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Abstract 

CityGML is an important standard to present 3D geometry, topology, semantics and appearance 

that together with 3D city models, which have had increased use within analysis and 

applications, such as emergency response, energy consumption and occupancy measurement. 

However, the standard’s querying and integration capabilities can still be further explored. One 

way to do this is through the Semantic Web technology knowledge graphs (KG). Proof-of-

concept studies have been made using this approach but remains to be properly applied outside 

of studies as ad-hoc and data conversion approaches are still the most prevalent in practice. The 

approach can potentially be applied to fields such as the building permit process and transport 

infrastructure management as means to further help the digitalization in these fields and 

improve the workflows by allowing seamless linking and integration of other data while being 

queriable. This study provides a demonstration in how CityGML data can be presented as a 

virtual knowledge graph (VKG) in an effective manner through the commonly used tools 

3DCityDB and Protégé with the Ontop plugin. This provides a means to improve 

interoperability between different types of data as well as a method to better manage semantical 

3D city models. A framework is described in this study to populate the commonly used 

CityGML 2.0 ontology with CityGML data containing buildings from an area in Malmö, 

Sweden. This is primarily done through the use of R2RML mapping that retrieves the CityGML 

data from a 3DCityDB relational database to create virtual instances of data based on the 

CityGML ontology, thus exposing the data as a VKG through the Ontop system. To ensure that 

the data is effectively represented and demonstrated, SPARQL queries were performed to 

validate and test the KG. Seven queries were made in total to test different parts of the KG and 

to demonstrate some practical implications of the approach. The resulting KG constructed from 

the mapping retrieves the expected results through the queries, based on comparisons with the 

original data. As a result, it can be concluded that the CityGML data is effectively represented 

in the KG. Most notably, the showcasing of the mapping for LoD3 buildings provides a novel 

description of the implementation process. The framework described is sufficient for the 

representation despite the limitations imposed by the 3DCityDB database schema and Protégé 

suite while also demonstrating the potential use of the approach for urban planning processes.  
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1. Introduction 

3D city models have been increasingly applied for various analysis and applications, such as 

emergency response, energy consumption, occupancy measurement, building type 

classification, propagation of noise, 3D cadastre as well as different environmental simulation 

results, such as noise, urban energy, daylight and wind comfort (Eriksson et al., 2020; Uggla et 

al., 2023). The applications of 3D city models is diverse and leads to increasingly complex 

models as the applications of 3D city models increase. In particular, analysis and simulation 

applications requires semantically richer models and even further might require connections to 

external databases or systems (Uggla et al., 2023). As the applications of 3D city models 

become increasingly more complex, so does the approaches and implementations of those 

models. 

Some cities in Sweden and in other parts of the world have identified increasing needs for more 

efficient handling of 3D geodata and digital twins of the respective cities. In Sweden, 

Stockholm, Gothenburg and Malmö identified those needs. All three Swedish cities already 

uses 3D geodata in the form of 3D models for some of their application needs. One example 

from Stockholm is a 3D model application for the building planning process. The application 

entails showing a proposed project imported into a 3D model and producing 360 degree images 

for visualization purposes (Uggla et al., 2023). While the application is useful as is, additional  

analysis and data retrieval is not possible through the model. This can be enabled if the model 

is constructed as a semantic 3D city model. This would for example enable analyses on how a 

project contributes to an area in terms of overall housing.  

Gothenburg also currently employs 3D models based on geodata. The city aims to construct a 

full digital twin with metaverse applications by 2030 (Uggla et al., 2023). While the current 

model is a parametric and semantic model, the city faces challenges in linking external 

databases, such as building models and assets, to allow for objects to be connected to external 

thematic data. This would further enhance analysis and application capabilities through the use 

of the model. 

Malmö’s primary interest is a 3D base map for visualisations purposes that could also 

potentially be connected to external databases and systems (Uggla et al., 2023). This is similar 

to the needs faced with Gothenburg’s digital twin. While Malmö does not currently have any 

publicly available full digital twin, a 3D base map aiming to be linked to external databases is 

still in need of semantic city models as a means to implement linked 3D geodata. 

In all of the above mentioned Swedish cities, there is an interest in methods for better linking 

of 3D geodata in city models. The cities have concluded that their current geospatial products 

in the form of 2D maps and current 3D models are not enough to meet the future needs. All 

three cities expressed needs for better methods of linking 3D geodata with building. The exact 

application needs of the cities is hard to predict but the requirement of linking data present in 

the needs of all three cities. 

In order to specify the needs of the cities there is an ongoing innovation program in Sweden. 

The program is a collaboration between different actors in the urban planning sector to digitalize 
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more parts of the processes in said sector. The program has been named Smart Built 

Environment and one part of the program focuses on the interoperability between different types 

of digital data and becoming better at sharing the data (Smart Built Environment, 2024). The 

program contains several projects that works towards developing new standards and workflows 

for digital data. Workflows for achieving linked data has been the topic in multiple of these 

projects, with the report on the recently developed Swedish national model for 3D city models, 

3CIM, being the most relevant one in this context. 

The program contains another project aimed at strengthening the urban planning sector’s ability 

to cooperate digitally for more effective construction and management. The concept of 

interoperability is synonymous with this project and in order to effectively achieve this, systems 

has to be developed that are better at sharing and understanding information and data between 

different organizations. The project specifically aims to implement and demonstrate a technical 

framework based on Linked Data and Semantic Web. These technologies has been highlighted 

as good standardised methods for creating an internationally standardised interoperable 

platform (Smart Built Environment, 2023b). 

Helsinki, Singapore and Zurich were cities in other countries that identified the same needs as 

the cities in Sweden and have developed digital twin models of their own as well. These are 

currently used primarily for analysis and visualization applications within urban planning. The 

city of Zurich highlights that the digital twin model is used for zoning development, high rise 

planning, climate simulations and visualization for architectural competitions. The city of 

Helsinki emphasizes that their digital twin models primarily serves as a tool for scenario 

analysis and prediction (Lehtola et al., 2022). 

CityGML is a widely used and important standard for this type of 3D city model that can define 

3D geometry, topology, semantics and appearance of objects (Ohori et al., 2018). 

Implementation-wise, CityGML is defined as a GML application schema, consisting of text 

files that represents a select part of a dataset, region, object or Level of Detail (LoD). The 

presences of topology and semantics makes it possible to query data for analysis or other 

purposes. The standard has some capabilities of answering queries through external database 

software packages such as 3DCityDB (Ding et al., 2023; Eriksson et al., 2020; Uggla et al., 

2023). However, the querying potential of CityGML still remains to be further explored. 

Furthermore, CityGML is a complex and hierarchical structure covering a wide field of 

representations. This leads to linking and interoperability issues when trying to map other types 

of data to it (Ding et al., 2024; Vilgertshofer et al., 2017). One way of dealing with the issues 

presented is through the use of Semantic Web technologies and more specifically knowledge 

graphs (KGs) (Ding et al., 2024). 

The approach of using KGs is gaining more interest as a means to make 3D city models fully 

quarriable and integrated with other types of data. Proof-of-concept studies has been done for 

the approach but remains to be properly applied outside of studies as ad-hoc and format 

conversion approaches are more prevalent as solutions in practice. Newer, state-of-the-art 

ontologies has also been refined and developed that has yet to be applied in practical studies, 

presenting new opportunity to investigate the approach further (Chadzynski et al., 2021; Ding 
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et al., 2023; Ding et al., 2024). The multiple fields and areas mentioned above are applications 

where a KG approach would provide benefit for workflows. Being able to more seamlessly 

query and link many types of data is what has been asked for by the cities in Sweden. Current 

conversion methods are difficult to implement and do not fully enable seamless interoperability 

like the KG approach would provide. Furthermore it is a step towards improved interoperability 

that will improve workflows and processes for many more applications and organizations (Ding 

et al., 2024). 

1.1. Problem statement 

The increasing popularity of 3D city models for application and analysis purposes within urban 

planning have led to cities both in Sweden and internationally to expressing needs for better 

methods to manage 3D city models. Stockholm, Gothenburg, Malmö, Helsinki, Singapore and 

Zurich are cities that recognize the need to manage increasingly complex 3D city models and 

while some of the mentioned cities employs models, the inability to connect and link external 

databases to 3D city models limits the query and analysis capabilities. Employing semantically 

richer models together with a knowledge graph approach is one method for enabling such 

linkage and connection. 

The standard CityGML is a commonly used data format to represent 3D city models. Industry 

Foundation Class (IFC) is another standard that is used to represent highly detailed models of 

buildings and infrastructure. The two standards complement each other naturally in a 3D city 

model environment and are therefore interesting to link in a model. These standards still remain 

challenging to seamlessly achieve interoperability between as well as linking them to other data 

formats because of their difference in focus and model paradigm. Semantic technologies such 

as knowledge graphs presents a possible solution for representing multiple data formats as one, 

comprehensive and fully semantically linked model, enabling seamless interoperability 

between models. However, the practical implementation still remains limited as ad-hoc 

approaches and conversions of data formats are still the most prevalent method for creating 

interoperability. This creates opportunity and an interest in investigating the method, as it 

provides a solution to the challenges faced by the aforementioned cities and therefore warrants 

an investigation of the approach. Furthermore, investigating the knowledge graph approach is 

in the interest of the Smart Built Environment program. Conducting a study on the method can 

serve to help future developments in the program by providing insight and reference material 

for the approach.  

The hypothesis is that the transformation process from CityGML data to a knowledge graph 

does not result in significant loss of information and that potential loss can be controlled. 

Investigating which available ontology best supports development of a KG can serve to control 

potential loss as well as potential information loss when transitioning from relational tables to 

a KG. Subsequently, the manual handling of inconsistencies in semantics after transition will 

also be a means to investigate loss. Validating and testing the result will give an indication of 

how well scalability, adaptability and structures are maintained to conclude if the approach is 

an improvement over existing methods. 
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1.2. Aim 

The purpose of this master’s thesis is to investigate an approach for how CityGML building 

data can be delivered as a knowledge graph to further aid and improve processes and workflows 

where interoperability between 3D city models and other model structures such as Building 

Information Model (BIM) is necessary.  

More specifically, the aim can be specified as a number of research questions: 

1) How can CityGML building data be effectively modelled and transformed into a 

knowledge graph on top of relational databases for urban planning applications? 

2) What are the limitations of the commonly used 3DCityDB database schema and 

CityGML ontology when used for the purpose of representing CityGML data as a virtual 

knowledge graph? 

3) How can a knowledge graph representation of CityGML data be used to effectively 

carry out queries within potential common use cases, such as urban applications? 

1.3. Limitations 

A significant limitation of scope in this study is the implementation of CityGML only. The study 

aims to focus on the workflow and process of representing CityGML data as a VKG rather than 

integrating it with other types of data. While interoperability and integration is introduced as a 

motivation for studying the process, it is not practically included in the study as it is beyond the 

scope in terms of time available. Furthermore, no thorough study of query efficiency will be 

done besides simpler discussion regarding the execution times of the tested queries. The study 

also limits itself to only testing one commonly used database schema for the proposed system. 

1.4. Disposition 

The report outlines the related work regarding the topics introduced through the introduction 

and problem statement in section 2. The sections cover applications of 3D city models and 

interoperability issues, the CityGML standard, ontologies together with knowledge graphs, the 

available ontologies for CityGML and tools used to represent data as knowledge graphs. The 

process and workflow of representing CityGML 2.0 data as a VKG is presented in section 3, 

covering the system used to expose the data as a VKG as well as the practical workflow for 

both mapping and validating the VKG. Section 4 outlines the results of the data mappings as 

well as the query results from the validation and testing of the resulting VKG. Section 5 

discusses the outcomes and their inferences on the research questions presented. Lastly, section 

6 includes the conclusions made throughout the report. 

2. Related work 

This section gives an overview to the different topics related to the problem statement. It 

provides a general description of the potential applications, specifically the building permit 

process and infrastructure management, providing context as to why the knowledge graph 

approach can be beneficial for the processes. The relevant structure details of CityGML is also 

explained to provide context into the data format that is of interest for the study and the cities 

in question. An understanding of knowledge graphs and related semantic technologies, such as 
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ontologies, are central to the implementation process and a section is therefore dedicated to 

providing explanation of those concepts. CityGML ontologies are required to represent the data 

as a virtual knowledge graph. A review of CityGML ontologies used in previous studies is 

therefore presented in this section as well. 

2.1. Potential Applications: Supporting the need for a knowledge graph 

approach. 

The building permit process is highlighted as one of the most promising cases for automation 

through digital processing and digital data about buildings, infrastructure and other similar 

construction. Much of the national and international legislation is moving in a direction that 

promotes digital transition and the building permit process is one such field that is currently 

lagging behind in that transition, as manual processing of permits is still the primary method. 

The challenge naturally lies in the difficulty of harmonizing complex workflows in a way that 

retains all the used information in the manual processing, information that sometimes can be 

relatively informal such as local knowledge. Both BIM and GIS models are integral pieces of 

information to be used in such a process and therefore interoperability between them is a key 

(Noardo et al., 2022).  

The use of BIM and GIS in the building permit process has been studied where methods for 

increasing automation of the process through BIM and geospatial data was investigated (Olsson 

et al., 2018). BIM and geospatial data was used together with local planning regulations and 

construction standards in order to create an automated process for checking compliance with 

regulations regarding building height, building area and general maintenance of the character 

in a built-up area. The method used for checking building height compliance involved 

transforming a BIM model to a CityGML surface geometry model where all the wall elements 

and attributes specific for the height checking was extracted and transformed. The building 

model and detailed planning map, which contains the height rules, were imported into FME 

where polygons and lines were constructed to represent the ground surface and building height. 

The ground surface was constructed based on a DEM while the building height was calculated 

as the difference between the ground surface and the intersection line between the roof surface 

and façade of a building. Once this calculation had been done, it was checked against the 

regulation breakpoint to see if the building was in compliance with it. The method for checking 

building area involved extracting  and transforming the building footprints from BIM models 

and loading them into FME, as the footprint in the majority of cases is equivalent to the building 

area. From the footprints the area of the building can then be calculated and checked against 

the regulations for compliance. The general maintenance of the character in a built-up area 

revolved around having a particular design for buildings in an area. Such criteria are difficult 

to develop automated checking for but the study integrated BIM and geospatial data as a means 

to visualize a built-up area and this method was mainly tested as a feasibility study due to the 

shortcomings of the models lacking information regarding, for example, the colour of a 

building. The study shows that there is potential in developing automated checks in the building 

permit process through the use and integration of BIM and GIS data (Olsson et al., 2018). 
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BIM models focuses on the representation of buildings and their components, providing a 

detailed platform for information sharing and management in engineering projects. GIS models 

on the other hand largely represents spatial information and relationships between objects such 

as buildings but inherently lacks detailed semantic information about buildings. Integration of 

BIM and GIS complements the models as a means to meet the needs of 3D city model 

applications. The GIS data structure CityGML is widely used across Europe with all capitals 

providing CityGML models. Germany in particular provides LoD2 models for almost every 

large city in the country (Tan et al., 2023). CityGML is very complex and quite difficult to 

interpret because of its very wide scope (Noardo et al., 2022). The presence of semantics in the 

data structure as well as the widespread prevalence of CityGML makes it the preferred standard 

over other model structures based on geometric models only. Conversion and integration 

between BIM and CityGML specifically can therefore be considered essential in promoting 

interoperability between model structures and formats, allowing designers to consider the 

suitable references for their workflow process (Noardo et al., 2022). 

The infrastructure sector is another field with possible opportunities to interoperate between 

BIM and GIS data. The infrastructure sector commonly stores 3D geodata in CityGML as well 

as BIM models in specific IFC standards to model infrastructure facilities, such as tunnels, road 

and railways. However, CityGML and IFC cannot directly be mapped onto each other as a 

means to have all data working together without loss of data (Vilgertshofer et al., 2017).  

IFC is a well-established open file format for exchange of data and information as models for 

use in the BIM field, commonly applied in the Architecture, Engineering and Construction 

(AEC) industry. The format enables exchange of data and its associated geometrical properties 

such as walls, beams and columns. It also allows for exchange of associated heterogeneous 

attributes such as mechanical properties, costs and construction work time (Gerbino et al., 

2021). Interoperability between BIM models and Geospatial Information Models (GIM) such 

as CityGML is often required in the urban planning process. For example, buildings and 

infrastructure planning can require geospatial data in order to perform shadow, visibility and 

emission analyses. Interoperability allows for buildings and infrastructure to be rendered in 

detail in GIS, enabling a general view and impact of planned construction. However, solutions 

for enabling interoperability is not trivial due to the two model paradigms being different in 

purpose and modelling perspective (Herle et al., 2020).  

IFC typically allows for modelling of specific physical objects to describe various types of 

installation in buildings, roads, railways and tunnels with semantic relationships. CityGML 

contains corresponding semantic entities to the aforementioned physical objects. To allow for 

direct mapping of CityGML and IFC onto each other, the entities in both models are required 

to be semantically and spatially aggregated otherwise data is lost in the process. This is likely 

not the case as IFC focuses on providing a finer coarseness of the data than CityGML. 

Attempting to directly map the IFC to CityGML would therefore result in a loss of information 

as CityGML is not designed to model information at the finer levels that IFC provides 

(Vilgertshofer et al., 2017). Attempting the reverse process of mapping CityGML to IFC is also 

problematic (Tan et al., 2023). It would be necessary to convert surface models in CityGML to 

solid models, which are used in IFC. This can only be done through extrusion of the surface 



7 

 

models that are primarily 3D planar objects. However, objects such as walls and roofs that are 

required in IFC do not have defined precise thickness in CityGML since it does not contain this 

type of information (Chognard et al., 2018). Geometric representations poses another issue for 

the mapping. IFC supports three different geometric representations, specifically Constructive 

Solid Geometry (CSG), sweep solid and Boundary Representation (B-rep). On the other hand, 

GIS and CityGML typically only support B-rep, meaning that a choice has to be made for which 

representation corresponds the best to the B-rep in CityGML (Zhu et al., 2018).  

One proposed solution to the previously mentioned problem of interoperability is to utilize the 

concept of Linked Data. The concept has been successfully used to link geodata and BIM-data. 

One example of this is the linkage of CityGML 2.0 and IFC Tunnel data for a shield tunnel 

project through applying semantic web technology (Vilgertshofer et al., 2017). The linking of 

the two models was done by first converting the EXPRESS (IFC Tunnel) schema and CityGML 

Extensible Markup Language (XML) schema to Web Ontology Language (OWL) descriptions. 

Both models also had to be converted to Resource Description Framework (RDF) instance files 

in order for the data to be RDF representations that could be used to link the models. Lastly, the 

two OWL descriptions was manually inspected to find class similarities between the 

descriptions. These similarities were then used to create a mapping which defines the link 

elements between the two models at instance level. This served as a proof of concept for the 

approach at the time and shows that there is potential for this kind of application within the 

infrastructure sector as well. Other approaches have been successfully applied within the 

infrastructure sector to facilitate interoperability between data. CityGML and IFC data have 

been integrated to facilitate better asset management of railway infrastructure. The approach 

used to enable this differs from the previous case in that the CityGML data was imported and 

converted to work in an IFC environment. The approach is different from linking data but 

successfully achieve an acceptable level of interoperability. A BIM/GIS framework can be used 

to improve management of railways by supporting the decision-making process both in 

operation and maintenance. Regardless of approach taken to facilitate interoperability, there is 

clear opportunity and improvement to be had from further work on interoperability between 

GIS and BIM data in the infrastructure field (Garramone et al., 2022). 

2.2. CityGML 

CityGML is an international standard for semantic 3D city models. The standard presents four 

different characteristics used in virtual 3D city modelling: semantics, geometry, topology and 

appearance (Kolbe, 2009). Currently there are two versions of CityGML that see use in studies 

and practical application, denominated as CityGML 2.0 and CityGML 3.0. The most notable 

difference between the two versions is the revised LoD concept. In the 2.0 version, LoD is 

defined as five different levels while the 3.0 version contains four different levels, removing 

the most detailed level used for representing the interior of objects. Instead, the 3.0 version 

allows user to define interior or exterior LoD on all four levels. Furthermore, the newer version 

provides a revised space concept within the models. The version allows for defining space as 

different volumetric entities such as a physical space or a logical space. Physical space can in 

turn also be defined as occupied or unoccupied space. This new space concept in CityGML 3.0 

further enhances the data structure by enabling new semantic relationships and expressions of 
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topology, geometry and thematic relations between spaces (Kutzner et al., 2020). However, 

despite CityGML 3.0 being the most current standard, CityGML 2.0 remains the most used 

version by the cities of Sweden. This is largely due to the lack of technical implementation of 

the newer version by the cities and municipalities in Sweden (Smart Built Environment, 2023a). 

For this reason, only the 2.0 version is used and the term CityGML specifically refers to the 2.0 

version going forward in this study. 

 

Figure 2.1: Modularization of CityGML 2.0. Updated version based on Kolbe, 2009 

Modelling in CityGML 2.0 can be done on 5 different well-established LoDs, ranging from 

LoD0 to LoD4, increasing in complexity and accuracy of the model. The first level, LoD0 is 

2.5D digital terrain model. For the building models, LoD1 is a simple block model without any 

kind of roof structure. LoD2 presents buildings as expanded block models with distinct roof 

structure and larger installations such as stairs. LoD3 represents architectural models with 

detailed window, door, wall and roof structures. LoD4 adds interior structure such as rooms, 

stairs and furniture on top of the other details defined by LoD3 (Kolbe, 2009). CityGML 2.0 

data is partitioned into different modules (see Figure 2.1). The horizontal modules define 

structures that are relevant and applied to all the vertical modules. Such structures can for 

example be appearance in the model, geometry defined in the Core module and generic data 

attributes about objects. The vertical modules represent the different thematic models that 

CityGML includes. The thematic models available in CityGML is bridge, building, city 

furniture, city object group, land use, relief, transportation, tunnel, vegetation and water body 

(Kolbe, 2009). 
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Figure 2.2: A Unified Model Language (UML) diagram showing a simplified part of the CityGML Building model. Attributes 

have been excluded from classes for readability. Based on the CityGML UML diagrams by OGC, 2012. 

The semantic structure of CityGML is based on the ISO 19100 framework for modelling 

geographic features. The structure is formally modelled as classes through Unified Modeling 

Language (UML) notation (see Figure 2.2). The classes can contain any number of spatial and 

non-spatial attributes. The semantics are provided for all geographic features within the 

CityGML structure. The top level class of CityGML is the CityObject abstract class, which 

inherits name, description and gml:id from the superclass provided by the Geography Markup 

Language (GML) base. A CityObject may be linked to feature in other datasets through 

ExternalReferences and also aggregated to construct a CityModel, which is subclass of the GML 

FeatureCollection superclass. A CityObject have multiple subclasses in the form of different 

thematic areas defined in the corresponding modules (see Figure 2.1).  

One of the more important and commonly used subclasses is AbstractBuilding, which 

represents a single building model. From this class two additional non-abstract classes are 

derived: Building and BuildingPart. These have a composite design where a Building may 

contain BuildingParts  The additional detail features in LoD2 and higher become semantically 

represented through the classes RoofSurface, WallSurface, GroundSurface, Window and Door 

(see Figure 2.2). These classes represents the individual composite surface geometries and their 

structures for roofs, walls, footprints (ground), windows and doors. They inherit attributes and 

relations from their respective CityObject as they are derived from it. RoofSurface, WallSurface 

and GroundSurface are subclasses of the BoundarySurface class that is a subclass of both the 

Room and AbstractBuilding class. These classes are central for more detailed descriptions of 

buildings and their surfaces.  Window and Door are in turn subclasses of the Opening class, 

derived from the BoundarySurface class (Kolbe, 2009).  
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CityGML becomes a very powerful format for 3D city modelling with rich semantic 

information. However, the format comes with certain challenges through its complexity, 

hierarchical structure and interoperability issues with other data formats such as IFC of the BIM 

domain. The interoperability issue stems from technical issue related to the difference in data 

structure and alignment of use cases (Noardo et al., 2022). These issues cause CityGML to be 

difficult when transforming and decoding for different applications and visualisation purposes 

(Ding et al., 2024). 

3CIM 

3CIM was developed as a means to standardise 3D geodata and meet the increasingly complex 

applications and analyses faced in the current urban planning processes (Uggla et al., 2023). 

Multiple cities and actors in Sweden as well as in other countries expressed need for methods 

of handling 3D geodata that is not tied to a supplier specific format. Based on this it was decided 

to develop a shared information model built upon CityGML. The project was successful in 

delivering a model based on CityGML 2.0, extended through an Application Domain Extension 

(ADE), that had the key features of allowing multiple types of external data sources to be linked 

to the model. The 3CIM model data could be imported into 3DCityDB, a software used to store 

CityGML data as relational tables. However, 3DCityDB is not natively capable of importing an 

ADE without extending the software. Instead of developing a plugin in Java to facilitate 

importing the ADE, Feature Manipulation Engine (FME) was used to develop a workflow that 

correctly link and translate attributes to facilitate the importing of the ADE (Uggla et al., 2023).  

The 3CIM model was tested in different applications such as visualization, flood simulations, 

daylight simulations and noise simulations. For the visualization test, the model data was used 

in multiple different visualization tools. The tested tools were Unreal Engine and Twinmotion, 

CityEngine, OpenCitiesPlanner and Digital Twin City Viewer. The model was able to be 

visualized in all of the tools but conversion of the model into different formats was necessary 

as none of the tools natively reads GML-files. For the flood simulations the model was used to 

extract LoD2 building data and hard surface data. The building and surface data was used 

together with an external DEM to provide the necessary information to perform a flood 

simulation. Although the results of the simulation were acceptable, the model is lacking in high 

resolution height data. Using only the model for the simulation would therefore prove 

challenging. The daylight simulations were important to test as current day methods are mostly 

manual (Smart Built Environment, 2023a). The model was used to extract window geometries 

and data from LoD3 buildings to be used for the simulation and then use the model to store the 

simulation results. The simulations were successful and the results could be stored in the model 

in the CityJSON format. However, the storing method proved somewhat difficult and easier 

methods should be investigated. Lastly, in the noise simulations the 3CIM model was linked to 

external databases containing road attribute data. The transport theme in 3CIM was also used 

to represent the geometries for the roads. Additionally, the Building, Vegetation and City 

Furniture themes were used as input for the simulation. The results showed that the model has 

potentially to be used for this kind of simulation in the future as well. The results using the 

model were acceptable in all of the mentioned applications with some highlighted difficulties 

and challenges for specific applications, such as the conversion needs and the lacking resolution 
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of height data. The 3CIM model was therefore deemed to meet the expressed needs of the cities 

for a standard better suited for managing increasingly complex 3D geodata (Smart Built 

Environment, 2023a; Uggla et al., 2023).   

2.3. Knowledge Graphs and ontologies 

Interoperability is a technical issue that involves many other dimensions, which leads to several 

challenges that can be tackled and many ways to improve those processes. The ISO standard 

11364-1 (ISO/TC 184 2012) defines a framework for model-driven interoperability. The 

framework contextualizes concerns, barriers and approaches to interoperability. Different 

approaches can indicate solutions to how barriers can be removed through integration where a 

common format for all models is found. One approach suggested is linked models as a solution 

to interoperability for data models, including GIS and BIM models. The approach corresponds 

to what the standard has contextualized. In practice, the data in each individual model is kept 

independent and in the original storage form. Another link model is used to connect the topic-

specific models, which is either done through the use of Semantic Web technologies or web 

services. The KG approach is a technology that can be used to achieve models capable of linking 

as described. A Semantic Web technology stack is needed in order to facilitate such an approach. 

Such a stack include languages such as RDF and OWL, which are further described below 

(Herle et al., 2020).  

Semantic Web technologies and ontology-based methods have in recent years garnered 

increased interest within the field of urban planning and Geographic Information Science 

through the City Information Model concept (Shi et al., 2023). KG is an approach for structuring 

data in the form of graphs with edges encoded as object properties. Ontologies are used to 

provide semantics to the data and as such is integral when transforming data to KGs. An 

ontology refers to a concrete conceptualization of a domain of things (Gruber, 1993). CityGML 

being based on XML means that it adheres to an XML schema containing specific elements 

defined by the CityGML standard, such as elements defining specific building or part of one. 

The specific building element can in turn contain GML elements that for example defines the 

geometry. An ontology for CityGML can be generated from said XML schema but requires 

significant work and has already been done in previous studies (Vinasco-Alvarez et al., 2020). 

Alternatively, it is also possible to derive CityGML ontologies directly from UML diagrams of 

CityGML (Métral et al., 2010). 

 
Figure 2.3: An example RDF triple describing that a CityObject is a building in LoD2 with a certain solid geometry. Each of 

the different components contained in a triple is also displayed. 
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At the core of KG solutions are typically ontologies. “Ontology” in the computer science field  

defines and conceptualizes a domain of interest and allow for viewing information that is only 

relevant for a given domain in a sharable way. To facilitate creation and sharing of ontologies, 

W3C has defined some standard languages such as Resource Description Framework (RDF) 

and  Web Ontology Language (OWL). These provides a rich language used to encode data as 

ontologies.  A knowledge graph can be modelled and represented in multiple ways, with RDF 

being a common way to do this. RDF is a method for modelling a knowledge graph as a directed 

edge-labelled graph (del graph). Del graph modelling consists of defining a set of nodes with 

directed labelled edges, representing binary relations between nodes. RDF defines these types 

of nodes referred to as Internationalised Resource Identifiers (IRIs) and are used to denote the 

existence of entities and its relation to between them. RDF nodes can also be referred to as 

being constructed by subject, predicate and object (see Figure 2.3) because of the similarities 

to how languages form sentences. One full set of subject, predicate and object is commonly 

referred to as an RDF triple. These entities can contain a wide range of datatypes such as 

integers, dates, strings etc. (Hogan et al., 2021). OWL is a language that is designed to represent 

rich and complex knowledge. Through the language things and their relations can be described. 

It is the most commonly used language to use to create documents describing whole ontologies 

(OWL Working Group 2012). 

To convert conventional geospatial data to a geospatial KG a systematic approach is often 

needed to minimize loss of information. One such approach is the ontology-based data access 

(OBDA) paradigm. This approach allows users to access data through a given domain ontology 

and becomes semantically linked through a mapping utilizing the R2RML language, which is 

a language for expressing mappings from relational databases to RDF datasets (Das et al., 

2012).  An OBDA can be realized in two different fashions: materialized or virtual. A 

materialized knowledge graph (MKG) involves materializing the original data as RDF graphs 

through the use of specialized systems, such as Ontop. These can then be loaded into RDF 

storing systems that support geospatial KGs. A virtual knowledge graph (VKG) never generates 

any RDF graphs from the original data but keeps it virtual. Together with ontologies and 

mappings the data can be exposed as a virtual RDF graph. This is also achievable through the 

Ontop system (Ding et al., 2024). Both approaches have their advantages and are commonly 

used when presenting geospatial KGs. The MKG approach has the advantage of faster query-

answering time, both for spatial semantic queries and non-spatial queries. VKG has the 

advantage of being the most storage efficient approach, as the data can be kept in its original 

form without any need to materialize it as an RDF graph (Li et al., 2022). 

In general, KG approaches has advantages such as maintaining original data structures. 

Scalability and adaption on a case basis are also additional advantages. The drawbacks of KGs 

is that the implementation requires an intelligent approach and that the linked model is 

maintained and updated when the original structures are (Herle et al., 2020). 

In order be able to to define RDF triples in an efficient manner, syntax through a serialization 

language is needed. There are multiple commonly used serialization languages for defining 

RDF, some examples being Turtle, TriG, N-Triples, N-Quads, JSON-LD, N3, RDF/XML and 

RDF/JSON (Beckett et al., 2014). Out of these languages, Turtle is the most interesting with 
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regards to the KG approach as it is compatible with the N-Triples format and SPARQL. 

Coincidentally, Turtle is also the syntax used for writing R2RML. SPARQL is a query language 

used for querying RDF and is capable of querying a diverse set of data sources. It also contains 

capabilities for querying graph patterns, which is an essential functionality for practical use of 

KGs (Harris & Seaborne, 2013). Turtle provides syntax for writing RDF triples in a compact 

and natural text format that is easily readable by humans. 

2.4. CityGML ontologies 

The ontologies for CityGML are important as means to sufficiently describe the relation of 

things contained in a CityGML model. Methods to present the data as relational databases 

served to fix some of the problems pertaining to the static nature of XML files but still limits 

the implementation of semantic interoperability. The official XML encoding of CityGML was 

mainly intended as an exchange format and linking data requires a standard mechanism, which 

is only implicit in XML-based encodings. The implementation of ontologies in this regard 

servers to fill the remaining gap by enabling easier explicit linking of data (Heath & Bizer, 

2011). 

The University of Geneva have developed a CityGML ontology through applying Extensible 

Stylesheet Language Transformations (XLST) to CityGML 2.0 data. The resulting ontology 

contains a one to one matching of concepts that can bring the standard and semantic 

interoperability together (Chadzynski et al., 2021). It contains 185 classes, 281 object 

properties, 92 data properties and 1254 axioms. The ontology has been frequently applied with 

success in works and studies that utilizes or present CityGML data as a knowledge graph (Ding 

et al., 2023; Ding et al., 2024; Zalamea et al., 2016). The ontology is publicly accessible and 

therefore easy to apply and use for this purpose. However, the ontology has been more closely 

inspected in recent years and has revealed to have quality issues that requires fixing to comply 

with semantic web standards (Chadzynski et al., 2021). Through evaluation of the ontology it 

was found that the ontology failed to pass an accuracy test conducted through the Protégé 

ontology editor. It was also found to contain entities that were redundant within upper 

ontologies the would cover the CityGML ontology it. Conversely, the ontology was also found 

to lack certain entities that would allow it to comply with larger, upper ontology domains. 

Besides the limitations of the ontology, there is lack of tools to allow for populating the ontology 

with data.  

While the ontology created by the University of Geneva describes the CityGML in a sufficient 

manner, the inconsistencies and other issues hinder compliance with larger domain spaces in 

which CityGML is contained within or can be linked to. In order to facilitate this interoperability 

with other knowledge graphs, the ontology created by the University of Geneva was refined in 

order to fix the inconsistencies and the new ontology created from this process was coined 

OntoCityGML (Chadzynski et al., 2021). It contains 344 classes, 272 object properties, 78 data 

properties and 3363 axioms. The ontology showed none of the errors that was present in the 

previous ontology during validation. Additionally, the ontology successfully manages to make 

CityGML compliant with World Wide Web Consortium (W3C) standards. This leads to triple 

stores constructed using this ontology to allow integration of geospatial data with other general 

knowledge graphs. The ontology has only seen a handful of applications but has proved to be 



14 

 

viable as a schema for CityGML. As of 2024, at least two studies have been made where the 

ontology was used. One study used the ontology in the development of an autonomous 

intelligent software agent for instantiation, visualization and analysis of City Information 

Models (CIM) based on geospatial knowledge graphs. The agent was tested through creating 

semantic model of Berlin in LoD2 that was compliant with CityGML 2.0 through the use of the 

OntoCityGML (Chadzynski et al., 2022). The second study deals with the future work 

mentioned in the previous study by developing and integrating additional interface features 

such as a geospatial processor for transforming SQL to SPARQL (Agarwal et al., 2023). Other 

complementary agents were also developed, such as a thematic surface discovery agent, a city 

information agent, a city energy analyst agent and a distance agent. These agents intend to create 

a set of interfaces that allows for building scalable information systems enabling large city 

models based on knowledge graphs. The work natural applies the OntoCityGML since the 

logical foundations and the base work is reliant upon it (Agarwal et al., 2023). 

Linked models can be presented using the prominent knowledge graph technology within the 

Semantic Web, which has been mentioned and successfully used in other studies to present 

CityGML data as knowledge graphs. A proof-of-concept study was done where 161 R2RML 

mappings were made to link CityGML data containing buildings to its corresponding ontology, 

presenting the CityGML data as a virtual knowledge graph. Queries were then performed over 

the knowledge graph to validate the result and to showcase some interesting and practical 

queries (Ding et al., 2023). This study was then further worked upon by incorporating other 

datasets into the knowledge graph. OpenStreetMaps (OSM) data was linked to the previously 

constructed CityGML knowledge graph. By implementing a supplementary ontology called 

LinkedGeoData (LGD), OSM data could successfully be implemented and linked to the 

existing graph. The integration of OSM data enabled even more complex queries to be done, 

such as finding all hotels over 30 meters in height (Ding et al., 2024). A third study looked into 

the using an RDF graph approach for integrating GIS and BIM data. Two RDF graphs were 

constructed by transforming the GIS data in the form of CityGML and BIM data in the form of 

IFC respectively (Hor et al., 2016). Semantic Web technology is then used to integrate the two 

graphs through the newly introduced Integrated Geospatial Information Model approach, 

achieving linkage between the two datasets. Using the Graph Matching for Ontologies (GMO) 

algorithm to measure similarities between the two graphs, the correct links could be found for 

corresponding concepts between the graphs. The integrated model could then be queried in a 

unified and fully integrated manner (Hor et al., 2016). 

3. Methodology 

The following section describes the process adopted for creation and validation of a KG based 

on CityGML data. The whole process can more practically be seen as divided into to two parts: 

(1) construction of the VKG, and (2) validation of the VKG. The construction of the VKG refers 

to the process of initializing a system consisting of a physical database, ontology and mapping 

to support the creation of a knowledge graph structure as well as the actual steps and processes 

used to map the data to a graph. The validation of the VKG refers to the process of testing and 

validating the resulting graph from the first part to ensure that no significant loss of data or 

information occurred and that the data is correctly linked according to semantics. The first part, 



15 

 

construction of the KG, can furthermore be described as two individual steps: Initialization of 

data and system and KG mapping. These two steps are then followed by the validation and 

testing step described earlier. In order to successfully create a KG, a system architecture was 

created to facilitate the processes and tools that was needed based on the described steps (see 

Figure 3.1). Through the first two steps, the resulting KG could either be created as a VKG or 

MKG, depending on preference. The creation of a VKG requires three components: data in a 

relational database, an ontology and a mapping used to create the needed RDF triples that will 

represent the graph. A VKG has the benefit of requiring less storage for data, as the data 

populating the graph is kept virtual and retrieved on-demand.  Large data sets such as 3D city 

models may have high space requirement and be cumbersome to be kept materialized as an 

MKG. The virtual pipeline required to maintain a VKG can also be beneficial when working 

with evolving and changing data such as city models, as it maintains consistency without the 

need to update multiple environments. The resulting KG was therefore created as a VKG to 

better suit the nature of the data and potential applications. The study limits itself to just 

constructing a VKG as the described maintenance and update need can be seen as inherent in 

potential application such as the building permit process, where frequent update and 

maintenance are commonplace for the system. 

 

Figure 3.1: An overview of the system architecture used for the creation of the CityGML VKG. The architecture contains 

three primary modules: Initialization of data, KG mapping and validation and testing. Each module contain the individual 

steps and processes in the workflow.  

The knowledge graph approach has general advantages such as maintaining original data 

structures. Scalability and adaption on a case basis are also additional advantages. The 

drawbacks of such an approach is that the implementation needs to be done intelligently and 

that the linked model is maintained and updated when the original structures are in the case of 

MKG (Herle et al., 2020). Those drawbacks are easily negated through the needs of the building 

permit process itself and VKG therefore make the KG and by extension the VKG approach 

appropriate as the primary focus of the study. However, the VKG approach does suffer 
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drawbacks such as slower query times when performing integrated queries over multiple 

models. This is mostly due to the large number of UNION clauses that are needed to perform 

matching of the data models. An example of this could be the need for multiple UNION clauses 

in order to match overlaps in ground surfaces between two models. One model might contain 

multiple surface geometries that only overlaps with one in the other model, which would require 

multiple clauses to complete the matching. In such scenarios, MKG approaches appear to 

perform better (Ding et al., 2024). 

3.1. Initialization of data and system 

The initial starting point of the created system was the Initialization of data and system. This 

meant inputting CityGML data and generating a physical storage for said data. A physical 

storage was needed to be created in order to be able to reference the data needed to populate 

the KG. This was accomplished by embedding the CityGML data into a relational database, 

essentially restructuring and mapping the data to rows and columns in order to make the data 

queriable while also enabling updates to be done. Multiple solutions are available for 

performing this step and 3DCityDB was the solution chosen for this study. 3DCityDB is a 

commonly used tool for importing CityGML data into a SQL database. It provides both a 

software tool for importing and exporting data as well as a predefined SQL schema, making for 

an easy and streamlined process. 3DCityDB has been used in previous studies of the same 

nature as this and in studies adapting more ad-hoc approaches by incorporating different types 

of data rather than just CityGML, proving the software to be useful in use cases such as this 

study (Ding et al., 2024; Uggla et al., 2023). 

3.1.1. 3DCityDB 

With the increased use and application complexity of CityGML data by cities around the world, 

a need for better storage solutions of CityGML became apparent. Due to the potential 

complexity and size of 3D geospatial data, no well-eastablished GIS vendor had created 

solutions for providing efficient storage, analysis, management, interaction and visualization of 

3D city models. 3DCityDB was created as a means to provide these functionalities (Yao et al., 

2018).  

3DCityDB is an Open Source package that contains a set of tools for importing, exporting, 

managing, analysing and visualizing CityGML data as well as a database schema developed 

specifically for storing the CityGML standard in a relational database. The database schema 

maps the objects in the CityGML data structure to the structure of a spatially-enhanced 

relational database management system (SRDBMS). The schema support Oracle and PostGIS 

as the dedicated SRDMBS choice, enabling 3DCityDB to utilize the spatial data representation 

and processing capabilities of SRDBMS. 3DCityDB sees application in practical production in 

a number of cities in the world, such as Berlin, Potsdam, Munich, Frankfurt, Zurich, Rotterdam 

and Singapore (3DCityDB Team, 2019).  

3DCityDB supports database creation for both CityGML 1.0 and 2.0 currently. The database 

defines classes and relations for objects as well as their respective geometrical, topological, 

semantical and appearance properties. Vector and grid representation is provided through the 

chosen SRDBMS as to avoid special solutions, allowing direct read and write access for other 
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systems such as BIM. Furthermore, the software package includes an ADE manager, allowing 

for dynamic extension of the 3DCityDB schema using ADEs. Implementing an ADE requires 

a dedicated Java library for a given ADE (3DCityDB Team, 2019).  

The database schema provided by 3DCityDB contains 15 different models that in total consists 

of 66 tables in the physical database. The 15 different models in the provided schema are: 

Metadata, Core, geometry representation, Appearance, Building, Bridge, City Furniture, 

Generic Objects and Attributes, LandUse, Digital Terrain, Transportation, Tunnel, Vegetation 

and WaterBody (3DCityDB Team, 2019). The relevant models for this study is Core, Building 

and geometry representation. The tables of most interest in those models are the “cityobject”, 

“building”, “thematic_surface” and “surface_geometry” tables.  

The ”cityobject” table contains records representing all the objects present in the data regardless 

of their respective theme (see Figure 3.2). The table includes some attributes defining class, 

function and usage for the given object in the data. The primary function of the table is to 

provide a unique identifier for each object, which is done through the “gmlid” column. The 

table also contains an “id” column which is used as the primary key, used for joining other 

tables and referencing data records in those tables (3DCityDB Team, 2019). 

 

Figure 3.2: An excerpt displaying the “cityobject” table in the 3DCityDB database schema. The excerpt only displays some 

of the columns in the table. 

The “building” table is a merging of the three CityGML classes AbstractBuilding, Building and 

BuildingPart (see Figure 3.3). Figure 2.2 showed that all three classes contained in the table are 

subclasses of CityObject and subsequently can be joined with the “cityobject” table. This is 

done through referencing the ID column as the id is shared between the tables. The table 

contains information on if the object is a Building (class ID 26) or Building Part (class ID 25). 

The table also stores arbitrary attribute data pertaining to a building such as roof type, measured 

height and construction date. Additionally, the table contains several columns representing 

geometry IDs as foreign keys. The columns represent each of the different LoDs (0-4) and each 

of the different geometry aggregations (solid, multi-surface, footprint and roof footprint). Each 

of these IDs refers to entries in the “surface_geometry” table (3DCityDB Team, 2019).   
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Figure 3.3: An excerpt displaying the “building” table in the 3DCityDB database schema. The excerpt only displays some of 

the columns in the table. 

The “surface_geometry” and “thematic_surface” are two tables containing information relating 

to the planar surfaces that makes up the geometry of buildings. All geometry is explicitly stored 

in the “surface_geometry” table as either geometry, implicit geometry or solid geometry. The 

geometry column is used to store surface-based geometry as exactly one polygon, potentially 

containing holes. The implicit geometry stores the geometry of prototype objects used such as 

trees or traffic lights used for commonly reoccurring objects. The solid geometry column is 

used to store the volumetric geometry. This volumetric geometry is comprised of the boundary 

surfaces that are stored in the geometry column. Each of these geometries can be referenced 

using previously mentioned geometry IDs that are present in other tables. The 

“thematic_surface” table is the table that contains attribute and class information pertaining to 

the boundary surfaces of an object. The multi-surface ID foreign keys are located here and can 

be used to references the boundary surfaces in the geometry column in the “surface_geometry” 

table (3DCityDB Team, 2019). 

3DCityDB supports Oracle and PostgreSQL as backend for the database. The provided SQL 

schema together with PostgreSQL was chosen for the SQL generation step. PostgreSQL was 

the chosen option because of its common usage and renown in the geospatial domain through 

the PostGIS extension. During the import process of the CityGML data, all features were 

filtered out except for Building and BuildingPart, resulting in the relational database only 

containing features corresponding to the Building module in the CityGML structure. This was 

done since the building permit process was highlighted as a potential application area and 

buildings are therefore the most relevant feature in CityGML data to use for testing the 

feasibility of the KG approach. Important to note is that the import process creates indexing in 

the database. Most importantly, the import process creates Generalized Search Tree (GiST) 

indexing for geometries. GiST is a tree-structured access method that works as a base template 

in which multiple indexing schemes such as B-tree and R-tree can be implemented. B-trees are 

self-balancing, multi-level tree structures that enable search and sequential access through a 

leaf node structure. R-tree share a similar structure to B-trees but are considered multi-

dimensional and typically useful for spatial data querying and storing. This makes for flexible 

access methods that can be customized to suit different data types like geometric objects 

(PostgreSQL Global Development Group, 2024). No additional customization of the database 

was done as it was not needed to proceed with the second step in the process, that being KG 

mapping.  
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3.1.2. Study data 

The CityGML data used in this study is of an area in Malmö. The dataset contains a total of 

14262 CityObjects where 420 of those are Buildings and BuildingParts respectively. The 

buildings in the data is a mix of both LoD2 and LoD3, with 51 of them being LoD2 and 369 

being LoD3. During the data import process with 3DCityDB the remaining CityObjects not 

associated with the building module was excluded from the import. This resulted in 11213 

CityObjects being imported into the database and used in the study. A majority of these 

CityObjects were objects associated with the buildings. In the case of this dataset, those objects 

were roof, wall and ground surfaces. In total, 2117 RoofSurfaces, 7887 WallSurfaces, 369 

GroundSurfaces, 420 Buildings and 420 BuildingParts were imported and used throughout this 

study. The data is originally a test dataset used for developing an ADE to serve as the Swedish 

national profile of CityGML (Uggla et al., 2023). The additional data provided by the ADE is 

removed from the dataset through the initialization process and only the base CityGML 2.0 data 

was used throughout the remaining processes. The Building and BuildingParts objects contain 

no additional attribute data besides their respective geometries and class information. In order 

to have queries retrieve meaningful and practical results, some arbitrary attribute data needs to 

be present in the dataset. The dataset contains a number of empty attribute fields meant to hold 

information regarding function, usage, year of construction, year of demolition, roof type, 

measured height, storeys above ground, storeys below ground, storey height above ground and 

storey height below ground. Measured height and storeys above ground are types of information 

that can be relevant in the urban planning process, since this is characteristics that are regulated 

in detail development plans (Lantmäteriet, 2024). Values for these fields were created by 

manually updating the fields using SQL queries and necessary functions after having imported 

the data to a relational database using 3DCityDB. The solid geometries of each building were 

used to calculate the height and update the measured height field for each building object 

accordingly. The storeys above ground values were then derived from these calculations by 

dividing the measured height by 2.8 to calculate how many floors each respective building 

would fit.  

3.2. Knowledge graph mapping 

With the choice of only focusing on VKG construction, the primary activity in the second step 

became mapping and adjusting the ontologies. To accomplish this, additional systems was 

needed to be able to manage ontologies as well as creating mappings to represent the knowledge 

graph. Ontop is a system that support creation of both MKG and VKG. It provides all the 

necessary support for languages such as R2RML and SPARQL that is needed for construction 

of a VKG based on CityGML data. It is generally a popular system that sees widespread use for 

the purpose of implementing VKG and OBDA approaches (Xiao et al., 2020). It has also seen 

previous use in other studies where CityGML data is represented as knowledge graphs 

(Chadzynski et al., 2021; Ding et al., 2023; Ding et al., 2024; Vilgertshofer et al., 2017). 

3.2.1. Ontop and Protégé 

In order to implement a VKG and OBDA approach, dedicated systems are required to free end-

users from dealing with low-level data organizations and details. This allows user to concentrate 

on more practical high-level tasks of implementation and analysis (Xiao et al., 2020). Ontop is 
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one such popular system for constructing VKGs. It does so by providing a reasoning engine 

translating SPARQL queries expressed over a knowledge graph into SQL queries which 

retrieves data from a relational database that populates the graph. This translation allows for 

Ontop to leverage functionality present in the relational databases. In the case of this study, this 

meant being able to utilizes spatial functions and the indexing that was created during the data 

import process to make querying more efficient. The construction of knowledge graphs in 

Ontop relies on the R2RML mapping language. Ontop can be used as a plugin in the ontology 

editor Protégé, which allows for simultaneous management and adjustment of ontologies during 

the mapping process (Ontop, 2024). The system supports many features in commonly used 

languages and protocols related to Linked Data and RDF stores, such as SPARQL 1.1, R2RML, 

OWL 2 QL, SPARQL entailment regime and the SPARQL 1.1 HTTP protocol. In particular, the 

SPARQL entailment regime is what enables the system to define a specific evaluation of basic 

graph patterns based on SPARQL logic (Glimm et al., 2013). Ontop is published under the 

liberal Apache 2 license, meaning that system can potentially have more uses cases and 

applications outside of its already known popularity (Xiao et al., 2020).  

Protégé is a free, open source and wide spread software platform used for building and 

managing ontologies as well as knowledge-based systems. It is provided in many different 

frameworks, such as desktop clients and a web-based system. The desktop client supports 

advanced features for construction and management of OWL ontologies and RDF triples while 

the web-based system is more lightweight and simpler in features (Musen, 2015). The desktop 

client provides tools for import, export, visualization, editing and construction of ontologies. 

The software’s plug-in architecture enables extension and customization to it through the 

development of plugins. Ontop is one such plugin that can be used directly in the Protégé 

desktop client (Musen, 2015). 

3.2.2. R2RML mapping 

The primary CityGML 2.0 ontology used in this study is the one developed by the University 

of Geneva. It has seen prominent use in many studies as the primary ontology to describe the 

CityGML domain. However, the ontology is known to have several inconsistencies where 

object and data properties share the same IRIs, making the ontology unusable unless fixed. 

These inconsistencies have been seen and discovered in other studies using the same ontology 

(Chadzynski et al., 2021). This was resolved by removing either one of the properties sharing 

the same IRIs, removing the one that made the least logical sense within the context of the 

ontology. For example, the property “measured height” was both an object and data property in 

the ontology. Logically, it makes more sense for “measured height” to be a data property rather 

than an object property and therefore the object property was removed. This same logic was 

applied for all identified inconsistencies in the ontology. Additionally, some auxiliary 

ontologies were used alongside the primary CityGML ontology. While not necessary to do so, 

they provided properties that helped in defining certain semantics and constraints within the 

CityGML ontology. For example, the GeoSPARQL ontology was notably used to allow for 

defining different geometrical classes and formats that complies with OGC standards. Another 

auxiliary ontology that was used was the RDF schema ontology. This was added to provide 

constraints for labels used to populate some parts of the graph.  
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Together with the ontologies, the most central and user-centric step of the process could be 

started, that being the R2RML mapping of the knowledge graph. The mappings allowed for 

constructing a knowledge graph that uses the data from the physical database to populate the 

graph dynamically through defining SQL queries tied to each mapping, retrieving specific data. 

These queries are written separately from the RDFs being constructed, requiring that each 

individual attribute in the CityGML dataset is queried to populate their respective ontological 

concepts. The data used in this study contains both LoD2 and LoD3 buildings, meaning that 

much of the database contains empty tables that otherwise would contain data for other feature 

types. Furthermore, the buildings in the dataset are defined as LoD2 and LoD3 but the LoD3 

buildings do not contain all LoD3 specific attributes, such as openings and windows. However, 

it is still possible to classify the individual surface geometries in the LoD3 buildings. Through 

a more detailed mapping, it is possible incorporate more semantic detail in the KG for the LoD3 

buildings. With this in mind, the mapping intended to retrieve and represent all the crucial and 

useful data that is expected to be present in building features.  

The primary criteria for all mappings are to ensure that all objects mapped to the KG have 

appropriate relationships described and adhere to the available linkage in the database. For 

example, everything in the dataset is a CityObject but can belong to different classes that have 

specified relationships according to the UML structure for CityGML. A criteria of the mapping 

is to ensure those are maintained and that it is functional to do so with the database schema 

used. Furthermore, this can be described more generally for the process. The general criteria 

are to ensure that semantical equivalence is achieved according to the original structure, 

adhering to ontological structure, modelling considerations in line with the database structure, 

ensuring interoperability with used standards and adhere to domain specific standards like 

regulations in the building permit process. 

The mappings consisted of three different components: an ID, a target and a source. The ID 

refers to an arbitrary ID which identifies each unique mapping. The target is a RDF triple 

defined through Turtle syntax that incorporates placeholder variables which are populated 

through the source SQL query. Each triple defines a specific semantic relationship between 

objects of different classes in the CityGML ontology.  The source is in turn an SQL query 

written to retrieve the specific information that is to populate the target triples. Figure 3.4 

illustrates three different mappings that were written for constructing the knowledge graph. In  

image A the previously mentioned mapping ID, target and source can be seen. The given 

example shows the mapping for solid geometry of a LoD3 building. More specifically, the 

mapping displays the linking of a CityObject’s LoD3 solid geometry ID in the database to the 

ontology class “Geometry” as well as linking the same ID to data property which stores the 

solid geometry as Well-Known Text (WKT) through the use of the GeoSPARQL ontology. The 

first target line in the first example in Figure 3.4 describes a solid geometry (represented through 

the IRI for solid geometry IDs) as the subject, belonging to the class “Geometry”, which is the 

object of this triple. The two nodes in the triple is the first IRI representing solid geometries and 

the yellow (colour code for classes) IRI representing the Geometry class. The predicate for the 

triple is the “a”, which is a shorthand for describing objects as a certain RDF type and class. 

The semicolon in the second line denotes another triple with the subject being the same as in 
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the first triple. Another predicate was then defined that described solid geometries as having a 

data attribute. Data properties is displayed as green IRIs and used to store actual data values to 

objects. The third line defines the object for this triple which is the value that is stored through 

the data property, in this case geometry stored in the WKT format. The SQL query was written 

to retrieve the solid ID and the geometry from a database table called “surface_geometry”. This 

is the table that stores all geometries and relevant information associated with them. It is the 

standard table provided by the 3DCityDB SQL schema that was used and is a generalisation of 

the CityGML geometry module. Because of this, the data in the table is not directly intuitive to 

map but requires users to have an understanding of the data to correctly map geometries to the 

corresponding classes in the ontology. In the example, the solid geometry was mapped to the 

general “Geometry” class in the ontology. This was one possible solution as it is the most 

general geometry class in the ontology and provides necessary properties for the mapped data. 

It is possible to map the geometries to more specific subclasses, for example the “Solid” class, 

which is a subclass of geometry. However, it was not necessary for this example as the subject 

is data that was previously mapped to the “LoD3 solid” object property. The object property 

“lod3Solid” is used within the “_AbstractBuilding” and “Solid” class, enabling the inference 

of attributes and characteristics associated with the class onto the linked data. This inference 

process is enabled by the reasoning engine provided by Ontop. Image B in Figure 3.4 displays 

two additional mappings that links CityObjects to the Building and BuildingPart class in the 

CityGML ontology respectively. All the mappings that were made follows the same structure 

as the examples, linking different classes, object and data properties in the CityGML ontology.  

 

 
Figure 3.4: Three example mappings used in the construction of the VKG. Image A shows the mapping ID, target and source 

structure used in Ontop to define solid geometry for LoD3 buildings. Image B shows two mappings used to link CityObjects 

to their respective subclass of Building or BuildingPart. 
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The multi-surface mapping process for LoD3 buildings was the most detailed mapping process 

and differed from the solid geometry mapping process. In order to correctly map surface 

geometries to the correct buildings, an additional mapping had to be written to correctly link 

Building and BuildingPart together. The BuildingPart objects contain the necessary attributes 

needed to link surface geometries to the Building class. In the database, BuildingParts were 

linked with other CityObjects that represented the individual multi-surface compositions of a 

building. In the used dataset three different multi-surface classes was present: RoofSurface, 

WallSurface and GroundSurface. Since these classes are subclasses of BoundarySurface, it is 

appropriate to consider what kind of ID or object that should be classified this way in the 

mappings. This is important as there are many alternatives that would resulting in a functioning 

VKG but would fail the criteria of semantical equivalence, as certain relationship might be 

omitted in certain cases. Considering that the class intends to describe the individual bounding 

surfaces that make up a complete building, the most appropriate ID to store here was deemed 

to be multi-surface IDs, as that aligned the most with the semantical equivalence criteria by not 

omitting any predicate present in the UML diagrams for CityGML 2.0.  

A mapping was written in order to describe BuildingParts as being bounded by the multi-

surface CityObjects. The object property used as predicate for this mapping was boundedBy, as 

this property is the term describing the relationship in the UML diagram. The CityObjects 

representing multi-surface objects are also present in another table in the database called 

“thematic_surface”. This table contains attributes and data specifically pertaining to these 

surface CityObjects, such as the multi-surface ID that can be referenced in the 

“surface_geometry” table. Utilizing the multi-surface ID attribute, a mapping was made to 

classify the ID as a BoundarySurface, linking the CityObjects and BoundarySurface nodes 

through the predicate lod2MultiSurface. All of the multi-surfaces can now be correctly 

referenced and classified as their respective class in the KG. This was done through three similar 

mappings, one for each of the surface classes. In the same mappings, the multi-surfaces IDs 

were also mapped to their respective individual surfaces that comprises the multi-surface, 

similarly to how Building and BuildingPart was mapped to their respective classes in Figure 

3.4. This was defined using the predicate surfaceMember in order to link BoundarySurface 

nodes and Surface nodes. Lastly, three mappings were made again in order to map the actual 

geometries of each surface as WKT to the KG in the same manner as was shown in Figure 3.4, 

completing the mappings for the different surfaces in LoD3 buildings.  

A VKG can be constructed to a functional degree with just a few mappings and can be further 

improved and developed with more mappings. With a functional mapping and manually fixed 

ontology, it is possible to query the VKG directly in Ontop using SPARQL. A quarriable VKG 

allows for validation through test queries to investigate the consistency and robustness of the 

graph.  

3.3. Knowledge graph validation 

To test and validate the constructed knowledge graph and its representation of CityGML data, 

queries are done over the graph utilizing Ontop and its provided SPARQL query editor and 

manager. SPARQL is the standard query language for Linked Data and RDF databases and thus 

the primary query language to use for validating and testing the knowledge graph (W3C RDF 
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Data Access Working Group, 2008). By performing queries the VKG can be tested on how well 

it would answer legitimate semantical queries that could be used within the potential areas of 

use for this approach. The testing would allow for determining the level of completeness and 

robustness of the knowledge graph. A complete and robust knowledge graph representation can 

be considered to be an effective implementation. These metrics were validated through manual 

cross-examination between the original data and the results obtained through the SPARQL 

queries. If significant loss would have occurred in the construction of the VKG the test queries 

would reveal if that is the case through incomplete or missing data retrieval.  

A total of seven queries were written as a means to test the coherence of the constructed VKG. 

All seven queries were written as means to validate the mappings by incorporating most of the 

data mapped to the VKG. Query 1 servers to test some validity and completeness of the VKG. 

Queries 2-6 demonstrate some potentially practical queries that can be done to filter different 

buildings of interest and to test the validity of those parts in the VKG. Query 6 and 7 was 

designed to test the potential use of spatial querying made possible by the more detailed 

information for LoD3 buildings (see Appendix A for more details regarding the used SPARQL 

vocabular). The queries were designed with increasing complexity, incorporating more 

predicates from query to query. The completeness of the VKG was be determined through the 

queries ability to return results from the implemented mappings. Therefore, the queries were 

designed to retrieve information from the different parts of the KG. If the queries were 

successful in retrieving the correct data, that part of the KG is deemed sufficient in its 

completeness. The robustness of the VKG was determined through the queries ability to return 

the expected results. Using the database containing the original data, equivalent SQL queries 

can be performed to retrieve the expected results that the SPARQL queries should retrieve. If 

the queries returned results equivalent to those given by the SQL queries over the relational 

database, the targeted part of the KG was deemed sufficiently robust. Below is the 

aforementioned queries demonstrated as well as the intention behind each query. 

Query 1 was designed to retrieve all the relevant information linked to each unique CityObject. 

It retrieves class name, the solid geometry ID as strings and the solid geometry, which is defined 

as WKT. Retrieving basic information about a building and its geometry is fundamental to 

potential application cases and is therefore an important first test for validating the VKG. 

The query retrieves the wanted information by specifying variables (marked through the “?” 

prefix) that are queried to follow the specific predicates that leads to objects and RDF resource 

that is supposed the be retrieved by the query. Each variable can then be used in the selection 

statement to be retrieved. The functions BIND and STRAFTER are used to recreate variables, 

in this case to remove and recreate some selected variables without the full IRI. 

SPARQL query 1: Find all buildings assigned as LoD3 and their corresponding CityObjects 

ID, class name, LoD3 solid ID and solid geometry. 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geosparql: <http://www.opengis.net/ont/geosparql#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

 

SELECT DISTINCT ?cityObject ?classname ?lod3_solid_id ?geometry_wkt 
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WHERE { 

  ?cityObject building:lod3Solid ?lod3_solid_iri . 

  ?lod3_solid_iri geosparql:asWKT ?geometry_wkt . 

 

   BIND(STRAFTER(STR(?lod3_solid_iri), "http://www.opengis.net/gml/Solid/") 

AS ?lod3_solid_id) .  

 

  ?cityObject building:class ?class_id . 

  ?class_id rdfs:label ?classname . 

} 

Query 2 was designed to be an example of a filtering query, intended to find some specific 

buildings fulfilling the filtering requirement. The filtering is based on the mapped data property 

measuredHeight, representing the height of each respective building. The query intends to 

retrieve all building IDs for buildings that are taller than 10 meters. A query like this is can be 

practical for real application and exemplify a simple filtering query. Filtering queries in general 

are useful with a wide variety of attributes to find specific buildings or determine if certain 

breakpoints are meet.  

The design of this query is similar to Query 1. The measured height attribute is linked to the 

CityObjects and therefore is designed to find RDF resources of the type “_CityObject”. 

Simultaneously, the predicate used to map data to the “measuredHeight” data property is 

queried to retrieve each respective building’s height. The FILTER function is introduced here 

as a means to filter the CityObjects retrieved so that only results above 10 meters are displayed. 

SPARQL query 2: Find all buildings with a measured height above 10 meters. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

 

SELECT ?cityObjectId ?measuredHeight 

WHERE { 

  ?cityObject a citygml:_CityObject ; 

  building:measuredHeight ?measuredHeight . 

 

  BIND (URI(?cityObject) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?cityObjectId) 

 

  FILTER (?measuredHeight > 10) 

} 

Query 3 is another example of a filtering query where additional information is retrieved 

alongside the filter criteria. The query retrieves information such as measured height, the 

number of floors above ground and the solid geometry about buildings with 4 to 6 floors. The 

intention behind the query is to validate that the attribute data (height and number of floors) has 

been implemented as intended. Retrieving multiple types of attribute data like this can be useful 

in a building permit scenario to retrieve relevant information for existing buildings. 
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Query 3 is structured similar to Query 2 with no new functions. It simply extends the previous 

query to retrieve more data through different predicates. The FILTER function now employs a 

range compared to Query 2 and filters based on the number of floors rather than building height.  

SPARQL query 3: Find all buildings with 4 to 6 floors above ground. Retrieve the height and 

solid geometry of each building fulfilling the requirement. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geosparql: <http://www.opengis.net/ont/geosparql#> 

 

SELECT ?cityObjectId ?measuredHeight ?storeysAboveGround ?geometry_wkt 

WHERE { 

  ?cityObject a citygml:_CityObject ; 

  building:storeysAboveGround ?storeysAboveGround ; 

  building:measuredHeight ?measuredHeight . 

 

  ?cityObject building:lod3Solid ?lod3_solid_iri . 

  ?lod3_solid_iri geosparql:asWKT ?geometry_wkt . 

 

  BIND (URI(?cityObject) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?cityObjectId) 

 

  FILTER (?storeysAboveGround >= 4 && ?storeysAboveGround <= 6) 

} 

Query 4 is an example of utilizing the more detailed semantics available for LoD3 buildings. 

LoD3 provides more detailed information and semantics regarding the individual surfaces that 

comprise the solid geometry. It therefore becomes possible to query specific surface types in 

LoD3 buildings and this query is an example of how that can be done. In this case, the query 

retrieves all the ground surfaces for every building in the dataset. It retrieves the surface 

geometry alongside its specific ID as well as what building this surface is associated with. The 

practical implications of a query such as this is further exemplified in Query 5 and 6 which 

extends this type of query. 

Query 4 utilizes many new predicates to create multiple variables. Many of the variables written 

into the query is not selected to be retrieved but could easily be done by adding the variable 

name to the selection statement. The whole query is essentially one long chain of querying 

through multiple links until the surface geometry is reached, which is the last object in the chain. 

SPARQL query 4: Find all ground surfaces associated with LoD3 buildings and their respective 

surface IDs. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/>  

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geom: <http://www.opengis.net/gml/> 
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SELECT ?buildingId ?lod3_surface_id ?geometry_wkt  

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:GroundSurface ;  

 geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId) 

} 

Query 5 is an example of retrieving surfaces geometries and other information from a specific 

building. The query is designed to retrieve the roof surface geometry of a specific CityObjects, 

in this case the building with the CityObject ID 7748. The URI of this CityObject is bound to a 

specific variable in the query (“?building”). The rest of the query is similar to Query 4, with the 

only difference being that the height of the building is retrieved as well as the roof surface being 

retrieved rather than the ground surface. Finding information and specific geometries can be 

useful within the urban planning context. The building permit process involves a step where a 

proposed building project will be checked if it is in compliance with the ruling detail plan for 

the area, or if outside of a detail development plan, checked if it is suitable for the area and as 

a building (Boverket, 2020). In such a context retrieving information like what this query does 

can be of use. 

SPARQL query 5: Find the height and roof geometry of the specific building with the CityObject 

ID 7748. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geom: <http://www.opengis.net/gml/> 

 

SELECT ?buildingId ?lod3_surface_id ?roof_geometry ?measured_height 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:RoofSurface ;  

   geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?roof_geometry .   

 

  BIND(cityobject:7748 AS ?building)  

  ?building building:consistsOfBuildingPart ?buildingPart ; 

   building:measuredHeight ?measured_height . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 
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"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId)  

} 

Query 6 extends what was done in Query 4 by incorporating spatial querying functions. The 

intention behind the query is to allow for measuring of distance between buildings and filter 

based on it. The GeoSPARQL ontology provides the function for calculating distance in the 

Ontop SPARQL endpoint. Important to note is that the distance function does not support 3D 

geometries such as a polyhedron and can therefore not use the solid geometries to answer such 

queries. Ground surfaces can be used to aggregate footprints of buildings, providing a practical 

surface polygon that can be used for distance calculations. Finding distances to nearby existing 

buildings can be of importance when considering where to build new buildings and the design 

of them.  

The design of the query is similar to Query 4 in that it retrieves the ground surface for a specific 

target building (in this case CityObject 8833). The distance is then calculated from the specific 

ground surface associated with that building to all other ground surfaces that does not belong 

to the target building. A FILTER operation is used to ensure that the query does not retrieve the 

distance for the target building to itself. The query uses an additional FILTER operation to only 

retrieve results that has a distance of 5 meters or less. 

SPARQL query 6: Find buildings with a 5 meter or less distance from the building with 

CityObject ID 8833. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geom: <http://www.opengis.net/gml/> 

PREFIX surface: <http://www.opengis.net/gml/Surface/> 

 

SELECT ?targetBuilding ?distance ?building 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:GroundSurface ;  

   geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

 

  surface:168419 geo:asWKT ?targetGeometry . 

  BIND(cityobject:8833 AS ?targetBuilding) 

 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  BIND(geof:distance(?targetGeometry, ?geometry_wkt, 

<http://www.opengis.net/def/uom/OGC/1.0/metre>) AS ?distance) 

  FILTER(?building != ?targetBuilding) 

  FILTER(?distance <= 5) 

} 

ORDER BY ASC(?distance) 
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Query 7 adds more spatial functions on top of what was showcased in Query 6. This query 

utilizes another GeoSPARQL function (geom:sfTouches) to check for surfaces that touches the 

ground surface of the building with the ID 8833. Some additional BIND functions are also used 

in order to make the result more readable by shortening IRIs. The intention behind this query is 

less practical as there are significantly simpler methods for retrieving and finding surface 

geometries associated with a specific building. The query was designed this way to test Ontop’s 

efficiency with leveraging spatial operations. The query response time is of interest as the 

potential uses cases highlighted in the study would make prominent use of complex queries 

utilizing spatial operations. Investigating the systems performance in terms of response time is 

therefore important as a way to validate the approaches effectiveness in practice.  

SPARQL query 7: Retrieve the distance between CityObject 8833 and all other surfaces. Also 

find the surfaces that touches the ground surface in CityObject 8833. 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geom: <http://www.opengis.net/gml/> 

PREFIX surface: <http://www.opengis.net/gml/Surface/> 

 

SELECT ?buildingId ?surfaceType ?distance ?touching 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a ?surface_type ; 

    geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  surface:168419 geo:asWKT ?targetGeometry . 

  BIND(cityobject:8833 AS ?targetBuilding) 

 

  BIND(geof:sfTouches(?targetGeometry, ?geometry_wkt) AS ?touching) 

  BIND(geof:distance(?targetGeometry, ?geometry_wkt, 

<http://www.opengis.net/def/uom/OGC/1.0/metre>) AS ?distance) 

 

  FILTER(?surface_type = building:GroundSurface || ?surface_type = 

building:WallSurface || ?surface_type = building:RoofSurface) 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(str(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId) 

 

  BIND (URI(?targetBuilding) AS ?TargetUri) 

  BIND (xsd:integer(REPLACE(str(?TargetUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS 

?targetBuildingId) 

 

  BIND (SUBSTR(str(?surface_type), 
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STRLEN(str("http://www.opengis.net/citygml/building/2.0/")) + 1) AS 

?surfaceType) 

} 

ORDER BY DESC(?touching) 

4. Results 

The results is divided up into two subsections. The first describes the results attained through 

the VKG mapping by providing a simplified overview of the whole constructed VKG and later 

showcasing more detail regarding the individual mappings. The second section describes and 

interprets the results of the queries and compares it to the expected results based on the original 

database, if the method is applicable for the given query. 

4.1. VKG mapping 

The constructed VKG contains selected data as a means to display the general concept and 

important semantics to map when intending to create a VKG representing CityGML data. 

Figure 4.1 illustrates a diagram of the VKG design and the implemented data in it. In total, 20 

mappings were done to achieve the VKG, resulting in a total of 224212 triples. Each triple in 

the VKG represents the semantic relationship between two objects or an object and its data 

attribute. The previously mentioned criteria is present in all the incorporated mappings with 

each mapping using appropriate predicates within the used CityGML ontology. The mappings 

covers the necessary concepts in the ontology and the correlating data in the database to 

represent buildings and their geometries in a sufficient manner. The mappings for LoD3 and 

LoD2 multi-surface geometries can been seen in Figure 4.2 The two classes relevant for the 

study, Building and BuildingPart, has been mapped together with appropriate class name labels 

from the CityObjects in the relational database. Solid geometries for both LoD2 and LoD3 

buildings has been mapped to the geometry class as well as to a separate data property storing 

the solid geometries as WKT. Composite geometries, referred to as multi-surface geometries 

within CityGML has also been mapped to represent the boundary surfaces for the buildings in 

the dataset. The mapping between LoD2 and LoD3 multi-surfaces differs due to the difference 

in available semantic information. LoD3 has more descriptive semantics for each surfaces 

available, allowing for classification of each surface as either roof, wall or ground. These 

semantic details are not available for LoD2 buildings in the dataset and the multi-surfaces 

associated with those buildings has therefore been directly mapped as boundary surfaces 

without classification. Each CityObject in the data has also been mapped to have arbitrary 

attributes regarding function, usage, year of construction, year of demolition, roof type, 

measured height, storeys above ground, storeys below ground, storey height above ground and 

storey height below ground. However, due to the limited presence of attribute data in the 

original dataset only measured height and storeys above ground have data values. The semantic 

relationship between RDF resources are represented by blue and green arrows. Blue arrows 

represent a relationship between entities as object properties while green represents a type 

assignment of a RDF resource e.g. a CityObject being assigned the class BuildingPart. Data 

properties of the different classified RDF resources are displayed as text inside the container 

boxes in the diagram.  
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Figure 4.1: A diagram of the VKG mappings and the implemented data. The VKG features the building theme in CityGML 

with both LoD2 and LoD3 buildings. 

 

Figure 4.2: The mappings made for representing LoD2 multi-surface geometries. LoD2 lacks the necessary details to 

individually identify and map the different surfaces as different classes.  

To provide more detail about the mappings summarized in Figure 4.1, some additional 

mappings are shown in detail in Figure 4.2, 4.3 and 4.4. The multi-surface mapping for LoD2 

buildings (see Figure 4.2) share similarities with the mapping shown in Figure 3.4 but due to 

the structure of the database schema and the data used in the study the SQL queries used to 

retrieve the data differs. The data does not contain any specific IDs for LoD2 multi-surfaces 

and therefore cannot directly be retrieved and referenced using the ID. Instead, the retrieval 

method used revolves around joining tables by CityObject IDs and retrieve the 

“surface_geometry” IDs as IDs representing boundary surfaces for buildings. This way, all the 

geometries associated with a specific building gets retrieved. This can then be filtered by only 

retrieving records where surface geometries are present and from LoD2 buildings. Surface 

geometries are geometries found in the “geometry” column. This method for mapping allows 



32 

 

for the surface geometries to still be mapped using alternative IDs to still be able to retrieve 

geometries without further details. 

 

Figure 4.3: The mappings made to describe the relationship between Building and BuildingPart as well as BuildingParts 

bounded by other CityObjects. This mappings were necessary to correctly link surfaces to specific LoD3 buildings. 

For mapping multi-surfaces in LoD3 buildings, the amount of mappings are substantially more 

in order to recreate the correct relationships in the KG. Figure 4.3 displays some of the 

mappings created to recreate the needed relationships describing how surfaces related to 

building objects and populate the graph with the appropriate data. The first mapping is made to 

link the Building and BuildingPart classes. This is necessary as the actual multi-surface are 

linked and referenced through the BuildingPart class in the database rather than Building. The 

SQL used to retrieve the necessary data is trivial in this case. The second mapping links the 

BuildingPart with the CityObjects representing the specific boundary objects for each building. 

These CityObjects are the actual objects representing the multi-surfaces and from these it is 

possible to derive their individual classes and surface geometries. The SQL used to retrieve the 

data is once again trivial, only joining two tables together.  

The third mapping shown in Figure 4.3 is the mapping created to classify the previously 

mentioned CityObjects  as BoundarySurface and to assign the objects with the lod3MultiSurface 

object property. The LoD3 multi-surface ID attribute associated with the CityObjects are used 

as object in the RDF triple and stored in the BoundarySurface IRI. This now populates the KG 

with unclassified composite surfaces that make up the boundary surfaces of each respective 

building in the dataset.  
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Figure 4.4: The mappings made to describe relationships from the CityObjects bounding the BuildingPart leading all the way 

to individual surface geometries for LoD3 buildings.  

The next mappings done in the process of representing LoD3 geometry can be seen in Figure 

4.4. The first three mappings (A, B and C) in the figure displays the different classifications 

done for the composite surfaces and the simultaneous linking of the individual surfaces’ ID. To 

ensure that surfaces was classified as the correct one, three different mappings had to be written 

where the SQL queries were designed to filter the specific class and just retrieve those objects. 

The filtering is primarily controlled by filtering on objectclass_id in the “thematic_surface” 

table. The three classes filtered for were roof surfaces (class ID 33), wall surfaces (class ID 34) 

and ground surfaces (class ID 35). The individual surfaces that comprise the composite multi-

surfaces are also mapped as surfaceMembers of their respective multi-surface object. This is 

enabled by joining the two tables “surface_geometry” and “thematic_surface”  and retrieving 

the individual surface IDs through the SQL query. 

The following three mappings (D, E and F) follow a similar structure and method. They classify 

the individual surfaces as their respective class as well as defines the link between surface ID 

and the surface geometries as WKT. The SQL queries used for these mappings are similar to 

the previous three in Figure 4.4. The same filtering operations and joining are used with the 
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primary difference being the retrieval of the actual geometries and casting them as WKT. With 

the these final three mappings, representation of the individual surfaces in LoD3 buildings has 

been achieved. 

4.2. VKG evaluation 

The VKG was validated and tested using the queries shown in section 3.3. The resulting table 

retrieved through SPARQL query 1 can be seen in Figure 4.5. The table shows an excerpt of all 

the retrieved CityObjects defined as having LoD3 geometry. In total 369 records were retrieved. 

All of the CityObjects belonged to the class BuildingPart and their respective LoD3 solid ID 

and the respective solid geometry was correctly retrieved. The CityObjects are all of the 

BuildingPart class because they are the CityObjects that are directly linked to the solid 

geometries. By cross-examining the resulting table with the results from an equal SQL query 

on the relational database it was concluded that SPARQL query 1 successfully retrieves all the 

expected records. 

SPARQL query 1: Find all buildings assigned as LoD3 and their corresponding CityObject ID, 

class name, LoD3 solid ID and solid geometry. The prefix definitions are omitted for readability. 

SELECT DISTINCT ?cityObject ?classname ?lod3_solid_id ?geometry_wkt 

WHERE { 

  ?cityObject building:lod3Solid ?lod3_solid_iri . 

  ?lod3_solid_iri geosparql:asWKT ?geometry_wkt . 

 

   BIND(STRAFTER(STR(?lod3_solid_iri), "http://www.opengis.net/gml/Solid/") 

AS ?lod3_solid_id) .  

 

  ?cityObject building:class ?class_id . 

  ?class_id rdfs:label ?classname . 

} 

 
Figure 4.5: Excerpt results from SPARQL query 1. The query intended to find all buildings assigned as LoD3 and their 

corresponding CityObject ID, class name, LoD3 solid ID and solid geometry. 

The results from SPARQL query 2 can be seen in Figure 4.6. 252 records were retrieved by the 

query with similar attributes as the previous query. Each CityObject and the measured height of 

it can be seen in the table if the height is above 10 meters. The results in the figure were once 

again cross-examined against an equal SQL query in the relational database with the same 

results for both queries, concluding that the query works as intended and the graph is mapped 

correctly.  
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SPARQL query 2: Find all buildings with a measured height above 10 meters. The prefix 

definitions are omitted for readability. 

SELECT ?cityObjectId ?measuredHeight 

WHERE { 

  ?cityObject a citygml:_CityObject ; 

  building:measuredHeight ?measuredHeight . 

 

  BIND (URI(?cityObject) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?cityObjectId) 

 

  FILTER (?measuredHeight > 10) 

} 

 
Figure 4.6: Excerpt results from SPARQL query 2. The query intended to find all buildings with a measured height above 10 

meters. 

The results from SPARQL query 3 can be seen in Figure 4.7. The results include the ID of each 

CityObject and their corresponding height, number of floors and solid geometry that fulfilled 

the requirement of being a LoD3 building with the number of floors being in the range of 4 to 

6. The cross-examination against the relational database showed an equal number of 

CityObjects retrieved like the previous two queries.  

SPARQL query 3: Find all buildings with 4 to 6 floors above ground. Retrieve the height and 

solid geometry of each building fulfilling the requirement. The prefix definitions are omitted for 

readability. 

SELECT ?cityObjectId ?measuredHeight ?storeysAboveGround ?geometry_wkt 

WHERE { 

  ?cityObject a citygml:_CityObject ; 

  building:storeysAboveGround ?storeysAboveGround ; 

  building:measuredHeight ?measuredHeight . 

 

  ?cityObject building:lod3Solid ?lod3_solid_iri . 

  ?lod3_solid_iri geosparql:asWKT ?geometry_wkt . 

 

  BIND (URI(?cityObject) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?cityObjectId) 
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  FILTER (?storeysAboveGround >= 4 && ?storeysAboveGround <= 6) 

} 

 
Figure 4.7: Results from SPARQL query 3. The query intended to find all buildings with 4 to 6 floors above ground while 

retrieving the height and solid geometry of each building fulfilling the requirement. 

The resulting table for SPARQL query 4 is displayed in Figure 4.8. The query intended to test 

the long chain of predicates that was mapped to retrieve a specific class of surfaces from LoD3 

buildings. The resulting table shows each respective building’s CityObject ID along with the 

surface IDs and geometries associated with the building. The amount of retrieved records have 

been limited to 100. Although it is not apparent in the result shown in the figure each of the 

buildings can be associated with multiple ground surfaces, since they are designed to be multi-

surface composite geometries. This results was not cross-examined against the original data 

structure as just testing that the mappings work were deemed enough to consider the graph 

validated.  

SPARQL query 4: Find all ground surfaces associated with LoD3 buildings and their respective 

surface IDs. The prefix definitions are omitted for readability. 

SELECT ?buildingId ?lod3_surface_id ?geometry_wkt  

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:GroundSurface ;  

 geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId) 

} 
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Figure 4.8: Excerpt results from SPARQL query 4. The query intended to find all ground surfaces associated with LoD3 

buildings and their respective surface IDs. 

The results from SPARQL query 5 (see figure 4.9) is similar to what was displayed in query 4. 

Instead of ground surfaces the query now retrieves all the roof surfaces of a select building, in 

this case the building with the CityObject ID of 7748. 58 records are retrieved indicating that 

the building in question consists of 58 different surfaces that comprises the whole roof of the 

building. The measured height is also retrieved and shown to be the same for all of the surfaces, 

which is correct given that they are all associated with the same building. The resulting table 

from the query was cross-examined against the relational database which retrieved the same 

results using an equivalent SQL query.  

SPARQL query 5: Find the height and roof geometry of the specific building with the CityObject 

ID 7748. The prefix definitions are omitted for readability. 

SELECT ?buildingId ?lod3_surface_id ?roof_geometry ?measured_height 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:RoofSurface ;  

   geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?roof_geometry .   

 

  BIND(cityobject:7748 AS ?building)  

  ?building building:consistsOfBuildingPart ?buildingPart ; 

   building:measuredHeight ?measured_height . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(STR(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId)  

} 
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Figure 4.9: Results from SPARQL query 5. The query intended to find the height and roof geometry of the specific building 

with the CityObject ID 7748. 

The result from the SPARQL query 6 (see Figure 4.10) is an example of what information can 

be retrieved utilizing spatial functions present in GeoSPARQL. The query returns 10 records in 

total which displays the target building that was used in the query in the first column. The 

second column of the table shows the distance from the target building and the specific ground 

surface to ground surfaces in other buildings. The query only retrieves cases where the distance 

calculated was 5 meters or less. In reality, the number of buildings that fulfilled this requirement 

was two, as the third column that shows the respective nearby buildings only include two unique 

CityObject IDs.  

SPARQL query 6: Find buildings with a 5 meter or less distance from the building with 

CityObject ID 8833. The prefix definitions are omitted for readability. 

SELECT ?targetBuilding ?distance ?building 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a building:GroundSurface ;  

   geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

 

  surface:168419 geo:asWKT ?targetGeometry . 

  BIND(cityobject:8833 AS ?targetBuilding) 

 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  BIND(geof:distance(?targetGeometry, ?geometry_wkt, 

<http://www.opengis.net/def/uom/OGC/1.0/metre>) AS ?distance) 

  FILTER(?building != ?targetBuilding) 

  FILTER(?distance <= 5) 

} 

ORDER BY ASC(?distance) 



39 

 

 
Figure: 4.10: Excerpt results from SPARQL query 6. The query intended to find buildings with a 5 meter or less distance from 

the building with CityObject ID 8833. 

The results from the SPARQL query 7 is shown in Figure 4.11. Besides the calculated distance, 

the results now also provide boolean values for if surfaces touch the ground surface of the target 

building. The results also retrieve all other surfaces and calculates the distance from the target 

surface to those. The type of surface is also retrieved and shown in the results. For this specific 

query, the execution time for completing the query was 11.3 seconds. When performing the 

equivalent query in SQL over the relational database it retrieves the same number of records, 

that being 43951. The execution time for the query when performed over the relational database 

was 5.9 seconds. 

SPARQL query 7: Retrieve the distance between CityObject 8833 and all other surfaces. Also 

find the surfaces that touches the ground surface in CityObject 8833. 

SELECT ?buildingId ?surfaceType ?distance ?touching 

WHERE { 

  ?boundaryObject building:lod3MultiSurface ?lod3_multi_id. 

  ?lod3_multi_id a ?surface_type ; 

    geom:surfaceMember ?lod3_surface_id . 

  ?lod3_surface_id geo:asWKT ?geometry_wkt . 

  ?building building:consistsOfBuildingPart ?buildingPart . 

  ?buildingPart building:boundedBy ?boundaryObject . 

 

  surface:168419 geo:asWKT ?targetGeometry . 

  BIND(cityobject:8833 AS ?targetBuilding) 

 

  BIND(geof:sfTouches(?targetGeometry, ?geometry_wkt) AS ?touching) 

  BIND(geof:distance(?targetGeometry, ?geometry_wkt, 

<http://www.opengis.net/def/uom/OGC/1.0/metre>) AS ?distance) 

 

  FILTER(?surface_type = building:GroundSurface || ?surface_type = 

building:WallSurface || ?surface_type = building:RoofSurface) 

 

  BIND (URI(?building) AS ?cityObjectIdUri) 

  BIND (xsd:integer(REPLACE(str(?cityObjectIdUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?buildingId) 

 

  BIND (URI(?targetBuilding) AS ?TargetUri) 

  BIND (xsd:integer(REPLACE(str(?TargetUri), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS 

?targetBuildingId) 

 

  BIND (SUBSTR(str(?surface_type), 

STRLEN(str("http://www.opengis.net/citygml/building/2.0/")) + 1) AS 
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?surfaceType) 

} 

ORDER BY DESC(?touching) 

 
Figure 4.11: Excerpt results from SPARQL query 7. The query intended to find surfaces touching the ground surface of the 

building with CityObject ID 8833. It also retrieved the distance to all surface geometries. 

5. Discussion 

The representation of CityGML data as a VKG was deemed successful in presenting building 

information through the mappings provided. The provided framework and implementation 

through the method is easy to use from a user perspective due to the relatively few mappings 

needed in order to present basic geometry and attribute data for buildings. The queries 

performed confirms that the representation is complete and robust by retrieving the expected 

information and that query expression used over the KG functions as intended. While the results 

show successful implementation, below discussions gives some insight into challenges and 

limitations discovered during the implementation process as well as future possibilities for the 

approach. 

5.1. Evaluation of the VKG representation 

While the implementation of the VKG was successful, the approach does present some user-

centred challenges that are interesting to highlight. The most challenging part of creating a VKG 

representation is the correlation of the 3DCityDB database schema and ontological concepts. 

The database provides a large number of CityObjects associated with different classes. The need 

to occasionally map building CityObjects to surface CityObjects through different object 

property predicates requires good understanding of the data and the CityGML standard to make 

the correct and appropriate choices of ontological concepts for the RDF definitions. Identifying 

the proper class to assign to a CityObject is also a challenging prospect in the process due to 

the way the database structures and relates the CityGML data across different tables. The user 

will most likely make decisions regarding classification of CityObjects and predicates utilizing 

the additional information, such as the provided CityGML object classes. For example, some 

CityObjects represent thematic surfaces in the form of walls, roofs and ground and can be 

identified through the object class ID. This level of detail is only available in LoD3 buildings 

in the database schema used. LoD2 buildings does contain a level of detail that does include 

modelling of roof structures. However, the individual roof surface geometry is not available for 

induvial mapping like it is for LoD3 buildings. The roof structure is available in the solid 

geometry but not as an identifiable individual geometry which limits potential queries and 

analysis with buildings in LoD2. The thematic surfaces available in LoD3 can easily be 

classified in the mapping through this knowledge but the user also has to consider what 

predicates would be appropriate as a means to semantically link the CityObjects. A wall surface 



41 

 

is a boundary surface and the UML for CityGML specifies the relationship between them as the 

aggregation described as “boundedBy” (Open Geospatial Consortium, 2012). However, 

mapping the corresponding CityObject ID to the “_BoundarySurface” IRI would result in 

misleading information as while the object is a boundary surface, the ID does not necessarily 

correspond to the surface ID. While this deduction can be considered somewhat trivial, the 

thought process behind correlating different CityObjects can be unintuitive depending on the 

structure of the used database.  

The queries were performed as a means to test and validate the representation and displayed 

sufficient completeness and robustness. The completeness can see seen through the successful 

querying the relevant semantical relationships detailing geometry and attributes for LoD3 and 

LoD2 buildings. The showcased detail for LoD3 buildings by being able to query different 

surfaces is especially interesting, as previous studies have highlighted a paucity in representing 

this LoD in KG approaches (Ding et al., 2024). This paper provides novelty in the framework 

by showcasing the implementation of LoD3 CityObjects in a KG context. The robustness is 

evident through the fact that the queries over the VKG returned the expected results in all the 

tested queries.    

Furthermore, the queries were intended as a practical showcase of how information can be 

retrieved for practical analysis purposes. However, the queries are not without limitations. 

While they are inspired by what information is commonly useful in the building permit process, 

such as building height and distance to nearby buildings, the queries themselves are not equal 

to the analysis done for building permits. In detail development planned areas, constructions 

and renovations are required to adhere to the plans and are tested on if the changes are suitable 

with regards to purpose, shape and material (Boverket, 2020). The queries can be seen as a step 

in retrieving the information needed to conduct the necessary analysis for that purpose.  

One limitation of the framework presented is the fact that the framework is specifically 

implemented based on the CityGML data that was provided for the study. The types of 

information stored and how it is encoded in CityGML data varies based on the producer and 

country (Uggla et al., 2023). The mappings that were made only mapped the data that was 

available in the actual dataset, which means that certain classes and properties within the 

CityGML ontology was never mapped. For example, only LoD2 and LoD3 buildings were 

present in the dataset so only those two LoDs were mapped, leaving LoD0, LoD1 and LoD4 

unmapped. This impacts the reusability of the specific framework provided in this study. 

However, the proposed framework can be expanded upon in future works in order to increase 

the reusability. The presented framework is intended to showcase the general process and give 

enough details to be able to apply the method to expand the mappings and to map other themes 

in the CityGML structure. 

5.2. Effects of the database schema and ontology 

3DCityDB and Protégé together with the Ontop plugin are central components of the system 

and workflow presented in this paper. While the tools could successfully be used to construct a 

VKG representing CityGML data to an adequate degree, it is worthwhile to evaluate the 

effectiveness of these tools. 3DcityDB is especially interesting to evaluate within the context 
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of the presented workflow due to it prevalence in the urban planning environment in Sweden 

(Smart Built Environment, 2023a).  

The database schema provided by 3DCityDB provided a total of 66 tables where very few were 

actually used for the mapping process. This is due to many of the tables being associated with 

the different themes and modules that are present in the CityGML 2.0 data structure as well as 

the fact that only the building theme was used in this study. It could be argued that many of the 

tables become redundant in the cases where just one or very few themes are imported into the 

database. The tables “building”, “thematic_surface” and “surface_geometry” are the three 

tables that are central to mapping the geometries correctly and therefore important to understand 

their structure and relation. While the documentation provides enough insight as to how these 

are related, the separation of IDs for different geometries between the two tables can appear 

unintuitive for the user. The table “thematic_surface” is used to store the ID and information 

regarding all the geometries that comprise the thematic boundary features of a building. This 

table provides the necessary information to be able to classify a geometry as one of the thematic 

surfaces within the CityGML structure. However, the actual geometries of these surfaces are 

stored in the “surface_geometry” table together with all other geometries, such as solid and 

implicit. Creating the full representation through the mapping from a base CityObject 

representing a building to the individual thematic surfaces could be argued as being inefficient. 

This is because of the need to join all three tables together in the SQL queries to retrieve the 

needed data. From a perspective of mapping the data to a knowledge graph, it would be more 

efficient to create tables requiring less joining of the tables and lessen the number of total tables 

needed. 

It is also worthwhile to highlight the “surface_geometry” table, as the table presents geometry 

data in an aggregated structure that is significantly different from the structure in the ontology. 

While the implementation does not significantly increase the complexity of the mappings, it 

does create a need for the user to consider the correct correspondence and translation from 

database to ontology. This in combination with the aforementioned structure of the 

“thematic_surface” table results in the logical linking and relations between the tables and the 

data they hold to be the most difficult and user-centric parts of the representation process.  

Protégé and Ontop provided the necessary platform for managing the CityGML 2.0 ontology 

and mapping. A tool for managing ontologies is required in order to handle the known 

inconsistencies in the CityGML 2.0 ontology from the University of Geneva. From a practical 

perspective when considering the scalability of the workflow presented, it is important to alter 

the ontology as little as possible and employ unified data standards. Countries have been found 

to have different standards for encoding CityGML data. For example, Sweden is currently 

working with the 3CIM ADE standard and implementing it on national level (Uggla et al., 

2023). Another example is Estonia that encodes addresses together with geometries and links 

buildings to its corresponding surface geometries rather than solid geometries (Ding et al., 

2024).  Adding properties to the ontology to better fit how CityGML data is structured in 

3DCityDB or any other system would lead to inconsistencies between the original data structure 

and the KG representation. Developing new ontologies based on ADE is likely a better solution 

in the cases where adding properties and classes to an ontology is of interest.  
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The used ontology itself is also another limitation of the study. The known inconsistencies in 

the ontology had to be handled in order for the reasoner engine to function, which enables the 

mappings. The chosen solution in the case of the study was to remove illogical object and data 

properties. This is not the only way to handle inconsistencies. It is possible to also handle these 

inconsistencies by renaming the IRIs, ensuring that each of them is unique. This would mean 

that certain concepts in the ontology would no longer align with the UML diagrams but this 

could also be the case when removing properties completely. The best method for handling  

inconsistency could vary depending on the use case and database schema and it is difficult to 

say if the approach used in this study is better than others. The approach used in this study is 

acceptable within the context of the data used and use case but it might not be the case in 

general. 

Besides the mapping tools that Ontop provides, it also includes the necessary SPARQL endpoint 

allowing for querying of the VKG. For query 1-6, the performance and execution time were 

good with all of them retrieving the correct results under 1 second. The design of query 7 was 

however intended to push the complexity of the query by incorporating multiple spatial 

operations while also retrieving a significantly higher amount of results than the other queries. 

The execution time for query 7 was significantly slower than the other 6 queries. Compared to 

the execution time of the equivalent SQL query over the relational database, the SPARQL query 

took double the amount of time to execute. While the execution time is relatively slow and 

slower than when querying over a relational database, the data retrieval efficiency is still 

acceptable. This is likely due to Ontop’s ability to leverage underlying indexing functionality 

in the original database through SPARQL to SQL translations. The database utilized GiST 

indexing for geometries which is a very flexible indexing method that adapts different indexes 

depending on the data type (Rogov, 2019). For example, in the case of geometric objects, GiST 

can adapt an R-tree index since it supports relative position locators rather than just the 

“greater”, “less” and “equal” operators that B-tree is capable of. The flexibility of GiST does 

not necessarily mean that it is a spatial index but it is able to adapt spatial indexing to better 

support querying of geometric objects. With this in mind, it becomes apparent that adapting 

indexing in the underlying relational database is important for the VKG approach as a means 

to increase the efficiency of querying. The study proves that increasingly complex queries 

utilizing spatial operation increases execution time significantly even when spatial indexing is 

used. To ensure that querying is as efficient as possible, spatial indexing should be used in the 

relational database when implementing a VKG approach. 

5.3. Applications and future research 

The results of the study show that it is possible to develop complete and robust knowledge 

graph representations of CityGML building objects in a simple and effective manner. The 

implementation can be considered effective because of the relatively straightforward and simple 

implementation process showcased through the results. The queries are able to retrieve basic 

information regarding building data and while this does contribute to the prospects of more 

efficient interoperability, there is more practical use cases that can be tested and more complex 

queries can be performed. Future work should look into the possibilities of performing more 

complex queries, especially incorporating more spatial functionalities over 3D geometries in 
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the queries. The implementation of querying 3D geometries such as polyhedral surfaces is still 

limited in Ontop despite being able to leverage relational spatial databases. Linking and 

integrating different types of data and performing spatial queries over a KG representation is 

also subject for future research within the KG representation approach. The highlighted 

Swedish cities all expressed a need for methods to integrate more data with 3D city models. 

This study limits itself to developing a framework for part of the process that can be required 

for uses cases such as improving interoperability between data structures, where this would be 

a first step in such a case. Future research should look into the specifics of the interoperability 

needs and how this can be implemented to take the next step for the KG representation 

approach. 

The building theme within CityGML was the focus of this study which leaves opportunity to 

further study the same approach for the other remaining themes in CityGML, such as the 

transportation theme. The transportation theme would be of particular interest to implement 

using the KG approach as the ability to perform more complex analysis and management for 

infrastructure is something that is sought after by the cities that currently have and maintain 

digital twin models (Lehtola et al., 2022).  

Furthermore, with CityGML 3.0 significantly altering the established CityGML paradigm by 

reworking the current LoD structure there will be a future need to implement the KG approach 

for that version of CityGML. A new ontology have been developed for this version which 

naturally introduces significant change in implementation framework for this approach 

(Vinasco-Alvarez et al., 2022). As of the writing of this thesis, support for CityGML 3.0 by the 

tools used in the proposed system and framework has yet to be implemented. 3DCityDB is 

undergoing development with version 5 to implement support for CityGML 3.0 together with 

a new and improved database schema (3DCityDB Team, 2019). A new database schema also 

means that the necessary mappings to expose the CityGML data needs to be revised with respect 

to the new schema and ontology.  

6. Conclusions 

The aim and intention for this thesis was to investigate how CityGML could be represented as 

a virtual knowledge graph in an effective manner for urban planning applications and how 

queries can be carried out using the representation for urban planning purposes. The framework 

used in this thesis proves to be effective in modelling CityGML data as knowledge graphs. The 

20 mappings created were sufficient in creating a VKG representation of the data. The VKG 

was constructed to present all relevant geometry, attributes and semantic relationships of 

building objects in both LoD2 and LoD3. For LoD2, both solid and surface geometries were 

mapped as well as buildings attributes, in this case measured height and number of floors. The 

same respective data was mapped for LoD3 as well, albeit in a more detailed manner for surface 

geometries given the higher amount of semantic detail available for LoD3. The mappings done 

to present LoD3 geometry is especially interesting as it provides more detailed geometry and 

allows for more complex queries to be performed. Through the results, the framework can be 

considered as simple to use and sufficient for modelling a knowledge graph representation. The 
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low amount of mappings provided and the relative simplicity of them makes for an arguably 

efficient and effective implementation of the method. 

The thesis also aimed at discussing the currently common software and tools used for 

knowledge graph representation, those being 3DCityDB and ontologies. Through the method 

used it is clear that both software (3DCityDB and Ontop) are suited for this kind of 

transformation process. However, the 3DCityDB database schema presents redundancy to the 

framework and system with its large amount of tables. The tables “thematic_surface”, 

“surface_geometry” and “building” are the primary tables being used out of the 66 provided 

in the schema. This, alongside the need for the tables to be joined in many mapping cases causes 

redundancy when the schema is used for this purpose. A less redundant database schema could 

serve to make the proposed framework even more effective for modelling knowledge graphs. 

Efficient management of ontologies through tools such as Ontop is important due to the known 

inconsistencies in the CityGML 2.0 ontology used. Furthermore, adapting the approach at a 

larger practical scale is likely to require developing national standards ontologies in the form 

of CityGML ADEs. In such cases, ontology management tools are essential.  

The results shown for the performed queries further confirms and shows that the knowledge 

graph works as intended, is complete and robust by returning what is expected of the queries. 

The seven queries tested different parts of the constructed VKG in order to validate the 

completeness and robustness of all the parts. The first three queries tests simple building 

information retrieval and filtering. The first query retrieves CityObject IDs, their class and 

geometry information while the second and third query filters CityObjects based on measured 

height and number of floors respectively. Query 4 and 5 tests the different surface classes 

available in LoD3 by retrieving ground and roof surfaces respectively, with the latter also 

including filtering operations. Query 6 and 7 introduces spatial operations over the surface 

geometries available for LoD3 buildings. This is used as a base to conduct filtering with 

different distance conditions. The last four queries utilizes the higher level of detail available in 

LoD3 buildings by querying over the surface geometry parts of the VKG. These surface 

geometries are then used for some real-life inspired analysis queries, such as finding buildings 

within a minimum distance of a given building. While the queries performed has some practical 

use in urban planning, much remains to be explored in terms of incorporation spatial operations 

over the representation. Being able to use spatial operations over 3D geometries would increase 

the flexibility and use of the KG approach. By answering the research questions this thesis has 

shown that while there is room for improvement in many regards with the framework and 

method, it is still possible to effectively implement CityGML representation as VKGs for the 

urban planning process. 
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Appendices 

Appendix A: SPARQL Vocabulary 

A.1. Introduction 

This appendix presents the basics of the SPARQL vocabulary used in the queries presented in 

this report in order to retrieve and manipulate RDF data. The vocabulary provides explanations 

and examples of essential operations and functions used. 

A.2. Prefixes 

The following prefixes was used for the SPARQL queries presented in order to shorten and 

make the query writing more efficient. 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX citygml: <http://www.opengis.net/citygml/2.0/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geom: <http://www.opengis.net/gml/> 

PREFIX surface: <http://www.opengis.net/gml/Surface/> 

A.3. Sample queries 

Basic instance retrieval 

The following query retrieves all instances of the class “Building”. 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

 

SELECT ?cityobject 

WHERE { 

  ?cityobject a building:Building . 

} 

Instance property retrieval 

The following query retrieves all properties and their values for the specific instance 

“CityObject/93”. 

PREFIX cityobject: <http://www.opengis.net/citygml/2.0/_CityObject/> 

 

SELECT ?property ?value 

WHERE { 

   cityobject:93 ?property ?value . 

} 

BIND operation showcase 

The following query showcases the use of the BIND operation available in SPARQL and how 

it is used for the queries in this report. BIND allows a value to assigned to a variable from a 

basic graph pattern or property path. It is used in the queries as a means to make retrieved results 

easier to read by shortening IRIs down to just ID numbers. 
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PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

 

SELECT ?cityobjectID 

WHERE { 

  ?cityobject a building:Building . 

  BIND (URI(?cityobject) AS ?cityobjectURI) 

  BIND (xsd:integer(REPLACE(str(?cityobjectURI), 

"http://www.opengis.net/citygml/2.0/_CityObject/", "")) AS ?cityobjectID) 

} 

FILTER showcase 

The following query showcases the use of the FILTER operation available in SPARQL and how 

it is used in the queries in this report. FILTER allows for filtering out a selection of the retrieved 

results based on select property values. It is used to conduct analysis by finding certain building 

in compliance with a set height threshold. 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

 

SELECT ?cityobject ?measuredHeight 

WHERE { 

  ?cityobject building:measuredHeight ?measuredHeight . 

  FILTER(?measuredHeight > 10) 

} 

GeoSPARQL distance function showcase 

The following query provides an example of how the distance calculation function provided by 

the GeoSPARQL ontology is used in the queries. The distance function can be used to calculate 

the distance between two 2D geometries. In the queries it is used to calculate the distance 

between two different surface polygons in different buildings in order to estimate the distance 

between any two buildings. 

PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

PREFIX building: <http://www.opengis.net/citygml/building/2.0/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX geom: <http://www.opengis.net/gml/> 

 

SELECT ?startSurface ?distance ?endSurface 

WHERE { 

  { 

    SELECT ?otherSurface 

    WHERE { 

      ?lod3_surface_id geo:asWKT ?otherSurface . 

    } 

    LIMIT 1 

  } 

  BIND(?otherSurface AS ?endSurface) 

  ?lod3_surface_id geo:asWKT ?startSurface . 

  BIND(geof:distance(?startSurface, ?endSurface, 

<http://www.opengis.net/def/uom/OGC/1.0/metre>) AS ?distance) 

} 


