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Abstract

This thesis investigates the feasibility and efficacy of employing unsupervised se-

mantic segmentation for classifying features in CALIOP data, aiming to address

significant bias inherent in current classification methods. By exploring various

preprocessing techniques, dimensionality reduction methods, and classification al-

gorithms, the study evaluates the potential of semantic segmentation in improving

the accuracy of aerosol classification. Despite computational limitations imposed by

working on a standard laptop, the research produces promising results, demonstrat-

ing the capability of certain model configurations to identify important features and

maintain continuity in segmented images. The implications of mitigating bias in

CALIOP data are profound, with potential improvements in understanding aerosol

radiative forcing and enhancing climate model predictions. While this study repre-

sents a significant step towards replacing current classification methods like SIBYL,

further research is warranted to explore and refine the approaches introduced here.
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Abbreviations
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CALIOP : Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO : Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CCA : Connected Component Analysis

CNN : Convolutional Neural Network

DBSCAN : Density-Based Spatial Clustering of Applications with Noise

LiDAR : Light Detection And Ranging

NASA : National Aeronautics and Space Administration

PCA : Principal Component Analysis

ReLU : Rectified Linear Unit
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SGD : Stochastic Gradient Descent

SIBYL : Selective Iterated BoundarY Location

SAA : South Atlantic Anomaly

t-SNE : t-distributed Stochastic Neighbor Embedding



1 Introduction

Volcanic eruptions and large forest fires inject substantial amounts of aerosols into the

stratosphere, influencing atmospheric dynamics and climate patterns. NASA’s CALIOP

LiDAR instrument plays a crucial role in quantifying atmospheric aerosols, providing

valuable data for climate projections. However, this is a difficult task. Especially when

it comes to differentiating between smoke layers and ice clouds in the stratosphere. This

can be done qualitatively by looking at the depolarisation ratios of the structures but

the automated layer detection algorithm SIBYL (Selective Iterated BoundarY Location)

struggles. This results in the accuracy of CALIOP data, particularly in calculating

optical depth, becoming compromised with significant bias. The magnitude of the bias

depends on various factors, including latitude and altitude.

Kar et al.[1] compares optical depth measurements from CALIOP and SAGE III across

latitudes, revealing bias below 10% near the equator but soaring to 100% at mid-

latitudes. This bias stems not from the data itself but from the SIBYL algorithm

struggling to cope with the data’s noise level. As a result, classifications may dis-

play artefacts diverging from physical reality. Accurate quantification of aerosol optical

properties and their distribution is vital for climate projections, aiding in understanding

radiative forcing and predicting future climate scenarios.

To address these challenges, this thesis proposes the application of unsupervised semantic

segmentation, a cutting-edge computer vision technique leveraging convolutional neural

networks (CNNs), to classify different structures in CALIOP data. Unlike traditional

threshold-based approaches, semantic segmentation algorithms like CNNs can identify

and segment aerosol structures based on their features, potentially reducing bias and

improving classification accuracy. The objective is to develop a model capable of reliably

discerning between smoke and ice clouds.

Current approaches to addressing bias in CALIOP data, such as adjusting optical depth

values to match other observations, are rudimentary and fail to account for regional

or aerosol-specific variations in bias. By contrast, unsupervised semantic segmenta-

tion offers a more nuanced and adaptive solution, which could significantly improve our

understanding of aerosol radiative forcing and, consequently, climate modelling accu-

racy.

This thesis aims to demonstrate the feasibility and effectiveness of unsupervised seman-

tic segmentation in classifying features in CALIOP data. The model will be trained on

data spanning from December 2019 to March 2020, a period characterized by significant

forest fires. The research methodology encompasses various preprocessing techniques,

dimensionality reduction methods, and hyperparameter optimisation to optimise classi-

fication performance. Evaluation will primarily be qualitative, assessing the quality of

segmented images produced by different approaches relative to each other.
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2 Theory

2.1 The Stratosphere & Radiative Forcings

Figure 1: Schematic image of the
stratoshere taken form a paper by
Bauk et al.[2]

The stratosphere is a layer of Earth’s atmosphere

situated above the troposphere, extending from

about 10 to 50 kilometres above the Earth’s sur-

face. It plays a crucial role in regulating the

planet’s climate and weather patterns. Unlike

the troposphere below it, where temperature gen-

erally decreases with altitude, the temperature

in the stratosphere increases with altitude due

to the absorption of solar radiation by ozone

molecules.

One of the key factors influencing the climate

dynamics of the stratosphere is the presence of

aerosols, tiny solid or liquid particles suspended in

the air. These aerosols can be natural, such as vol-

canic ash and sea salt, or human-made, like those

produced by industrial activities. Aerosols can

have substantial impacts on Earth’s climate by af-

fecting the balance of incoming solar radiation and

outgoing thermal radiation, a phenomenon known

as radiative forcing.

Stratospheric aerosols are crucial for several rea-

sons, most notably due to their longer lifetimes compared to lower atmospheric aerosols,

allowing them more time to interact with incoming solar radiation. Additionally, strato-

spheric aerosols can be transported over long distances by atmospheric circulation pat-

terns, leading to widespread effects on climate. Moreover, certain types of aerosols, such

as sulfate particles which are created by sulfur dioxide emitted by volcanic eruptions,

can have particularly potent cooling effects in the stratosphere by reflecting sunlight

back into space, contributing to a net decrease in global temperatures. Therefore, while

stratospheric aerosols represent only a small fraction of atmospheric constituents, their

radiative forcings can have significant implications for Earth’s climate system.

2.2 The CALIOP instrument

CALIOP, short for Cloud-Aerosol Lidar with Orthogonal Polarization, was an elastic

backscatter LiDAR instrument employed aboard the CALIPSO satellite[3]. CALIPSO,

which stands for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation,

was a component of NASA’s CNES’s joint venture initiative to study the global radia-

tive impacts of aerosols and clouds on climate. Launched in 2006, CALIPSO provided

continuous measurements of clouds and aerosols until the conclusion of its mission in

2023.

CALIPSO operated at an altitude of approximately 685 kilometres above the Earth’s
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surface and orbited the Earth in a polar orbit. The satellite completed almost 15 orbits

around the Earth per day, with an orbital period of about 98 minutes. It captured com-

prehensive atmospheric data spanning different latitudes and longitudes. An illustration

of these orbits can be seen in Figure 2.

Figure 2: CALIOP observations of lidar backscatter superimposed on a weather
map. Image credits go to NASA DEVELOP and the image was taken
from: https://appliedsciences.nasa.gov/what-we-do/projects/enhancements_

to_visualization_of_calipso_vocal_through_case_studies_of_saharan_dust

The CALIOP instrument emits laser pulses of two different wavelengths 1064 nm, and

532 nm. These pulses are transmitted downward toward the Earth’s surface and are

scattered back to the instrument by clouds and aerosols. The laser beam emitted by

CALIOP has a narrow width, typically around 70 meters at the Earth’s surface, enabling

precise vertical profiling of clouds and aerosols in the atmosphere. The energy of the

pulses needs to be high enough for them to be able to penetrate through atmospheric

scattering, detect weak return signals from distant targets, and achieve accurate and

reliable measurements of the Earth’s surface or atmosphere.

The distance from the satellite to the surface is long, and the pulse is short, resulting in

energy levels on the order of millijoules. Consequently, there is a significant amount of

noise, particularly noticeable in the 1064 nm channel. This channel, with its lower energy

and longer wavelength, experiences only 1/16th as much Rayleigh scattering. Addition-

ally, for the majority of particle sizes, it experiences negligible Mie scattering.

However, the challenges are exacerbated during daytime operation. Increased solar radi-

ation intensifies noise levels by interfering with the LiDAR signal. Furthermore, daytime

atmospheric turbulence can scatter and refract the laser beam, leading to fluctuations

and distortions in the received signal, which further contribute to higher levels of noise

in the LiDAR data.

3

https://appliedsciences.nasa.gov/what-we-do/projects/enhancements_to_visualization_of_calipso_vocal_through_case_studies_of_saharan_dust
https://appliedsciences.nasa.gov/what-we-do/projects/enhancements_to_visualization_of_calipso_vocal_through_case_studies_of_saharan_dust


When producing the data different resolutions were chosen for different altitudes. This

is necessary since the density of the air decreases exponentially with increasing altitude.

A lower density means less backscattering which in turn means a weaker signal. Addi-

tionally, at lower altitudes, the laser pulse has to penetrate through more atmospheric

layers, resulting in greater attenuation and reduced signal strength. In both cases, the

weaker signal leads to decreased sensitivity and accuracy in detecting aerosols and clouds

compared to higher-altitude measurements.

By analyzing the characteristics of the backscattered light, CALIOP provides valuable

insights into the vertical distribution, composition, and optical properties of clouds and

aerosols, contributing to our understanding of Earth’s atmosphere, climate, and air

quality.

Figure 13 in the paper ”CALIPSO level 3 stratospheric aerosol profile product: version

1.00” by Kar et al.[1] compares the atmospheric optical depth calculated using aerosol

measurements from CALIOP and SAGE III. Atmospheric optical depth is a measure of

the extent to which the atmosphere attenuates radiation passing through it. It quanti-

fies the reduction in the intensity of light as it travels through the atmosphere due to

scattering and absorption by particles and gases.

The intensity is exponentially reduced in accordance with Beer-Lambert’s law, which

states that
Ii
It

= eOD,

where Ii is the incident light’s intensity, It is the transmitted light’s intensity, and OD

is the optical depth. The optical depth can be further broken down as

OD = −N · σe · L,

where N is the particle number density, σe is the extinction cross-section, and L is the

length of the path travelled in the medium. The extinction cross-section, σe, is the sum

of the absorption cross-section, σa, and the scattering cross-section, σs.

To gain an intuitive understanding of this expression it is useful to think of the mean free

path length, lfp, which is the average distance between two interactions and corresponds

to

lfp =
1

µe
=

1

N · σe
,

where µe is the extinction coefficient. This means that OD is equal to the length of the

medium divided by the average distance between two interactions so the optical depth

corresponds to the average number of scattering/absorbing events along the distance

L.

In simpler terms, a higher optical depth means that less light reaches the observer,

indicating a denser or more absorptive medium. Optical depth is a key parameter in at-

mospheric sciences for understanding and modelling the effects of the atmosphere on the

transmission of light, including phenomena such as visibility reduction, the greenhouse

effect, and the behaviour of solar radiation.
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2.3 LiDAR and Polarization

LiDAR, or Light Detection and Ranging, operates on principles similar to radar and

sonar, emitting energy waves to detect and monitor objects. Unlike radar and sonar,

LiDAR utilizes light, offering superior speed, precision, and resolution.

A LiDAR instrument sends out pulses of linearly polarized light. Some light is scattered

back to the instrument, where it is measured. From this, the depolarization ratio, colour

ratio, and total backscattering can be calculated. These are important optical properties

used to characterize aerosols and clouds in the atmosphere.

Depolarization occurs when the polarization state of light changes upon interaction with

a particle. This phenomenon is largely dependent on the shape, structure, and compo-

sition of the scattering particle. When light encounters a particle, the electromagnetic

waves induce oscillations of electric charges within the particle. If the particle is sym-

metric and isotropic, such as a liquid droplet, these oscillations do not significantly alter

the polarization state of the incident light, thus not causing depolarization. In contrast,

an ice crystal, which is anisotropic and often has complex, non-spherical shapes, causes

the scattered light to experience varying phase shifts and amplitude changes in different

directions, resulting in depolarization. The difference lies in the uniformity of the in-

ternal structure and symmetry; liquid droplets are homogeneous and isotropic, whereas

ice crystals have irregular, directional structures that disrupt the uniform scattering of

light.

The depolarization ratio refers to the ratio of perpendicular to parallel backscattering.

Aerosols and cloud particles tend to scatter light in a preferential direction, and the

degree of depolarization can provide information about the shape and composition of

the particles. For example, non-spherical aerosols and ice crystals in clouds exhibit higher

depolarization ratios compared to more spherical particles like smoke. This difference in

depolarization ratios is a useful parameter in atmospheric science for characterizing the

physical properties of various atmospheric particles.

Colour ratio, also known as spectral colour ratio, is the ratio of the backscatter intensity

at different wavelengths or colours of light. Different types of aerosols and clouds have

unique spectral signatures due to their size, composition, and optical properties. By

examining the colour ratio, researchers can distinguish between different aerosol types

(e.g., dust, smoke, pollution). Additionally, by combining the information given by de-

polarization ratio and colour ratio researchers can also distinguish between cloud phases

(e.g., water droplets, ice crystals). In general larger particles have a higher colour ratio.

Ice particles are generally about 10µm which is much larger than smoke particles which

are typically smaller than 1µm. This results in the colour ratio of ice clouds being close

to 1 while it is around 0.4 for smoke layers.

Total backscattering refers to the total amount of light scattered backwards by aerosols

and clouds in the atmosphere. It provides information about the overall abundance and

concentration of particles in the atmosphere. High values of total backscattering indicate

the presence of dense aerosol layers or thick cloud formations, while low values suggest

clearer atmospheric conditions.
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Each of these optical properties offers valuable insights into the characteristics and be-

haviour of aerosols and clouds. Depolarization ratio helps discriminate between different

particle shapes and compositions, colour ratio aids in identifying aerosol and cloud types

based on their spectral signatures, and total backscattering provides a measure of the

overall particle abundance in the atmosphere. Together, these parameters contribute to

a better understanding of atmospheric processes, climate dynamics, and environmental

impacts associated with aerosols and clouds.

In this project, the primary objective was to distinguish ice clouds from other atmo-

spheric structures. The easiest way to do it qualitatively is by examining the depolar-

ization ratio. Ice clouds have significantly higher depolarization ratios, ranging from

0.3 to 0.5, compared to values around 0.15 for smoke layers. Hence, it follows that the

depolarization ratio would be the best input for an AI as well when differentiating. This

reasoning, coupled with computational constraints, led to our decision to solely focus on

the depolarization ratio. Introducing even just one additional physical input would have

doubled the amount of data and memory required during training, a trade-off that was

deemed unjustifiable.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural networks that have

gained significant popularity, particularly in computer vision tasks such as image clas-

sification and object detection. Unlike traditional neural networks, which process data

such as images as a flat vector, CNNs are designed to efficiently handle grid-like data,

such as images, by preserving the spatial structure. CNNs are characterized by their

ability to automatically learn hierarchical patterns and features directly from raw data.

They achieve this through the use of convolutional layers, which apply filters to the

input data to extract features, and pooling layers, which downsample the feature maps

to reduce computational complexity and extract the most important information. One

of the key advantages of CNNs over traditional neural networks is their ability to exploit

spatial locality by using local receptive fields, where each neuron in a convolutional layer

is connected to a small region of the input image. This unique architecture, which is

illustrated in Figure 3, enables CNNs to capture local patterns and relationships, making

them ideal for tasks involving spatial data.

Figure 3: The structure of a CNN taken from a paper
by Lin et al.[4]

In machine learning, there are

numerous parameters that shape

the structure of a model, but

equally vital are the hyperpa-

rameters that dictate the model’s

training process. Among these

hyperparameters, the choice of

loss function stands out as

a critical metric in evaluating

a model’s performance during

training. Analogously, one can
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envision the training process as

navigating a landscape to reach the lowest point, akin to finding the global minimum

of the loss function. Each iteration of training corresponds to the model making incre-

mental adjustments, akin to a needle traversing the uneven surface, propelled by the

gradient of the loss function.

In supervised learning, where the model is trained on labelled data, the loss function

typically quantifies the disparity between predicted and true values, guiding the model

toward convergence. However, in the realm of unsupervised learning, where labelled

data is absent, determining the efficacy of the loss function becomes more challenging.

Without ground truth labels to guide the optimization process, discerning whether the

loss function’s minima aligns with the desired solution or holds any physical significance

becomes uncertain.

To address this uncertainty, a common strategy involves initially training the model on

a similar dataset with labelled examples, allowing for the evaluation of the architecture

and loss function in a supervised context. Once validated, the learned architecture

and loss function can then be transferred to the unsupervised problem domain. In

this scenario, only the hyperparameters require qualitative evaluation, typically through

visual inspection of the final output.

This approach mitigates the ambiguity surrounding the loss function’s efficacy in un-

supervised settings, leveraging insights gained from supervised learning to inform the

design and evaluation of models in unsupervised contexts.

In this project, various prebuilt methods were used from ”scikit-learn” and ”PyTorch”.

Additionally, inspiration was taken from the code of various papers. Most notably ”Un-

supervised Learning of Image Segmentation Based on Differentiable Feature Clustering”

by Kanezaki et. al [5] from which the CNN’s structure and loss function were copied. In

this way, we are ensured of their efficacy and need only to evaluate the hyperparameters

and the later parts of the segmentation process.

2.5 Semantic Segmentation

In this project, the objective is to discern various structures within images, a task

achieved through semantic segmentation. Semantic segmentation involves assigning ev-

ery pixel in an image with a corresponding label or category, enabling the identification

of distinct objects or regions within the image. This technique is applied in various com-

puter vision tasks, notably in training self-driving cars to recognize and navigate through

different elements in their surroundings. Despite its efficacy, traditional semantic seg-

mentation methods are not particularly prevalent due to their reliance on large, metic-

ulously labelled datasets. Creating such datasets is a laborious and resource-intensive

process, requiring extensive manual annotation of pixel labels, making it impractical for

many applications. For example, in this project, a single image contains over 30 million

pixels before downscaling. To circumvent this limitation, researchers have explored un-

supervised approaches, which introduce a new set of challenges and considerations.

In unsupervised learning, models identify patterns and structures within data without
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guidance from labelled examples. However, it is very difficult to assess the validity of

these structures. Evaluating an unsupervised method is always a challenge and the best

method is usually to qualitatively assess the quality of the final results.

In Figure 4, we observe an image sourced from the Cityscapes dataset[6]. This dataset

employs colour-coded annotations to represent various objects within the scene; for in-

stance, cars are depicted in blue, while houses appear in grey. During supervised seman-

tic segmentation, these colour labels serve as targets for training algorithms. However, in

unsupervised learning scenarios, such labels are absent, necessitating alternative meth-

ods for segmentation without explicit guidance.

Figure 4: Example image from the dataset
Cityscapes[6]. On the right side, colours correspond-
ing to different classes can be seen for each pixel.

Semantic segmentation relies on

CNNs to segment images into

semantically meaningful regions.

Understanding the basic building

blocks of CNNs is paramount for

comprehending their role in se-

mantic segmentation tasks. At

the core of CNN architecture lie

convolutional layers, which ex-

tract intricate spatial features

from input images using learn-

able filters. These filters convolve

across the image, generating fea-

ture maps that capture hierarchi-

cal representations of the input. Pooling layers, another essential component, aid in

spatial dimension reduction by downsampling feature maps, facilitating computational

efficiency, and preserving important spatial information. Activation functions, such as

the Rectified Linear Unit (ReLU), introduce non-linearities to the feature maps, enabling

the network to learn complex relationships between features. Stacking these layers to-

gether forms a robust framework for semantic segmentation, allowing CNNs to discern

object boundaries and classify pixels into distinct semantic categories.

In semantic segmentation tasks where pixel-level accuracy is crucial, pooling layers may

discard fine-grained spatial details, making it challenging for the model to precisely

delineate object boundaries. It is probably for this reason that they were omitted from

the CNN structure outlined in the paper by Kanezaki et. al[5].

2.6 Dimensionality Reducing Techniques

The dimensionality of the features extracted by the CNN is decided by the number of

channels in the network. The suitable number of channels is decided by the complexity of

the task, the size and nature of the input data, and the architecture of the network. For

complex tasks like semantic segmentation, where the network needs to capture detailed

spatial information, CNNs may have a large number of channels, often in the range of

several thousand to tens of thousands. However, the more channels the more memory

is required during the training process. As a consequence, the resulting feature space
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consists of 64 dimensions, which qualifies as high-dimensional data. This can potentially

introduce challenges during the classification process. Therefore, it can be beneficial to

first employ a dimensionality-reducing technique such as Principal Component Analysis

(PCA) or t-distributed Stochastic Neighbor Embedding (t-SNE).

Principal Component Analysis (PCA) is a linear dimensionality reduction method com-

monly used for feature extraction and data visualization. It transforms high-dimensional

data into a lower-dimensional space by identifying orthogonal vectors, called principal

components, that capture the directions of maximum variance. By selecting a subset of

these principal components, PCA effectively reduces the dimensionality of the dataset

while preserving as much variance as possible.

On the other hand, t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear

dimensionality reduction technique that aims to preserve the local structure of the data.

It emphasizes relationships between nearby data points in the high-dimensional space,

by modelling pairwise similarities using t-distributions.

In terms of computation, PCA is more efficient and scalable to large datasets compared

to t-SNE, which can be computationally intensive, especially for high-dimensional data.

Additionally, PCA provides interpretable components representing directions of maxi-

mum variance, making it suitable for understanding the global structure of the data.

Conversely, t-SNE is primarily used for visualization purposes and lacks a straightfor-

ward interpretation of its low-dimensional embeddings.

Figure 5: Comparison of the two dimensionality reducing methods: PCA and t-SNE.

In Figure 5 we can see both PCA and t-SNE being applied to example data generated

using scikit-learn’s function ”make blobs”. In this case, we can see that PCA prioritizing

the global structure makes two of the blobs be pushed together while t-SNE keeps them

all separate. Conversely, t-SNE fails to capture the scale of the image changing both

axes from ±10 to ±40.

In summary, PCA is suitable for linear dimensionality reduction and capturing global

structure, while t-SNE is ideal for visualizing high-dimensional data and preserving
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local structure. The choice between PCA and t-SNE depends on the specific goals of

the analysis and the characteristics of the dataset.

2.7 Classification Methods

Classification methods are ways in which we separate data into different classes. Count-

less such methods can be employed but in this project, we focused on three: KMeans

clustering, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and

argmax.

KMeans and DBSCAN are two popular clustering algorithms used in machine learning

and data analysis. KMeans is a partition-based clustering algorithm that aims to par-

tition a dataset into a predefined number of clusters, where each cluster is represented

by its centroid. The algorithm iteratively assigns each data point to the nearest cen-

troid and then updates the centroids based on the mean of the data points assigned to

each cluster. KMeans is simple to implement and computationally efficient, making it

suitable for large datasets.

On the other hand, DBSCAN is a density-based clustering algorithm that groups closely

packed points based on a density criterion. DBSCAN does not require the number of

clusters to be specified in advance and can automatically detect clusters of arbitrary

shapes and sizes. It works by defining two parameters: epsilon (eps), which specifies

the radius within which points are considered neighbours, and MinPts, which specifies

the minimum number of points required to form a dense region. DBSCAN identifies

core points, which have a sufficient number of neighbours within the epsilon radius, and

expands clusters by recursively adding neighbouring points.

The application of both KMeans and DBSCAN can be seen below in Figure 6 on the

same data as in Figure 5.

Figure 6: Comparison of the two clustering methods KMeans and DBSCANS
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In this example, it is clear that DBSCAN when combined with PCA performs the worst,

but this does not mean that this combination will always underperform or that DBSCAN

is worse than KMeans. It would have been just as easy to construct an example in which

KMeans failed. Ultimately, the best choice of classification method depends on the data.

While KMeans is suitable for datasets with well-defined clusters of a known number,

DBSCAN is more robust to noise and capable of discovering clusters of varying shapes

and densities. However, DBSCAN may struggle with datasets of varying densities or

clusters with irregular shapes. Both algorithms have their strengths and weaknesses,

and the choice between them depends on the specific characteristics of the dataset and

the desired outcome of the clustering task.

This dependence highlights the true power of PCA and t-SNE. Reducing the dimensions

to two or three allows us to visualize the data and from it determine the proper choice

of classification method.

Finally, if neither KMeans nor DBSCAN yields satisfactory results due to the complexity

of the structures, it may be worthwhile to employ argmax classification. This is the ap-

proach that Kanezaki[5] used while employing the same CNN structure and loss function.

Unlike KMeans or DBSCAN, argmax classification does not rely on clustering; instead,

it assigns each data point to a class based on which dimension it exhibits the highest

value. To function properly, normalization of the different dimensions is essential, along

with a large number of dimensions.

3 Method

The cornerstone of our approach lies in the training of a CNN. However, CNNs can be

very sensitive to noise. This is because they are designed to exploit spatial locality by

using local receptive fields, which means that each neuron in a convolutional layer is

connected to a small region of the input image. If noise is present in these local regions,

it will affect the network’s ability to extract meaningful features. Hence, meticulous

data preparation or preprocessing is imperative.

Furthermore, the data also had to be downscaled before being fed to the network. This

is because the training process is memory-intensive and contrary to other types of com-

putational challenges this did not simply make the program slow but made it crash.

Thereby, imposing an absolute limit on the amount of memory that could be used. The

depolarisation data for the period investigated amounts to about 250 GB. This made

downscaling an obvious step when trying to find the best way to use the limited mem-

ory. Next, the data was further preprocessed to remove as much noise as possible while

preserving information and a high level of detail.

The CNN was trained on a dataset encompassing a diverse array of aerosol types, at-

mospheric conditions, and geographical locations. This diverse dataset aimed to equip

the model with the capability to generalize effectively across varied scenarios.

After the training of CNNs, the images were fed to them to create feature maps. The

maps were then used for classification using various methods. Some of these methods
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needed dimensionality reduction to perform optimally so various such techniques were

tested as well.

The various parts of the process could not be evaluated in isolation. Therefore, they all

needed to be evaluated in combination with each other. This was necessary to determine

the best approach.

3.1 Data Considerations

A critical factor for any deep learning success is the quality and scale of the training

dataset. The size of the dataset is crucial, due to the delicate balance between repre-

sentativeness and computational efficiency. While a larger dataset enhances the model’s

ability to generalize across diverse scenarios, it concurrently increases the computational

intensity of the training process.

Other important aspects are the data’s amount of noise and high resolution. The pres-

ence of noise often confuses image classification models, likely necessitating averaging

methods. The high resolution, while advantageous for detailed analysis, poses compu-

tational challenges due to increased processing demands.

Downscaling and smoothing out the images need to strike a balance between retaining

essential information and reducing computational complexity. This preprocessing step

aims to optimize the dataset for effective model training, ensuring that the convolutional

neural network captures essential patterns without succumbing to the computational

burden posed by excessive data size and resolution.

The data provided by CALIPSO has a very high level of detail but this is accompanied

by significant levels of noise. Due to the sheer volume of data available, constraints are

necessary. We will limit ourselves to night data from the period of December 2019 to

March 2020. This still amounts to about 800 gigabytes of data which already is quite

demanding for a normal laptop. Night data was chosen because it has significantly less

noise and that period was chosen because there were several large forest fires during

it.

3.2 Preprocessing

For any task involving artificial intelligence (AI), the preprocessing step is crucial for

achieving success. This process entails striking a delicate balance between reducing noise

and preserving vital information. In Figure 7, we observe depolarization data from a

CALIOP scan conducted on January 4, 2020. At this point, the only preprocessing

steps performed were removing data points above 35 km and below 3 km relative to the

tropopause by setting their values to zero. However, in subsequent stages, additional

noise reduction will occur by assigning their values to 0.01. The colour map employed

represents values at or below zero as black, thus any eliminated noise will blend in with

the sky background, depicted in blue.

Including data from up to 3 km below the tropopause enhances model training by cap-

turing a more extensive range of ice clouds, which predominantly lie beneath this bound-
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ary. This broader dataset aids in better distinguishing between various features within

CALIOP data, ultimately improving classification accuracy.

Figure 7: Depolarization ratio of data from the fourth of January 2020. All data above
35km or below 3km below the tropopause has been removed.

The decision to discard data above 35 km stemmed from its excessive noise levels, ren-

dering it unsuitable for analysis. Similarly, data below 3 km below the tropopause

was omitted as our focus lay solely on the stratosphere. Given the variable nature of

the tropopause’s altitude, a fixed height threshold couldn’t be universally applied. Its

altitude varies significantly depending on local convection activity, resulting in higher

tropopause levels in warmer regions, such as near the equator, and lower levels in colder

regions, such as near the poles.

The initial step in mitigating noise involves filtering out laser pulses with unusually high

root mean square (RMS) noise levels. To determine the threshold for such noise levels,

an orbit of noise data was plotted, as depicted in Figure 8. Analysis of the plots revealed

that while some values were exceptionally high, the majority clustered into two distinct

bands, corresponding to each channel. Based on this observation, a decision was made

to remove laser pulses where the RMS noise exceeded 85 for the perpendicular channel

or 70 for the parallel channel. In the specific orbit analyzed, this action resulted in the

removal of 11% of the pulses, and it was about the same for the rest of the orbits within

the period studied.

While this is a significant portion of the data, it’s crucial to recognize that this issue

is highly localized. The South Atlantic Anomaly (SAA), located near South America,

is a region where the Earth’s Van Allen radiation belt is notably weaker than normal.

As a result, a higher influx of charged particles from the sun penetrates deeper into the

atmosphere, leading to interference with satellite signals. The majority of the affected

data will be concentrated in this region, meaning that data from all other regions will

be significantly less affected.

The RMS noise is computed onboard for each laser pulse by evaluating the standard

deviation of 1000 samples acquired within the 65-80 km altitude range, each spanning
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15 meters. Lidar measurements are subject to two main sources of random error: vari-

ations in the received laser scattering signal from the atmosphere and fluctuations in

the background signal. Both components are essential considerations in estimating the

overall random error. The random error attributed to the scattering signal can be ap-

proximated using a noise scale factor. The theoretical basis for calculating this factor is

rooted in the understanding that photons from solar background radiation adhere to a

Poisson stochastic process[7].

Figure 8: Perpendicular and parallel RMS noise for the same orbit as the data in Figure
7. The difference between the subplots is solely the scale on the y-axis.

Figure 9: The same raw data as in Figure 7. All data points where the RMS of parallel
or perpendicular backscattering exceeded 70 or 85, respectively, were excluded. Addi-
tionally, it has been down-scaled horizontally by a factor of 100

Moreover, given the computational constraints of the project, downsampling was neces-

sary. We opted to downscale all data horizontally by a factor of 100. This transformation

reduced the length of the horizontal dimension from over 55 thousand to 556, effectively
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decreasing the horizontal resolution from approximately 300 meters to 30 kilometres.

The impact of these two procedures on the same orbit as previously analyzed is illus-

trated in Figure 9 above.

At this point, the data has been processed enough to be used for training a CNN. In

fact, these models perform quite well, which is reasonable since the relevant features can

now be easily identified qualitatively. Both the big orange-red structures to the left and

the smaller structures with the same colour to the left are ice clouds. The green patch

that can be seen to the left is a large smoke layer.

However, the models trained on this data do still struggle with the noise still present,

especially in the top few kilometres of the data. To further reduce noise the next step

taken was to set all values below 0 or above 1 to 0.01. This can be done because such

values are not physical. Next, the data removed due to having too high RMS, which

we can see as vertical black lines in Figure 9, were filled in using linear interpolation.

Lastly, connected component analysis (CCA) was performed to remove noise. The data

in the image was converted to binary using 0.05 as a threshold. Then CCA found all

connected structures of 1s which allowed all below a certain size to be removed.

Figure 10: The same raw data as in Figure 7 and Figure 9. Further, preprocessing has
been done consisting of setting values above 1 and below 0 to 0.01, filling in the missing
lines using interpolating, and removing noise using CCA.

The problem with removing noise using CCA is that it fails to do anything to the noise

inside of larger structures. For example, in the smoke layer on the right side in Figure

10 we can see a bunch of noise that the CCA did not remove because it was not isolated.

One common technique to deal with such noise is to blur the image using convolutional

filtering. The disadvantage of such techniques is that at the edges of the structures

they will be averaged with the background creating outlines of about half the ratio the

structure exhibits. Such outlines are not physical but would be present in every image.

We tried blurring the images this way and trained several of the CNN on them but the

results were highly lacklustre.
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4 Results & Analysis

The process of optimizing hyperparameters was very similar for all of them. Therefore,

We will only show it for a few: continuity step size, learning rate, and the choice of

optimizer. Let us start with continuity step size.

Both the continuity step size (stepcon) and the similarity step size (stepsim) are parts

of the loss function. In this context, stepcon determines the spacing between adjacent

sampling points along a feature’s orientation, while stepsim controls the spacing between

features or descriptors in the image space. If stepcon is much larger than the stepsim,

the emphasis shifts towards producing a smoother output, prioritizing global feature

consistency over local detail preservation. Conversely, if the stepcon is much smaller than

the stepsim, the focus is on capturing fine-grained details, potentially at the expense of

computational efficiency. Achieving an appropriate balance between these sizes is critical

for optimizing the trade-off between output smoothness and detail preservation.

We found that an absolute size of 3 was appropriate for the stepsim and that stepcon
should be above 10. Next, we tried three different values for stepcon: 15, 20, and 25. We

looked at images for around fifty orbits for each model to ensure that the evaluation was

right for the entire data set. One such comparison can be seen below in Figure 11. This

orbit is the same as was illustrated in the section on preprocessing. Throughout the

comparisons, we will stick to visualize this orbit for the convenience of the reader.

Figure 11: Segmented images resulting from Kmeans Clustering being applied to the
features of three different but similar CNN models. The difference between them is the
size of the hyperparameter stepcon which is the step size for computing continuity loss.

From Figure 11 it is hard to tell which model performs better and this was quite typical

for the process. Optimizing hyperparameters qualitatively is difficult partially because

the results often look very similar. In this case, we determined model 2 to have performed

the best largely because it had the lowest error. This error comes from the KMeans

clustering which was performed on the feature map after reducing its dimensions from

64 to 2 using PCA.
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At this point, we were not using any dimensionality-reducing techniques and we only

tried KMeans clustering as a form of classification. Next, we will show the process by

which we evaluated different types of dimensionality-reducing and classifying methods.

Let us start by again using PCA and KMeans but on the three models that we will use

for the rest of the comparisons.

Figure 12: Comparison of three different models. The top row shows the final output in
feature space after PCA has been used to reduce the dimensionality from 64 to 2. The
bottom row shows the corresponding segmented images. The colours are based on the
KMeans clustering of the data in the top images.

In Figure 12 we can see the feature space of three different models each reduced to two

dimensions using PCA. Model 1 was trained on less processed data such as that which

can be seen in Figure 9. Conversely, both models 2 and 3 were trained on the more

processed data such as that which can be seen in 10. What separates models 2 and 3

is that model 3 was trained for 10 iterations instead of 5 and with a learning rate of

0.1% instead of 0.01%. Furthermore, model 1 was trained using a simpler loss function,

smaller batch size, and half as many convolutional layers. These differences result in

very different shapes in the feature space. However, the resulting segmented images are

most similar for models 1 and 2 with model 3’s being the odd one out. This suggests that

models can converge on the same answer while using vastly different approaches.

Something important to understand is that the clustering error of the KMeans method

does not necessarily correspond to the better result when comparing different methods.

As can be seen in Figure 12 the clustering error is lowest for model 1 at 0.91. However,

the resulting image is quite pixelated with tiny green dots appearing within otherwise

red structures. Such artefacts are undesirable, particularly given the typically smooth

nature of physical structures at this scale. Therefore, we would assert that Model 2
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achieved the best performance among these three models.

Next, let us investigate what happens if we use t-SNE instead of PCA to reduce the

dimensionality. We compared the same three models from before, reducing their dimen-

sions from 64 to two and then performing KMeans clustering. The result can be seen

below in Figure 13.

Figure 13: Comparison of three different models. The top row shows the final output in
feature space after t-SNE has been used to reduce the dimensionality from 64 to 2. The
bottom row shows the corresponding segmented images. The colours are based on the
KMeans clustering of the data in the top images.

From the top row of Figure 13, we can see that the shapes of the data are quite different

for each model after t-SNE as compared to after PCA. From the bottom row, we can

see that these new shapes are not well-suited for KMeans. In each segmented image, the

important cloud and aerosol structures are present but the rest of them are complete

nonsense.

A possible explanation for this failure could lie in the choice of hyperparameters. For

this visualization, we used the standard values in ”sci-kit learn” except for perplexity

which we set to 50. According to the original paper for the method, “The performance

of SNE is fairly robust to changes in the perplexity, and typical values are between 5 and

50.”[8] However, this might not necessarily be the case when dealing with large datasets.

In t-SNE, all points repel each other but only a few attract each other. Perplexity is the

number of neighbours that each point is attracted to. This means that using a perplexity

of 50 when there are over 300 thousand points might make the method struggle to find

any larger structures.

We tried increasing the perplexity but the largest our computer could manage without
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crashing was 300 which only produced marginally better results. It is possible that the

result could improve drastically for a much higher perplexity but for now, it seems that t-

SNE is not as well suited for this task as PCA. At least not using KMeans clustering. We

will also investigate the classification methods DBSCAN and argmax. Argmax will be

performed without any dimensionality reduction but DBSCAN will also be investigated

using both PCA and t-SNE.

Let us start by trying DBSCAN with PCA. The result of this can be seen below in

Figure 14.

Figure 14: Comparison of three different models. The top row shows the final output
in feature space after PCA has been used to reduce the dimensionality from 64 to 2.
The bottom row shows the corresponding segmented images. The colours are based on
DBSCAN clustering of the data in the top images.

In Figure 14 we can see that this combination does not perform particularly well. The

segmented images are almost entirely black with some small parts of the important

structures showing as blue. The result is underwhelming, but there is a reason for

this. DBSCAN is a method that scales by the number of points squared making it very

computationally intensive for large datasets. This limitation forced me to perform the

algorithms in batches which is quite problematic for a clustering method. The largest

batch size our computer could handle was 40 thousand which is about 12% of the total

data points for each image. It should be noted that it is important to select these points

randomly otherwise the results will be complete nonsense.
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Figure 15: Comparison of three different models. The top row shows the final output
in feature space after t-SNE has been used to reduce the dimensionality from 64 to 2.
The bottom row shows the corresponding segmented images. The colours are based on
DBSCAN clustering of the data in the top images.

Next, let us see if DBSCAN performs better when paired with t-SNE. As can be seen

in Figure 15, while DBSCAN does perform differently when paired with t-SNE it can

not be said to be much better. While the resulting segmented image for model 1 is

probably the best of any involving DBSCAN, there is a significant amount of noise in

the output. Moreover, the images from models 2 and 3 are terrible, making the method

highly unreliable. We believe this not to be a failure of the method itself but rather of

the fact that the clustering had to be performed in batches.

Something to note is that the performance of DBSCAN depends heavily on the size

of the hyperparameter ”epsilon”. The best size of this parameter can be estimated by

finding the elbow point in a k-distance graph. This by itself is quite time-consuming

and needs to be repeated for each image and model.

The lacklustre performance of DBSCAN is quite disappointing because it has a very

attractive feature that KMeans lacks. DBSCAN is not forced to have the same amount

of clusters in each image. This means that if a certain type of cloud is not present it

will not try to look for it. We can see this in Figure 15 where it only finds 2 clusters for

model 3 but 3 clusters for the other two models. This does not help its performance in

this particular case, but in theory, it is a very powerful feature.

The last classification method to evaluate is argmax. This method requires a large

number of dimensions so it will not be paired with either PCA or t-SNE. The result of

it being applied to the same orbit and models as the previous comparisons can be seen

below in Figure 16.
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Figure 16: From the left: The first plot is the data fed to each model, and the next three
are the results of using Argmax classification.

As can be seen in Figure 15, argmax fails completely to find anything of value. This

could be because the number of channels is too small but we doubt that this is the

sole explanation. When Kanezaki[5] employed this classification method they then in-

corporated it as a part of the training process. They then used the resulting labels as

pseudo-targets. This means that during the training process, the argmax classification

will gradually improve along with the training. This facilitates the approach and is

probably necessary for its viability.

Some other aspects of the method that needed to be tinkered with were the num-

ber of epochs and the choices of learning rate and optimizer. Learning rates of both

0.1% and 0.01% were tested for the optimizers Stochastic Gradient Descent (SGD) and

Adam.

SGD works by updating model parameters based on the gradients of the loss function

with respect to the parameters. It does this iteratively using small batches of training

data. The update rule for SGD is straightforward: it subtracts a fraction of the gradient

from the current parameter values, scaled by a learning rate.

Adam, on the other hand, is a more advanced algorithm that adapts the learning rate

for each parameter. It maintains moving averages of both the gradient and the squared

gradient. These moving averages are then used to compute adaptive learning rates for

each parameter. The update rule for Adam involves several steps, including computing

these moving averages and adjusting the parameters accordingly.

In terms of comparison, Adam often converges faster than SGD, especially in scenarios

with noisy or sparse gradients, thanks to its adaptive learning rate mechanism. However,

Adam introduces additional hyperparameters and requires more memory and computa-

tional resources compared to SGD. Despite this, SGD can be more robust to noisy data

due to its simplicity, while Adam may be more sensitive to noisy gradients.

21



Figure 17: Comparison of loss curves for
four different models. Two of these used
SGD as their optimizer while the other two
used Adam. One of each pair used a learn-
ing rate of 0.1% while the others used 0.01%.
The curves are training loss while the crosses
are validation loss.

In Figure 17 we can see a comparison of

four different loss curves with crosses to in-

dicate validation loss at that point. From

these, it seems clear that Adam performs

better overall, even though the validation

loss is somewhat unstable.

Normally when training a CNN it is

enough to try and minimize the loss for

the validation set. However, in this case,

we found that this did not necessarily lead

to a good final result. Models that were

trained for more than 5 epochs tended to

become overly fixated on noise and miss

the larger structures. This is problem-

atic and suggests that either the loss func-

tion or the classification method is not

ideal.

To further investigate this as well as the

proper amount of clusters for KMeans,

three otherwise identical models are compared in Figure 18. Model1, Model5, and

Model10 were trained for one, five, and ten epochs respectively. From the left side of the

figure, we can tell that all three models perform quite similarly on average. From the

right side image of the figure, we can see that Model1 performs quite differently from the

other two. It has many more high peaks but when it does not have a peak it generally

has the lowest error.

Figure 18: Comparison of three CNN models clustering performance, each trained with
a batch size of 16, 64 convolutional layers, a similarity step size of stepsim = 3, and
a continuity step size of stepcon = 20. The models were trained for one, five, and ten
epochs, respectively. The right image displays the error for the first 100 images in the
dataset using four clusters. The left image presents the average error for these 100
images across 2-7 clusters.
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For Model5 and Model10 the error is quite constant except at three points. For images

35, 72 and 77 there are clear peaks for all models. This suggests that there is something

in these images which the models struggle to cluster effectively. To investigate further

these images were plotted and it was found that for these images all three models failed

to differentiate between the background and the removed regions (blue and black in

Figure 10).

For comparison, we have included classification performed using the SIBYL algorithm[9]

with Figures 19 and 20 in the appendix. This is for the same orbit as has been illustrated

continuously throughout the paper but it has been scaled differently and cut up into

pieces. This makes it quite hard to compare its features to the ones in our models.

There are several advantages of this algorithm compared to the ones outlined in this

paper. It can find many more different kinds of structures and has a very high degree

of detail. However, there are also disadvantages. It has a strong tendency to divide up

structures into many thin stripes alternating between two or more classes. For example,

in the bottom image in Figure 19 we can see a large structure that is alternating between

classes 2 and 4. We have previously identified this as a smoke layer which means the

entirety of it should be classified as stratospheric aerosol which is class 4.

5 Discussion

Overall, the combination that performed the best was also the simplest. The combination

of KMeans clustering and PCA, which can be seen in both Figure 11 and 12, reliably

managed to find both ice clouds and smoke layers for a variety of different models.

A reason some of the more advanced methods struggled seems to be an overfixation

on noise still present in the images. An example of this can be seen in Figure 13 the

classification method differentiates between different parts of the background. This was

an issue with many other models and combinations that were not shown in the report.

The best explanation we have for this problem is that our preprocessing was subpar.

When removing noise we set their values to 0.01 which was probably too high. It would

likely have been better to set them to 0 and then set the values removed due to their

height to -1.

The argmax classification method performed the worst. This can partially be explained

by the low number of channels. As previously mentioned, the number of channels in a

semantic segmentation problem is usually in the thousands or even tens of thousands. To

achieve a high degree of differentiation the 64 channels that we used are probably inad-

equate for this method. However, this might not be enough. The paper which achieved

success using this method also used it to create pseudo-targets that it incorporated in

the training process[5]. This arguably makes the method self-supervised and might be

necessary for the efficacy of this method.

Several improvements could be made easily with access to a computer with more memory.

For the CNN, increasing things such as the batch size and the number of convolutional

layers and channels is all but certain to increase the performance. Additionally, training

on more data would also help. Especially, if we started to use color ratio and total

23



backscattering as inputs. Colour ratio would be especially helpful for differentiating

between ice clouds and smoke since it depends on the size of the particles and since

ice particles are much larger than smoke particles (∼ 10µm as compared to < 1µm) it

should certainly help improve performance.

However, all these combined would require hundreds if not thousands of gigabytes of

RAM and it is uncertain how good the results would be. We would venture to say that

to truly exceed the capabilities of the SIBYL algorithm the process itself would need to

be more advanced. This could be by adopting pseudo-targets and the argmax algorithm

like Kanezaki et al.[5] or with a different approach from a newer paper.

Throughout this project, methods have been evaluated primarily by visually comparing

the output and the raw data and qualitatively assessing if it is reasonable. When the

method is entirely unsupervised there is usually no better option but this introduces

bias by itself. What makes the matter worse is that we are using several unsupervised

methods at once. The process of semantic segmentation performed in this project can

be broken down into four parts: preprocessing, CNN training, dimensionality reduction,

and classification. Some of these have metrics from which they can be evaluated but

they are all still unsupervised. This means that none of them can be evaluated inde-

pendently. The only true test is qualitatively judging the final output. Even if the

classification method underperforms, it may still be optimal if modifications are made

to other components of the process, such as preprocessing or dimensionality reduction

techniques.

The evaluation of unsupervised methods is not a new problem. There have been sev-

eral efforts to circumvent this in various ways and it is not uncommon for studies to

completely omitt evaluating their models quantitatively[10].

6 Conclusion

In this study, we have investigated the potential of unsupervised semantic segmentation

as a novel approach to address the significant bias present in current methods for classi-

fying aerosols in CALIOP data. Through a comprehensive exploration of various prepro-

cessing techniques, dimensionality reduction methods, and classification algorithms, we

have demonstrated promising results in improving the accuracy and reliability of aerosol

classification.

Despite the computational constraints imposed by working with limited resources, our

research has shown that certain model configurations can effectively identify key features

and maintain continuity in segmented images. These findings suggest that unsupervised

semantic segmentation holds promise as a viable alternative to traditional classification

methods like SIBYL.

The implications of reducing bias in CALIOP data extend far beyond improved classi-

fication accuracy. By enhancing our understanding of aerosol radiative forcing and its

implications for climate change, this research contributes to the refinement of climate

models and the reduction of uncertainties in climate projections.
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7 Outlook

In addition to its immediate impact on aerosol classification accuracy, our study paves

the way for several exciting avenues of future research and application. Firstly, as com-

putational resources continue to advance, there is immense potential for further refine-

ment and optimization of unsupervised semantic segmentation models, leading to even

greater accuracy and efficiency in aerosol classification. Additionally, exploring the in-

tegration of machine learning techniques with other sources of Earth observation data

could provide a more holistic understanding of aerosol dynamics and their effects on

climate. Furthermore, as our understanding of aerosol radiative forcing grows, there is

an opportunity to apply these insights to inform targeted climate mitigation strategies

and policy decisions. By fostering collaboration between data-driven methodologies and

climate modeling, our research sets the stage for continued advancements in atmospheric

science and climate research, ultimately guiding more accurate predictions and impactful

climate policy interventions.

25



References

[1] J. Kar, K.-P. Lee, M. A. Vaughan, J. L. Tackett, C. R. Trepte, D. M. Winker,

P. L. Lucker, and B. J. Getzewich. Calipso level 3 stratospheric aerosol profile

product: version 1.00 algorithm description and initial assessment. Atmospheric

Measurement Techniques, 12(11):6173–6191, 2019.

[2] Sanja Bauk, Nexhat Kapidani, Zarko Luksic, Filipe Rodrigues, and Luis
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A Appendix

Figure 19: Vertical feature mask created using the SIBYL algorithm. The images corre-
spond to the same orbit as all others, which started at 10:43:03 on the fourth of January
2020. Images taken from: https://www-calipso.larc.nasa.gov/products/lidar/

browse_images/std_v451_showdate.php?browse_date=2020-01-04
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Figure 20: Aerosol subtypes according to the SIBYL algorithm. The images correspond
to the same orbit as all others, which started at 10:43:03 on the fourth of January 2020.
Images taken from: https://www-calipso.larc.nasa.gov/products/lidar/browse_
images/std_v451_showdate.php?browse_date=2020-01-04
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