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Abstract

When ultrashort pulses pass through common optical elements such as gratings and
thick lenses, they can pick up spatio-temporal couplings (STCs) - nonseparable chro-
matic aberrations. The main cause of this phenomenon is the inherent feature of
ultrashort pulses—their broadband spectrum. STCs increase pulse duration and re-
duce the intensity at the focus, which will be detrimental for many applications, for
example, in high-harmonic generation (HHG). This project identifies and visualizes
the STCs of ultrashort laser pulses used for HHG and laser-driven acceleration by
removing aberrations shared by all wavelengths. Spatially resolved Fourier Transform
spectrometry is the main method for our STC characterization. Improvement of the
existing data analysis code, including the shared aberration removal and comprehens-
ive STC analysis documentation are included in this work.
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Popular science summary

Lasers have unique properties that distinguish them from ordinary sunlight or light
from our homes’ lamps. That property is known as spatial and temporal coherence.
Thanks to those properties, pulses with very short duration, i.e., in the femtosecond
range, can be generated. A femtosecond is the millions of billions of a second. But why
do we need such a short pulse? There are two answers: first, using the short pulse, we
can take a “movie” of fast events, and second, achieving high intensity is feasible with
short pulses. By saying “fast event,” we mean ultrafast events like electron motion
around nuclei in the atom and chemical reactions that unfold on the femtosecond (fs)
time scale.

Relatively recently, the process called high-order harmonic generation allowed to achieve
pulses on the attosecond time scale. It is an extremely short duration (1 as=1 ·10−18

s). Accessing such an ultrashort duration provides us with advanced insights into the
dynamics of electrons in atoms, molecules, and solids. This knowledge can be applied
to achieve real-time control of electron motion in matter, with practical applications
such as the transition from THz-to-PHz electronics, probing the molecular compos-
ition of biological systems for health monitoring, and disease detection. Reaching
high intensity with ultrashort pulses has important applications in particle accelera-
tion. Since at such high intensity, particles can accelerate close to the speed of light
in less than a meter. This allows us to drastically reduce the size of conventional
particle accelerators. High-speed protons can kill cancer cells, which has an important
application in medicine.

Figure 1: Illutration of a) clean pulse (no STC) b) distorted pulse (with STC). Image
adapted from [1].

When generating and manipulating ultrashort pulses, their field can be distorted by
common optical elements, like lenses, gratings, etc. These distortions are usually called
spatio-temporal couplings (STC). To put it in the simplest terms, STC means that the
pulse properties cannot be written separately as a space and a temporal component.
These distortions can be beneficial or harmful to the system. In both cases, it becomes
important to characterize them. During this project, STC characterization is done for
the two laser systems used for high-order harmonic generation (AttoLab) and particle
acceleration (Multi-pass cell MPC system at DESY). In the AttoLab, significant STCs
are observed. STCs are also present in the source of the MPC system but these do
not transfer to the compressed output pulses.
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Notations

Abbreviations

STC -Spatio-temporal coupling
PFT - Pulse front tilt
PFC - Pulse front curvature
CPA - Chirped Pulse Amplification
OPCPA - Optical Parametric Chirped Pulse Amplification
AD - Angular dispersion
GD - Group delay
GDD - Group delay dispersion
NF - Near-field
FF- Far-field
CC - Chromatic curvature
CCD - Charge-coupled device MPC - Multi-pass cell compression
FT - Fourier Transform
d-scan - dispersive scan
FROG - Frequency-resolved optical gating
FTS - Fourier Transform Spectroscopy
FFT - Fast Fourier Transform
MMT - Mode matching telescope
TEL - Telescope
CMP - Compressor
STARFISH-spatio-temporal amplitude-and-phase reconstruction by Fourier-transform
of interference spectra of high-complex-beams
SPIDER - spectral phase interferometry for direct electric-field reconstruction
SPM - Self phase modulation
TERMITES - Total E-field reconstruction using a Michelson interferometer temporal
scan
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1 Introduction

The invention of the laser has profoundly impacted the field of science and technology.
Lasers’ unique characteristics, such as temporal coherency, enable the generation of
ultrashort pulses. Spatial coherency allows the laser to be focused on a precise spot.
These features have various practical applications, including imaging ultrafast pro-
cesses, laser cutting, and lithography.

The generation of ultrashort pulses is crucial for high optical power delivery and ima-
ging of ultrafast processes. Continuous progress has been made in reducing the pulse
durations from nanosecond and picosecond to extremely short femto- and attosecond
(as) pulses. We can achieve high peak power by concentrating the modest energy in
a very short duration. The first lasers, built between 1960 and 1970, generated peak
power from megawatts (MW) to gigawatts (GW). However, in the subsequent decade,
laser peak power remained unchanged due to the damage to the amplifier material
at high power. The advance of the chirped-pulse amplification technology (CPA) [2]
allowed it to reach terawatt (TW) and then petawatt (PW) peak power levels. The
discovery of high-harmonic generation (HHG) in gases when exposed to the highly
intense laser field led to the generation of extremely ultrashort attosecond pulses. To
put this into perspective, consider how many times one second is smaller than the age
of the universe, one attosecond is equivalently smaller than one second [3]. Ultrashort
pulses are used to image the ultrafast biological, chemical, and physical processes.
Moreover, the intense ultrashort pulses are used for electron wake-field acceleration
and laser fusion.

With the advancement of the generation of ultrashort pulses, their characterization
became important. How do we know our ultrashort pulse is short? What are its spa-
tial characteristics? Currently, commercially available photodetectors can accurately
measure the duration of nanosecond pulses. However, if we want to measure pico- and
femtosecond pulse duration, we need a shorter event to make the measurement. Since
no such event was available, researchers found a clever solution: the shortest event
available was the event itself. As a result, the autocorrelation method was developed
[4]. The other popular methods include frequency-resolved optical gating (FROG) [5],
spectral phase interferometry for direct electric-field reconstruction (SPIDER) [6], and
dispersion scan (d-scan) [7].

The above-mentioned methods assume that the temporal (or spectral) field has the
same properties at all points in the beam and can give correct characterization,
if the field is spatially homogenous. However, in generating and manipulating ul-
trashort pulses, the beam is exposed to spatio-temporal distortions commonly known
as spatio-temporal couplings (STC). Examples of STCs are group delay variations
across the beam, i.e., the spatially varying time of arrival in the transverse direction.
More generally, spatio-temporal coupling corresponds to the case when spectral/tem-
poral properties of a broadband field are not spatially homogenous. This results in
a pulse duration increase and intensity reduction at the focus. STC can be detri-
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mental or beneficial depending on the application. In both cases, it is important
to give them characterization. Because of that, many STC characterization tech-
niques were developed. Spatially-encoded arrangement SPIDER (SEA-SPIDER) [8]
and spatio-temporal amplitude-and-phase reconstruction by Fourier-transform of in-
terference spectra of high-complex-beams (STARFISH) [9], are few examples of them.
The main focus of this thesis is STC characterization of ultrashort pulses using spa-
tially resolved Fourier Transform Spectrometry (FTS) technique [7]. In this technique,
the unknown pulse is separated into two. One is used to make a homogenous beam,
which is brought to interfere with the other one on the camera chip. By changing
the delay between the reference and the unknown beam, we obtain a spectrogram for
each pixel of the camera. Assuming the reference beam is known, we can subtract
the unknown phase for each pixel, i.e., spatially resolve it. Thus, in the end, the 3
dimensional (two space and one time/frequency) data of the unknown complex field
are obtained. From that data, one can inspect the pulse’s STCs.

1.1 Objective

This project concerns the STC characterization of intense ultrashort laser pulses loc-
ated at the Lund High-Power Laser Facility and the German Electron Synchrotron
(DESY). To achieve this, the spatially resolved Fourier Transform Spectroscopy tech-
nique [10] is used. The Titanium-doped Sapphire (Ti: Sapphire) CPA laser based in
Lund has a central wavelength of around 800 nm, pulse duration of around 20 fs, and
repetition rate of 3 kHz. The laser comprises a grating compressor to achieve the final
pulse duration after the amplification. Like any dispersive element, it is a potential
source for STCs. The STC measurements were performed to determine the existence
of any STC in the output of the Ti: Sapphire laser. Similar STC measurements were
performed for each stage of the Multi-pass-cell compressed (MPC) setup at DESY.
MPCs are a new technique [11] which allows temporal compression of the pulses from
picosecond down to femtosecond duration. The goal is to determine whether STCs
exist in this setup, which hasn’t been done before.

The obtained data involves cumbersome manipulations of 3D matrices representing
ultrashort laser pulses in space and time/frequency, which will be discussed in great
detail in section 3.2. The common aberration shared by all wavelength components
must be removed to see the true STC. This feature was added to the existing MATLAB
code, which has been optimized and well-documented.

1.2 Motivation

Like any electromagnetic wave, light pulses can be described in the form of an elec-
tric field. Usually, the spatial and the temporal/spectral parts are assumed to be
independent of each other, i.e., the field can be written as the product of the spatial
and temporal/spectral profiles. Although this assumption is valid in many cases, it
is often wrong in the case of ultrashort pulses. The impossibility of separating the
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spatial from the temporal behavior of ultrashort pulses is due to their broad spec-
tral bandwidth. This mutual dependence of spatial and temporal coordinates is called
spatio-temporal couplings (STC). Common sources of STCs are prisms, gratings, sing-
let lenses, nonlinear optical interactions, and even simple apertures, which nicely illus-
trate the wavelength dependence of diffraction. Prisms and gratings introduce STCs,
like angular chirp, pulse-front tilt, and spatial chirp, which will be discussed in section
2.4. Singlet lenses introduce pulse front curvature as a result of their chromaticity [12].
Depending on their applications, STCs can be detrimental or beneficial for ultrafast
optical systems. A chirped pulse amplification system and 4-F pulse shapers are built
to introduce and subsequently compensate for any STCs. STCs increase the pulse
duration and decrease the intensity of the focus. On the other hand, STCs are benefi-
cial for controlling the beam properties and, thus, light-matter interaction processes.
For example, one can optimize the non-linear sum or frequency difference generation,
broadband THz generation with controlled STC [13] and generate isolated attosecond
pulses by using the attosecond lighthouse effect [14].

1.3 Thesis outline

Chapter 2 provides the necessary theoretical information for this project. It involves
the time-frequency description of ultrashort pulses (section 2.1.1), basic principles of
Fourier Optics, pulse compression techniques, and a description of the common types
of aberrations. Since the main focus of this project is about STCs, I included a detailed
description of STCs with simulations in section 2.4. Then, chapter 3 gives a detailed
description of the method and steps of data processing in the example of the data
obtained from the Ti: Sapphire CPA laser. The last chapter 5 gives the conclusion of
the results and a future outlook of possible improvements of the STC setup.
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2 Theory

This chapter provides essential theoretical background for this work. Most of the the-
oretical part is influenced by literature [15], [16]. Since the main focus of this project
is the characterization of ultrashort pulses, the first big section 2.1 is dedicated to
ultrafast optics and is divided into several subsections. It starts with a time and fre-
quency description of ultrashort pulses (subsection 2.1.1), followed by the propagation
of ultrashort pulses in the media (subsection 2.1.2) and ends with basic principles of
pulse compression (subsection 2.1.3).

Since the data analysis part of this project involves focusing, spatial filtering, and
shared aberration removal of the ultrashort pulse, it is relevant to briefly introduce
Fourier Optics and Aberration theory in section 2.2. This section briefly starts with
the principles of Fourier Optics in subsection 2.2.1. The following subsection gives
comprehensive information about common types of aberration (subsection 2.2.2) and
descriptions of the aberrated wavefront (subsection 2.2.3).

The following section 2.3 gives a short introduction to the amplification of ultrashort
pulses.

This chapter concludes with section 2.4 about the detailed theory of Spatio-Temporal
Couplings (STCs) - the main focus of this project.

2.1 Ultrafast Optics

2.1.1 Time and frequency description of ultrashort pulses

Using the fundamental laws of Maxwell’s electromagnetic theory, we can derive the
wave equation:

∇2u− 1

c2
∂2u

∂t2
= 0 (2.1)

Where c = c0/n - speed of the optical wave in the material. ∇2 = ∂2/∂2x2 + ∂2/∂y2 +
∂2/∂z2 - Laplacian operator in cartesian coordinates.

We can describe the monochromatic wave at position r = (x, y, z) at given time t
using the wavefunction: u(r, t) = a(r) cos [2πνt+ ϕ(r)]. But for mathematical ma-
nipulations, using the complex amplitude U(r, t) is convenient. Its real part gives us
wavefunction Re{U(r, t)}:

U(r, t) = U(r) exp(j2πνt) (2.2)
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where U(r) = a(r) exp[jϕ(r)]- is called complex amplitude of the wave.

For considering optical pulse in the time domain, we can omit the spatial part and
only focus on the temporal part of the complex amplitude equation 2.2. Then for an
optical pulse with central frequency ν0 we can write U(t) = A(t) exp j2πν0t, where
A(t) = |A(t)| exp [jϕ(t)] - complex envelope with amplitude |A(t)| and phase ϕ(t).
Intensity in the time domain is I(t) = |A(t)|2. Using the equation for the complex
envelope, we can write:

U(t) = |A(t)| exp (j[ω0t+ ϕ(t)]) (2.3)

Where ω0 = 2πν0 - is the central angular frequency of the optical pulse. To characterize
the optical pulse in the spectral domain, we need to take the Fourier transform of the
equation 2.3. This will give us a function centered around the angular frequency ω0:

U(ω) = |U(ω)| exp [jψ(ω)] (2.4)

where |U(ω)| =
√
S(ω)- is the spectral amplitude, S(ω) - spectral intensity, ψ(ω)-

spectral phase.

Taking the derivative from the phase of equation 2.3, we can find the instantaneous
angular frequency given by:

ωins = ω0 +
dϕ

dt
(2.5)

Let’s analyze the time evolution of the phase ϕ(t) of the complex envelope (eq. 2.3).
For that, we will Taylor expand this phase around the pulse center (in our case t0 = 0):

ϕ(t) = ϕ0 +
∂ϕ(t)

∂t

∣∣∣∣∣
t0

t+
1

2

∂2ϕ(t)

∂t2

∣∣∣∣∣
t0

t2 + ... (2.6)

Here, the first term in this equation, ϕ0, is called the carrier-envelope offset phase
(CEP), which describes the difference between the optical phase of the carrier wave
and the envelope position (see fig. 2.1). The second term makes a shift in the frequency
domain, as one can observe from equation 2.5. The third term corresponds to chirp:
if ϕ′′ = ∂2ϕ/∂t2 > 0 pulse is up-chirped, if ϕ′′ < 0 pulse is down-chirped. In the
former case, the instantaneous frequency will linearly increase; in the latter case, the
instantaneous frequency will linearly decrease. The higher terms in eq. 2.6 results in
nonlinear changes of instantaneous frequency.

Similarly, we can expand the spectral phase into the Taylor series around the central
frequency ω0:

ψ(ω) = ψ0 +
∂ψ(ω)

∂ω

∣∣∣∣∣
ω0

(ω − ω0) +
1

2

∂2ψ

∂ω2

∣∣∣∣∣
ω0

(ω − ω0)
2 +

1

6

∂3ψ

∂ω3

∣∣∣∣∣
ω0

(ω − ω0)
3 + ... (2.7)
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Figure 2.1: Effect of CEP (carrier-envelope offset) phase ϕ0 to ultrashort pulse

Here, the first term ψ0 corresponds to the CEP in the spectral domain, and it is the
same as ϕ0 due to the linearity of the Fourier transform. The second term corresponds
to a shift in the time domain and is defined as Group Delay GD = ∂ψ(ω)/∂ω of
the pulse. The third term corresponds to chirp. Since it involves the second order
frequency derivative of phase or first order derivative of GD, thus, it is defined as the
Group Delay Dispersion GDD= ∂(GD)/∂ω = ∂2ψ(ω)/∂ω2.

Figure 2.2 shows the pulses with Gaussian shape and at different phase values in both
temporal and spectral domains.

The pulse duration of the Gaussian pulse ∆τ is taken as the full-width half maximum
(FWHM) of its intensity I(t). Similarly, we define the pulse’s spectral width ∆ν as
FWHM of spectral intensity S(ω). The relation between these two variables is:

∆τ∆ν ≥ 0.44 (2.8)

We can deduce from this equation that the broader the pulse spectrum, the shorter the
pulse potentially becomes. For the ∆τ∆ν = 0.44 case, we call it the pulse is Fourier
limited pulse.

2.1.2 Pulse propagation

Group vs. Phase velocity

The most commonly known effect when light propagates through material is dispersion.
It is caused by the fact that different frequency components of the pulse propagate
at different velocities. Because we know that the velocity of light in the material is
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Figure 2.2: Temproal and spectral profiles of the Gaussian pulse with pulse duration 5 fs
central angular frequency ω0 = 2.093 fs−1. a) Tranfrom limited pulse, b)
Down-chirped pulse with chirp parameter ϕ′′ = −3, c) Up-chirped pulse with
ϕ′′ = 3

defined by cn = c/n(λ), where c - speed of light in the vacuum, n(λ) - refractive index
of material that depends on the wavelength and can be described with good accuracy
by the Sellmeier’s equation:

n2(λ) = 1 +
∑
k

Bkλ
2

λ2 − Ck

(2.9)

where, Bk, Ck - are experimentally determined constants of material, λ-wavelength of
the light in the vacuum. The shorter the pulse, the broader its spectrum and the
stronger the effects of dispersion on the pulse. When considering ultrashort pulse
propagation, separating the two concepts, group velocity and phase velocity, is useful.
The phase velocity of ultrashort pulse with central frequency ω0 is defined as [16]:

vp ≡ cn = ω
kn

∣∣∣
ω0

while the group velocity of the same ultrashort pulse is defined as

vg ≡ dω
dkn

∣∣∣
ω0

, where kn = kn(ω)-wavenumber of the pulse in the material, k = 2π/ω-

the wavenumber in the vacuum. Phase velocity corresponds to the velocity of the
carrier wave, and group velocity corresponds to the propagation speed of the envelope
of the pulse (see figure 2.3).

By inserting the value of the kn into the group velocity equation, we can find:
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Figure 2.3: Illustration of group and phase velocity. Phase front propagates with phase
velocity and peak of the envelope propagates with group velocity

1

vg
=
dkn(ω)

dω
=

d

dω

[n(ω)ω
c

]
=
n(ω)

dω

ω

c
+
n

c
(2.10)

And using the relation:

ν =
c

λ
=>

dν

dλ
= − c

λ2
= −ν

λ
=>

dν

ν
= −−dλ

λ
(2.11)

since ω = 2πν, we can find that dω
ω

= −dλ
λ
. And hence

dn(ω)

dω
ω = −dn(λ)

dλ
λ (2.12)

Putting this equation into equation 2.10, we can find the equation for the group velo-
city:

vg =
c

n− dn
dλ
λ
=

c

ng

(2.13)

where ng = n− (dn/dλ)λ - is defined as the group index.

Consider the transform-limited pulse with duration τ0 linearly propagates through the
material with positive dispersion. This medium will create the phase shift ϕ = knL =
kn(ω)L and the pulse will have duration given by:

τ(L) = τ0

√√√√1 +

(
4 ln 2 d2ϕ

dω2

τ 20

)2

(2.14)

Where d2ϕ/dω2 = GDD-group delay dispersion introduced by the medium. This
equation shows that the pulse duration is increased and positively chirped after passing
the medium. In other words, longer wavelength spectral components go faster than
shorter wavelengths, λ1 > λ2 => vg(λ1) > vg(λ2) or ”red goes faster than blue.” This

9



is true for the case of normal dispersion, i.e., in the wavelength from the ultraviolet
(UV) to the near-infrared range of the spectrum (NIR). However, dispersion will be
anomalous for the longer wavelength, and the effect will be reversed. Notably, the
pulse spectrum does not change during propagation.

2.1.3 Pulse compression

We saw that when the pulse propagates through a material with positive dispersion, it
obtains positive GDD, and its duration increases. To compensate for positive GDD
and compress the pulse duration, we need to use another optical system that can
introduce negative dispersion. The most practical way is to use a system containing
angular dispersion elements such as prisms, gratings, or Bragg mirrors.

The wavelength dependence of the refractive index in Snell’s law results in different
wavelength components being refracted at different angles and traveling on different
geometrical paths. It has been shown that regardless of the sign of the material dis-
persion (positive or negative), the angular dispersion (AD) introduces negative GDD
[17].

For compressing the pulse with a prism, only using a single prism is not enough. We
need to use a prism pair (fig. 2.4 a.). The first prism will introduce angular dispersion,
i.e., short wavelengths (“blue part”) will be refracted more strongly than longer ones
(“red part”), and the different colors will propagate in different directions. The second
prism will collimate the angular dispersion, but the colors are spatially separated from
each other. This can be compensated by reversing the beam propagation using mirrors
or using another couple of prisms (fig. 2.4 b.). In the end, we can obtain the pulse
with negative GDD, i.e., “blue goes faster than red” in the space between the prisms.

The same reasoning applies to grating compressors (fig. 2.4 c.). In the grating com-
pressor configuration, the longer wavelength part of the pulse travels a longer dis-
tance than the shorter wavelength part. As a result, it introduces the negative GDD.
Moreover, we can control the amount of GDD by changing the distance Lg between
two parallel gratings. This GDD can be found using the following equation [16]:

d2ϕ

dω2
= − λ30Lg

πc20Λ
2

[
1−

(λ0
Λ

− sin θi

)2]−3/2

(2.15)

where λ0 - central wavelength of the pulse, θi- incident angle of the pulse to a grating
compressor, Λ-grating period.

Another pulse compression option is Bragg-Grating mirrors or Bragg-Grating chirp
mirrors, which have revolutionized ultrashort pulse generation. These mirrors are
designed to gradually increase the Bragg wavelength from the surface to the substrate.
This allows shorter wavelength parts to be reflected closer to the surface while the
longer parts can penetrate deeper, resulting in negative GDD of the output pulse
(“blue goes faster than red”).
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Figure 2.4: Pulse compression using a pair of prisms (a), four prisms (b), pair of gratings
(c), four gratings (d). The long wavelength λ2 part is illustrated as a red line,
while the short wavelength λ1 part is illustrated as a blue line.

Figure 2.5: Bragg-Grating mirrors
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2.2 Aberration of Ultrashort pulses

2.2.1 Basic principles of Fourier Optics

Signals in nature, like sound or light signals, appear in complicated forms. They
may contain different frequencies and vary with time f(t) in a way that it would be
difficult to define them with concrete analytical expression. However, using harmonic
analysis, it is possible to expand such a complex function in terms of the superposition
of harmonic functions with different frequencies. These harmonic functions have a
simpler form, making it easier to work with them. For example, f(t) function can be
expanded in terms of harmonics functions G(ν) exp j2πνt:

f(t) =

∫ +∞

−∞
G(ν) exp(j2πνt) dν (2.16)

From this equation, the function f(t) is decomposed by the linear combination (in
this case, an integral) of elementary functions exp j2πνt and G(ν) is just a weighting
factor that is applied to these elementary functions for obtaining the desired function
f(t). In equation 2.16, G(ν) is called Fourier Transform of f(t) and found using
the following equation:

G(ν) = F{f(t)} =

∫ +∞

−∞
f(t) exp(−j2πνt) dt (2.17)

And equation 2.16 is called inverse Fourier Transform equation: f(t) = F−1{G(ν)}.

Similarly, an arbitrary complex function f(x, y) that depends on two independent
variables x and y can be written as a superposition of the harmonic functions:

f(x, y) =

+∞∫∫
−∞

G(νx, νy) exp[−j2π(νxx+ νyy)] dνx dνy (2.18)

where νx and νy are the spatial frequencies along x and y directions, respectively. The
coefficients G(νx, νy) are determined by the two dimensional Fourier Transform:

G(νx, νy) =

+∞∫∫
−∞

f(x, y) exp[2π(νxx+ νyy)] dx dy (2.19)

And equation 2.18 is called the two-dimensional inverse Fourier Transform.

Similarly to the one-dimensional case, by looking at the equation 2.18, we can think
the two-dimensional function f(x, y) is a linear combination (integral in our case)
of elementary functions of the form exp[j2π(νxx + νyy)]. This function has exciting
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Figure 2.6: Lines of constant phase (in red) are directed at an angle for a given spatial
frequencies. Image influenced by Ref. [18]

properties. The phase of that function equals either zero or integer multiple of radians:
2π(νxx+ νyy) = n2π. From that fact, one can find the equation.

y = −νx
νy
x+

n

νy
(2.20)

Where n is an integer. An illustration of this equation is given in figure 2.6. From
that figure, we can regard that elementary functions are ”directed” at angle θ (with
respect to x) that depends on the spatial frequencies:

θ = arctan

(
νy
νx

)
(2.21)

Using linearity and harmonic analysis, one can conclude the following fundamental
statement of Fourier Optics: any arbitrary wave can be considered as a sum of
the elementary plane waves.

Transfer function of free space

We will be interested in the effect of the STCs after long propagation or at the focus.
Diffraction theory allows us to find the field expression after propagation in any media.
For linear systems, the general procedure is to convert the complex field to k space
(or spatial frequency space), multiply it to a transfer function, and finally convert it
back to the spatial coordinates[15].
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General routine for the free space propagation calculations of the shift-invariant lin-
ear systems are given as the Rayleigh–Sommerfeld solution and can be written in a
compact form [15]:

u2(x, y) = F−1
{
F
{
u1(x, y)

}
H(νx, νy)

}
(2.22)

where u1(x, y) -is a complex amplitude of the input plane, u2(x, y)-is a complex amp-
litude of the output plane, and H(fx, fy) - is so called transfer function.

The equation for the monochromatic complex plane wave is given by U(x, y, z) =
A exp[−j(kxx+ kyy + kzz)] where kx, ky and kz are the components of the wavevector
k, its modulus, known as wavenumber, k =

√
k2x + k2y + k2z . If we say that the plane

wave propagates in free space along the z direction and the given input plane wave
located at z = 0 will be u1(x, y) = U(x, y, 0) = A exp[−j(kxx + kyy)], output plane
wave located at z = d will be u2 = U(x, y, d) = A exp[−j(kxx + kyy + kzd)]. We
can write the transfer function H(νx, νy) = u2(x, y)/u1(x, y) = exp(−jkzd) or using
kz =

√
k2 − k2x − k2y = 2π

√
λ−2 − ν2x − ν2y :

H(νx, νy) = exp
(
− j2π

√
λ−2 − ν2x − ν2y

)
(2.23)

This equation is called the transfer function of free space.

The system is called linear when its response to several stimuli is equivalent to the
sum of the responses to each stimulus.

Fourier Transform properties of Lens

To understand the spatial filtering and characterizations of the STCs, we need to
understand the lens’s Fourier transform properties.

Lets say plane wave with complex amplitude u1(x, y) propagates from z = 0 along the
z direction with small angles θx = λνx and θy = λνy and note its Fourier transform as
F (νx, νy) = F{u1(x, y)}. Then, the wave will be focused into a point with coordinates
(νxf0, νyf0) in the focal plane. Assuming waves are paraxial (i.e., propagate with
small angles to z) and using the Fresnel approximation, one can show that complex
amplitude u2(x, y) at the output plane is [15]

u2(x, y) = hl exp

[
jπ

(x2 + y2)(d− f0)

λf 2
0

]
F

(
x

λf0
,
y

λf0

)
(2.24)

where, νx = x/λf0 and νy = y/λf0 were used and hl = H0h0 = (j/λf0) exp[−jk(d +
f0)], f0- focal length of the lens. Thus, the complex amplitudes of front u1(x, y) and
back u2(x, y) focal planes of the lens are related to each other by Fourier transform
multiplied by the coefficient that is the function of coordinates (x, y).
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Sampling theory

Since the data analysis part of this project (section 3.2) uses the numerical Fast Fourier
Transform, the short introduction of the sampling theory would be relevant to this
work.

Fourier transform equation given in the formula 2.19 allows us to calculate the con-
tinuous functions. It is not always practical to use continuous functions for Fourier
analysis. By converting these functions into a sequence of discrete functions, we can
make them computer-readable. This conversion is done by using sampling and quant-
ization.

A function f(t) is called band-limited if its Fourier transform has zeros values outside
of the integral [−B,B] around the origin. Figure 2.7 a. is given an example of the
Fourier transform of such a function.

One way to sample the continuous function f(t) is to multiply it to the sampling
function s∆T =

∑+∞
−∞ δ(t−n∆T ). The sampling function is just a sequence of impulse

functions that are equally separated at a distance ∆T . So multiplication f̃(t) =
f(t)s∆T (t) =

∑∞
−∞ f(t)δ(t − n∆T ) will give us the sampled function. The Fourier

transform of the sampled function:

G̃(ν) = F
{
f̃(t)

}
= F

{
f(t)s∆T (t)

}
= G(ν) ∗ S(ν) (2.25)

where S(ν) = (1/(∆T )
∑+∞

n=−∞ δ
(
ν − n/∆T

)
Fourier transform of the impulse train

s∆T (t). Putting this equation and calculating the convolution integral in 2.25, we can
find:

G̃(ν) = F
{
f̃(t)

}
=

1

∆T

∞∑
n=−∞

G
(
ν − n

∆T

)
(2.26)

So from this equation, the Fourier transform of the sampled function f̃(t) consists of
infinite, periodic sequence of copies ofG(ν) separated by distance 1/∆T . Depending on
1/∆T value, the periods G̃(ν) will be critically close to each other - critically sampled;
have a clean separation - oversampled; or will merge - undersampled. Discrete Fourier
transform of the corresponding sampled function is illustrated in figures 2.7.

We told that the Fourier transform of the sampled function G̃(ν) is a continuous,
periodic function with period 1/∆T . Therefore, we need only one complete period
in order to recover the original f(t) function by taking the inverse Fourier transform.
For extracting from G̃(ν) a single complete period that is equal to G(ν), we need to
make sure that separation between the copies is sufficient. This sufficient condition is
satisfied if 1/2∆T > B or

∆T <
1

2B
(2.27)
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Figure 2.7: a) Fourier transform (FT) of bandlimited function, Transforms of
corresponding b) oversampled function, c) critically sampled function,
d)undersampled function. This illustration is adapted from [19].

This sampling theorem can be extended to the two-dimensional case: let’s assume
that function f(x, y) is bandlimited, i.e., is zero outside of the rectangle [−Bx, Bx]
and [−By, By], then this function can be fully recovered if the sampling intervals are
satisfied:

∆X <
1

2Bx

∆Y <
1

2By

(2.28)

Spatial filtering of images

The beam profile image of ultrashort pulses can be noisy due to dust in the reflecting
mirrors or other components. Thankfully, we can filter the noises using Fourier analysis
by removing parts of an image with higher frequency. In this work, we use spatial
filtering to reduce the noise of the beam profile image and improve the homogeneity
of the reference beam.

We can implement spatial filtering by following the steps: first, we need to take a
two-dimensional Fourier transform of an image. This will allow us to see the spatial
frequency components of an image. Then, we select only lower-frequency components
that are limited to within a given radius. Then, we reimage using the inverse Fourier
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(a) Noisy image (b) 2D FT of noisy image

(c) Image after low pass filter (d) After applying low pass filter

Figure 2.8: Spatial filtering illustration. The right columns are image spectral magnitude
(log scale). The right columns are corresponding images

transform. As a result, one can obtain a less noisy image. Figure 2.8 gives an example
of noise reduction of an image by using spatial filtering.

2.2.2 Common types of aberrations

Chromatic aberrations are an integral part of this project. When broadband pulse
passes through essential optical elements, they are highly likely to get aberrations.
We try to avoid aberrations when we do the optical alignment of the system. In this
work, we remove the common aberrations that are shared by all wavelengths. By
describing and comparing aberrations of individual colors, we can obtain information
about STCs. But before giving them characterization it is useful to get a general
concept of common types of aberrations. In this subsection, we will give a brief
introduction about them.
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Figure 2.9: Common types of aberrations
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In the real world, the wavefront of light rays deviates from the ideal mathematical
paraxial approximation model. These phenomena are known as optical aberrations.
They are caused by lens design, diffraction, refraction effects, and light’s wave nature.

There are many aberrations, but we will limit our discussion to a few basic common
types: spherical, astigmatic, field curvature, and chromatic aberration.

Spherical aberration

Ideally, the lenses focus all the light into one plane. Still, when a spherical aberration
is present, light comes into focus in a different plane, resulting in a so-called circle of
confusion. In an ideal lens, the light wavefront maintains a perfect spherical wave-
front, while spherical aberration results in the deviation from that spherical shape. In
spherical aberration, focusing distances depend on where the rays interact with the
lens (figure 2.9 a.). Because of the curved surface of the lens, rays that hit different
points of the aperture will come at various angles of its surface. The steeper the angle,
the more light will be deflected. Due to the larger angle of incidence lenses with large
apertures (or smaller f#), are more likely to suffer from spherical aberration.

Increasing the lenses’ f# spherical aberration can be reduced. However, we need to
remember that there is a limit to how much this can improve image quality.

Coma

Coma is a type of aberration when off-axis point sources such as stars appear to have
a tail, like a comet (figure 2.9 b). This occurs because of the imperfection in the lens
or other components of the optical system.

This is an inherent property of parabolic mirrors when incoming rays have an angle
to the parabola’s axis. The greater the angle, the more coma aberration is noticeable.

Astigmatic aberration

Rays coming off-axis points don’t pass rotationally symmetric surfaces, including those
coming from the half-vertical (tangential) plane and the half-horizontal (sagittal) plane
(see Fig. 2.9 c). As a result, one of the directions will be in focus, but the other
direction will be out of focus. This distortion is called astigmatic aberration. Since
astigmatism occurs for off-axis sources, it depends on field angles. Astigmatism can
be corrected if lenses are symmetric and field rays come from small angles.
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Chromatic aberration

Chromatic aberration is caused by the wavelength dependence of the refractive index
from which lenses are made. When light passes through the lens, different wavelengths
of light are refracted at various angles and focused at different points. Longer wavelengths
(red, for example) of light will have longer focal lengths than shorter wavelengths (blue,
for example), as shown in figure 2.9 d.

Reflective optics or lenses made of several materials (i.e. doublet lenses or triplet
lenses) can have zero or greatly reduced chromatic aberration.

Field Curvature

The curvature of the lens design results in the image plane being curved ( figure 2.9
e. This is known as field curvature aberration. In typical imaging lenses, the image
plane will have a concave curvature.

We can use a negative lens near the image plane to compensate for the field curvature.
These lenses are called field flatteners, and they allow us to drastically reduce the field
curvature without affecting image size or introducing spherical aberration.

2.2.3 Zernike decomposition of wavefront

Characterization of the aberrated wavefront is possible with Zernike polynomials. Usu-
ally, optical systems have a circular aperture. A wavefront function W defined over a
unit circle can be written in terms of a linear combination of finite Zernike polynomials
as:

W (Rρ, θ) =
J∑

j=0

ajZj(ρ, θ) (2.29)

where R is the radius of the pupil, 0 ≥ ρ ≥ 1, J is the maximum number of terms of
the polynomials, aj is the expansion coefficients, and Zj is the j− th terms of Zernike
polynomial. The first 15 normalized Zernike circle polynomials and their corresponding
aberration are summarized in the following table. Here the

∫ 2π

0

∫ 1

0
Z2 · ρ dρ dϕ = π

normalization is used:

Zernike polynomials have many useful properties:

• Expansion coefficients are independent from each other and can be found:

aj =
1

π

∫ 2π

0

∫ 1

0

W (ρ, θ)Zjρdρdθ (2.30)
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OSA/
ANSI
index j

Zj Classical name

0 1 Piston
1 1 ρ sinϕ Vertical Tilt
2 2 ρ cosϕ Horizontal Tilt

3
√
6ρ2 sin 2ϕ Oblique astigmatism

4
√
3 (2ρ2 − 1) Defocus

5
√
6ρ2 cos 2ϕ Vertical astigmatism

6
√
8ρ3 sin 3ϕ Vertical trefoil

7
√
8 (3ρ3 − 2ρ) sinϕ Vertical coma

8
√
8 (3ρ3 − 2ρ) cosϕ Horizontal coma

9
√
8ρ3 cos 3ϕ Oblique trefoil

10
√
10ρ4 sin 4ϕ Oblique quadrafoil

11
√
10 (4ρ4 − 3ρ2) sin 2ϕ Oblique secondary astigmatism

12
√
5 (6ρ4 − 6ρ2 + 1) Primary spherical

13
√
10 (4ρ4 − 3ρ2) cos 2ϕ Vertical secondary astigmatism

14
√
10ρ4 cos 4ϕ Vertical quadrafoil

Table 2.1: Zernike Polynomials

Figure 2.10: The first 15 Zernike Polynomials starting from 0th term to 14th term under
OSA/ANSI indexing

• All Zernike terms except the piston term have a mean value of zero; thus, the
mean value of the wavefront is equal to the piston coefficient:

W̄ (ρ, θ) =
1

π

∫
Σ

W (ρ, θ)ρdρdθ = a0 (2.31)

• The variance is equal to the square of each expansion coefficient, excluding the
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piston coefficient:

σ2 =
1

π

∫ 2π

0

∫ 1

0

[W (ρ, θ)− W̄ (ρ, θ)]2ρdρdθ

= W 2 − (W̄ )2 =
∞∑
j=1

a2j

(2.32)

Strehl ratio

The aberration of the beam decreases its intensity at the focus. We can characterize
this reduction of intensity by a quantity called Strehl ratio, which is defined as the
ratio of the intensity I of the aberrated beam, divided by the intensity of the I0 of
aberration-free beam:

Strehl ratio =
I

I0
=

1

π2

∣∣∣∣∫ 2π

0

∫ 1

0

exp[i2πW (ρ, θ)]ρdρdθ

∣∣∣∣2 , (2.33)

2.3 Amplification of Ultrashort pulses

Most high-intensity laser systems have amplification stages based on Chirped Pulse
Amplification (CPA) or Optical Parametric Chirped Pulse Amplification (OPCPA)
techniques. These techniques are based on chromatic elements, which can potentially
cause STCs. Since we are characterizing the laser systems based on these techniques,
a short introduction to them is relevant to this work.

Amplification techniques have been established for pulses with different durations.
For picosecond and nanosecond pulses, their energy can be increased by passing them
through a gain medium. However, it has been challenging to do the same for femto-
second (fs) pulses. Because in the case of ultrashort extremely high-intensity fs pulses,
many non-linear effects occur in the gain medium. For example, at high intensities,
the refractive index of the medium in the transverse direction will depend on the in-
tensity n = n(I), creating the self-phase modulation (SPM) and eventually self-lensing
(Optical Kerr effect). SPM will change the pulse spectrum and self-lensing the beam
profile modulation, even damaging the crystal. This was a limiting factor of the ul-
trashort power amplification. The introduction of the chirped pulse amplification in
1985 by Strickland and Mourou [2] has revolutionized the ultrafast science and allowed
us to push the amplification limit up to the PW level.

2.3.1 Chirped Pulse Amplification

The main idea of CPA is to stretch a fs pulse from an oscillator up to 10,000 times,
increasing its duration but decreasing its power. Then, this pulse is amplified by linear
amplification and thereafter recompressed. In the end, we can obtain the pulse with
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Figure 2.11: Illustration of Chirped Pulse Amplification (CPA) Scheme adapted from [2]

the same duration but with high power. A combination of gratings and a telescope
can stretch the pulse. To amplify the stretched pulse, we need to use an amplifier that
satisfies two crucial conditions: its bandwidth must exceed the pulse’s bandwidth that
is amplified, and the amplifier must not be saturated [2].

2.4 Spatio-Temporal Couplings (STC)

This section gives the theoretical background of spatial-temporal couplings (STC),
which is the core part of this project. The main content of this section is influenced by
classical papers about the general theory of STCs by Akturk et al. [20] and Jolly et
al. [1]. This section is divided into four subsections: pulse front tilt (subsection 2.4.1),
pulse front curvature (subsection 2.4.2), STC at different Fourier domains (subsection
2.4.3) and Multi-pass-cell (MPC) compression technique. The first two subsections
give a detailed description of first-order couplings with the derivations of important
formulas. Then, the subsection 2.4.3 gives a wave-optical description of the STC at
different Fourier domains in the example of the Gaussian pulse. The MPC is briefly
introduced in the last subsection.

In section 2.1.1, we described the ultrashort pulse only in the time and frequency
domain. To fully describe the pulse, we also need to know the pulse in the spatial
domain. It has been assumed that all spatial part of the wave equation evolves with
time (or frequency) similarly so that we can describe the pulse as a multiplication
of spatial and temporal (or frequency) parts: U(r, t) = U(r) · U(t). However, this
assumption fails in the case of the ultrashort (broadband) pulses. Spatial and temporal
(or frequency) parts of the wave equation become dependent (or coupled)on each other
for ultrashort pulses so that we no longer can separate the wave equation into spatial
and temporal (or frequency) parts: U(r, t) ̸= U(r) · U(t). This phenomenon is known
as Spatio-Temporal Couplings (STC) or spatio-temporal distortions [1].

Angular dispersion (AD), Pulse front tilt (PFT), and pulse front curvature (PFC) are
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common examples of the STC. In this section, we will discuss these couplings in more
detail. STC is caused by the main feature of the ultrashort pulse—its broadband
spectrum. Common sources of STC are optical chromatic elements: lenses, prisms,
and gratings.

2.4.1 Pulse front tilt (PFT)

Pulse front tilt (PFT) is defined as the difference in the time of arrival of the pulse in
a given plane perpendicular to the propagation direction. It commonly occurs in the
configuration where the angular dispersion exists, i.e., when the propagation angle is
linearly dependent on optical frequency, for example, in prisms and gratings.

When the pulse passes through a prism with refractive index n and angle α, due to a
linear increase in the thickness of the prism, the beam will experience different group
delays in the transverse direction. Let’s consider the pulse that goes from plane AB
to plane A′B′. The time that it takes for the pulse front for path AA′ is Tg = AA′/vg
while for the phase front Tp = AA′/vp, where vp− phase velocity, vg− group velocity
given in the equation 2.13. If the beam propagates through nondispersive material,
then vp = vg pulse font and wavefront would travel the same distance at a given time
period. However, the phase front and pulse front become separated when the pulse
propagates in a dispersive medium. The time difference between the pulse front and
phase front will give us the introduced group delay (GD):

T = Tg − Tp =
AA′

vg
− AA′

vp
=
nl0
c

− l0
c
(n− dn

dλ
λ0) =

l0λ0
c

dn

dλ
(2.34)

where, λ0− central wavelength. Using l0 = x tanα we can find that:

T (x) =
λ0 tanα

c

dn

dλ
x (2.35)

As we can see from this equation, the accumulated group delay linearly increases with
transverse distance x, resulting in the rotation of the pulse front because part of the
pulse closer to the prism’s upper edge will experience less group delay than the part
below. The angle difference δ between phase front and pulse front gives us Pulse Front
Tilt (PFT). This tilt angle can be found from triangle tan δ = a/D, where D− width
of the beam, a = cT (x) using that we on can find

tan δ =
λ0x tanα

D

dn

dλ
(2.36)

It is important to note that a general relation exists between angular dispersion dθ/dλ
and the tilt angle δ [21], where θ(λ)− is called the deviation angle (see fig. 2.12 b.).

tan δ = λ0

∣∣∣∣∣dθdλ∣∣∣λ0

∣∣∣∣∣ (2.37)
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Figure 2.12: Pulse front tilt introduced by prisms

Gratings also introduce pulse front tilt. We can verify it using the sketch given in
figure 2.13.

It has been shown that simultaneous temporal chirp and spatial chirp of the pulse
also yield PFT [20] even if there is no angular dispersion (AD). For example, when a
spatially chirped input pulse propagates through a dispersive medium in the output,
we obtain the spatially chirped pulse with pulse front tilt.

Figure 2.13: PFT introduced by gratings

2.4.2 Pulse front curvature (PFC)

As we discussed in subsection 2.2.2, when the pulse passes through the lens, it’s af-
fected by chromatic aberration. We can look at this as the achromatic lens curves the
wavefront of different colors differently, known as chromatic curvature (CC). Let’s con-
sider pulse propagation in the temporal domain. The pulse will get a different group
delay in the transverse direction due to the varying thickness of the lens in a radial
direction. If the thickness of lens L(r), then the time that it takes for the phase front
is Tp = L(r)/vp, while for pulse front is Tg = L(r)/vg. The varying thickness of the
lens L(r) can be found by using the formula for the lens and paraxial approximation:

L(r) =
a2 − r2

2f(n− 1)
(2.38)
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where, a− radius of the aperture of lens, r− radial distance from the optical axis of
lens, f− focal lenghts of lens. Using this equation and equations for phase and group
velocity, we can find the group delay as follows:

T (r) =
a2 − r2

2f(n− 1)

λ0
c

dn

dλ
(2.39)

Figure 2.14: The derivation of group delay using paraxial approximation a), PFC
introduced by the lens b)

As we can see from this equation, the introduced group delay varies quadratically in
the radial r dimension, resulting in pulse front curvature in the output.

The Spatio-Temporal Couplings are neither good nor bad. In some cases we want to
avoid it, in other cases we intentionally introduce depending on the applications. For
example, in CPA, we know that gratings/prisms are used for compression; they are,
in turn, introducing large amounts of PFT. However, they are constructed to have no
PFT in the output. Even small misalignments in this system will cause large amounts
of PFT, which will be detrimental to the intensity of the focus.

2.4.3 STC at different Fourier domains

In section 2.1.1, we wrote the spatial and temporal parts of the ultrashort pulse separ-
ately, i.e., the spatial part was only dependent on spatial coordinates, and the temporal
part was dependent only on time. However, we already noted that in the case of STC,
these parts become dependent on each other. For the more general case, when there
is STC, we can describe the pulse in the following way [22]:

U(x, y, t) = |U(x, y, t)|exp{jϕ(x, y, t)} (2.40)

where |U(x, y, t)|− spatially resolved amplitude, ϕ(x, y, t) spatially resolved phase. We
can see from this description that the amplitude is also dependent on time, and the
phase is also dependent on spatial coordinates in contrast to our previous description in
section 2.1.1 i.e., they are coupled to each other. Similarly, we can describe the pulse
more generally in the spectral domain by taking the Fourier transform of equation
2.40: ˜U(x, y, ω) = |Ũ(x, y, ω) = |Ũ(x, y, ω)|exp{jψ(x, y, ω)}.
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Figure 2.15: STC characterization in four domains: (x, t), (x, ω), (kx, t) and (kx, ω)
related with each other by Fourier transform. Image is adapted from paper
[22]

When we characterize ultrashort pulses, it is convenient to define two planes: the
plane where we measure the collimated beam - near-field (NF) and the plane where
we focus the pulse (or propagate to far distance) - far-field (FF). This introduction of
two planes adds complexity to our description. Now, we can describe the pulse in four
different domains related to each other by Fourier transforms. The explicit relations
between these domain descriptions are well described in paper [22].

A simpler mathematical derivation of the STC in different domains is given in the
appendix of paper [1]. If we consider the beam only in one transverse x direction and
assume that its arrival time t0(x) is dependent on that transverse direction, then we
describe the beam:

U(x, t) = f(x)g[t− t0(x)] exp{jω0t} (2.41)

where, f(x)− describes the spatial envelope, g(t)− is a temporal profile. We will use
the Fourier transform to convert this equation to the spectral domain. But before
that, we will rewrite this equation in the following form:

U(x, t) = f(x)[g(t)⊛ δ[t− t0(x)]] · exp{jω0t} (2.42)

here we denote ⊛− for convolution. The Fourier transform of then becomes:

Ũ(x, ω) = f(x)[g̃(ω) · F{δ[t− t0(x)]}]⊛ F{exp{jω0t}}
= f(x)g̃(ω − ω0) exp{j(ω − ω0)t0(x)}

(2.43)

Assuming the pulse spatial distribution is a Gaussian f(x) ∝ exp(−x2/σx). Simil-
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arly, we will assume the temporal and spectral distribution is also Gaussian g(t) =
exp{−4 log 2 · (t/τ0)2} and g̃(ω) ∝ exp{−τ 20ω2/(4π)}. Putting all of these equations
into equation 2.41, we can find our final equation for describing the pulse in (x, t)
representation:

U(x, t) ∝ exp
{
− x2

σx
− 4 log 2 ·

(t− t0(x)

τ0

)2}
exp{jω0t} (2.44)

Similarly putting Gaussian profile equations into equation 2.43, we will find our final
formula for the (x, ω) representation:

Ũ(x, ω) ∝ exp
{
− x2

σx
− τ0

4π
(ω − ω0)

2
}
exp{j(ω − ω0)t0(x)} (2.45)

(a) Amplitude STC free pulse pulse in (x, ω)
representation

(b) Phases of the STC free pulse in (x, ω)
representation

(c) Amplitude of the STC free pulse (x, t)
representation

(d) Phases of the STC free pulse in (x, t)
representation

Figure 2.16: Simulations of the STC free pulse in the NF (collimated beam) at different
representations. Here, the pulse with central wavelength λ = 800nm, pulse
duration 20fs were used

If we omit the arrival time dependence on transfer distance, i.e., t0(x) = 0, we can
simulate the STC free pulse using equations 2.44 and 2.45 at different near-field do-
mains given in figure 2.16. If no spatial-temporal distortions are present, then the
amplitude change in (x, t) configuration spatial change over time is symmetric, as we
can see from figure 2.16c.
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(a) Amplitude of the pulse with PFT in (x, ω)
representation

(b) Phases of the pulse with PFT in (x, ω)
representation

(c) Amplitude of the pulse with PFT in (x, t)
representation

(d) Phases of the pulse with PFT in (x, t)
representation

Figure 2.17: Simulations of PFT in the NF (collimated beam) at different
representations. Here, the pulse with central wavelength λ = 800nm, pulse
duration 20fs with pulse front tilt coefficient γ = 0.5mm/fs−1 were used

In the case of PFT, the arrival time t0(x) is dependent on the transverse x dimension.
We found this dependence is given in equation 2.35. Noting the constant values in
that equation as γ = (λ0 tanα/c)(dn/dλ), we write it in a simpler form:

t0(x) = γx (2.46)

where, γ− is a PFT coefficient. We can simulate amplitude at different near-field
domains, inserting this equation into equations 2.44 and 2.45 (figure 2.17). Looking at
figure 2.17c, we can see the amplitude (or intensity) in (x, t) representation is tilted.
We can also observe this in (x, t) phase representation by looking at figure 2.17d. The
front is tilted relative to the phase front direction.

Also, using equations 2.46 and 2.45 we can find the equation for the spectral phase:

ψ(x, ω) = γ(ω − ω0)x (2.47)

This phase is plotted in figure 2.17b and can be understood in two ways. On the one
hand, this can be seen as a phase varying linearly in frequency, with a slope dψ/dω,
that varies linearly with position: this describes PFT. On the other hand, this can
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be seen as a phase varying linearly in position (i.e. a wavefront tilt) with a slope
that varies linearly with frequency: this describes angular dispersion (AD). It is not
surprising because, as we said before, any element that introduces angular dispersion
(AD) (prisms, gratings) gives PFT (eq. 2.37). Then, we can conclude that PFT and
AD correspond to the description of the same pulse but are considered in
different spaces. This means that PFT (time-domain description) is equivalent to
frequency-dependent wavefront tilt (frequency-domain description).

(a) Amplitude of the pulse with PFC in (x, ω)
representation

(b) Phase of the pulse with PFC in (x, ω)
representation

(c) Amplitude of the pulse with PFC in (x, t)
representation

(d) Phases of the pulse with PFC in (x, t)
representation

Figure 2.18: Simulations of PFC in the NF (collimated beam) at different
representations. Here, the pulse with central wavelength λ = 800nm, pulse
duration 20fs with pulse front curvature coefficient α = 0.04mm/fs−1 were
used

Figures 2.18 gives the simulations of the PFC at different representations. In the case
of the PFC, the time of arrival t0(x) depends on the traverse direction quadratically
as we derived before in equation 2.39. Noting constant values as α we can write:

t0(x) = αx2 (2.48)

where α− is a pulse front curvature constant. Using this equation, we can find the
spectral phase in (x, ω) representation:

ψ(x, ω) = α(ω − ω0)x
2 (2.49)
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Figure 2.19: Pulse front tilt simulations in the NF and FF: a) STC free Gaussian pulse
(γ = 0), b) Pulse with PFT γ = −0.2 fs/mm, c) PFT γ = −0.5 fs/mm d)
Intensity values in the far field taken along the dashed line. With an
increase in PFT, the pulse duration increases and intensity decreases

The plot of this phase is given in figure 2.18b. Again, we can see this in two ways.
On the one hand, the linear spectral phase with a slope that varies with position
quadratically: this is PFC. On the other hand, the quadratic spatial phase (wavefront
curvature) varies linearly with frequency: this is chromatic curvature (CC) [1]. As we
described before, PFC is introduced by the chromatic lens which curves the wavefronts
differently for different frequency components (chromatic curvature). Thus, we infer
that the PFC (time-domain description) is equivalent to frequency-dependent wave-
front curvature (frequency-domain description). So with that, we conclude that PFC
and CC correspond to the description of the same pulse but are considered
in different spaces.

We can find the far-field (FF) (i.e., intensity at the focus plane or the plane located far
away) description of the pulses by taking spatial Fourier transform of equations 2.41
and 2.43 at the end will give us fields in the conjugate kx space: Uk(kx, t) and Ũk(kx, ω).
Suppose the pulse has AD/PFT in the NF, in the FF (after some propagation or
after focusing). In that case, it will focus different colors differently in the transverse
direction, known as “transverse spatial chirp.” 2.21. This will increase the focal spot
size in the focus, resulting in an intensity drop at the focus, shown in figure 2.19.
Moreover, the wavefront in the FF will have a peculiar form known as “wavefront
rotation.”

If the pulse has CC/PFC in the NF, it will cause an intensity to drop and pulse
duration to increase like PFT shown in figure 2.20. Moreover, CC/PFC must result
in a different best-focusing position in the longitudinal dimension of the FF since
the chromatic curvature results in different radii of curvature of different frequency
components 2.22. This effect is known as Longitudial Chromatism or Flying focus.
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Figure 2.20: Pulse front curvature simulations in the NF and FF: a) STC free Gaussian
beam (α = 0), b) PFC with α = 0.01fs/mm2, c) PFC with α = 0.05, d)
Intensity taken along the dashed lines. With the increase of the PFC,
intensity decreases and pulse duration increases

Figure 2.21: Angular dispersion (AD) in the NF results in Transverse Spatial Chirp in
the FF

Figure 2.22: CC/PFC in the NF results in Longitudinal Chromatism in the FF
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We can summarise the first and second-order STC at different domains in the following
table:

Fourier Domain First order couplings Second order couplings
NF (x, ω) Angular Dispersion (AD) Chromatic Curvature (CC)

(x, t) Pulse front tilt (PFT) Pulse Front Curvature (PFC)
FF (kx, ω) Transverse Spatial Chirp Longitudial Spatial Chirp

(kx, t) Wavefront rotation Flying focus
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2.4.4 Multi-pass cell compression

As mentioned before, one of the goals of this project is to give STC characterization
of the Multi-pass cell compression (MPC) system based on the German Electrons
(DESY). Because of that, the basic knowledge of the MPC technique is essential for
this project.

Figure 2.23: Basic setup for MPC technique. Adapted from paper [23]

Multi-pass cell compression (MPC) is a post-compression method that achieves sub 50
fs short pulses with kW average power level. The practical realization of this method is
relatively simple: we need only two curved mirrors and a Kerr medium between them.
The Kerr medium can be a solid or a gas. Stability for beam pointing, high tolerance
for minor mismatches, and compactness make them attractive for both scientific and
commercial laser systems[23].

Herriot-type MPCs are the most commonly used nowadays. When the pulse passes
from Herriot-type cells, it acquires small non-linear modulation. Multiple trips through
the medium will cause large self-phase modulation (SPM) and a large bandwidth gain.

Figure 2.23 gives a typical MPC schematic representation. We match the eigenmode
using a telescope, and then the beam is coupled to the MPC using a small mirror.
Then, the pulse passes through the cell multiple times, and the beam is coupled out
using the same mirror. Then we collimate the output pulse, and since it is chirped,
we remove the chirp utilizing a pair of gratings (or Bragg mirror).
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3 Method

This chapter provides the STC characterization method, data analysis, and details
of the cumbersome calculations that were used during this project. Methods to
measure the STCs are summarized in many review papers [2]. These methods can
be divided into two categories: measurement of an individual STC and full spatio-
temporal measurements. For broader pulses, it is preferable to take a complete
spatio-temporal measurement. The main STC characterization methods include: i)
spectrally-resolved wavefront measurements, such as Hartmann–Shack assisted, a mul-
tidimensional, shaper-based technique for electric-field reconstruction (HAMSTER)
[24], ii) Spatially-resolved Fourier transform spectroscopy (FTS), for example, ”total
E-field reconstruction using a Michelson interferometer temporal scan” (TERMITES)
[25] and INSIGHT [26], iii) Hyperspectral imaging techniques for STC, iv) spectral
interference methods such a spatio-temporal amplitude-and-phase reconstruction by
Fourier-transform of interference spectra of high-complex-beams (STARFISH) [9], v)
Holographic methods such as Spatially and Temporally Resolved Intensity and Phase
Evaluation Device: Full Information from a Single Hologram (STRIPED-FISH)[27],
and lastly, vi) STC measurement based on Young’s double slit interferometry such as
Iterative Multispectral Phase Analysis for LAsers (IMPALA)[28].

In this project, STC measurement and characterization will be done using spatially
resolved Fourier transform spectrometry. This method was developed at Lund Uni-
versity to give a detailed characterization of few-cycle ultrashort pulses and uses both
spectral and holographic approaches [7].

3.1 Spatially Resolved Fourier Transform Spectro-

metry

The Spatially Resolved Fourier Transform Spectrometry setup is shown in figure 3.1.
The unknown beam is collimated before entering the setup. The beam splitter (BS1)
separates the pulse into two parts. The intense part of the beam passes through the
delay stage and is focused using the off-axis parabola. This is done to obtain a ho-
mogeneous spherical wave. The unknown beam and the reference beam are combined
in the second beam splitter (BS2) and are brought to interference on the chip of the
CCD camera. We scan the delay between the two pulses by moving the stage (like the
Mach-Zehnder interferometer), corresponding to the linear cross-correlation between
the two pulses. In addition, in our case, it is spatially resolved. We can retrieve the
unknown pulse by recording interferometric data for the different time delays between
the pulses.

Let us consider an ultashort pulse in the spectral domain Ũ(ω) = |Ũ(ω)| exp iψ(ω),
and in time domain U(t) = |U(t)| exp iϕ(t). Noting the reference pulse as Ur(t− τ) at
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Figure 3.1: Schematic illustration of the method.

a given time delay τ , the interferometric complex field will be the sum of the fields:
Uc(t) = U(t) +Ur(t− τ). Then, the intensity of the cross-correlation between the two
pulses is:

I(τ) =

∫
|U(t) + Ur(t− τ)|2dt (3.1)

or

I(τ) =

∫
|U(t)|2dt+

∫
|Ur(t)|2dt+

∫
U∗(t)Ur(t− τ)dt+

∫
U(t)U∗

r (t− τ)dt (3.2)

We apply Fourier transform to convert this equation into a frequency domain:

F{I(t)} = F

{∫
|U(t)|2dt+

∫
|Ur(t)|2dt

}
+ Ũ(ω)Ũr

∗
(ω) + Ũr

∗
(−ω)Ũ(−ω) (3.3)

As we can see, this equation contains three parts: the DC part and two terms around
central frequency ω0 and −ω0. In the spectral domain, it is easy to separate these
terms. Let’s look at the second term closely and rewrite it in terms of its amplitude
and phase:

A2(ω) = |Ũ(ω)||Ũr(ω)| exp{i[ψ(ω)− ψr(ω)]} (3.4)

as we can see from this equation, when we know the reference beam amplitude |Ũr(ω)|,
phase ψr(ω) and the reference pulse contains enough spectral content, then we can
fully characterize the pulse because the term A2(ω) is obtained at each pixel of the
interferogram. If the reference pulse is homogenous enough to assume its spatial
variation is negligible, then we can resolve the pulse amplitude and phase spatially:
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Ũ(x, y, ω) =
A2(x, y, ω)

|Ũr(ω)|
exp{iψr(ω)} (3.5)

The reference pulse’s homogeneity is achieved by increasing the distance between the
beam splitter 2 (BS2) and the camera. Of course, as the radius of the spherical
reference pulse increases, its power will decrease. For that reason, the initial pulse is
divided by the beam splitter 1 (BS1) by power portion 90/10, and the most intense
part is used for the reference beam. We can further increase the homogeneity of the
pulse by using the spatial filtering that is discussed in chapter 2, subsection 2.2.1. The
focusing mirror with a focal length of 50 mm is used in this setup.

Interferometric image is recorded using the CCD chip FLIR and Allied Vision broad-
band cameras. The pixel sizes of the cameras are 3.7 µ m and 5 µm , respectively. In
both cases, the resolution is decreased by a factor 10 in each direction and averages its
nearest 8 neighbors to decrease memory usage and increase the signal-to-noise ratio. A
delay scan is done by stage piezosystemjena with closed-loop feedback. The scanning
range and steps of this stage can be changed. The delay scan must be sub-cycle and
very stable.

3.2 Data analysis and calculation details

The data obtained from this method is saved as a .h5 extension file. This section
gives a detailed analysis example of data obtained from an ultrashort pulse with a 20
fs time duration, a central wavelength around 800 nm, and a 3 kHz repetition rate
(ATTOLAB). Similar steps are followed for other measurements.

Saved .h5 file contains three sets of data: spectral intensity of each pixel at a given
time delay, A(x, y, t), with dimension (Nx, Ny, Nt), an array of the scan delay times t,
with dimension (1, Nt), and an array of center coordinates of each pixel of the chip
CCD camera, x, with dimension (1, Nx) (figure 3.2 a.). We will use the x array to
calibrate the pixel values to real-world dimensions. Since in our case the FLIR CCD
camera sensor is square: Nx = Ny. In the Matlab code we import these set of the
data and assign corresponding variables. For example, in data that was obtained from
ATTOLAB were Nx = Ny = 512 and Nt = 1024.

Then we plot the spectral intensity dependence to time (figure 3.2 b.) to look at a
spectral interferogram. If the interferogram contains some unstructured noisy part,
we can remove it by applying the time mask using the following equation:

tmask =
1

[1 + exp(t− tright)]

1

[1 + exp(−(t− tleft))]
(3.6)

Figure 3.2 c. shows an interferogram of the time-masked data. Here the time range
tleft = 100fs and tright = 100fs were used. Moreover, the spectrogram intensity is
calibrated to its mean intensity.
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Figure 3.2: a) visual illustration of recorded data. b) spectrogram at the central pixel c)
windowed data to remove the noise part of the spectrogram

Figure 3.3: Retrieved spectrum with filtered wavelength range [λlower, λupper] since only
parts with significant spectral amplitude are considered for the analysis

The next step is to convert I(x, y, t) from time to frequency Ĩ(x, y, f) domain by taking
numerical slice by slice fast Fourier Transform (FFT) for each pixel. From an x and
time t array we find array steps: dx and dt. dx will be necessary for pixel to real value
calibration and dt for taking Fourier transform from time to frequency domain. With
the given sampling resolution N sampled frequency values f will be from 0 to N−1

Ndt

with 1/dt step. It is simple to convert frequency axis values to wavelength by equation
λ = c/f . The retrieved spectrum will contain some noisy data outside of the given
wavelength (or frequency) range. Thus, we will select only a given wavelength (or fre-
quency) part of the spectrum λlower and λupper (or [f1, f2]) and for further calculations,
we will only be interested in intensity values Ĩfilt(x, y, f) at this frequency range. In
figure 3.3 is given the retrieved spectrum at a given wavelength range [λlower, λupper]
where λlower = 720 nm, λupper = 870 nm is given.

The next step is to remove the curvature of the reference pulse from the data. For
convenience, we will move the center of the coordinate to the central pixel. We can

38



Figure 3.4: Illustration of the reference spherical wavefront.

Figure 3.5: phases of interferometric image (left), after removing the reference phase
(middle), with spatial filter (right) at the peak wavelength (787nm)

assume the reference pulse is a spherical wave centered around the focus of the focusing
mirror. Due to pulse aberrations, the exact center of the spherical wave will have some
offset x0 and y0 relative to the coordinate system centered at the exact focus of the
parabolic mirror. If D is the distance between the focus of the parabolic mirror and a
camera then the equation for the spherical wave is given by the equation:

Ũr(x, y, f) = exp

{
ik0(f)

((x− x0)
2 + (y − y0)

2

2D

)}
(3.7)

where k0(f) = 2πf/c wavenumber at a selected frequency range [f1, f2],and amplitude
is |Ũr(x, y, f)| = 1. After normalizing the intensity, we can find the unknown pulse by
using the equation 3.5 and 3.7.

The parameters x0, y0, and D are difficult to physically measure precisely since the
offset values are in the order of micrometers and distance is very sensitive to small
changes (see figure 3.4). For that reason, we adjust these parameters by looking at the
subtracted wavefront. Figure 3.5 gives the phases of the interferometric image after
removing the reference phase and the spatially filtered phase at the peak frequency
value. In this case, the fitted parameters were x0 = 100 µm, y0 = −5 µm and
D = 3.815 · 105 µm.

In the next step, we will do spatial filtering to remove the noise of the unknown
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Figure 3.6: Beam profile of the unknown beam before (left) and after (right) applying the
low pass filter

beam profile. The description of the spatial filtering is given in chapter 2 subsection
2.2.1. After removing the reference phase, we are left only with the complex field
of the unknown pulse Ũun(x, y, f). We will go to k-space by applying a 2D Fourier
Transform to implement the low pass filtering and then go back to the spatial domain
by applying an inverse 2D Fourier Transform. Figure 3.6 gives the beam profile of the
unknown pulse before and after the low-pass filter.

Common aberration correction

Ultrashort pulse Ũun(x, y, f) may contain several types of aberrations as we discussed
in chapter 2 in subsection 2.2.2. In order to characterize the STC of the pulse without
any common aberration that is shared by all colors, we will need to do aberration
correction. For that, we will find Zernike coefficients of each type of aberration for
each wavelength. Next, we will do Zernike decomposition of the wavefront for each
wavelength to check at which wavelength range Zernike coefficients fit well with the
original wavefront. Then, we will find the average Zernike coefficients and subtract it
from the original wavefront:

Wcor(λ) = Worg(λ)−
14∑
i=0

ai,avgZi (3.8)

here Worg(λ) - original wavefront, ai,avg - average value i’s term expansion coefficient.

If the wavefront of the pulseWorg(λ) is given, we can find Zernike expansion coefficients
ai(λ) over a circle by using the equation 2.30 in subsection 2.2.3. Since this equation
can find the Zernike coefficients over a circle, we will need to select only the circular
part of the wavefront.

After finding the Zernike coefficients, we can decompose the wavefront at a given
wavelength using equation Wdecom(λ) =

∑14
i=0 ai(λ)Zi. We plot the original wavefront

Worg(λ) and the decomposed wavefront Wdecom(λ) at different wavelengths for com-
parison. Figure 3.7a shows the original wavefront starting from 720.2 nm to 869.81
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(a) Original wavefront Worg(λ) plotted for 12 different equally spaced wavelength values

(b) Reconstructed wavefront from Zernike decomposition Wdecom(λ) for the same 12
wavelength values

Figure 3.7: Comparison of original (a) and reconstructed (b) wavefronts
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Figure 3.8: Common y-tilt and x-tilt correction

Figure 3.9: Common oblique and vertical astigmatism correction. The average ai,avg
values of the Zernike coefficients are reduced.

nm and in figure 3.7b reconstructed wavefront from Zernike decomposition for the
same wavelength range. Comparing these two figures, we can notice that the Zernike
decomposition fails for wavelengths less than 743 nm and greater than 853 nm. For
that reason, the average of the Zernike expansion coefficient ai,avg was calculated in
wavelength range [743 nm, 853 nm]. Finally, we will do the common aberration cor-
rection by using the formula 3.8.

Figures 3.8 and 3.9 illustrate the common aberration correction. After doing the
correction, we find the average value Zernike coefficient. The modules of average
Zernike coefficients are reduced up to 10 orders of magnitude. For example, in the
common y-tilt correction ( left plot of figure 3.8 ), the modulus of the average coefficient
is reduced from 0.046 to 0.000403. Similarly, for the vertical astigmatism correction
(the right plot of figure 3.9 ), the modulus of the average value vertical astigmatism
coefficient is reduced from 0.0426 to 0.000224. We do a similar correction for the other
remaining Zernike coefficients. As we have corrected now for the aberration shared by
all frequencies, we can now focus on the differences, i.e., the STCs.
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Figure 3.10: Illustration of the relevant planes and focusing

Figure 3.11: Verical (left plot) and horizontal (right plot) slices at the focus

Focusing

Applications of ultrashort laser pulses, such as HHG, often involve focusing. Therefore,
the impact of STC on focus is very important to investigate. For that reason, we will
focus our beam numerically under aberration-free conditions and will look at transverse
focusing of different frequency components. Here, we distinguish two planes illustrated
in figure 3.10: the near-field plane - where we do the measurement, and the far-field
plane - where we focus the beam.

Focusing, we can implement the formula given in equation 2.24 in the subsection 2.2.1.
However, for code convenience, we will follow an analogous procedure. First, we will
curve the wavefront with focusing radius F and apply it to a free-space propagation
equation given in 2.22 for distance F . The choice of the focusing distance F is arbitrary.
We used F = 100 mm focusing distance. For calculating the Strehl ratio, we do the
exact focusing of aberration-free Ũideal field. Ũideal - is the field of the perfect beam
when there are no aberrations exist. It can be found by killing the phase of the complex
field of unknown beam, i, e. Ũideal = |Ũun|.

Figure 3.11 gives the intensity at (x, λ) (i.e. y = 0 cut at the focus) and (y, λ) repres-
entation (i.e. cut x = 0 at the focus). These plots give the x and y transverse focus
positions of the different frequency components of the ultrashort pulse. In the case of
no-significant spatio-temporal coupling, the focusing positions of different frequencies
should be the same, i.e., they must be symmetric along the x and y directions. On
the right plot of figure 3.11, there are no distinct asymmetries along the y axis. Thus,
there is no significant spatiotemporal coupling in that axis. However, on the left plot
of figure 3.11, there are distinct asymmetries; thus, we can say that there is noticeable
spatio-temporal coupling, i.e., spatial dispersion along x axis or it’s not very obvious.
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The Matlab code for the data processing is given in appendix A.
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4 Results and Discussions

This chapter presents the findings and discusses the measurements carried out during
the project. It is divided into two sections. The first section is about the STC results
of a Titanium-doped Sapphire (Ti: Sapphire) CPA laser system with 800 nm, pulse
duration around 20 fs, and 3 kHz repetition rate, which has been an HHG generation
source for many years in Lund High-Power Laser Facility (section 4.1). The second
section is about STC results of Multi-pass-cell compressed pulses with a wavelength of
1030 nm and pulse duration of less than 20 fs based on German Electron Synchrotron
(DESY) that is used for electron acceleration. Ytterbium-doped Yttrium aluminium
garnet (Yb: YAG) Innosab laser (Amphos) laser with a pulse duration of 1.2 ps serves
as the pulse source of that MPC system.

Since we showed the data processing step in the example of Ti: Sapphire laser charac-
terization in the method chapter, we only show the final results of that measurement,
i.e., intensity cuts at the far-field (focus) at different space representations in section
4.1.

To give a better overview of the MPC setup, we included the schematic experimental
sketch of MPC setup based on DESY and the beam outputs where the STC meas-
urements are done in subsection 4.2.1. Subsection 4.2.2 gives results of data obtained
from Ytterbium-doped Yttrium aluminum garnet (Yb: YAG) Innosab laser (Amphos)
output, including all data processing details. However, we include only the final results
of the MPC1 outputs at different power levels.

4.1 STC characterization of Ti: Sapphire laser

4.1.1 Low power results

Figure 4.1 shows STC characterization of the Ti: Sapphire CPA laser with a central
wavelength around 800 nm, pulse duration 20 fs, and 3 kHz repetition rate at low
power, which is 30% of the maximum peak power. More specifically, figure 4.1a shows
the intensity cut at x = 0 in (y, λ) and (ky, λ) representation. In (y, λ), there are no
distinct asymmetries along the horizontal axis, which means the spectral components
are focused almost to the same y axis coordinate. Similarly, there is no sign of the
spatial dispersion in the (ky, λ) representation.

However, for y = 0 intensity cut at the focus given in figure 4.1b, noticeable asym-
metries in (x, λ) representation. Wavelengths around 812.5 nm are focused in lower
positions along the x axis than the main wavelength components around 780 nm
(middle plot of figure 4.1b). This means that there are spatio-temporal couplings on
that axis.
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(a) Normalized spectrum |
∑

x

∑
y U(x, y, λ)|2 (top), intensity cuts (x = 0) in (y, λ) (middle)

and (ky, λ) representation (bottom)

(b) Normalized spectrum |
∑

x

∑
y U(x, y, λ)|2 (top), intensity cuts (y = 0) in (x, λ) (middle)

and (kx, λ) representation (bottom)

Figure 4.1: Spatio-temporal characterization of the pulse 800nm wavelength, pulse
duration around 20 fs at low power
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Figure 4.2: Defocus coefficient a4(λ) for 30% of the maximum peak power of Ti:Sapphire
laser (AttoLab) before and after the correction

One of the Zernike expansion coefficients that were mentioned in subsection 2.2.3,
called defocus coefficient a4, gives information about how wavefront is curved in the
NF. The defocus graph shown in figure 4.2 shows that this coefficient greatly varies
with the wavelength. This is a sign of pulse front curvature. As we discussed before,
PFC leads to longitudinal chromatism; in other words, the defocus coefficient variation
infers that different wavelengths are focused at different longitudinal positions.

4.1.2 High power results

We were interested in knowing if the STCs change at high power. Figure 4.3 gives
STC characterization at the 100% of the maximum peak power. There are no distinct
asymmetries at the intensity cut x = 0 at the spectrum (figure 4.3 b.). However, slight
asymmetries are observable in the y = 0 intensity cut at the (x, λ) representation
(figure 4.3 a.).

Figure 4.4 shows the defocus coefficient and a common defocus correction at high
power. Defocus coefficient variation gets stabilized for most of the frequency values,
but we still observe slight oscillations around an average value.
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Figure 4.3: Spatio-temporal characterization of the pulse 800 nm wavelength, pulse
duration around 20 fs at high power (AttoLab)

4.2 Multi-pass-cell compressed (MPC) pulses

4.2.1 Experimental setup for MPC system

A sketch of the multi-pass cell compression system based on DESY is given in figure
4.5. The goal was to determine whether there is STC in this MPC setup. Several STC
measurements were done at different outputs of this setup to achieve this goal. These
outputs are indicated with numbers in figure 4.5. The laser source for this system
comes from a Ytterbium-doped Yttrium aluminium garnet (Yb: YAG) Innosab laser
(Amphos) with energy 9.8 mJ, 1-20 kHz repetition rate, and pulse duration around
1.2 ps with a central wavelength of 1030 nm. This pulse is sent to the first MPC1 via a
mode-matching telescope (MMT). Then, this pulse takes 10 round trips inside MPC1.
The initial pulse duration is roughly maintained at 1 ps during the propagation inside
the MPC1, while the Fourier transform limit (FTL) is decreased to 49 fs after the
MPC1. Then, the pulse is coupled out from MPC1 and, through a telescope (TEL),
sent to the compressor, which gives a compressed pulse with a duration very close to
the Fourier limit. After that, this pulse is coupled to the second MPC2 using another
MMT, where the Fourier transform limit duration decreases further to 9.2 fs after
taking 10 round trips. Then, this pulse is coupled out and, after passing the telescope
(TEL), sent to another compressor (CMP).

4.2.2 STC characterization of the Yb: YAG Innosab laser
(AMPHOS)

We first start with characterizing the Yb: YAG Innosab laser (Amphos) pulse with a
duration of 1.2 ps. It corresponds to the output (1) of the MPC system given in figure
4.5.
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Figure 4.4: Defocus coefficient and its correction for high-power Ti: Sapphire (AttoLab)
output

Figure 4.6 gives the reconstructed spectra of the central pixel of obtained data and
the measured spectra of the output, measured with another spectrometer. The recon-
structed spectral peak corresponds to the 1029 nm wavelength, while the measured
peak is at the 1031.9 nm wavelength. It means our setup reconstructed the spectra
with an error of 0.28%, which gives good credit to the capability of the STC setup.
Figure 4.7 shows an illustration of the removal of the curvature of the reference beam.
For this data, the spherical reference beam with a diameter of D = 46.9 sm and offset
values x0 = −160µm, and y0 = −90µm was subtracted.

Before making the common aberration corrections, we compared the original wavefront
at different wavelength values from 1024.11 nm to 1036.95 nm. Zernike coefficients fit
well except for some noises on the original wavefront, as shown in figure 4.8. Then, we
find the average Zernike coefficients for all the wavelengths and remove the common
aberrations shared by all colors using the formula 3.8.

Figure 4.9 illustrates the common correction of the defocus, tilt y, vertical astigmatism,
and oblique astigmatism correction. We can observe that the module of the average
Zernike coefficients ai,avg(λ) are greatly reduced. For example, the modulus of the
average vertical astigmatism value is reduced from 0.054 to 0.00017, and similarly, for
oblique astigmatism, that value is reduced from 0.0079 down to 0.000293 (see figures
4.9b).

We numerically focus the beam in order to see its characteristics in the far-field. Figure
4.10 gives the beam profile at the focus. A Strehl ratio of 0.7216 was obtained for this
beam. Since we removed all of the common aberrations up to the 14th term, we can
conclude that this reduction from the ideal (no STC) beam intensity is reduced by
possible STC couplings or other higher-order aberrations (greater than 14th term).

Figure 4.11 gives the STC characterization at output (1) of the setup (see figure 4.5).
The intensity cut at y = 0 shows no distinct asymmetries in the (x, λ) representation
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Figure 4.5: Experimental setup used for the multi-pass-cell post-pulse compression by
using two gas-filled MPCs and outputs where the STC measurements are
implemented: (1) output of the Amphos laser, (2) MPC1 output, (3) MPC1
output after the compressor, TEL - telescope, and CMP-compressor. The
sketch is inspired by paper [29]

.

(left middle plot of figure 4.11). However, there are slight asymmetries in the x = 0
intensity cut at (y, λ) representation (right middle plot of figure 4.11). We can conclude
that there are STCs on that axis, which might be caused by a slight misalignment of
the internal grating compressor inside of the Amphos.

4.2.3 MPC1 output

STC measurements were done at the output of MPC1 before the compressor ( output
(2) in figure 4.5).

Figure 4.12 shows the comparison of the reconstructed spectra and measured spectra
that were obtained from normal spectrometer. From that graph, we can see that the
spectral ranges are similar. However, since our reconstructed spectrum’s resolution is
low, it fails to reconstruct the exact same spectra. Despite that, it gives us reliably
enough spectral shape that is similar to the measured one. Like any Fourier transform
approach, the spectral resolution depends on the scan range.

STC characterization of MPC1 output before the compressor at different power levels
is given in figures 4.13 and 4.14. These figures show in the y = 0 intensity cut, no
distinct asymmetries in (x, λ) representations (left plots in fig. 4.13). However, there
are noticeable asymmetries in the intensity cut at x = 0 in (y, λ) representation at 20%
(fig. 4.13 a.), 40% (fig. 4.13 b.), and 60% (fig. 4.13 c.) power levels. This means that
there is STC in that axis. This STC originates from the Amphos laser pulse because,
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Figure 4.6: Comparison of measured and reconstructed spectra of the Amphos laser

Figure 4.7: Phase correction corresponding to the peak wavelength

as we saw in its STC characterization, it has STC on the same axis. MPCs usually do
not introduce much STC because there are no dispersive elements such as gratings or
prisms. At higher power levels 80% and 100% there is no distinct asymmetries both
intensity cuts at x = 0 and y = 0, in the (x, λ), (y, λ) representations as we can see
form figure 4.14.

The most interesting result was obtained for STC pulse characterization after the
compressor at full power given in figure 4.15. This result corresponds to the output
(3) of the MPC setup in figure 4.5. We can see distortion on the y = 0 intensity
cut in (x, λ) representation, corresponding to the tilt. This massive tilt is most likely
related to misalignments of the grating compressor following the MPC. Furthermore,
the effect is stronger in one direction, which makes sense because the alignment of the
grating compressor is most sensitive in the direction of diffraction of the gratings.
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(a) Original wavefronts for different wavelength

(b) Corresponding Zernike decomposed wavefronts

Figure 4.8: Original (a) and Zernike decomposed (b) wavefronts for the different
wavelength values
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(a) Common defocus (left plot) and common tilt-y (right plot) corrections

(b) Common vertical astigmatism (left plot) and common oblique astigmatism (right plot)
corrections

Figure 4.9: Common aberration corrections for Amphos laser output

Figure 4.10: Beam profile at the focus
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Figure 4.11: STC characterization of the Amphos laser source at full power. Slight
asymmetries on the x = 0 intensity cut (right plot) in the (y, λ)
representation is a sign of the STC in that axis.

Figure 4.12: Reconstructed and measured spectra of the MPC1 output before the
compressor
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Figure 4.13: MPC1 outputs before the compressor at different input power levels.
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Figure 4.14: MPC1 output before the compressor at (a) 80% and (b) 100 % powers
before the compressor

Figure 4.15: MPC1 output after the compressor at 100 % power
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5 Conclusion and Outlook

In this project, the spatio-temporal characterization of two intense laser systems was
presented. The first was an 800 nm central wavelength Ti: Sapphire CPA laser with
a repetition rate of 3 kHz and a pulse duration of 20 fs. The second was a 1030 nm
central wavelength MPC system with a repetition rate of 20 kHz. The results showed
that for the Ti: Sapphire CPA laser, there is a spatial chirp at the focus along the
y transverse axis for both low and high-power cases. In the high-power cases, this
spatial chirp becomes weaker but still observable. Moreover, the great changes in the
defocus coefficient with frequencies (or wavelengths) at low power have indicated the
existence of pulse front curvature.

STC characterization was done at each stage of the MPC system. Its results showed
spatial dispersion in the y transverse direction of the focus in the Yb: YAG Innosab
laser output. This was also the main cause of the observed STCs in MPC1 output at
low powers. However, at high powers (80%, 100%) the STCs becomes unobservable
at the MPC1 output. This is an important finding, indicating that the STCs of the
incoming laser are not translated to the spectrally broadened components in an MPC!
Lastly, the STC measurements are done at the MPC1 output after the compressor.
Significant spatial chirp is observed due to the misalignment of the compressor. A
strict realignment of the compressor would remove most of the observed STCs.

The data analysis code underwent improvements in this project. We introduced a
shared aberration removal script, which simplifies the analysis process. By removing
common aberrations, real STCs are more easily identified, enhancing the accuracy
and reliability of the analysis. This thesis provides comprehensive details on the data
analysis and documentation of the MATLAB code, a valuable resource for future
research in this field.

Looking ahead, the future of the measurement setup holds promising possibilities.
Notably, the spectral resolution of the measurement can be improved by increasing
the scanning range and the number of points recorded. This is particularly relevant
for complex spectra like the MPC’s output, which necessitates a high resolution for
better reconstructed spectra. Also, like any non-single-shot measurement method, the
stability of the beam pointing is important for obtaining better data.

The most time-consuming part of the experiment is recording interferometric data.
This time depends on the number of points in the given scanning range. In our
case, it took 20-40 minutes, depending on the number of points. The interferometric
image recording software is written in Matlab, which keeps the data in its buffer.
Handling large data structures is challenging, and proper memory management has to
be implemented to make faster data acquisition and to prevent buffer overflow.
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Appendix A

Matlab code for data processing

1 %% STC analalysis code

2 % First we read the data:

3 % Int_xyt - intensity ,

4 % t- time ,

5 % x- physical x dimension of the camera:

6

7 % Quick instructions:

8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 % 1. variables that is located between the blocks should be changed

depending on data

12

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14

15 % 2. It is better to run section by section

16

17 %%

18 clear;

19 clc;

20 close all;

21

22 filename =[’Filename.h5’];

23

24 Int_xyt=h5read(filename ,’/Int’);

25 t=h5read(filename ,’/t’);

26 x=h5read(filename ,’/x’);

27

28 %% 2. introducing the time mask

29 % define left t_left and t_right edges for the timemask

30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 % enter the left and right edge of time (fs):

33

34 t_left =-440;

35 t_right =440;

36

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 s=size(Int_xyt);

39

40 %timemask is better when it is exponential smooth

41 time_mask=single(permute (1./(1+ exp((t-t_right)/3))./(1+ exp((t_left -t)

/3)) ,[1,3,2])); %time mask

42 %

43 pix_x_cor=s(1)/2; % central pixel coordinates

44 pix_y_cor=s(2)/2;

45
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46 x0=10;y0=300; width =2000; height =500;

47

48 figure(’Units’, ’pixels ’,’Position ’, [x0 y0 width height],’Name’, ’

Spectra ’ ,’PaperPositionMode ’, ’auto’); clf;

49 subplot (1,2,2)

50 Cor_field = (squeeze(Int_xyt(pix_x_cor ,pix_y_cor ,:))-mean(squeeze(

Int_xyt(pix_x_cor ,pix_y_cor ,:)) ,[1,2,3])).* squeeze(time_mask);

51 plot(t,Cor_field)

52 xlabel("Time (fs)")

53 ylabel("Spectral magnitude , (arb. units)")

54 title("Windowed data")

55

56 subplot (1,2,1)

57 Cor_field = squeeze(Int_xyt(pix_x_cor ,pix_y_cor ,:)-mean(squeeze(

Int_xyt(pix_x_cor ,pix_y_cor ,:)) ,[1,2,3]));

58 plot(t,Cor_field)

59 ylabel("Spectral magnitude , (arb. units)")

60 xlabel("Time (fs)")

61 title("Raw data")

62

63 %% (optional) see the camera image at the given time delay

64

65 % Enter the index of time delay (between 1 -512):

66 idx_t =252; % <-------------------------

67

68 figure (1);clf;

69 imagesc(Int_xyt(:, :, idx_t));

70 xlabel(’x, pixel’)

71 ylabel(’y, pixel’)

72 title("Delay time: "+num2str(round(t(idx_t)))+" fs");

73 axis square;

74 colorbar

75 %% 3. Taking FFT

76 % define x and y axis for the FFT

77 c=0.299792458;

78 siz=size(Int_xyt); % size of Intxy_t

79 dx=mean(diff(x));

80 x=(0:( siz(1) -1))*dx;

81 y=x’; % since image square y and x are the same

82 dt=mean(diff(t)); % time step

83

84 % Enter the resolution:

85 N=2^13; % <------- Here you can change the resolution

86

87 T=dt*(1:N);

88 F=(0:N-1)/N/dt;

89

90 % Enter the upper and lower limit for the wavelength in um

91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

92 wavelength_lower = 1.02;

93 wavelength_upper = 1.04;

94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95

96 % Converting these limits into frequency domain

97 f_upper = c/wavelength_lower;

98 f_lower = c/wavelength_upper;

99

100 %creating id to filter the data in a given range
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101 id=permute ((F>f_lower)&(F<f_upper) ,[1,3,2]); % indexes of

the given frequency range

102

103 K=sum(id); % How many

spectral points correspond that area

104 M=siz(1); % number of

points spatial

105

106 Int0=mean(Int_xyt ,3); % Avg. intensity for each pixel ,

since the intensity in the third dimension

107

108 Int_xyf=complex(zeros(M,M,K,’single ’)); %same dimension , x,y,f

creating empty intensity data for frequency domain

109

110 % start FFT for each pixel:

111 %%

112 for i=1:M

113 disp(i)

114 sp=fft ((( Int_xyt(i,:,:))-(Int0(i,:))).*time_mask ,N,3); %

slice by slice fft

115 Int_xyf(i,:,:)=sp(1,:,id); %

save it with frequency filtering.

116 end

117

118 %% 4. Plotting the spectrum of the central point

119

120 c=0.299792458;

121 f0=F(id); % selecting only filtered frequency

values

122 k0=2*pi*f0/(c); % wavenumber of the filtered frequency

values

123

124 % Here we find the spectral amplitude at the center: amp_c (1

x1x388)

125 amp_c=sqrt(abs(Int_xyf(M/2,M/2,:))).*exp(1i*angle(Int_xyf(M/2,M/2,:))

); % spectral amplitude at center

126

127 % finding indexes that correspond to maximum and minimum values:

128 [maxval ,maxind] = max(abs(squeeze(amp_c)/max(amp_c)));

129 w_central = c./f0(maxind); % central

wavelength

130

131 spectrum_intensity=abs(squeeze(amp_c))/max(abs(squeeze(amp_c)));

132

133 % Plots spectrum in center intensity vs frequency:

134 x0=10; y0 =300; width =2000; height =500;

135 figure(’Units ’, ’pixels ’,’Position ’, [x0 y0 width height],’Name’, ’

Spectra ’ ,’PaperPositionMode ’, ’auto’); clf;

136 plot(f0 ,spectrum_intensity);

137 xline(f0(maxind), ’--r’)

138 xlabel(’frequency , PHz’)

139 ylabel(’spectral amplitude norm. unit’)

140 title("Central wavelength: " + round(w_central *1e3) + " nm"+’, (’+f0(

maxind)+"PHz)")

141

142 % Plots spectrum in center intensity vs wavelength:

143 w0=c./f0;

144
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145 figure (); clf;

146 plot(w0 , spectrum_intensity);

147 xline(w0(maxind), ’--r’)

148 xlabel("wavelength , nm");

149 ylabel("spectrum intensity , norm. unit")

150 title("Central wavelength: " + round(w_central *1e3) + " nm")

151 axis square;

152

153 %% 5. Subtraction of the reference beam

154 % Dimensions um (micrometer), PHz (petaherz), fs -( femtosecond)

155

156 % Normalize the spectral intensity relative to the value at the

centre of the image:

157

158 amp_xyf=Int_xyf ./ amp_c;

159

160 x=x-mean(x); % centering

161 y=x’;

162

163 % we need to find to parameters in order to subtract correct

reference

164 % spherical beam from the interferometric image

165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

166 % Enter the distance between camera and the focus and offset:

167

168 D=-7.1e4;

169

170 x0=-9;

171 y0=-40;

172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

173 [X,Y]= meshgrid(x,y); % create a grid for the spherical

wavefront , here x and y in um (real world values)

174

175 Sph=single(exp(1i*permute(k0 ,[1,3,2]) .*((X-x0).^2+(Y-y0).^2) /(2*D)));

% Formula for the spherical wavefront

176

177 amp_xyf_R=amp_xyf .*Sph; % HERE WE SUBTRACT THE SPHERICAL BEAM

FROM THE INTERFEROMETRIC IMAGE:

178

179 % plot the subtracted wavefront phase

180 % in that image there should not be any fringes

181 % if there is a finges try to change values of D until you see image

that

182 % contains no fringes. By changing x0 and y0 one can center the image

:

183

184 figure (5);clf;

185 set(gcf ,’color’,’w’);

186 imagesc(x/1e4 , y/1e4 , angle(amp_xyf_R (:,:,maxind))); %

divived 1e4 for converting into sm

187 xlabel(’x size , sm’);

188 ylabel(’y size , sm’);

189 axis square;

190 title("Here is the subtracted beam wavefront")

191 clear ’Sph’;

192

193 % This is this lines of code for radial filtering of the image:

194
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195 R=single(sqrt(X.^2+Y.^2));

196

197 % Here you enter the mask radius:

198 % mask radius and smooth parameter in um:

199 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

200 r_mask =1000;

201 smooth_param =300;

202

203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

204 % this is equation for mask:

205 mask =1./(1+ exp((R-r_mask)/smooth_param));

206

207 % one can also use the frequency mask

208 % equation for the frequency mask

209

210 mask_f=single(permute (1./(1+ exp((f0 -f_upper)/0.005))./(1+ exp((f_lower

-f0)/0.005)) ,[1,3,2]));

211

212 % Here we apply both radial and frequency mask:

213

214 amp_xyf_M=amp_xyf_R .*mask.* mask_f;

215 amp_xyf_M_before_filter = amp_xyf_M;

216

217 kx=fftshift (2*pi/dx.*((-M/2+1):M/2)/M);

218 imax=fft2(amp_xyf_M (:,:,maxind));

219 [Kx,Ky]= meshgrid(kx,kx);

220

221 % Here we plot for comparison:

222 figure (3);clf;

223 set(gcf ,’color’,’w’);

224

225 subplot (1,3,1)

226 imagesc(x/1e4 , y/1e4 , angle(amp_xyf (:,:,maxind))) % phase of the

interferogram ,

227 xlabel(’x size , sm’);

228 ylabel(’y size , sm’);

229 axis xy

230 axis square

231 title("Phase NF")

232

233 subplot (1,3,2)

234 imagesc(x/1e4 , y/1e4 , angle(amp_xyf_R (:,:,maxind))) % phase after

subtraction of ref beam

235 xlabel(’x size , sm’);

236 ylabel(’y size , sm’);

237 axis xy

238 axis square

239 title("Corrected Phase NF")

240

241 subplot (1,3,3)

242 imagesc(x/1e4 , y/1e4 , angle(amp_xyf_R (:,:,maxind)).*mask) % and phase

when we apply frequency filtering

243 xlabel(’x size , sm’);

244 ylabel(’y size , sm’);

245 axis xy

246 axis square

247 title("With Spatial Filter")

248
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249 %% Plotting the image of the beam after the reference beam

subtraction:

250

251 figure (4); clf;

252 imagesc(x/1e4 , y/1e4 , abs(amp_xyf_R (:,:,maxind)))

253 xlabel(’x size , sm’)

254 ylabel(’y size , sm’)

255 axis xy

256 axis square

257 title("Beam profile after removing ref. phase")

258

259 saveas(gca ,fullfile(fname_img , [’5. Beam_after_subtr ’ name ’.png’]), ’

png’);

260

261 %% 6. Filtering in the k space and back again

262 Kr=sqrt(Kx.^2+Ky.^2); % radial kl

263

264 % Enter the value for the divergency window for spatial filtering in

rad

265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

266

267 divg =0.0062;

268

269 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

270

271 for i=1:K

272 im0=fft2(amp_xyf_M (:,:,i))./(1+ exp(single ((Kr/k0(i))-divg)

/0.0005)); % going to k space with divergency mask

273 amp_xyf_M (:,:,i)=ifft2(im0);

% transform back with divergency applied

274 disp(i);

275 end

276

277 sp=squeeze(amp_xyf_M(s(1)/2,s(2)/2,:));

278 sp0=sp/max(abs(sp));

279

280 %% Here we plot the comparison spectral image with maximum intensity

before and after lowpass filter

281 % Here is important you select the maxind

282 after_filter=abs(amp_xyf_M (:,:,maxind)).^2;

283

284 figure (8);clf;

285 set(gcf ,’color’,’w’);

286 subplot (1,2,1)

287 imagesc(x/1e4 , y/1e4 , abs(amp_xyf_M_before_filter (:,:,maxind)).^2)

288 xlabel(’x size , sm’)

289 ylabel(’y size , sm’)

290 axis square

291 title("Original beam")

292 colorbar

293

294 subplot (1,2,2)

295 imagesc(x/1e4 , y/1e4 , after_filter )

296 xlabel(’x size , sm’)

297 ylabel(’y size , sm’)

298 axis square

299 title("After Lowpass filter")

300 colorbar
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301

302 %% Zernike Polynomials!

303

304 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

305 % radius in um, of the area where we are doing the zernike

decomposition

306

307 rho =1000;

308

309 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

310 ang=atan2(Y,X);

311 siz=size(X);

312 Z=zeros(siz(1),siz(2) ,14);

313 r=R/rho;

314 id=r<1;

315

316 % id=id/sqrt(sum(id(:))); % Before it was like that

317 id0 =1/ sum(id(:));

318

319 Z(:,:,1)=1; % piston

320 Z(:,:,2) =1.*(2.*(r).*sin(ang)); % tilt y

321 Z(:,:,3) =1.*(2.*(r).*cos(ang)); % tilt x

322 Z(:,:,4) =1.*( sqrt (6)*r.^2.* sin(2*ang)); % oblique asigmatism

323 Z(:,:,5) =1.*( sqrt (3) *(2*r.^2-1)); % defocus

324 Z(:,:,6) =1.*( sqrt (6)*r.^2.* cos(2*ang)); % vertical astimatism

325 Z(:,:,7) =1.*( sqrt (8)*r.^3.* sin(3*ang)); % Vertical trefoil

326 Z(:,:,8) =1.*( sqrt (8) *(3*r.^3-2*r).*sin(ang)); % Vertical coma

327 Z(:,:,9) =1.*( sqrt (8) *(3*r.^3-2*r).*cos(ang)); % Horizontal coma

328 Z(:,:,10) =1.*( sqrt (8)*r.^3.* cos(3*ang)); % Oblique trefoil

329 Z(:,:,11) =1.*( sqrt (10)*r.^4.* sin(4*ang)); % Oblique quadrafoil

330 Z(:,:,12) =1.*( sqrt (10) *(4*r.^4-3*r.^2).*sin(2*ang)); % Oblique

secondary astigmatism

331 Z(:,:,13) =1.*( sqrt (5) *(6*r.^4-6*r.^2+1)); % Primary

spherical

332 Z(:,:,14) =1.*( sqrt (10) *(4*r.^4-3*r.^2).*cos(2*ang)); % Vertical

secondary astigmatism

333 Z(:,:,15) =1.*( sqrt (10)*r.^4.* cos(4*ang)); % Vertical

quadrafoil

334

335 %% Zernike coefficient calculation:

336

337 co=zeros(15,K);

338 for i=1:K

339 wf=angle(amp_xyf_M (:,:,i))./k0(i);

340 Co=squeeze(sum(sum(id.*wf.*Z,1) ,2))*id0;

341 co(:,i)=Co;

342 disp(i)

343 end

344

345 %% Plotting all astigmatism for different frequency

346 figure("Name", "Astig"); clf;

347

348 names=["piston", "tilt y", "tilt x", "oblique astigmatism", "defocus"

, "vertical astigmatism", "vertical trefoil", "vertical coma" ,...

349 "horizontal coma", "oblique trefoil", "oblique quadrafoil", "

Oblique sec. astigmatism", ...

350 "Primary spherical", "Vertical secondary astigmatism", "Vertical

quadrafoil" ];
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351

352 for i=1:15

353 subplot(5, 3, i)

354 hold on

355 plot(f0,abs(sp0).^2, ’--k’, ’DisplayName ’,’spectrum ’)

356 yyaxis right

357 plot(f0,co(i,:), ’DisplayName ’,names(i))

358 xlabel("f (Phz)")

359 box on

360 legend

361 end

362

363

364

365 %% Plotting WAVEFRONT for the different wavelength:

366

367 figure("Name", "Wavefront Original"); clf;

368 dC=round(K/20);

369

370 for i=dC:dC:K

371 wf=angle(amp_xyf_M(:, :, i))./k0(i);

372 subplot(4, 5, round(i/dC))

373 imagesc(x/1e4 , x/1e4 , wf.*id);

374 colorbar

375 xlabel(’x size , sm’)

376 ylabel(’y size , sm’)

377 axis square;

378 title("Wavefront for "+w0(i)*1e3+’nm’)

379 end

380

381

382 %% WAVEFRONT DECOMPOSITION using Zernike decomposition:

383

384 % Assuming you have the following matrices:

385 % co: Matrix containing Zernike coefficients (15 coefficients for 115

frequency values)

386 % Z: Matrix containing Zernike polynomials (512 x512x15)

387

388 % Initialize the result matrix

389 decomposed_1 = zeros(size(Z, 1), size(Z, 2), size(co , 2));

390

391 % Loop through each frequency value

392 for freq_index = 1:size(co , 2)

393 % Extract the Zernike coefficients for the current frequency

394 coefficients = co(:, freq_index);

395

396 % Multiply coefficients with Zernike polynomials and sum over all

coefficients

397 for i = 1:size(co , 1)

398 decomposed_1 (:, :, freq_index) = decomposed_1 (:, :,

freq_index) + coefficients(i) * Z(:, :, i).*id;

399 end

400 end

401

402 figure (12); clf;

403 dC=round(K/20);

404

405 for i=dC:dC:K
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406 subplot(4, 5, round(i/dC))

407 imagesc(x/1e4 , x/1e4 , decomposed_1 (:, :, i));

408 xlabel(’x size , sm’)

409 ylabel(’y size , sm’)

410 colorbar

411 axis square;

412 title("Decomposed wavefront: "+w0(i)*1e3+’nm’)

413 end

414

415 %% Finding average Zernike coefficients

416

417 % For finding average of the Zernike coefficients

418 % enter the frequency range in which that coeffients more or less

419 % contant for all colors

420

421 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

422 f_min =0.284;

423 f_max =0.3;

424 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

425

426 idx_range=find(f0 >= f_min & f0 <= f_max);

427

428 co_mean= zeros(size (15));

429

430 % Finding average Zernike coefficients of the given frequency range:

431

432 for i=1:15

433 coef=co(i, :);

434 co_mean(i)=mean(coef(idx_range));

435 end

436

437 % Plotting together spectrum , Zernike coefficients and averaged

Zernike

438 % coefficients at the given frequency range.

439

440 % Plotting all of the astigmatims with mean values:

441 figure("Name", "Plot with mean values"); clf;

442

443 for i=1:15

444 subplot(5, 3, i)

445 hold on

446 plot(f0,abs(sp0).^2, ’--k’, ’DisplayName ’,’spectrum ’)

447 yyaxis right

448 plot(f0,co(i,:), ’DisplayName ’,names(i))

449 legend

450 yline(co_mean(i), "--", ["avg."+co_mean(i)])

451 % xlim([f_min , f_max ])

452 xlabel("f (Phz)")

453 box on

454 end

455

456 %% REMOVING COMMON ABERRATIONS SHARED BY ALL WAVELENGTH

457 % (COMMON ABERRATION CORRECTION):

458

459 [s1, s2, s3]=size(amp_xyf_M);

460 ab_free_amp_xyf_M=zeros(s1, s2, s3);

461 all_zernike=zeros(s1, s2);

462
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463 % Here we add all of the avg. astigmatisms:

464 for j=1:15

465 all_zernike=all_zernike+co_mean(j)*Z(:, :, j);

466 end

467

468 % and make correction to the field

469 for j=1:K

470 disp(j)

471 ab_free_amp_xyf_M (:, :, j)=amp_xyf_M (:, :, j).*exp(-1i*all_zernike

.*k0(j)); % TO BE USED

472 end

473

474 % REMEMBER ab_free_amp_xyf_M will be used for focusing

475 %% Find Zernike coef. AFTER the FULL CORRECTION:

476

477 co_astig_free=zeros(15,K);

478 for i=1:K

479 wf_after2=angle(ab_free_amp_xyf_M (:,:,i))./k0(i);

480 Co_astig_free=squeeze(sum(sum(id.* wf_after2 .*Z,1) ,2))*id0;

481 co_astig_free (:,i)=Co_astig_free;

482 disp(i)

483 end

484

485 % Finding the mean values zernike coefficients after full correction:

486 co_af_mean= zeros(size (15));

487

488 % Finding average Zernike coefficients of the given frequency range:

489 % For finding average of the Zernike coefficients

490 % enter the frequency range in which that coeffients more or less

491 % contant for all colors

492

493 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

494 f_min =0.284;

495 f_max =0.293;

496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

497

498 idx_range=find(f0 >= f_min & f0 <= f_max);

499

500 for i=1:15

501 disp(i)

502 coef_after2=co_astig_free(i, :);

503 co_af_mean(i)=mean(coef_after2(idx_range)); % it is the mean

values of the co_astig_free

504 end

505

506 %% COMPARE ALL ABERRATIONS BEFORE AND AFTER THE CORRECTION:

507

508 % Plotting the first 4 aberrations

509 figure("Name", "Correction first 6 astig"); clf;

510

511 for i=1:6

512 subplot(3, 2, i)

513 plot(f0,co(i,:), ’DisplayName ’,[names(i)+" before"])

514 yline(co_mean(i), ’--b’, co_mean(i),"DisplayName", "avg. before")

515 hold on

516 plot(f0,co_astig_free(i,:), ’DisplayName ’,[names(i)+’after’])

517 yline(co_af_mean(i),’--r’, co_af_mean(i), "DisplayName", "avg.

after")
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518 yyaxis right

519 plot(f0,abs(sp0).^2, ’--k’, ’DisplayName ’,’spectrum ’)

520 xlabel("f (Phz)")

521 title([i+". "+names(i)+" correction"])

522 box on

523 legend

524 end

525

526 % Plotting the last 8 aberrations

527 figure("Name", "Compare last 8"); clf;

528 for i=7:14

529 subplot(4, 2, i-6)

530 plot(f0,co(i,:), ’DisplayName ’,[names(i)+" before"])

531 yline(co_mean(i), ’--b’, co_mean(i),"DisplayName", "avg. before")

532 hold on

533 plot(f0,co_astig_free(i,:), ’DisplayName ’,[names(i)+’after’])

534 yline(co_af_mean(i),’--r’, co_af_mean(i), "DisplayName", "avg.

after")

535 yyaxis right

536 plot(f0,abs(sp0).^2, ’--k’, ’DisplayName ’,’spectrum ’)

537 xlabel("f (Phz)")

538 title([i+". "+names(i)+" correction"])

539 box on

540 legend

541 hold off

542 end

543

544 %% Assing new complex field without common aberrations:

545 amp_xyf_M=ab_free_amp_xyf_M;

546

547 %% Plotting farfield spectral amplitude in k space:

548 % We define resolution:

549 P=2^14; % <------ enter the resolution

550

551 % Here we define the grid with better resolution:

552 x_f=( single(linspace(min(x),max(x),P)));

553 y_f=( single(linspace(min(y),max(y),P)));

554 [X,Y]=( meshgrid(x_f ,y_f)); % new meshgrid

555

556

557 % Here is our old meshgrid:

558 [X0,Y0]= meshgrid(x,y);

559

560 id=abs(x_f) <100; % select spatial part less than 100

micron

561 x2=x_f(id); % x, filtered #will_be_saved

562

563 dx=mean(diff(x_f));

564

565 % Here we define grid for the k space with the same resolution as new

X and

566 % Y grid:

567

568 k=single ([0:(P/2) ,(-P/2+1) :-1]/P/dx*2*pi);

569 [Kx,Ky]= meshgrid(k,k);

570 K2=(Kx.^2+Ky.^2);

571 clear ’Kx’ ’Ky’

572
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573 % k space

574 kxf = fft2(amp_xyf_M(:,M/2,:));

575 kyf = fft2(amp_xyf_M(M/2,:,:));

576

577 figure (6);clf;

578 set(gcf ,’color’,’w’);

579

580 subplot (1,2,1)

581 imagesc(f0 ,fftshift(kx),(abs(fftshift(squeeze(kxf) ,1)).^2))

582 title("farfield , kx, f")

583 xlabel("f (PHz)")

584 ylabel("k (1/um)")

585 colorbar

586 axis square

587

588 ylim ([ -0.02 ,0.02])

589 subplot (1,2,2)

590 imagesc(f0 ,fftshift(kx),(abs(fftshift(squeeze(kyf) ,1)).^2))

591 title("farfield , ky, f")

592 xlabel("f (PHz)")

593 ylabel("k (1/um)")

594 ylim ([ -0.02 ,0.02])

595 colorbar

596 axis square

597

598 %% THE PROPAGATION !!!

599 Dz=( single (100e3)); %100e3 micro meter focal length

600

601 amp_foc=complex(zeros(sum(id),sum(id),K,’single ’)); %focus profile

spatial and spectrally

602 amp_foc_ideal=complex(zeros(sum(id),sum(id),K,’single ’)); %same "

thing <3 "

603 diff_offset =250;

604

605 % i=325;

606 for i=1:K

607 amp=interp2(X0 ,Y0 ,( amp_xyf_M (:,:,i)),X,Y,’linear ’ ,0).*exp(1i*k0(i

)*(sqrt(Dz^2-X.^2-Y.^2)-Dz)); %we curve the wavefront with

specified focal length

608 amp_r=ifft2(fft2(amp).*exp(1i*sqrt(k0(i)^2-K2)*(Dz-diff_offset)))

; % diffraction gives offset of real focus

609 amp_foc (:,:,i)=amp_r(id ,id);

610 amp_ideal=interp2(X0,Y0,abs(amp_xyf_M (:,:,i)),X,Y,’linear ’ ,0).*

exp(1i*k0(i)*(sqrt(Dz^2-X.^2-Y.^2)-Dz)); %removes wavefront error

from each frequency (abs)

611 amp_r=ifft2(fft2(amp_ideal).*exp(1i*sqrt(k0(i)^2-K2)*(Dz -250)));

612 amp_foc_ideal (:,:,i)=amp_r(id,id);

613 disp(i);

614 end

615

616

617

618 %% Reconstructed image at the focus!

619

620 % Define the desired figure width and height

621 figureWidth = 1000; % in pixels

622 figureHeight = 400; % in pixels

623
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624 % Create a new figure with the specified width and height

625 figure(’Position ’, [100, 100, figureWidth , figureHeight ]);

626

627 selected_freq_index=maxind;

628 set(gcf ,’color’,’w’);

629

630 subplot(1, 3, 1)

631 imagesc(abs(amp_foc (:,:, selected_freq_index)).^2)

632 title("Reconstructed image at the focus!")

633

634 siz=size(amp_foc);

635 q=exp(-1i*angle(amp_foc(round(siz(1)/2),round(siz(2)/2) ,:)));

636 amp_x=amp_foc .*q; %remove the phase in the middle , mulitply: -i,

divide: +i

637 axis square

638

639 subplot(1, 3,2)

640 imagesc(abs(amp_x(:,:, selected_freq_index)).^2)

641 title("after removing phase in the middle")

642

643 q=exp(-1i*angle(amp_foc_ideal(round(siz(1)/2),round(siz(1)/2) ,:))); %

same "thing <3 " for ideal one

644 amp_x_ideal=amp_foc_ideal .*q;

645 axis square

646

647 subplot(1, 3, 3)

648 imagesc(abs(amp_x_ideal (:,:, selected_freq_index)).^2)

649 title("the same but for the ideal case")

650 axis square

651

652 saveas(gca ,fullfile(fname_img , [’7. Focused_beam_pro ’ name ’.png’]), ’

png’);

653

654 %% Converting to the time domain:

655

656 P=2^13;

657 df=mean(diff(f0));

658 t0=linspace (-0.5/df ,0.5/df ,P);

659 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

660 % Time window:

661

662 id=abs(t0) <300;

663

664 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

665

666 N=sum(id); %how many points

667

668 amp_ft =(zeros(siz (1),siz (2),N,’single ’)); %spatial grid

669 amp_ft_ideal =( zeros(siz (1),siz (2),N,’single ’));

670

671 % for i=1:siz(1)

672 % for j=1:siz(1)

673 % at=fftshift(abs(fft(amp_x(i,j,:),P,3)).^2);

674 % amp_ft(i,j,:)=at(:,:,id);

675 % end

676 % end

677 for i=1: siz (1)

678 at=fftshift(abs(fft(amp_x(i,:,:),P,3)).^2 ,3);
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679 amp_ft(i,:,:)=at(:,:,id);

680 at=fftshift(abs(fft(amp_x_ideal(i,:,:),P,3)).^2 ,3);

681 amp_ft_ideal(i,:,:)=at(:,:,id);

682 disp(i)

683 end

684 %% Finding intensities

685 int_xyf=sum(abs(amp_x).^2 ,3);

686 int_yf=squeeze(sum(abs(amp_x).^2 ,1));

687 int_xf=squeeze(sum(abs(amp_x).^2 ,2));

688

689 int_xyf=int_xyf/max(max(int_xyf));

690 int_x=int_xf/max(max(int_xf));

691 int_y=int_yf/max(max(int_yf));

692

693 %% plot in space frequency

694 figure (89);clf;

695 subplot (1,2,1)

696 imagesc(f0 ,x2 ,int_xf)

697 xlabel("f PHz")

698 ylabel("x (um)")

699 pbaspect ([2 1 1])

700

701 subplot (1,2,2)

702 imagesc(f0 ,x2 ,int_yf)

703 xlabel("f, PHz")

704 ylabel("y (um)")

705 pbaspect ([2 1 1])

706

707 saveas(gca ,fullfile(fname_img , [’7. preview_x_f ’ name ’.png’]), ’png’)

;

708

709 %% plot in space wavelength

710 figure (90);clf;

711 subplot (1,2,1)

712 imagesc(w0 ,x2 ,int_xf)

713 xlabel("wavelength , nm")

714 ylabel("x (um)")

715 pbaspect ([2 1 1])

716

717 subplot (1,2,2)

718 imagesc(w0 ,x2 ,int_yf)

719 xlabel("wavelength , nm")

720 ylabel("y (um)")

721 pbaspect ([2 1 1])

722

723 saveas(gca ,fullfile(fname_img , [’8. Preview_x_w ’ name ’.png’]), ’png’)

;

724

725 %% saving the stuff

726 % meta info should contain: divergence filter param , radial filter

param ,

727 % x0,y0, distance from focus to detector.

728 % x2: spatial axis in um, here: +- 200 um

729 % t0: time window selected in fs, here plus minus 200 fs

730 % f0: frequency window , pHz

731 % % amp_ft and amp_ft_ideal: 3D in xyt , x,y in terms of focus

coordinates

732 % % amp_x and amp_x_ideal: 3D in xyf , x,y in terms of focus
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coordinates

733 t0 = t;

734 folder = "Folder\Where\You\Save\Data";

735 name = "Name_of_data";

736

737 h5create(folder + name + "_zernike.h5",’/f0’,[size(f0)]);

738 h5create(folder + name + "_zernike.h5",’/co’,[size(co)]);

739

740 h5write(folder + name + "_zernike.h5",’/f0’,f0);

741 h5write(folder + name + "_zernike.h5",’/co’,co);

742

743 h5create(folder + name + "_xyf.h5",’/amplitude_xyf_real ’,[size(amp_x)

]);

744 h5create(folder + name + "_xyf.h5",’/amplitude_xyf_imag ’,[size(amp_x)

]);

745 h5create(folder + name + "_xyf.h5",’/f’,[size(f0)]);

746 h5create(folder + name + "_xyf.h5",’/x’,[size(x2)]);

747

748 h5create(folder + name + "_xyt.h5",’/amplitude_xyt_real ’,[size(amp_ft

)]);

749 h5create(folder + name + "_xyt.h5",’/amplitude_xyt_imag ’,[size(amp_ft

)]);

750 h5create(folder + name + "_xyt.h5",’/t’,[size(t0)]);

751 h5create(folder + name + "_xyt.h5",’/x’,[size(x2)]);

752

753 h5create(folder + name + "_xyf_ideal.h5",’/amplitude_xyf_ideal_real ’

,[size(amp_x_ideal)]);

754 h5create(folder + name + "_xyf_ideal.h5",’/amplitude_xyf_ideal_imag ’

,[size(amp_x_ideal)]);

755 h5create(folder + name + "_xyf_ideal.h5",’/f’,[size(f0)]);

756 h5create(folder + name + "_xyf_ideal.h5",’/x’,[size(x2)]);

757

758 h5create(folder + name + "_xyt_ideal.h5",’/amplitude_xyt_ideal_real ’

,[size(amp_ft_ideal)]);

759 h5create(folder + name + "_xyt_ideal.h5",’/amplitude_xyt_ideal_imag ’

,[size(amp_ft_ideal)]);

760 h5create(folder + name + "_xyt_ideal.h5",’/t’,[size(t0)]);

761 h5create(folder + name + "_xyt_ideal.h5",’/x’,[size(x2)]);

762

763 h5write(folder + name + "_xyf.h5",’/amplitude_xyf_real ’,real(amp_x));

764 h5write(folder + name + "_xyf.h5",’/amplitude_xyf_imag ’,imag(amp_x));

765 h5write(folder + name + "_xyf.h5",’/f’,f0);

766 h5write(folder + name + "_xyf.h5",’/x’,x2);

767

768 h5write(folder + name + "_xyt.h5",’/amplitude_xyt_real ’,real(amp_ft))

;

769 h5write(folder + name + "_xyt.h5",’/amplitude_xyt_imag ’,imag(amp_ft))

;

770 h5write(folder + name + "_xyt.h5",’/t’,t0);

771 h5write(folder + name + "_xyt.h5",’/x’,x2);

772

773 h5write(folder + name + "_xyf_ideal.h5",’/amplitude_xyf_ideal_real ’,

real(amp_x_ideal));

774 h5write(folder + name + "_xyf_ideal.h5",’/amplitude_xyf_ideal_imag ’,

imag(amp_x_ideal));

775 h5write(folder + name + "_xyf_ideal.h5",’/f’,f0);

776 h5write(folder + name + "_xyf_ideal.h5",’/x’,x2);

777
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778 h5write(folder + name + "_xyt_ideal.h5",’/amplitude_xyt_ideal_real ’,

real(amp_ft_ideal));

779 h5write(folder + name + "_xyt_ideal.h5",’/amplitude_xyt_ideal_imag ’,

imag(amp_ft_ideal));

780 h5write(folder + name + "_xyt_ideal.h5",’/t’,t0);

781 h5write(folder + name + "_xyt_ideal.h5",’/x’,x2);
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Appendix B

DFT equations

Using the integral form of equation 2.25 we can write

G̃(ν) =

∫ ∞

−∞

∞∑
n=−∞

f(t)δ(t− n∆T )e−j2πνtdt

=
∞∑

n=−∞

∫ ∞

−∞
f(t)δ(t− n∆T )e−j2πνtdt

=
∞∑

n=−∞

fne
−j2πνn∆T

(B.1)

where fn is a discrete function but its Fourier transform G̃(ν) is continuous and peri-
odic function. Thanks to that, we only need to characterize G̃(ν) over one period.
Moreover, this equation expands from −∞ to ∞, but in practice, we deal with a finite
number of samples. So, in order to obtain M equally spaced samples that are taken
over one period ν = 0 to ν = 1/∆T , we need to take the samples of the following
frequencies:

ν =
m

M∆T
, m = 0, 1, 2, 3, ...,M − 1 (B.2)

Substituting this result into equation B.1 and denoting the Gn as a discrete Fourier
transform (DFT) we get:

Gn =
M−1∑
n=0

fne
−j2πmn/M , m = 0, 1, 2, ...,M − 1 (B.3)

Contrarily, given {Gn} we can reconstruct the sample set {fn} by using inverse discrete
Fourier transform (IDFT)

fn =
1

M

M−1∑
m=0

Gne
j2πmn/M , n = 0, 1, 2, ...,M − 1 (B.4)

We can develop the 2-D discrete Fourier transform in a similar way:
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G(u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux/M+vy/M) (B.5)

where f(x, y) is a 2D discrete function (digital image for example) of sizeM×N and u
and v are the discrete variables in ranges u = 0, 1, 2, ...,M−1 and v = 0, 1, 2, ..., N−1.

Inversely, we can recover the f(x, y) 2D sample set if G(u, v) Fourier transform is
given. It is called the 2D inverse discrete Fourier transform:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

G(u, v)ej2π(ux/M+vy/N) (B.6)

for x = 0, 1, 2, ...,M − 1 and y = 0, 1, 2, ..., N − 1.
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