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Abstract

Static program analysis is the practice of analyzing a program’s properties
and behavior without executing it. It is a fundamental part of the compiler,
enabling optimizations and error detection. It is also used in programming
tools, such as IDEs, where it can be used for autocompletion and code nav-
igation. Points-to analysis is a static program analysis that finds the set of
objects that a pointer may point to during execution of the program. Many
other analyses benefit from the result of a points-to analysis when analyzing
programs with pointers, but the long execution times limit the use in interac-
tive environments. Many algorithms for points-to analysis exist. In our thesis,
we investigate how to speed up the points-to analysis Andersen’s Analysis. We
introduce PECKA, a Reference Attribute Grammar based tool. It speeds up the
execution time by only analyzing code which can be reached within k steps in
the program’s call graph from a selected method.

We found that when limiting the distance to three steps in the call graph
from a method, PECKA could find 56% of the results with a 5x speedup com-
pared to analyzing the whole program. This enables running points-to analysis
in an interactive environment. A limitation of this approach is that informa-
tion can be missed in excluded methods, preventing use in, e.g., optimizing
compilers.

Keywords: Points-to analysis, Andersen’s analysis, Program analysis, Reference At-
tribute Grammars, Demand-driven evaluation
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Chapter 1
Introduction

Program analysis establishes facts about a computer program. Some examples of these
facts are which values a variable can have during the program’s execution, or which exe-
cution paths can be taken through the program [29]. We can distinguish between two kinds
of program analysis: dynamic program analysis and static program analysis. A dynamic
program analysis executes the program and uses the observed behavior to establish some
facts. A static program analysis does not execute the program and instead analyzes some
representation of the source code. The result of a static program analysis generally applies
for all possible executions of a program, but a dynamic program analysis only produces
results for the examined executions. One advantage of dynamic program analyses is that
if it can be seen that, e.g., a variable has the value 5 at some point in the program, then you
can be completely sure of that fact. In contrast, a static program analysis often produces
false positives, a fact that does not hold for any execution of the program. The results of
a program analysis can be used in several ways. It can be used by a compiler to make
optimizations [24] or find bugs in a program, as well as in various analysis tools aiding
program development [22].

Points-to analysis is a form of program analysis that determines which objects a pointer
can point to during program execution. Many other program analyses can benefit from the
results of points-to analysis, such as null pointer analysis (identifying whether a derefer-
enced pointer can point to null) [29].

A program analysis needs to be precise and reasonably efficient for it to have practi-
cal use. A points-to analysis that includes too many objects that a pointer cannot point to
during a run of the program makes the result less useful. Furthermore, an analysis that
requires a considerable amount of memory or takes a long to perform may deter possible
users. For instance, the time requirements have led production compilers to only use im-
precise points-to analyses that are faster but less precise, which results in missing some
optimizations [26]. For interactive environments such as an IDE, the time requirements
are even shorter compared to the compiler. In such cases, the result is needed in seconds,
making advanced analysis challenging [10, 30].
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1. INTRODUCTION

There are multiple algorithms and approaches that can be used to perform a points-to
analysis. In this thesis we implement a type of points-to analysis called Andersen’s analy-
sis [3], which uses subset constraints to model the relations between pointers and objects.
The time complexity for this algorithm is O(n3), where n is the number of statements in
the program [29].

Various tools exist to aid the development of a program analysis. One of these tools
is the JASTADD [16] system, an implementation of the Reference Attribute Grammar [15]
formalism. Reference Attribute Grammars allow for adding attributes to the abstract syn-
tax tree, which is a tree representation of a program. An attribute is defined by an equation
and evaluates to some value. Reference Attribute Grammars are an extension of Attribute
Grammars [23] that allows for attributes to also evaluate to references to nodes in the ab-
stract syntax tree. In JASTADD, attributes are only evaluated once accessed, which can
benefit performance.

Performing points-to analysis on-demand involves determining the points-to set for a
specific pointer or set of pointers, rather than computing the points-to sets for all pointers.
This can reduce unnecessary computation if the user of a points-to result does not require
the full result.

1.1 Research Questions
In this thesis, we aim to make the results of Andersen’s analysis fast enough to make
it usable in interactive environments. We therefore investigate how the analysis can be
implemented with Reference Attribute Grammars using JASTADD, leveraging its intrinsic
on-demand capabilities. The following research questions will be explored:

• RQ1: How can we speed up the results from Andersen’s analysis to enable
usage in an interactive environment?

• RQ2: How well-suited are Reference Attribute Grammars for implementa-
tion of points-to analysis?

1.2 Scientific Contribution
The contributions of this report are the following:

• A context-insensitive, field-sensitive implementation of Andersen’s analysis for
Java 4 programs called PECKA (Points-to Evaluation via Call-graph K-step Anal-
ysis), implemented using JASTADD, with options to run a full analysis on the whole
program, or an analysis on a single method on-demand of a filtered set of constraints.

• A new method to limit the scope of the analysis using the call-graph distance from
a requested method, yielding an unsound but usable result.
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1.3 INDIVIDUAL CONTRIBUTIONS

1.3 Individual Contributions
Both authors have performed an equal amount of work, with most tasks have been worked
on collaboratively. Ruben primarily focused on the analysis implementation, while Johan
focused on the non-analysis aspects, such as the architecture for the tool and the evaluation.
The writing has also been highly collaborative, although still maintaining a similar focus
as for the work.

1.4 Related Work
Andersen’s analysis has been implemented in various papers in multiple languages, in-
cluding Java [3, 6, 28, 46]. Andersen’s analysis includes solving a constraint system. One
example of how the constraint system can be solved is shown by Tian Tan [45], which we
adapted for use in our implementation. As we implemented the analysis in Java, we could
make use of type filtering described by Sridharan et al., where the object types can be used
to exclude them from certain points-to sets [42].

Points-to analysis on-demand has also been handled previously in the literature [41,
43, 47]. Späth et al. [41] have implemented a demand-driven flow- and context-sensitive
pointer analysis, including outputting points-to results. They have built their analysis on
top of the data flow analysis framework IFDS, limiting the search space by only using parts
of the graph necessary for the calling context. This speeds up the possibility to obtain
flow-sensitive points-to information. Their analysis requires constructing the control flow
graph for the entire analyzed program, whereas our analysis instead constructs the call
graph. In addition, they have created a micro-benchmark suite called POINTERBENCH,
containing code with embedded expected results used for benchmarking [41]. We used
this benchmark suite in our evaluation (see Section 5.2.1).

Sridharan et al. [43] formulate Andersen’s analysis as a CFL-reachability problem,
achieving a speedup of 16x for a query compared to computing the whole program. How-
ever, they note that some queries can still take several seconds, which might be too long
for interactive environments, e.g., IDEs [31]. Their solution to this problem is to over-
approximate the result after a certain time by including every allocation in the points-to
set. Our tool does not support limiting the search time, but it is possible to limit the search
space using a parameter.

Yan et al. [47] handle on-demand computation by first constructing symbolic points-to
graphs, which is a type of graph with intraprocedural points-to relations where symbolic
nodes represent objects created outside of the method. The intraprocedural graphs are
then connected to form an interprocedural symbolic points-to graph. They can then find an
answer to the query by traversing the graph and only computing the necessary information.
Our tool performs on-demand analysis by limiting the search space using the call graph.
The analysis receives a query to find points-to information for pointers in some method.
The points-to information is then computed using only the information available within
a specified distance in the call graph. This is to the best of our knowledge a new way of
performing on-demand points-to analysis.

9
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Chapter 2
Background

In this chapter we cover static program analysis, points-to analysis, and other concepts that
are useful for understanding the rest of the report.

2.1 Static Program Analysis
Static program analysis establishes facts about a program without executing the pro-
gram [29]. In contrast to dynamic program analysis where the program is executed, a
static program analysis generally produces a result which applies for all possible execu-
tions of the program. The drawback is that some parts of the result might not apply for any
exection. For example, consider the program in Listing 2.1. A static analysis might deter-
mine that the possible values of x are 2, 3 and 5, but 5 can never be assigned to the variable
as x will never be greater than 3. A dynamic analysis could fail to find the value 3 and
claim that the only possible value of x is 2 if the program is never given the input “ABC”.

1 int x = 2;
2 if (args[0].equals("ABC"))
3 x = 3;
4 if (x > 3)
5 x = 5;

Listing 2.1: A program
where the possible values
of x are 2 and 3.

Two examples of static program analyses are es-
cape analysis and live variable analysis [29]. Both
of these analyses, along with many others, bene-
fit from the result of points-to analysis, which is a
program analysis that finds the set of objects that
a pointer may point to. They are then said to be a
client to the analysis.

Escape analysis determines whether a pointer
has “escaped” from a function�meaning whether
it can be accessed from outside the function or
not [29]. In the case that it cannot be accessed from outside the function, then the pointed-
to memory location cannot be accessed once the function has been returned from and the
pointed-to object can safely be placed on the stack instead of on the heap. In languages like
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2. BACKGROUND

C, it can also be used to find if a pointer pointing to a stack-allocated variable is returned
which could result in undefined behavior.

Live variable analysisis an analysis that determines how long a variable is “live” for,
i.e., determining where in the program its value is last used [29] . If a variable is not
live at a certain point then its memory location can be used to store another value. When
analyzing a program that uses pointers, it must also be made sure that a variable’s memory
location also cannot be accessed through a pointer before it is safe to reuse for something
else.

A non-exhaustive list of uses of static program analysis is shown in Table 2.1.

Use case Example
Optimizing compilers If a variable always has the same value at a point in the

program, replace it with that value [2].
Bug detection tools If a dereferenced pointer can potentially point to null,

alert the programmer [35].
Software verification If it can be guaranteed that all array accesses are valid, de-

clare the program free of index out of bound errors [21].
Program comprehension Find all classes that extend the class in the current file and

enable the programmer to easily navigate to those.

Table 2.1: Some uses of static program analysis.

2.2 Points-to Analysis
Points-to analysis is the task of finding the set of objects that a pointer may point to during
program execution. There are many different algorithms and approaches for performing
this task, including:

Andersen’s analysis Inclusion-based, uses constraints that include one points-to set in
another. The time complexity is O(n3), where n is the number of statements in the
program [29].

Steensgaard’s analysis Unification-based, uses constraints that unifies points-to sets.
The time complexity is O(nα(n, n)), where α is the inverse Ackermann function
and n is the number of statements in the program [44].

Das’ analysis Extends Steensgaards’ algorithm to not merge certain points-to sets which
achieves a precision close to that of Andersen’s with a time complexity of O(n2),
where n is the number of statements in the program [8].

Shapiro-Horwitz’s analysis Parameterized algorithm that unifies pointers of the same
category with a total of k categories. Equal to Steensgaard’s when k = 1, equal to
Andersen’s when k = n. The time complexity is O(k2nα(k2n, k2n)), where α is
the inverse Ackermann function, n the number of statements in the program and k
the number of categories [36].

12



2.3 ABSTRACT INTERPRETATION

Demand-driven analyses Tries to find the points-to set for a single pointer instead of for
all pointers. This often involves finding the points-to set of another pointer, but such
information is only computed as needed. Examples include [17] and [41].

It is impossible to determine most interesting properties concerning a program’s seman-
tics [32]. Consider the well-known undecidable problem of determining whether a pro-
gram halts or not for any given pair of program and input. If it were possible to make a
precise points-to analysis for any program, then the halting problem would also be decid-
able.

1 String result;
2 if (the program P given the input I halts) {
3 result = "This program halts!";
4 } else {
5 result = "This program does not halt.";
6 }

Listing 2.2: An attempt at solving the halting problem using points-to
analysis.

Clearly, if it were possible to perform precise points-to analysis on the program in
Listing 2.2, it would also solve the halting problem for any program P and input I since
the pointer result would point to different strings at the end of the program depending
on whether the program P would halt or not.

The result of precise points-to analysis being undecidable does however not make it
impossible to perform points-to analysis and gain valuable information. One solution is to
overapproximate and return a result which also includes objects in the points-to set which
the pointer cannot possibly point to. For the program in Listing 2.2, returning the result that
the pointer may point to either of the strings at the end of the program is sound, meaning
that the result includes all possible objects that the pointer can point to, but imprecise
which means that it also includes objects that the pointer cannot point to. It is trivial to
produce a sound result by stating that any pointer may point to any object, but such a result
would not be of any use.

For our and other points-to analyses, this means that it is impossible to obtain a result
without any overapproximation. Overapproximation should be minimized as much as pos-
sible. This is because it makes the result less useful, as it includes objects which a pointer
cannot actually point to. For this reason, all points-to analysis algorithms produce an over-
approximated result. We chose to implement Andersen’s analysis as its inclusion-based
approach does this to a lesser extent compared to, e.g., Steensgaard’s analysis.

2.3 Abstract Interpretation
The overapproximation in the previous section can be described more formally using the
abstract interpretation framework. Abstract interpretation was first introduced by Patrick
and Radhia Cousot in 1977 [7]. An abstract interpretation of a program approximates the
actual behavior of the program with an abstract model of the program. The main idea is
that the abstract representation of the program gives information about the semantics of
the concrete program, while being easier to reason about.

13



2. BACKGROUND

An example of abstract interpretation given in the original paper is determining the sign
of an expression. It is possible to determine the resulting sign of the expression −17 ∗ 23
by performing the multiplication,−17 ∗ 23 = −391, and seeing that the result is negative.
An easier way is to only reason about the signs. The original expression can then be
represented as (−)∗(+). Using the fact multiplying a positive and negative number always
results in a negative number, it can be deduced that the original expression will also result
in a negative number. This means that information about the behavior of the original
expression has been gained by only reasoning about its abstract model.

However, if the examined program instead features addition, then the information of
the abstract model is not sufficient to determine whether the result is positive, negative or
zero since adding a negative and a positive number can result in a number with any sign.
It must then be assumed that the result might have any sign.

While it is not necessary to apply this level of abstraction to determine what sign the re-
sult of an expression will have, the same principle can be used for more complex problems.
A halting problem analyzer that uses abstract interpretation could for some program-input
pairs return a definite answer that the program will halt or that it will not halt, but for other
program-input pairs simply return that the program possibly will halt. It is thus always
possible to obtain a correct result by essentially relaxing the problem to also allow the
answer “maybe”.

Through the use of abstract interpretation, it is possible to obtain the overapproximated
result described in the previous section. Our analysis attempts to utilize abstract interpre-
tation to obtain the result. However, in its current state it does not strictly adhere to the
constraints of abstract interpretation as the current analysis is not sound. Implementation
of solutions to the limitations listed in Section 4.3 could solve this.

2.4 Heap Modeling
The heap is a portion of memory that is usually used for storing data that is needed for
a longer amount of time. In Java, all objects are generally stored on the heap and can be
referred to using a reference. A reference is similar to a pointer in that it refers to a memory
location but does not support pointer arithmetic. From this point, the term pointer will be
used instead of reference even when discussing Java as the discussed concepts apply to any
language with pointers. Objects that have been created inside a method can still persist
even after the method has been returned from. Local variables are stored on the stack and
can be removed once the method is returned from.

1 Node node = null;
2 for (int i = 0; i < 100; i++) {
3 Node newNode = new Node();
4 newNode.next = node;
5 node = newNode;
6 }

Listing 2.3: Storing 100 objects on the heap.

The size of the heap is conceptually unbounded, but limited by available memory in prac-
tice. Due to the unbounded size, an abstract model of the heap is needed, as it would not

14



2.5 ANDERSEN’S ANALYSIS

be feasible to compute something for a very large or infinite heap model. Another chal-
lenge is that there is no simple way of referring to a specific allocation since they, unlike
variables, do not have a name [20].

In the code snippet in Listing 2.3, 100 objects of the type Node are created. One way
of referring to the different objects are by using access paths, which means differentiating
between the object node.next and node.next.next. This way of representing the
heap can be limited to a finite set with k-limiting, which means paths with more than
k accesses are grouped together. When k = 0, only the base variable (node in this
case) is represented and all accesses are grouped together (node.*). With k = 2, the
objects that could be referred to in the abstract model of the heap from Listing 2.3 would
be {node, node.next, node.next.next, node.next.next.*}. The first
three access paths would each represent one object in the actual heap and the last access
path, node.next.next.*, represents an infinite number of objects.

Another way is to represent objects by their allocation site, which means that all ob-
jects created at the same point in the program are grouped together. In the program in
Listing 2.3, all objects created on line 3 would be treated as one. This loses some informa-
tion about the actual heap structure since many objects can be grouped into one allocation
site. This could matter when trying to determine if two pointers point to the same memory
location and one points to node.next and the other node.next.next. If represent-
ing objects with allocation sites, it would falsely conclude that the pointers point to the
same memory location since the objects were created at the same point in the program.
This is the heap representation used in our implementation.

2.5 Andersen’s Analysis
Andersen’s analysis is an inclusion-based type of points-to analysis introduced by Lars
Ole Andersen in his 1994 PhD thesis [3]. An inclusion-based points-to analysis means
that the analysis uses subset relations between points-to sets (x ⊆ y, the set y includes the
set x) while a unification-based analysis unifies points-to sets with the equality relation
(x = y). Andersen’s analysis generally gives a more precise result (it includes fewer
objects in points-to sets that the associated pointer cannot point to) than a unfication-based
analysis like Steensgaard’s analysis since it captures the directionality of assignments, the
assignment x = y can only change the value of the variable x. However, Andersen’s
analysis is slower since Steensgaard’s analysis can be done in almost linear time with regard
to program size compared to the cubic time complexity of Andersen’s analysis [29, 44].

The analysis is performed in two stages: constraint collection and solving.

2.5.1 Constraint Collection
When analyzing a Java program, four types of constraints need to be considered: ALLO-
CATION, ASSIGNMENT, FIELD STORE and FIELD LOAD. We are using the same names for
the constraints as in [25]. The constraints are shown in Table 2.2 along with an example
statement that would generate a constraint of that type. We use the notation pts(x) for
the points-to set of x, i.e., the set of all objects that x may point to. We sometimes write
that a constraint is created from one pointer to another. This means that the points-to set
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2. BACKGROUND

elements flow in that same direction, e.g., an ASSIGNMENT constraint from x to y means
pts(x) ⊆ pts(y).

Name Example Imposed constraint
ALLOCATION x = new A(); oi ∈ pts(x)
ASSIGNMENT x = y; pts(y) ⊆ pts(x)
FIELD STORE x.f = y; pts(y) ⊆ pts(oi.f), ∀oi ∈ pts(x)
FIELD LOAD x = y.f; pts(oi.f) ⊆ pts(x), ∀oi ∈ pts(y)

Table 2.2: Types of constraints used in Andersen’s analysis.

Since all statements do not conform to the forms in Table 2.2, e.g., x = y.f.g; or
x.f = new A();, programs must first be normalized by introducing temporary vari-
ables. After normalizing the program and collecting all constraints, the system of con-
straints can be solved to find the points-to set of each pointer.

2.5.2 Solving the Constraints
A solution to the constraint system is a set of pairs consisting of a pointer and its points-to
set that satisfy all constraints. One way to solve the system of constraints is to create a
pointer flow graph and propagate the points-to sets of pointers along the graph. The graph
is initialized with pointers as nodes. The ASSIGNMENT constraints introduce edges from
the pointer on the right side to the pointer on the left side. Each pointer has a points-to
set associated with it. The points-to sets are initialized for each pointer with the objects
created in the ALLOCATION constraints.

The FIELD STORE constraint introduces field nodes of the form oi.f to the pointer
flow graph. These nodes represent the fields of objects. A FIELD STORE constraint adds an
edge from the pointer on the right hand side of the assignment to the new field node and a
FIELD LOAD constraint creates edges from field nodes to the pointer on the left side.

It is possible to obtain a solution by iterating over the constraints and adding objects
to points-to sets so that the constraint is satisfied, and repeating this until all constraints
are satisfied. For example, a FIELD STORE constraint generated by the statement x.f =
y; can be satisfied by adding all objects in pts(y) to the points-to sets oi.f where oi is all
objects in pts(x). However, since the points-to sets pts(y) and pts(x) can both change
when processing other constraints, a once satisfied constraint can cease to be satisfied after
satisfying some other constraint. It is therefore necessary to iterate over the constraints
repeatedly until all constraints are simultaneously satisfied.

A more efficient way to find a solution is to use a worklist. A worklist contains work
that needs to be done when solving the constraints. During solving, work is added to
and removed from the worklist and once there is no more work to process in the worklist,
the constraints have been solved. The use of a worklist eliminates the need to propagate
information that has already been propagated along the pointer flow graph. A worklist-
based solver is described in Section 4.1.4. An example of a program and its pointer flow
graph is shown in Figure 2.1. The steps for creating the pointer flow graph and finding the
points-to sets for the pointers in the program are shown in Figure 2.2, where points-to sets
are shown next to their respective pointers. Note that while it may appear in the example
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w = new A();
y = x;
y = w;
w.f = y;
z = y.f;
z.f = x;
(a) Program

x y

o.f z

w

(b) Pointer flow graph

Figure 2.1: A short program and its resulting pointer flow graph. o represents
the object created on the first line of the program.

that the problem can be solved in linear time as each constraint is only processed once and
at most one edge is added at each step, in the worst case cubic time is required [29].

Our implementation uses a worklist-based solver and is described in Section 4.1.4.
Since the points-to result is obtained by first collecting the constraints and then solving
them, it is necessary to be able to solve the constraints in some way.
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2.5.3 Analysis Sensitivity
The sensitivity of the analysis describes how much and how granular the information ex-
tracted from the source code is. Knowing the different sensitivities gives the user of the
analysis a good idea of its possibilities and limitations.

There is a relation between sensitivity, precision, and performance. A more sensitive
analysis is generally slower and gives a more precise result, but this is not always the case.
For example, a call-site sensitive analysis needs to handle each call to a method separately,
but the average size of the points-to sets will be smaller as the points-to set for several call
sites are not merged. Since handling large points-to sets can be detrimental to performance
during solving, it can sometimes be faster to instead handle multiple smaller sets.

It can also be the case that a more sensitive analysis is faster than a less sensitive
analysis for a particular program, but slower for another one. Therefore, it is important to
evaluate program analyses on a large set of programs since an analysis could benefit from
some characteristic of a program but be worse than other analyses in the general case.

Flow-Sensitivity
Flow-sensitivity concerns the order of the statements in the program. Consider the Java
program in Listing 2.4. A flow-sensitive analysis would conclude that secondAnimal
points to Cat@line2 after executing Line 2, but to Dog@line1 after Line 3. A flow-
insensitive analysis would conclude that secondAnimal can point to either, having the
points-to set {Dog@line1, Cat@line2}. Andersen’s analysis is flow-insensitive,
but since the constraints are directional, some dataflow is still modelled [29]. For exam-
ple, the variable firstAnimal on Line 1 will still only have Dog@line1 in its points-to
set, despite the assignment on Line 3.

1 Animal firstAnimal = new Dog();
2 Animal secondAnimal = new Cat();
3 secondAnimal = firstAnimal;

Listing 2.4: Example used to
illustrate flow-sensitivity.

1 public void main(...) {
2 process(new Dog());
3 process(new Cat());
4 }
5
6 public void process(Animal a) {
7 System.out.println(a);
8 ...
9 }

Listing 2.5: Example used to
illustrate context sensitivity.

Context-Sensitivity
When the analysis is not only for a single method but spans across multiple methods, it
is called an interprocedural analysis. In such cases, there are two main approaches to
consider regarding how to model a method call. The context-sensitive approach distin-
guishes between separate calls to a function and takes the context of where the function
were called into account [29]. In Listing 2.5, a context-sensitive analysis could analyze
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the method process both with Dog@line2 as a parameter and with Cat@line3 sep-
arately. A context-insensitive analysis would instead analyze the method with both inputs
at the same time. This has the drawback of making the analysis more imprecise, but the
benefit of decreasing the problem size. Our implementation of Andersen’s analysis is
context-insensitive.

Field-Sensitivity
Field sensitivity regards the way fields of an object are handled, i.e., how the creation of
field nodes like o.f should be represented in Figure 2.1b. One way is to treat all fields
for an object as the same node. This makes the analysis field-insensitive [29]. When the
analysis instead creates a unique node for each field for an object, the analysis is field
sensitive. This is the case for our implementation. This makes the analysis more precise
but can increase the solving time as each field needs to be handled separately.
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Statement w = new A();
Constraint ALLOCATION
Description Add o1 to pts(w).

x

{}

y

{}

z {}

w

{o1}

Statement y = x;
Constraint ASSIGNMENT
Description Create an edge from x to y

x

{}

y

{}

z {}

w

{o1}

Statement y = w;
Constraint ASSIGNMENT
Description Create an edge from w to y

x

{}

y

{o1}

z {}

w

{o1}

Statement w.f = y;
Constraint FIELD STORE

Description Create an edge from
y to oi.f ∀oi ∈ pts(w)

x

{}

y

{o1}

o1.f{o1} z {}

w

{o1}

Statement z = y.f;
Constraint FIELD LOAD

Description Create an edge from
oi.f to z ∀oi ∈ pts(y)

x

{}

y

{o1}

o1.f{o1} z {o1}

w

{o1}

Statement z.f = x;
Constraint FIELD STORE

Description Create an edge from
x to oi.f ∀oi ∈ pts(z)

x

{}

y

{o1}

o1.f{o1} z {o1}

w

{o1}

Figure 2.2: Computing the points-to sets for the program in Figure 2.1a.
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2.6 Call Graph

A call graph is a graph that describes how different functions in a program may call one
another [2]. It is commonly drawn with the functions as nodes and if a call to the function
g can be made from inside the function f, then an edge is drawn from f to g.

Languages that support dynamic dispatch complicates the construction of a call graph.
This is because a call to a method may call different functions depending on the class of
the object with the accessed method. A possible solution to this problem is to assume
that a call to a method may call any matching method in a subtype of the declared type
of the object. This is however pessimistic, since the possible types of the object during
execution might only be a subset of all subtypes of the declared type. Figure 2.3b shows
an overapproximated call graph for the program in Figure 2.3a. It is overapproximated
because there is an edge from Example.main() to B.m(), but that method will never
be called from the main method. The graph shown in the figure is what would be generated
when using class hierarchy analysis (CHA) [9]. CHA constructs a hierarchy of the classes
so that A and B are children of I and determines that calls to methods that are accessed from
objects with the declared type I can call matching methods in any descendant class. One
way to improve the result is to instead use rapid type analysis (RTA) [5]. RTA improves
upon CHA by only including classes that are instantiated in some point in the program,
so the call to B.m() would be correctly omitted if RTA was used instead. An even more
precise result can be obtained using points-to analysis by checking the type of the objects in
the points-to sets for pointers with accessed methods. In our implementation, we utilized
the call graph to limit part of the program to analyze (see Section 4.1.3).

1 interface I { void m(); }
2 class A implements I {
3 public void m() {}
4 }
5 class B implements I {
6 public void m() {}
7 }
8 class Example {
9 public static void

main(String[] args) {
10 I obj = new A();
11 obj.m();
12 }
13 }

(a) A program with a virtual method
call.

Example.main(String[])

B.m()A.m() A.<init>()

(b) An overapproximated call graph.

Figure 2.3: A call graph overapproximation for a program.
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2.7 Source Code Representation
To perform static analysis, a model of the source code is required. A common way that
was used in this report is to use the same tools used in compiler construction, using the
initial steps excluding machine code generation. Compilations steps are often grouped
into front-end, middle-end and back-end [2]. The front-end converts the source code into
an intermediate representation. The middle-end performs various optimizations on the
intermediate representation. Finally, the back-end outputs code which is executable by the
target architecture. The front-end consists of the following steps:

Scanning The source code is transformed into tokens by a scanner. Tokens could for
example be a keyword like public or the name of an identifier. How to tokenize
a program is often defined using regular expressions, which can be used to generate
a scanner. This step is also known as lexical analysis.

Parsing Using the tokens produced in the previous step, an abstract syntax tree is con-
structed by a parser. The tree structure describes the program structure. For in-
stance, a while statement node might have one child that is the loop condition and
another child containing the statement that is executed while the condition is true.
The parser constructs the tree by processing the tokens and building the tree accord-
ing to rules created from a language grammar.

Semantic analysis The semantics of the program are analyzed in order to ensure that a
syntactically valid program also is valid with regard to other rules of the language.
This can include type checking to make sure that variables of a certain type are only
used in valid contexts, and confirming that all non-void functions contain a return
statement.

Intermediate Representation From the abstract syntax tree, an intermediate representa-
tion of the source code is created from the abstract syntax tree. This representation
can be used for optimizations, and can be transformed into machine code or executed
by the JVM, such as in Java.

A visual representation of the scanning and parsing stages along with their input and output
is shown in Figure 2.4. Our analysis implementation works on the abstract syntax tree
level, but it is common for Java analyses to work on some other transformed version of the
source code, such as bytecode [14, 41].
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int x = 5;
Source code

Scanner

INT,
ID:x,
EQUALS,
LITERAL:5,
SEMICOLON

Tokens

Parser

VariableDeclaration
Abstract syntax tree

Variable
x

TypeAccess
int

IntegerLiteral
5

Figure 2.4: Steps of a compiler front-end.
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Chapter 3
Reference Attribute Grammars

In this chapter, we describe Attribute Grammars, Reference Attribute Grammars as well
as give an introduction to the meta-compilation system JASTADD and the Java compiler
EXTENDJ. JASTADD is an implementation of the Reference Attribute Grammar formalism
which EXTENDJ is built on. In this thesis, one of the questions we wanted to answer was
how well-suited Reference Attribute Grammars are to implement a points-to analysis. We
therefore built the analysis as an extension to EXTENDJ.

3.1 Attribute Grammars
Attribute Grammars were first introduced by Knuth in 1968 [23]. Using Attribute Gram-
mars, it is possible to add attributes to nodes in the abstract syntax tree. An attribute is a
value that is defined by an equation. The equation can include other attributes in the node
itself or in other nodes.

A synthesized attribute is an attribute where the attribute value is defined using at-
tributes of descendant nodes. When using synthesized attributes, information is propa-
gated upward in the abstract syntax tree.

The value of an inherited attribute is defined using attributes of ancestor nodes. An
inherited attribute propagates information downward in the abstract syntax tree.

3.2 Reference Attribute Grammars
Reference Attribute Grammars extend Knuth’s Attribute Grammars to allow attributes to
evaluate to a reference to an AST node [15]. This enables easier expression of non-local
dependencies, i.e., equations that use attributes in nodes that can be located anywhere in
the tree and not just ancestors or descendants. Figure 3.1 shows a reference attribute that
evaluates to the AST node in which the variable was declared. This can be useful to, e.g.,
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3. REFERENCE ATTRIBUTE GRAMMARS

access the declaration AST node of a variable, check the declared type and report a type
error if the variable is used in an invalid context.

1 void m() {
2 int x = 5;
3 int y = x + 2;
4 }

(a) Code example.

MethodDecl

VarDecl VarDecl

Var
x

Int
5

Var
y

AddExpr

Int
2

VarAccess
xdecl()

(b) Abstract syntax tree.

Figure 3.1: A simplified abstract syntax tree showing a reference attribute called
decl().

3.3 JastAdd
JASTADD is an meta-compilation system that implements an extension of Attribute Gram-
mars called Reference Attribute Grammars [16]. JASTADD supports the full creation of
a compiler, as well as other related program analysis tools. It also supports the concept
of modules using aspects. Attributes can be added to the same node in multiple aspects,
making it easy to extend a language with new features without modifying the original code.

Attributes in JASTADD are evaluated on-demand, i.e., they are only evaluated once
accessed. This means that execution time is not negatively affected by attributes that are
not accessed. Additionally, since attributes should not contain any side effects according
to the JASTADD specification, attributes can be cached by using the keyword lazy. This
can be useful to avoid recomputation of attributes that are expensive to compute.

An example of how JASTADD could be used to evaluate boolean expressions in a lan-
guage consisting of “true” and “false” literals and the “and” and “or” operators using syn-
thesized attributes is shown in Listing 3.1. The value of the attribute in True and False
only depend on the nodes themselves and the value of the attribute in And and Or depend
on descendants’ attributes. Figure 3.2 shows an abstract syntax tree for the program true
&& false || true along with the value of the isTrue() attribute of each node.

1 syn boolean True.isTrue() = true;
2 syn boolean False.isTrue() = false;
3 syn boolean And.isTrue() = getLeft().isTrue() &&

getRight().isTrue();
4 syn boolean Or.isTrue() = getLeft().isTrue() ||

getRight().isTrue();

Listing 3.1: Evaluating boolean expressions using synthesized attributes.

Listing 3.2 illustrates how inherited attributes can be used to define an attribute that
consists of information of the node’s surrounding context. Program is the root node of
the abstract syntax tree. When evaluating the inConstructor() attribute, the AST is

26



3.4 EXTENDJ

Andfalse

Ortrue

Truetrue Falsefalse

Truetrue

Figure 3.2: An abstract syntax tree for the program true && false ||
true. The value of the isTrue() attribute is shown next to each node.

traversed upward until a definition is encountered, which will either be in a constructor
node or in the AST root.

1 inh boolean SuperConstructorAccess.inConstructor();
2 eq ConstructorDecl.getChild().inConstructor() = true;
3 eq Program.getChild().inConstructor() = false;

Listing 3.2: Determining whether a call to super() is inside a constructor
using inherited attributes.

JASTADD also supports collection attributes, which is a type of attribute that allows for
contributions from any node. As the name implies, they evaluate to a collection of values
contributed by other nodes. A common usage of collection attributes is to collect errors in
the program. An example of how this can be done is shown in Listing 3.3. The collection
is initialized with the value inside of the square brackets. If a call to super() is made
outside of a constructor (which is not allowed in Java), a string describing the problem is
contributed to the errors() collection in the AST root node Program. It is also possible
to specify which node’s collection a contribution should be made to, but it is not needed
to specify this for the root node.

1 coll Set<String> Program.errors() [new HashSet<>()];
2 SuperConstructorAccess contributes "super() called outside of

constructor" when !inConstructor() to Program.errors();

Listing 3.3: Using collection attributes to collect semantic errors in the
program.

3.4 ExtendJ
EXTENDJ is a Java compiler implemented with JASTADD [48]. It supports Java versions
from Java 4 up to Java 11. Due to the modularity of JASTADD, it is easy to extend this
implementation with an analysis, making use of the attributes already defined for the lan-
guage itself [4, 49]. Static program analyses implemented as extensions to EXTENDJ in-
clude INTRAJ [35], a control-flow analysis framework; JFEATURE [34], a tool for collecting
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information about used syntax and language features in a set of Java programs and SIN-
FOJ [39], an information flow analysis.
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Chapter 4
Approach

This chapter contains a description of our implementation of PECKA. We cover the overall
design, how different language features are modeled and finally limitations of the analysis.

4.1 Design
In this section the design of PECKA is covered. We describe the relations between AST
nodes, the pointer flow graph and the created constraints; how a subset of the code to
analyze can be selected as well as how the constraint solver works.

4.1.1 Allocation Sites and Nodes
We use the allocation site abstraction described in Section 2.4 to represent objects. This
means that all objects that can be created at one point in the program are grouped together
into one allocation site. We chose this heap model as the allocation sites can naturally be
represented by AST nodes which create an object, such as NewExpr.

AST nodes that are relevant for points-to analysis implement the interfaces Node or
AllocationSite. A Node is an AST node that is a pointer or can evaluate to a pointer.
Examples are VariableDeclarator which is a pointer and MethodAccess which evaluates
to a pointer if the return type is not a primitive type. They are represented as nodes in
the pointer flow graph. AST nodes that create an object implement AllocationSite.
They are elements in the points-to sets which are propagated along the pointer flow graph.
Examples of common allocation sites are the NewExpr and StringLiteral nodes.

AllocationSites also implement the Node interface. The AllocationSites
create an ALLOCATION constraint with itself as both the object and the pointer. This allows
for handling AllocationSites and Nodes in the same way, not having to differentiate
between fields, pointers, and objects when generating constraints. This reduces the number
of cases that need to be handled at the expense of an additional constraint. An example
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A x = new A();
(a) Declaration state-
ment.

o1 ∈ pts(x)

(b) Optimal con-
straints.

o1 ∈ pts(NewExpr)
pts(x) ⊆ pts(NewExpr)

(c) Actual con-
straints.

Figure 4.1: Creating additional constraints to reduce number of cases to handle.

is shown in Figure 4.1. With the constraint in Figure 4.1b, it is immediately obvious that
the created object is part of pts(x), but for the constraints in 4.1c the solver needs to
propagate the object to pts(x). Since a NewExpr is not a pointer, it cannot actually point
to anything, but it is convenient implementation-wise to let it have a points-to set anyway.
The advantage of this solution is that no matter what the right hand side is, a ASSIGNMENT
constraint can be created. This also applies to situations other than assigments.

4.1.2 Constraint Generation
Some AST nodes create constraints, such as the AssignExpr AST node which creates a
ASSIGNMENT constraint. Constraints that are generated inside a method are contributed to
a collection attribute in that method’s MethodDecl node. Field initializers are not inside
methods and instead contribute their constraints to all ConstructorDecl nodes of that class.

After selecting which methods should be analyzed (all methods when analyzing the
entire program), constraints from those methods are collected and passed to the solver,
which computes the points-to set for all pointers in the selected methods.

4.1.3 Limiting Search Distance
We include an option to only collect constraints from methods within a certain distance
from a specified method. The purpose of this is to try to find the points-to set of pointers in
a method without performing a whole program analysis. We use the call graph generated
by CAT [33] and start from the selected method and include all methods which can be
reached within k steps when traversing the call graph in either direction. Setting k to 0
only includes the selected method, while setting k to 1 includes all methods that either
calls or can be called by the current method. The program then computes the points-to
sets using the constraints from the methods within distance k. Figure 4.2 shows a call
graph where highlighted functions are the ones constraints would be collected from when
computing a result for all pointers in h with different values for k.
A points-to set can be affected by information in other methods in three different ways:

1. Reading a field that has been written to in another method.

2. Reading a value has been passed as a parameter.

3. Reading a value that has been returned from another method.

This also applies transitively, e.g., if the pointer of interest reads from another pointer
which in turn reads a return value, then the function that returned that value must be in-
cluded. The first and second scenario make it so that predecessors in the call graph must
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main
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h i

j

(a) k = 1

main

f g

h i

j

(b) k = 2

main

f g

h i

j

(c) k = 3

Figure 4.2: A call graph where methods reachable from h within different values
of k are highlighted.

The pink coloured nodes show the reachable methods.

be included and the first and third scenario necessitate the inclusion of successors in the
call graph.

Limiting search distance can cause the analysis to miss objects to include in a points-
to set. One example is if a pointer can point to an object that was created in a method
that is minimum three steps in the call graph away from the current method, then this
object will not be found when the search distance is limited to two steps. Limiting search
distance makes the analysis unsound: all possible objects that a pointer can point to are not
guaranteed to be in its points-to set. However, due to limitations listed in Section 4.3 and
the fact that we do not model all Java language features our results cannot be guaranteed
to be sound even with unlimited search distance. We discuss what possible values of k can
be used and where an unsound result may fit in Section 6.1.

4.1.4 Solver
We use a worklist-based solver for solving the constraints. We chose to use a worklist-
based solver since it is faster than simply iterating over the constraints until the solution is
reached [25]. Other approaches such as using a Datalog engine to solve the constraints [37]
are also possible but not explored due to the time constraints of writing this thesis. The
psuedocode is shown in Algorithm 1, where <: is used as the subtyping relation. It is
based on a presentation by Tian Tan [45] on how to implement points-to analysis. The
solver maintains a worklist consisting of pairs where the first element is a pointer flow
graph node and the second is a set of objects.

On lines 15-24, the algorithm propagates objects which have not already been prop-
agated along the pointer flow graph. It is also possible to not calculate the set difference
on Line 15 and instead propagate the entire set pts, but since this information is already
available in succeeding nodes there is no need to do so.

On lines 25-34, the FIELD LOAD and FIELD STORE constraints are handled. It is not
possible to only process these constraints once as for the ALLOCATION and ASSIGNMENT
constraints as they depend on the points-to sets which change during solving.

Type filtering for non-field pointers is performed on Line 17. It can also be done for
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field pointers but the structure of our implementation makes it more difficult. Without
performing type filtering, it is possible for the points-to sets to include objects which
the pointer cannot point to. Pointers in Java can only point to objects which subtype the
pointer, so other objects can safely be removed. Listing 4.1 shows a situation where type
filtering is useful. Without type filtering, the allocation sites A@line3 and B@line4
would both be included in pts(b) (since the analysis is flow-insensitive), but b cannot
point to objects of type A so A@line3 can be removed.

1 class Example {
2 public static void main(String[] args) {
3 Object obj = new A();
4 obj = new B();
5 B b = (B) obj;
6 }
7 }
8 class A {}
9 class B {}

Listing 4.1: A program illustrating the use of type filtering.

It is also possible to perform type filtering after the constraint system has been solved,
but we found this to have lower performance, since it appears to be faster to perform type
filtering during solving than to propagate larger, unfiltered sets.
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Algorithm 1 Solver
1: procedure SOLVE
2: for each pfg node n do
3: n.pts← ∅
4: n.succ← ∅
5: end for
6: worklist← ∅
7: for each ALLOCATION constraint p = o do
8: worklist← worklist ∪ {⟨p, {o}⟩}
9: end for

10: for each ASSIGNMENT constraint p = q do
11: q.succ← q.succ ∪ {p}
12: end for
13: while worklist is not empty do
14: pfgNode, objs← pop(worklist)
15: deltaPts← objs \ pfgNode.pts ▷ Only propagate new information
16: if pfgNode is not a field node then
17: deltaPts← {n ∈ deltaPts | n <: pfgNode} ▷ Perform type filtering
18: end if
19: if deltaPts is not empty then
20: pfgNode.pts← pfgNode.pts ∪ deltaPts
21: for each node s ∈ pfgNode.succ do
22: worklist← worklist ∪ {⟨s, deltaPts⟩}
23: end for
24: end if
25: if pfgNode is not a field node then
26: for each object o ∈ deltaPts do
27: for each FIELD LOAD constraint p = q.f where q = pfgNode do
28: ADDEDGE(o.f, p, worklist)
29: end for
30: for each FIELD STORE constraint p.f = q where p = pfgNode do
31: ADDEDGE(q, o.f, worklist)
32: end for
33: end for
34: end if
35: end while
36: end procedure
37: procedure ADDEDGE(p, q, worklist)
38: if q /∈ p.succ then
39: p.succ← p.succ ∪ {q}
40: if p.pts is not empty then
41: worklist← worklist ∪ {⟨q, p.pts⟩}
42: end if
43: end if
44: end procedure
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4.2 Language Features
In this section, we describe how some of the supported of language features are handled
and which constraints they generate. The selection consists of features which we con-
sider interesting, excluding language features which are straightforward to handle such as
variable assignments.

4.2.1 Methods

1 interface A {
2 A m(String str);
3 }
4 class A1 implements A {
5 public A m(String str) { return str; }
6 }
7 class A2 implements A {
8 public A m(String str) { return null; }
9 }

10 class Example {
11 public static void main(String[] args) {
12 A a = new A1();
13 String s1 = a.m("ABC");
14 String s2 = a.m("DEF");
15 }
16 }

Listing 4.2: A program with two method calls.

To model methods we use the allDecls attribute provided by CAT. The attribute
evaluates to the set of methods that a method call may refer to. In the example in List-
ing 4.2, allDecls returns method m in both A1 and A2. Although in this case it is easy
to see that only the method in A1 can be called, the general case requires pointer analysis.
CAT only looks at the declared type of the variable a and returns matching methods in all
subtypes.

The MethodAccess node on Line 13 contributes ASSIGNMENT constraints from "ABC"
to the ParameterDeclaration node str in both methods.

Inside the methods, all ReturnExpr nodes contribute an ASSIGNMENT constraint from
the return value (str and null in this case) to the MethodDecl nodes. The MethodAccess
nodes contribute ASSIGNMENT constraints from the matching MethodDecls to themselves
so that they “evaluate” to the return values. This way of handling methods is call-site
insensitive which means that different calls to a method are not treated separately, so the
analysis would return the result pts(s1) = pts(s2) = {"ABC", "DEF", null}.

4.2.2 Object Keywords: this and super
The this expression is handled conservatively. When a this expression is used inside a
class, ASSIGNMENT constraints are created from every allocation site of objects that either
have the same type or a subtype of that class. A drawback of this approach is that it collects

34



4.2 LANGUAGE FEATURES

constraints from the entire program instead of only the selected methods if using a distance
limited analysis. It does however not affect the resulting points-to sets as no ALLOCATION
constraints are created for the allocations sites outside of the selected methods and thus
they are never included in any points-to set. The effect on performance is also almost
certainly very minor as the constraint is only processed once during solving. A more
precise approach would be to let this “evaluate” to the object which the method has
been accessed from.

The super expression is handled in almost the same way as the this expression, but it
instead creates ASSIGNMENT constraints from all allocation site of objects that have a type
which is a supertype of the class that the expression is inside.

4.2.3 Dot
To handle chains of accesses, such as o.f.m()[20].g, we introduce “temporary” vari-
ables. This is done by adding a higher order attribute to the Dot AST node. A higher-order
attribute is an attribute that evaluates to an AST node, but unlike other AST nodes, it is
created by an attribute instead of the parser. First an ASSIGNMENT constraint is added from
the declaration of the base variable (o in the previous example) to the leftmost dot’s tem-
porary variable. If a field access is on the right side of a dot, we create two constraints:
a FIELD STORE constraint and a FIELD LOAD constraint. This results in that the temporary
variable is equal to the accessed field as pts(t) ⊆ pts(x.f) ∧ pts(x.f) ⊆ pts(t) ↔
pts(x.f) = pts(t). Array accesses are handled in the same way, but instead use a unique
name that does not overlap with normal field names.

Method accesses do not need to be handled in this way as our analysis is context in-
sensitive. It does not matter which object the accessed method belongs, so it is sufficient
to simply create ASSIGNMENT constraints from the method declarations found by CAT to
the temporary variable.

The final access creates constraints to a temporary variable which represents the entire
access chain. For example, when assigning the value of an access chain to a variable (e.g.,
x = o.f.g;), an ASSIGNMENT constraint is created from this temporary variable to the
assignment target.

4.2.4 Arrays
Our model is array-insensitive, i.e., all writes and reads to an array are treated equally no
matter what index is used. Differentiating between writes and reads to different locations
are difficult when the expression used to index the array is not an integer literal. Determin-
ing the possible values of that expression would require a data flow analysis. To avoid this
we chose to group all locations in the array together. The ArrayInit and ArrayCreationExpr
AST nodes are allocation sites where new array objects are created.

4.2.5 List and Map
Since we cannot analyze bytecode (discussed in Section 4.3.1), we cannot analyze classes
in the Java standard library. It is possible to manually implement support for methods
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that are part of the standard library by letting calls to them generate suitable constraints
that match their behavior. We have added support for the put and add methods in the
interfaces Map and List respectively as well as the get method for both interfaces. We
chose these methods as they are commonly used and not supporting them would make
the analysis result worse by not including reads from calls to get in the points-to sets.
Writes with put or add create a FIELD STORE constraint and get creates a FIELD LOAD
constraint.

4.2.6 Fields
FIELD STORE constraints are created for field declarations that include an initializer. The
constraints are created from the initializer to each object that is a subtype of the class that
include the field.

Static fields are somewhat more complex to handle since they introduce a relation
between a method and a class that is not represented in the call graph. Since our analysis
uses the call graph to select which methods to collect constraints from, it can happen that a
static field is accessed in some method but the constraints for assigning a value to the field
is not included. Currently, static fields work as expected if either the class’ constructor is
included in the methods to collect constraints from or if the static field’s initializer does
not contain method calls.

4.3 Limitations
Unsoundness means that the analysis has missed a points-to relationship which is unde-
sirable. In this section, we list sources of unsoundness which are not intentional design
decisions as for the distance strategy described in Section 4.1.3.

These sources of unsoundness are due to the properties of the systems we built our
analysis with, or language features that are difficult to model and were not implemented
due to time constraints.

4.3.1 Bytecode Analysis
Java compilers such as JAVAC or EXTENDJ generate bytecode which is in turn executed by
a Java virtual machine. EXTENDJ primarily works on source code, but is also able to read
bytecode to some extent. It can read bytecode to gain information about, e.g., method
signatures and class hierarchies. However, already compiled code is not included in the
abstract syntax tree produced by EXTENDJ. Due to this limitation, our analysis cannot ana-
lyze classes in the Java standard library or other already compiled code without manually
adding support for specific methods (such as in Section 4.2.5).

1 class Example {
2 public static void main(String[] args) {
3 List<String> list = List.of("ABC");
4 String s = list.get(0);
5 }
6 }
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Listing 4.3: A program with two calls to methods in the Java standard library.

While it is easy to see that s in Listing 4.3 will point to "ABC", it is not possible to
determine without either having access to the source code or having implemented support
for the of and get methods. One common way to produce a sound result in certain
situations is to include all objects in the points-to set. However, this is not possible in this
situation since new objects could be created inside of the bytecode and these would not
be visible to the analysis. Instead it would be necessary to return a more abstract result
that says that this pointer might point to anything, which may or may not be satisfactory
depending on what the analysis result should be used for.

A bytecode reader that enabled EXTENDJ to construct an AST from bytecode would
solve this problem and enable the analysis to analyze previously unanalyzable code. We
are not aware of any development of a bytecode reader for EXTENDJ at this moment, and
developing one is not in the scope of this thesis.

4.3.2 Reflection
Reflection would be difficult to handle even with the ability to analyze bytecode. Us-
ing reflection it is possible to instantiate objects or invoke methods by passing the name
of a class or method as an argument. In Java, an object of class A can be created with
Class.forName("A").newInstance(). When the argument to forName is not
a string literal it becomes difficult to determine what objects can be created at that point in
the program. Many program analyses do not handle reflection in a sound way as assuming
that any object can be created by a call to forName could be bad for both perfomance
and precision [27].

One way to handle reflection is to dynamically record which objects are created and
which methods are invoked by using reflection and then using the information to perform
the static analysis. QILIN, which we compare our analysis to in Chapter 5, handles reflec-
tion in this way. One thing to note is that the result will only be sound if all objects that can
be created with reflection are created in some recorded execution. This applies similarly
for method invocations.

4.3.3 Additional Limitations
The following is a list of unsupported language features. Since they are not handled, they
are also possible sources of unsoundness. These features are not impossible to implement,
but due to time constraints they were considered out of scope for this thesis.

Exceptions When an exception is thrown, a new Exception object is created and when
caught, the pointer in the catch clause points to the caught exception.

Accessing an outer class with this An outer class can be accessed from the inner class
using <OuterClass>.this.

Accessing classes with class E.g., int.class.
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Method calls in static field initializers E.g., static A a = m(); only works if
performing a whole program analysis or if the analyzed methods contain a instanti-
ation of the class that the field is contained in.

Features added in Java 5 or later The analysis handles the enhanced for loop which was
introduced in Java 5 but does not handle any other language features introduced in
Java 5 or later. These include enumerations, lambda expressions, switch expressions
and more.

Main method arguments The String[] parameter in the main method is not modeled
as an array of strings, which it should since pointers can be made to point to the array
and its contents.

JNI Java Native Interface allows for calling code written in other languages, such as C.
To analyze this would require implementing support for other languages which is
out of scope.
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Chapter 5
Evaluation

This chapter concerns the evaluation of PECKA. We start by describing the different con-
cepts and techniques used for evaluating a program analysis in Section 5.1. Then, a de-
scription of the tests and benchmarks used for our analysis is presented in Section 5.2,
with the results in the preceding Section 5.3.

5.1 Evaluating an Analysis
In this section, we give definitions of terminology often used when describing program
analyses and describe why it can be difficult to evaluate how good a points-to result is.

5.1.1 Precision and Recall
Our analysis answers the question: “What objects can the requested pointer point to at
runtime?” In some cases, we instead answer what types a pointer points to, simply by
looking at the type of each object in the points-to set and removing identical types. A
correctly generated fact is called a true positive (TP), while an incorrectly generated fact
will be false positive (FP). If the analysis fails to report a fact that should be reported, it
will be a false negative (FN). A true negative is similarly when the analysis correctly does
not report a fact. All combinations can be visualized in a confusion matrix, as shown in
Table 5.1.

Precision is a measurement of how many of the generated facts are true. For points-to
analysis, precision describes the correctness of the reported points-to set compared to the
actual points-to set. It can be calculated using the following equation:

Precision =
#TP

#TP +#FP
=

correct reports
number of reports
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Predicted
Yes No

A
ct

ua
l Yes TP FN

No FP TN

Table 5.1: Confusion matrix for an analysis describing how a result from an
analysis is compared to the actual values, generating combinations of False/True
Positives/Negatives.

Precision is measured in the range [0, 1], where 0 represents the lowest and 1 the highest
achievable precision.

Recall describes how many of all true facts are generated for some query. In a points-to
analysis context, recall describes the proportion of actual objects a pointer could point that
the analysis also correctly identified. It can be calculated with the equation:

Recall =
#TP

#TP +#FN
=

correct reports
number of ground truths

Recall is measured in the range [0, 1], where 0 represents the lowest and 1 the highest
achievable recall.

Consider an example where we report what types the variable a can point to. The
reported points-to set was {Cat, Dog, Sheep}, while the actual true set should be
{Cat, Dog, Cow, Horse}. This analysis has the two true positives Cat and Dog,
one false positive Sheep, and two false negatives Cow and Horse. The precision of the
analysis is therefore #TP/(#TP + #FP ) = 2/3 = 0.67. The recall for the example
would be #TP/(#TP +#FN) = 2/4 = 0.5. Note that full recall is obtainable simply
by answering that the pointer can point to every object used in the program. Similarly,
perfect precision can be achieved by under-approximating the result and only returning
completely certain results. The optimal scenario is to gain full precision for a fully sound
analysis. This is however not possible as described in Section 2.2.The specific goal of our
analysis is to find a balance between precision, recall, and time to compute the result.

5.1.2 Soundness
A program analysis can be either a may or a must analysis. A may analysis produces
facts that may hold, e.g., that a specific pointer may point to a specific object during some
execution of the program. A must analysis produces facts that always must hold, e.g., that
the variable x always has the same value as the variable y.

A may analysis is sound if it includes all possibilities, i.e., it has perfect recall. For a
points-to analysis, this would be that no objects that a pointer could point to are excluded
from the points-to set [38]. A must analysis is sound if no facts that sometimes do not hold
are produced, i.e., it has perfect precision.

Soundness is often an important property for program analyses to have, since it enables
more drastic conclusions to be drawn from the result. A compiler making optimizations to
a program using unsound program analysis results could result in the program not behaving
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as expected, e.g., the program crashes due to some code being optimized away under the
false assumption that it cannot ever be executed.

An alternative to soundness is soundiness [27]. A soundy result is a result that is not
quite sound for some reason, e.g., it does not model some language feature in a sound
way. A notoriously hard to handle language feature is reflection. Using reflection, it is
possible to instantiate an object by using the class name in the form of a string. Since it
is sometimes impossible to determine what the string will be, e.g., if it is given as input
to the program, it must be assumed that an object of any type can be created if a sound
result is desired. Conservatively modeling a program in this manner can result in a result
that is so imprecise that it is no longer useful or negatively impacts the performance of the
analysis. A soundy result can still be useful in contexts where soundness is not essential,
such as when giving auto-completion suggestions in an IDE.

5.2 Experimental Setup
Due to the challenges in determining whether the analysis produces the correct results,
several evaluation methods were employed for our analysis. The main idea was first to
evaluate the analysis for correctness, and when we with some certainty could determine
that the analysis was correct, we expanded the evaluation to include larger programs with-
out a ground truth. All benchmarking were executed an octa-core Intel i7-11700K 3.6 GHz
CPU with 128 GiB DDR4-3200 RAM, running Ubuntu 20.04.3 with Linux 5.15.0-106-
generic and the OpenJDK Runtime Environment version “1.8.0_302”. The evaluations
used will be described in the upcoming sections, with the result presented in Section 5.3.

5.2.1 Manual Ground Truths
Benchmarking a points-to analysis is difficult because, to the best of our knowledge, pre-
cise information about what a pointer may point to does not exist for any real-world pro-
grams. Determining whether two pointers alias, i.e., they may point to the same object
at some point in the program, is NP-hard when only considering the flow-insensitive re-
sult [18]. Since this can easily be computed by checking whether the intersection of the
pointers’ points-to sets is empty or not, precise flow-insensitive points-to analysis is also
NP-hard. This means that it is not possible to compute precise flow-insensitive points-to
information in polynomial time (unless P = NP). While it might still be possible to imple-
ment an analysis that can produce a precise flow-insensitive result, we are not aware of
any such analyses or results produced by one. Attempting to implement such an analysis
is out of scope for this thesis. Having precise information available would be useful since
it could be used to assess the quality of the results produced by our analysis.

Many articles tackle this problem by assuming that their analysis implementation pro-
duces a sound result after comparing it against other analyses that are considered state-
of-the-art obtaining similar results. When receiving an similar result, they can consider
smaller points-to set as more precise yet still sound [14, 25, 46]. This is not an option in
this thesis, since our implementation does not produce a sound result, making it harder
to reason about the cause of smaller points-to sets. The reason for the unsoundness is
discussed in Section 4.3.
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Another attempt to address this fact is PointerBench [41]. PointerBench is a manually
created benchmark suite consisting of small Java programs along with points-to and alias
information to compare against [40]. It tests things that can often be problematic for points-
to analyses but excludes many language features and the programs only consists of a few
methods. Although it is impossible to write a set of benchmarks that exhaustively covers
all possible scenarios for a points-to analysis, PointerBench still serves as a useful start
for asserting the precision and recall of a points-to analysis. For this reason, we used
PointerBench as one of the factors evaluating the analysis.

PointerBench consists of several Java files that use static test functions to describe
the test case and its result. The functions themselves are defined as empty functions
and exist to be identified when parsing the program to find the test case and the ex-
pected result. Listing 5.1 provides an example of one of the benchmarks. The state-
ment Benchmark.alloc(1) marks the succeeding statement as an allocation with
an allocId of 1. By looking at the string parameters for Benchmark.test we can
see that the test is for the local variable b, with the expected result of the allocation with
allocId 1. It also contains more information related to alias information, but in our
case, we were only interested in comparing the expected allocId’s to the findings of
our analysis. To cover more Java 5 features, we manually augmented the suite with more
examples. In those tests, we omitted the alias information, as we do not use them for our
evaluation.

1 Benchmark.alloc(1);
2 A a = new A();
3
4 A b = a;
5 Benchmark.test("b",
6 "{allocId:1, mayAlias:[a,b], notMayAlias:[],

mustAlias:[a,b], notMustAlias:[]}");

Listing 5.1: Excerpt from the benchmark SimpleAlias1 in PointerBench. The
test queries the varaible b for all alloactions it can point to. The allocations are
marked with Benchmark.alloc.

To use these benchmarks, JASTADD code was created to extract the information inside
the parameter lists. Each allocation site was assigned an attribute of the specified id if
it were a preceding statement of Benchmark.alloc, or 0 otherwise. These ids were
later compared to the allocId’s in the Benchmark.test method. The result of this
comparison shown in Section 5.3.1.

5.2.2 Generated Ground Truths for ANTLR
To effectively validate the implementation of our k-distance option for our algorithm
(see Section 4.1.3), a more intricate test set was required. The programs in Point-
erBench were not representative of a real world program, thus not making the call
graph large enough to validate the advantage of this strategy. To our knowledge,
there exists no large test set with points-to information. This prompted us to gener-
ate a dataset containing the runtime types of the variables in a program. This was
achieved by programmatically adding print statements containing each method’s parame-
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ter’s param.getClass().getSimpleName(). The testset was limited to only in-
clude the parameters of the methods for simplicity, coupled with the fact the tool we were
to compare against run on a jar file, making local variables obfuscated. The parameters
were found using regular expressions, modifying the source code in a Python script. The
program was executed multiple times to cover as many program paths as possible. The
program selected for this was the parser generator ANTLR [1] with version 2.7.2. The
dataset was then generated by executing the program using all different parser options,
generating a CSV and JSON file containing the result. The dataset and the code used to
produce it is available in the repository in the directory comparison.

An example of a modified method is shown in Listing 5.2. The code on line 2 has been
automatically inserted and each time the method is executed, the parameter’s declared
type, name, the file it is in, the method signature and its dynamic type are printed.

1 public void refTreeSpecifier(Token treeSpec) {
2 if (treeSpec != null) System.out.println("Token;treeSpec;antlr/

MakeGrammar.java;refTreeSpecifier(Token treeSpec);" +
treeSpec.getClass().getSimpleName());

3 context().currentAlt().treeSpecifier = treeSpec;
4 }

Listing 5.2: Automatically inserted println statement.

Using this dataset, we performed the benchmark with different values of k, measuring
recall and precision. In addition, we also ran it using QILIN, which is the current state of
the art for pointer analysis [14]. QILIN facilitates many versions of pointer analysis, we
selected the analysis called INSENS (Andersen’s context-insensitive analysis), since it was
the implementation that most closely matched ours. The result is shown in Section 5.3.2

5.2.3 Benchmark Programs
Additional programs were used for benchmarking PECKA in terms of speed, memory us-
age, as well as the types and allocation sites reported. We evaluated nine programs, with
method counts ranging from 548 to 8057, covering a wide variety of program sizes and
coding styles. The following procedure was performed for every project:

- Repeat 3 times:

- For k = 0 to 8:
Measure the time to retrieve the points-to set for 100 random methods,
with measuring starting from a parsed state.

All methods in the program were considered for random selections, resulting in that
large methods took a long time, while others were faster.

To make the measurement reflect steady state, the 100 random methods were computed
2 times before taking the actual measurement. Our testing indicates that this should be
enough warm up runs to reach steady state, which we identified by plotting the time for 50
warm up runs on some project and visually observing where the time taken stagnated. We
tested values of k from 0 to 8, as 8 was observed to be the point where no additional result
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could be found for all projects, indicating that all reachable methods in the call graph were
included at that point.

The memory usage was obtained by limiting the heap space for the JVM with the java
argument -Xmx. For instance, to limit the heap space to 8GB, the jar is executed with
java -Xmx8G -jar program.jar. The benchmark to find the points-to set for
100 random methods was executed until the program suffered a OutOfMemoryError,
where the lowest value without an error was considered the required memory consumption.
These values were found using binary search, looking at the required memory in 50 MB
steps between 0 and 5 GB.

Our analysis cannot influence the speed of parsing the program, but since it is required
before performing the analysis, we include the measurements for completeness. To obtain
steady-state measurements for the benchmark projects, we averaged the last values from
50 runs, each run parsing the benchmark program 10 times.

5.3 Results
This section shows the results from the evaluation of PECKA, using the tests and bench-
marks described in the previous section.

5.3.1 Manual Ground Truths
Table 5.2 shows the result of the PointerBench benchmarks. For a full breakdown of each
individual test case, see Table A.2 in Appendix A. The analysis found all expected results,
yielding a recall of 1.0. The precision of the analysis was 0.72. It is worth mentioning,
however, that the precision in this test is closely related to how the test code is written. A
test case with more assignments on the requested variable would make the precision go
down since the analysis is flow-insensitive, and the test looks for the flow-sensitive result.
For instance, replacing the line A b = a; on line 4 in Listing 5.1 with A b = new
A(); b = a; would decrease the precision due to an additional false positive.

Metric TP FP FN Precision Recall

Value 55 21 0 0.72 1.00

Table 5.2: Results from the extended PointerBench Benchmarks.

5.3.2 Generated Ground Truths for ANTLR
The result for the benchmark on the generated ground truths, compared against the current
state of the art, can be seen in Figure 5.1, with the complete counts included in Table A.1 in
Appendix A. As described in Section 5.2.2, the truths used to calculate recall and precision
have been obtained by running the program multiple times with different configurations,
logging the runtime types of the parameters for methods in the parser generator ANTLR.
As the distance increases, the recall also increases up to a distance of 5, where it performs
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almost equal to our analysis using an infinite distance, indicating that this is also close to
the average steps needed to reach all reachable methods from an average method in the
program. At this point, the recall has reached 0.95. Looking at the precision, we notice
that it start high with a gradual decrease as the distance increases. This shows that the
false positives that are produced by the analysis occur to a greater extent farther away in
the call graph. We found the best tradeoff between time, precision, and recall to occur
at the distance 3. It performs the analysis in 0.85 seconds, with a recall of 0.71 and the
precision 0.78. In other words, using this distance enables us to find 71% of the types, with
78% of the types we reported being correct, in approximately 1/5 of the time compared to
using an infinite distance.
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Figure 5.1: Recall and precision for PECKA compared to the types reported from
the generated ANTLR dataset, using different values for k using our analysis. The
dotted lines show the precision and recall for QILIN on the full program. The
time for running the full analysis on QILIN were 8.52 s. For the full result in table
format, see Table A.1 in Appendix A.

It is worth mentioning how we interpret the results reported by QILIN. Although Figure
5.1 display the recall 1 with a precision of 0.56 from this dataset, there are some factors
preventing a too harsh conclusion to be drawn when comparing the tools. The first reason
is that since the absolute truths we have been generated by executing the program, all
program paths have not been taken, which might cause some possible types to be excluded.
If QILIN has reported any of these types while PECKA did not, QILIN would incorrectly get
a false positive resulting in a lower precision. The second reason that makes a comparison
unjust, is that QILIN handles reflection dynamically, meaning that it had to execute the
program before producing the result. What we can interpret from the comparison is that at
the higher values of k, our analysis performs similarly to the current state of the art, which
indicates that our analysis likely behaves as expected. The full analysis could be executed
on QILIN in 8.52 seconds on the same benchmark machine we used. This is not including
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the time taken to produce the JAR file from source code. Although this time is higher than
PECKA with infinite distance, we can not draw any conclusions other than noting that the
times reported by our analysis is reasonable.

5.3.3 Benchmark Programs
The time measurements to calculate the points-to set for all pointers in one method can
be seen in Figure 5.2. Comparing the allocation sites found in Figure 5.3 with the types
found in Figure 5.4, we notice that all the types are found faster than all the allocations for a
method. We can also see that the majority of the types have been found when a distance of
5 is used. This is more visible in Figure 5.6, where the average percentage of found types
compared to the total is plotted together with the average percentage of the total time for
the projects on each distance. This figure also shows that 56% of the total types found by
PECKA can be found in 22% of the time using the distance 3. Although these programs
do not have access to what the ground truth, the results seem to align well with the results
found on ANTLR in Section 5.3.2. This indicates that the results found are generalizable to
other programs too.

The memory measurements can be seen in Figure 5.5, with the data separated for each
project in Figure A.1 in Appendix A. We can see that the memory usage differs across the
projects, but generally increase together with the distance. At the distance 4, there seem
to be a point where an increase in memory is required.

The parsing times together with the mean times from Figure 5.2 for the projects can
be seen in Table 5.3. The times for the projects ranged between 0.31 and 1.70 seconds.
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Figure 5.2: Mean time for calculating the points-to information for a method
across the benchmarks for different values of k. The gray line shows the mean
for all projects. The numbers together with parse data can be seen in Table 5.3.
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Figure 5.3: Mean allocation count for a method across the benchmarks for dif-
ferent values of k. The gray line shows the mean for all projects.
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Figure 5.4: Mean type count for a method across the benchmarks for different
values of k. They gray line shows the mean for all projects.

47



5. EVALUATION

0 2 4 6 8
0

500

1000

1500

2000

2500

3000

3500

All Projects commons-jxpath antlr-2.7.2
fop-0.95 pmd-4.2.5 jfreechart-1.0.0
joda-time

Distance

M
em

or
y 

U
sa

ge
 (

M
B
)

Figure 5.5: Mean memory usage for calculating the points-to information for a
method across the benchmarks for different values of k. The gray line shows the
mean for all projects.
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Figure 5.6: The percentage of types found and the percentage of time taken for a
given distance, compared to the result at distance 8. These values are calculated
from the average of all projects as plotted in Figure 5.4.
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Mean times for different values of k (s)

Project Parse time (s) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

COMMONS-JXPATH 0.31 0.10 0.22 0.24 0.40 1.46 2.50 3.29 3.75 4.10
ANTLR-2.7.2 0.45 0.13 0.31 0.41 0.85 1.94 2.64 2.89 2.93 2.94
FOP-0.95 1.60 0.65 1.51 1.68 2.98 9.17 17.39 21.14 21.98 22.14
PMD-4.2.5 1.09 0.34 1.26 1.34 1.68 2.70 4.11 5.04 5.43 5.51
JFREECHART-1.0.0 1.54 0.71 2.44 2.79 5.69 15.18 21.72 23.15 23.71 23.70
JODA-TIME 1.70 0.57 1.64 2.54 7.04 23.64 28.15 29.81 30.27 30.81

Table 5.3: Parse times and time to retreive the points-to set for an average method
as plotted in Figure 5.2 for the projects used in the benchmarks programs.
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Chapter 6
Discussion

This chapter discusses the result and possible applications that an analysis with the char-
acteristics of PECKA can be used for. It follows with a discussion of the advantages and
drawbacks to using Reference Attribute Grammars to implement a points-to analysis, con-
cluding with suggestions for future work.

6.1 PECKA in Interactive Environments
Our analysis enables users to obtain all points-to results related to a single method on
request. By specifying the distance k, the analysis can be limited to only include methods
within k steps in the call graph originating from the requested method, as described in
Section 4.1.3. As shown in Section 5.3, this approach increases the speed of the analysis,
but may result in missing some points-to relationships. PECKA can also be used to run a
full analysis on the entire program, providing all points-to results for all methods.

The primary requirement to enable the use of a points-to result in an interactive envi-
ronment, such as an IDE, is to provide the result in a reasonable time. What the reasonable
time is, we suspect varies depending on the requirements of the client that is using the re-
sult of our analysis. Similarly, we also believe that the soundness requirements will differ
across different clients. We have identified the following possible client’s that could make
use of our analysis:

Find allocations Using the points-to result, a more strict version of the LSP language
feature Find References can be implemented to show only allocations. Limiting the
value of k might yield results with higher precision by only returning results close
to the location of the request, as shown in Figure 5.1.

Improve autocompletion Points-to information could enable better completions for un-
typed or gradually typed languages. A part of why programmers prefer TypeScript
to JavaScript is due to that the autocompletion is better for TypeScript [11], which
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indicates a need for improvement in this area. Andersen’s analysis has been imple-
mented for JavaScript [13], where a reduction in execution time might make inter-
active use more feasible. For such analysis, a low distance could possibly be used,
as a match could simply increase the ranking of a completion.

Code Navigation Many editors such as INTELLIJ IDEA and ECLIPSE currently offer many
ways to navigate a code base. The tools Call Hierarchy and Go to Implementation(s)
are both used to navigate from the start of a method or a method call. Figure 6.1
shows the usage of these tools on the example code in Listing 6.1. It shows that
all implementations from subtypes are included, ignoring the fact that even if there
never is an instance of Cow created, it will still show up in the list of results. We
believe that with the help of the result of a points-to analysis such as ours, these
lists could be improved, either by sorting the list having the used methods first, or
completely removing unused implementations. For the former alternative, a low
distance value could suffice, which would gain the improvement with a lower time
and memory cost. If results instead would be completely removed from the results
list, a higher distance value might be preferred.

Bug detection Several bug detection tools, such as FINDBUGS [19], require the use of
points-to information. Using the same techniques as in PECKA might make it pos-
sible to speed up the results with adequate accuracy, thereby increasing the user
experience.

1 public class Example {
2 public static void

main(String[] args) {
3 Animal a1 = new Dog();
4 Animal a2 = new Cat();
5 processAnimal(a1);
6 processAnimal(a2);
7 }
8
9 public static void

processAnimal(Animal a) {
10 a.makeSound();
11 }
12 }

Listing 6.1: Code example
processesing animals. The points-
to set for a in processAnimal
is {Dog, Cat}.

class Animal {
void makeSound() {

System.out.println("Some
animal sound");

}
}

class Cat extends Animal {
@Override
void makeSound() {

System.out.println("Cat
meows");

}
}

class Dog extends Animal {
@Override
void makeSound() {

System.out.println("Dog
barks");

}
}

class Cow extends Animal {
@Override
void makeSound() {

System.out.println("Cow
moos");

}
}

Listing 6.2: Animal class
definitions.

One advantage of having our tool implemented in JASTADD as an extension of EXTENDJ
is that we have our result at the source code level, which is not the case for other frameworks
that operate on an intermediate representation. We believe this also gives an advantage for
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(a) The tool Call Hierarchy displaying the callees of the function
makeSound in Listing 6.1.

(b) The tool GO TO IMPLEMENTATION(S). The image shows the usage
of this tool on line 10 in Listing 6.1.

Figure 6.1: Code navigation tools in INTELLIJ IDEA that could be improved by
using more precise points-to information. As can be seen in the source code in
Listing 6.1, the type Cow is never provided to the function and could therefore be
removed or put last in the list of results.
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usage in interactive environments, as the mapping between the code and points-to result
is supported automatically. This could make it easier for clients to use the results from
PECKA. Another advantage of working on the source code level is that our analysis does
not need to spend time generating bytecode.

PECKA is not suitable for clients that cannot tolerate false negatives, i.e., where an
object that should be included in the points-to set is not. The false negatives produced by
our analysis are due to a combination of the distance strategy, together with the features
we do not cover in the implementation. Such clients might include those that remove code
based on the result, for example compiler optimizations and refactoring tools. In addition,
analyses that run on the full program, would likely not benefit from our distance strategy,
which in that case would require as many requests as there are methods in the program. In
these cases, a full analysis of the whole program, solving the constraints at once would be
more efficient.

It is not an easy task to answer if our analysis is fast and precise enough to be useful
in interactive environments, as different clients and users may have different requirements
and expectations of a result. While we have shown that the time taken for one method using
the distance 3 ranges from 0.40 to 7.04 seconds, there exists programs that are larger than
the 8057 methods, which might increase the time to get a result. The concept of distance
is however not limited to our tool or to JASTADD itself, and we believe that the idea could
be utilized in other points-to analyses too. The only requirement for an analysis that uses
the distance method is to have the call graph of the program and a way to only analyze a
part of the program. This could enhance other tools such as QILIN [14], to benefit from
both the speedup of the distance strategy together with the extensive optimizations already
implemented for their algorithms.

6.2 Implementation
EXTENDJ and JASTADD are effective tools for implementing program analyses. It would
have been considerably more challenging to implement the analysis without some type of
framework, requiring everything to be implemented from scratch. The implementation
of the constraint collection and solving was done using 1233 lines of code (not counting
whitespace or comments).

Being able to define the attributes declaratively, by adding equations to the nodes, was
beneficial in multiple ways. This approach enhanced the clarity of the code due to the
mapping between the node and what it represents (for example, MethodDecl represent-
ing a method declaration). Furthermore, it enabled the reuse of attributes already defined
on the node, originating from EXTENDJ and CAT. The use of collection attributes greatly
supported the implementation, making it straightforward for the nodes to contribute their
constraints. It eliminated the need to handle all variations in a large loop to prevent travers-
ing the AST multiple times, as this process is efficiently abstracted by JASTADD.

The fact that JASTADD evaluates attributes on-demand is useful when implementing
analyses that work on a subset of the program to avoid execution time scaling with the size
of the entire program, including parts which are not included in the analysis.
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6.3 Future Work
The analysis implementation could be improved in many ways and there are many other
approaches for points-to analysis that are worth exploring, including other algorithms,
such as Steensgaard’s analysis (see Section 2.2). It would be interesting to compare speed
and precision to see whether the gained precision from using Andersen’s analysis makes it
worth having to limit the distance for a quick result. Additionally, it would be interesting
to also try distance limiting the other algorithms and seeing how the performance and
precision compare to Andersen’s. The following list presents a selection of ways that
PECKA can be improved:

• Add support for unsupported language features as well as those introduced in newer
versions of Java, as described in Section 4.3.3.

• Improve performance by implementing various performance optimizations. Ways
that performance could be improved in include collapsing cycles in the pointer flow
graph [12] and using a more efficient set implementation [25].

• Add options for different types of sensitivities, in order to increase the precision of
the results. Many other points-to analysis implementations allow for choosing the
type of context sensitivity to use.

• Explore other ways of selecting methods, e.g., not taking as many forward steps as
backward or basing the selection on a heuristic like the method’s return type or on
the result of some simple analysis, like checking for field writes.
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Chapter 7
Conclusions

In this chapter we conclude the thesis by answering the research questions listed in Chap-
ter 1.

RQ1 How can we speed up the results from Andersen’s analysis to enable usage in an
interactive environment?
We were able to speed up the analysis through only analyzing a subset of the code by
selecting methods at a limited distance in the call-graph from the pointer we wished
to analyze. Using the distance 3, we found a tradeoff between speed and recall,
where most of the results could be found in a significantly shorter time. Although
this results in an unsound analysis, it can still be of use in certain situations, such
as in interactive environments where soundness is not essential. The analysis also
benefits from that JASTADD attributes are evaluated on-demand.

RQ2 How well-suited are Reference Attribute Grammars for implementation of points-to
analysis?
We found Reference Attribute Grammars to work well for implementing a points-to
analysis. It was easy to generate constraints by specifying different rules for different
types of AST nodes.
We found that some problems do not feel as natural as others to solve using RAGs.
These include problems that do not depend on the structure of the AST, such as
the constraint solving. While it is possible to solve these problems using RAGs, it
can be difficult to adapt existing algorithms so that they would benefit from RAGs
compared to an imperative implementation.
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Appendix A
Supplemental Data and Results

Tool Correct Types Overapproximated Types Precision Recall Time

PECKA k=0 2 0 1.00 0.00 0.13
PECKA k=1 108 10 0.92 0.17 0.31
PECKA k=2 271 31 0.90 0.43 0.41
PECKA k=3 450 125 0.78 0.71 0.85
PECKA k=4 537 190 0.74 0.85 1.94
PECKA k=5 599 294 0.67 0.94 2.64
PECKA k=∞ 603 301 0.67 0.95 2.98
QILIN 631 489 0.56 1.00 8.52

Table A.1: Type recall for the parameter benchmark for ANTLR version 2.7.2.
The graph representation of this result is seen in Figure 5.1.
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Figure A.1: The metrics measured for each dataset. This is the same graphs as
shown in Figure 5.2-5.5, but plotted separately for each benchmark project.
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Test TP FP FN Precision Recall

cornerCases/FlowSensitivity1.java 1 1 0 0.50 1.00
cornerCases/FieldSensitivity2.java 1 1 0 0.50 1.00
cornerCases/StrongUpdate1.java 1 1 0 0.50 1.00
cornerCases/ContextSensitivity2.java 2 0 0 1.00 1.00
cornerCases/ContextSensitivity3.java 2 0 0 1.00 1.00
cornerCases/ObjectSensitivity2.java 1 1 0 0.50 1.00
cornerCases/ObjectSensitivity1.java 1 1 0 0.50 1.00
cornerCases/StrongUpdate2.java 1 1 0 0.50 1.00
cornerCases/ContextSensitivity1.java 2 0 0 1.00 1.00
cornerCases/FieldSensitivity1.java 1 1 0 0.50 1.00
basic/ReturnValue2.java 1 0 0 1.00 1.00
basic/Parameter2.java 1 0 0 1.00 1.00
basic/ReturnValue3.java 1 1 0 0.50 1.00
basic/Interprocedural1.java 1 1 0 0.50 1.00
basic/SimpleAlias1.java 1 0 0 1.00 1.00
basic/Loops1.java 1 1 0 0.50 1.00
basic/Branching1.java 2 0 0 1.00 1.00
basic/Loops2.java 2 1 0 0.67 1.00
basic/Recursion1.java 1 1 0 0.50 1.00
basic/Interprocedural2.java 1 1 0 0.50 1.00
basic/Parameter1.java 1 0 0 1.00 1.00
basic/ReturnValue1.java 1 0 0 1.00 1.00
new/FilterArrayCast.java 1 0 0 1.00 1.00
new/FieldList.java 1 0 0 1.00 1.00
new/FilterObject.java 1 0 0 1.00 1.00
new/SimpleMap.java 1 0 0 1.00 1.00
new/EnhancedFor.java 1 1 0 0.50 1.00
new/FilterListCast.java 1 0 0 1.00 1.00
new/ChainedFieldAccesses.java 1 1 0 0.50 1.00
new/FilterCast.java 1 0 0 1.00 1.00
new/FieldMap.java 1 0 0 1.00 1.00
new/FilterRawGenerics.java 1 0 0 1.00 1.00
new/StaticFieldVarAccess.java 1 0 0 1.00 1.00
new/FilterGenericInterface.java 1 0 0 1.00 1.00
new/SimpleList.java 1 0 0 1.00 1.00
new/MethodAccessAfterParExpr.java 1 0 0 1.00 1.00
new/ChainedMixedAccesses.java 1 0 0 1.00 1.00
new/AssignExpression.java 1 1 0 0.50 1.00
new/EnhancedForArray.java 1 1 0 0.50 1.00
collections/List1.java 1 0 0 1.00 1.00
collections/List2.java 1 0 0 1.00 1.00
collections/Array1.java 1 1 0 0.50 1.00
generalJava/Null1.java 1 0 0 1.00 1.00
generalJava/Interface1.java 1 0 0 1.00 1.00
generalJava/Exception2.java 1 0 0 1.00 1.00
generalJava/Exception1.java 1 1 0 0.50 1.00
generalJava/Null2.java 1 0 0 1.00 1.00
generalJava/OuterClass1.java 1 1 0 0.50 1.00
generalJava/StaticVariables1.java 1 0 0 1.00 1.00
generalJava/SuperClasses1.java 1 1 0 0.50 1.00

Total 55 21 0 0.72 1.00

Table A.2: PointerBench test cases and the result for each test. The tests in the
directory new were added to cover more features in this report.
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A. SUPPLEMENTAL DATA AND RESULTS
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Appendix B
Source Code

The source code for PECKA is available at https://github.com/JoArrhen/
pecka.
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Snabb pekaranalys för textredigerare

POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Arrhen, Ruben Wiklund

En pekare är en variabel som kan “peka” till platser i datorns minne. En pekaranalys
kan ta reda på vilka platser det kan vara. Vi har gjort en pekaranalys som går att köra
snabbt nog för att den ska kunna användas medan en programmerare skriver kod.

Datorprogram innehåller variabler som kan läsas
och skrivas till. En variabel kan innehålla till ex-
empel ett tal eller ett ord. Datorer håller reda på
vilket värde en variabel har genom att spara det
i minnet. En speciell typ av variabler kallas för
pekare. En pekare är en variabel som “pekar” till
en plats i datorns minne. Pekare kan vara använd-
bara när man behandlar data som behövs under
lång tid.

Pekare
1

0

Datorns minne

2

?
?
?

Vilka platser i minnet pekar pekaren till?
Det kan en pekaranalys ta reda på!

Ibland kan det vara användbart att veta vilka
platser i minnet en pekare kan peka till, utan att
behöva köra programmet. Den informationen kan
man ta reda på genom att utföra en pekaranalys
på källkoden. Resultatet från en pekaranalys kan
användas till att visa information som underlättar
för en programmerare att skriva ett program. Till
exempel så skulle datorn kunna varna om ett fel
kan inträffa på en viss plats i programmet eller så

kan datorn ge förslag på vad programmeraren kan
skriva på ett visst ställe. I sådana situationer är
det viktigt att det går snabbt att köra analysen.
Det skulle vara väldigt irriterande för program-
meraren om hen var tvungen att vänta i en hel
minut på att få ett förslag i sin textredigerare.

Många av de pekaranalyser som finns är antin-
gen långsamma eller ger ett resultat där det står
att en pekare kan peka till många platser som den
i själva verket inte kan. I vårt examensarbete tes-
tade vi ett nytt sätt att göra pekaranalys på. Vår
förhoppning var att det skulle både gå snabbt och
ge ett bra resultat.

Vi prövade att göra en analys där man bara
analyserar en viss del av koden istället för hela
programmet. Hur stor del av programmet som
analyseras kan justeras med en parameter k. Om
man inte analyserar hela programmet riskerar
man att missa viktig information i de delar som
man inte analyserar, men genom att välja koden
som analyseras på ett särskilt sätt så hoppades vi
att det mesta av det som är relevant tas med. Så
visades det sig också vara! Det gick att hitta 56%
av resultatet på en femtedel av tiden som behövs
för att köra analysen på hela programmet.

Eftersom analysen kan missa vissa saker så kan
den inte användas till allt. Däremot passar den
bra när man vill ha ett snabbt svar, vilket kan
vara en fördel exempelvis i en textredigerare.
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