
Machine Learning-based
Multimodal Data Compression

JACOB FORSELL & YUYANG JIN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

JA
C

O
B

 FO
R

SELL &
 Y

U
YA

N
G

 JIN
M

achine Learning-based M
ultim

odal D
ata C

om
pression

LU
N

D
 2024

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-1006
http://www.eit.lth.se



Machine Learning-based
Multimodal Data Compression

Jacob Forsell & Yuyang Jin

Supervised by Saeed Bastani, Alexander Ekman, Marcus Valtonen Örnhag, & Amir
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Abstract

The field of learned image compression has been facing rapid development and research
engagement. In this thesis, we seek to make an addition to the field by extending a state-
of-the-art learned image compression architecture, called LIC-TCM, by incorporating a
depth map as a second complementary modality to further enhance the image compression.
Furthermore, we explore the inverse, meaning we primarily compress a depth map (which
can be expressed as an image) using LIC-TCM and incorporate the corresponding image
frame as a secondary complementary modality. An important goal in this work has been
to target low complexity in terms of encoding and decoding time, and implementation,
something which is reflected in our proposed architectures.

In this thesis, we propose three unique architectures. The first architecture, Attention-
based Multimodal-LIC-TCM, uses a depth map as a secondary complementary modality
and expands the encoder such that it incorporates depth as a token into its SWIN trans-
former architecture. The second architecture, Convolution-based Multimodal-LIC-TCM,
uses an image as a secondary complementary modality and uses a unique convolution-based
module to extract features from both the image and depth modalities and subsequently
fuses them for further enhanced compression. The third architecture, 4-channel LIC-TCM
architecture, jointly accepts an image and depth as input, and either targets an image or
depth map as reconstruction depending on configuration. However, for this last architec-
ture, the LIC-TCM architecture itself has not been altered thus minimizing complexity.

Generally, we find that the three architectures show improved reconstruction performance
while simultaneously not affecting the compressed size, but the improvement is not signifi-
cant. However, the attention- and convolutional-based architectures introduce more time-
and implementation complexity, while 4-channel LIC-TCM is not affected in this sense.
These results indicate positive research directions, but further investigations are required
for more conclusive results.
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1 Introduction

“Data deluge” [1] refers to the situation where the sheer volume of new data being generated
is overwhelming the storage and processing capacities of any single user device or server.
This is becoming a common problem in both academia and industry. With the rapid ad-
vancement of information technology, various sectors including industries, academia, and
individuals are generating substantial volumes of data daily, ranging from personal text
messages to extensive datasets utilized in scientific endeavors. According to the Interna-
tional Data Corporation (IDC), the global digital data footprint reached 64.2 zettabytes
(ZB) at the onset of 2020, marking a staggering increase of approximately 32 times com-
pared to 2010. IDC predicts that this exponential growth will continue, with global data
projected to expand to 181 zettabytes by 2025, see Figure 1.

Figure 1: The Volume of Data Created, Replicated, and Consumed [2].

This surge in data volume naturally presents numerous challenges in terms of storage,
processing, and transformation. Data, by its nature, necessitates storage space. As data
quantities escalate, so does the space required for storage. While conventional practice
involves storing data on cloud servers, this often entails significant expenses. Moreover,
many scenarios demand real-time data processing, such as system monitoring, placing
substantial strain on network performance. In networks with restricted bandwidth or high
congestion, transmitting large data volumes at high speeds can precipitate bottlenecks and
performance degradation.
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The need for data compression is particularly critical in mobile devices, including XR
(Extended Reality) devices. Modern mobile devices are equipped with a plethora of sensors,
such as cameras, accelerometers, gyroscopes, GPS, microphones, and various biometric
sensors. These sensors generate diverse data modalities including video, audio, location
data, motion data, and biometric data.

For instance, an XR device might use its camera and depth sensors to capture and process
high-resolution video and spatial data in real-time to create immersive augmented reality
experiences. Simultaneously, the device might track user movements and gestures using
accelerometers and gyroscopes while capturing audio inputs for interactive features. The
volume of data generated from these sensors is substantial, necessitating efficient data
management strategies.

The availability of multiple sensor modalities in a mobile device not only generates large
volumes of data but also presents opportunities for joint processing and compression of
this data. For example, by jointly processing video and audio data captured during an
XR session, it would be interesting if it is possible to use contextual information from one
modality to improve the compression efficiency of the other.

To address this challenge, researchers have developed various algorithms for data compres-
sion. Initially, the approach relied on traditional mathematical theories for compression.
However, with the advancement of AI technology, neural networks have become exten-
sively utilized in this domain, quickly surpassing traditional methods in some instances.
Presently, machine learning-based approaches have emerged as a popular method for data
compression. As a novel addition to this field, an investigation is carried out to explore
if multiple modalities can be used with machine learning-based compression models to
further enhance data compression.

In this thesis, we aim to address whether the two modalities, RGB and depth, can be used
jointly to achieve superior image compression. If so:

• Can multimodal architectures achieve a lower bitrate while maintaining the same
reconstruction quality? How do these models compare with each other?

• How much complexity do these multimodal models add, in terms of runtime and
implementation?

In our work, we draw significant inspiration from two previous studies that investigated
incorporating RGB and depth as modalities into their learned image compression models
[3], [4]. However, these studies have limited citations, and the models they extended to
include multimodal properties are slightly outdated. Therefore, we apply their approaches
to a more state-of-the-art model [5] to gain further insights. Furthermore, for one of the
architectures (later denoted as 4C LIC-TCM), we adopt a very simple design process to
create our own custom architecture which is not directly inspired by some paper.

To summarize, we propose three different unique multimodal architectures that jointly
accept both RGB and depth as input and compress with one of these modalities targeted
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as output. The architectures are based on different multimodal strategies intended for
machine learning and are built separately, trained separately, and evaluated separately.

In Sections 2.1, 2.2, and 2.3, we will cover the necessary background to understand the
concepts and ideas that reside within this thesis. Section 2.4 covers the background behind
the foundational models that will be further extended to incorporate multimodal properties.
These extended architectures, dataset, test dataset, experimental setup, and more are
covered in Section 3. Thereafter, the results are covered in Section 4 and discussed in
Section 5. Finally, some conclusions and outlook are provided in Section 6, which will
conclude this work.
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2 Background and Related work

In this section, we will delve into the foundational concepts and relevant research that
underpin the field of multimodal data compression. In Section 2.1, we begin exploring
“Artificial Neural Networks and Deep Learning”, highlighting the advancements and tech-
niques that have significantly enhanced data compression capabilities. Next, in Section 2.2,
we cover “Information Theory”, which provides the theoretical underpinnings for data
compression and understanding Rate-Distortion optimization objectives. Following this,
in Section 2.3, we examine “Multimodal Machine Learning”, focusing on the integration
and processing of diverse data types to achieve more robust and efficient models. Finally,
in Section 2.4, we cover “Foundational Models”, which include the essential background
of the pivotal architectures that form the basis of our work. In other words, this final
subsection will discuss related works on learned image compression and previous work on
potential use of multiple modalities to further enhance compression.

2.1 Artificial Neural Networks and Deep Learning

The architecture of Artificial Neural Networks (ANNs) draws inspiration from the structure
and functionality of the human brain. Typically, an artificial neural network comprises
three layers: the input layer, the hidden layer, and the output layer. Each layer consists of
interconnected nodes, also known as artificial neurons. During operation, these artificial
neurons (see Figure 2) receive inputs from other nodes, sum them up, pass the result
through an activation function, and ultimately transmit the output to other connected
nodes. The process can be defined as

y = ϕ(
K∑
k=1

ωkxk + b) (1)

where ωk, xi, b, y represent the weights, inputs, the bias, and the output of the node
respectively and ϕ(·) is the activation function. It is important to note that communication
between nodes is restricted to those that are directly connected [6].

Deep learning, a subset of machine learning algorithms, treats each node as a feature of the
input object. Taking the classification of an image of an animal as an example, a simple
neural network with three hidden layers might involve edge detection in the first layer,
where each node detects different types of edges in the input image [8]. The subsequent
layers could progress to detecting more complex features, such as identifying eyes based
on the edges detected in the previous layer, and the final layer might engage in more
generalized tasks, like recognizing whether the animal has wings.

The applications of deep learning are extensive in modern society, encompassing automatic
speech recognition, natural language processing (NLP), and medical image analysis. As ar-
tificial intelligence advances, online disease diagnosis becomes a viable prospect. In essence,
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Figure 2: The basic element of the ANN, the neuron [7].

deep learning serves as a driving force for innovation, transforming various industries by
providing solutions to intricate problems and unlocking opportunities for automation, ef-
ficiency, and enhanced decision-making.

2.1.1 Dense Neural Networks

A dense neural network is also known as a fully-connected neural network. In a dense neural
network, each node is connected to all the nodes in the subsequent layer. This architecture
contrasts with other types of neural networks like Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), which have specialized layer structures. Figure 3
presents the typical architecture of a dense neural network.

2.1.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) represents a prevalent form of artificial neural
network, particularly utilized in tasks related to image and video recognition [10]. The
fundamental components of a CNN include convolutional layers, pooling layers, and fully-
connected layers. Within convolutional layers, the network applies various filters to the
input image, enabling feature extraction and hierarchical representation learning [10]. The
operation of convolution can be represented as

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m]. (2)
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Figure 3: An illustration of the dense neural network [9].

The objective of the convolutional layer is to extract features from the input image. Figure 4
illustrates the implementation of a filter designed to detect vertical edges within the input
image. Following the convolutional layer is the pooling layer, which employs strategies such
as max-pooling or average-pooling. In max-pooling, for instance, the largest value within
a specified area is used to represent that region. An example of max-pooling is depicted
below 

1 2 5 6
3 4 7 8
9 10 13 14
11 12 15 16

 max−pooling−−−−−−−→
[
4 8
12 16

]
. (3)

The primary function of the pooling layer is to decrease dimensionality, thereby reducing
the computational complexity of the network. In a typical convolutional neural network,
multiple convolutional and pooling layers are commonly employed. Once an adequate
number of features are extracted, the outputs are flattened into a long one-dimensional
vector, serving as the input for a dense neural network.

2.1.3 Autoencoders

An autoencoder (AE) is a type of artificial neural network that has three major components:
an encoder, a latent space, and a decoder. In general, the objective of an autoencoder is to
learn efficient data representation (or coding), typically for dimensionality reduction [11].
Thus, it can be used for compression purposes or even generative purposes by sampling
the latent space. To achieve this, the encoder part of the network is trained to efficiently
map input to the latent space and the decoder maps this representation back to the same
space as the input. An overview of the autoencoder network can be seen in Figure 5.
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(a) The original input image. (b) The image with a vertical edge detector.

Figure 4: The images before and after applying a filter [7].

Figure 5: An illustration of an autoencoder network.

Most basic autoencoders can be described as having an encoder function, Eϕ : Rn −→ Rq,
that depends on some parameters set by ϕ and evaluated on some input dataset X =
{x(i)}Ni=1 consisting of N i.i.d samples. The latent feature representation can then be
described as

zi = Eϕ(xi), (4)

where each latent variable y ∈ Y and Y ∈ Rq defines the latent space. Note that q < n
hence dimensionality reduction. Conversely, the decoder function Dθ : Rq −→ Rn, depends
on some parameters set by θ and evaluates on any y ∈ Y . The output of the decoder
function, the reconstruction message, is given by

x̂i = Dθ(zi) = Dθ(Eϕ(xi)), (5)

where x̂i ∈ Rn. Training an autoencoder simply means that, as given by [12], finding the
functions Eϕ(·) and Dθ(·) that satisfy

argmin
Eϕ,Dθ

⟨∆(xi,Dθ(Eϕ(xi)))⟩, (6)
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where ∆ indicates a measure of how the input and the output of the autoencoder (penalizing
the difference between input and reconstructed output) and ⟨·⟩ indicates the average over
all observations.

Most autoencoder-based compression tools follow this workflow in one way or another,
but the architecture behind an autoencoder can vary greatly (as the reader will see soon).
The standard autoencoder architecture is too limiting in many cases, especially for com-
pression and generative purposes. The issue often stems from the fact that a standard
autoencoder is too “rigid” and has a simple discrete mapping process. In other words, the
standard autoencoder does not feature any good regularizations to the latent space such
that it incorporates properties such as continuity and completeness. However, one type
of architecture that supports this and is particularly interesting in relation to lossy image
compression is Variational Autoencoders (VAE).

2.1.4 Transformers

Transformers were initially introduced in [13], where this newly proposed architecture
outperforms the other state-of-the-art models in machine translation tasks. Compared with
Convolutional Neural Networks (CNN), transformers are proven to have the advantage of
taking both local and global information into consideration [5]. It also follows the encoder-
decoder structure. In both the encoder and the decoder part, the transformer uses a novel
“attention mechanism” to compute the latent relation between inputs and outputs, instead
of relying on the traditional “recursive structure” [13]. By using the attention mechanism,
the transformer can comprehend context and meaning by analyzing the relationship in the
elements of its input. However, in general, to achieve well-learned understanding of the
inputs’ context and meaning, the transformers require a lot of data to be trained on [14].

2.1.4.1 Vision Transformers As mentioned before, transformers are initially de-
signed for machine translation tasks. It is thus natural to explore the possibility of its
application in visual tasks. Dosovitskiy et al. proposed a vision transformer (ViT) [15]
which directly applies the transformer to images. Similar to CNNs, vision transformers
can also capture spatial relationships between different parts of an image, but they rely on
the self-attention mechanisms instead.

In essence, vision transformers break down an image into smaller patches and process
them individually through a series of transformer layers. These transformer layers allow
the model to learn complex relationships between these patches, enabling it to understand
the global context of the image [15].

One of the key advantages of vision transformers is their ability to handle both local
and global information effectively, without relying on handcrafted features or hierarchical
feature extraction like in CNNs. This makes them highly adaptable to different types of
visual tasks and datasets [15].
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2.1.4.2 SWIN Transformers SWIN transformers address some of the limitations of
Vision Transformers, such as their reliance on fixed-size patches and lack of efficient hi-
erarchical processing [16]. The innovations mainly manifest in two aspects: Hierarchical
Processing and shifted windows. Firstly, SWIN transformers process images in a hierar-
chical manner, dividing them into smaller windows and processing them at multiple scales.
This hierarchical approach allows it to capture both local and global information effec-
tively, enhancing its ability to understand images. Moreover, SWIN Transformer employs
shifted windows to enable overlapping between adjacent patches. This ensures that each
pixel is covered by multiple windows during processing, enhancing the model’s ability to
capture fine-grained details and spatial relationships.

2.1.5 Variational Autoencoders

The variational autoencoder is a variational Bayesian-based architecture, which shares
architectural affinities with a standard autoencoder but stands on a completely different
mathematical foundation and objective. This specially designed autoencoder makes it
possible to jointly learn deep latent-variable models and corresponding inference models
using stochastic gradient descent [17], [18].

In essence, variational autoencoders are probabilistic generative models. The general idea
is that the encoder is parametrized by some probability distribution which learns stochas-
tic mappings between an input space to the latent space. The stochastic decoder inverses
this process, and samples the latent space based on the decoder’s parametrized probability
distribution. This architecture has shown to be promising in multiple fields, such as com-
pression and generative (image, video, etc.) purposes [19], [20]. While the above has been
a greatly simplified description of VAEs, what will follow is a more detailed walkthrough
that heavily relies on the previously mentioned introductory paper [18]. Note that for
this section we are not precisely following the notations as given in 2.1.3. Furthermore,
bold variables represent a set of underlying variables such that it is represented as a single
vector.

To put things in more mathematical terms, assume an observed variable x which is a
random sample from an unknown underlying process, whose true probability distribution
is unknown. This can be interpreted as a generative model, where the decoder network is
sampling a latent variable y from some prior distribution, commonly a normal distribution,
in the latent space.

Now, assume there is a deterministic function, fθ(y), which maps y to the parameters ψ,
where f represents a neural network parameterized by θ. Then, by defining some paramet-
ric distribution D (commonly a normal distribution), one can sample from the latent space
and generate some samples x, where x ∼ D(ψ). Although the prior- and D-distribution
are quite simple, the generative model can fit very complicated distributions because of its
non-linear mapping between y and ψ via the neural network.
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Kingma and Welling [18] use the term deep latent-variable model to denote a latent variable
model pθ(x,y) (joint distribution over both observed variable x and latent variables y)
whose distributions are parameterized by neural networks. One can then express the
marginal likelihood pθ(x), given the parameters θ, by marginalizing over y and get

pθ(x) =

∫
y

pθ(x,y)dz =

∫
y

pθ(x|y)p(y)dz. (7)

If one considers the joint distribution

pθ(x,y) = pθ(x|y)p(y), (8)

one can observe two important distributions, the prior distribution of the latent space p(y),
and the decoder’s conditional likelihood pθ(x|y). The latter distribution is directly related
to the previously mentioned D.

As soon will be explained, the marginal likelihood pθ(x) is a key component in optimizing
the variational autoencoder, but since it is intractable due to (7) not having an analytic
solution or efficient estimator, approximate inference techniques are needed. Because of
this, the posterior pθ(y|x) is also intractable, clearly displayed by the Bayes’ rule

pθ(y|x) =
pθ(x,y)

pθ(x)
. (9)

To turn the problem from an intractable problem to a tractable problem, the authors
introduce a parametric inference model qϕ(y|x) where the variational parameters ϕ are
optimized such that

qϕ(y|x) ≈ pθ(y|x). (10)

This newly introduced posterior distribution represents the encoder network and creates a
link to the structure of a vanilla autoencoder. To clarify, in simple terms, we now have an
encoding network represented by qϕ(y|x), which maps an input to the latent space. This
latent space is assumed to follow a prior p. This latent space can then be sampled by the
decoder network pθ(x|y). The reader should now be ready to comprehend the elements
that are needed to state the optimization objective.

2.1.5.1 Optimization objective The optimization objective of the variational au-
toencoder is to maximize the evidence lower bound (ELBO). This objective encompasses
two components, with regards to the parameters θ and ϕ (in simple terms)[18]:

• maximize the marginal likelihood pθ(x), and

• minimize KL–divergence between p(y) and pθ(y|x).

10



Given the inference model in (10), one can get (Eq. 2.8 in [18])

log pθ(x) = Eqϕ(y|x)[log pθ(x)]

= Eqϕ(y|x)

[
log

[
pθ(x,y)

pθ(y|x)

]]
= Eqϕ(y|x)

[
log

[
pθ(x,y)

qϕ(y|x)
qϕ(y|x)
pθ(y|x)

]]
= Eqϕ(y|x)

[
log

[
pθ(x,y)

qϕ(y|x)

]]
︸ ︷︷ ︸

=Lθ,ϕ(x)

+Eqϕ(y|x)

[
log

[
qϕ(y|x)
pθ(y|x)

]]
︸ ︷︷ ︸

=DKL(qϕ(y|x)||pθ(y|x))

(11)

where the first term Lθ,ϕ(x) and the second term DKL(qϕ(y|x)||pθ(y|x)) are the evidence
lower bound (ELBO) and the Kullback–Leibler (KL) divergence, respectively. Note that
the first equality in (11) may cause some confusion, but this is done by the authors to
avoid deriving the ELBO through Jensen’s inequality for pedagogical reasons. The reader
is referred to [18] for further details. Rewriting (11) we get

Lθ,ϕ(x) = log pθ(x)−DKL(qϕ(y|x)||pθ(y|x)). (12)

Once again, the optimization objective is to maximize ELBO Lθ,ϕ(x) with regards to
the parameters θ and ϕ. Since KL divergence is non-negative, the log-likelihood of the
data sets the lower bound of the ELBO. Based on the objective to maximize ELBO, two
observations can be made (see Section 2.2.1 in [18]). Firstly, the marginal likelihood pθ(x)
should be maximized and secondly, the KL-divergence should be minimized such that the
gap between the approximation qϕ(y|x) and pθ(y|x) will decrease.

However, (11) does not tell the entire story. In order for the objective to be feasible
for machine learning-based training, it must allow for joint optimization with regards to
θ and ϕ using Stochastic Gradient Descent (SGD). The path forward of using SGD is
not trivial and introduces complications and solutions such as reparameterization tricks
are needed. While much more can be said (sampling techniques, etc.) on the topic of
variational autoencoders, the reader can refer to [18] for more details. The reader will now
be provided the final loss function for a VAE which is the negative ELBO

Lθ,ϕ(x) = −(Eqϕ(y|x)[log pθ(x|y)]︸ ︷︷ ︸
Reconstruction Loss

−DKL[qϕ(y|x)||p(y)]︸ ︷︷ ︸
Regularization Term

). (13)

The reconstruction loss is self-explanatory, and the regularization term assures that the
latent variables are distributed according to the prior distribution.

Finally, by assigning a hyperparameter λ to (13), one can determine the trade-off between
the reconstruction loss and regularization term:

Lθ,ϕ(x) = −(λ · Eqϕ(y|x)[log pθ(x|y)]︸ ︷︷ ︸
Reconstruction Loss

−DKL[qϕ(y|x)||p(y)]︸ ︷︷ ︸
Regularization Term

).
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2.1.6 Variational Image Compression

Since efficient compression often relies on knowledge of the probabilistic structure of the
data, the problem is closely related to probabilistic source modeling, hence the application
of variational autoencoders has been a natural path forward and thus has been extensively
researched. More specifically, the area of lossy image compression has made great progress
and is already showing results that supersede standard methods such as JPEG and even
BPG [3]–[5].

The general idea is to refashion the general optimization objective of a variational au-
toencoder (see (13)) to a Rate-Distortion optimization problem. In general, a variational
autoencoder (similar to a standard autoencoder) generates a lower dimensional represen-
tation in the latent space which is represented by some floating values. In the context of
compression, a quantization operation can be used on the floating latent representation and
thereafter be losslessly compressed. Since quantization converts the floating latent repre-
sentation to an integer-valued (or discrete) representation, it can thereafter be losslessly
compressed using some entropy coding such as rANS (see Section 2.2.1.1). However, since
quantization introduces error, which is tolerated in the context of lossy compression, the
optimization objective can now be interpreted as a Rate-Distortion optimization objective
instead.

One important contribution to the field of lossy image compression is Variational image
compression with a scale hyperprior by Ballé et al. [21]. The paper proposes an end-to-end
trainable model for lossy image compression based on variational autoencoders where it
extends previous work [22] and, most importantly, introduces a powerful entropy model
by incorporating a hyperprior on the local scale parameters of the latent representation.
In other words, it uses context-adaptive entropy models to achieve superior compression
performance. Many recent papers (in relation to lossy image compression) are based on
the development of the work behind learned entropy models and since our foundational
architecture (see Section 2.4.1) uses one of the state-of-the-art models, this discussion will
provide the reader with the necessary insights to understand the rationale behind the
design of our future loss function (see Section 2.4.1.4).

Assume a autoencoder-based architecture, as explained in Section 2.1.5. Then, introduce
a quantization function and entropy coding algorithm within the latent space. However,
since entropy coding requires a prior probability model of the quantized representation,
which is known to both the encoder and decoder, an entropy model of some kind has to be
constructed. Therefore, a new separate variational autoencoder network representing the
entropy model is attached to the latent space and accepts the latent variable y as input.
In the same way an encoder (ga) and decoder (gs) network is used in the compression
model, the entropy model has an encoder and decoder network represented by ha and
hs, respectively. The overall goal of the entropy model then becomes to learn how it
can most efficiently compress a bit-stream and simultaneously learn an efficient latent
representation of the entropy model itself. See Figure 6 for an overview of the variational
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image compression model.

Figure 6: A simplified illustration of a variational image compression model, inspired by
Figure 10 in [23]. An input x is fed to the compression model through an encoder network
ga and a decoder network gs to generate the reconstruction x̂. The novelty of Ballé et
al. is introduced in the inclusion of quantization operation (Q), the entropy coding (EC),
the entropy decoding (ED) and the entropy model featuring an encoder network (ha) and
decoder network (hs). In this communication system, the transmitter entity (or sender)
has to both compute the upper diagram and the shaded box. The latter is necessary
to compute because the entropy model needs to be used to compute the entropy coding.
However, the receiver only has to calculate the shaded box if given the entropy coded latent
representations.

Combining these two networks, the compression model and the entropy model, seems to
introduce significant mathematical complexity. However, it can be shown that during
right circumstances, this given model can in fact be overall interpreted as a variational
autoencoder [24]. Therefore, the interested reader can refer to papers covering the topic
in more detail [21]–[24]. Thus, omitting further architectural details, the loss function of
the variational image compression by Ballé et al. can now be established (see Eq. 10 in
[21]). Let y denote the latent variable from the compression model (output of previously
mentioned ga) and let z instead denote the latent variable from the entropy model (output
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of previously mentioned ha). Then the loss function can be described as

Ex∼pxDKL[q||py,z|x] = Ex∼pxEy,z∼q(log q(y, z|x)− log px|y(x|y)
− log py|z(y|z)− log p(z)) + const.

(14)

Note that the equation above has been simplified in notation for clarity. To expand further
on (14), the equation can be further simplified according to [21]: The first term evaluates
to zero, the second term is the distortion term (reconstruction loss) and the third term
and the fourth term represent the bit rate in the compression model and entropy model,
respectively. Hence, a rate-distortion objective is achieved but with a strong background
in variational autoencoders.

Some further insights into the topic of rate-distortion can be read in Section 2.2.2.

2.2 Information Theory

Considering the fusion between variational Bayesian methods with autoencoders (see Sec-
tion 2.1.6) which introduces some probabilistic interpretation, a connection between
information-theoretic properties is introduced. Furthermore, considering that the field of
data compression itself embodies concepts such as entropy coding, it is important that the
reader receives some clarity on the topic. In this section, the essential related topics for
this thesis within information theory will be covered. Firstly, the concept of data compres-
sion will be introduced, explaining the basic ideas behind lossy and lossless compression.
Thereafter, the concept of entropy coding will be explained. Finally, a key concept, Rate-
Distortion Theory will be introduced and which is directly related to lossy compression.

2.2.1 Compression

Data compression is a fundamental topic in science and engineering domains and is com-
monly formulated with the goal of designing codes for a given discrete data ensemble with
minimal entropy [22], [25]. In other words, compression overall is the process of encoding
information and reducing the original representation to a lower-dimensional representation.
In terms of data compression, the practical process of encoding is done by reducing the
amount of bits. This lower-dimensional representation can then in return be decompressed
to its original representation through a decoder. Any compression is either lossy or lossless,
meaning some information is lost in the process of compressing or no information is lost
at all. The trade-off in lossy compression is usually between the integrity of the original
data versus greater data reduction. Lossless compression on the other hand reduces bits
by reducing any statistical redundancy, but may not reach the same compression strength
as lossy compression. An autoencoder (see Section 2.1.3) is inherently lossy and therefore
the focus of this thesis is set on lossy compression rather than lossless compression.
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2.2.1.1 Entropy coding Entropy coding is simply the process of compressing. More
specifically, entropy coding is the process of attempting to exploit the statistical redun-
dancy of a source symbol sequence (in our case, bits) and to approach the lower bound of
Shannon’s source coding theorem [25]. Up until ten years ago or so, two approaches were
considered the main approaches for entropy coding: Huffman coding and arithmetic/range
coding [26]. They have a clear trade-off, where Huffman coding is fast but delivers lower
compression rates and arithmetic/range coding approaches theoretical rate limit, but at a
cost of heavy computational cost. However, in 2013, Jarek Duda published a new proposed
entropy coding method, Asymmetric Numeral Systems (ANS) in [26]. The contribution
and impact of this paper have clearly been large for the field of entropy coding, and is
today used in a wide range of different compression applications.

In this work, a variant of ANS is used, called Ranged Asymmetric Numeral Systems
(rANS). The details of this entropy coding are omitted, but since it plays an important
role in the entropy model (see Section 2.4.1) it is important that the reader is aware of this.
The variant rANS has been used in several machine learning-based lossy image compres-
sion architectures that use entropy models. In this thesis, rANS was already integrated to
the LIC-TCM architecture (see Section 2.4.1) and we did not see a good reason to change
it to some other entropy coding scheme.

2.2.2 Rate-Distortion

For lossy learned image compression, rate-distortion is a paramount metric that is used for
evaluating the loss function. Rate-distortion objectives can be applied in many different
scenarios, but for the sake of simplicity it will be strictly explained in relation to lossy
image compression. In its most simple form, an example loss function for the field of lossy
learned image compression can be stated as

L = R+D, (15)

for some given rate termR and distortion term D. In simple terms, the rate term addresses
the issue of minimizing the representation of a source symbol sequence, in this case bits,
and the distortion term calculates the difference between the quality of the source versus
the reconstruction based on some appropriate algorithm.

For lossy learned image compression, there are usually three important properties included.
Firstly, the rate term R is usually calculated in terms of bits-per-pixel (bpp). In other
words, bpp calculates on average how many bits are used per pixel in the image. Secondly,
the distortion term D is often decided between Mean Square Error (MSE) or Multi-scale
Structural Similarity Index Measure (MS-SSIM, see Section 3.4.3). Since bpp and MS-
SSIM are very important but unusual metrics, further details regarding these metrics can
be found in Section 3.4. Thirdly, a hyperparameter λ is often introduced to provide a
rate-distortion trade-off. Larger λ means higher precision but worse compression (meaning

15



higher compression sizes). The loss function can now be updated to

L = R+ λ · D. (16)

The configuration of λ depends on the choice of distortion algorithm. Example of different
values can be found in Section 2.4.1.4.

2.3 Multimodal Machine Learning

The field of multimodality within machine learning is one of multi-disciplinary research.
Modal refers to a way of expressing or perceiving things, and each source or form of infor-
mation can be called a modal [27]. There is no strict definition of modality, but in general
terms, it refers to “a way in which something happens or is experienced” [28]. Objects
often present themselves through various modalities. For example, a dog can be charac-
terized by an image, audio, textual description, etc. When we explore the relationships
between various modalities or integrate different modalities for tasks such as recognition or
prediction, we delve into the field of multimodality. In artificial intelligence, multimodality
plays a crucial role in enabling computers to comprehend objects or behaviors, mirroring
the capabilities of the human brain.

2.3.1 Categories and Representations

The digitalization of various modalities is the initial step for analysis, and it is often
challenging because different modalities may require distinct representation spaces. For
instance, image modalities are commonly represented by pixels, while text is typically
symbolic [28]. Below, some typical representations of modalities will be provided to illus-
trate their digitalization.

An RGB image is represented as a combination of three color channels: red, green, and
blue. Each pixel in the image is typically represented as a combination of intensity values
for these three colors. In Figure 7, each color channel can have intensity values ranging
from 0 to 1. Therefore, a pixel in such an image is represented by three numbers: one for
the intensity of red, one for green, and one for blue. This allows for the creation of a wide
range of colors by varying the intensities of these three primary colors. The combination
of these three channels forms the full-color image, where each pixel’s color is a mixture of
red, green, and blue light. The RGB color model is the most common way to represent
and display images on electronic systems like computer monitors, televisions, and digital
cameras.
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Figure 7: An example of the typical representation of a RGB image.

Likewise, a depth image is typically represented as a 2D array where each pixel value
corresponds to the distance from the camera to the corresponding point in the scene. This
distance value is often expressed in units such as meters or millimeters, depending on the
calibration of the camera. They can be stored in various formats such as grayscale images,
where darker pixels represent objects closer to the camera and lighter pixels represent
objects farther away, see Figure 8.

Figure 8: An example of the typical representation of a depth image. Note that the
brightness and the contrast of the image are enhanced for better display.
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2.3.2 Multimodal Fusion

Multimodal fusion refers to the integration of information from multiple modalities, such
as text, images, audio, and video, to enhance understanding or perform a task. It involves
combining the features or representations extracted from each modality into a unified
framework, often using machine learning techniques. The goal is to leverage the comple-
mentary strengths of different modalities to achieve improved performance in tasks like
classification, recognition, or generation.

As introduced in [28], the benefits of multimodal fusion can be listed in three points.
Firstly, accessing multiple modalities observing the same phenomenon can enhance predic-
tion robustness, notably utilized in the AVSR (audio-visual speech recognition) field. Take
the application of multimodality in a classification scenario as an example, distinguishing
between a dog and a wolf can be challenging if the input image is blurry or taken from a
distance. However, when additional modalities are available, such as the sound of barking,
the task can become considerably easier. Secondly, utilizing multiple modalities enables
the capture of complementary information not discernible in individual modalities alone.
Lastly, a multimodal system remains functional even if one modality is absent, such as
recognizing emotions from visual cues when audio input is unavailable. In the experiment
of Pavlov’s dog, the sound of the bell alone was enough to trigger salivation, without the
presence of food itself. This also reveals that human and most animals’ brains also work
in a multimodal fashion.

2.3.2.1 Fusion approaches Multimodal fusion can be divided into two categories,
namely model-agnostic fusion and model-based fusion. The former is simpler and the
fusion itself does not require any training, while the latter usually requires training of the
neural network and is generally more complicated [28].

Multimodal fusion historically relies on model-agnostic methods, categorized into early,
late, and hybrid fusion. Early fusion immediately integrates features upon extraction,
often by combining their representations directly. It aims to capture correlations and
interactions between low-level features of each modality. Conversely, late fusion happens
when the analyses of the two modalities have already been made. It utilizes decision
values from each modality and employs various fusion mechanisms like averaging or voting
schemes. Lastly, hybrid fusion is a combination of early fusion and late fusion. It is
considered a good way to maintain both low-level feature interaction and flexibility at the
same time [28]. The following Figures 9 10 11 illustrate the workflow of the three fusion
strategies.
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Figure 9: Early fusion.

Figure 10: Late fusion.

Figure 11: Hybrid fusion.

Model-based fusion depends on machine learning algorithms to build connections between
two modalities [28]. Neural network-based fusion has now become the most popular way
among all. Deep neural network approaches offer several advantages in data fusion. They
excel at learning from vast amounts of data, leveraging their capacity to capture com-
plex patterns across multiple modalities. Modern neural architectures enable end-to-end
training, seamlessly integrating both the multimodal representation and fusion components
into a unified framework. Figure 17 in section 3.1.2 gives a typical example of model-based
fusion.
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2.4 Foundational Models

As mentioned in the introduction (see Section 1), our objective is to identify an efficient
method for compressing multimodal data. This entails two key points. Firstly, we aim
to discover a sufficiently effective single-modal data compression algorithm capable of ade-
quately extracting features from both modalities. Secondly, we aim to determine a suitable
fusion approach to sufficiently integrate the features from both modalities. Therefore, this
chapter will introduce three VAE-based compression models, i.e., [5], [3], and [4]. More
specifically, the single-modal architecture is presented in Section 2.4.1. Our approach later
in the thesis will then be to extend this single-modality architecture with multimodal
properties based on the architectures covered in Sections 2.4.2 and 2.4.3.

2.4.1 LIC-TCM

In this work, the foundational architecture that will be used is called Lossy Image Com-
pression with Transformer-CNN Mixture architectures (LIC-TCM) introduced in [5]. In
the paper, the authors propose an efficient parallel Transformer-CNN Mixture block with a
controllable complexity to incorporate the local modeling ability of CNN and the non-local
modeling ability of transformers to improve the overall performance of image compression
models. Furthermore, the authors propose a channel-wise entropy model that incorporates
a novel parameter-efficient SWIN transformer-based attention module (see section 2.1.4.2)
which the authors have coined as the SWAtten module.

According to the authors, the proposed architecture achieves state-of-the-art results, some-
thing that we have verified. A reconstructed sample provided by the authors of LIC-TCM
can be seen in Figure 12.
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Figure 12: Reconstruction sample of kodim23 of the Kodak dataset [29]. Comparisons
are made to illustrate the superior performance of LIC-TCM, where VVC and WebP are
two conventional image compression methods. The quantitative results are evaluated by
bitrate(bpp) | PSNR(dB) | MS-SSIM(dB) (The reader may refer to section 3.4 for more
information on these metrics). Reprinted with permission from authors of [5]. No change
has been made to the figure.

Considering their results, the transparent architecture, and open-source code1, LIC-TCM
is the foundational architecture that will be extended to include multimodal properties.

In this section, an overview of the architecture will be presented in the following subsections.
It will cover both the image compression architecture and the entropy model architecture.
Finally, the loss function of LIC-TCM will be provided in Subsection 2.4.1.4.

The architecture of LIC-TCM is quite complex, encompassing many different machine
learning modules and strategies. Therefore, only some key aspects will be shared and the
reader is encouraged to read the paper itself for more details. Initially, the two major blocks,
the image compression architecture and the entropy model with a hyperprior architecture
will be covered.

1Code can be found here: https://github.com/jmliu206/LIC TCM
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2.4.1.1 Image compression architecture The architecture of the image compression
model consists of two blocks, the encoder ga and the decoder gs. The encoder consists of
three analysis modules, each containing (in order) one residual block with stride (RBS) of
two on the first convolution and a Transformer CNN Mixture (TCM) block. An overview
of the RBS block can be seen in Figure 13 and an overview of the TCM block can be seen
to the right in Figure 14. These analysis modules are sequentially placed and end with one
final convolutional layer, i.e., given an image input x to ga, an encoded output y = ga(x)
is produced.

Each TCM block contains two submodules that only differ in one aspect; The first sub-
module (Stage I) uses a window-based multi-head self-attention (W-MSA) and the second
submodule (Stage II) uses a shifted window-based multi-head self-attention (SW-MSA)
[16]. Besides this, both contain the same structure and combine ideas such as CNNs and
residual networks. It is at the TCM block where most heavy feature extractions are done.

The decoder gs follows a similar but inverse process of ga. It also consists of three similar
analysis modules, but instead called synthesis modules, and instead of using RBS, it uses
a residual block with sub-pixel upsampling with a factor of two on the last convolution
(RBU). An overview of the RBU block can be seen in Figure 13.

Figure 13: Overview of the RBS- and RBU block.

Again, these analysis modules are sequentially placed and for gs, it ends with a subpel
convolutional layer. To see implementations for subpel 3x3 Conv, RBS and RBU, visit the
library by CompressAI in compressai.layers [30]. Note that the GDN module stands for
generalized divisive normalization which is a parametric nonlinear transformation that is
well-suited for image compression [31], [32]. So given a latent representation ȳ, gs produces
the reconstructed output x̂. An overview of the architecture can be seen in Figure 14.
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Figure 14: Overall architecture of the LIC-TCM model as provided by [5]. On the left
is the image compression model, consisting of the encoder- (ga) and decoder (gs) network.
Next to the image compression model is the entropy model which improves the entropy of
the input tensor y. On the right is an overview of the TCM block. Note how the block is
divided in two different stages and only differing in the ”SwinT Block”. In the first stage,
a Window Multi Self-Attention module (W-MSA) is used and in the second stage a Shifted
Window Multi Self-Attention module (SW-MSA) is used. Reprinted with permission from
authors of [5]. No change has been made to the figure.

2.4.1.2 Entropy model architecture The entropy model architecture is based on the
work of Minnen et al. [33], where they introduced a channel-wise autoregressive entropy
model for learned image compression. The idea is to split the latent tensor along the
channel dimension into N roughly equal-size slices, and conditions the entropy parameters
for each slice on previously decoded slices. This way, the entropy model will achieve
superior processing performance. Liu et al. [5] took it a step further and a reduced the
amount of slices, from 10 to 5, and introduced the SWAtten module to reduce complexity
within the entropy model.

Otherwise, Liu et al. follow a similar structure, where the hyperprior uses a conditional
Gaussian model parameterized by both scale and mean and each slice is conditioned on
the hyperprior and any prior decoded slices. Furthermore, each slice uses a latent residual
prediction (LRP) to reduce quantization error. Since y must be quantized before compres-
sion, it inevitably leads to residual error in the latent space r = y−Q[y] that manifests as
extra distortion when reconstructed as x̂. An LRP is a module with the goal of reducing
this residual error. An overview of the entropy model architecture can be seen in Figure
15.
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Figure 15: Entropy model architecture used in LIC-TCM as provided by [5]. The im-
portant take-aways from this figure are on the left, where the input tensor is split into five
slices and y is passed through the entropy model network (ha and hs). Further details of
this figure is explained in [5]. Reprinted with permission from authors of [5]. No change
has been made to the figure.

The output of ha, z, is fed to an entropy bottleneck layer used to model z itself. It
is a fully factorized, unconditional entropy model, implemented by CompressAI [30] in
compressai.entropy_models, more specifically, compressai.entropy models.

EntropyBottleneck. On the other hand, in the latent space of y, the estimation of
entropy is done by a conditionally Gaussian probability density model layer, implemented
by CompressAI in compressai.entropy_models.GaussianConditional.

2.4.1.3 Encoding and Decoding architecture The encoding and decoding at any
compression or decompression step is entropy coded with the ranged variant of asymmet-
ric numeral systems (rANS) [26]. It is implemented by the CompressAI [30] library in
compresssai.ans, using compressai.ans.RansEncoder and
compressai.ans.RansDecoder.

2.4.1.4 Loss function The authors propose the overall loss function as a Lagrangian
multiplier-based rate-distortion optimization. The loss is defined as

L = R(ŷ) +R(ẑ) + λ · D(x, x̂)

= E[− log2(pŷ|ẑ(ŷ|ẑ))] + E[− log2(pŷ|ψ(ẑ|ψ))] + λ · D(x, x̂),
(17)

where a factorized density model ψ is used to encode quantized ẑ. Additionally, λ con-
trols the rate-distortion trade-off and R(·) and D(x, x̂) denotes the bitrate and distor-
tion term, respectively. Pay also attention to its close similarity to (14). The distor-
tion term is usually calculated by Mean Squared Error (MSE) loss or Multi-Scale Struc-
tural Similarity Index Measure (MS-SSIM) loss. Depending on the choice of MSE or
MS-SSIM, the lambda values vary. The authors propose for their experiments to use
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{0.0025, 0.0035, 0.0067, 0.0130, 0.0250, 0.0500} and {3, 5, 8, 16, 36, 64} for MSE and MS-
SSIM respectively (larger value meaning higher quality and less compression). However,
the reader will see that the loss function is subject to change to account for multimodal
properties (see (24)).

2.4.2 Convolution-based Multimodal Fusion

The architecture proposed in the paper [3] provides a reasonable strategy to fuse two
modalities. In this paper, the authors argue that there exists some shared information
between RGB images and depth images. Although the two modalities express the same
scene in different ways, they can contain overlapping, complementary, or other forms of
relevance in semantic information. Therefore, it is possible to extract structure priors
from corresponding RGB images to aid the compression of depth images. In [3], a novel
architecture is proposed, consisting of two analysis pipelines for RGB images and depth
images, respectively as well as various fusion modules. One can view it as a duplication
of a single-modal algorithm, but with added fusion between the modalities. The overall
framework can be seen in Figure 16. The analysis block can be any codec that captures
features from the input image.

Figure 16: Overall architecture as provided by [3].

To achieve information exchange, the Structure Prior Fusion (SPF) module is employed to
extract features from both RGB and depth images and subsequently fuse them. Specifically,
this module is positioned after each analysis block or each synthesis block, initiated by a
convolutional layer for feature extraction. Following this, the two tensors, housing RGB
and depth information, respectively, are concatenated depth-wise. The Enhanced Spatial
Attention Block (ESA) is implemented on the concatenated tensor to emphasize the region
of interest. Firstly, a 1 × 1 convolutional layer is employed to reduce the dimensionality
of the tensor, rendering the block lightweight. Subsequently, a convolutional layer with
stride is utilized to expand the receptive field, enhancing the block’s capability. The third
component of the ESA block comprises a max-pooling layer and a series of convolutional
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layers aimed at feature extraction and dimension reduction. Finally, the combination of an
up-sampling layer and a 1× 1 convolutional layer is used to restore the shape of the input
tensor to its original form within this block. Figure 17 illustrates the detailed structure
of the SPF module and the ESA block. Note that the 3 × 3 convolutional layer after the
summation is not part of the ESA block.

Figure 17: Detailed structure of the SPF Module and the ESA Block.

2.4.3 Attention-based Multimodal Fusion

In [4], the authors Gnutti et al. propose a novel architecture that utilizes the LiDAR
depth map as supplementary information to achieve superior results. The authors claim
that their results yield an average PSNR gain of 0.83 dB and an average bitrate reduction
of 16% as compared to the baseline (the concepts of PSNR and bitrate will be introduced
in detail in section 3.4). The work is an extension of the paper [34], but omits the Region-
Of-Interest (ROI) mask and uses the LiDAR depth map instead. Finally, the work in [34]
with prompts is inspired by a more well-noticed paper called “Visual Prompt Tuning” [35].

In [34], the authors attach a prompt generative network to the encoder and decoder, pa
and ps, respectively. The input of ps is a concatenated tensor of three components: ROI
mask MR ∈ R1, lambda map (Mλ ∈ R1) and the input image (x ∈ R3). The ROI mask is
populated with values in [0, 1], which functions as weights to the pixels. The lambda map
is populated with the distortion trade-off λ (see Section 2.4.1.4) but should be in [0, 1].
In a similar manner, ps accepts the image latent vector ŷ and a downscaled lambda map
M̂λ ∈ R1×H

16
×W

16 such that it matches the spatial resolution of the latent vector ŷ.

The prompts generated by these networks are fed to, what the authors coined as, prompted
SWIN transformer block (P-STB). These P-STB modules accept both prompt and image
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as input and are tokenized for the SWIN transformers. The prompt window partition
generated by the pa network is lower than the image partitions to reduce complexity. To
get an overview of the generated tokens and how the image tokens and prompt tokens
interact cooperatively, see Figure 18.

Figure 18: Overview of a P-STB module as provided by [34]. Notice how a prompt token
(Pi) has reduced amount of tokens compared to the image tokens (Ii). No alteration has
been made to this figure. Licensed by CC BY-NC-ND 4.0.2

As previously stated, [4] is an extension of [34], but with two significant distinctions.
Firstly, the ROI mask is replaced with a depth map MD ∈ R1 and secondly, two new
prompt generative networks are attached to the encoder la and decoder ls. According to
the authors, these prompts allow the model to leverage the LiDAR information effectively
for both the encoding and decoding processes. Besides these two new additions MD and
la and ls, the architecture remains the same. See the updated architecture in Figure 19.

2https://creativecommons.org/licenses/by-nc-nd/4.0/, through https://arxiv.org/abs/2401.06517
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Figure 19: Overall architecture as provided by [4]. No alteration has been made to this
figure. Licensed by CC BY 4.0.3

3See footnote 2.
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3 Methodology and Implementation

As previously stated, LIC-TCM (see Section 2.4.1) will be the foundational architecture
that will be extended to support multimodal properties. In this work, three different
variants of LIC-TCM extensions will be implemented, trained, and evaluated. The im-
plementations are based on the architectures provided in Section 2.3 and the details of
these implementations can be found in Section 3.1. The chosen datasets along with details
and reasoning of why it was chosen can be found in Section 3.2. The evaluation of the
trained models will be evaluated according to the metrics provided in Section 3.4. Finally,
in Section 3.5 the configurations surrounding the experiments will be provided, ranging
from specific hyperparameters to hardware used.

3.1 Architectures

In this section, we propose three novel architectures. In the first variant, a straightforward
architecture is implemented where the two input modalities are simply concatenated before
entering the network, achieving early fusion. In the two remaining architectures, we employ
two different fusion approaches as proposed in [3] and [4], respectively. However, the
analysis blocks are selected from LIC-TCM [5] to perform feature extraction, given its
state-of-the-art performance. All the above-mentioned models are introduced in Section
2.4.

To clarify, the first architecture (3.1.1) accepts both RGB and depth as joint input modal-
ities and can output either RGB or depth for reconstruction, depending on the configura-
tion. The other two networks also accept RGB and depth as joint input modalities, but
differ in their outputs: one architecture (3.1.2) targets only depth for reconstruction, while
the other (3.1.3) targets only RGB. The rationale behind these design choices is discussed
further in 5.2.

3.1.1 4-channel LIC-TCM

At a very simple level, an investigation is done to see how the original LIC-TCM performs
if the input channel is extended from 3 (RGB) to 4 (RGB plus depth). The original
architecture will otherwise remain the same, see Figure 20. The output of the architecture
will be three-channel RGB or single-channel depth, and the model named, 4 Channel input
LIC-TCM, will be trained to improve this output. Based on different targets (i.e., either
RGB or Depth), we call these slightly different architectures 4-channel LIC-TCM (RGB
target) and 4-channel LIC-TCM (Depth target), respectively. Note that in the following
text, we may refer to “4-channel” as “4C” for short. While a very simple architecture, this
architecture is investigated because of its effortless implementation cost.
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Figure 20: Architecture of the 4C LIC-TCM model.

3.1.2 Convolution-based Multimodal-LIC-TCM

In this architecture, we use the combination of Transform-CNN Mixture (TCM) and resid-
ual block with stride (RBS) blocks from LIC-TCM model as analysis block considering its
ability to apprehend both local patterns and non-local information [5]. The details of the
TCM block can be found in Figure 14. Hence, the basic architecture of LIC-TCM is kept.
On top of that, a separate pipeline is added to the Main Path in the original LIC-TCM,
which is the RGB compression pipeline. Similarly, it has the same analysis block and is
used to learn color information from the RGB modality. In other words, there are two ga
in the encoder, namely gaRGB and gadepth, which mean analysis blocks for the RGB inputs
and the depth inputs respectively. Moreover, SPF modules (see Section 2.4.2 and Figure
17) are applied to extract and fuse the features from the two modalities. Different from the
codec used in [3], we only implemented two phases of fusion rather than incorporating six
SPF modules, and both of them are placed before the encoder. The reason is that the SPF
block is relatively resource-intensive, it is advisable to restrict its quantity to prevent the
model from becoming excessively large. Note that in our work, we use this fusion strategy
for depth compression, while [3] leverages the depth map to assist RGB compression, which
is the other way around.

To conclude, this architecture targets multimodal data compression by using LIC-TCM as
its backbone and incorporating a convolution-based fusion strategy. Therefore, we name
this new architecture Convolution-based Multimodal-LIC-TCM, abbreviated as Convolu-
tional MM-LIC-TCM. The overall architecture of the Convolutional MM-LIC-TCM model
is illustrated in Figure 21
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Figure 21: Architecture of the Convolutional MM-LIC-TCM model.

To make it clear, Table 1 summarizes the full names and the main functions of the different
blocks in Figure 21. The reader can find a more detailed description in Section 2.4 and in
the original paper of LIC-TCM [5].

Table 1: A short description of the blocks in Figure 21.

Block Full Name Description
RBS Residual Block with Stride Feature Extraction & Downsampling
TCM Transformer-CNN Mixture Feature Extraction
SPF Structure Prior Fusion Fusion
RBU Residual Block Upsampling Upsampling

3.1.3 Attention-based Multimodal-LIC-TCM

In this architecture, we propose an updated LIC-TCM architecture that implements the two
prompt generative networks, pa and la, and attaches it to the encoder, ga. Additionally,
we implement the depth map and lambda map, MD and Mλ, respectively, and connect
these to the prompt generative networks, see Figure 23. Instead of using P-STBs as
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analysis modules, we use LIC-TCM’s TCM modules instead which are augmented with
the capability of accepting both image tokens and prompt tokens. The prompt token and
the image tokens are separately fed to their own layernorm, thereafter the prompt token
is prepended to the image tokens and passed to the attention module. This augmented
TCM module is referred to as Prompted TCM and an overview of our design is seen in
Figure 22. Note that for TCM Stage I, W-MSA is used and for TCM Stage II, SW-MSA
is used. Considering the way it fuses the two modalities before being used in the attention
module, we call this architecture Attention-based Multimodal-LIC-TCM, abbreviated as
Attention MM-LIC-TCM.

Figure 22: Overview of the Prompted TCM module.

The careful reader might notice that ps and ls (the lambda map and lidar map networks on
the decoder side of the image compression model) are omitted from the architecture. This
was a choice by design, supported by three aspects. Firstly, the inclusion of ps and ls adds
time complexity to the network—an already quite complex architecture. This would affect
performance in terms of encoding and decoding speed and model size. Secondly, this thesis
work is time-constrained, and integrating prompt tokens to the SWIN transformers is a
time-consuming process to implement and integrate; hence, we chose to omit it. Thirdly,
the authors in [34] made an experiment of excluding LiDAR information at the decoder and
saw comparable results to when the entire architecture as in Figure 19 was used. However,
we will discuss the possible advantages of such architectural decisions in Section 5.
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Figure 23: Architecture of the Attention MM-LIC-TCM model.

3.2 Training Dataset

The dataset used is an indoor LiDAR-RGBD scan dataset from the Redwood-2017 dataset
[36]. It contains over 120 000 RGB-D pairs reaching 285 GB uncompressed. The Redwood-
2017 dataset consists of five different subsets from different RGB-D sequences taken in dif-
ferent environments. These five environments are named Apartment, Bedroom, Boardroom,
Lobby and Loft. For this thesis work, Apartment, Bedroom, Boardroom and Lobby is used
for training (∼100k RGB-D pairs) and Loft is used for validation (∼20k RGB-D pairs).
The LiDAR scan data was collected using a FARO Focus 3D X330 HDR scanner with an
operating range of 0.6m to 330m. At a distance of 10 meters, its ranging accuracy is 0.1
millimeters. For each RGB-D sequence a color image is aligned with the corresponding
depth image. Each color image is stored as 8-bit JPG and each depth image is stored as
16-bit PNG, where the latter’s pixel values represent depth in millimeters. For each frame,
the resolution is 640×480. Finally, the focal length is 525 for both axes and the principal
point is (319.5, 239.5).

Furthermore, documentation exists to reconstruct and create 3-dimensional renderings of
the Redwood RGB-D pairs with the aid of Open3D [37]. This is a nice feature in order
to provide qualitative results for the reader, especially in the case of compressing depth
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information. More information on the dataset can be found on the official website. 4

3.3 Test dataset

The testset is based on two sceneries from the Augmented ICL-NUIM Dataset, living room
1 and office 2 [38] [39]. This testset will be used for evaluating the performances of our
implementations. This dataset belongs to a different version of the Redwood family. The
original ICL-NUIM aims at benchmarking RGB-D and has noiseless depth images and
therefore is a good match as a test dataset. A total of 40 RGB-D pairs (each frame with
resolution 640x480) were manually extracted and chosen as a test set. An overview of the
test data set can be seen in Appendix A.

3.4 Evaluation

To evaluate the performance of a lossy learned image compression model, multiple metrics
have to be taken into consideration. Ranging from the encoding and decoding time to more
advanced metrics that measure how good the image compression is in terms of quality
and size reduction. In this section, the different metrics that are used to evaluate the
implementations will be covered.

3.4.1 PSNR

In image compression, peak signal-to-noise ratio (PSNR) is a ratio between the maxi-
mum possible value in bit depth and the pixel value of distorting noise versus its original
pixel value representation. Overall, PSNR is a common metric in signal processing and im-
age/video quality assessment, and in the latter case is typically used to measure the quality
of reconstruction of lossy compression codecs. The reason is that lossy compression usually
introduces errors such as visual artifacts.

The PSNR expressed in decibels (dB) with MSE can be defined, with the aid of simple
logarithmic rules, as

PSNR = 10 · log10
(
P 2
MAX

MSE

)
= 20 · log10(PMAX)− 10 · log10(MSE),

(18)

where PMAX is the dynamic range (i.e., the difference between the maximum and minimum
allowed values) and MSE is the mean square error.

In the context of lossy image compression additional constraints can be given to (18). For
example, for some given 8-bit RGB image, meaning 24-bit depth (8 bits per color channel),

4http://redwood-data.org/indoor lidar rgbd/index.html
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then PMAX will be set to 255 (28 − 1 = 255). Furthermore, when applying MSE, it will
be the sum of all squared differences for each channel (meaning R-channel, G-channel and
B-channel) divided by image size (H × W ) and by three. Additionally, if for example
PyTorch’s ToTensor() is used to convert the input image to a tensor then the tensor will
be in the range [0.0, 1.0], meaning that PMAX equals one, reducing (18) to

PSNR = −10 · log10(MSE).

As a final comment, PSNR should be used cautiously in image/video quality assessment.
The PSNR metric is not an objective metric and does not reflect the human’s subjective
perceived quality of an image. However, it can be a good quantitive metric to indicate
that the reconstruction might be good. Even with this in consideration, PSNR is still often
widely used in terms of image quality assessment.

3.4.2 Bits Per Pixel

Bits per pixel (bpp) is a metric used to quantify the amount of information stored in a
pixel. In image compression, it serves as a measure of how much an image is compressed.
For a standard RGB image, each pixel is typically represented by three color channels: red,
green, and blue. In many scenarios, the color depth of each channel is 8-bit. Hence, the
bpp of such an image would be 24, reflecting the combined bit depth of all three channels.

In LIC-TCM, bpp is calculated by the sum of the compressed bitstreams in the latent
space of the image compression architecture and in the latent space of the entropy model
architecture, and divided by the total number of pixels in the image. In practice, these
bitstreams are represented in a y string and z string which can be decoded by the decoder
of the image compression decoder and the entropy model decoder, respectively.

It is important to note that all the depth images utilized in our work are formatted as 16-bit
one-channel grayscale images. As a result, the compressed depth image should inherently
have a relatively lower bpp value compared to RGB images, given the lower bpp of the
original images.

3.4.3 MS-SSIM

Multi-Scale Structural Similarity Index Measure (MS-SSIM) is another common metric
for image/video quality assessment [40]. Whereas PSNR focuses more on the absolute
error between the pixels, MS-SSIM measures the difference between three properties of the
pixels and is an extension of the previous work of SSIM [41] (Structural Similarity Index
Measure).

Given two image patches extracted from the same spatial location, say x and x̂ consisting
of N pixels each, SSIM measures the luminance l(·, ·), contrast c(·, ·) and structure s(·, ·),
and the product of these factors gives SSIM. In other words, the general form of SSIM
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between a signal x and x̂ is defined as

SSIM(x, x̂) = [l(x, x̂)]α · [c(x, x̂)]β · [s(x, x̂)]γ, (19)

where α, β and γ are parameters to define relative importance. The reader can refer to
[41] to read about the details of the functions within (19).

In many scenarios, SSIM is regarded as a more appropriate metric for quantifying the
disparity between a reconstructed image and the original image. The paper in [41] contends
that, in comparison to Mean Square Error (MSE), SSIM excels at capturing the structural
information of the image. This assertion is elaborated in [41]. This choice of metric is
rooted in the desire to align with the mechanisms of the human visual system, reflecting
the aim of mimicking human behavior in assessment criteria. An example will be given
below to illustrate the effectiveness of SSIM, see Figure 24. Between the two distorted
images, people tend to think the image in the middle is closer to the original image, while
the MSEs are the same. A high SSIM value indicates that the Figure 24b possesses a
similar structure to the original one.

(a) MSE=0, SSIM=1. (b) MSE=309, SSIM=0.987. (c) MSE=309, SSIM=0.580.

Figure 24: The images of Einstein with different kinds of distortions. (a) Original image.
(b) Luminance shift. (c) JPEG compression.

MS-SSIM extends (19) by iteratively applying a low-pass filter and downsampling the
filtered image by a factor of 2. Given a maximum scale of M , the updated definition in
[40] is given as

MS-SSIM(x, x̂) = [lM(x, x̂)]αM ·
M∏
j=1

[cj(x, x̂)]
βj · [sj(x, x̂)]γj , (20)

where again similarly, αM , βj and γj are parameters to define relative importance. For a
clear system diagram see Figure 1 in 20.
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3.4.4 Comprehensive Similarity

In [42], the author introduces a novel loss function where pixel-wise difference, gradient
difference and structure similarity term are combined together to measure the distortion

L(y, ŷ) = γLdepth(y, ŷ) + Lgrad(y, ŷ) + Lssim(y, ŷ). (21)

The first term Ldepth measures the pixel-wise L1 loss while the second term calculates the
gradient difference between the two images. In the following equations, gx and gy represent
the gradient differences in x and y directions respectively, between the two depth images
y and ŷ

Ldepth(y, ŷ) =
1

n

n∑
p

| yp − ŷp | (22)

Lgrad(y, ŷ) =
1

n

n∑
p

(| gx(yp, ŷp) | + | gy(yp, ŷp) |). (23)

Moreover, the third term simply estimates the structure similarity of the images (see 19).
The γ parameter attached to the L1 loss is set to adjust the weight. The effectiveness of
this comprehensive metric is verified by [42] and [22]. Given this comprehensive similarity
metric, it was used as a distortion term to better train and validate the performance of
the architectures with depth as the target output. However, for our implementations, we
updated the final term to use MS-SSIM instead of SSIM. The final equation is given as

L(y, ŷ) = γLdepth(y, ŷ) + Lgrad(y, ŷ) + Lms−ssim(y, ŷ). (24)
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3.5 Experimental Setup

In this paper, six different architectures (see Section 3.1) are implemented with three differ-
ent configurations each. For each architecture, the most significant configuration parameter
is the lambda hyperparameter (see Section 2.2.2) because of its direct impact on the bi-
trate - quality trade-off. Secondly, the distortion term varies between the RGB and depth
architectures so it is important to clarify these distinctions. Again, we use the single-modal
image compression codec LIC-TCM as the baseline for both RGB and depth compression.
To get an overview of the different configurations per architecture, see Tables 2 and 3 for
RGB and Depth baselines, respectively. The configurations per fusion architecture can be
found in Tables 4, 5, 6, and 7, for Attention MM-LIC-TCM, Convolutional MM-LIC-TCM,
4C LIC-TCM (RGB target), and 4C LIC-TCM (Depth target) architectures, respectively.
Notably, the depth codec in Convolutional MM-LIC-TCM is initialized with the pre-trained
weights from the depth baseline and these weights are frozen to prevent further training.
Attention MM-LIC-TCM was not given the same treatment, because the Prompted TCMs
conflict with the baseline weights. Thus, Attention MM-LIC-TCM was trained as a whole.
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Table 2: Baseline - RGB

Configurations Values
Lambda 0.0025 ; 0.0130 ; 0.0500

Distortion term MSE

Table 3: Baseline - Depth

Configurations Values
Lambda 0.0001 ; 0.001 ; 0.005

Distortion term Comprehensive Similarity, see (24) (γ=0.1)

Table 4: Fusion - Attention MM-LIC-TCM

Configurations Values
Lambda 0.0025 ; 0.0130 ; 0.0500

Distortion term MSE

Table 5: Fusion - Convolutional MM-LIC-TCM

Configurations Values
Lambda 0.0001 ; 0.001 ; 0.005

Distortion term Comprehensive Similarity, see (24) (γ=0.1)

Table 6: Fusion - 4C LIC-TCM (RGB target)

Configurations Values
Lambda 0.0025 ; 0.0130 ; 0.0500

Distortion term MSE

Table 7: Fusion - 4C LIC-TCM (Depth target)

Configurations Values
Lambda 0.0001 ; 0.001 ; 0.005

Distortion term Comprehensive Similarity, see (24) (γ=0.1)
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Besides architectural differences and lambda values, all of the configurations share the
same experimental setup. The experimental setup is highly similar to LIC-TCM’s setup,
but for clarity the setup is shared: For training, images from our dataset (see Section 3.2)
are randomly chosen and cropped with the size of 256×256 during training. Adam [43] is
used as our choice of iterative optimization algorithm for the loss function, with a batch
size set to 8, both for validation and training. An initial learning rate is set to 1 · 10−4.
The learning rate is then scheduled by Pytorch’s MultiStepLR() which will be decreased
by a factor of ten at epochs 45 and 48.

The SWIN transformer blocks have window sizes set to 8 for the encoder and decoder,
ga and gs, respectively, and window sizes are set to 4 in the hyperprior path (ha and hs).
The channel number C is set to 64 (smallest setting) for all of the architectures to reduce
complexity. Finally, the latent channel number of y, M , is set to 320 and correspondingly
z is set to 192.

The sessions were trained on RTX 3090 GPU and RTX 4090 GPU provided by Erics-
son. Additional training sessions were also enabled by resources provided by LUNARC
(COSMOS), The Centre for Scientific and Technical Computing at Lund University, using
Apptainer/Singularity on A40 and 100 GPU nodes.
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4 Results

In this section, a distinction between quantitative results and qualitative results is made. In
the quantitative results, only evaluation data is shared in terms of scalar values which are
also displayed in line charts. In the qualitative results, some hand-picked reconstructions
& renderings of the models are displayed and compared. The results for this section are
based on the configurations and experimental setup in Section 3.5 and evaluated on the
test set in Section 3.3.

4.1 Quantitative

The quantitative results were produced by loading the trained weights for the given ar-
chitecture and forwarding the different concatenated RGB-D pairs from the testset. The
quantiative results are displayed in terms of PSNR versus bpp and Comprehensive Simi-
larity versus bpp. In general, we want to maximize PSNR and Comprehensive Similarity
and minimize bpp. For clearer comparison, the MS-SSIM is converted to −10 log10(1 −
MS-SSIM). All forward latency, parameter, and GFLOP data were extracted by using
get_model_profile() from deepspeed.profiling.flops_profiler in the Python-based
DeepSpeed library using a RTX 4090 GPU connected to CUDA.

Figure 25: Performance evaluation on the set given in average PSNR and bpp, with
lambda configurations (from left to right in the figure): {0.0025, 0.0130, 0.0500}. The
non-filled circle is visualized for illustrative purposes.

In Tables 8, 9, and 10 the results for the different lambda configurations per architecture
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on the evaluation set are given. These tables represent the baseline RGB, 4C LIC-TCM
(RGB target), and Attention MM-LIC-TCM architectures, respectively. The PSNR- and
bpp values for the tables are visualized in Figure 25. Overall, the fusion architectures
outperform the RGB baseline. However, there is an outlier for the Attention architecture
for lambda set to 0.0500. Although the other points have a similar bpp, it is difficult to
determine how the architectures will perform before-hand, since the lambda hyperparam-
eter uniquely affects the different architectures. By using a slightly lower lambda value for
the Attention architecture (0.0400 instead of 0.0500 etc), it hopefully will be closer to the
other points and make for a better comparison. Additionally, pay attention to the relative
strong performance of the 4C architecture, especially considering its simple low complexity
design. Finally, although MS-SSIM values are given in previously mentioned tables, it is
not visualized.

Table 8: Baseline - RGB

λ-config Average PSNR Average MS-SSIM Average Bit-rate
0.0025 29.84 dB 12.97 0.054 bpp
0.0130 31.41 dB 15.55 0.167 bpp
0.0500 32.61 dB 17.39 0.393 bpp

Table 9: Fusion - 4C LIC-TCM (RGB target)

λ-config Average PSNR Average MS-SSIM Average Bit-rate
0.0025 30.15 dB 13.21 0.055 bpp
0.0130 31.51 dB 15.36 0.162 bpp
0.0500 32.65 dB 17.32 0.397 bpp

Table 10: Fusion - Attention MM-LIC-TCM

λ-config Average PSNR Average MS-SSIM Average Bit-rate
0.0025 29.89 dB 13.00 0.055 bpp
0.0130 31.58 dB 15.57 0.180 bpp
0.0500 32.63 dB 17.41 0.434 bpp
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Figure 26: Performance evaluation on the test set given in average PSNR and bpp, with
lambda configurations (from left to right in the figure): {0.0001, 0.001, 0.005}. The non-
filled circles is visualized for illustrative purposes.

In Tables 11, 12, and 13 the results for the different lambda configurations per depth ar-
chitecture on the evaluation set are given. These tables represent the baseline depth, 4C
LIC-TCM (Depth target), and Convolutional MM-LIC-TCM architectures, respectively.
Overall, for lambda equals 0.0001, very similar results were generated. However, discrep-
ancies are unraveled for larger lambdas, especially in the case of the 4C architecture. The
evaluation results for these values are directly represented in Figure 26 and Figure 27 for
PSNR and comprehensive similarity, respectively.

It can be seen from the figure that our Convolutional MM-LIC-TCM model outperforms
the baseline model at all bitrates, while the performance of 4C LIC-TCM is not stable.
Overall, the convolutional MM-LIC-TCM demonstrated the best consistent performance.
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Figure 27: Performance evaluation on the test set given in average comprehension sim-
ilarity and bpp, with lambda configurations (from left to right in the figure): {0.0001,
0.001, 0.005}. The non-filled circles is visualized for illustrative purposes.

Table 11: Baseline - Depth

λ-config Average PSNR Average Comprehensive Similarity Average Bit-rate
0.0001 47.24 dB 28.27 dB 0.003 bpp
0.001 56.22 dB 33.39 dB 0.023 bpp
0.005 59.29 dB 35.12 dB 0.043 bpp

Table 12: Fusion - 4C LIC-TCM (Depth target)

λ-config Average PSNR Average Comprehensive Similarity Average Bit-rate
0.0001 47.17 dB 28.49 dB 0.003 bpp
0.001 55.84 dB 33.03 dB 0.024 bpp
0.005 61.19 dB 35.65 dB 0.034 bpp

Table 13: Fusion - Convolutional MM-LIC-TCM

λ-config Average PSNR Average Comprehensive Similarity Average Bit-rate
0.0001 47.32 dB 28.40 dB 0.003 bpp
0.001 56.99 dB 33.47 dB 0.022 bpp
0.005 58.45 dB 35.01 dB 0.037 bpp
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Finally, more detailed information about the architectures’ time complexity, such as en-
coding and decoding time, GFLOPS, and the amount of parameters is shown in Table
14 and Table 15. The former table corresponds to the architectures that target RGB as
output and the latter corresponds to the architectures that target depth as output. When
inspecting these tables, it is evident that the 4C architectures are implemented as expected,
since the performances of the 4C architectures are identical to the baselines. Furthermore,
we see expected increased complexity of the fusion architectures, especially in the case of
the Attention architecture.

Table 14: RGB-targeted models.

Encoding time Decoding time Parameters GFLOPS
Baseline - RGB 62 ms 67 ms 45.18 M 851
Fusion - Attention 76 ms (↑ 23%) 75 ms (↑ 12%) 53.53 M (↑ 18%) 1100
Fusion - 4C 63 ms 67 ms 45.18 M 850

Table 15: Depth-targeted models.

Encoding time Decoding time Parameters GFLOPS
Baseline - Depth 62 ms 66 ms 45.17 M 843
Fusion - Convolutional 77 ms (↑ 24%) 66 ms 47.6 M (↑ 5%) 1016
Fusion - 4C 62 ms 66 ms 45.17 M 856

4.2 Qualitative

A natural path forward after covering the quantitative results is to display the results in
the form of image reconstructions and RGB-D 3D renderings. The former is a common
practice in the field of image compression, while the latter is not a common sight in research
papers. The decision to display 3D renderings is based on the fact that it is hard to perceive
the subjective quality of a depth image, hence a creative workaround is to align the depth
reconstruction frame with the ground-truth RGB frame and display it in a 3-dimensional
environment. This way, it enables us to perceive the subjective quality of the depth image.
The 3D renderings were done using Open3D [37].

In this section, some hand-picked reconstruction and renderings are displayed. In the depth
section, we display 3D renderings with depth reconstructions, and in the RGB section, we
display some RGB reconstructions.
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4.2.1 Depth

In this example, a 3D rendering of Test Image 5 in the test set is used, see Figure 28.
In Figure 29, the ground truth rendering is displayed. For Figure 30 (Depth baseline),
31 (Convolutional MM-LIC-TCM), the ground truth RGB is jointly used with the recon-
structed depths to form 3D renderings.

Figure 28: Test Images 5, ground truth RGB-D pair. Used in test dataset.

Figure 29: Rendering of the ground truth RGB-D pair.
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Figure 30: Rendering of reconstructed depth, using depth baseline. The following results
were generated for this sample: λ: 0.001 |PSNR: 59.35 dB |0.010 bpp.

Figure 31: Rendering of reconstructed depth, using Convolutional MM-LIC-TCM archi-
tecture. The following results were generated for this sample: λ: 0.001 |PSNR: 60.47 dB
|0.020 bpp.

It can be observed from the reconstructed images that the quality is not very high. Nu-
merous “flying pixels” are visible in the results from both the baseline model and the
convolutional model, particularly in the top areas. Given the minor enhancement our
fusion model has achieved, it is challenging to discern any significant enhancement.
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4.2.2 RGB

In this reconstruction, a sample from the SUNRGB-D [44]–[47] dataset is used. The frame
is number 0000118 from KinectV2 using ground truth RGB jointly with the depth BFX as
input to our models. For these reconstructions, the lambda was set to 0.0130. A comparison
of the original RGB image versus some sampled regions from the different architectures
can be seen in Figure 32. The individual reconstructions can be seen in Figures 33 to 35.

Figure 32: Visualization of decompressed images of frame 0000118, KinectV2, from
SUNRGB-D dataset. The large figure to the left is the original image. The subfigures
are titled as “Method | Bit rate | PSNR | MS-SSIM”.

48



Figure 33: Visualization of decompressed images of frame 0000118, KinectV2, from
SUNRGB-D dataset. Reconstructed with Attention MM-LIC-TCM. The following results
were generated for this reconstruction: 0.303 bpp | PSNR: 31.06 dB | MS-SSIM: 16.46 dB.
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Figure 34: Visualization of decompressed images of frame 0000118, KinectV2, from
SUNRGB-D dataset. Reconstructed with RGB Baseline. The following results were gen-
erated for this reconstruction: 0.287 bpp | PSNR: 30.51 dB | MS-SSIM: 16.31 dB.
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Figure 35: Visualization of decompressed images of frame 0000118, KinectV2, from
SUNRGB-D dataset. Reconstructed with 4C LIC-TCM (RGB target). The following
results were generated for this reconstruction: 0.296 bpp | PSNR: 30.32 dB | MS-SSIM:
16.29 dB.
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5 Discussion

In this section, the quantitative and qualitative results and the implications of these are dis-
cussed. A general discussion regarding the topic of multimodal compression will take place
and cover important and relevant properties such as complexity and robustness and relate
them to the results. Thereafter, a detailed reasoning behind the implemented multimodal
architectures will be provided.

Finally, some unmentioned and unfinished explorations will be covered, along with the
reason behind them being unfinished.

5.1 Quantitative and qualitative results

While the research field of multimodal compression is small, it is evident that feasible and
promising results can be produced. In the case of quantitative results, a clear and interest-
ing improvement was found by introducing depth as a modality, elevating the foundational
LIC-TCM architecture. In other words, by experimentally augmenting the LIC-TCM ar-
chitecture with two new architectures, Attention MM-LIC-TCM and 4C LIC-TCM (RGB
target), to include depth as a modality, an increase in PSNR was shown compared to the
standard LIC-TCM architecture.

However, what is quite surprising is the strong quantitative performance of the 4C LIC-
TCM (RGB target) model despite its simple construction. While the Attention MM-
LIC-TCM architecture clearly introduces an increase in both architectural complexity and
runtime, it does not make up for it in terms of performance when compared to 4C LIC-TCM
(RGB target). But this result is not conclusive and in reality needs further investigation.
Since the Attention MM-LIC-TCM architecture extends the attention mechanism it might
cause a greater need for more training data to perform better. In general, transformers
require a huge amount of data to be properly trained and the dataset used for this paper
is in reality quite small. As an example, the authors in LIC-TCM use a quite more
sophisticated dataset with triple the amount of data compared to the dataset in this paper.
However, considering the long training times per architecture and the number of different
configurations per architecture, it would not be feasible to have such large datasets and
also deliver the results of our thesis within the assigned time limit.

Looking at the reconstructions in Section 4.2.2 it can be difficult to appreciate any ma-
jor differences. We reason that these models are already very efficient, and historically,
quantitative progress is done incrementally. However, in some cases, we notice that the
fusion model (Attention MM-LIC-TCM) is better at smoothening out edges in images. As
an example of this, see how Attention MM-LIC-TCM better reconstructs the edges of the
window in Figure 32.

Turning our attention to using RGB images as a modality, we can see that the model
performance is overall improved in terms of both PSNR and comprehensive similarity, re-
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gardless of which fusion strategy is used. It validates our hypothesis that the presence of
an additional modality can indeed enhance compression. The improvement is particularly
pronounced concerning comprehensive similarity, as expected, given that the loss is opti-
mized based on this specifically designed metric. Additionally, the enhancement becomes
more apparent as the bitrate increases, as observed in Figure 27. Surprisingly, the 4C LIC-
TCM (Depth target) model significantly outperforms the others at a high bitrate while it
drops greatly in the middle, making it the lowest among the three models. Thus, we sense
that the training of the network can still be optimized. Fine-tuning the configuration in
future work could provide further insights.

Compared to the reconstruction of RGB images, the reconstructed depth images exhibit
relatively lower quality. The compression of depth images requires higher precision. For
example, in RGB images, a deviation in pixel intensity might be negligible to human
eyes. However, in depth images, such a deviation can result in a pixel becoming a “flying
pixel”, which is very noticeable and easily detected. Once again, the difference between
the baseline model and our fusion models is minor, but it is noticeable that there are
fewer outliers for the Convolutional MM-LIC-TCM model, particularly at the top of the
reconstructed image.

An overall important trade-off to consider in terms of the fusion models is quality versus
performance- and time complexity. Reflecting back to Tables 14 and 15, it is evident that
the Convolutional MM-LIC-TCM and Attention MM-LIC-TCM architectures introduces
complexity. For Convolutional MM-LIC-TCM, the encoding time increases by 24% com-
pared to the corresponding baseline model, while the decoding time remains unaffected.
Thus, the overall time complexity is raised by 12%. Likewise, the number of parameters is
also a bit higher, which reaches 47.6M (5% more than the baseline model). For Attention
MM-LIC-TCM, we see an overall increased time complexity of 17% as well as a signifi-
cant increase of 18% in number of parameters. Considering this added complexity, is it
worth a 0.17 increase in PSNR (see Figure 25 for 0.0130 lambda)? We therefore repeat the
need for deeper investigation of Attention MM-LIC-TCM for more conclusive results of
the architecture’s true capabilities, especially in the case of Attention MM-LIC-TCM with
lambda set to 0.05. With all this said, it makes the choice of 4C LIC-TCM (RGB target)
architectures appealing because of its low implementation cost and simultaneously being
unscathed from an increase in amount of parameters and increase in time complexity.

To conclude this subsection, a final word of caution shall once again be echoed as previ-
ously stated in the thesis. While PSNR and MS-SSIM are good perceptual metrics for
the field of image compression, it is not an objective perceptual metric. Additionally, it
may also be difficult to appreciate the small margins in the quantitative results when the
reconstructions/renderings are still seemingly similar, but progress in learned lossy image
compression started small yet today supersedes standard image codecs.
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5.2 Our implementations

As a starting point, a decision was made to prioritize extending already state-of-the-art
models rather than constructing an architecture from scratch. Not only to limit the work-
load considering the time constraints within the thesis, but rather the fact that if an
architecture not intended for multimodality can be integrated with multimodal capabili-
ties with low implementation cost and elevated results, then the implications of this is that
multimodality can be seen as a natural option to investigate for optimization.

The motivation behind the different multimodal architectures was to have maximum reach
in the different possible strategies. In our implementations we have three different strate-
gies: model-agnostic fusion (4C LIC-TCM), model-based fusion by using attention mech-
anism (Attention MM-LIC-TCM) and convolution (Convolutional MM-LIC-TCM). This
way, we get a wider reach in our results and insights.

The reason to let one architecture focus on RGB as a target output or the other focus
on depth as a target output was based on the papers the architectures originated from.
However, we do not exclude the possibility of just arbitrarily changing the input modalities
and see how well it performs. Considering the flexibility of the given implementations, the
order of modalities could be changed or even additional modalities could be added and
experimented with (for example a segmentation mask). Our fusion architectures are highly
flexible and adaptable to most learned image compression architectures, so even other
learned image compression architectures could be used as a foundational model instead of
LIC-TCM. To state it clearly, we believe that our implementations are generalizable.

The reasoning behind only making changes to the encoder network (ga) was mainly two-
fold. Firstly, one of the objectives was to keep the complexity low and secondly, in [4], an
ablation study was done removing pa and la showing that their model still performed well.
We decided that we would do the same for Attention MM-LIC-TCM, but for consistency,
we decided to only affect the encoder network for both fusion models. But of course, it
would be interesting to expand on the decoder network (gs) and run new training and
evaluations.

Another important aspect is the distortion term which calls for dedicated attention. The
distortion term is of critical importance in terms of reconstruction quality, even for high
lambdas (although high lambda but poor distortion function will perform poorly). In
the case of depth compression, it was clear early in the thesis that MSE or MS-SSIM as a
distortion calculation was not enough to generate satisfactory reconstructions. Hence, com-
prehensive similarity but adjusted for MS-SSIM instead of SSIM was our novel adjustment
to improve the results.

Conversely, a better distortion calculation than MSE should probably have been used for
the RGB reconstruction-based architectures. While a simple, and often a good-enough
metric, there is definitely room for more sophisticated distortions terms, even MS-SSIM.
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5.3 Machine learning-based data compression

In this thesis, we have focused on machine learning-based data compression approaches.
However, there are also conventional compression tools, such as JPEG. The main reason
we do not compare our models with these traditional methods is that we believe our models
have not yet reached their optimal performance. Specifically, the dataset we used consists
of around 120k RGB-D pairs, which is far from sufficient. Thus, comparing our models
with conventional methods might not be a fair comparison. Therefore, we investigate the
relative improvement of our models compared to the baseline. Nevertheless, it is reasonable
to argue that since a well-trained LIC-TCM outperforms the conventional tools [5], our
models can reach a state where it outperforms conventional compression methods as well.

It can be seen that any ML-based methods require considerable data to achieve satisfying
performance and also the training can sometimes be very time-consuming. This is obviously
a significant limitation. Moreover, the ML-based models tend to have a relatively weaker
universality. During our work, we find that the pre-trained LIC-TCM model is unable
to compress depth images well, although it works nicely with RGB images. Conversely,
JPEG, as an example of the traditional methods, can handle different kinds of image data.
Furthermore, great consideration has to be taken into account for what is the application
of the machine learning-based compression model. In our case, the models are trained on
indoor scenes and if one was to use the model in an outdoor environment, then one could
expect serious degradation of quality - but this aspect was not explored in any detail.
Finally, one last limitation is the amount of parameters that has to be saved along with
the model. Depending on chosen model size, it can vary from 500 MB for a small model
to 900 MB for a large model in the case of LIC-TCM.

To conclude, ML-based models undeniably have many advantages, but their limitations
also need to be considered, such as the requirements for data volume and generalizability
mentioned above.
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5.4 Other explored areas

During the course of the thesis, some areas are explored in the search for innovative solu-
tions. One of these was based on a whitepaper from Intel [48]. The idea of the paper is to
apply a colormap to some depth image according to some specific color mapping scheme,
and then being able to revert the process by applying an inverse color mapping scheme.

Figure 36: Left: Original depth image (but for visualization, higher contrast). Right: Jet
colormapping applied to the depth image.

We were interested in investigating whether it is feasible to utilize a standard RGB com-
pression model for compressing depth data. If a standard RGB compression model could
be used for depth compression, then one could potentially create one universal model with
one set of weights for RGB compression and one set of weights for depth compression. The
intended strategy was to apply either some Jet or Turbo [49] color mapping, and then pass
it through standard LIC-TCM. See Figure 36 for the original depth image applied with
Jet colormap. To reconstruct the depth image, the LIC-TCM RGB reconstruction would
be sampled according to some inversed color mapping scheme to retrieve the depth.

However, the cause for discontinuing this strategy was simply related to the sampling
schemes. Firstly, the process of accurately reverting the color-mapped depth image back
to its grayscale form is not trivial. Secondly, sampling a 16-bit depth image to a 24-bit RGB
image will introduce a loss of information if one wants to stay true to the relevant color
mapping spectrum. In summary, the color mapping strategy proved to be a significant time
sink, diverting attention away from the more critical aspects of this thesis. Consequently,
we made the decision to discontinue this line of work.
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6 Conclusions and Outlook

In this thesis, we propose three different unique architectures that extend a single-modality
lossy learned image compression architecture to encompassing depth as an additional in-
put modality. Based on our results, it appears that including depth as a modality offers
the possibility to elevate single-modal RGB architectures, sometimes without any addi-
tional complexity cost. Conversely, adding RGB as a modality to a depth lossy learned
compression architecture implies the same results. Furthermore, we believe that our imple-
mentations are generalizable and can be experimented with and adapted to most learned
image compression architectures.

However, these implementations and strategies can still be optimized and warrant further
investigation. To achieve more conclusive results, much more investigation should be done.
Most importantly, we suggest enforcing much longer training sessions with much larger and
much more sophisticated dataset(s). For example, the Habitat-Matterport 3D Research
Dataset[50] by Meta is a good example of what kind of dataset could be used.

Another interesting option is to investigate the distortion term further. Unfortunately, the
option of exploring RGB reconstruction models with MS-SSIM as a distortion term was
not possible due to time constraints. Furthermore, we believe that it should not be stopped
at MS-SSIM. Possibly a more hand-crafted distortion term could be designed to combine
multiple modalities. Not strictly related to multimodality, but as an example, researchers
at Google (same authors as the hyperprior paper) propose a new perceptual quality metric
that should be competitive with MS-SSIM in [51].
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A Test Set Images

Figure 37: Test Images 1.

Figure 38: Test Images 2.

Figure 39: Test Images 3.
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Figure 40: Test Images 4.

Figure 41: Test Images 5.

Figure 42: Test Images 6.
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Figure 43: Test Images 7.

Figure 44: Test Images 8.

Figure 45: Test Images 9.
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Figure 46: Test Images 10.

Figure 47: Test Images 11.

Figure 48: Test Images 12.
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Figure 49: Test Images 13.

Figure 50: Test Images 14.

Figure 51: Test Images 15.
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Figure 52: Test Images 16.

Figure 53: Test Images 17.

Figure 54: Test Images 18.
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Figure 55: Test Images 19.

Figure 56: Test Images 20.

Figure 57: Test Images 21.
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Figure 58: Test Images 22.

Figure 59: Test Images 23.

Figure 60: Test Images 24.
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Figure 61: Test Images 25.

Figure 62: Test Images 26.

Figure 63: Test Images 27.
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Figure 64: Test Images 28.

Figure 65: Test Images 29.

Figure 66: Test Images 30.
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Figure 67: Test Images 31.

Figure 68: Test Images 32.

Figure 69: Test Images 33.
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Figure 70: Test Images 34.

Figure 71: Test Images 35.

Figure 72: Test Images 36.
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Figure 73: Test Images 37.

Figure 74: Test Images 38.

Figure 75: Test Images 39.
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Figure 76: Test Images 40.

75



Machine Learning-based
Multimodal Data Compression

JACOB FORSELL & YUYANG JIN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

JA
C

O
B

 FO
R

SELL &
 Y

U
YA

N
G

 JIN
M

achine Learning-based M
ultim

odal D
ata C

om
pression

LU
N

D
 2024

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-1006
http://www.eit.lth.se


	Exjobb_JacobYuyang_revised.pdf
	Introduction
	Background and Related work
	Artificial Neural Networks and Deep Learning
	Dense Neural Networks
	Convolutional Neural Networks
	Autoencoders
	Transformers
	Vision Transformers
	SWIN Transformers

	Variational Autoencoders
	Optimization objective

	Variational Image Compression

	Information Theory
	Compression
	Entropy coding

	Rate-Distortion

	Multimodal Machine Learning
	Categories and Representations
	Multimodal Fusion
	Fusion approaches


	Foundational Models
	LIC-TCM
	Image compression architecture
	Entropy model architecture
	Encoding and Decoding architecture
	Loss function

	Convolution-based Multimodal Fusion
	Attention-based Multimodal Fusion


	Methodology and Implementation
	Architectures
	4-channel LIC-TCM
	Convolution-based Multimodal-LIC-TCM
	Attention-based Multimodal-LIC-TCM

	Training Dataset
	Test dataset
	Evaluation
	PSNR
	Bits Per Pixel
	MS-SSIM
	Comprehensive Similarity

	Experimental Setup

	Results
	Quantitative
	Qualitative
	Depth
	RGB


	Discussion
	Quantitative and qualitative results
	Our implementations
	Machine learning-based data compression
	Other explored areas

	Conclusions and Outlook
	References
	Test Set Images




