across MRR@10, NDCG@10 and Hit-rate@10 after fine-tuning.

Figures 4.1, 4.2, and 4.3 display results from the same experiments as those listed in tables
B.1, B.2, and B.3, with the addition of bootstrap generated 95% confidence intervals. The
width of the confidence intervals indicate the level of uncertainty surrounding the obtained
results.

The 95% confidence intervals for the base model and the best performing fine-tuned mod-
els do not overlap, indicating statistical significance at the 5% significance level. Furthermore,
the best performing fine tuned models also outperform "bge-large-en-v1.5", achieving statis-
tical significance at the same 5% level. Increasing the training data diversity and the number
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4.1 Retrieval Performance

Figure 4.1: Retrieval Performance with 95% confidence intervals on
Ford synthetic Test-set for base embedding models, models fine-
tuned on varying data size and diversity, and a staged fine-tuned
model. This is a zero shot learning setting.

Figure 4.2: Retrieval Performance with 95% confidence intervals on
Jaguar synthetic Test-set for base embedding models, models fine-
tuned on varying data size and diversity, and a staged fine-tuned
model. This is a zero shot learning setting.

of training samples slightly improves the bootstrapped median performance, when looking
at the overall pattern. However, the differences in performance obtained for the differently
fine-tuned embedding models are not statistically certain. Additionally, while the median
performance of "bge-large-en-v1.5" is higher than for "bge-small-en-v1.5", the confidence in-
tervals overlap indicating statistical uncertainty. The model fine-tuned in stages, displayed
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Figure 4.3: Retrieval Performance with 95% confidence intervals on
Saab 2004 synthetic Test-set for base embedding models, models
fine-tuned on varying data size and diversity, and a staged fine-tuned
model.

at the bottom of figures 4.1, 4.2, and 4.3, gives the highest median hit rate for all three test
datasets, but does not improve MRR@10 or NDCG@10. The confidence intervals of all the
fine-tuned embedding models, including the optimized, overlap for all test datasets, making
performance comparisons between different fine-tuning approaches statistically uncertain.
The most dramatic increase in performance was seen for the Saab 2004 test dataset, see fig-
ure 4.3, where the confidence intervals for none of the fine-tuned embedding models overlap
with the base model’s. This test dataset was, as opposed to the other two, not a Zero-Shot
learning setting, as Saab data (Saab 2010) was included in all training datasets.

4.1.2 Human Annotated Test Datasets
Tables B.4, B.2, and B.5 display a summary of the performance metric values obtained for 9
differently fine-tuned embedding models across the two human annotated test datasets. The
metrics are calculated as the average of all queries in a test dataset.

Table 4.3 features the percentage increases in Hit-rate@10, MRR@10, and NDCG@10
between the base model and the best performing fine-tuned model for the two human an-
notated test datasets. In table 4.4, the percentage increases from "bge-large-en-v1.5" to the
optimized model are shown. The best performing model differs between test datasets; the
model fine-tuned in stages on 7500 training samples yields optimal performance for Saab
2004 while the highest accuracy for Jaguar is reached when fine-tuning once on 15000 train-
ing examples. In tables 4.3 and 4.4, comparisons are made between the two base models and
the model yielding optimal performance for that test dataset.

Figures 4.4, and 4.5 display the results for the human annotated test datasets with the
addition of bootstrap generated 95% confidence intervals.

The confidence intervals are very wide, a natural consequence of the human annotated
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Hit-Rate@10 MRR@10 NDCG@10
Jaguar
Small base model score 0.490 0.270 0.322
Optimized model score 0.610 0.357 0.417
Percentage Increase 24.5% 32.2% 29.5%
Saab 2004
Small base model score 0.660 0.466 0.512
Optimized model score 0.890 0.639 0.700
Percentage Increase 34.8% 37.1% 36.7%

Table 4.3: Percentage increases from the base model (bge-small)
to the optimized fine-tuned model (differently fine-tuned for Saab
2004 than for Jaguar) for human annotated Jaguar and human an-
notated Saab 2004 test datasets.

Hit-Rate@10 MRR@10 NDCG@10
Jaguar
Large base model score 0.500 0.276 0.330
Optimized model score 0.610 0.357 0.417
Percentage Increase 22.0% 29.0% 26.4%
Saab 2004
Large base model score 0.720 0.490 0.544
Optimized model score 0.890 0.639 0.700
Percentage Increase 23.6% 30.4% 28.7%

Table 4.4: Percentage increases from the large base model (bge-large)
to the optimized fine-tuned model (differently fine-tuned for Saab
2004 than for Jaguar) for human annotated Jaguar and human an-
notated Saab 2004 test datasets.

test datasets only consisting of 100 queries each, making the performance highly dependent
on individual samples. For the Zero-Shot learning scenario with the human annotated Jaguar
dataset, all 95% confidence intervals overlap, and we can not conclude a statistical significant
improvement in performance. Looking at the medians, we do see an increase in performance
with training data size and diversity. However, the model fine-tuned in stages, which yields
the highest accuracy for all other test datasets, is not optimal for the human annotated Jaguar
data. It performs worse than four of the six embedding models only fine-tuned in one step,
indicating that contrastive learning decreases performance.

For the human annotated Saab 2004 data, results indicate that fine-tuning the embedding
model does enhance performance at the 5% significance level. For all evaluation metrics,
most of the fine-tuned embedding models’ confidence intervals do not overlap with the base
model’s. The model fine-tuned in stages reach statistical significant improvements from the
large base model for hit-rate@10 and NDCG@10, but not for MRR@10, as the confidence
intervals overlap.
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Figure 4.4: Retrieval Performance with 95% confidence intervals on
the Human Annotated Jaguar Test-set for base embedding models,
models fine-tuned on varying data size and diversity, and a staged
fine-tuned model. This is a zero shot learning setting.

Figure 4.5: Retrieval Performance with 95% confidence intervals
on the Human Annotated Saab 2004 Test-set for base embedding
models, models fine-tuned on varying data size and diversity, and a
staged fine-tuned model.
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4.2 Contrastive Learning and Hard Negative
Mining

Different approaches for staged fine-tuning and hard negative mining were tested. The sec-
tions above include the results for an embedding model fine-tuned first with Multiple Neg-
atives Ranking loss (MNR loss) and then with Online Contrastive loss (OC loss) on LLM
mined hard negatives. Figures 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 display the performance of other
contrastive learning approaches on the Jaguar synthetic test dataset. Results were consistent
across most test datasets.

Figure 4.6: Hit-Rate@10 for embedding models trained on hard neg-
atives mined without an LLM versus on LLM mined hard negatives.
LLM-based hard negative mining (middle, right) sligthly improves
results compared to mining without LLM (left).

Using LLM mined hard negatives seems preferred compared to selecting the hard nega-
tives based on their retrieval ranking, as this slightly enhances performance, see figures 4.6,
4.7, and 4.8. The hit rate is increased by two percentile points when using Margin MSE loss on
the LLM mined hard negatives, compared to on the non-LLM mined hard negatives. Online
Contrastive Loss on the LLM mined hard negatives yields optimal performance.

As shown in figures 4.9, 4.10, and 4.11, performance is higher across all evaluation metrics
for models fine-tuned with Multiple Negatives Ranking loss compared to models trained
with solely Margin MSE or Online Contrastive loss. Staged fine-tuning, using both Multiple
Negatives Ranking and Margin MSE or Online Contrastive loss improves accuracy slightly.
Among these, employing Online Contrastive loss in the second fine-tuning stage produces
the most accurate model.
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Figure 4.7: MRR@10 for embedding models trained on hard nega-
tives mined without an LLM versus on LLM mined hard negatives.
LLM-based hard negative mining (middle, right) sligthly improves
results compared to mining without LLM (left).

Figure 4.8: NDCG@10 for embedding models trained on hard neg-
atives mined without an LLM versus on LLM mined hard negatives.
LLM-based hard negative mining (middle, right) sligthly improves
results compared to mining without LLM (left).
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Figure 4.9: Hit-Rate@10 for the following embedding models (from
left to right): 1. fine-tuned with MNR loss on 7500 (Q, P+) sam-
ples. 2. Finetuned with Margin MSE loss (MM loss) on 7500 LLM
mined triplet samples. 3. Staged fine-tuning with MNR loss on 7500
(Q, P+) samples and MM loss on 7500 triplets. 4. Fine-tuned with
OC loss on 7500 LLM mined triplets. 5. Staged fine-tuning with
MNR loss on 7500 (Q,P+) samples and OC loss on 7500 LLM mined
triplets.

Figure 4.10: MRR@10 for the following embedding models (from
left to right): 1. fine-tuned with MNR loss on 7500 (Q, P+) sam-
ples. 2. Finetuned with Margin MSE loss (MM loss) on 7500 LLM
mined triplet samples. 3. Staged fine-tuning with MNR loss on 7500
(Q, P+) samples and MM loss on 7500 triplets. 4. Fine-tuned with
OC loss on 7500 LLM mined triplets. 5. Staged fine-tuning with
MNR loss on 7500 (Q,P+) samples and OC loss on 7500 LLM mined
triplets.
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Figure 4.11: NDCG@10 for the following embedding models (from
left to right): 1. fine-tuned with MNR loss on 7500 (Q, P+) sam-
ples. 2. Finetuned with Margin MSE loss (MM loss) on 7500 LLM
mined triplet samples. 3. Staged fine-tuning with MNR loss on 7500
(Q, P+) samples and MM loss on 7500 triplets. 4. Fine-tuned with
OC loss on 7500 LLM mined triplets. 5. Staged fine-tuning with
MNR loss on 7500 (Q,P+) samples and OC loss on 7500 LLM mined
triplets.
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Chapter 5

Discussion

5.1 Reflections
When initialising this project, one of the main aims was to create a system that could perform
well on human queries, despite being fine-tuned on synthetic training data. As we started
to perform preliminary experiments, it became clear that it was difficult to generate human-
like training data from the CHARM dataset. A significant portion of the project time was
therefore dedicated to data processing. Processing the corpus in order to increase training
data quality was not straight forward, and we could not rely solely on standard methods.
Using a large language model for data processing, such as for summarizing the paths, proved
to be very effective, and substantial improvements in data quality were made. Despite this,
we expected the increase in retrieval performance after fine-tuning to be substantially lower
for the human annotated test datasets than for the synthetically generated data. However,
evaluations indicate the opposite. Although the confidence intervals are much wider for the
human annotated datasets, making these findings less certain, this is likely a consequence of
the test datasets becoming more sample dependent due to the small number of test samples
rather than an indication of true performance. With this reasoning, we argue that larger
human annotated test datasets would yield similar performance medians with more narrow
confidence intervals. The causes of the human annotated datasets experiencing a more drastic
increase in retrieval accuracy post fine-tuning are not established. Speculations about what
may have contributed are that the queries are generally shorter and more semantically con-
textual. The synthetically generated test datasets likely include a portion of unusual queries
where the retrieval is not improved by fine-tuning, dragging down the average performance
for the synthetic data.

Increasing training data size and diversity did contribute some in increasing perfor-
mance, but the gains were marginal. It is possible that substantial improvements would
be observed if the number of training samples were increased more drastically, for exam-
ple, by an order of magnitude of 100 or 1000. However, the large improvements seen after
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fine-tuning on only 2500 training samples, followed by much smaller additional gains for the
larger training datasets, indicate a logarithmic relationship between training data size and
performance.

The model performance increase on the Zero-Shot learning tasks is surprisingly similar to
the increase seen for the Saab 2004 test datasets. This is an important finding, indicating that
fine-tuning on a different part of the domain is almost as effective as fine-tuning on the exact
same domain region as the test data. Further, this implies that the model can generalize across
the whole domain, in this case across a variety of different car models and brands. Staged
contrastive learning improves accuracy across all test datasets except the human annotated
Jaguar queries. A reasonable explanation for this is the fact that the queries in this test dataset
are more dissimilar to the training queries compared to the other test datasets. Not only are
the queries crafted by humans instead of an LLM, but this is also a Zero-Shot learning setting.
When fine-tuning in two stages, in the second stage with contrastive loss, the embedding
model fits more aggressively to the training data, possibly overfitting it to synthetic queries
and car brands included in the training dataset.

Only a quite small amount of training data was required in order for "bge-small-en-v1.5"
to outperform "bge-large-en-v1.5". This indicates that embedding model size is not the most
important factor for achieving good retrieval performance in domain-specific fields. Rather,
the success of domain adaptation depends on fine-tuning. It is thus reasonable to conclude
that it is preferable to use a small but fine-tuned embedding model over a larger one that has
only been pre-trained, even if if the training data available is limited.

Another interesting finding is that peak performance for both the synthetic and human
annotated Saab 2004 test datasets is not reached when the model has been fine-tuned on
other Saab data exclusively. Instead, we observe an increase in performance when car models
from other brands are also included in the training data. This indicates that diverse training
data enhances the embedding model’s ability to learn the semantic meaning of the corpus.

5.2 Issues and Limitations

5.2.1 The CHARM dataset
The CHARM dataset contains, in its original state, images. These images are excluded when
the data is scraped into json-files, resulting in a portion of the documents becoming irrelevant
as they refer to a figure. Filtering based on a lower character limit of 200 was performed as
an attempt to tackle this issue. While this filtering reduced the occurrence of irrelevant
documents, the problem was not completely eliminated, and instances of non-contextual
text remained in the corpus. Eliminating this issue with 100% accuracy would require time-
consuming manual inspection and filtering.

5.2.2 Choice of Chunking method
The choice of chunking method had a large impact on the result. Since the CHARM corpus
in many instances does not have a semantic structure, chunking methods like Semantic Split-
ting, which uses an LLM to chunk the text, was not the best choice. Instead, a more simple
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chunking approach yielded superior results. However, for many other datasets, for exam-
ple corpora of scientific papers, semantic splitting would likely have been the most effective
method.

5.2.3 Hard Negative Mining and Margin MSE Loss
When performing fine-tuning with Margin MSE loss, it was observed that the choice of mar-
gin calculator did not have a large impact on the performance. However, due to limited
memory and GPU access, we could not use the most state-of-the-art embedding models or
Cross-Encoders as teacher models. It is possible that the usage of for example an LLM-based
embedding model for margin calculations would have yielded better results. It was observed
that performing LLM-based mining of hard negatives yielded higher evaluation scores com-
pared to hard negatives mined without the use of an LLM. However, it should be noted that
there is a trade-off between slightly increasing performance by performing LLM-based hard
negative mining and saving time and resources by skipping this step.

5.3 Future Work and Applications

5.3.1 Re-labeling passages
The synthetic queries were generated from one passage each, which resulted in one positive
passage for each query. When retrieving passages it was observed that documents labeled as
negatives in some cases were relevant to the query. If more time was given, one approach that
would likeley benefit the system and result in more realistic performance metrics would be
to, with the facilitation of an LLM, evaluate the top K retrieved passages and re-label false
negative passages as positives.

Mixtral is an example of an LLM that was briefly tested on this task and seemed to per-
form well on re-labeling passages. Mixtral is an open-source model by Mistral AI. The model
is a high-quality sparse mixture of experts model (SMoE) with open weights, licensed under
Apache 2.0. Mixtral outperforms Llama 2 70B and GPT3.5 on most standard benchmarks
[45].

In section 1.4, the paper ’How to Train Your DRAGON: Diverse Augmentation Towards
Generalizable Dense Retrieval’ [9] is discussed. The authors propose another approach, using
a multitude of retrieval models, to re-label passages. Using a method inspired by this for re-
fining training data labels is an alternative approach to how future work could be conducted.

5.3.2 Increased Computational Power
The limited computational power and GPU time constrained the training data size and the
choice of embedding model. For future work it would be interesting to test if the performance
would increase further by drastically increasing the variety and size of the training data.

An increase of computational power would unlock the possibility to train larger embed-
ding models, which would likely yield higher performance.
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5.3.3 Applications
The use of chatbots utilizing Retrieval Augmented Generation (RAG) has become increas-
ingly common in enterprise settings [46], particularly for enhancing customer service and in-
ternal support. The most common approach is to use a pre-trained embedding model without
performing further fine-tuning on the domain data [47][48][49].

Our research focuses on data preparation, fine-tuning open-source embedding models
and employing hard negative mining to improve the retrieval performance for such systems.
This approach ensures that chatbots can provide more accurate and contextually relevant
responses, particularly in specialized domains. By enhancing the retrieval component, our
methodology can address the gaps present in the majority of current solutions.
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Chapter 6

Conclusion

6.1 Answering the Research Questions
Given a large, unlabeled, domain-specific set of documents. What is the most effective set
of techniques to achieve good retrieval performance?

We have demonstrated that important considerations when optimizing retrieval perfor-
mance include knowing your data, and processing it with tailored techniques before gener-
ating synthetic training datasets. Facilitating a large language model for title summarization
and mining of hard negatives proved effective for the CHARM dataset, but these methods
likely needs to be adjusted according to the corpus used. Prompt engineering is another
crucial aspect of successfully performing domain adaptation of a retrieval system, and again
demonstrates the importance of knowing your data as the prompts are best curated when
the data format is taken into account. The training dataset should be diverse and contain an
efficiently large number of samples, but more importantly effort should be put into generat-
ing human-like queries. Further, using more than one loss function for staged fine-tuning of
the embedding model was found to be the method yielding the highest performance.

Is synthetic training data a viable option for fine-tuning an embedding model on a tech-
nical domain?

For the second research question, it could be concluded that training the embedding
model on synthetically generated questions improved the performance across both synthetic
and human annotated test datasets. It was also observed that increasing the number of queries
in the training dataset did not have a large impact on the results, which enables boosting of
retrieval performance within a domain even if only a limited amount of data is available.

Can a small fine-tuned embedding model outperform a much larger "off-the-shelf" em-
bedding model?

Finally, it was concluded that the smaller embedding model "bge-small-en-v1.5" fine-
tuned on synthetic data outperformed the ten times larger base embedding model "bge-large-
en-v1.5" at the 5% significance level for four out of five test datasets.
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6.2 Final Conclusions
Performing domain adaptation of retrieval systems is an iterative process which requires flex-
ibility and adjustments depending on the domain and the data. We conclude that synthet-
ically labeled training data is a viable option for fine-tuning an embedding model, making
domain adaptation feasible across multiple fields where manual labeling is not possible. Fur-
ther, facilitating large language models in multiple steps of the data processing, such as corpus
refinement and hard negative mining, can improve training data quality and enable increases
in retrieval performance across human annotated queries.

Circling back to our research objective, we have investigated a range of techniques across
the retrieval system implementation pipeline. Selecting which methods to use requires test-
ing on the corpus intended for the domain adaptation. Based on what optimized retrieval
performance for the CHARM dataset, we propose a system which utilizes GPT 3.5-turbo for
title summarizations and hard negative mining, and performs fine-tuning of the embedding
model in a staged manner with Multiple Negatives Ranking and Online Contrastive loss.

Overall, domain adaptation of a retrieval system is a challenging but rewarding task.
If done correctly, retrieval performance can be dramatically boosted across technical and
domain-specific fields.
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Appendix A

Division of Work

The contributions to this thesis were equally shared between the authors, Lycke Fureby and
Filippa Hansen. The project development tasks were distributed evenly, ensuring that each
author had the opportunity to review and potentially modify the code written by the other.
This reciprocal review process helped maintain a high standard of work and facilitated a
comprehensive understanding of the entire project by both authors.

The writing responsibilities for the thesis report were similarly divided. Specific sections
and chapters were initially drafted by one author and subsequently extended or revised by
the other. This collaborative approach not only ensured equal participation but also provided
each author with a thorough insight into all aspects of the thesis, promoting a well-rounded
and cohesive final document.
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Appendix B

Supporting tables

Embedding Model Hit Rate @10 MRR @10 NDCG @10
Bge-small-en-v1.5, base model 0.605 0.325 0.392
Bge-large-en-v1.5, base model 0.647 0.343 0.416
Bge-small, Multiple Negatives Ranking loss, 2500
training samples with 1 car model

0.672 0.367 0.439

Bge-small, Multiple Negatives Ranking loss, 2500
training samples with 2 car models

0.677 0.382 0.452

Bge-small, Multiple Negatives Ranking loss, 2500
training samples with 3 car models

0.681 0.382 0.453

Bge-small, Multiple Negatives Ranking loss, 5000
training samples with 3 car models

0.679 0.377 0.448

Bge-small, Multiple Negatives Ranking loss, 7500
training samples with 3 car models

0.694 0.384 0.458

Bge-small, Multiple Negatives Ranking loss, 15000
training samples with 6 car models

0.699 0.398 0.470

Bge-small, Multiple Negatives Ranking Loss and On-
line Contrastive Loss with LLM mined P-, 7500 train-
ing samples with 3 car models

0.708 0.393 0.468

Table B.1: Overview of Model Performance Metrics averaged over
all queries in the Ford Synthetic Test Dataset.
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Embedding Model Hit Rate @10 MRR @10 NDCG @10
Bge-small-en-v1.5, base model 0.680 0.400 0.467
Bge-large-en-v1.5, base model 0.686 0.409 0.475
Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 1 car model

0.712 0.444 0.509

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 2 car models

0.727 0.447 0.514

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 3 car models

0.730 0.457 0.523

Bge-small, Multiple Negatives Ranking loss,
5000 training samples with 3 car models

0.718 0.454 0.518

Bge-small, Multiple Negatives Ranking loss,
7500 training samples with 3 car models

0.736 0.459 0.525

Bge-small, Multiple Negatives Ranking loss,
15000 training samples with 6 car models

0.744 0.457 0.528

Bge-small, Multiple Negatives Ranking Loss
and Online Contrastive Loss with LLM mined
P-, 7500 training samples with 3 car models

0.763 0.461 0.531

Table B.2: Overview of Model Performance Metrics averaged over
all queries in the Jaguar Synthetic Test Dataset.

Embedding Model Hit Rate @10 MRR @10 NDCG @10
Bge-small-en-v1.5, base model 0.686 0.408 0.474
Bge-large-en-v1.5, base model 0.695 0.422 0.487
Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 1 car model

0.763 0.486 0.553

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 2 car models

0.774 0.494 0.561

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 3 car models

0.773 0.494 0.561

Bge-small, Multiple Negatives Ranking loss,
5000 training samples with 3 car models

0.775 0.495 0.562

Bge-small, Multiple Negatives Ranking loss,
7500 training samples with 3 car models

0.787 0.505 0.573

Bge-small, Multiple Negatives Ranking loss,
15000 training samples with 6 car models

0.794 0.520 0.586

Bge-small, Multiple Negatives Ranking Loss
and Online Contrastive Loss with LLM mined
P-, 7500 training samples with 3 car models

0.809 0.520 0.589

Table B.3: Overview of Model Performance Metrics averaged over
all queries in the Saab 2004 Synthetic Test Dataset.
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Embedding Model Hit Rate @10 MRR @10 NDCG @10
Bge-small-en-v1.5, base model 0.490 0.270 0.322
Bge-large-en-v1.5, base model 0.500 0.276 0.330
Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 1 car model

0.540 0.297 0.352

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 2 car models

0.580 0.309 0.371

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 3 car models

0.580 0.309 0.373

Bge-small, Multiple Negatives Ranking loss,
5000 training samples with 3 car models

0.590 0.316 0.381

Bge-small, Multiple Negatives Ranking loss,
7500 training samples with 3 car models

0.600 0.329 0.393

Bge-small, Multiple Negatives Ranking loss,
15000 training samples with 6 car models

0.610 0.357 0.417

Bge-small, Multiple Negatives Ranking Loss
and Online Contrastive Loss with LLM mined
P-, 7500 training samples with 3 car models

0.590 0.316 0.381

Table B.4: Overview of Model Performance Metrics averaged over
all queries in the human annotated Jaguar Test Dataset.

Embedding Model Hit Rate @10 MRR @10 NDCG @10
Bge-small-en-v1.5, base model 0.660 0.466 0.512
Bge-large-en-v1.5, base model 0.720 0.490 0.544
Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 1 car model

0.840 0.575 0.639

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 2 car models

0.850 0.586 0.651

Bge-small, Multiple Negatives Ranking loss,
2500 training samples with 3 car models

0.850 0.596 0.658

Bge-small, Multiple Negatives Ranking loss,
5000 training samples with 3 car models

0.870 0.603 0.667

Bge-small, Multiple Negatives Ranking loss,
7500 training samples with 3 car models

0.860 0.602 0.664

Bge-small, Multiple Negatives Ranking loss,
15000 training samples with 6 car models

0.860 0.607 0.669

Bge-small, Multiple Negatives Ranking Loss
and Online Contrastive Loss with LLM mined
P-, 7500 training samples with 3 car models

0.890 0.639 0.700

Table B.5: Overview of Model Performance Metrics averaged over
all queries in the human annotated Saab 2004 Test Dataset.
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Appendix C

Example Queries

C.1 30 Examples of Human Annotated Queries
1. My front door window makes a loud noise when going up or down, what could be

causing this issue?

2. My rear view mirror keeps coming loose, is there a specific fix for this issue?

3. I have performed specific gravity testing on my Jaguar. How do I know if my Jaguar’s
battery needs to be replaced based on the results?

4. I noticed that my portable cellular phone holder is damaged, could this be causing
issues with my phone’s connectivity in the car?

5. My Jaguar’s remote key fob is not locking the vehicle, but it locks fine with the key.
What could be the issue?

6. How can I troubleshoot issues with my Jaguar’s ignition system if the keyless entry
remote fob is not locking the vehicle properly?

7. My front seat is making a loud noise when adjusting, what could cause this?

8. How often should the air filter element in the air cleaner housing be replaced in my
Jaguar?

9. Can you tell me how to identify and locate the control module pins in my Jaguar V8
engine for troubleshooting purposes?

10. I have completed the repair process for the heater control valve in my Jaguar. How can
I ensure proper reinstallation of the dual coolant flow valve?
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11. I hear a strange noise coming from my steering column when I turn the wheel, what
could this be related to?

12. My luggage compartment lid is difficult to open, what could be causing this issue and
how can it be resolved?

13. How do I safely remove the engine coolant temperature sensor without risking per-
sonal injury from coolant scalding?

14. I’ve been experiencing a persistent vibration in my steering wheel at high speeds. Does
the front suspension forward mounting bush need replacement?

15. How can I ensure that the main bearing cap is properly installed and tightened to
specification in the engine cylinder block assembly with crankshaft for my Jaguar?

16. My engine is making a strange noise when I accelerate, how do I know if this is related
to a mechanical or electrical issue in the engine, cooling, or exhaust system?

17. Before proceeding with the repair for harsh or erratic shifting in my Jaguar, how can I
ensure that the transmission fluid is clean and free of debris?

18. How can I ensure that the battery lead to the rear body ground point fixing bolt is
properly checked and tightened?

19. Stalling issues occur after filling up the tank. How can I check if the float level valve
in my fuel tank is defective?

20. I want to prevent stalling during engine performance checks. How can I ensure that
the connectors for the crank position sensor are properly secured and not damaged?

21. My luggage compartment lid is still difficult to open after following the steps in the
Technical Service Bulletin. What could be causing this issue?

22. When driving, I have driveability issues such as stalling. How can I ensure that the
connections at the secondary junction box are properly secured?

23. My car stalls immediately after filling up the fuel tank. What could cause this?

24. What should I do if the ABS warning lamp is illuminated in my Jaguar? Is my ABS
system disabled?

25. Why is my ABS light constantly on? Is it related to the wheel speed sensors?

26. Is there excessive wear on the camshaft lobes of my Jaguar’s engine?

27. How do I ensure proper alignment after replacing the front axle crossmember in my
Jaguar?

28. Is the warning lamp for the Parking Assist System inoperative on my Jaguar vehicle?

29. Provide instructions on how to troubleshoot a parking assist system with an inopera-
tive warning lamp on my Jaguar.

30. I hear a strange noise coming from the rear of my Jaguar when driving at high speeds,
what could cause this?
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C.2 30 Examples of Synthetic Queries before Path Summarization

C.2 30 Examples of Synthetic Queries be-
fore Path Summarization

1. How does understanding the relevant circuits in a schematic diagram help in trou-
bleshooting diagnosis for the Hyundai Accent L4-1.6L?

2. What information can be found on the last page of a schematic diagram for the Hyundai
Accent L4-1.6L?

3. In the context of the Hyundai Accent repair and diagnosis manual, what is the purpose
of the S̈ymbols Part 1s̈ection? How does it assist in understanding the diagrams and
instructions related to the sunroof and moonroof?

4. Explain the significance of the S̈ymbols Part 2s̈ection in the context of the Hyundai
Accent repair and diagnosis manual. How does it contribute to the comprehension of
the diagrams and instructions pertaining to the roof and associated components?

5. What are the steps involved in replacing the seat back frame in a Hyundai Accent
2008? Include the necessary precautions and service procedures relevant to the airbag.

6. What is the recommended torque specification for the drive plate bolt on a 2008
Hyundai Accent L4-1.6L with an automatic transmission?

7. HHow many kilograms-force meters (kgf-m) are equivalent to the specified torque
range for the drive plate bolt on a 2008 Hyundai Accent L4-1.6L?

8. What is the recommended torque range for tightening the flywheel bolt on a 2008
Hyundai Accent L4-1.6L with a manual transmission?

9. Convert the torque range for the flywheel bolt on a 2008 Hyundai Accent L4-1.6L with
a manual transmission from Newton meters to foot-pounds.

10. What are the tightening torques for the engine control system and the fuel delivery
system in the 2008 Hyundai Accent L4-1.6L?

11. Can you provide the specifications for the fuel delivery and air induction system in the
2008 Hyundai Accent L4-1.6L?

12. How does the idle speed in D-range differ from the idle speed in neutral or P-range for
the Hyundai Accent L4-1.6L?

13. What is the purpose of the Positive Crankcase Ventilation (PCV) valve in a Hyundai
Accent L4-1.6L engine? Explain its function and how it contributes to the overall
performance of the engine.

14. Provide the specific tightening torque value for the Positive Crankcase Ventilation
(PCV) valve in a Hyundai Accent L4-1.6L engine. Explain why it is important to adhere
to the recommended torque value when installing or replacing the PCV valve.
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15. Which two brands of spark plugs are mentioned in the specifications for the 2008
Hyundai Accent L4-1.6L?

16. What is the purpose of removing the cluster facia panel in the Hyundai Accent L4-1.6L
2008 model during the testing and inspection of the vehicle information display?

17. How can an ohmmeter be used to test and inspect the continuity between terminals
when operating the switch in the instrument panel of the Hyundai Accent L4-1.6L
2008 model?

18. What is the specific area of the vehicle that is covered under the S̈teerings̈ection of the
repair and diagnosis specifications for the 2008 Hyundai Accent L4-1.6L?

19. What is the purpose of tightening torque in the context of mechanical specifications
for the Hyundai Accent L4-1.6L? How does it affect the steering system?

20. What type of specifications are included in the Ẅheels and Tiress̈ection of the docu-
ment?

21. What is the standard compression pressure for the Hyundai Accent L4-1.6L engine at
250-400 rpm?

22. Explain the significance of the D̈iagnostic Aidss̈ection in the document and how it can
assist in troubleshooting issues related to the Instrument Panel, Gauges, and Warning
Indicators in the Hyundai Accent.

23. What is the acceptable range for the amount of refrigerant (R-134a) in the Hyundai
Accent L4-1.6L?

24. Can a Hyundai Accent L4-1.6L use any other type of automatic transmission fluid
apart from Hyundai Genuine Diamond ATF SP-III or SK ATF SP-III?

25. In the context of the document, what specific information can be found under the
F̈luid Type Specificationss̈ection for the brakes and traction control system of a 2008
Hyundai Accent L4-1.6L?

26. What is the purpose of the S̈ymbolss̈ection in the context information? How does it
relate to the repair and diagnosis of the fuel gauge in the Hyundai Accent?

27. What are the steps involved in diagnosing and repairing the MIL ON issue with the
Hyundai Accent L4-1.6L related to DTCs P0705, P0707, and P0708?

28. What are the specific diagnostic trouble codes (DTCs) that may trigger the check en-
gine light in some 2007-2009 Hyundai Accent vehicles, and what are the associated
issues with each code?

29. How can the Terminal with lead wire kit (TRK011) be used to repair a damaged con-
nector in the instrument panel of the Hyundai Accent L4-1.6L?

30. Explain the significance of the load label FMVSS 110 compliance for the Hyundai 2008
Accent L4-1.6L and how it is addressed in the superceded TSB number 10-GI-001 and
the updated TSB number 13-GI-001.
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C.3 30 Examples of Synthetic Queries after
Path Summarization

1. How can I use a short finder to locate a short circuit in my Hyundai’s fuel injector
system?

2. How do I remove the sunroof glass on my Hyundai for service and repair?

3. Why is E85 colored red and how does this help distinguish it from pure petrol?

4. How does the RRDM control the rear right-hand window lift in a Saab car?

5. How do I remove the front seat assembly in order to replace the seat belt system?

6. Where are the front impact sensors located in my Hyundai car?

7. How do I reconnect the electrical connectors to the door control module during in-
stallation?

8. How can I test for voltage in a circuit without having to separate the connector halves?

9. How can I identify the position number, color code, and cross-sectional area of a cable
in my Saab car?

10. Can you explain the symbols used for sensor outputs in the wiring diagrams for lighting
and horns in my Saab car?

11. How can I verify if the power door lock/unlock switches are functional on my Chrystler
car?

12. How can I test the readings for the Driver’s Door Module (702D)?

13. Can the left multi-function switch for lighting and horns be adjusted or repaired, or
does the entire unit need to be replaced if there is an issue?

14. How can I determine if the radiator cooling fan motor in my Saab is functioning prop-
erly using On Board Diagnostics?

15. How can I tell if my Hyundai vehicle has a High-Line or Low-Line TPMS system?

16. What wire color code should I look for in the wiring diagrams for my Saab’s automatic
transmission and transaxle system?

17. How can I troubleshoot a remote start inhibitor issue on my Chrysler vehicle?

18. How does the Powertrain Management Computer monitor the efficiency of the cat-
alytic converter in my Chrystler vehicle?

19. How can I verify the accuracy of my car’s cooling system complaints before beginning
any disassembly or testing?
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20. How can I demonstrate the trouble on my car to ensure there are no misunderstandings
during fault diagnosis?

21. How can I determine if the function of my car’s windows and glass is correct or faulty?

22. How should I handle the control module to prevent damage to internal components
during dismantling?

23. What type of detergent or soap should I use to clean my Hyundai’s aluminum wheels
to avoid surface damage?

24. How can I verify the accuracy of my car’s electrical system complaints before beginning
any disassembly or testing?

25. How can I determine if the "OUTPUT SPEED SENSOR(PG-B)" signal value is chang-
ing according to simulation frequency in my Hyundai car?

26. How can I determine if there is a problem with the O2 Sensor signal circuit in my
Chrystler car?

27. How do I clear any DTC’s that may have been set in other modules after reprogram-
ming the PCM in my Chrystler vehicle?

28. Can I use synthetic oil in my Saab with a 6-speed AF40 transaxle automatic transmis-
sion?

29. How does the control module detect errors in the ignition system and generate diag-
nostic trouble codes?

30. How do I know if my Hyundai battery needs to be replaced or just charged using the
GR8 diagnostic tool?
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Appendix D

Operation CHARM Raw Data

Figure D.1: Operation CHARM website structure
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D. Operation CHARM Raw Data

Figure D.2: Operation CHARM example document.

Figure D.3: Operation CHARM example document. Note the
sketched figure, which is excluded when the data is scraped.
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RAG-applikationer

POPULÄRVETENSKAPLIG SAMMANFATTNING Lycke Fureby, Filippa Hansen

Under de senaste åren har stora språkmodeller, med ChatGPT i spetsen, slagit igenom
på allvar. Nu tar även Retrieval Augmented Generation (RAG) plats i rampljuset.
Detta arbete har undersökt vilka tekniker som kan användas för att domänanpassa
söksystemen som är en del av RAG.

I takt med att stora språkmodeller blivit allt mer
förekommande har även kraven på att säkerställa
att de svar som genereras är faktabaserade och ak-
tuella blivit hårdare. Att informationen är spårbar
och relevant väger extra tungt när avsedd använd-
ning är inom områden som medicin eller juridik.
Stora språkmodeller har en tendens att hallucine-
ra, det vill säga producera svar vars innehåll inte
stämmer överens med verkligheten. Vidare är det
mycket kostsamt att uppdatera med aktuell in-
formation, vilket resulterar i att modellernas kun-
skapsbas är frusna i tiden.

RAG är en metod som kombinerar generati-
va stora språkmodeller med avancerad hämtning
av aktuell och spårbar information. Embedding-
modeller ligger till grund för denna typ av system,
vilket möjliggör att “mänsklig” förståelse snarare
än lexikon-baserad sökning används för att hit-
ta relevanta dokument i en databas. Embedding-
modeller producerar imponerande resultat inom
många områden, men prestandan blir sämre då
texten är mycket domänspecifik.

Vi har i vårt examensarbete undersökt vilka
tekniker som kan användas för att öka relevan-
sen hos hämtade dokument från domänspecifika,
omärkta dataset. Arbetet innefattar generering
av syntetiska frågor med hjälp av en stor språk-

modell, vilka sedan har använts för att träna en
embedding-modell inom ett domänspecifikt områ-
de. Ytterligare metoder innefattar Hard Negative
Mining för kontrastiv inlärning, där embedding-
modellen tränas omvänt på dokument som är väl-
digt lika det relevanta dokumentet men som inte
svarar på den tillhandahållna frågan.

Systemet utvärderades på manuellt skrivna frå-
gor, där resultaten visar en tydlig förbättring i pre-
standa efter att träning på syntetisk data genom-
förts.
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