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Abstract

Bug solving is a critical aspect of modern software development, particularly
within Android operating systems. Bug reports, containing extensive diagnos-
tic information, are essential tools for analyzing and resolving issues in these
systems. However, one significant challenge in bug resolution is the cost of iden-
tifying duplicate bug reports. Existing studies primarily focus on detecting du-
plicate reports based on e.g. title and description, potentially overlooking cases
where bugs manifest differently visually or in log data. In this thesis, we uti-
lize abnormal log sequences in the system logs to identify duplicate bug reports.
This is done using the log parsing tool Drain [17] followed by the LSTM-based
anomaly detector Deeplog [10] to extract abnormal logs which are used to mea-
sure the similarity between bug reports. The results demonstrate performance
comparable to existing duplicate detection methods, with RR@k’s of 0.275, 0.471,
and 0.588 for k = 1, 3, 5 respectively. These findings suggest the potential ap-
plicability of this method in industrial settings.

Keywords: Android bug report, log analysis, log parsing, anomaly detection, duplicate
bug report detection, deep learning.
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Chapter 1

Introduction

Bug solving is a central part of today’s software development. For Android operating systems,
a major tool available to analyze bugs and system behaviors is bug reports. These are usually
captured after a bug has occurred and contain device logs, stack traces, and other diagnostic
information that can be used to analyze and locate the cause of the behavior [2]. It is however
common for Android bug reports to be very long and contain up to a million lines of logs
and information, making more complex bug analysis a tedious process. The Android OS is a
commonly occurring operating system for phones and tablets, and has in the later years also
been developed for other areas such as cars. For this reason, it is of wide interest to make the
process of bug resolution in this system more efficient.

One aspect of this is the handling of duplicate bug reports. At Volvo Cars bug reports
are commonly attached to tickets describing the occurrence of a bug, these tickets are then
assigned to software engineering teams so the bug can be solved. It is however not uncom-
mon with duplicate tickets describing the same problem, and therefore the same bug just
through a different report and logs. This is not always immediately discovered, especially
if the description or attached visual representation of the bug is very different. This is an
unnecessary waste of resources since it risks having two developers unknowingly working on
solving the same bug as well as the time required to investigate the logs when the ticket is
suspected to be a duplicate. It can also give a misleading picture of the backlog if multiple
tickets are actually for the same bug. Finding duplicate tickets also contributes by grouping
information about a bug from different tickets, as shown helpful in solving the bugs faster
by Bettenburg et al. [6].

Existing studies on duplicate bug report detection mainly put the focus on the title and
description [7][15][27][33][37]. While these approaches display efficiency, they risk missing
the cases where a bug shows in visually diverging ways and therefore is described differently
in the ticket. Studies have presented approaches where execution information is also included
in the analysis with good results [35], making it interesting to further explore a more log-based
duplicate detection approach. Additionally, detecting duplicate bug reports, and with that
duplicate tickets, using logs would to some extent involve the detection of faulty log lines
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1. Introduction

and log line sequences, as this needs to hold more weight to detect reports created for the
same bug. There are several studies made in anomaly detection in system logs [10][19][24][39],
mainly with the mutual aspect that they focus on abnormal log sequences.

The following subsections will give an introduction to how these aspects are applied.
They will also present the research goals and how they are achieved, along with contributions
to the field.

1.1 Research questions
At Volvo Cars it is not uncommon with duplicate bug reports and bug tickets and there is
currently no internal system for automatically detecting and preventing duplicates. Previ-
ous research on the subject is mostly centered on text comparison of title, description, and
other available parameters in the bug ticket [7][15][27][33][37], but this does not take account
for incorrect system behaviors that are visually different but caused by the same underlying
system error. The main goal of this thesis is therefore to contribute with a new approach by
investigating how comparison could be done using the Android bug report logs. To structure
the investigation of the problem, the following research questions were formulated:

• RQ1: Can log anomaly detection be used in duplicate detection between bug report
logs in an industrial setting where the data is unlabeled?

• RQ2: How do the settings of an LSTM-based log anomaly detection model influence
bug report duplicate detection?

• RQ3: What could the application of duplicate bug report detection look like in an
industrial setting?

1.2 Research method
To answer the research questions, the Design Research Method (DRM) [31] is applied as seen
in figure 1.1. Initially, the purpose and goals are formulated, which are presented through
the research questions in section 1.1. A literature review and interviews are then performed
to create a deeper understanding of the current situation. Based on this, a solution design is
constructed. In this research, the proposed solution design entails duplicate detection done
through comparison of abnormal logs given by log anomaly detection. A more extensive
description of this can be found in section 2. Lastly, the results from the proposed solution
are evaluated.
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1.3 Result

Figure 1.1: Application of the Design Research Method [31].

1.3 Result
The results shows that our approach is on the level of existing duplicate detection methods,
with RR@k’s of 0.275, 0.471 and 0.588 for k = 1, 3, 5. Thus, the results show sufficient
performance for this method to potentially be applied in an industrial setting.

It was shown that the hyperparameters used in the anomaly detection affect the final re-
sult of the duplicate detection and therefore need to be tuned based on the use case. Larger
window size g showed a significant increase in precision, while top gprobability had a smaller
impact on the evaluation metrics. However, the combination of values for different hyper-
parameters matters and should be tuned in regard to each other for optimal performance in
a given use case.

1.4 Contributions
The contributions of this research can be summarized as follows:

1. We propose a novel approach for duplicate detection by applying log anomaly detec-
tion to utilize abnormal logs in the duplicate predictions process.

2. The achieved results are in line with existing duplicate approaches, showing that the
performance of our approach is comparable to the state-of-the-art.

3. We present how our approach can be applied in an industrial setting with only unla-
beled data available, and how some hyperparameters in the anomaly detection model
should be tuned in order to achieve sufficient performance for an unlabeled Android
data set.

9



1. Introduction

1.5 Scope and limitations
To counter the limitations in resources and time, some constraints are applied to the research
scope. The main one is that only one method is tested for anomaly detection and the impact
of other anomaly detection methods is therefore not evaluated in this research. Secondly,
the impact of parameter values is only tested for a limited selection of parameters in limited
intervals.

1.6 Chapter outline
The following sections in this thesis begin with the method in section 2. This section provides
some background through a literature review, followed by a description of the performed in-
terviews, and a more in-depth description of the research method and the duplicate detection
pipeline. Next, section 3 presents the results achieved from the described method. The results
are then discussed in section 4, which is used to present a conclusion in section 5.
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Chapter 2

Method

For the method this thesis employs the Design Research Method (DRM) [31]. This method
design involves understanding the current process and issues, designing a solution, and eval-
uating its effectiveness, which is done through the following four steps.

1. Clarification of research task - Define the purpose and objectives based on initial as-
sumptions.

2. Descriptive study 1 - Conduct a comprehensive literature review related to the purpose
and objectives to create a deeper understanding of the current situation.

3. Prescriptive study - Use the new understanding of the situation to propose solutions
for the identified problem.

4. Descriptive study 2 - Perform an empirical study to evaluate the proposed ideas gained
from step 3.

When using DRM, not all steps need to be applied and they do not need to be done in
order. This method was chosen for this research since it fits well in scenarios where the goal
is to improve current situations and generate solutions to an existing problem. How the steps
are applied in this research can be seen in figure 1.1.

The following subsections will more in-depth describe the steps taken. The first phase
involves performing a literature review and interviews with developers to achieve better in-
sight into the research problem and goals. This is done in section 2.1 and 2.2 respectively.
Next is the solution proposal in section 2.3 where the individual steps of the solution are
explained.

2.1 Literature review
This section provides an overview of the background and related research through a brief
literature review. The purpose is to collect the information needed to create a valid solution
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2. Method

design. It begins with describing the Android bug reports and the general structure of the
logs in section 2.1.1. This is aimed to provide the necessary background information about
Android logs to understand the later sections. Section 2.1.2 then explains the concept of
log parsers and three parsers that have achieved good results on Android logs. This is a
prerequisite for many log anomaly detectors, which is discussed in section 2.1.3 while also
outlining some existing approaches. Lastly, section 2.1.4 delves into duplicate detection and
some existing methods for doing this.

2.1.1 Android bug reports
This section provides essential background information on Android bug reports, offering
insights into their general structure and contents. Bug reports can be captured by users on
Android platforms to gain information about the system behavior [3]. The purpose of the
reports is to find and resolve bugs and do so by providing multiple files that are compressed
into a zip file. This contains a detailed log of what has happened in the system during the time
leading up to when the bug report is captured. This log file is very long and can sometimes
extend to up to a million lines of log data.

The Android bug report logs are in turn organized into sections for the different parts
of the system and different types of logs. The log sections all have their own format, except
logs describing a timeline of events happening in the system. These generally follow a basic
format of < timestamp process-ID thread-ID log-level log-tag log-message > with the log
levels verbose (V), debug (D), information (I), warning (W), and error (E). Some examples
of log sections in a timeline format are Crash, Kernel and Event [3]. A short example of the
Event log is shown in figure 2.1. In user builds user ID is also present before the process ID.

Figure 2.1: Short section of Event log from example Android bug
report as published on Android documentation website [3].

The different timeline log sections contain logs grouped by their own kind. As a conse-
quence, these timelines run in parallel and are not chronological if the bug report logs are
read from top to bottom. Additionally, the logs within a log section come from multiple
processes and threads that run in parallel. To get a true event sequence the log lines therefore
need to be separated by process ID.

2.1.2 Log parsing
The original format of logs is mostly unstructured. To be able to use them to train a model
they first need to be structured [16], meaning key attributes are pulled out and used to turn
the raw logs into a simplified stream of events. Logging frameworks usually have a common
header format, for example as displayed in figure 2.1 which has a format of < timestamp
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2.1 Literature review

process-ID thread-ID log-level log-tag log-message >. This part is very easy to structure
since it always follows the same format. The free text log message following the header is
however not as simple. Usually, it is made out of a constant string combined with dynamic
variables. During log parsing, the goal is to find and extract the constant string, as this is
the generic event template the log line needs to be converted into. The dynamic variables
are commonly replaced with a wild card token, generic character combination such as "*" or
"<*>" [41], giving message templates that can look like Service <*> took <*> ms in <*>.

This can be achieved manually with regular expressions or Grok patterns [1]. However,
this is both time-consuming and prone to error due to the amount of code and the update
rate of code in modern systems [38]. Especially in the use of third-party components, it
is difficult to have enough knowledge about the system to appropriately design template
patterns [12]. It is therefore desirable to apply automated parsing to logs [41]. Parsing can
be applied in an offline or online manner. Offline parsing is data-driven and entails that
the model is pre-trained and immediately can extract the template from a raw log message
[12][22]. This is possible since these types of parsing models have access to a larger amount
of logs at a time that can be utilized for training before assigning log groups [13]. In other
words, the log templates are in this case static and do not change over time within the session
of the collected batch of logs. This is contrary to online parsing which is done in a streaming
manner, where usually no training is done beforehand. Instead, log groups are dynamically
added and evolving throughout the parsing process [9][17].

Zhu et al. [41] evaluates a range of log parsers on different data sets from the perspective
of efficiency and accuracy, among other metrics. In the following subsections, the three log
parsers with the highest accuracies on the Android data set are discussed.

LKE
Log Key Extraction, shortly referred to as LKE, is an offline log parser published by Fu et
al. [12] in 2009 that uses hierarchical clustering and weight editing distance to assign event
templates to log messages. Additionally, the authors propose to combine this with time infor-
mation to detect low performance as well as using Finite State Automation (FSA) to present
the normal workflow for different processes to detect anomalies, but this will not be the main
focus in this section.

The process of the LKE parser is illustrated in figure 2.2. As visualized, the first step
is to manually remove parts of the logs that are already known to be dynamic parameters
using regular expressions. These parts can be IP addresses, URLs, text within brackets, et
cetera. What is remaining is by the authors called raw log keys, and the next step is to group
them using weighted edit distance and a threshold ς . Edit distance is a count of how many
operations of either replacing, deleting or adding that need to be applied to a sentence before
the sentences are equal. For the LKE parser, they use weighted edit distance to account for
the nature of how developers write logs by valuing different parts of the logs differently.
They mean that the words at the beginning of the message are more likely to be part of the
template, making the dynamic variables more likely to be in the later part of the string.

The weighted edit distance is therefore calculated accordingly using WED (rk1, rk2) as
described in the Sigmoid equation 2.1. rk1 and rk2 respectively symbolize a raw log key where
the number of operations needed for the log keys to be equal is EO, and the operations
taken can be described as OA1,OA2, . . . ,OAEO. xi is the index of the word operated in
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2. Method

Figure 2.2: Description of the steps taken during parsing in the LKE
parser, based on the illustration by Fu et al. [12].

the operation OAi and v controls the weight function. Thus, words occurring earlier in the
sentence contribute more to the edit distance than words occurring later.

WED (rk1, rk2) =
EO∑
i=1

1
1 + e(xi−v) (2.1)

As mentioned, the weighted edit distance is used to cluster raw log keys into initial
groups. Any two log keys with an edit distance less than ς get linked, and each connected
cluster of logs becomes the initial group. ς can be set using a k-means clustering algorithm.
This is done by calculating the difference for every possible pair of raw log keys using the
weighted edit distance in equation 2.1. All edit distances are then divided into inner-class
and inter-class, where inner-class distance implies that it is between two raw log keys with
the same or similar log key, and inter-class oppositely means that their log keys are different.
This is done using k-means clustering to cluster the raw log keys into two groups that corre-
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2.1 Literature review

spond to the inner-class and outer-class where the distances are roughly the same as the edit
distances. ς is then set as the greatest distance in the inner-class cluster.

The third step in the log key extraction is to split the groups further. Logs that belong
to similar log keys can end up in the same groups using only the weighted edit distance.
Therefore, a group-splitting algorithm is used to catch these cases. The most common word
sequence in the group is used to find the private word sequence. In figure 2.2, a common word
sequence for raw log key 4, 5 and 6 could be “file”, “of ”, “size”, “in”, “seconds”, and a private
word sequence for raw log key 6 could be “Edits”, ∅, ∅, “edits # loaded”, ∅, ∅. We count how
many different values there are for each part of the private sequences across all the raw log
messages. If there are a lot of different values it might be a dynamic parameter, but if there
are only a few different values it might be an indication of different log keys and the need to
further split a group. This is decided with a threshold value ϱ. Groups are split repeatedly
using this group splitting algorithm until no more splits can be made. Finally, the log key is
extracted within each group from the common sequences.

Log keys are assigned to new logs by first using the regular expressions from the first step.
The new log is then compared to existing log keys with the weighted edit distance, and if the
smallest distance is less than a threshold σ the log is assigned to the corresponding log key.
If the smallest distance exceeds the threshold the log message is considered an error message
and its log key becomes the raw log key. Following this, abnormal sequences are detected
using FSA.

As mentioned, LKE is an offline parser and needs to be trained before the real parsing
is done, and consequently needs to be re-trained after system upgrades that affect the logs.
The training is done on normal logs from different devices. The LKE parser has an accuracy
of 0.909 on a test set of 2000 Android logs in the paper by Zhu et al. [41], but is taking days
to parse their full test sets [20] which makes it slow compared to the other evaluated parsers.

Drain
Drain, fixed depth tree based online log parsing method, is an online parser published in
2017 by He et al. [17] that utilizes a fixed depth tree to efficiently parse logs and match them
to a template format. The fixed depth tree makes sure all leaves are on the same depths and
reduces the time needed to search it as it limits the number of nodes to be visited during the
search.

The tree starts with a root node at the top of the tree and ends with leaf nodes at the bottom.
Between the root node and leaf nodes are internal nodes. An illustration of the tree structure
is shown in figure 2.3. The leaf nodes contain information about the log template and IDs for
the log lines that are assigned to it. Before traversing the tree the log line is pre-processed. In
this stage, some constants are already removed from the message using regular expressions.
The regular expressions are provided by the user and are customized for the current domain.
These regular expressions can entail for example numbers and IP addresses.

After this the tree is searched to find the appropriate leaf node, and with that log tem-
plate, for the current log message. As seen in figure 2.3, the first layer of internal nodes de-
scribes the path to take based on the number of tokens, i.e. number of space-separated words,
in the log. The next layer is based on the assumption that the first tokens in a log message
are constant and hold possible values for the first word in a message, such as "Kernel" or "De-
tected". Depending on the set maximum tree depth, the following layers hold values for the
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2. Method

Figure 2.3: The tree structure used in the Drain parser, based on the
illustration by He et al. [17].

second token, and so on. To avoid branch explosion, tokens containing digits all get summa-
rized to the same node within that layer with a wild card token, e.g. "<*>", as value. The final
layer, the leaf nodes, contains lists of log groups, which in turn hold information about the
log template and the IDs for the logs assigned to it.

The log message is then compared to the log event templates inside the log groups using a
similarity score that roughly measures the ratio of tokens they have in common. The highest
similarity score is then compared to the similarity threshold. If the similarity is above the
threshold the log message is assigned to that log group and the event template is updated.
This is done by replacing any tokens in the template that do not match with the correspond-
ing tokens in the log message with a wild card token. If the similarity instead is below the
threshold, a new log group is created with a template based on the current message and the
tree is updated.

As presented in the research by Zhu et al. [41], Drain is on average the most accurate
log parser over the researched data sets, and the second most accurate for a test set of 2000
Android logs with an accuracy of 0.911. As mentioned previously, the tree structure makes
the parsing fast compared to the other evaluated parsers [17][41]. For these reasons, it is
the more commonly used log parser in research, as it is used in the pre-processing stage of
multiple successful log anomaly detectors such as Deeplog [10], PLELog [39] and LogBERT
[14].

Spell
Spell, short for Streaming Parser for Event Logs using LCS, is an online log parser based
on the longest common subsequence computation created by Du et al. [9] in 2016. They
investigate an at the time never before explored idea that the static part of a log message
takes up the majority of the sequence, so two sequences that share many elements therefore
likely share the same log print statement.
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2.1 Literature review

Initially the log entry e is divided into tokens, which are words separated by a set of
delimiters such as space or equal sign. The log sequence is then used during the computation
of the longest common subsequence between log entries as Σ = tokens from e1 ∩ tokens from
e2 ∩ . . . ∩ tokens from eL, where Σ are all possible tokens from e1, e2, . . . , eL. Given two
sequences α = {a1, a2, . . . , am} and β = {b1, b2, . . . , bn}, if γ is a common subsequence if it
is a subsequence of both. The goal of the Longest Common Sequence problem is to find the
longest possible such γ. The sequences γ does not need to be appearing uninterrupted in α
and β, and can thus for example be γ = {1, 5, 7} for α = {1, 3, 5, 7, 9} and β = {1, 5, 7, 10}.

For the process of the actual parsing, which can be seen in figure 2.4, the authors use a
data structure that they call LCSMap, which in turn holds LCSObject data structures. The
LCSObject contains information about the longest common sequence of a set of log messages
and their IDs. When a new tokenized log sequence s is received, the longest common sequence
LCS(s, qi) is calculated between s and the sequence qi for every LCSObject i. The largest
length of the longest calculated LCS(s, qi) as well as the index of the LCSObject is saved as
li through the iterations. When the calculations are done, if l j = max(l′i s) is larger than a
threshold τ, s is considered to belong to the same message template as qi , otherwise a new
LCSObject is created. As a default, LCS(s, qi) is expected to be at least half the length of s,
thus the default threshold is τ = |s|/2 where |s| is the length of the tokenized log sequence.

Figure 2.4: The parsing process in Spell, based on the illustration by
Du et al. [9].
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If the threshold was reached, q j is then updated to correctly represent the log sequences
in the jth LCSObject and s. This is done by calculating the longest common sequence
LCS(s, q j) and replacing tokens in q j missing from the longest common sequence with "*".
In the case of any consecutive "*"s they are merged into one.

The time complexity for this parsing method to process a log entry is linear in relation
to the size of the log. For efficiency improvements, they apply optimization by detecting if
the message type for a new log entry already exists. Spell has the highest accuracy of 0.989
compared to all evaluated parsers on a test set of 2000 Android logs in the research by Zhu
et al. [41]. It performs well on average over the different data sets, however, specifically for
the Android set the accuracy is impacted negatively as the log size grows.

2.1.3 Anomaly detection
As computer systems and applications increase in complexity, security and stability grow
increasingly important. System logs play a big role in finding irregular behavior and bugs,
however, due to the complexity of today’s systems log analysis can be both time-consuming
and error-prone when done manually. In recent years several deep learning models have been
proposed to assist developers with this by analyzing the log data, a handful of which are
evaluated by Le et al. [19]. The models have varying approaches to how this is done. One
way is by analyzing the sequential order of the logs, commonly in a given window frame.
Another is through quantitative vectors which implies counting the occurrence of each log
event within a window frame. There are also cases where an embedding method like e.g.
word2vec is used to create a semantic representation of the log templates [14][24]. In the
following subsections, a more elaborate explanation is done of a few existing models.

Deeplog
Deeplog [10] is a neural network model utilizing Long Short-Term Memory (LSTM) to learn
normal log execution orders to predict the next log key based on a given preceding sequence.
Its base idea is that the complexity and control flows of logs from modern systems make
system logs similar to natural languages, but with a smaller vocabulary and more structure.
This makes an LSTM approach suitable [18]. The model is used to predict anomalies by
testing if the next log key in a sequence matches the value predicted by the model.

The general architecture of the model can be seen in figure 2.5. As input it takes a se-
quence seq = {mt−h, ...,mt−2,mt−1} of window size h where each mi is in a set of possible
event keys K = {k1, k2, ..., kn}, where ki = {1, ..., n}. The output Pr(mt |seq) is a vector of the
conditional probabilities of the next log key given the input sequence seq. This is achieved
with a neural network with L LSTM layers, each of size α, followed by a linear layer of size
equal to the number of possible event keys n. The proposed default values for L and α are 2
and 64 respectively.

The training of the neural network structure proposed in Deeplog is done with log se-
quences that are considered normal. For each input sequence of size h, the next coming log
key is given as a label to adjust the weights to be able to predict the correct next log key.
The model is trained as a multi-class classifier where the log keys in K define the classes. As
previously mentioned, the model returns a probability distribution during prediction for the
given input sequence. This is then employed by sorting the log keys by highest probability
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Figure 2.5: The inner structure of the Deeplog model based on the
illustrations by Du et al. [10], illustrating the LSTM layer(s) followed
by the linear output layer. The input is a sequence of log keys and the
output is a vector of probabilities for each log key, given the input
sequence.

and considering them as normal if they are among the tog g probability candidates. In the
context of anomaly detection, the sequence within the window and the succeeding log key
are considered an abnormal sequence if the next log key is not within the normal candidates.
The default values in the paper by Du et al. [10] for window size h is 10 and top g candidates
is 9.

The model is evaluated in the paper by Le et al. [19] where conclusions that were drawn
included that it was a simple approach that held an advantage in only needing to be trained
on normal logs. Its forecasting-based method also made it able to detect anomalies earlier
than classification-based models. It does however perform less well on complex data sets and
does not directly consider the semantic properties of the logs. On the other hand, it performs
well on high data noise, i.e. high ratios of mislabeled logs. Another interesting finding is that
Deeplog performs better on random training data than chronological, the reason being that
in a random selection of data, the model gets to see future event logs during training and
because of that can make better predictions.

LogAnomaly
Like Deeplog [10], LogAnomaly [24] is also based on an LSTM model and uses a forecasting-
based approach for anomaly detection, where sequences diverting from the predictions are
considered abnormal. In distinction to the state-of-the-art anomaly detection models at the
time, LogAnomaly also uses quantitative vectors in addition to the sequential vectors during
prediction.

During the training stage, they use a log parser to extract event templates from log lines.
These are in turn converted into embeddings by combining word embeddings generated
with Word2Vec [25] through weighted average, from which log sequences are then modeled as
vectors of log template embeddings. During prediction, log lines are matched to log templates
and turned into embeddings. If no matching template is found the log template is generated
by the parsing tool and is turned into an embedding and matched to the template embedding
vector with the highest similarity. This novel approach of using embeddings for the template
vectors is called Template2Vec and is based on synonyms and antonyms constructed in the
training stage.

The general structure of LogAnomaly as described in the paper is shown in figure 2.6.
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As input it takes both a sequential vector V j = (vs j , vs j+1 , ..., vs j+w−1) as well as a count vec-
tor C j ,C j+1, ...,C j+w−1, and with this it generates an output that is the most probable next
log template vs j+w given the inputs. The original log sequence S = (s1, s2, . . . , sm) is stepped
through with a window of size w, giving subsequences like S j = (s j , s j+1, . . . , s j+w−1). V j is
the embedded vector template sequence for S j . The count vector is generated by for each
log message si ∈ S j , taking the sequence of logs leading up to it (si−w+1, si−w+2, . . . , si) and
calculating the count vector Ci = (ci (v1) , ci (v2) , . . . , ci (vn)). In the count vector ci (vk) is
the number of vk in the embedded template vector sequence Si = (v(si−w+1), v(si−w+2), . . . , v(si)).
This gives C j ,C j+1, ...,C j+w−1 for S j as input to the model. The authors propose the default
settings of the model as two LSTM layers with 128 neurons and a window size of 20.

Figure 2.6: Inner structure of the LogAnomaly model as proposed
by Meng et al. [24]. Both the sequence of embedded log templates
and count vector is taken as input.

In the paper by Le et al. [19] it is noted that Loganomaly [24], similarly to Deeplog [10],
only requires normal data during training, can detect anomalies early and is less sensitive to
mislabeled logs. However, it also holds similar downsides to Deeplog by performing better on
simpler data and the fact that it is impacted by any potential log parsing errors. Additionally,
the combination of sequential and quantitative vectors makes the model itself more complex.
On the other hand, it possesses the strength of not immediately marking an unknown log line
as an anomaly. Due to the feature of being able to match new log templates to existing ones,
it can avoid some false positives.

PLELog
PLELog [39], named by its Probability Label Estimation properties, detects anomalies with an
attention-based GRU network. Unlike the previously mentioned anomaly detection meth-
ods, this is a fully semantic approach. It also only requires labels for a small set of the normal
logs in the training data set which it can use to estimate the labels of the remaining data set.

As shown in figure 2.7, the approach consists of three main stages; semantic embedding,
probabilistic label estimation, and anomaly detection. The semantic embedding stage itself
is also divided into three parts, the first being log parsing done with Drain [17] (see section
2.1.2) to extract log event templates. The log events are then stripped of any non-character
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tokens and stop words, and concatenated words such as NullPointerException that can occur
in system logs are divided based on the Camel Case rule [8]. The semantic word vectors are
then extracted for each of the words in the log events using the pre-trained Glove model [26].
Lastly, the word vectors are aggregated with consideration for the importance of each word
which is done with TF-IDF [32].

Figure 2.7: The process of using PLELog on training and test data
based on the illustration by Yang et al. [39].

The second stage as shown in figure 2.7 is the probabilistic label estimation for unlabeled
log sequences based on the known normal log sequences. This is done with the assumption
that log sequences with similar semantics are likely to have the same label by doing semantic
clustering of the summed semantic vectors from each log sequence. The labeled logs within
each cluster are then used in combination with each unlabeled log sequence’s certainty score
produced by the clustering algorithm HDBSCAN [23] to determine their probability to be
either normal or abnormal. This is only done on the training data.

The anomaly detection model is then trained on the pre-labeled and probabilistically
labeled data. For this, it uses a GRU neural network combined with an attention-based
masking layer. This makes the network assign larger weights to log events that have a stronger
correlation with the anomaly detection result and smaller weights to noisy log events. A non-
linear layer then predicts whether the log sequence is normal or abnormal.

Le et al. [19] evaluate PLELog as advantageous in the way that it does not require a fully
labeled data set and can estimate labels. The use of semantic vectors and attention-based
GRU also increases its effectiveness. However, it is slow compared to other anomaly detec-
tors due to the clustering model. It is also not performing well in early anomaly detection,
affecting its abilities in online scenarios. Surprisingly, according to Le et al. [19], it also per-
formed worse on noisy data, something the attention layer meant to combat in the original
paper.

2.1.4 Duplicate detection
The current duplicate detection tools mainly involve the comparison of titles, descriptions,
and other structured information in the bug tickets. The approaches to doing this involve a
range of methods such as dual-channel convolutional neural networks (dual-channel CNN),
bidirectional long short-term memory (bi-LSTM), recurrent neural networks (RNN), and
multilayer perceptron (MPL) [40]. They also vary in how the decisions about duplicates are
made. One method being a ranking setting and another being a classification setting. The
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ranking setting involves comparing a ticket to multiple others and ranking their probability
of being duplicates, while classification entails deciding on whether they are duplicates or not
given a pair of tickets [40]. The following sections explain some existing duplicate detection
models.

REP
REP [33] is a popular retrieval-based approach proposed over a decade ago by Sun et al. It
uses textual features such as summary and description fields as well as the categorical fea-
tures product, component, type, priority, and versions to compare the similarity between
bug tickets. For the textual features, it calculates textual similarity with an extended version
of BM25F for the summary and description field as bi-grams and uni-grams respectively. For
product, component and type, the feature gets the value 1 if they are equal and 0 otherwise.
Lastly, priority and version get the value of the inverse of the difference between the tickets.
This is then applied through a retrieval function where the weights of the different features
can be adjusted. The adjustable features can be optimized through stochastic gradient de-
scent with past bug tickets.

Siamese Pair
Siamese Pair [7] is a duplicate detection model based on a combination of Siamese CNN and
LSTM. It handles short descriptions, long descriptions and structured information, such as
version and priority, separately. The descriptions are first turned into vector representations,
and the short description is then encoded with a bi-directional LSTM and the long descrip-
tion with a CNN. The structured information is encoded using a feed-forward network. All
features are then combined to represent the ticket in a comparable state that can be used
either categorically or with ranking.

SABD
Soft Alignment Model for Bug Deduplication (SABD) [27] consists of two sub-networks for
textual and categorical information. As input, it takes two bug tickets to be compared. The
textual information, being the free text in the summaries and descriptions, is handled by the
textual module. This module consists of an advanced architecture including textual embed-
ding, soft alignment comparison, textual encoder, and textual comparison. The soft attention
alignment in the second layer distinguishes this model by allowing for interaction between
the text content from the tickets. It computes a similarity score between tokens from both
tickets, enabling the selection of relevant features from each input. The categorical module
includes an embedding layer, encoding and, finally, comparison. Instead of assigning the cat-
egories a binary value based on whether they are equal or not, embeddings are used to account
for similar category inputs. The results of the comparisons from the two sub-networks are
then combined and evaluated through classification.

HINDBR
A more recent approach is Heterogeneous Information Network based Duplicate Bug Report
prediction (HINDBR) [37] which is a deep neural network (DNN) that utilizes a heteroge-
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neous information network (HIN) to detect semantically similar bug tickets. HIN is a more
complex type of network that can have multiple types of nodes and edges. This is used by
creating nodes for possible features and letting tickets that share a node connect through it.
For textual features like summary, an RNN is used for sequence embedding. Textual infor-
mation and learned relations from the HIN are then embedded with a DNN to calculate the
similarity scores.

DC-CNN
Another recent approach is DC-CNN [15] which uses a dual-channel CNN to determine if
bug ticket pairs are duplicates. It uses the component, product, summary, and description
from the ticket which are added to a text document and pre-processed, involving tokeniza-
tion, stemming and removal of stop words and common industry words. The data is then
turned into single-channel embedding matrices with word2vec which are compared using
the DC-CNN model. The convolutional part of the network uses convolution and pooling
to extract keywords in the document. The dual-channel property implies the use of two chan-
nels in the convolutional layers so two bug tickets can be processed at once. The extracted
features are then merged to predict a similarity score between the two tickets and use the
classification method to determine if they are duplicates based on a similarity threshold.

2.2 Interviews
To design a possible solution, an understanding of common approaches for manually ana-
lyzing bugs and identifying them as duplicates is needed. For research centered on under-
standing experiences and processes, interviews are an appropriate approach. They require
less experience than questionnaires and also work well when the interviewer’s experience on
the topic is inadequate [28]. In the following sections, the structure and execution of the
interview are explained.

2.2.1 Interview structure
In this interview process, a semi-structured approach was used. This is one of three interview
categories and was picked due to it is suitability for novice researchers. The other interview
types are unstructured and fully structured [30]. These differ in how strictly the interview is
planned and how strongly the plan is followed. The semi-structured approach used for this
interview is the most common and is a mix of both. It has a prepared plan of questions, but
it does not have to be asked in the exact order and there is room for a natural conversation
to develop similarly to the unstructured interview [28][30].

Additionally to how strictly the interview plan is executed, the interview was also di-
vided into different phases. First, the participant was introduced to the background of the
research and any other relevant information. After that, the participant was asked introduc-
tory questions to earn the necessary knowledge about their background. Then came the main
interview part which took the majority of the interview time [30].

The interview questions consist of two subparts. The first being questions regarding
general bug report log analysis and the second part is questions where the participant was
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directly asked how this could be applied in machine learning. The full questions can be found
in Appendix A.

2.2.2 Participant selection
The goal of the interviews was to collect broad data to get a generalized understanding of
current approaches.

The interviews were performed on four developers of different backgrounds and experi-
ence levels. The areas of work consisted of launcher and apps, Bluetooth and connectivity,
testing, and park assist camera. Their experience of Android bug reports, measured in time,
varied greatly between a year and ten years. The same could be observed for how often they
analyzed Android bug report logs, which ranged from every day to once a week or less.

2.2.3 Interview process
All interviews were held in person, where the participant was first asked for permission to
record the interview and given an introduction to the research. They were then asked ques-
tions about their background, followed by the prepared interview questions. Afterward, the
participant was allowed to add any additional information they found relevant. Notes were
taken during the interview process, which was then supplemented with complementary in-
formation from the recording of the session. The average length of the interviews was half
an hour.

2.2.4 Interview results
The knowledge gained from the interviews indicated that different teams encounter dupli-
cate bug reports with varying frequencies, where the answers differed between approximately
10% and 95% of bug reports having duplicates. In the specific case of 95% it however often
involved a few common errors that could usually be found with a special GREP command.

To identify duplicates many look at the ticket title, description, and potential images and
other media as a first step. After that they look in the log file, often narrowing it down to
the log lines in the time interval surrounding the time shown in images or videos if available.
Many interviewees found it hard to answer which log section they mainly look at, as that is
hard to know when you are searching in the full file. However, common for all included teams
seemed to be that they look at log lines commencing with a timestamp, with the structure
described in section 2.1.1.

It was mentioned that challenges arising when identifying duplicate Android bug re-
ports can be that it is hard to know what to look for in the logs in the case of less previous
experience. There are also occasions where two tickets that look to belong to the same bug
are actually caused by two different errors, as well as situations where an error creates two
seemingly different bugs and tickets.

The consequence of duplicates of Android bug reports not immediately being identified
is generally wasted time and energy by the developers. But it is usually discovered if two
developers work on the same bug when it is discussed during daily meetings and it is realized
that the core error seems to match. The time taken to discover this way that two Android
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bug reports are duplicates can vary and relies on the developer finding what causes the bug.
When duplicates are found the tickets are linked and typically the newer one is closed.

The contribution of machine learning on duplicate identification of Android bug reports
expressed by the interviewees can be summarized as that it would be good with a database
that makes it possible to look for recurring bugs, and that it would be helpful to apply ma-
chine learning when the bugs are hard to find.

2.3 Solution design
Given the information gained from the literature review and interviews described in sections
2.1 and 2.2, the solution design in figure 2.8 is proposed. The first step involves bug report
collection, which is presented in section 2.3.1. This part explains the bug report data used
in the method and how it is retrieved. The pre-processing of the bug report log data is then
described in section 2.3.2 where a description of the filtering and log parsing can be found.
Section 2.3.3 presents the anomaly detection step, followed by section 2.3.4 where the process
of the duplicate detection is explained. Lastly, section 2.3.5 details the evaluation metrics used
when presenting the final results.

Figure 2.8: Solution proposal.

2.3.1 Bug report collection
The data to be used in this research consists of Android bug reports captured from Android-
based devices at Volvo Cars. The collection of the bug reports was done through their cus-
tomized version of Jira [5], which is a tool used for issue tracking and project management.
Using the API offered by the Jira platform, a script was developed to download all bug reports
from tickets matching a given search query, for example including assigned team or status.
When downloaded, the bug reports are compressed zip files, where the data of interest is a
bug report text file inside. The format of this file is more elaborately described in section
2.1.1.

The Jira API also provides information about the bug ticket. One example of this is
information about which other tickets are connected to it as a duplicate or clone. This data
is also retrieved to be able to connect which bug reports are duplicates.

For this research all available bug reports for Android version R and S assigned to two
of the software engineer teams at Volvo Cars were downloaded, resulting in a total of 1351
bug reports at the time. The chosen teams were the Bluetooth team and the Launcher team
due to convenience and closer collaboration throughout the research process. An additional
reason for limiting the data to only two software developer teams was to constrain the scope
of the research.

Out of all bug reports approximately 300 were part of a duplicate grouping. 51 of the
among these most recently added to Jira were separated from the full data set and used as
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a test set in the final grouping stage. This leaves us with 1300 bug reports for training and
validation during the anomaly detection stage. The reason for only using bug reports with
guaranteed duplicates during the final duplicate prediction is due to the nature of the data
set. Bug reports marked grouped as duplicates are sure to be duplicates, while bug reports that
have not been marked as duplicates are not guaranteed to not be an undiscovered duplicate
of another bug report.

2.3.2 Pre-processing
To apply anomaly detection, the data need to be pre-processed. This involves filtering and
parsing logs to extract event keys. The following sections describe how this is done.

Filtering

A bug report log file contains hundreds of thousands of lines of logs. It is therefore necessary
to filter out log lines that are not important during comparison to accurately detect duplicate
bug reports. As mentioned in the summary of the interviews presented in section 2.2.4, the
logs predominantly analyzed among developers are kinds starting with a timestamp. For
simplicity and compatibility with the used tools we primarily focus on these log types within
this research.

Given this, the first step of pre-processing the data is to filter out only the lines of such
format, as illustrated in figure 2.9. It was also found that some lines were missing user IDs,
and these were removed as these exact lines were also present in other parts of the logs with a
user ID included. This filtering step was necessary since the used log parsing method assumes
that the log has a consistent format of < timestamp user-ID process-ID thread-ID log-level
log-tag log-message >. The log lines of this format make up only about 5-20% of the total log
lines, so this significantly reduces the amount of data and removes a lot of information that
is not needed in this context.

Figure 2.9: Illustration of the filtering step where only log lines fol-
lowing the format of < timestamp user-ID process-ID thread-ID log-
level log-tag log-message > is kept.

26



2.3 Solution design

Log parsing
To measure the similarity between bug reports we need to make log lines comparable. To do
this we need to remove variable data from the constant strings in the log lines. This can be
done manually with regular expressions or Grok patterns [1], but for this research, we utilize
one of the multiple log parsing tools available for this purpose as discussed in section 2.1.2.
The parser was chosen based on accuracy and efficiency for mainly Android logs in the study
by Zhu et al. [41].

In this research, Drain [17] is used because it is the most accurate and among the more
efficient parsers for Android logs as the data set grows. The Spell parser is the most accurate
on a limited data set but performs poorly as the Android data set grew, converging to an
accuracy of 0.2 [41]. This makes it unsuitable for the large data set used in this research.
Further, the LKE parser was considered as unfit due to its parsing time making it unattainable
to parse larger logs. It also needs to be re-trained between system updates due to its offline
characteristics, which makes it less of a good choice from a long-term perspective.

The implementation of Drain is based on the implementation provided in the toolkit
[21] made for Zhu et al. [41] and the parameters were set according to their default values
for Android logs as similarity threshold 0.2 and tree depth 6. The general process of the log
parsing can be seen in figure 2.10. The full log file is given to the parser which extracts the log
message and separates them based on process ID. Each process is then parsed and the logs are
encoded and assigned event keys which are concatenated to a single line that describes the
order of the logs within the process. In the final encoded file, each line represents a process
and the string of numbers shows the order of the log events.

All processes between all parsed bug reports share the same dictionary and parsing tree
which can be seen in figure 2.3. The decision to share the tree between all bug reports is to
make the parsing more consistent between bug reports, as the strategy of the Drain parser
causes two identical lines from different files to be parsed differently if similar lines are oc-
curring with different frequencies between files. For this purpose the tree data structure is
saved in a pickle [11] file to be loaded in later runs.

2.3.3 Anomaly detection
Abnormal sequences are detected in the logs using the encoded log event sequences acquired
from Drain. To achieve this, the first step is to learn normal sequences. LSTM models are very
good at learning sequences and have successfully been used to learn human languages which
is an even more complicated task than learning log sequences. In this step, we therefore use
the LSTM model approach Deeplog [10]. LogAnomaly [24] similarly uses LSTM modules in
its model with the addition of also analyzing the quantitative vectors. However, Deeplog
achieves similar results with a simpler structure and was, therefore, easier to find a correct
implementation for. We used a public implementation of Deeplog [36] that matched the
specifications in the paper [10].

The Deeplog model is used with the default parameters of 2 layers and layer size 64,
as proposed in the original paper by Du et al. [10], and is trained for 10 epochs given the
computational resources available. The paper proposes a top-g of the highest probability
candidates to be considered normal during the prediction of the next event key. Different
values of g and h are evaluated in the experiment. The default values provided for Deeplog

27



2. Method

Figure 2.10: Description of the parsing process and how log line be-
longing to different process ID’s are separated for some example log
lines.

are g = 9 and h = 10. These default values are therefore explored in this research along with
a range of surrounding values for a comprehensive evaluation, with 7, 8, 9, 10, and 11 for g
and 8, 10, 12, 14, and 20 for h. Window size 20 was added to learn about the impact of larger
window sizes.

Given the data described in section 2.3.1, the bug report lines used for training contain
both normal and abnormal sequences. The quantity of the data and the required knowledge
make it impossible to accurately label the sequences, and the sequences therefore remained
unlabeled. This played a key part in the choice of an appropriate model. The Deeplog model
is preferably trained on normal sequences, but as this is not possible in this case we utilize the
probability attribute in the model’s design. We make the conjecture that abnormal sequences
that occur rarely are not present among the top predictions and therefore do not make a too
big impact on the anomaly detection result. It was shown by Le et al. [19] that Deeplog holds
some tolerance to mislabeled logs and remains giving stable results as the ratio of mislabeled
logs grows.

2.3.4 Duplicate detection
The first step of the duplicate detection stage is using the trained Deeplog model to predict
the next event log key in a sequence. The event keys are iterated over with a sliding window
of size h, one step at a time, as described in figure 2.11. For each sequence of h event keys
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the next is predicted with the trained model. If the actual next event key is among the top
g probability event keys it is considered a normal sequence and we move on to the next
iteration. However, if the actual event key is not among the top g probability event keys it
is considered an anomaly and the sequence of h event keys and the following event key are
saved as a list in a list of abnormal sequences for the given bug report. After this, the bug
report is compared to other bug reports by calculating the ratio of how many sequences are
matching between their abnormal event key sequences. The duplicate detection can then be
done in two ways, as described in the following sections.

Figure 2.11: During training and prediction with the Deeplog LSTM
model, the event sequences are iterated over with a sliding window
with a set size h to learn or predict the correct next event key.

Classification
With the classification method, the bug reports in the test set are compared to all other bug
reports in the test set this way by comparing their anomalies. If the match ratio is above a
threshold t the bug reports are assumed to be duplicates of each other [40]. Based on obser-
vations, the value for t is set to 0.1 which requires that at least 10% of their abnormal logs
overlap.

Ranking
The ranking method compares the anomalies of bug reports in the test set to all others in the
test set. The k bug reports with the highest match ratio are assumed to be possible duplicates
[40]. If any of the proposed matches is a duplicate of the current bug report, the guess is
considered correct during evaluation.

2.3.5 Evaluation metrics
The effectiveness of the duplicate detection results with the classification method (see sec-
tion 2.3.4) are measured using precision, recall and F-score. These evaluation metrics provide
an assessment of the effectiveness of duplicate detection in accurately identifying and pairing
duplicate bug reports. When defining these metrics positive and negative instances are used.
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Positive instances entail a bug report being a duplicate to another, where true positive indi-
cates a correct pairing and false positive an incorrect pairing. Similarly, negative instances
mean a bug report is not a duplicate of the other, with true negative being a correct pre-
diction of the bug reports not being duplicates of each other and false negative an incorrect
prediction. The evaluation metrics for the classification method are defined as follows.

• Precision is the fraction between correctly predicted positive instances and all pre-
dicted positive instances, indicating the accuracy of positive predictions.

Precision =
True positive

True positive + False positive

• Recall is the fraction between correctly predicted positive instances and all actual pos-
itive instances, giving a measure of how well we detect positive instances.

Recall =
True positive

True positive + False negative

• F-score is the harmonic mean of the precision and recall, giving a combined balanced
measure of both values.

F-score = 2 ·
Precision · Recall
Precision + Recall

The evaluation metric used for the ranking method is Recall Rate@k, shortly referred
to as RR@k. It was chosen due to it being the most consistently used evaluation metric in
research about duplicate detection [4][7][29][34][35]. This metric is based on the ranking of
the potential duplicate bug reports based on the match ratio. It is defined as

RR@k =
nk

m
,

where nk is the number of bug reports in the test set, i.e. the number of prediction in-
stances, for which at least one correct duplicate is found in the top k positions in the ranking.
m is the total number of bug reports in the test sets, thus the total number of performed pre-
dictions [40].
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Results

This section presents the results from the models from the method described in section 2,
divided into classification and ranking evaluation methods as described in section 2.3.5. The
baseline system had 2 LSTM layers of size 64 respectively and was trained for 10 epochs
with varying values for window size h. This model was then used during prediction to find
anomalies to be used during the duplicate detection. The results for the classification method
are presented in section 3.1 and for the ranking method in section 3.2.

3.1 Classification
For the classification method, prediction was first done with the different window size mod-
els and default top g probability = 9 to see the impact of different values in window size h.
This gave the results presented in section 3.1.1. Likewise, different values were then used for
top g probability during prediction with the model trained with default window size h = 10
to see the impact of varying top g probability values. These results can be seen in section
3.1.2. Combined values for the results from a range of top g probabilities and window sizes
to see the relation between the two is lastly presented in section 3.1.3.

3.1.1 Window size h
This section presents the results for varying values for window size h as can be seen in figure
3.1. The results are for h in the range 8, 10, 12, 14 and 20, with the default value 9 for top
g probability. The information in the graph indicates that a growing widow size h increases
the precision. The recall trend is however not as clear as the precision, but the collected
data suggests a slight downward turn in recall as the window size increases to large values.
Together, the precision and recall provide an F1-score that strongly follows the trend of the
recall.
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Figure 3.1: Evaluation metrics for different values for window size h
for default top g probability = 9.

3.1.2 Top g probability
In this section, the results for varying values of top g probability in the range 7 to 11 are
presented in figure 3.2. Default value 10 was used for window size h. One can see a slight
downward trend for all evaluation metrics as g grows. Out of the range of values investigated,
the smaller values 7 and 8 give the highest precision, recall and F1-score.

Figure 3.2: Evaluation metrics for different values for g top proba-
bility for default window size h = 10.
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3.1.3 Combined top g probability and window size h
results

This section presents a summary of values for precision, recall and F1-score for top g prob-
ability in the range 7 to 11, and window size h in the range 8, 10, 12, 14 and 20. This can be
seen in the tables 3.1a-3.1c. Here one can see that a smaller g around 7 and 8 and potentially
lower gives the best performance in all validation metrics regardless of the window size. For
window size h, precision is the highest for h = 14, while recall is highest for h = 8 and
F1-score for h = 12.

g
h

8 10 12 14 20

7 0.312 0.389 0.421 0.615 0.600

8 0.333 0.389 0.450 0.615 0.600

9 0.300 0.353 0.450 0.583 0.600

10 0.258 0.353 0.421 0.583 0.600

11 0.310 0.353 0.421 0.583 0.600

(a) Precision.

g
h

8 10 12 14 20

7 0.169 0.119 0.136 0.136 0.102

8 0.153 0.119 0.153 0.136 0.102

9 0.153 0.102 0.153 0.119 0.102

10 0.136 0.102 0.136 0.119 0.102

11 0.153 0.102 0.136 0.119 0.102

(b) Recall.

g
h

8 10 12 14 20

7 0.220 0.182 0.205 0.222 0.174

8 0.209 0.182 0.228 0.222 0.174

9 0.202 0.158 0.228 0.197 0.174

10 0.178 0.158 0.205 0.197 0.174

11 0.205 0.158 0.205 0.197 0.174

(c) F1-score.

Table 3.1: Precision, recall and F1-score for combinations of values
on top g probability and window size h.

3.2 Ranking
For the ranking method, a range of values was used for window size h and top g probability to
see the results of different combinations. As earlier described in section 2.3.5, the evaluation
metric RR@k is used. These results can be seen in the tables 3.2a-3.2c with 1, 3 and 5 as values
for k.

For k = 1 the highest RR@k was 0.275 for h = 8. For k = 3, the RR@k for h = 8
stays roughly the same, while it for other values has increased by approximately between 0.15
and 0.275. Here the window size h = 20 was best with RR@k 0.471 for g = 10, followed
by h = 10 with RR@k 0.431 with g = 11. Finally, for k = 5 the top RR@k is 0.588 for
h = 12 with g = 9...11. In the step between k = 3 and k = 5, all value combinations had a
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noticeable increase in RR@k with around 0.1 or more. The top RR@k increased by 0.117, i.e.
11.7 percentage points.

g
h

8 10 12 14 20

7 0.275 0.216 0.235 0.196 0.216

8 0.255 0.196 0.235 0.196 0.217

9 0.255 0.235 0.255 0.196 0.176

10 0.275 0.216 0.255 0.216 0.196

11 0.275 0.216 0.255 0.216 0.216

(a) k = 1.

g
h

8 10 12 14 20

7 0.275 0.373 0.333 0.373 0.451

8 0.275 0.392 0.333 0.373 0.451

9 0.275 0.412 0.333 0.373 0.412

10 0.294 0.412 0.353 0.373 0.471

11 0.294 0.431 0.353 0.353 0.392

(b) k = 3.

g
h

8 10 12 14 20

7 0.431 0.529 0.549 0.510 0.529

8 0.431 0.529 0.529 0.490 0.549

9 0.412 0.549 0.588 0.490 0.490

10 0.412 0.549 0.588 0.549 0.549

11 0.471 0.549 0.588 0.549 0.510

(c) k = 5.

Table 3.2: RR@k for combinations of values for top g probability
and window size h for k = 1, 3, 5.
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Chapter 4

Discussion

This section discusses the results presented in section 3. The findings are evaluated cen-
tered around the research questions in section 4.1, followed by a discussion of limitations
and threats to validity in section 4.2 and potential future work in section 4.3.

4.1 Findings
This section discusses the answers to the research questions from section 1.1.

4.1.1 RQ1: Can log anomaly detection be used in du-
plicate detection between bug report logs in an
industrial setting where the data is unlabeled?

Based on the results in section 3, there is potential for anomaly detection to be used together
with duplicate detection in an industrial setting with unlabeled data. For such an application
the ranking method is likely most appropriate [40], as it makes sense to return the k most
likely duplicates to the user, rather than the user wanting to compare pairs of bug reports
manually.

For k = 1, the highest RR@k was 0.275, which indicates a correct prediction roughly a
fourth of the time. This is fairly good considering all the steps and parameters involved in
the duplicate detection pipeline. This could be used in a real scenario, although a higher
RR@k would likely be desirable. When k is increased to 3, a RR@k of 0.471 is achieved. This
is a good recall given that the developer then only has to look through 3 bug reports to find
the potential duplicate. For k = 5 the highest RR@k was 0.588. This is a good increase, but
given the trade-off that the developer now has 5 candidates as possible duplicate candidates
that will take time to evaluate and confirm. The chance of any of them being true being only
slightly over half of the time is potentially not worth it.
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The more appropriate value for k would therefore likely be 3. As mentioned, the devel-
oper would then only have to look further at 3 bug reports to find the potential duplicate.
An almost 50% chance of finding a match among three candidates can be seen as sufficient
performance for the application within an industrial setting, especially if viewed as a tool in
addition to current methods, as expressed in the interviews in section 2.2.4.

This approach of using anomaly detection in duplicate detection can therefore be seen as
a potential future tool. However, for a more conclusive answer, the method would need to be
implemented and tested by developers. This was not done in this research due to time con-
straints, but the method of using anomaly detection for duplicate detection in an industrial
setting on unlabeled data is with current results not presumed impossible.

To further evaluate the results they can be compared to current anomaly detectors evalu-
ated by Zhang et. al. [40]. The maximum reached RR@k over all evaluated models is 0.2-0.45
with k = 1, 0.35-0.6 with k = 3 and 0.4-0.7 with k = 5. The ranges of values show the spread
of top RR@k over different systems the bug reports are taken from. However, Android bug
reports were not included in this study which does not make it fully comparable. Neverthe-
less, it gives an insight into reasonable expectations, and the results in this research are not
very far off.

4.1.2 RQ2: How do the settings of an LSTM-based
log anomaly detection model influence bug re-
port duplicate detection?

As seen in the discussion of the results in section 3, the settings in the LSTM-based anomaly
detection model have an impact on the performance of the duplicate detection. Generally, it
appears that increased window size h in the model during training and prediction increases
the precision when doing duplicate detection with the classification method, i.e. the actual
duplicates among the guessed duplicates are increasing. This suggests that a larger window
size allows the model to capture more information and thus make better predictions for
anomalies, which in turn lets the duplicate detector make better predictions. The trends for
the recall are however not as certain, but it has a slight decrease as the window size increases
to large values, showing that less of the duplicates are found in the predictions. This might be
because the model gets slightly more conservative in guessing and therefore while increasing
the precision, also makes less positive guesses. The F1-score follows the recall and is therefore
also hard to interpret.

For g, the results do not vary a lot between different top g probability values when using
the classification method. There is a slight suggestion that a smaller top g probability, like 7
and 8, during the prediction can increase precision and recall. Since g is the number of log
keys of the ranked top possibilities for being the next to appear in a sequence, an increased
g decreases the number of sequences flagged as abnormal. The results indicates that as a
consequence when g grows, less of the predicted duplicates are correct and less of the actual
duplicates are found.

The combined results for h and g in the tables 3.1a-3.1c give a better view of the interac-
tion between g and h. Within the limits of this research, one can see that a smaller g around 7
and 8 and potentially lower gives the best performance in all aspects regardless of the window
size. For window size h, the precision increases for higher values and the recall increases for
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lower, likely because of what was earlier discussed regarding the window size. This highlights
the importance of carefully selecting both window size h and top g probability to optimize
the anomaly detection performance.

4.1.3 RQ3: What could the application of duplicate
bug report detection look like in an industrial
setting?

When applying duplicate detection as performed in this research, the ranking method would
be most appropriate [40]. This is due to it being more efficient and more fulfilling of needs
given the current workflows, that the developer is given k amounts of possible matches to a
given bug report. The developer can then look at the logs and the associated bug ticket to
determine if any of the bug reports are actual duplicates.

To avoid unnecessary time for analysis when there is no existing duplicate to a bug report,
a match ratio threshold can be set to only show top-ranked potential matches if they are over
a given threshold. Alternatively, each match ratio can be displayed to the developer who can
choose to account for this in their analysis.

For a smooth workflow, the most optimal application would be an automatic script that
continuously processes bug reports in recently created bug tickets. For companies like Volvo
Cars which are using an instance of Jira, this could be done through the Jira API. For each
newly added bug report, an anomaly prediction can be instantly made, followed by a dupli-
cate detection with the ranking method toward all past bug reports. Alternatively, it can
be compared to only bug reports captured within a reasonable time interval as proposed by
Zhang et. al. [40]. This pipeline can then be hosted and display its results through a server
that the developers can access.

Additional steps that need to be taken given the proposed method are that it needs to be
updated to be able to handle new classes generated from the log parsing. Furthermore, the
anomaly detection model needs to be re-trained sometimes with newly added bug reports to
stay up to date with current trends in the system logs. This is important as the Deeplog [10]
anomaly detection model assumes that all log sequences it has not encountered before during
training are abnormal.

4.2 Limitations and threats to validity
The main limitation of this research was time. Even with sufficient resources the model was
time-consuming to train on the full data set due to the amount of classes and the structure of
the network. This affected the value combinations of h and g that could be tested as well as
other parameters in the anomaly detection model, such as the number of epochs, batch sizes,
and adjusted architecture settings such as LSTM size and number of LSTM layers. The time
limitation also prevented us from experimenting with other anomaly detection models.

The choice of test data set was the 51 most recent bug reports with assigned duplicates
in the Jira system. This was done to simulate a real situation by using new bug reports, and
the duplicate criterion was made to ensure enough correct duplicate matches were possible.
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However, this poses as a threat to validity as the results may be affected by the data set used
for evaluation.

Additionally, the use of unlabeled logs diverts from the guidelines of the used Deeplog
[10] model. This approach assumes that all log sequences used for training are normal, which
is not true in our case. This is briefly discussed in section 2.3.3. While this should not interfere
too much with the anomaly detection given that normal log sequences are more common than
abnormal sequences, there is always a risk that this can potentially affect the result.

4.3 Future work
This research has many possibilities for future additional research. Besides further experi-
mentation with settings in the anomaly detection network, this also includes assessing other
anomaly detection approaches.

Further, for the application of the researched method in a real industrial setting, one
must investigate the handling of new event keys that do not already exist in the vocabulary.
Mainly this involves extending the set of output classes in the anomaly detection model, but
also the frequency with which the model should be re-trained with new log sequences to stay
accurate over time.

Additionally, it would be interesting to investigate the impact of applying an existing
duplicate detection method for the parameters and text fields in the bug tickets as described
in section 2.1.4, in combination with this approach of using anomaly detection in the system
logs.
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Conclusion

In conclusion, the findings of this research show that the proposed approach has the pos-
sibility of being applied in an industrial setting. The achieved performance is within the
range of good results achieved for other duplicate detection models and data sets [40], in-
dicating that this approach has the potential to achieve state-of-the-art performance with
correctly tuned parameters. Proper tuning of the parameters is important as the values for
the hyperparameters have an effect on the performance of the duplicate detection and are
use-case-dependent.

The difference between this approach and existing ones is that current approaches for bug
report duplicate detection mainly imply duplicate detection using the information found in
bug tickets, such as product, severity or descriptions [40]. This research therefore provides
a new perspective on duplicate detection by utilizing anomaly detection applied on system
logs in addition to similar antiquated approaches [35].

Despite the promising findings, it is also essential to acknowledge the limitations and
threats to validity of this study. Time constraints impacted the extent of experimentation
with parameter values and prevented the exploration of other anomaly detection models.
Additionally, the use of an unlabeled log dataset deviates from the Deeplog [10] model guide-
lines, potentially affecting the validity of our results.

In conclusion, this study contributes valuable insights into the intersection of anomaly
detection and duplicate detection, offering opportunities for future research and practical
application in industrial settings.
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Appendix A

Interview questions

Introductory questions about background of the participant:

1.1 How long have you worked at Volvo Cars and as a developer?

1.2 What area do you work with?

1.3 How often do you analyze bug reports?

Main interview:

2.1 Current bug report handling:

2.1.1 How often do you discover a bug report to be a duplicate?

2.1.2 How do you know if a bug report is a duplicate?

2.1.3 Where in the logs do you usually start looking when you analyze a bug report?

2.1.4 In a scenario where you suspect that a bug in an issue is triggered by the same
thing as for another issue, what is your systematic approach to confirm this by
looking at the bug reports?

2.1.5 Are there any specific challenges or difficulties you encounter when identifying
duplicate bug reports?

2.1.6 What happens if a bug report or issue is not immediately identified as a duplicate
and how often does that happen?

2.2 Bug report handling using machine learning:

2.2.1 If you were to let a machine learning model identify duplicates of bug reports
it’s helpful to know which parts of the reports that are important. Which parts
would you consider important?
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2.2.2 The other way around it’s also helpful to remove as much unnecessary informa-
tion as possible to simplify the problem. Which parts of bug reports would you
consider removable?

2.2.3 What role do you think machine learning could play in improving the identifi-
cation and handling of duplicate bug reports, and what potential challenges do
you think can arise?
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Automatisk duplikatidentifiering av
Android buggrapporter

POPULÄRVETENSKAPLIG SAMMANFATTNING Sofia Wahlmark

Att lösa buggar är en central del av mjukvaruutveckling. Det händer dock att utveck-
lare står inför utmaningen att hantera flera buggrapporter för samma problem. Denna
studie utforskar en ny metod för att identifiera dubbletter bland Android buggrap-
porter. Resultaten visar potential för att effektivisera bugghantering.

På Volvo Cars använder man sig av ett Android-
baserat system. När fel uppstår tas en så kallad
buggrapport som innehåller loggar över vad som
skett i systemet inom den närmaste tiden. Buggen
registreras sedan i ett internt system. Det hän-
der dock ibland att det skapas flera ärenden
för samma bugg. I brist på automatisk hanter-
ing av dubbletter måste dessa hittas och länkas
till varandra manuellt, något som framförallt tar
onödig tid från mjukvaruutvecklare.

I detta examensarbete har jag i samarbete med
Volvo Cars undersökt hur man automatisk kan
hitta dubbletter av Android buggrapporter för
att hitta dubletter av buggärenden. De nådda
resultaten visar potential för att metoden skulle
kunna användas som verktyg för utvecklare för
att effektivisera bugghanteringsprocesser. Om
man skulle låta modellen förseslå tre buggrap-
porter som möjliga dubbletter kommer utveck-
laren i ungefär hälften av fallen hitta minst en ko-
rrekt dubblett bland förslagen. Detta skulle min-
ska arbetsbördan avsevärt jämfört med de tusen-
tals buggrapporter som annars manuellt skulle be-
höva letas igenom för att hitta eventuella dublet-
ter.

Tidigare metoder fokuserar främst på informa-

tion i buggärendet, såsom titel och beskrivning.
Min metod skiljer sig genom att istället använda
sig av avvikande sekvenser i systemloggarna. Log-
garna omvandlas först till unika ID:n för sin log-
gtyp, följt av detektering av avvikande sekvenser.
De avvikande sekvenserna jämförs sedan mellan
buggrapporter för att föreslå potentiella dubblet-
ter.

Genom att på detta sättet minska behovet av
manuell hantering av dubbletter kan utvecklarna
fokusera mer på att lösa nya problem och förbät-
tra användarupplevelsen för sina kunder. Resul-
taten visar potential för att den föreslagna meto-
den skulle kunna användas som ett verktyg inom
mjukvaruutveckling hos Volvo Cars och liknande
företag.
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