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Abstract

This thesis investigates the integration of machine learning (ML)-based compres-
sion on Field-Programmable Gate Arrays (FPGAs) to enhance bandwidth com-
pression of data, a crucial aspect in scientific research where large amounts of
data are produced in real-time. The compression tool Baler, utilizing autoen-
coders for MI-based compression, is designed to handle scientific data efficiently.
By combining the adaptability of ML models with the computational efficiency of
FPGAs, this thesis aims to evaluate the performance of Baler’s bandwidth com-
pression. The thesis work reveals that smaller models can effectively fit onto the
FPGA, resulting in a throughput increase of 16.9 times compared to a CPU in
a desktop computer. This significant improvement demonstrates the potential of
FPGA-accelerated ML solutions. Key factors influencing optimal FPGA perfor-
mance, including model size, precision levels, and clock period, were identified.
This thesis lays a foundation for further developing hardware implementation of
the Baler algorithm, suggesting that the convergence of ML and FPGA technol-
ogy holds significant potential for enabling more efficient hardware-accelerated ML
solutions.
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Popular Science Summary

Machine learning is a well-known concept that you probably have heard a lot
about. Have you ever wondered how scientists are harnessing the power of ma-
chine learning to revolutionize data compression? This thesis explores integrating
machine learning-based compression with Field-Programmable Gate Arrays (FP-
GAs) to enhance bandwidth compression, which is crucial for scientific research
where vast amounts of data are generated rapidly in real-time.

Imagine your average streaming service buffering your videos 17 times faster
because the data transferred is reduced to 1/17 of its original size before being sent.
This is precisely the potential that FPGA-accelerated machine learning offers for
scientific data processing. In the future, there is a possibility that data collected
in real-time will be compressed in real-time as well.

But it’s not just about compressing more data in less time. The research has
to be thoroughly evaluated. By assessing the performance of advanced compres-
sion algorithms like Baler on FPGAs, key factors influencing optimal performance,
such as model size, precision levels, and clock period, have been identified. These
findings not only advance our understanding of FPGA-accelerated machine learn-
ing but also hold significant potential for advancing computational methods and
enabling more efficient, adaptable solutions in various fields of science and tech-
nology.

So, where are the findings from this thesis most applicable, and when is band-
width compression most needed? Many research centers worldwide, such as CERN
in Switzerland and MAX IV in Sweden, are experiencing an abundance of produced
data. The amount of data produced is currently getting out of hand, and to save
time, resources, and data storage, they require some sort of data reduction solu-
tion. By compressing data in real-time as it is produced, the amount of data that
can be saved for storage will increase. This potentially enables further research at
CERN, MAX IV, and other research centers that would benefit from this.

This thesis lays a foundation for further developing the hardware implemen-
tation of the Baler algorithm and highlights the exciting intersection of machine
learning and FPGA technology. Continuing to explore the possibilities of this
innovative approach brings us one step closer to unlocking the full potential of
data-driven discovery in the digital age.
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Chapter 1

Introduction

This chapter serves as an introduction to the subject, laying the groundwork and
disposition for the subsequent chapters of the thesis. Comprehensive background
material will be covered, as well as prior work within this field. In addition to pro-
viding a wide context, readers will be acquainted with the motivation behind the
thesis and the problem description of the work, along with the research questions.

1.1 Background

The huge amounts of data produced from modern scientific research, such as the
research conducted at the Large Hadron Collider (LHC) at CERN in Switzerland,
are quickly becoming a problem. In late September last year, 2023, the research
center celebrated its capacity to store one exabyte of data, which translates to one
million terabytes. The data center’s storage capacity was less than a third of this
just five years ago and only about 6% of this ten years ago, which makes this a great
achievement [42]. However, the pressing need for more storage only indicates that
the need for storage is steadily increasing, exponentially. For instance, upgrades to
the LHC are expected to enable the accumulation of an order of magnitude more
data than currently possible by 2026 [14]. Beyond this, the ability to transfer all
this data is essential and with many scientific collaborations all over the world,
the need for efficient compression of the data is just as important.

Researchers at the Division of Particle Physics at Lund University have tackled
the issue of imminent data storage needs with the development of a data compres-
sion tool named Baler [8]. This tool employs lossy compression algorithms, derived
through machine learning methods. The compression models can be customized
for the user’s dataset, improving decompression and reconstruction performance
[10]. A lossy compression is typically constrained by the requirement for specific in-
put data to a designated compression algorithm to achieve high compression ratios
with minimal data loss. Nevertheless, a well-trained ML-based lossy compression
algorithm can effectively reduce data while maintaining the ability to decompress
it with minimal loss of information. In scientific contexts, such as at CERN and
MAX IV in Sweden, where massive amounts of data are produced, some data loss
is acceptable. With this in mind and the fact that lossy compression often provides
a higher compression ratio than lossless, Baler is well-suited for this kind of data.

These research facilities face challenges not only in compressing their data to
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a manageable size but also in achieving this in real time. For example, MAX
IV conducts experiments with CMOS detectors that produce several gigabytes of
data every second [35] and would benefit from data size reduction from the mo-
ment of collection. This could be accomplished by performing suitable bandwidth
compression, which aims to enhance data throughput by compressing the data
before sending it to storage. While compression algorithms for bandwidth aim
to reduce data size, their main priority is often to balance compression ratio and
computational efficiency.

Therefore, the goal of this master thesis is to deploy Baler on Field-Programmable
Gate Arrays to potentially accelerate the ML-models responsible for compression
and to measure the actual bandwidth compression Baler could achieve. FPGAs
offer great potential due to their high parallelism, enabling them to execute mul-
tiple operations simultaneously. Compression algorithms often involve repetitive
and independent tasks, making them well-suited for parallel processing. FPGAs
can exploit this parallelism to compress multiple data elements concurrently, lead-
ing to faster compression rates [26]. Given this advantage, the implementation
of FPGAs could prove significant for accelerating Baler’s most computationally
intensive tasks during compression.

1.2 Scope & Limitations

At present, there is no apparent method for generating the high-level synthesis
(HLS) required to translate Python-created ML models into FPGA implementa-
tions. The FPGA market is dominated by a few major hardware manufacturers,
namely Xilinx (AMD), Altera (Intel), and Lattice Semiconductor (Nvidia collab-
orator) [40]. However, the research on running ML-models on FPGAs is limited,
and third-party applications in this area are scarce. Consequently, there is a limi-
tation on developed software applications that provide sufficient support for both
high-level programming and the transition to the hardware description language
(HDL) used for FPGAs.

Recently, there has been significant scientific research conducted in the field
of FPGA-acceleration for ML-models. There is, however, no obvious choice for
which approach to take regarding the transition from Python to HLS or HDL.
The software chosen to convert the ML-models produced by Baler is the Python
package hlsdml [21]. Developed by individuals at CERN, hls4ml is designed to
interpret and translate ML algorithms for implementation on FPGAs [19]. How-
ever, it is important to note that hls4ml at this stage in time is not widely adopted
within this niche research field, partly because the research in itself is new. This
limitation might pose a challenge in the practical aspects of implementation. With
fewer prior use cases explored and less general experience with the tool, its more
detailed utilization may prove to be even more challenging.

Another difficulty that may arise during the course of this project is the need
for a proper dataset. Generally, the datasets available for testing during the im-
plementation phase are limited. This originates from the necessity of obtaining
consent, from data providers such as scientists at CERN, MAX IV, or similar in-
stitutions. The relevance of the data’s structure also plays a significant role in the
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selection process as the available data might not always fit the model. Addition-
ally, it is worth noting that comparing Baler’s performance across different types
of data is somewhat impractical. For meaningful comparisons with other similar
tools, using the same dataset they employed would be more appropriate.

Finally, within the scope of compression, this thesis will prioritize exploring
the implementation and viability of bandwidth compression over decompression
performance. This approach allows for a more comprehensive examination of band-
width compression in conjunction with FPGAs, rather than concentrating solely
on optimizing compression models for decompression performance.

1.3  Problem Definition

Based on the background and current limitations, the following research questions
have been devised:

1. To what extent can the deployment of Baler’s compression algorithms on
FPGAs improve bandwidth compression?

2. What are, if any, the limitations of deploying Baler’s compression algorithms
on FPGAs?

1.4 Previous Work

In the following section, previous research and developments relevant to the field
of FPGA acceleration for ML-models will be reviewed. This exploration provides
essential context for understanding the current state of the field and informs the
approach taken in this study.

1.4.1 SZ: Fast Error-Bounded Lossy Compression

In 2016, Sheng Di and Franck Cappello introduced a fast error-bounded lossy
compression algorithm for High-Performance Computing (HPC) data [16]. The
development of this algorithm was prompted by the demand for enhanced data
compression solutions in the field of extreme-scale HPC applications, where data
processing is becoming a bottleneck [16]. Squeeze, or SZ for short, utilizes error-
bounded compression with a best-fit curve-fitting model implementation to achieve
a significant increase in compression ratio. Error-bounded compression is de-
fined as maintaining the error of compressed data points, D’, within a bound
of [D — A, D+ Al], where D represents the original data points and A is the error
specified by the user. The algorithm examines each data point to determine if it
can be predicted by a best-fit curve-fitting model. If the prediction falls within the
specified error boundary, the data point is replaced using a two-bit code that indi-
cates the model type. Subsequently, the leftover unpredicted data is compressed
based on its binary representation, and the final result of the entire process is
losslessly compressed using Gzip compression [23]. In worst-case scenarios, the
compression ratio improves by about 2x, while for most cases, it attains an or-
der of magnitude enhancement compared to existing compression techniques [16].
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However, the time it took to compress the data was comparable to that of other
solutions, indicating a potential need for further development of their compression
throughput.

1.4.2 GhostSZ: Transparent FPGA-Accelerated Lossy Compression

In 2019, Xiong et al. developed an FPGA framework designed to run the SZ data
compression algorithm at line rate [51]. It was the first implementation that ran SZ
on an FPGA and was developed in order to decrease the time it took to compress
data. The framework is divided into five steps, which are offline configuration,
linearization, curve-fitting, error-bound quantization (improvement made since the
original version of SZ), and lossless Gzip compression. This follows the workflow
structure of SZ but adds the steps to calculate the curve-fitting models and the
Gzip compression on the FPGAs instead, accelerating the process.

The modification resulted in a notable speedup, ranging from 9.5x to 80x with
single-core execution compared to a single FPGA pipeline. Additionally, there
was a marginal improvement in compression ratio compared to the original SZ.
This improvement is attributed, in part, to the high number of repetitions in
data that GhostSZ benefits from. The parallelization aspect of the test results
demonstrated that the performance of GhostSZ scaled linearly with the number of
pipelines used. In contrast, the thread count of the CPU when running SZ in par-
allel with OpenMP did not show linear scaling, likely due to memory contention.
In conclusion, the overall performance significantly increased with the incorpora-
tion of FPGAs, and the parallelization aspect exhibited promising potential with
multiple pipelines.

1.4.3 WaveSZ: FPGA-Implemented Error-Bounded Lossy Compression

In 2020, Sheng Di and Franck Cappello et al. introduced an improved version of
the SZ algorithm called WaveSZ [45], with the overarching aim to implement the
compression on FPGAs using HLS. The name is derived from the combination of
adapting the wavefront memory layout, which mitigates data dependency during
prediction and utilizing the SZ-based algorithm. This version incorporates co-
optimization modifications in both hardware and algorithm design. The algorithm
unfolds in four primary stages: wavefront preprocessing, Lorenzo prediction (a
further improvement from the curve-fitting models previously used) adhering to
user-specified error bounds, linear-scaling quantization, and Gzip compression.
To ensure that the compression error consistently complies with the error-bound
specified by the user, it is imperative that the neighbouring values employed in
data prediction are the decompressed values rather than the original data values.
This constraint poses a challenge for SZ when attempting to leverage the pipelining
features in FPGAs since the prediction of data cannot occur until its preceding
points have been compressed.

However, the use of a wavefront memory layout alleviates this dependency and
enables a more optimized utilization of FPGAs. With this in mind and the incen-
tive that FPGAs can exploit parallelization with an inherently better pipelining
process and loop-unrolling structure, in the form of a higher number of logic units,
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than that of CPUs, promoted the idea to make an FPGA-based design. This
was realized through HLS written in C/C++. The outcome was a significant im-
provement in compression throughput, with a speedup ranging from 6.9x to 8.7x
compared to the original SZ running on a CPU. The major breakthrough, how-
ever, was the throughput enhancement of 5.8x compared to existing FPGA-based
SZ designs.

1.4.4 Fast Inference of Neural Networks in FPGAs for Particle Physics

Research on implementing neural networks on FPGAs was conducted by Javier
Duarte et al. in 2018, complementarily resulting in the companion compiler pack-
age hls4ml [17]. This work examines the implementation of neural networks on FP-
GAs by mapping out resource usage and latency across different networks and their
associated hyperparameters. The primary objective of the study was to identify
which neural networks most effectively work in conjunction with FPGAs, consider-
ing resource and latency constraints within the context of particle physics research.
One experiment conducted was the conversion of a neural network designed for jet
substructure classification into an FPGA implementation. The hls4ml package is
designed to simplify this process, providing a solution to bridge the gap between
machine learning models and FPGA hardware. Even though the neural network
used in their experiment does not strive for data compression they do mention
compression of the network, using L regularization, as part of reducing the FP-
GAs resource usage. Thereby, the built-in functionality of neural networks and
data compression with FPGAs were identified as a side product.

For instance, the Compact Muon Solenoid (CMS) collaboration at CERN suc-
cessfully implemented a neural network for hardware detection of physics signa-
tures on FPGAs using hls4ml [53]. Although the model used was very small, the
results were promising. This thesis aims to explore more thoroughly the built-in
functionality of neural networks and data compression with FPGAs, as well as the
usage of hls4ml.

1.5 Disposition

This section outlines the thesis structure, giving a brief description of the chapters
with an emphasis on their respective contributions.

e Introduction The introduction provides a general overview of the thesis,
offering background information on the work to be undertaken and summa-
rizing prior research in the field. Additionally, it establishes the scope of
limitations, defines the problem, and formulates the research questions that
guide this thesis.

e Theoretical Background This chapter delves deeper into the background
research supporting this thesis, offering a more detailed exploration of ML-
based data compression and FPGAs.

e Methodology The methodology covers the rudimentary workflow of the
thesis, including the tools employed during the research. It features the
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reasoning behind the use of Baler together with hls4ml in order to explore
the potential of incorporating FPGAs into the work process.

Implementation The implementation chapter highlights every major stage
of development, offering a comprehensive overview of the project’s progres-
sion. Every pivotal element that left a mark on the overall solution is thor-
oughly recorded and reviewed. By delving into each crucial part, this chap-
ter provides valuable insights into the project’s evolution, emphasizing the
decisions made and their impact on the final outcome.

Discussion This chapter undertakes an in-depth analysis and discussion of
the implementation results, while also exploring the underlying reasons for
any uncertainties encountered. Within this section, the author’s own reflec-
tions are presented, alongside considerations for potential future directions
and enhancements of the project. Additionally, this chapter also concludes
the thesis with the project’s key findings and insights, providing a concise
summary of the research outcomes and their implications.



Chapter 2

Theoretical Background

This chapter introduces the background and theory relevant to the technologies
explored in this thesis, focusing on ML-based data compression and FPGAs. It
will also examine certain interchanges between the two being done today.

2.1 Machine Learning-based Data Compression

The fundamental aim of data compression is to minimize the number of bits needed
to represent meaningful information, a task achieved through various methods
tailored to different types of data.

Data compression can be categorized into two main types: lossless compres-
sion and lossy compression. The lossless approach compresses and decompresses
data without any loss, while the lossy method involves a certain degree of data loss
during compression and/or decompression. Each type has its own set of advan-
tages and disadvantages [2], making them suitable for different tasks. Notably, the
primary advantage of lossless compression is its ability to reduce data size with-
out sacrificing fidelity. To achieve this reduction, the lossless approach leverages
statistical redundancy [48], such as data duplication and cross-correlation. How-
ever, due to the intrinsic entropy of the data [41], this approach often encounters
limitations on the achievable compression ratio. This ratio is typically calculated
using the formula below, where D represents the size of the original data and D’
represents the size of the compressed data.

Compression Ratio = ol

While lossless compression algorithms typically achieve a compression ratio of
2:1, meaning the compressed size is half of the original, some lossy compression
algorithms surpass this considerably, reaching ratios of 100:1 or even 200:1 for
specific types of data [33]. This incentive has driven considerable research on lossy
data compression algorithms, resulting in compression algorithms such as JPEG
[22][3] which has been a dominating lossy image compression for decades. It has
been continuously developed since 1992 [31] and has undergone a series of im-
provements since then. It remains one of the most widely used image compression
algorithms today, setting a standard for lossy image compressions to follow.
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However, JPEG might be suitable for everyday compression needs, but it is
not as applicable to scientific data or high-performance computing (HPC) data
due to its impracticality for handling extremely large datasets. This algorithm
lacks the compressing ratio required for such vast amounts of data. As discussed
in Section 1.1, the storage capacity at the CERN research center has reached one
exabyte of data. In such scenarios, a general compression ratio of 20:1 [18] as
in JPEGs case is insufficient, making it more advantageous to employ specialized
compression algorithms capable of achieving compression ratios of up to 200:1 in
the best-case scenario [33].

Instead, Autoencoders (AEs) have been considered a more suitable approach
for this task, primarily because they are neural networks purposely trained to
replicate their input as closely as possible in their output [24].

2.1.1 Autoencoders in Data Compression

The composition of AEs usually consists of two main components, namely, the
encoder function h = f(z) and the decoder function r = g(h). The encoder is
responsible for mapping the input data z to a hidden layer or latent space h, which
serves as a code representing the input. The decoder then reconstructs the original
input data r as closely as possible from this code, which is illustrated in Figure 2.1.
The encoder-decoder architecture of AEs facilitates the transformation of input
data into a compressed representation, enabling efficient storage and retrieval of
essential features, a process essential for tasks such as data compression [9].

Figure 2.1: General process of an AE. Involves the encoder func-
tion f, responsible for mapping the input data z to a latent
space h, and the decoder function g, which maps h to a re-
constructed output .

The primary goal of an AE is not just to perfectly learn and reproduce the
input z as g(f(x)) = x everywhere, that would not make them particularly useful.
On the contrary, they are intentionally designed to be incapable of learning to
simply copy the input, as they might not capture meaningful information if doing
so. AEs are instead typically constrained or restricted in a manner that allows
them to copy input data only approximately. This restriction may involve copying
only input data that closely resembles the training data. Because of this, they are
forced to prioritize which aspects of the input to copy and often end up learning
useful properties of the data. In other words, the model is compelled to focus on
the most relevant features or characteristics of the input data during the copying
process. The efficiency of data compression with AEs arises from this specific
ability to capture and represent essential features or patterns in the input data in
a compact form [9].
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AEs are trained to encode the input into a compressed or hidden representation
[11] that retains the essential features of the data, through the encoder function
h = f(z). The intentional imperfection in copying during training ensures that
the AE does not merely memorize the input data but learns to represent it in a
more general and compact way. This compressed representation usually requires
less space than the original data while retaining the critical information.

In order to obtain this information from an AE, the dimensionality of the la-
tent space h can be constrained to be smaller than the dimensionality of the input
data x. With this restriction, the encoder learns to prioritize the most important
features of the data and encapsulate the essence of the data as h. The learn-
ing process can be briefly described as minimizing a loss function L(z, g(f(x))),
wherein the model adjusts its parameters to reduce the discrepancy between x
and actual values from g¢(f(z)), ultimately enhancing its predictive capabilities.
The loss function may vary between different AE-implementations, but the most
commonly used is the mean squared error (MSE) or a cross-entropy solution.

2.1.2 Baler

The Baler algorithm, introduced in Section 1.1, employs the aforementioned con-
cept of AEs for compression. In a proof-of-concept study dedicated to compressing
high-energy physics (HEP) data, Baler demonstrated a lossy compression ratio of
6:1 [10], surpassing the 4:1 ratio achieved by the lossless compression format Gzip
[23]. Baler also achieved a noteworthy ratio of 88:1 for computational fluid dy-
namics (CFD) data, showcasing the diverse compression potentials across different
types of data.

This subsection aims to provide insight into Baler’s compression structure,
the current limitations of the Baler algorithm as well as the future prospects of its
ML-based data compression capabilities. First and foremost, the use of AEs for
Baler’s compression algorithm is based on the notion that they can be tailored to
the user’s dataset, making it significantly more adaptable compared to alternative
approaches. The ability to train the model on specific or similar data to achieve
positive results makes the ML aspect of Baler highly desirable. Figure 2.2 shows
how Baler conveys the functionality of AEs in more detail. The input is first
encoded into a latent space with reduced dimensionality, representing the com-
pressed data. Subsequently, the compressed representation is decoded to generate
an output with the same dimensionality as the input data.

Example Methodology

In the study of Baler’s compression performance of HEP data, the Baler team
employed a neural network comprising three encoding layers with nodes organized
as 200, 100, and 50, along with three decoding layers featuring nodes in the reverse
order — 50, 100, and 200. The input and output had a dimensionality of 24. This
was done using the Python framework PyTorch [38] and the model was trained
using a loss function defined as,

Liotar = (1 - ﬂ)Lreco + BLsparse
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Figure 2.2: Encoding and decoding process of Baler. Axel Gal-
lén, original by Izaak Neutelings. (License: CC BY-SA 4.0).

The parameter § serves as a loose hyperparameter, dictating the influence of
each term on the overall net loss. The error term L., represents the reconstruc-
tion loss, quantified as the MSE summed over every mini-batch m, going through
the variables n for each data entry. This is illustrated by the formula below, where
X denotes the model input vector and X represents the corresponding model
reconstruction.

Z Z(Xi ~ X;)?

j=11i=1

MSE =

S|

Moreover, the Lgpqyse variable implements L;-type regularization on the model,
aiming to induce sparsity in the AE weights as such: Lgperse = ), |w;|. This reg-
ularization helps mitigate overhead generated by auxiliary files in the AE process,
where weights and biases are saved separately along with additional metadata for
running the PyTorch-generated model. These have been proven to be negligible
in the HEP example, as they did not exceed sizes above 1 MB while the total file
size is about 117 MB, but for future considerations, they should be mentioned.

The Baler team has chosen NumPy [37] arrays as the file format for both input
and output. This choice is driven by factors such as compatibility with PyTorch
and the otherwise widespread use of these arrays in numerous scientific domains.
This decision is further dedication to the adaptable nature that Baler aims to
cultivate.

Limitations

The current limitations of Baler, as explored in this thesis, primarily revolve
around bandwidth compression rather than its existing compression capabilities,
mentioned in Section 2.1.2. Bandwidth compression, measured in compression
throughput (bytes/s), is a crucial factor and often as important as the compres-
sion ratio when compression is performed on data in real-time as it is produced.
This is called online compression and requires the model to train on a different
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dataset with similar characteristics and still produce a good result. Currently,
Baler only employs offline compression, which is the compression of data after
it has been collected, where the model has trained on that specific dataset and
learned its characteristics.

Understanding the advantages and limitations of both online and offline com-
pression techniques is crucial for optimizing compression performance and ad-
dressing the specific requirements of different applications. The adaptability of
a compression algorithm significantly improves with enhanced computational effi-
ciency, which might make it applicable in a broader range of real-world scenarios.
For instance, Baler could greatly benefit from applying its compression on FPGAs,
since it would pave the way for possible online compression as well. This will be
further investigated in the thesis, in alignment with Research Question nr 1.

Future Prospects

As discussed in Section 1.4, previous work has demonstrated that ML-based data
compression algorithms can achieve accelerated performance through FPGA im-
plementation, leading to enhanced bandwidth compression. Therefore, integrating
FPGAs into Baler’s current workflow is believed to result in enabling its bandwidth
compression.

2.2 Field-Programmable Gate Arrays

FPGAs, as the name implies, are programmable devices and were initially de-
veloped to reduce manufacturing costs and production time of other integrated
circuits [12]. For Application-Specific Integrated Circuits (ASICs), the conven-
tional development process can take months and involves substantial overhead
costs ranging from about $20,000 to $200,000, making it hard to produce only a
few cards at once [12]. In contrast, FPGA prototypes can be produced at ap-
proximately $100 each in just a few minutes [12]. Tt is their innate ability to be
programmable to fit a specific purpose that makes them not only useful for replac-
ing ASICs but also for prototyping different hardware solutions and realizing them
in a short time. The ability to discard an initial version of a design and replace it
with a new one can prove useful in a lot of areas where changes occur frequently.

The general architecture of FPGAs consists of an array of configurable logic
blocks (CLBs), I/O pads, and routing channels [20], as shown in Figure 2.3. The
CLBs serve as a foundational element within an FPGA, offering essential logic
and storage capabilities to accommodate the requirements of a specific application
design. They are mainly composed of lookup tables (LUTs) and flip flops (FFs)
to save the state at each clock cycle, which is illustrated in Figure 2.4. LUTs,
which can be described as programmable truth tables, significantly reduce compu-
tational time compared to traditional logic circuits by allowing the implementation
of various boolean functions in a flexible and configurable manner. This adapt-
ability is crucial in optimizing the performance for specific tasks, as designers can
tailor the LUT configurations to match the unique computational needs of their
applications. Furthermore, the FFs provide vital memory elements, enabling the
storage and synchronization of intermediate data during the execution of complex
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Figure 2.3: General overview of FPGA architecture.

algorithms. This combination of LUTs and FFs within CLBs empowers FPGAs
to efficiently process diverse tasks ranging from signal processing to accelerating
the computational speed of ML-based algorithms [13].

Current-generation FPGAs include more complex CLBs capable of multiple
operations with a single block; CLBs can combine for more complex operations
such as multipliers, registers, counters, and even digital signal processing (DSP)
functions.

Out

c! LUT
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T

Figure 2.4: Common structure of a CLB.

The structure of FPGAs can be viewed as a network of logic blocks, which can
be used either independently or combined into larger operational modules. They
exhibit true parallelism, allowing them to perform different tasks simultaneously
and autonomously. This inherent parallel nature makes FPGAs highly flexible and



Theoretical Background 13

exceptionally useful for handling exceedingly difficult and complicated computa-
tions. For instance, FPGA parallelism can be leveraged when certain expensive
multiplications need to be made. An example of this process is illustrated in Fig-
ure 2.5, where each part of a larger operation is handled in a pipelining fashion
by different logic blocks, forwarding their output as input for the subsequent logic
block. This results in a fourfold increase in throughput, from 0.25 instructions
per clock cycle to 1 instruction per clock cycle, showcasing the advantages that
FPGAS’ parallel nature can achieve.

space

=1 Load a*a a*a+1 Store
time FPGA Parallelism
t1 — 1 - - -
t2 — 2 1*1 - -
t3 — 3 2*2 1*1+1 -
t4 — 4 3*3 2*2+1 2
15— - 4*4 3*3+41 5

throughput => 1 block/clock cycle

Figure 2.5: Example of FPGA parallelism.

The adaptability of FPGA boards not only ensures futureproofing [49] but also
contrasts with the limitations posed by specific structures, as in the case of ASICs.
The mitigation of the possibility for future changes in a predefined structure,
while suitable for certain applications, can prove challenging for various dynamic
and evolving scenarios. In industries where rapid technological advancements and
adaptability are essential, such as telecommunications and artificial intelligence,
the flexibility inherent in FPGAs becomes a key advantage. This capability allows
systems to evolve and incorporate changes seamlessly, ensuring their relevance and
efficiency over time.

Transitioning from the hardware-centric advantages of FPGAs, the program-
ming aspect also plays a pivotal role in harnessing their capabilities. Programming
FPGAs involves the use of HDLs such as Verilog or VHDL, allowing designers to
specify the functionality and interconnections of the logic blocks within the FPGA.
These languages provide a level of abstraction that facilitates the design and simu-
lation of complex circuits. Moreover, advancements in HLS tools have streamlined
the programming process by allowing developers to express their algorithms in
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higher-level languages like C or C++. HLS tools automatically translate these
high-level descriptions into hardware implementations, providing a more accessi-
ble entry point for software engineers and accelerating the development cycle of
FPGA-based applications.

Hardware Description Language - HDL

HDL is a specialized programming language used in digital design to model and
describe the behaviour and structure of electronic systems, particularly digital
circuits, and systems [36]. HDLs, such as Verilog [44] and VHDL [34], provide
a means for engineers to specify the functionality, interconnections, and timing
requirements of electronic components. These languages allow designers to create
detailed and accurate representations of hardware designs, facilitating simulation,
verification, and synthesis processes. HDLs are crucial in the development of
complex digital systems, such as FPGAs, providing a systematic and precise way to
capture the logic and functionality of hardware components at various abstraction
levels, from higher-level behavioural descriptions to lower-level structural details.

However, the work conducted during this thesis will not attempt to bring forth
a solution in pure HDL code but rather in HLS.

High-Level Synthesis - HLS

In contrast to HDL, HLS provides the possibility to implement solutions on FP-
GAs without extensive knowledge of the FPGA architecture and technology [15].
It is a design methodology in digital electronics that enables the transformation of
high-level programming languages, such as C or C++, into hardware descriptions
suitable for implementation on FPGAs. HLS tools, such as Vivado or Intel Quar-
tus, automate the process of translating algorithmic descriptions into hardware,
providing a bridge between software development and hardware design. This ap-
proach simplifies and accelerates the design process, allowing software engineers
to focus on algorithmic aspects while automatically generating efficient hardware
implementations. HLS enhances productivity, facilitates design exploration, and
contributes to the broader goal of making FPGA design more accessible to a wider
range of developers.

The hls4dml tool will aid the generation of HLS projects from the ML-models
conceived with Baler. This approach aims to accelerate the development process
and make the project less dependent on detailed knowledge about HLS and HDLs.



Chapter 3

Methodology

This chapter presents an overview of the work process employed in this thesis,
as well as the essential tools utilized for this project. It will specifically delve
into additional information about the Baler algorithm, the hlsdml package, and
the Vivado program, which plays a crucial role in the FPGA implementation and
testing process.

3.1 Baler Compression

Baler, as a compression tool, provides users with the ability to assess the fea-
sibility of compressing various types of scientific data using AEs. The inherent
constraining nature of AEs makes them useful for compressing data and efficiently
learning its features. When provided with the correct instructions, they have been
designed to yield excellent results, achieving a higher compression ratio than other
conventional compression methods.

For first-time users, Baler provides straightforward instructions on how to op-
erate the training, compression, and decompression of the tool. Users have the
option to choose from predefined models based on the dataset in need of com-
pression, which can be useful for those with lesser knowledge about ML-based
data compression. However, in order to utilize Baler to the fullest and to reach
greater results, custom-fitting a model to the specific characteristics of the pro-
vided dataset is recommended. This proves especially beneficial for offline data,
where the model has been trained on a specific dataset [52] and optimized for com-
pressing that data. For online data compression, a future goal of Baler, the model
must be trained on data similar to the target data to discern the most important
characteristics when compressing and decompressing the data.

The Baler project is written in Python and leverages the innate functional-
ity of the numerous ML-packages developed for this programming language [32].
Additionally, the Python ecosystem allows for effortless data handling and manip-
ulation to achieve a desirable model. The primary Python packages used for the
Baler algorithm include PyTorch, TensorFlow, NumPy and Matplotlib.

15
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3.2 Hls4ml

The hls4ml tool is a companion compiler package specifically developed for the
purpose of converting ML-models to HLS [17], aligning well with the objectives of
this thesis. Currently in development, the tested version available is 0.8.1. Origi-
nally conceived as a complementary tool during research on the inference of deep
neural networks in FPGAs within particle physics, it was crafted by individuals at
CERN. The tool originates from the ambition to simplify the rapid prototyping of
ML algorithms, particularly for physicists, allowing them to assess both firmware
feasibility and physics performance without requiring extensive Verilog/VHDL ex-
perience. The developers at CERN recognize the critical role of FPGAs in this
context, emphasizing hlsdml’s urgency for these purposes.

It can be a useful tool for bridging the gap between Python programming and
FPGA programming, for those who are not familiar with the latter.
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PyTorch

v.. Co-processing kernel

compressed
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reuse/pipeline

Figure 3.1: Standard hls4ml workflow, fetched from [27].

The workflow of hls4ml is illustrated in Figure 3.1. The standard procedure
involves taking a model created in Python, using frameworks like Keras, Ten-
sorFlow, or PyTorch, and converting it into an HLS project. This project can
then be further tuned and configured within an FPGA integrated development
environment (IDE), such as Vivado [6] or Intel Quartus [29], depending on the
manufacturer of the board.

The tool is developed in Python and serves as a supporting package within
any project requiring the functionality of converting ML-models into HLS projects.
This approach has the distinct advantage of a closely tied structure to the current
Python environment that most ML applications already possess, resulting in less
overlay than if it were its own standalone application. However, a considerable
disadvantage is that the tool requires a computer with an FPGA-integrated devel-
opment environment (IDE) installed, along with the correct licenses, to function
properly. This means that the entire work chain needs to be on the same machine.
Additionally, the tool only supports the Linux operating system, potentially re-
quiring users to allocate additional resources to acquire new machines for this
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purpose.

3.3 Vivado

Vivado is an IDE for programming and implementing solutions on physical FPGA
boards. It offers a wide range of functionalities, many of which are beyond the
scope of this thesis. Vivado was chosen over Intel Quartus because the FPGA
provided by the institution, the ZCU104 Evaluation Board [7], is manufactured by
Xilinx. This FPGA is technically designated as XCZUTEV-2FFVC1156 MPSoC.
This part number provides specific information about the FPGA’s features. For
instance, the "-2" denotes a speed grade of 2 on a scale from 1 to 3, indicating a
mid-range speed grade. A mid-range speed grade typically balances performance
and power consumption, with this FPGA achieving a maximum frequency of up
to 600 MHz [50], depending on the actual implementation.

The main functionalities to be explored include the HLS compiler, the Vi-
vado simulator, and the Vivado Intellectual Property (IP) integrator. The HLS
compiler translates C and C++ code into register transfer-level (RTL) designs.
The Vivado simulator is a simulation tool supporting both functional and timing
simulations for HDL languages. Lastly, the Vivado IP integrator enables custom
system designs by instantiating and interconnecting various IPs from a catalogue
of existing IPs.

3.4 Work Process

For this thesis, with the correct environment secured, the hls4ml tool served as a
cornerstone on which the development of ML inference on FPGAs could be built.
For obvious reasons the selected programming language for high-level implemen-
tation and further development of the Baler algorithm was Python. This language
was also selected for various data processing steps required when fetching and
handling the dataset later used in the implementation.

The data was provided by the MAX IV laboratory and contained results
from one of their experiments, investigating the rheology of liquid foams by fast
synchrotron X-ray tomographic microscopy [39]. The total size of the dataset
amounted to around 290 gigabytes, resulting in the choice of using only parts of
the dataset during implementation. The data was fetched from TomoBank [46], a
repository for storing tomographic datasets and phantoms.

Acquiring appropriate data was the first step in the work process, followed by
applying the Baler algorithm to the data to produce a model for the hls4ml con-
version. The model itself was trained on parts of the dataset, consisting of entire
frames of data. The data was processed in a blocking fashion, dividing each block
into integer vectors of length 20. This approach aimed to reduce the model size
and accommodate the limitations of the FPGA board, which could not handle
overly large input sizes. The extensive dataset posed computational challenges
for processing through hlsdml and simulating in Vivado due to its size. As a re-
sult, the data was divided into smaller chunks to enhance resource utilization and
manageability. The compression and decompression performed by Baler in this
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fashion resulted in Figure 3.2, which depicts the X-ray projections of the liquid
foam flowing through a constriction and being rotated around the tomographic
axis. This was performed on a CPU, allowing for optimal performance in com-
pression accuracy. However, it is important to note that the reconstructed frame
is not a perfect copy of the original and has lost some of its characteristics that
cannot be seen clearly in the figure.
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Figure 3.2: Tomography data before and after reconstruction
using Baler.

After ensuring the model performed adequately, it was converted into an HL.S
project using hlsdml. The next step was to assess the feasibility of the HLS project
generated by hlsdml. Additionally, Vivado would be utilized to properly program
the FPGA and thoroughly test the board.
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Implementation

The implementation chapter describes the entire development chain, from start to
finish, including every main part of the thesis that had a considerable impact on
the project. Each step involved various subtasks that were executed to achieve the
project’s objectives. By meticulously detailing the process, this chapter provides
a clear roadmap of the project’s progression and sets the stage for the subsequent
analysis and evaluation in the ensuing chapter.

4.1 Preprocessing & Environment Setup

The first step involved setting up the appropriate work environment, which in-
cluded configuring Baler with hls4dml and ensuring the correct version of Vivado
along with the necessary licenses. The final setup comprised Baler with hls4ml
version 0.7.1, integrated with Vivado 2020.1 using licenses provided by the depart-
ment. Additionally, some configurations were performed in Vivado on clusters run
at MAX IV, which helped alleviate the general workload.

Secondly, the task of preprocessing the original data was essential due to its
immense size and the format of the original files, which were generated in Hierar-
chical Data Format version 5 (HDF5) [25]. This format is specifically designed for
storing and organizing large amounts of data. However, since Baler takes Numpy
arrays as input, the data had to be converted into the correct format before run-
ning through training. This was done by fetching the hierarchical data tables of the
HDF5 data that represented the actual images. Additionally, the original dataset
was approximately 290 gigabytes in size and required pruning. Consequently, the
decision was made to divide this data into evenly split fractions, retaining every
Nth frame to maintain data integrity. While the optimal solution would have been
to use all 290 gigabytes of data, the goal was to train the model on enough data to
adequately reconstruct a few frames from the entire dataset, rather than creating
the perfect model for reconstruction. Therefore, some data was discarded to make
the training process more manageable.

19
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4.2 Model Creation & HLS Conversion
4.2.1 DNN Model

The chosen model, deemed suitable in size for the available FPGA and expected
to perform adequately in terms of compression, was a deep neural network (DNN)
architecture. The decision was made to opt for a DNN over a convolutional neural
network (CNN) architecture due to the latter’s increasing demands on memory.
Additionally, the CNN was not as compatible with the block training of the to-
mography data provided by MAX IV, producing reconstructions of poor accuracy.
Since a CNN network learns and recognizes patterns, features and spatial hier-
archies within images, the block training is believed to have disrupted this part
of the CNNs training and made the more general DNN network more appropri-
ate. The DNN architecture comprised an encoder and a decoder, producing an
intermediate latent space in accordance with AE design principles.

The encoder, as shown in Figure 4.1, consisted of four fully connected dense
layers with ReLLU activation functions between them, gradually reducing the input
dimensionality from the number of features to the dimension of the latent space.
The first layer contained 200 units and processed an input vector of 20 values,
producing 200 output values for the subsequent layer. The second layer consisted of
100 units, reducing the dimensionality from 200 to 100 output values for the third
layer. The third layer further reduced the dimensionality to 50 units, preparing
the data for the fourth and final layer. The fourth layer comprised only 5 units,
generating the 5 outputs that constituted the latent space or compressed data.

In contrast, the decoder mirrored the structure of the encoder function in
reverse order, consisting of four fully connected dense layers with ReL.U activation
functions between them. However, unlike the encoder, the decoder’s purpose was
to reconstruct the input data from the latent space representation. Therefore,
instead of decreasing the input dimensionality into the latent space, the decoder
increased the latent space dimensions to match the original data dimensions. This
architecture aimed to learn a compact representation of the input data in the
latent space and reconstruct the input data from this representation.
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Figure 4.1: DNN Model used for FPGA implementation.
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4.2.2 Model Limitations

The suitability of the model relied on both the compression results and the avail-
able resources. An issue that surfaced during the implementation phase was the
necessity to align the computational complexity of the model with the limitations
of the FPGA card. The model went through tens of thousands of computations,
specifically multiplication operations, in order to perform the compression. Since
the FPGA card has a constraint on the number of multiplications it can perform
simultaneously, careful consideration was required to ensure optimal performance.
This constraint depends on the number of DSP slices in the FPGA, which for the
XCZUTEV-2FFVC1156 is 1728. Apart from this, other limitations on the mem-
ory, LUTs, and FFs also became apparent when the first conversion to HLS from
the model was done.

The approximate number of multiplications performed by the model can be de-
duced by calculating the multiplications done by the units in each layer depending
on the input to each layer, which can be seen in Table 4.1.

Layer Input Units No. of Multiplications
Encoderl 20 200 4000

Encoder2 200 100 20000

Encoder3d 100 50 5000

Encoder4d 50 5 250

Decoderl 5 50 250

Decoder2 50 100 5000

Decoder3 100 200 20000

Decoder4 200 20 4000

Table 4.1: Total number of multiplications performed by the
DNN model by layer.

By conducting these straightforward calculations regarding the model and
combining them with the aforementioned number of DSP slices available, several
key conclusions could be drawn. First and foremost, the total number of multipli-
cations for the entire model would be close to 60000, which with 1728 DSP slices
poses a complication. With the rough estimation that each DSP slice can perform
one multiplication apiece, the reuse factor for every slice would be close to 34 if
the utilization of them was at 100%. However, if the utilization were at a more
reasonable level, such as around 80%, the reuse factor would be around 42. This
means that every DSP would have to be reused 42 times during each run of the
model, leading to a significant increase in latency and timing for the board.

A high reuse factor means that each DSP slice must be utilized multiple times
during each run of the model. This increases latency, as each DSP slice has to wait
for its turn, potentially creating bottlenecks in the pipelining process. Moreover,
the frequent reuse of DSP slices can lead to timing constraints being violated, as
the FPGA may struggle to meet the required clock frequencies due to the increased
workload.

This leads us to the second conclusion: in order to alleviate the strain on
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the FPGA’s resources, either the model would have to be made smaller or the
model would have to be split up. The choice was made to divide the encoder
part of the model and the decoder part of the model into two separate model
parts that could each run independently, effectively halving the FPGA resource
requirements without affecting the performance of the model. Additionally, in a
real-world application, there would typically be an encoder transmitting the data
and a decoder receiving it, making this approach even more relevant.

Having done this, the total number of multiplication operations that need to
be computed was only 29250, meaning that each DSP would have to be reused
approximately 21 times or 22 times for margin. This approach was more reasonable
to meet timing and latency requirements. Additionally, by dividing the model into
two parts, testing became easier and could be conducted more efficiently as well.

4.2.3 Hls4ml Conversion

The next step of the implementation was the conversion into an HLS project, which
was accomplished using the Python complementary tool hls4dml. The model was
split into two separate projects and examined individually, although, for perfor-
mance purposes, this separation did not significantly impact the process. During
the conversion process, however, an interesting discovery was made.

Fixed Point Numbers

The hls4ml tool only supports fixed-point numbers [43] when performing the con-
version. Fixed point numbers are a suitable representation of fractional numbers
for computers or hardware when floating point numbers are too computationally
intensive. They are therefore used when performance takes precedence over preci-
sion, which is often the case for FPGAs. Fixed point numbers are typically written
as a bit width of the total number within angle brackets, along with the bits for
the fractional part of the entire number. For example, <10,4> represents a fixed
point number with 10 bits, with 6 bits representing the integer part and 4 bits
representing the fractional part. However, the hlsdml tool uses a reversed repre-
sentation, including the bit width of the full number with the integer part of the
number instead of the fractional. This means that the fixed point number <10,4>
in hls4ml represents a number with a 4-bit integer part and a 6-bit fractional part
instead.

Choice of Precision

The initial precision choice was <16,8> to minimize resource allocation while main-
taining decent model accuracy, given the computational demands of the model.
The DSP48E slices on the board used in this project can compute 18-bit by 25-
bit numbers. The goal was to keep the precision below this 18-bit threshold to
conserve computational power, avoiding the need to use two DSP slices for one
number. However, experiments with different precision configurations revealed
that performance improvements were possible without significantly increasing re-
source utilization beyond that of <16,8>. This suggests that fine-tuning precision
could yield better results while maintaining efficient use of the FPGA’s resources.



Implementation 23

The initial precision choice was <16,8> to minimize resource allocation while
maintaining decent model accuracy, given the computational load of the model.
The DSP48E slices that are part of the board used in this project have the capabil-
ity to compute 18-bit by 25-bit numbers. The intention was to keep the precision
below this 18-bit threshold to conserve computational power, avoiding the need
to use two DSP slices for one number. However, experiments with different preci-
sion configurations revealed that performance improvements were possible without
significantly increasing resource utilization beyond that of <16,8>.

The first valuable discovery that was made can be depicted in Figure 4.2.
Namely, when reaching certain levels of bit width for precision, the DSP usage
doubles. This graph is the result of experimenting with different levels of pre-
cision during conversion for otherwise identical configurations and models. It is
important to note that this is the result of Vivado HLS estimation and not actual
implementation on any board, as some utilization values exceed 100%.

The exploration aimed to understand how different precision settings affect
the FPGA’s resources and how the hlsdml precision configuration impacts the
overall outcome. The graph consistently illustrates that DSP usage doubles at a
specific precision level, as anticipated. Surprisingly, DSP usage did not increase
at a bit width of 19 as initially expected but instead rose at a bit width of 20.
This discrepancy is unexpected considering that one DSP slice should only handle
a maximum of an 18-bit number at once. The cause for this might be the overall
route optimization provided by the Vivado tool, but not something that will be
further discussed in this thesis.

Another notable discrepancy apparent in Figure 4.2 was the DSP usage for 26
and 27 bits precision, which should logically be similar or equal to that of 28 bits
and above. Nonetheless, the observed DSP usage deviates from this expectation
as well.

The advantage that this brought to the project can be understood by observing
Figure 4.3. The heatmap illustrates the mean difference (MD) of the model’s
results when executed on a CPU using the original dataset, compared to the results
obtained from simulation in Vivado with the same dataset. Similar to Figure 4.2,
the MD is projected by different precision configurations and varies significantly
depending on the integer and fractional parts, as well as the total bit width. The
heatmap can be interpreted by noting that the integer part is represented on the
y-axis, while the fractional part is depicted on the x-axis. Thus, the total bit
width can be calculated by summing the integer and fractional parts, as follows:
bitwidth = x + y.

The MD illustrated in Figure 4.3 displays a discernible pattern, highlighting
the significance of the total number of bits used to represent a number in minimiz-
ing the MD. This outcome was anticipated, as a number represented by a greater
number of bits can inherently facilitate more accurate computations. However,
there are still a few aspects to consider when examining these results.

Firstly, despite the precision of <16,8> and <19,10> requiring the same
amount of DSP resources according to Figure 4.2, they yield significantly dif-
ferent MDs. This disparity suggests that factors other than DSP usage, such as
the distribution of bits between the integer and fractional parts, also influence the
model’s performance. If the integer part was too small, each number would be
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DSP Usage Based on Precision Configuration
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Figure 4.2: DSP usage based on precision configuration in hls4ml
conversion.

calculated with less precision than necessary to achieve a fair representation. On
the other hand, if the fractional part was neglected the computational detail would
be lost.

Secondly, it’s noteworthy that the MD of the model output becomes larger
when either the integer part or the fractional part is too small, irrespective of the
total bit width used for precision. This indicates that finding the right balance
between the integer and fractional parts is crucial for minimizing MD.

Lastly, all of the lower values in the heatmap, including the MD at and after
a total bit width of 24, are consistently similar in size. This suggests that once a
certain level of precision is reached, further increasing precision may not lead to
significant improvements in MD.

The most promising precision levels: <19,10>, <20,10>, <22,11>, <24-28,12>,
<26,13>, <28,14>, <30,15>, and <32,16>, all yielded a MD lower than 15. This
was a significantly lower MD than other lower bit widths and required some careful
consideration and evaluation. While the higher precision levels produced better
results, they came at a cost. Depending on the precision level, DSP usage varied
from 84% for <19,10> up to 337% at most for <28,12> and <32,16>. It is im-
portant to note that the acceptable DSP usage percentage was logically capped
at 84% to avoid affecting latency and timing constraints. Considering this, along
with the fact that the MD differs with a ratio of 8:1 between the originally intended
precision of <16,8> and <19,10>, these results decisively informed the choice of
precision for the model in the FPGA implementation.

The acceptable precision level for this specific card and this specific model was
<19,10>, as it allowed a mean loss of 14.5 to be achieved for the model without
breaking any previous constraints. This precision level strikes a balance between
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Mean Difference Based on Fixed Point Precision
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Figure 4.3: Mean difference between model output based on
precision configuration in hls4dml conversion.

computational efficiency and accuracy, ensuring optimal performance while adher-
ing to the resource limitations of the available FPGA card.

4.3 FPGA Implementation

The next stage of the implementation phase focuses on finalizing the Vivado con-
figurations, preparing the FPGA board for testing, and conducting the tests. At
this point, the model, now an HLS project, must go through the essential Vivado
stages: synthesis, implementation, and bit file generation for the FPGA deploy-
ment.

To understand the project workflow and the role of hlsdml’s VivadoAccelerator
backend and the PYNQ [4] open-source software, the following sections provide
further explanations of these components.

4.3.1 VivadoAccelerator

The hls4ml suite provides several backend options for conversion, including Quar-
tus for Intel Quartus, Vivado for Vivado, and VivadoAccelerator, designed to
accelerate operations using FPGAs. Initially, knowledge of the hls4dml backend
options was limited, with the assumption that only Quartus and Vivado were
available, representing different manufacturers. The plan was to use the Vivado
backend due to the availability of a Xilinx board at the institution. However, fur-
ther investigation revealed the VivadoAccelerator backend, which allows leveraging
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PYNQ open-source software for easy model deployment on supported devices. The
ZCU102 Evaluation Board, similar to the available ZCU104, was supported. With
a minor tweak after conversion, the ZCU102 settings could be adjusted in Vivado
to fit the ZCU104 board. Additionally, the ZCU104 board’s support by PYNQ
facilitated a smooth transition between the boards.

In conclusion, the choice to use the VivadoAccelerator backend aimed to
streamline the deployment process. By using hls4ml’s accelerator option, tested
with PYNQ for deployment, the project could be efficiently prepared without un-
necessary time expenditure. Given the primary objective of accelerating the ML
model for data compression, VivadoAccelerator was the most suitable option for
this project.

432 PYNQ

PYNQ, developed by AMD, is an open-source project that provides a Python
API-based framework within the Jupyter environment. It is designed specifically
for Xilinx Adaptive Computing platforms, supporting models like Zynq, Zynq Ul-
trascale+, and others. PYNQ offers architects, engineers, and programmers a con-
venient means to leverage Adaptive Computing platforms. With its Python APIs
and integration with Jupyter, PYNQ simplifies the utilization of programmable
logic circuits, removing the necessity for specialized ASIC-style design tools.

The main idea for PYNQ is that programmable logic circuits can be described
as hardware libraries called overlays, which resemble software libraries in function-
ality. Users can select the most suitable overlay for their application, accessing it
through a Python API. While developing a new overlay necessitates expertise in
designing programmable logic circuits, the primary advantage lies in the ability to
create once and reuse multiple times. Additionally, overlays, like software libraries,
are designed to be configurable and reusable across a variety of applications.

The workflow of PYNQ becomes clearer when examining Figure 4.4, which
illustrates the architecture of PYNQ. The figure provides a comprehensive view
of the software and hardware components involved in the PYNQ framework and
their interactions, highlighting the ease of development and productivity enabled
by using Python and Jupyter for FPGA-based applications.

Hlsm4l with PYNQ

The hls4ml VivadoAccelerator backend enables the user to create an HLS project
and generate the model as an IP in Vivado. The IP generated for this thesis
closely resembled the DNN model described in previous sections. The model was
represented as far as the precision allowed, as discussed in Section 4.2.3. Subse-
quently, the VivadoAccelerator backend facilitated the creation of a Block Design
in Vivado IP Integrator containing the model IP, along with other necessary IPs to
form a complete system. To enable data transfer between the programmable logic
containing the model and the processing system, an AXI Direct Memory Access
IP was added.

With the complete system finalized, it underwent synthesis and implemen-
tation in Vivado to evaluate the feasibility of the structure and generate a bit
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Figure 4.4: Overview of the PYNQ framework, picture from
[28].

file. Following this, PYNQ was leveraged with a custom overlay for the model IP,
following the workflow outlined in Figure 4.4.

4.3.3 Development Chain

Despite the fact that the implementation was a major part of the overall work-
flow, the development chain encompassed everything from coding in high-level
Python to generating and running the bit file on the FPGA. Figure 4.5 provides
an overview of the development chain, illustrating the entire work process and
highlighting the critical elements necessary to conduct the actual tests.

This workflow can be compared to the hlsdml workflow, illustrated in Figure
3.1, where the model and HLS conversion were done in a high-level environment,
and the synthesis of the model and implementation on the FPGA were done with
Vivado. The utilization of the PYNQ overlay, with the help of hlsdml, saved a
lot of time during implementation, allowing more time for conducting the actual
tests.

The different steps in Figure 4.5 are, of course, simplified, but they describe
the general approach taken during the work. Some steps were repeated multiple
times during the implementation phase to achieve the desired results. However,
this figure provides a clear representation of the final development chain of the
thesis work and implementation.

434 FPGA Test Runs

Once the entire finalized system was in place, testing on the FPGA card com-
menced. Throughout the implementation phase, various theories and considera-
tions arose, prompting additional tests to be conducted to address any questions
that arose. Consequently, a few new models were trained and tested, along with
other configurations. For clarity, the original DNN model discussed thus far will be
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referred to as DNN Large in subsequent sections, while any new models introduced
will be given appropriate names.

Data Input Size

The testing on the actual FPGA card was conducted once the system was in place,
along with an adequate amount of data to fit into the AXI Direct Memory Access
buffer. This approach aimed to assess the speed and throughput of the model
programmed on the board. The amount of data used for testing was deemed irrel-
evant, as the card’s performance was expected to scale linearly with the amount of
data processed. This theory was also put to the test by running the same model,
both encoder and decoder, with varying amounts of data, as shown in Table 4.2.
Each frame of data was represented by 180000 arrays of size 20, with the second
and third rows representing the compression of entire frames of data, while the
first row represented an attempt to test an edge case in input size. The smaller
input size exhibits a lower throughput due to longer processing time per input.
This phenomenon was believed to be primarily caused by the time it takes to send
the data to and from the AXI Direct Memory Access. To accurately capture the
compression and decompression timing, measurements were taken before sending
the data to the model and after receiving the data from the model. This approach
better reflected the actual compression process, including any relevant overhead.
Given the reduced amount of data to compress, the measured time for compressing
one array of size 20 was influenced by the time taken to send and receive data,
making it an unfair representation of the actual throughput.

Another noteworthy observation while examining Table 4.2 is the significant
difference in throughput between the encoder and decoder for the same amount of
input. The primary factor that contributed to this discrepancy was the difference
in input size between 20 and 5 for the encoder function and the decoder function,
respectively.
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DNN Large Input Size (E:20, D:5) Time (s) Throughput (inferences/s)

Encoder 1 0.0028 719
Encoder 180000 1.26 142377
Encoder 720000 5.05 142655
Decoder 1 0.0017 1186
Decoder 180000 0.32 568386
Decoder 720000 1.27 567929

Table 4.2: The results of running different input sizes through
the FPGA card for both the encoder and decoder, using
DNN Large.

Precision

After testing different input sizes for the same model, another test was conducted:
changing the precision for the same model while keeping all other settings con-
sistent. The purpose was to observe if the FPGA would respond differently to
computations with either a very high or very low integer bit rate while maintain-
ing the same total bit width of precision.

The precision levels reviewed were <19,1>, <19,5>, <19,10>, <19,14>, and
<19,19>, chosen to evenly distribute the results. However, no change in through-
put was observed for any of the precision settings, most likely due to the total
bit width remaining the same from <19,1> to <19,19>. Therefore, the original
precision of <19,10> was retained for further tests, as it provided the most precise
representation of the model for the FPGA.

Model Size

The subsequent step in the implementation phase involved altering the model size
to assess how resource utilization on the card affected data throughput. Adjusting
the model size, particularly reducing it, would inevitably affect the model’s perfor-
mance. However, given that the original model was already constrained by its size
and required reduced precision to fit on the FPGA card, the primary objective of
this test was not to generate an accurate model but rather to evaluate the FPGA’s
capabilities and explore Baler’s bandwidth compression possibilities.

The initial step involved removing the largest layer from the DNN Large model
to substantially reduce its size and computational load. This revised model, re-
ferred to as DNN Reduced henceforth, is depicted in Figure 4.6 and comprises only
7250 multiplications, in accordance with previous calculations. This represented
a significant reduction of 75%, compared to the 29250 multiplications performed
by the DNN Large model. Consequently, the amount of resources and DSP slices
required on the board was drastically reduced.

According to previous research, the size of the model, or any solution applied
to an FPGA, greatly affects the performance of the FPGA. By reducing the model
size, theoretically, the FPGA should work more efficiently, as long as the original
model does not exceed the card’s capacity. In this case, the DNN Large uses a reuse
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Figure 4.6: Reduced DNN Model used for FPGA implementa-
tion.

factor of about 22 for each DSP slice, indicating that the model is theoretically 22
times too large for the FPGA card, and would ideally need to be 22 times smaller
to fit onto the card without any compromises.

To maintain the utilization of DSP slices at approximately 80%, as discussed
in Section 4.2.2, the reuse factor for the DNN Reduced model only needed to be
around 7, compared to 22 for the DNN Large. This reduction significantly eased
the strain on the FPGA, potentially increasing the throughput, as the number of
computations to perform for the DSP slices was fewer for each run of the model.

The tests were performed for both the encoder and decoder and the results are
presented in Table 4.3 and include the same models run on a CPU of type Intel Core
i7-2600K 3.40 GHz x 8 [30]. The final comparison boils down to CPU vs FPGA.
Without reducing the model size, the CPU and FPGA performed similarly for the
encoder, while the decoder on the FPGA exhibited faster performance even for
the DNN Large model. However, these results will be discussed further in the next
chapter.

Model Processing Unit  Time (s) Throughput (inferences/s)
DNN Large (E) CPU 0.95 189473

DNN Large (E) FPGA 1.26 142377

DNN Large (D)  CPU 1.21 148760

DNN Large (D)  FPGA 0.32 568386

DNN Reduced (E) CPU 0.94 191489

DNN Reduced (E) FPGA 0.23 768481

DNN Reduced (D) CPU 1.24 145165

DNN Reduced (D) FPGA 0.059 3039308

Table 4.3: The results of comparing the implementation of dif-
ferent model sizes for both the encoder and decoder.
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To further assess the capabilities of the FPGA card, one more model was de-
veloped. Similar to DNN Reduced, the primary goal of this model, referred to as
DNN Tiny, was not to achieve significant compression but rather to explore the po-
tential of custom-fitting an ML model to the FPGA card. DNN Tiny consisted of
four fully connected layers for both the encoder and decoder, mirroring the struc-
ture of the original DNN Large model. However, the layer sizes were drastically
scaled down, with each layer containing 32, 16, 8, and 5 nodes for the encoder,
and 5, 8, 16, and 32 nodes for the decoder. The complete model architecture is
depicted in Figure 4.7.

encoder decoder

input output

N
3
w
S

latent space
5 5

-
i

I i | | |
b
000000:
X X X X X X
X X X X
000
X X
000
X X X X
00000
X X X X X X
000000:
X X X
o000
by
i e e s

Figure 4.7: Tiny DNN Model used for FPGA implementation.

DNN Tiny comprised a total of 1320 multiplications, which allowed for a reuse
factor of 1 without fully maximizing the utilization of resources on the FPGA.
Consequently, this model had the potential to produce even better results than
the previous two that had been tested. However, as shown in Table 4.4, the
speed and throughput did not change considerably between DNN Reduced and
DNN Tiny. This was somewhat perplexing, suggesting that the FPGA might have
reached a limit of its capabilities. Despite both models fitting onto the FPGA with
different reuse factors, it appeared that there were additional factors influencing
the throughput of the model when implemented on the FPGA.

DNN Tiny Processing Unit Time (s) Throughput (inferences/s)

Encoder CPU 0.86 209302
Encoder FPGA 0.23 763297
Decoder CPU 1.20 149340
Decoder FPGA 0.059 3040027

Table 4.4: The results of comparing the implementation of dif-
ferent model sizes for both the encoder and decoder.
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Clock Period & Frequency

The last factor considered to influence the model’s throughput was the clock pe-
riod and frequency. The clock period, denoted as T, in a digital system, represents
the interval between two consecutive rising or falling edges of the clock signal. It
determines the maximum speed at which the system can reliably operate. Con-
versely, clock frequency, measured in Hertz (Hz), represents the number of clock
cycles per unit of time, expressed as f = % In essence, clock period and fre-
quency are inversely related, with a shorter clock period allowing for higher clock
frequencies.

Vivado and Vivado HLS employ the clock period as the standard format rather
than the clock frequency. Consequently, throughout the remainder of this thesis,
the primary measurement will be discussed in terms of clock period rather than
frequency. For the DNN Large hls4ml conversions to the HLS project, the target
clock period was set to 3 nanoseconds to ensure the model could fit onto the FPGA
without timing and latency problems. Initially, with the smaller models, it was
decided not to alter the clock period to maintain a fair comparison to the original
model. However, as the focus turned to assessing the capabilities of the FPGA
card for Baler’s compression algorithms, the final test runs involved comparing
different clock periods for the DNN Tiny model IP.

To achieve the optimal performance configuration on the FPGA card, adjust-
ments were made to the clock period, and the IP was resynthesized in Vivado HLS.
This process was repeated multiple times to compare the utilization summary for
each configuration. The results of this experiment are shown in Table 4.5 and Table
4.6, where both the target and estimated clock periods are displayed, along with
the latency. The latency is presented in cycles, indicating the estimated number of
clock cycles it takes for the IP to produce an output. It is important to note that
these results were obtained through a tool and do not represent the outcomes of
an actual implementation of the IPs. Therefore, there could be variations between
these results and those observed in an actual implementation.

Theoretically, the execution time could be calculated from these values using
the formula E; = p * [, where E; represents the execution time, p denotes the
clock period and [ indicates the latency. However, if the values in Table 4.5 and
Table 4.6 were a 100% accurate representation of reality, the implementation of
the model IPs would have been unnecessary. Since this is not the case, tests were
conducted with different clock periods for DNN Tiny to gain clarity on how the
period affects the actual throughput.

The clock periods of 3 nanoseconds, 10 nanoseconds, 18 nanoseconds, 19
nanoseconds, and 50 nanoseconds were particularly intriguing for investigation
due to their significance in comparison to the larger models. In the preceding
tables, clock periods of 19 nanoseconds and above yielded an estimated timing of
16.052 for both the encoder and decoder. Therefore, it was compelling to mea-
sure the actual throughput obtained for both 19 nanoseconds and 50 nanoseconds
to assess any differences. The choice to test 10 nanoseconds and 18 nanoseconds
was informed by the latency data shown in Table 4.5 and Table 4.6. Notably,
for the encoder, the drop from 19 to 18 nanoseconds resulted in a latency al-
most double in size, theoretically, it should result in halving the throughput when
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DNN Tiny Target Timing (ns) Estimated Timing (ns) Latency (cycles)
Encoder 1 1.316 341
Encoder 3 2.605 121
Encoder 5 4.297 81
Encoder 10 8.748 41
Encoder 15 10.741 41
Encoder 16 10.741 41
Encoder 17 14.836 41
Encoder 18 14.836 41
Encoder 19 16.052 21
Encoder 20 16.052 21
Encoder 35 16.052 21
Encoder 50 16.052 21
Encoder 100 16.052 21

Table 4.5: The results of comparing the implementation
ferent clock periods for DNN Tiny encoder.

DNN Tiny

Target Timing (ns)

Estimated Timing (ns)

of dif-

Latency (cycles)

Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder
Decoder

1
3
5
10
15
16
17
18
19
20
35
50
100

1.316
2.605
4.297
8.748
10.741
10.741
14.836
14.836
16.052
16.052
16.052
16.052
16.052

460
137
97
70
49
49
49
49
49
49
49
49
49

Table 4.6: The results of comparing the implementation of dif-

ferent clock periods for DNN Tiny decoder.
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implemented on the FPGA. Following the earlier mentioned formula for F;, the
execution time would be doubled along with the latency. Since the throughput is
strictly connected to the execution time, an increase in execution time would result
in a decrease in throughput. Similarly, for the decoder, although the latency re-
mained consistent between 18 and 19 nanoseconds, at 10 nanoseconds, the latency
increased to 70 cycles from 49, which should theoretically impact the throughput.
Each new clock period was tested for both the encoder and decoder to maintain a
comprehensive test bench.

The conclusive tests involving varied clock periods provided significant insights
into important factors regarding timing and latency when implementing solutions
onto the FPGA. These findings are encapsulated in Table 4.7, revealing the corre-
lation between time/throughput and latency, as compared to the data presented
in Table 4.5 and Table 4.6. As predicted, the throughput was affected greatly by
the latency even though the clock period, or timing, was changed.

The cause for this will be further discussed in the upcoming chapter. However,
it is worth highlighting that these concluding experiments have yielded valuable
data, potentially serving as a building block for any future work related to ML-
applications applied to FPGAs. The information gathered from these tests could
inform subsequent research directions, guiding the refinement and optimization of
FPGA implementations.

DNN Tiny Target Timing (ns) Time (s) Throughput (inferences/s)

Encoder 3 0.23 763297

Encoder 10 0.085 2121365
Encoder 18 0.085 2122641
Encoder 19 0.051 3472422
Encoder 50 0.054 3319379
Decoder 3 0.059 3040027
Decoder 10 0.031 5804204
Decoder 18 0.023 7655339
Decoder 19 0.023 7744267
Decoder 50 0.024 7413874

Table 4.7: The results of using different clock periods for DNN
Tiny and running it on the FPGA card.
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Discussion

The objective of this chapter is to examine and interpret the outcomes of the
implementation, addressing the research questions posed. Moreover, any potential
avenues for future exploration, along with conclusions of the thesis work.

5.1 Evaluation of Results

In the preceding chapter, the task of implementing a few of Baler’s ML-based
compression models on the available FPGA card was successful. This required
extensive preparation and necessitated adaptations as the work progressed. The
final outcome of these efforts proved to be interesting in several ways, key notes
and takeaways from this are described below.

1. The average FPGA card does not have the capacity to support larger ML-
models, posing challenges for practical implementation.

2. The simplicity of implementing anything on the FPGA should not be taken
for granted.

3. Under the right conditions, FPGAs do have the potential to enhance through-
put and, consequently, the bandwidth compression of Baler’s algorithms.

4. Under unfavourable conditions, pursuing FPGA implementation might re-
sult in an expensive and time-consuming venture with no tangible improve-
ment in compression throughput.

The most evident challenge encountered during the implementation phase was
the disparity in size between the original DNN Large model and the FPGA’s
capacity. The DNN Large model consumed more resources than the FPGA could
accommodate, necessitating the primary objective of fitting any model onto the
FPGA for testing purposes. Through adjustments and appropriate configurations,
this goal was achieved, largely owing to the flexibility of hlsdml and the FPGA
card. By utilizing a reuse factor of 22 and selecting a suitable precision level,
the DNN Large model was successfully implemented on the FPGA. While this
solution was not ideal, the constraints imposed by the computational demands
and hardware limitations left little room for alternative approaches.

35
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Model Constraints

The decision was made to pursue a smaller model to explore the extent of the
FPGA'’s capabilities without being restricted by the FPGA’s resources. To provide
a more balanced assessment of the FPGA’s potential without the size constraints
posed by DNN Large, the development of DNN Reduced and DNN Tiny ensued.
The DNN Reduced managed to go through the same amount of data as DNN Large
in less than 1/5th of the time for both the encoder and decoder. Interestingly,
the model size did not seem to be the predominant factor impacting throughput
beyond a certain point. Both DNN Reduced and DNN Tiny achieved equivalent
throughput when utilizing a clock period of 3 nanoseconds, despite DNN Reduced
having a reuse factor of 7 and DNN Tiny having a reuse factor of 1.

Increase in Throughput

The primary factor contributing to the notable speedup and higher throughput
achieved with the DNN Tiny model appears to be the adjustment in the clock
period. Intuitively, one might expect that a shorter clock period or a higher
clock frequency would result in a greater throughput, as the card can operate
at a faster pace, thereby producing results more quickly. However, optimizing
for performance involves more nuanced considerations than simply accelerating
compilation speed and hoping for optimal results.

The top-performing implementation on the FPGA was DNN Tiny with a clock
period of 19 nanoseconds, as illustrated in Table 4.7. This configuration, referred to
as DNN Tiny19, demonstrated only a marginal improvement in speed compared to
the same model using a clock period of 50 nanoseconds, designated as DNN Tiny50.
This disparity can be explained by examining the latency tables in Table 4.5 and
Table 4.6. It is evident that shorter clock periods correspond to higher latencies.
This correlation is logical, as reducing the clock period results in increased latency.
The faster one clocks a circuit, the less time the circuit has to produce a result
before the next clocking occurs.

Therefore, a longer clock period for DNN Tiny resulted in a higher throughput
because the card had more time to finish each cycle without increasing the latency.
Of course, as can be seen in the tables, there is a limit to this correlation as well.
At a certain point, the higher clock period results in a longer time, and this is why
it is important to conduct experiments for any implementation on the FPGA.

However, with the optimal configurations, a throughput of 16.9 times the
throughput of the available CPU was acquired, which is a significant speedup
indeed. This highlights the potential of FPGA-based implementations for ac-
celerating ML-based compression algorithms, provided careful optimization and
configuration.

5.2 Regarding the Problem Statement

The primary goal of this thesis was to implement Baler’s compression algorithms
on an FPGA to assess the possibilities and challenges associated with ML-based
compression on dedicated hardware.
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5.2.1 To what extent can the deployment of Baler's compression algo-
rithms on FPGAs improve its bandwidth compression?

Research question one explores the possibilities associated with ML-based com-
pression, particularly Baler’s compression, on an FPGA. The deployment of Baler’s
compression algorithms onto an FPGA was successful, achieving a compression
speed increase of up to 16.9 times compared to a CPU. The time and throughput
results, compared to a CPU, for the three different models used are depicted in
Table 5.1. This was accomplished by using a model that leveraged the FPGA’s
adaptability and parallelism, fitting onto the card without exhausting all its re-
sources.

Model (Encoder) Processing Unit Time (s) Throughput (inferences/s)

DNN Large CPU 0.95 189473
DNN Large FPGA 1.26 142377
DNN Reduced CPU 0.94 191489
DNN Reduced FPGA 0.23 768481
DNN Tiny CPU 0.86 209302
DNN Tiny FPGA 0.05 3472422

Table 5.1: The results of comparing the implementation of dif-
ferent model sizes for the encoder.

The extent to which Baler’s bandwidth compression can be improved is signifi-
cant, though limited to some degree. These tests focused on the actual compression
speed and did not account for the overhead that might occur due to other com-
ponents in a full-scale FPGA implementation for compression. The tests were
conducted to ensure equal conditions for both the CPU and the FPGA regard-
ing data compression. In a real-world scenario, data would need to go through
some intermediate stages before compression, applicable to both CPUs and FP-
GAs. Therefore, pure compression throughput was considered a more appropriate
metric for testing. Nonetheless, the highest-performing model on the FPGA was
16.9 times faster than the CPU, representing a substantial speedup even when
accounting for potential overhead.

5.2.2 What are, if any, the limitations of deploying Baler's compression
algorithms on FPGAs?

Research question two addresses the challenges associated with performing Baler’s
ML-based compression models on an FPGA. During the implementation phase,
several limitations emerged related to the model’s size, the FPGA’s capacity, the
precision level, and the card’s clock frequency. These factors significantly influ-
enced the final solution and were challenging to anticipate in advance.

The initial plan was to use the DNN Large model on the FPGA, as it demon-
strated decent compression and decompression performance on the CPU. However,
this plan had to be revised when it became evident that the model was too large
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to fairly represent FPGA'’s capabilities. The size of the model and the limitations
of the FPGA’s resources posed a significant challenge that needed to be addressed.
The next stage of the implementation used a smaller reduced model and a tiny
model to assess the FPGA’s capabilities when utilizing fewer resources. During
the preparation phase, it became apparent that the precision level influenced the
strain on the FPGA’s resources, thereby limiting the accuracy of the compres-
sion. However, once the resource allocation was determined during synthesis and
implementation in Vivado, the throughput was not significantly impacted.

5.3 Future Work
5.3.1 Larger FPGAs

One of the most evident areas for future research is the exploration of larger FP-
GAs, which could potentially handle larger models, thereby enabling more accu-
rate compression and decompression. Currently, the largest FPGA in production
by AMD supports 3840 DSP slices [5], which is roughly double the 1728 DSP
slices available on the FPGA used in this research. While this is not an enormous
difference, it highlights the challenges inherent in developing computationally de-
manding projects, such as an ML-accelerator on an FPGA.

In the future, access to even larger FPGAs will likely improve, but current
hardware limitations present significant challenges for implementing ML-based
data compression solutions on FPGAs. With double the capacity, a wider range
of projects and models could fit onto the FPGA card, potentially yielding even
more promising results. This expanded capacity could enable the handling of more
complex models and datasets, providing deeper insights into the capabilities and
performance enhancements possible with FPGA-based ML accelerators.

5.3.2  Optimized Model

Another angle for future development could be the optimization and compilation of
the model to run faster, thereby potentially accelerating the compression process.
PyTorch has recently introduced a new method to compile models trained using
their libraries, allowing them to run faster by compiling PyTorch code with opti-
mized kernels [47]. This approach could be explored to enhance the performance of
Baler’s compression algorithms on both CPUs and FPGAs, potentially providing
a speedup and making the solution more efficient in real-time applications.

5.3.3 Quantization Aware Training

One promising path for future research could be the integration of Quantization
Aware Training (QAT) into Baler’s compression models. QAT involves simulat-
ing the effects of quantization during the training process, allowing the models to
learn and adapt to the lower precision that will be used during inference on hard-
ware such as FPGAs [1]. This approach could potentially enhance the efficiency
of the model without substantial loss of accuracy, making it highly suitable for
deployment in resource-constrained environments.
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5.3.4 Vivado Optimization

There are potential optimizations in Vivado that could be explored for future
development of ML models. When using hlsdml, the detailed structure of the
resulting project has not been as thoroughly inspected as it possibly could be.
As mentioned earlier in the thesis, the hlsdml tool is useful for accelerating the
development curve and integrating ML-based models on FPGAs. However, this
comes at the cost of a decrease in detail since the project is generated, with
custom configurations, but not built from the ground up. Realizing an ML-model
in Vivado and Vivado HLS from scratch would be very time-consuming, which is
why hlsdml is so beneficial. Nonetheless, undertaking this process could uncover
optimizations and potentially increase throughput even further.

5.4 Conclusion

Throughout this thesis, several of Baler’s ML-based compression models were
successfully implemented on an FPGA, leveraging intermediate elements such as
hlsdml and PYNQ. The resulting increase in throughput, up to 16.9 times com-
pared to available CPU resources, underscores the viability of FPGA-accelerated
ML solutions. Analysis reveals that key factors influencing optimal FPGA perfor-
mance include model size, precision levels, and clock period.

While the findings showcase promising advancements, the immediate real-
world applicability of these discoveries may be somewhat constrained. The chal-
lenge lies in accurately assessing the full extent of Baler’s bandwidth compression
improvements amidst the complexities of varied real-world scenarios, potentially
introducing overhead. Thus, simpler solutions, such as GPUs, may currently hold
greater practical appeal within the technical landscape.

Nevertheless, the significant enhancement in throughput achieved through
FPGA implementation signals a promising trajectory for future research. If the
technology of FPGAs continues to evolve, further exploration and refinement of
hardware-accelerated ML solutions hold substantial potential. Future develop-
ments in FPGA architecture and optimization techniques may catalyze more seam-
less integration of ML algorithms with hardware solutions, presenting compelling
paths for innovation in this dynamic field.

In conclusion, while the immediate practical applications may be limited, the
progress made in improving throughput through FPGA-based compression models
provides a valuable foundation for continued research and development. Looking
forward, the convergence of ML and FPGA technology holds potential for incre-
mental advancements, contributing to the evolution of computational methods and
offering opportunities for more efficient and adaptable hardware-accelerated ML
solutions.
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