
Audio Fingerprinting
A Decomposing Study

NIKLAS GÄLLDIN AND VICTOR HULTMAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

N
IK

LA
S G

Ä
LLD

IN
 A

N
D

 V
IC

TO
R

 H
U

LTM
A

N
A

udio Fingerprinting -
 A

 D
ecom

posing Study
LU

N
D

 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-1004
http://www.eit.lth.se

Audio Fingerprinting
A Decomposing Study

Master's Thesis

By

Niklas Gälldin and Victor Hultman

Department of Electrical and Information Technology
Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

Abstract

Audio fingerprinting is a widely employed technique that involves gen-
erating unique fingerprints for given audio signals that later can be used
for identification. A well-known example of this is the Shazam applica-
tion where the concept is to match a short song snippet with a database to
find the name of the song and artist. Generally, the audio fingerprints are
created by applying a time-frequency transform on the audio signal and ex-
tracting the most prominent features in the time-frequency domain. There
are different transforms with different properties but the standard choice
is the short-time Fourier transform (STFT). This study compares the per-
formance of the STFT with the Hyper Localized Wavelet Transform (HLT)
within an audio fingerprinting pipeline, focusing on three key metrics: cor-
rectly identifying songs (accuracy), robustness towards noise, and memory.
Results indicate that while the STFT and the HLT demonstrate comparable
accuracy, the latter exhibits superior noise robustness with a smaller mem-
ory usage. The STFT was found to generate approximately 1.23 times more
data when creating the fingerprint database compared to the HLT.

i

Sammanfattning

Ljudfingeravtryck är en välkänd teknik som genererar unika fingeravtryck
för ljudsignaler vilka som senare kan användas för identifiering. Ett välkänt
exempel på detta är Shazam-applikationen vars koncept är att matcha en
kort låtsnutt med en databas för att hitta namnet på låten och artisten.
Generellt skapas ljudfingeravtrycken genom att applicera en tids-frekvens-
transform på ljudsignalen och extrahera de mest framträdande komponen-
terna i tids-frekvensdomänen. Det är standard att använda korttids Fouri-
ertransformen (STFT) men det finns också transformer med andra egen-
skaper. Denna studie jämför prestandan för STFT med Hyper Localized
Wavelet Transform (HLT) inom en ljudfingeravtrycksprocess, med fokus
på tre viktiga mätvärden: korrekt identifiering av låtar (precision), robus-
thet mot brus och minnesanvändning. Resultaten visar att medan STFT och
HLT uppvisar jämförbar precision, visar den senare överlägsen robusthet
mot brus med mindre minnesanvändning. Vidare visade sig STFT generera
ungefär 1,23 gånger mer data vid skapandet av fingeravtrycksdatabasen
jämfört med HLT.

ii

Preface

In this thesis work, Niklas has mainly been working with Chapters 1, 4
and 5. Victor has mainly been working with Chapters 2, 3 and 6. The
simulations, experiments and illustrations were a joint effort.

We would like to thank everyone at LucentWave for giving us the op-
portunity to collaborate on this Master’s Thesis. Thank you to Henrik Jörn-
tell for providing us a workspace at BMC during our thesis work. A special
thanks to Kaan Kesgin for guidance, for providing equipment for running
simulations, and for introducing us to the Julia programming language. We
would also like to give a big thank you to Fredrik Edman for the support
and feedback during the writing of this thesis. Finally, we would like to
thank our friends and family for supporting us and encouraging us along
the way.

iii

Popular Science Summary

Have you ever found yourself in a situation where you hear a captivat-
ing song at a pub or a restaurant, but can not recall its name or artist?
Searching for it based on fragmented lyrics often proves futile and frus-
trating. However, audio fingerprinting offers a solution to this common
dilemma. By simply recording a snippet of the song with your phone, a
unique fingerprint of the song can be extracted and matched with a large
database of song fingerprints in no-time.

The first step of audio fingerprinting is to perform a time-frequency
decomposition of the audio to find the most characterizing frequencies
over time. This Master’s thesis explores two different methods for time-
frequency decomposition, aiming to enhance the precision and robustness
of audio fingerprinting systems for song identification. By comparing the
short-time Fourier transform (STFT) and Hyper Localized Wavelet Trans-
form (HLT), this study seeks to evaluate their accuracy in correctly identi-
fying songs.

Time-frequency decomposition methods play a pivotal role in extract-
ing meaningful features from audio signals that are later used to create
audio fingerprints. In summary, the decomposition is created by dividing
an audio signal into short time-segments; it is then possible to extract the
frequencies that occur within each segment from the decomposition. The
audio fingerprint is then created by mapping frequencies from each seg-
ment in the decomposition in a way that is as unique as possible for each
audio signal.

However, more often than not there is some amount of noise or dis-
tortions occurring when we want to identify a song. The noise can make
it more difficult to get an accurate time-frequency decomposition which is
crucial for creating a unique audio fingerprint to match with the database.
It is therefore important to use a time-frequency decomposition that is ac-
curate and resistant to noise.

Our experiments reveal that the STFT and the HLT are quite similar in

iv

accurately identifying songs but the HLT is superior when more noise is
present. The HLT requires more time to perform the decomposition, but in
a practical setting, it can be argued to not be a significant drawback.

In conclusion, this Master’s thesis highlights the significance of time-
frequency decomposition methods in audio fingerprinting for song recog-
nition. By providing insights into the performance of the STFT and the
HLT, this study shows the differences and potential of both methods.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim & Objectives . 2
1.3 Outline . 2

2 Time-frequency transforms 3
2.1 Discrete and continuous signals 3
2.2 Discrete short-time Fourier transform 4
2.3 Wavelet transform . 4
2.4 Hyper Localized Wavelet Transform 6

3 Shazam Algorithm 8
3.1 Audio fingerprints . 9
3.2 Database construction . 10
3.3 Song identification . 11
3.4 Peak Extraction . 12
3.5 Significance . 14
3.6 Settings and tuning . 15

3.6.1 Number of peaks . 15
3.6.2 Target zone . 16
3.6.3 Number of frequency bins and window length 17
3.6.4 Frequency bands . 17
3.6.5 Summary of settings 18

4 Experiments & Data preprocessing 19
4.1 Time-frequency decomposition 19
4.2 Noise robustness . 20
4.3 Reference implementation . 21
4.4 Comparison of the HLT and the STFT 22

vi

4.5 Data preprocessing . 22

5 Results 24
5.1 Time-frequency decomposition 24
5.2 Robustness towards noise . 27
5.3 Reference implementation . 30
5.4 Comparison of the HLT and the STFT 31

6 Discussion 35
6.1 Shazam implementation . 35
6.2 Database size . 36
6.3 Reducing snippet length . 36
6.4 Conclusions . 37

vii

viii

Chapter 1

Introduction

1.1 Background

Audio fingerprinting is a method that deterministically generates a com-
pact version of a given audio signal [1]. This is most commonly used in
audio recognition where a short recording of e.g. a song is captured and
its audio fingerprints are matched with others in a beforehand generated
fingerprint database. Since the database in many applications can con-
tain many thousands of fingerprints, one typically requires that the lookup
should be performed at high speed and that the fingerprints should be
unique. To create the fingerprints, a time-frequency decomposition is usu-
ally performed on the audio signal where the standard method to use is
the short-time Fourier transform (STFT) [2]. However, there exist many
other transforms that can be used as well. One such transform is the Hyper
Localized Wavelet Transform (HLT) which is a type of wavelet transform
[3]. The transform has been shown to achieve great resolution in the de-
composition of complex acoustic data and can provide detailed frequency
content for short-bursting signals. These properties could make the trans-
form highly interesting in the application of audio fingerprinting and are
thus the topic of this Master’s Thesis.

A widely used application that utilizes audio fingerprinting is Shazam,
www.shazam.com. Although the exact implementation of Shazam is offi-
cially undisclosed, there exist several interpretations based on a paper by
one of the founders [4]. Shazam is an audio recognition application, where
the user records a snippet of a song. A fingerprint of the snippet is created
and matched with a large database of song fingerprints. The song name
and artist are returned to the user if there is a match between the snippet

1

https://www.shazam.com/

and a song in the database.
The user would usually be in a noisy environment, e.g. a pub or a

restaurant when recording the snippet. To be able to accurately identify
the song it is thus paramount that the Shazam algorithm is robust towards
different types of distortions to the audio signal.

1.2 Aim & Objectives

The aim of this project is to evaluate the performance of the HLT within the
area of audio fingerprinting. We aim to provide relevant benchmarks for
the performance of the HLT by comparing it with the performance of the
STFT, which is the standard time-frequency decomposition method.

Since the time-frequency transform is just one part of the algorithm,
it can be difficult to evaluate how the HLT and the STFT directly impact
the performance. Therefore, to compare the two transforms we will first
introduce and analyze the two transforms outside the domain of audio fin-
gerprinting.

The first experiment will be a visual comparison of the time-frequency
decomposition generated by the STFT and the HLT to see the difference
in time- and frequency resolution. The second experiment will be to see
how robust both methods are by calculating the error between a noise-free
signal and a noisy signal after both of them have been transformed.

Thirdly, to test if the HLT can outperform the STFT in an audio fin-
gerprint setting, a pipeline based on the Shazam algorithm will be imple-
mented and results from simulations using both the STFT and the HLT will
be provided. The evaluation of the performance will be based on bench-
marks such as accuracy vs Signal-to-noise ratio (SNR) and the required
size of the database. The overall performance of our implementation of the
pipeline will be verified by comparing it with the results from the original
paper [4]. Shorter snippets than those used in the aforementioned paper
will also be tested to see if the HLT is superior to the STFT in these cases.

1.3 Outline

Chapter 2 covers the theory and concepts of time-frequency decomposi-
tions. In Chapter 3 the Shazam algorithm is introduced together with our
choice of hyper parameters. The experiments and simulations that were
carried out are presented in Chapter 4 and the results in Chapter 5. Lastly,
the theory and our results are discussed in Chapter 6.

2

Chapter 2

Time-frequency transforms

In harmonic signal analysis, a 1-dimensional signal in the time domain
can be better understood by transforming it into the 2-dimensional time-
frequency domain. In audio fingerprinting, this transformation will enable
the extraction of the most characterizing features of the signal which will
act as a compression due to the removal of insignificant elements. There
exist many different time-frequency transforms but the most fundamental
one is the short-time Fourier transform (STFT). The STFT can be seen as
a special case of a Wavelet transform which is a family of time-frequency
transforms with some common properties. The Hyper Localized Wavelet
Transform (HLT) is another example of such a transform. Both transforms
and their properties will be presented in the following sections.

2.1 Discrete and continuous signals

In practical applications, the signal to be analyzed is a discrete-time signal
usually obtained from sampling a continuous-time signal with some sam-
pling frequency Fs. For audio signals, we usually have Fs = 44.1 kHz or
Fs = 48 kHz which is a little bit more than twice the maximum human hear-
ing frequency of 20 kHz [5]. According to the Shannon-Nyquist theorem,
these sampling frequencies will create no aliasing, and thus all relevant
signals for human perception can be reproduced. For acoustic signals, the
highest-pitched instruments usually have a max frequency below 4000 Hz
thus even with decimation by a factor of 6, with low-pass filtering, we will
have no aliasing [6]. Utilizing downsampling is important to increase the
processing speed since the time complexity of time-frequency transforms
depends on the length of the signal.

3

2.2 Discrete short-time Fourier transform

In the most fundamental time-frequency analysis, one usually utilizes the
STFT where the Fourier transform is applied on consecutive time windows
of the signal. The length of the time windows, W, will impact the frequency
and time resolution, and the shape of the window will mitigate some of the
possible spectral leakage [7]. Any overlap of the windows will compensate
for the loss of information that may happen between two non-overlapping
windows. The number of frequency bins produced by the STFT, denoted
as nFFT, is determined by the value of W. However, nFFT can be larger
than W if zero-padding is applied which can be favourable to have W = 2k

where k ∈ N, so that fast Fourier algorithms will work more efficiently
[8]. Other than this the only reason to zero-pad the signal is if one wants a
certain value for nFFT, since it does not increase the frequency resolution
[8]. In the context of resolution, there exists a principle called the uncer-
tainty principle from where it follows that there exists a trade-off between
the achievable time or temporal resolution and the frequency resolution [9].
If the signal that is transformed is real-valued, the values at frequency bin
i ∈ [nFFT

2 , nFFT] will just be the complex conjugated value at bin i− nFFT
2 .

Thus, only the first nFFT
2 bins will carry any valuable information about the

frequency content. The time complexity of the STFT is

O(T nFFT log(nFFT)), (2.1)

where T is the number of windows of length W that fits in the signal.

2.3 Wavelet transform

The HLT is a wavelet transform which means that it uses functions called
wavelets to perform the transformation to the the time-frequency domain.
The wavelets are waveforms that are localized in time and have a finite time
duration. Similar to how the signal is decomposed using the STFT, we have
for Wavelet Transforms that the signal is represented as a linear combina-
tion of scaled and time-shifted versions of a function ψ called the mother
wavelet [10]. The scaled and time-shifted versions of the mother wavelet
are called the child wavelets and can be defined in continuous time t as

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (2.2)

where a is the scaling factor and b is the time shift. The scaling factor will
contract the wavelet if a is small and have the reverse effect when a is large,

4

see Figure 2.1. From the figure, we can see how a change in a is analogous
to changing the frequency of the wavelet since the lower wavelet can be
viewed to correspond to a lower frequency while the upper wavelet corre-
sponds to a higher frequency. The other parameter b will determine where
in time the wavelet is localized.

Figure 2.1: The impact of the scaling factor a on the wavelet ψ using a = 1
(Mother wavelet), a = 2 and a = 4.

When calculating the wavelet transform we convolve the child wavelets
with the signal and receive a time-frequency decomposition of the signal.
However, since directly performing the convolution operation would re-
quire O(N2) number of operations we, in practice, transform the wavelets
and the signal using the Fast Fourier Transform (FFT). After this, the trans-
formed wavelet and signal are multiplied element-wise and the result is
transformed back to the time domain using the Inverse Fast Fourier Trans-
form (IFFT). The element-wise multiplication is possible due to the convo-
lution theorem which states that

g ∗ h = F−1 (G · H) , (2.3)

where
G = F (g), H = F (h) (2.4)

and F (.) denotes the Fourier transform operator. Both the FFT and IFFT re-
quire O(N log(N)) operations which means that we reduce the complexity
by using this method instead of directly computing the convolutions.

5

2.4 Hyper Localized Wavelet Transform

The wavelets of the HLT are defined as a modified version of

ψ f (t) = −
(

2 log
(

2 f
n

)
+ log(t + ϵ)2

)
e2πi f t

(
e−t2 log(n)

(
2 f
n

)4 log(n)
)

, (2.5)

where t is the time in seconds, f [Hz] is the frequency of interest, and the
constants ϵ and n are positive and non-zero [3]. The value of f can be
interpreted as the scaling factor a as previously mentioned, while the lo-
calization factor b has not been defined but would correspond to where in
the analyzed signal the wavelet should be non-zero. An example of what
the wavelet looks like for f = 10 Hz can be seen in Figure 2.2 below. The
modified version of the wavelet in 2.5 that is used in this project can not be
disclosed due to company confidentiality.

Figure 2.2: The Hyper Localized Wavelet for f = 10 Hz.

When transforming a signal using the HLT we can assume that the
length of the analyzed signal is Ns and we put the length of the wavelets
to be N. We then decompose the signal by dividing it into T = ⌈Ns

N ⌉ con-
secutive windows where we can zero-pad the signal so that the new signal

6

length N̂s mod N = 0. This will give T windows of data with N samples
each. We then proceed as previously described where both the wavelet
in (2.5) for different values of f and the window of data is Fourier trans-
formed. The two resulting signals are then multiplied element-wise and
after that inverse transformed in order to obtain the time-frequency de-
composition. If we denote M as the number of frequencies analyzed, i.e.
the number of wavelets, we have that M = N

2 is the optimal value since if it
is lower then we will get a decreased frequency resolution, and if it is larger
then we gain nothing since we can only represent N

2 number of frequencies
in a signal of length N without aliasing. The time complexity of the HLT is
thus

O(T M N log(N)) = O(T N2 log(N)), (2.6)

since we perform the FFT and IFFT operations M number of times for all T
windows of data.

7

Chapter 3

Shazam Algorithm

To evaluate the performance of the HLT within the area of audio finger-
printing we have implemented a version of the original Shazam algorithm
described by Wang [4]. Although the details of the algorithm have not
been made public due to commercial reasons, there still exist many differ-
ent publicly available implementations based on the original paper [11],
[12] and [13]. All implementations follow the same general structure that
is described in Figure 3.1. When creating our implementation we were in-
spired by the implementation by Strauss [11]. In the following sections, we
will go through each part of the algorithm and our implementation.

Figure 3.1: Overview of the Shazam pipeline.

8

3.1 Audio fingerprints

An audio fingerprint is a unique and compact representation of an audio
signal. In the context of music, the different frequencies of the musical
notes that are played are what makes the song unique. However, not only
which notes are played contribute to the uniqueness of the song, but also
how they relate to each other in time. This observation is the basis that the
fingerprints rely on as we will describe in more detail.

In order to produce a compact representation of the audio signal a time-
frequency decomposition is performed which gives information about the
frequency content of the signal at different time instances. The most charac-
teristic frequencies will correspond to a peak in the spectral density which
can be retrieved from the decomposition. A certain number of spectral
peaks are selected at each discrete time instance and can be seen as the
most important features in that time window.

Figure 3.2: The pairs that are made for a certain constellation point (anchor
point) and how the selection is limited by a time-difference bound and an
absolute frequency-difference bound (target zone).

All selected peaks for a given audio signal create a so-called constellation
map as it is a set of points in the time-frequency plane [4]. However, the au-
dio fingerprint is not the created constellation map but instead a set of pairs
of constellation points. A pair between two points is created if one constel-
lation point (anchor point) has another constellation point within its target

9

zone. A constellation point belongs in the target zone of an anchor point if
two criteria are fulfilled: the time difference is within a certain bound and
the absolute value of the difference in frequencies is within another bound.
The effects of the criteria are illustrated in Figure 3.2.

The pair of points are used to create a combinatorial hash where the two
frequencies and their time difference are used to create the hash-value. For
example, if we have 1024 frequency bins then we need 10 bits each to rep-
resent the two frequencies and if we let the time difference be represented
by a 12 bit integer we get a 32 bit integer as a hash, see Figure 3.3. By creat-
ing these hashes we enable fast access when the fingerprint of the snippet
is to be matched with the fingerprint of all songs in the dataset. In the re-
sulting hash table, the time belonging to the anchor point is stored together
with the id of the song which we will refer to as a (t, id)-pair. The set of
hashes and their corresponding values for a certain song is the resulting
audio fingerprint of that song.

Figure 3.3: Illustration of how the combinatorial hashes in the Shazam
pipeline are calculated. In this example a hash is created from two constel-
lation points (t1, f1) and (t2, f2) where the first point is the anchor point.

3.2 Database construction

When the set of hashes and corresponding (t, id)-pairs have been created it
is stored in a hash table that will work as a database. The hash table will
then have the hash keys described in the previous section and the values
being a list of (t, id)-pairs where a certain song-id may appear multiple
times but with a different time value. Since there is no noise in the audio
signals used to create the database (they are the original tracks) there is little
to no need to tune the hyper parameters to take into account robustness.
For example, the number of peaks could be high in order to have a detailed
representation of the spectral density.

10

3.3 Song identification

The goal of the Shazam algorithm is to identify a song based on a short
and possibly distorted snippet of the song. In order to match the snippet
with the database the audio fingerprint of the snippet is created. This gives
a set of combinatorial hashes mapping to (t, id)-pairs where the song-id is
arbitrary since the song is at this point unknown. After creating the hashes
they are used to retrieve the (t, id)-pairs in the database. A match is created
between each (t, id)-pair for the hash in the database and the (t, id)-pair of
the snippet. For each match, we store the following information in a list

matches[id] = (tsnippet, tsong), (3.1)

where tsnippet is the time value of the (t, id)-pair of the snippet, tsong and
id comes from the (t, id)-pair from the hash in the database. This means
that each matches[id] will have a list of values of the type that is assigned
in (3.1). After the list has been completed another list of scores by offset
is created for each song. This list will be created by going through each
value in (3.1) and incrementing the score by 1 for the value at bin o f f set =
tsong − tsnippet. After this, the final score for the song when matched to the
snippet will be given by the max-value in the offset-list. Each song that
has matched with the snippet will have a threshold score that determines
whether the score that is produced by the matching step is significant. The
level of significance, α, can be chosen arbitrarily but to ensure that the num-
ber of false-positives is low it should be selected so that α ≤ 0.1 %. The
threshold scores are determined by creating a probability distribution, f , of
the highest score from a matching with an incorrect song, which we will
refer to as the highest incorrect score. Given α, the threshold can be de-
termined by solving for x in FX(x) = P[X ≤ x] = 1− α where FX is the
cumulative distribution and X is a stochastic variable that describes the
observations of the highest incorrect scores.

The reason for using the offset in time as a factor in the evaluation of
the score is that the constellation points of the snippet will relative to each
other occur at the same time as the constellation points of the correct song.
For the incorrect songs, all the matches will have very different offsets as
the likelihood that several combinatorial hashes not only match with the
snippet but also have the same offset is rather small [4]. In Figure 3.4, the
scores for different offsets of a song have been plotted in a diagram where
a 5 s snippet was taken from the middle of a song and matched with each
song in the dataset. As can be seen, the incorrect song has several matches
with the snippet but no clear maximum value for a certain bin while the

11

(a) Incorrect Song (b) Correct Song

Figure 3.4: The scores for different offsets in time when matching a snippet
with (a) an incorrect song and (b) the correct song.

correct song has a clear maximum value. The maximum height for a certain
bin would correspond to the score for the snippet with that particular song.
In this example, it is clear that the score for the snippet and the correct song
will be higher than the incorrect one. To correctly identify the song, this
score needs to be higher than the threshold score for the correct song.

3.4 Peak Extraction

In this thesis, the number of peaks that are selected at each time instance is a
hyper parameter that can be tuned and its value will impact the robustness
of the algorithm. To increase the robustness for any number of peaks the
mean value of some of the largest peaks for each frequency bin can be com-
puted and only the peaks that are larger than this mean value multiplied
by a coefficient, c, are kept. The coefficient c is another hyper parameter
that needs to be tuned for the algorithm to perform well. Additionally, an-
other improvement of the detection of local maxima in the spectrum for
each time instance is to divide the frequency bins into frequency bands and
only keep the highest peak in each respective band. This method will give
peaks that are evenly spread out over the entire spectrum and ensure that
not only lower frequencies that tend to have higher peaks will be selected
[13]. A linear division into bands would for example correspond to the
bands seen in Figure 3.5.

12

Figure 3.5: Linear division into 4 bands using nFFT = 512 number of fre-
quency bins. The numbers correspond to the bins that belong to a certain
band.

Since the octaves for musical notes follow an exponential relation the
bands can also be logarithmic [14]. Using the previous example this would
correspond to the bands seen in Figure 3.6 below.

Figure 3.6: Logarithmic division into 4 bands using nFFT = 512 number
of frequency bins. The numbers correspond to the bins that belong to a
certain band.

The described steps of the peak extraction are summarized in pseudo-
code in Algorithm 1.

13

Algorithm 1 Peak extraction

procedure PEAK EXTRACTION(S) ▷ S is the audio signal
T ← Number of time windows
nFFT ← Number of frequency bins
N ← Number of peaks
M← ∅ ▷ Mean value 1× nFFT-vector
S← F(S) ▷ F is the transform, S is a T × nFFT-matrix
for j← 0 : nFFT − 1 do

find set Ij of time instances for the 100 largest local maxima for
S[:, j]

M[j]← c · 1
100 ∑i∈Ij

S[i, j]
end for
for i← 0 : T − 1 do

find all local maxima (peaks) for S[i, :]
select largest peak S[i, j] in each frequency band 1 −→ N
select peaks S[i, j] that fulfill S[i, j] ≥ M[j]

end for
return S[i, j]

end procedure

3.5 Significance

In a real-life situation when trying to identify a song by using the Shazam
algorithm, there is a possibility that the song is not part of the fingerprint
database. To handle this the threshold scores for every song in the dataset
were generated. As explained in section 3.3, the threshold specifies the
minimum score needed to be able to predict that particular song. In this
thesis, the threshold was calculated by observing the highest score of all
incorrectly matching songs when no noise was added and then computing
the fraction of the highest incorrect score divided by the correct score. We
will refer to this fraction as the relative threshold. The value of the relative
threshold for all songs can be seen as observations from some unknown
distribution. Initial testing indicated that a suitable distribution for the ob-
servations was the Gamma distribution and the parameters were estimated
by using maximum likelihood, see example in Figure 3.7. A false positive
rate could then be selected to determine the joint relative threshold which
was multiplied with the correct score for each song to obtain each thresh-
old. When trying to identify a snippet during simulation the snippet was

14

only matched with the correct song and if the score was higher than the
threshold the song was considered to be correctly identified. The false pos-
itive rate was equal to α = 0.1 %.

Figure 3.7: Estimated Gamma distribution based on the histogram of ob-
served relative thresholds for each song in the dataset. The Gamma distri-
bution is scaled to match the height of the data.

3.6 Settings and tuning

As has been described in previous sections there exists several hyper pa-
rameters that introduce many degrees of freedom to the tuning of the algo-
rithm. Although all parameters in some way will impact the performance,
only parameters that directly impact the measurements in each experiment
were focused on. This section will go through the investigated and fixed
hyper parameter values for the Shazam algorithm implemented in this the-
sis.

3.6.1 Number of peaks

The number of peaks N that are selected from the spectral density at each
discrete time instance is a tunable hyper parameter. This number will im-
pact how detailed the fingerprint will be and thus how much the data is
compressed. Optimally, from a uniqueness perspective, N should be equal
to the actual number of frequencies that are present in the audio signal in a
certain time window, but this information is not known and even if it was
known it would vary between different songs. To manage this we intro-

15

duced the hyper parameter c. By having c > 0, the relatively low peaks will
get filtered out which means that the number of selected peaks from a time
window will be smaller than or equal to N. If c = 0, the maximum possible
number of peaks/constellation points, given N, would be obtained. This
maximum would then be given by N · T, where T is the number of time
windows.

When tuning c the trade-off is that with more data we need more mem-
ory to store the information and we want a compression of the audio signal
by producing the audio fingerprint, thus c should be low. On the other
hand, c should be high so that insignificant spectral peaks are filtered out.
Suitable values that were found were c = 0.6 when creating the database
and c = 0.9 when matching the snippets to the database. The number of
peaks was selected to be N = 6 after some initial testing where the trade-off
between accuracy and memory was considered.

3.6.2 Target zone

When creating the combinatorial hashes only points that lay within a target
zone are paired with the anchor point. The larger the target zone is the more
hashes will be created for each anchor point which means that the compres-
sion will decrease as we get a more detailed fingerprint. One special case
is to have no bounds and thus create combinatorial hashes with all points
for each anchor point. This would however drastically increase the number
of generated hashes which is not desirable with regard to memory. Other
than this observation the exact values of the bounds are not well defined.
We decided to use the bounds tl ≤ ∆t ≤ tu and 0 < |∆ f | ≤ nFFT

6 where
nFFT is the number of frequency bins used in the transform, ∆t is the time-
difference measured in time-windows and ∆ f is the frequency-difference
respectively between an anchor point and another constellation point. The
upper and lower time bounds, tl and tu, can be varied depending on how
many hashes that is wanted on average since a larger target zone will lead
to more point-pairs. Suitable values that were found for nFFT = 2048 were
tl = 2 and tu = 4 which means that for each anchor point, we will create
a pair with another point that occurs between 256 ms and 768 ms from the
time of the anchor point since we have 50% overlap. The upper bound tu
was varied to observe how the size of the fingerprint database impacts the
overall performance, the analyzed values were tu = 2, 3, ..., 10. The lower
bound tl = 2 was held constant and selected to be equal to 2 since this is the
lowest value it can be without having any overlap with the time window
of the anchor point.

16

3.6.3 Number of frequency bins and window length

The number of frequency bins, nFFT, that are used when performing the
time-frequency decomposition is another hyper parameter. If it is larger
than the window length W it will imply that each window is zero-padded.
As has been previously discussed in section 2.2, the songs are real-valued
which means that we will obtain nFFT

2 unique frequency bins using these
settings, and the window length in seconds would then be equal to W

Fs
. To

not have too many hash collisions when we do not zero-pad each window
and to not exceed the 10 bits of frequency information that is used when
creating the combinatorial hashes, we will get a lower and upper bound re-
spectively for W. The upper bound will be W = nFFT = 2048 = 211 while
the lower bound is not well defined but could probably be around W =
64 = 26. When comparing with the reference implementation by Wang [4]
we used W = nFFT = 2048 but when we tried shorter lengths of the snip-
pets i.e. smaller than 5 s we tried W = nFFT = 2k for k = 6, 7, ..., 11. When
we did zero-pad we had nFFT = 2048 while W = 2k for k = 6, 7, ..., 11.
The reason for trying shorter window lengths was to achieve a more de-
tailed representation of the audio signal in the time domain in order to
possibly achieve a higher accuracy for the shorter snippet lengths. How-
ever, in the conducted simulations this did not give a better performance
and the zero-padding did not improve the results significantly. The reason
why this might be the case is that when W = nFFT < 2048 we get too few
frequency bins to combine thus increasing the risk of hash collisions which
implies less unique fingerprints. Since the zero-padding does not increase
the resolution the same problem will appear when W < nFFT = 2048 be-
cause even though we have more frequency bins, adjacent spectral peaks
will not be resolved thus leading to a degradation in performance. For
these reasons, we let W = nFFT = 2048.

3.6.4 Frequency bands

By dividing the frequency bins into different bands as explained in sec-
tion 3.1 a better performance could perhaps be achieved. After some initial
testing, it was observed that logarithmic bands gave the best performance
with regard to overall accuracy for different SNR:s. Because of this, it was
decided that all subsequent tests would use logarithmic bands.

17

3.6.5 Summary of settings

The parameter values that were used for the comparison with the reference
implementation are summarized in Table 3.1 below. These parameter val-
ues were also used when analyzing the impact of the database size, except
that tu = 2, 3, . . . , 10.

Table 3.1: The parameters for the comparison with the reference implemen-
tation.

Parameter N W nFFT tl tu cdatabase csnippet

Value 6 2048 2048 2 4 0.6 0.9

18

Chapter 4

Experiments & Data
preprocessing

Three different comparative experiments were conducted for the HLT where
the performance of the STFT was seen as the benchmark. The experiments
were a time-frequency decomposition of different sinewave signals, evalu-
ation of the robustness by using audio signals with and without Additive
White Gaussian Noise (AWGN) and accuracy performance in the imple-
mented Shazam pipeline. The idea with the first two experiments was to
compare the two transforms in a setting where the transform and its hyper-
parameters make the difference. In the third experiment, the performance
of the HLT and the STFT was compared in the same Shazam pipeline im-
plementation.

4.1 Time-frequency decomposition

A comparison of the time-frequency decomposition between the STFT and
the HLT was done for two different signals in the time domain with differ-
ent frequency content. For the HLT, wavelets of the same size as the input
signal were used, resulting in a time-frequency decomposition of each in-
put sample. For the STFT rectangular windows were used with full over-
lap, nFFT = 256, and four different window lengths W = nFFT

8 , nFFT
4 , nFFT

2 ,
nFFT to show how the window length impacts the resolution. The first
signal that was tested was

y1 =

{
sin 2πtF1, t ∈ [0, 2.5]
sin 2πtF2, t ∈ [2.5, 5],

(4.1)

19

with a sampling frequency of Fs = 512 Hz and where F1 = 10 Hz, F2 =
20 Hz, and t is the time in seconds. A one-second snippet of signal y1 is
shown in Figure 4.1a. The second signal tested was

y2 = sin 2πtF1 + sin 2πtF2, t ∈ [0, 5], (4.2)

with a sampling frequency of Fs = 200 Hz and where F1 = 10 Hz, F2 =
12 Hz, and t is time in seconds. A two-second snippet of signal y2 is shown
in Figure 4.1b. These two signals was chosen to visualize the resolution of
the two transforms in time and frequency respectively.

(a) One second snippet of y1 in Eq.
(4.1).

(b) Two second snippet of y2 in Eq.
(4.2).

Figure 4.1: The two tested signals.

4.2 Noise robustness

As a measurement of the robustness, the Mean Squared Error (MSE) be-
tween a transformed noisy signal and a transformed noise-free signal was
calculated. Using the Frobenius norm, the definition of the MSE for two
matrices A and B is given by

MSE =
∥A − B∥2

F
N

=
trace

(
(A − B)∗ (A − B)

)
N

(4.3)

where ∗ denotes Hermitian transpose and N is the number of elements in
A and B [15]. Note that the transformed signals are matrices hence the use
of a matrix norm. The noise used was AWGN with different amplitudes
corresponding to SNR:s in the range of −15 dB to 15 dB and the signals
were the same songs used in the Shazam pipeline.

20

To explain any possible difference in the MSE when using the HLT and
the STFT, a heatmap of the difference between a transformed signal with
and without noise was provided. The signals analyzed were two randomly
selected songs and the noise was AWGN with an amplitude corresponding
to an SNR of 0 dB. The full procedure is summarized in Figure 4.2.

Figure 4.2: The calculation of the difference between a transformed signal
with and without noise.

4.3 Reference implementation

To make sure that our implementation gives relevant results we compare
the results from our implementation when using the STFT with the results
obtained by Wang [4]. Wang used a dataset consisting of 10000 songs and
measured the accuracy by matching snippets taken from the middle of 250
selected songs. The accuracy was measured for different levels of SNR and
different lengths of the song snippet. In this project, a dataset of 1041 songs
was used and each song was matched to the database using different snip-
pet lengths and levels of AWGN. The snippets were taken in the middle of
the song, just as Wang did. Each snippet was matched with the database
and the accuracy for each level of SNR and snippet length was calculated.
The accuracy can be seen as an estimation of the probability of identifying
a random snippet with a certain length and noise level. The settings used
for the implementation are presented in Table 3.1.

A comparison with Wang’s implementation with 10000 songs and our
implementation with 100, 550, and 1041 songs in the dataset was made
to evaluate how the number of songs in the dataset impacts the accuracy
estimation. All estimations were done with snippets that were 5 s long and
taken from the middle of each song. Although not explicitly stated in the
paper by Wang we will use the same window length W = 2048 and number
of frequency bins nFFT = 2048 as the paper did. This can be deduced

21

from that the paper uses 10 bits of frequency information when creating
the combinatorial hashes, see Section 3.1. Since the data is real valued, the
choice of nFFT = 2048 gives 1024 unique frequency bins, see Section 2.2,
which corresponds to 10 bits of frequency information. The other settings
for the algorithm are seen in Table 3.1.

4.4 Comparison of the HLT and the STFT

After the benchmark performance was obtained, the accuracy when using
the HLT for the same settings was collected. The average number of (t, id)-
pairs in the fingerprint database for the HLT and the STFT respectively
was calculated as a measurement of the size of the database. This was
done for different values of tu to analyze how the size of the fingerprint
database impacts the accuracy. The other settings can be seen in Table 3.1.
Snippets of length 1, 2, . . . , 5 s were also tested with the settings in Table 3.1
to possibly observe any difference in performance between the STFT and
the HLT for short snippets.

4.5 Data preprocessing

The 1041 songs that were used in the dataset were retrieved from the royalty-
free music website Epidemic Sound, www.epidemicsound.com.

Figure 4.3: The applied low-pass filter which
was used as an anti-aliasing filter for the
songs with sampling frequency Fs =48 kHz.

Each song was picked at
random but it was en-
sured that songs with vary-
ing beats per minute (BPM)
were included to have suffi-
cient generalization for the
Shazam implementation.
Some songs were Mono-
phonic (mono) and some
were Stereophonic (stereo)
meaning that a song could
have one or two audio
channels respectively. Since
the Shazam algorithm is
based on mono audio sig-
nals the stereo songs were
transferred to mono audio

22

https://www.epidemicsound.com/music/

by taking the mean of the two channels. To speed up computations and
use data that is similar to what was used by Wang, the audio signals were
downsampled to have a sampling rate of 8 kHz. The anti-aliasing filter was
a 10-pole Butterworth filter with a cut-off frequency Fs

2·6 , see Figure 4.3. The
factor 1

6 comes from the fact that we decimate by 6 to get a sampling rate of
8 kHz since Fs = 48 kHz.

23

Chapter 5

Results

5.1 Time-frequency decomposition

The time-frequency decompositions of y1 from Eq. (4.1) are shown in Fig-
ure 5.1 and 5.2 below.

Figure 5.1: Scalogram of y1 using the HLT.

24

Figure 5.2 shows the trade-off between time- and frequency resolution
using the STFT. As the size of the time window increases for the STFT it
becomes more difficult to see when in time y1 moves from 10 Hz to 20 Hz,
i.e. the time resolution decreases but the frequency resolution increases.
This is visually represented in the spectrogram seen in Figure 5.2a, 5.2b,
5.2c and 5.2d where the time window is 32, 64, 128 and 256 samples re-
spectively. If we compare this to Figure 5.1 we see that the HLT manages
to both locate when in time the frequency changes in the signal i.e. at 2.5 s
and which frequencies that are present. The reason for this is that the HLT
gives a frequency decomposition for each sample in y1 which, due to the
multi-resolution, leads to improved resolution in both time and frequency.

(a) W = 32 (b) W = 64

(c) W = 128 (d) W = 256

Figure 5.2: Spectogram of y1 using the STFT with different window lengths,
W.

In Figure 5.3 and Figure 5.4 the scalogram and spectrogram of y2 from
Eq. (4.2) can be seen respectively. In Figure 5.3 we can see that the HLT
manages to separate the two frequencies and also locate when in time the
signal has the highest amplitude.

25

Figure 5.3: Scalogram of y2 using the HLT.

(a) W = 32 (b) W = 64

(c) W = 128 (d) W = 256

Figure 5.4: Spectrogram of y2 using the STFT with different window
lengths W.

26

When analyzing the time-frequency decomposition of y2 using the STFT
it becomes evident that, just as according to theory, the frequency resolu-
tion is worse for smaller time windows. For window lengths 32 and 64,
the STFT has difficulties separating the two frequencies 10 Hz and 12 Hz,
as can be seen in Figure 5.4a and 5.4b respectively. For window lengths 128
and 256, the STFT manages to separate the frequencies as can be seen in
Figure 5.4c and 5.4d respectively. After analyzing the time-frequency de-
composition of both y1 and y2 it is evident that the STFT suffers from the
uncertainty principle, while the HLT does not.

5.2 Robustness towards noise

The logarithm of the average MSE of the 1041 decomposed songs, using
the HLT and the STFT, can be seen in Figure 5.5. The figure shows that the
HLT has a lower MSE compared to the STFT for all levels of SNR that were
tested.

Figure 5.5: The average MSE for 1041 noisy and noise free songs using the
HLT and the STFT respectively.

To understand why a difference in MSE was observed, a time-frequency
decomposition of two randomly selected songs referred to as "Song 1" and
"Song 2" with and without AWGN was also calculated. For Song 1 we see
that by using the HLT, the smallest difference, see Figure 5.6c, is obtained at
the time-frequency points with the highest amplitude seen in Figure 5.6a.

27

This corresponds to where we have actual non-zero frequency content in
the song which is also verified by the negative Pearson correlation of -0.56.
In contrast, when using the STFT, we can not see any clear structure in the
difference, see Figure 5.6d, and the correlation is also estimated to be 0.

(a) Decomposition, HLT (b) Decomposition, STFT

(c) Difference, HLT (d) Difference, STFT

Figure 5.6: (a) and (b) show the time-frequency decomposition of Song 1
using the HLT and the STFT respectively, normalized to values between 0
and 1. (c) and (d) show the difference between the time-frequency decom-
position of Song 1 with and without noise. The difference is normalized
with the largest maximum value obtained from both the HLT and the STFT
decomposition.

The same observation of where the smallest time-frequency difference
is obtained can be made for Song 2, see Figure 5.7. When using the HLT, we
see the smallest difference in Figure 5.7c where the amplitude is the highest
in Figure 5.7a. This observation is verified with the Pearson correlation
coefficient which is estimated to -0.6. For the STFT, Figure 5.7d shows that
the difference is random and evenly distributed across the spectrum.

28

(a) Decomposition, HLT (b) Decomposition, STFT

(c) Difference, HLT (d) Difference, STFT

Figure 5.7: (a) and (b) show the time-frequency decomposition of Song 2
using the HLT and the STFT respectively, normalized to values between 0
and 1. (c) and (d) show the difference between the time-frequency decom-
position of Song 2 with and without noise. The difference is normalized
with the largest maximum value obtained from both the HLT and the STFT
decomposition.

These results explain why we have a difference in the MSE when we
compare both transforms and why the HLT might be considered to be more
robust towards noise. Since the transforms can not distinguish between
what is noise and what is the pure signal, the results also imply that the
HLT emphasizes stronger frequency components over uniform frequency
content, see Figures 5.6c and 5.7c.

29

5.3 Reference implementation

The purpose of comparing our implementation with a reference is to show
that the results obtained with our implementation are relevant when we
later compare the STFT and the HLT within the same framework. As can
be seen in Figure 5.8, our implementation using the STFT has a higher ac-
curacy for all snippet lengths compared to the reference.

Figure 5.8: Accuracy vs SNR for the reference and our implementation us-
ing the STFT and settings according to Table 3.1.

While these results indicate that our implementation works well we
must also consider the differences in estimating the accuracy between this
implementation and the reference. One major difference is the size of the
dataset being used. In our implementation, we used a dataset of 1041 songs
while Wang used a dataset of 10000 songs which is almost 10 times bigger.
As illustrated in Figure 5.9, the curves for accuracy vs SNR get shifted to
the right when the size of the dataset increases. The relative difference in
dataset size seems to have the most impact on accuracy vs SNR rather than
the difference in the number of songs. Going from 100 to 550 songs, which
implies an increase with a factor of 5.5, makes for a larger shift of the curves
compared to going from 550 to 1041 songs, a relative size increase of around
1.89.

30

Figure 5.9: Accuracy vs SNR for the reference and our implementation us-
ing the STFT with different numbers of songs in the dataset. We used the
settings according to Table 3.1. The accuracy was estimated using 5 s snip-
pets taken from the middle of each song.

5.4 Comparison of the HLT and the STFT

This section contains the results obtained when comparing the HLT and the
STFT using our Shazam implementation. Figure 5.10 depicts the accuracy
vs SNR for the Shazam implementation for the HLT and the STFT with the
settings in Table 3.1. Overall both transforms gave quite similar accuracy
vs SNR. In Figure 5.10 we can see that the shape of the curves for the HLT
and the STFT are similar and that this holds for different lengths of the
snippets. However, the HLT has a higher accuracy overall and this becomes
particularly evident for lower SNR levels.

31

Figure 5.10: Accuracy vs SNR for the Shazam implementation using the
STFT and the HLT.

From Figure 5.11 we can see that an increase in tu generally corresponds
to an increased accuracy. The curves shown in the aforementioned figure
also indicate a strong correlation since the Pearson correlation coefficient is
above 0.9 for almost all curves, see Table 5.1.

Figure 5.11: Accuracy vs tu for the Shazam implementation using the STFT
and the HLT.

32

Table 5.1: The Pearson correlation coefficient, r, between accuracy and tu
for different noise levels.

SNR 0 -3 -6 -9

r
HLT 0.866 0.931 0.954 0.948
STFT 0.901 0.926 0.934 0.934

Another observation is that by comparing the average number of (t, id)-
pairs for the STFT and the HLT respectively, the STFT generates on average
more pairs, see Table 5.2. This relation remains the same for all values of tu
which is reasonable since the values are an average of the results from all
songs. While the same settings lead to similar accuracy with both decom-
position methods, the STFT generates 1.23 times more (t, id)-pairs, which
would suggest that the HLT is more efficient considering memory usage.

Table 5.2: Average number of (t, id)-pairs for different values of tu.

(t, id)-pairs
tu STFT HLT STFT rel. to HLT
2 13326 10874 1.23
3 26927 21842 1.23
4 40489 32840 1.23
5 54071 43869 1.23
6 67671 54916 1.23
7 81275 65970 1.23
8 94892 77033 1.23
9 108515 88103 1.23
10 122142 99178 1.23

Figure 5.12 depicts the accuracy vs SNR for the STFT and the HLT when
tu = 5 and tu = 6 respectively, which is an example of when the number
of (t, id)-pairs is similar for both transforms. In this example, the STFT
generated 1.5% less (t, id)-pairs than the HLT. The accuracy vs SNR is quite
similar but the HLT has higher accuracy for lower levels of SNR.

33

Figure 5.12: Accuracy vs SNR for the Shazam implementation using the
STFT and the HLT. The STFT with tu = 5 and the HLT with tu = 6.

When reducing the snippet length there is no major change in the accu-
racy vs SNR for the HLT relative to the STFT, see Figure 5.13. As expected
the accuracy is decreased as the snippet length gets shorter which we can
see is also the case for an arbitrary SNR. This holds for both the STFT and
the HLT but we can see that the latter has better accuracy for all snippet
lengths for the lower SNR levels of −6 dB and −9 dB, see Figure 5.13.

Figure 5.13: Accuracy vs snippet length for the Shazam implementation
using the STFT and the HLT.

34

Chapter 6

Discussion

6.1 Shazam implementation

The comparison between the results of the Shazam implementation in this
thesis and the reference showed that the former gave better results overall.
However, from Figure 5.9 we saw that the number of songs in the dataset
did impact the accuracy. If we assume that the dataset of 1041 songs used
in this thesis is somewhat representative of all songs then we should not
expect a much worse result going from 1041 to a dataset of 10000 songs.
This is because we estimate a joint relative threshold corresponding to a
false positive rate of α = 0.1% and then compute a threshold score for each
song in the dataset. As the number of songs increases we get a more reliable
estimate of the thresholds which can explain why the difference in accuracy
for 550 and 1041 songs in the dataset is very small compared to 100 songs,
see Figure 5.9.

It is also important to consider what songs are included in the dataset.
A dataset of very similar songs, e.g. one genre, could get a lower accu-
racy compared with a dataset with a lot of different genres since in the first
case it is more difficult to create unique fingerprints compared to the sec-
ond case. We used 1041 songs picked at random, while our reference does
not disclose which songs are included in the dataset, just that it contains
10000 popular songs at the time. Another important factor is the amount
of songs being matched with the dataset to create the accuracy estimation.
When producing our results we matched all songs in the dataset while the
reference only used a subset of 250 songs from the dataset of 10000 songs.
Given that Wang’s article is a conference paper, the selection of songs is
undisclosed, potentially affecting the efficacy of the results.

35

6.2 Database size

The average number of (t, id)-pairs can be seen as a measurement of how
much data is extracted from an audio signal. This means that the more
(t, id)-pairs that are generated for an audio signal, the larger the fingerprint
is, and thus the likelihood that we get a higher number of correct matches
will increase. On the other hand, a larger database does not necessarily
mean that the likelihood of correctly identifying a song will increase since
we also likely will have a set of less unique hashes for each fingerprint.
The loss of uniqueness for the set of hashes of each song will increase the
incorrect matches, which can lead to wrongly predicting a song. This effect
probably becomes more tangible for larger datasets since there is a finite
number of combinatorial hashes that can be created and, if the subset of
hashes for each song is large then the number of incorrect matches will
increase. From the results in 5.11 we see no decrease in accuracy for larger
values of tu, instead, the accuracy is strongly correlated with tu. However,
it is likely that the accuracy curve would flatten if even larger values of tu
would have been tested.

6.3 Reducing snippet length

As was seen in Figure 5.13 the accuracy decreased when the snippet length
decreased which is likely an effect of the fingerprint becoming smaller. The
fingerprint of a short snippet has a greater probability of being a subset of
other songs than the correct one which is equivalent to a higher probabil-
ity of misidentification. A solution to this would be to reduce the window
length W which would lead to the extraction of more spectral peaks that
are used to create more hashes, thus increasing the size of the fingerprint.
However, this would also require the same window length to be used when
creating the fingerprint database which would decrease the compression
rate. If W is selected to be very small there is also a possibility that the
frequency content of two neighbouring time windows is very similar or
identical which would not lead to a more unique fingerprint thus contra-
dicting the reason to reduce W. The reduction of W was tested but did not
yield any improved results, thus this was not included in the report.

36

6.4 Conclusions

Overall the HLT performed slightly better than the STFT in the conducted
experiments; with better visual time-frequency decomposition and slightly
higher accuracy in the Shazam pipeline. Based on the visual time-frequency
decomposition, it can be concluded that the HLT has a better time-frequency
resolution compared to the STFT as it does not suffer from the uncertainty
principle. When implementing the Shazam pipeline it was noticed that the
HLT generated fewer (t, id)-pairs and was more robust towards noise than
the STFT.

In the experiments, only AWGN was used but when using a song recog-
nition application in a real setting the noise might have a different struc-
ture, e.g. people talking in the background or traffic noise. It could thus
be interesting to further test the performance with other types of noise and
distortions.

While the HLT performed better in terms of resolution and accuracy
it is also important to consider some potential drawbacks. The HLT has
a significantly higher time complexity, which has to be considered in the
choice of transform. If the computational time is the limiting factor, then the
STFT is preferable over the HLT. However, if the complexity of the problem
is high then the HLT is a valid option. In the case of the Shazam pipeline,
the time it takes to create the database is not as consequential as the time it
takes to match the snippet to the database. Thus the higher time complexity
of the HLT can be argued to not be as unfavorable since the snippets are not
very long and the other parts of the Shazam algorithm will take a relatively
long time.

To get a time-frequency decomposition and not only a frequency de-
composition of the entire audio signal, the songs were divided into T over-
lapping windows of length W as is standard for the STFT. However, since
the HLT is a continuous transform this method discretizes the HLT. The
reason for the discretization was to be able to extract the most significant
spectral peaks using the same method in order to produce comparable re-
sults by using both transforms. However, for further work, it would be in-
teresting to define the wavelets over the entire duration of the song and uti-
lize the multi-resolution properties. With this implementation, one could
extract peaks by considering both time and frequency instead of extracting
the most significant peaks within a time window, as was done in this study.

It is worth mentioning that the Shazam pipeline implemented in this
project is representative of what was used 20 years ago. Today, one would
likely use a machine learning-based approach to solve the problem. How-

37

ever, the purpose of the pipeline is to compare the two transforms rather
than implementing a state-of-the-art song identification pipeline.

To further study the capabilities of the HLT, it can be worth exploring
other domains within audio fingerprinting that present greater complex-
ity. For instance, voice recognition tasks typically involve shorter snippet
lengths which allows for higher sampling frequencies and thus more sam-
ples for a short snippet.

38

Bibliography

[1] C. Philip and S. G. (2020) Audio fingerprinting: Under-
standing the concept, process, application. Accessed: 2024-
01-30. [Online]. Available: https://www.pathpartnertech.com/
audio-fingerprinting-understanding-the-concept-process-application

[2] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of algorithms
for audio fingerprinting,” in 2002 IEEE Workshop on Multimedia Signal
Processing., 2002, pp. 169–173.

[3] K. Kesgin and H. Jörntell, “Singular superlet transform achieves
markedly improved time-frequency super-resolution for separating
complex neural signals,” bioRxiv, 2023. [Online]. Available: https:
//www.biorxiv.org/content/early/2023/02/28/2023.02.27.530211

[4] A. Wang, “An industrial strength audio search algorithm.” 01 2003.

[5] S. Haskel and D. Sygoda, Biology: A Contemporary Approach. New
York: Amsco School Publications, Inc., 1996.

[6] S. S. of Music. (2023) What are high pitch instruments? a
complete guide. Accessed on: 2024-02-15. [Online]. Available:
https://sloanschoolofmusic.com/what-are-high-pitch-instruments/

[7] M. Müller and F. Zalkow. (2024) Stft - window functions. Accessed on:
2024-03-11. [Online]. Available: https://www.audiolabs-erlangen.
de/resources/MIR/FMP/C2/C2_STFT-Window.html

[8] N. Instruments. (2023) Zero padding in fft anal-
ysis. Accessed on: 2024-02-16. [Online]. Avail-
able: https://www.ni.com/docs/en-US/bundle/labwindows-cvi/
page/advancedanalysisconcepts/lvac_zero_padding.html

39

https://www.pathpartnertech.com/audio-fingerprinting-understanding-the-concept-process-application
https://www.pathpartnertech.com/audio-fingerprinting-understanding-the-concept-process-application
https://www.biorxiv.org/content/early/2023/02/28/2023.02.27.530211
https://www.biorxiv.org/content/early/2023/02/28/2023.02.27.530211
https://sloanschoolofmusic.com/what-are-high-pitch-instruments/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Window.html
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C2/C2_STFT-Window.html
https://www.ni.com/docs/en-US/bundle/labwindows-cvi/page/advancedanalysisconcepts/lvac_zero_padding.html
https://www.ni.com/docs/en-US/bundle/labwindows-cvi/page/advancedanalysisconcepts/lvac_zero_padding.html

[9] M. Sandsten, “Time-frequency analysis of time-varying
signals and non-stationary processes,” 2020, available at
https://www.maths.lu.se/fileadmin/maths/personal_staff/
mariasandsten/TFkompver4.pdf, accessed pages 10-12.

[10] J. O. S. III, Spectral Audio Signal Processing. Center for Computer
Research in Music and Acoustics (CCRMA), Stanford University,
2011. [Online]. Available: http://ccrma.stanford.edu/~jos/sasp/

[11] M. Strauss. (2021, January 29) How shazam works - an expla-
nation in python. [Online]. Available: https://michaelstrauss.dev/
shazam-in-python

[12] V. Khatri, L. Dillingham, and Z. Chen, “Song recog-
nition using audio fingerprinting,” Dept. of Electrical and
Computer Engineering, University of Rochester, 2019. [Online].
Available: https://hajim.rochester.edu/ece/sites/zduan/teaching/
ece472/projects/2019/AudioFingerprinting.pdf

[13] Christophe. (2015) How does shazam work? Updated: August
6, 2015; Posted: May 23, 2015. [Online]. Available: https://www.
academia.edu/33464339/How_does_Shazam_work_Coding_Geek

[14] L. Mottola. (2020) Frequency table. Accessed on: 2024-02-13. [Online].
Available: https://www.liutaiomottola.com/formulae/freqtab.htm

[15] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it?
a new look at signal fidelity measures,” IEEE SIGNAL PROCESSING
MAGAZINE, vol. 26, no. 1, pp. 98-117, Jan. 2009.

40

https://www.maths.lu.se/fileadmin/maths/personal_staff/mariasandsten/TFkompver4.pdf
https://www.maths.lu.se/fileadmin/maths/personal_staff/mariasandsten/TFkompver4.pdf
http://ccrma.stanford.edu/~jos/sasp/
https://michaelstrauss.dev/shazam-in-python
https://michaelstrauss.dev/shazam-in-python
https://hajim.rochester.edu/ece/sites/zduan/teaching/ece472/projects/2019/AudioFingerprinting.pdf
https://hajim.rochester.edu/ece/sites/zduan/teaching/ece472/projects/2019/AudioFingerprinting.pdf
https://www.academia.edu/33464339/How_does_Shazam_work_Coding_Geek
https://www.academia.edu/33464339/How_does_Shazam_work_Coding_Geek
https://www.liutaiomottola.com/formulae/freqtab.htm

Audio Fingerprinting
A Decomposing Study

NIKLAS GÄLLDIN AND VICTOR HULTMAN
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

N
IK

LA
S G

Ä
LLD

IN
 A

N
D

 V
IC

TO
R

 H
U

LTM
A

N
A

udio Fingerprinting -
 A

 D
ecom

posing Study
LU

N
D

 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-1004
http://www.eit.lth.se

	Exjobb Gälldin o Hultman.pdf
	Introduction
	Background
	Aim & Objectives
	Outline

	Time-frequency transforms
	Discrete and continuous signals
	Discrete short-time Fourier transform
	Wavelet transform
	Hyper Localized Wavelet Transform

	Shazam Algorithm
	Audio fingerprints
	Database construction
	Song identification
	Peak Extraction
	Significance
	Settings and tuning
	Number of peaks
	Target zone
	Number of frequency bins and window length
	Frequency bands
	Summary of settings

	Experiments & Data preprocessing
	Time-frequency decomposition
	Noise robustness
	Reference implementation
	Comparison of the HLT and the STFT
	Data preprocessing

	Results
	Time-frequency decomposition
	Robustness towards noise
	Reference implementation
	Comparison of the HLT and the STFT

	Discussion
	Shazam implementation
	Database size
	Reducing snippet length
	Conclusions

