
May 2024

Comparison of two software toolboxes

for the simulation of quantum systems

in the context of coherent

multidimensional spectroscopy

Nils Sebastian Martin Wilhelm Schneider

Division of Mathematical Physics

Department of Physics

Lund University

Thesis submitted for the degree of Bachelor of Science.

Supervised by Andreas Wacker

Abstract

Simulations are an indispensable tool in physics because they complement experiments,

especially complex ones. Coherent multidimensional spectroscopy (CMDS) is such a com-

plex experimental setup. In CMDS, the molecular system of interest interacts with two

to four coherent laser pulses and the generated emission provides information about the

energetic structure and the relaxation dynamics of the probed molecule.

The common technique to theoretically describe CMDS are perturbative expansions, in

particular under the additional approximation that the pulses have zero width (dura-

tion). However, this approach doesn’t capture some phenomena observed in real-world

spectroscopic experiments, for example it doesn’t account for pulse overlap artefacts. A

more realistic modelling is achieved with explicitly propagating the density matrix of the

system.

The issue with this, in turn, is that there exist many different simulation codes and

toolboxes, which could impede the comparison and reproduction of simulation results.

Kenneweg et al. (2024) therefore put forward their own quantum dynamics toolbox (QDT),

a MATLAB -based toolbox that provides tools for simulating light-matter interactions,

especially non-linear spectroscopic experiments with explicit density matrix propagation.

The rationale is that its modularity will allow for widespread adoption. To test this

new toolbox, this thesis compares it to QuTiP -based simulation code, by attempting to

reproduce a result of a simulation script (Hedse et al. 2023) that simulates pulse overlap

artefacts in double quantum coherence spectroscopy (a type of CMDS).

It was only possible to reproduce the results from Hedse et al. qualitatively, but not quan-

titatively. Several factors that could have potentially been responsible for the variations

were investigated, but they were ruled out as the cause. This sheds a light on the difficul-

ties one encounters when trying to reproduce simulation results on a different code bases,

especially when the code is to complex to allow for line-wise comparison.

I

Acknowledgements

First and foremost, I want to thank my supervisor Andreas Wacker. He took a lot of time

to support me in my learning and research process, and he always had an open door and

patience for questions. Our long discussions both made it possible for me to get familiar

with all the underlying theoretical concepts, and gave me countless leads to try to track

down differences between the codes as well as to understand why my plots look the way

they do. Last but not least, he help me to understand the code from his group’s previous

publication (Hedse et al. 2023), and modified it to facilitate the comparison with the QDT

MATLAB toolbox. Thank you!

I want to thank Armin and Akshat for being my examiners. Thank you Claudio for

checking in on my progress.

I want to thank Cristina for many fruitful discussions that helped me organize my thought-

s, especially when I struggled with nasty integrals and such. Thank you just for being

with me and having a lot of patience with me when I’m frustrated.

I could not do it without you.

Last but not least, I am grateful to my parents for their feedback on the coherence of my

text, and their overall support and patience.

II

Contents

Abstract I

Acknowledgements II

Conventions, Abbreviations & Symbols VI

1 Introduction 1

2 Theory 4

2.1 Density Operator . 4

2.2 Dephasing, Lindblad . 8

2.3 Semi-classical approach & transition dipole operator 9

2.4 Coherent multidimensional spectroscopy (CMDS) 10

3 Methods 11

3.1 General research methodology . 11

3.2 Setting up the the simulations with QDT 12

4 Results & Discussion 14

4.1 Initial results . 14

4.2 offset . 15

4.3 Oscillations of the signal . 15

4.4 Explaining the signal’s periodicity w.r.t. τ from the (LvNE) 16

4.5 Isolating the envelope of the signal . 18

4.6 Comparison of intermediate results . 19

4.7 Integration time . 20

4.8 Number of phases probed . 21

4.9 Pulse width . 22

4.10 Step size of the numerical integration . 23

4.11 Unit conversion . 24

4.12 Comparison of final results . 25

4.13 Curve overlays & differing phases . 26

5 Conclusions & Outlook 27

6 References 28

III

7 Appendix VIII

7.1 Additional derivations . VIII

7.1.1 Derivation of the (LvNE) . VIII

7.1.2 Interaction picture & perturbative expansion VIII

7.1.3 Derivation of the signal’s periodicity XIV

7.1.4 Numerical integration methods . XVIII

7.2 Additional figures . XIX

7.3 Code . XXI

7.3.1 MATLAB script for running the simulations XXI

7.3.2 MATLAB script for DFT and plotting XXII

7.3.3 python script for running the simulations XXIV

7.3.4 python script for DFT and plotting XXVIII

List of Figures

1 Experimental procedure . 2

2 FIG. 4 in Hedse et al. 2023 . 3

3 Diagram of the course of the spectroscopic measurement with CMDS/ 2DES 10

4 Illustration of different strategies for probing inter-pulse phase differences. . 13

5 Comparing no offset (sub-figures a and c), and an offset of 200 fs (sub-

figures b and d). 16

6 Comparing intermediate results obtained with QDT with results from

python code. Parameters: See Tab. 2. 19

7 Comparing the results from the python code for two different integration

windows with the results from QDT . 21

8 The effect of increasing N2. 21

9 Comparing the results from QDT before and after correcting the pulse

width to match the results from the python code 23

10 Comparison of results for different values of runTstep. 24

11 Comparing the final results from QDT with final results from python code,

after trying to have matching parameters 25

12 Plot of ρ22(τ,∆φ) against τ for ∆φ = 0◦. Other parameters: See Tab. 5. . 26

13 Plot of ρ22(τ,∆φ) against ∆φ for fixed values of τ 26

14 An increase in τ leads to better resolution of the oscillations of the signal. . XIX

15 Process for calculating the periodicity of the signal XX

16 Electric field of the second pulse for different values of runTstep XX

IV

List of Tables

1 Deviating values of the parameters used in the initial simulations 14

2 Parameters used in the simulations for Fig. 6 20

3 Parameters used in the simulations for Fig. 7 20

4 Parameters used in the simulations for Fig. 9 23

5 Parameters used in the simulations for Fig. 11 25

V

Conventions, Terms, Abbreviations & Symbols

Conventions

citation style (author(s) year, p. 42)
equation reference (1)
figure reference Fig. 1a
table reference Tab. 1
section reference Sec. 1.1
classes System

variable names var1

Technical Terms

envelope ”In physics and engineering, the envelope of an oscillating signal is a s-
mooth curve outlining its extremes.” (Envelope (Waves) -Wikipedia 2024)

DQC signal The Double quantum coherence (DQC) signal

Abbreviations

2DES 2D electronic spectroscopy ≈ CMDS
a.u. atomic units
arb. u. arbitrary units
CMDS coherent multidimensional spectroscopy
DQC Double quantum coherence
eq(s). equation(s)
FT Fourier transform
DFT discrete Fourier transform
FWHM full width at half maximum (of a peak/ pulse)
LHS left-hand side (of an equation)
LvNE Liouville-von Neumann equation
ODE ordinary differential equation
RHS right-hand side (of an equation)
SE Schrödinger equation
s.t. such that
tot total
vs versus
w.r.t. with respect to

VI

Important general symbols

= equal to
≡ equal by definition
[a, b] = ab− ba, i.e. commutator of a and b
a⃗ vector a
A matrix A
Aij element in the ith row and the jth column of the matrix A
a∗ complex conjugate of a
a⃗T transpose of a⃗
AT transpose of A
A† Hermitian conjugate of A, equal to (A∗)T

Â operator A

ai ith eigenvalue of some operator Â

Ĥ Hamilton operator

εi ith eigenvalue of Ĥ

ḟ = d
dt
f

h Planck’s constant, equal to 6.62607015 · 10−34 Js (BIPM 2018, p. 203)
ℏ reduced Planck’s constant, (set) equal to h/2π
δij Dirac delta function, equal to 1 if i = j, 0 otherwise
|ψ(t)⟩ state ψ
ψ(r⃗, t) wavefunction associate with state ψ
|ϕi⟩ ith eigenstate of some operator
ϕi(r⃗) wavefunction associate with state ϕi

ci(t) (time-dependent) coefficient of |ϕi⟩
ρ̂(t) density operator
Tr(A) trace of matrix A
W a probability

Symbols for CMDS

Nk number of modulation phases to be probed for kth pulse
ϕk modulation frequency of the kth pulse
φk modulation phase of the kth pulse
∆φ modulation phase difference between first and second pulse
nt number of the pulse train
Nt total number of pulse trains simulated per value of τ
∆tt time difference between to pulse trains
t0 start time of the individual pulse train
tk time of the kth pulse
τ = t2 − t1
ω angular frequency of the laser

VII

1 Introduction

Simulations are an indispensable tool in physics, not to replace experiments and observa-

tions necessarily - even though some phenomena might only be accessible by simulations

- but to complement experiments. This is done in two main ways: Firstly, simulations

can produce testable predictions from abstract theories, which makes it possible to exper-

imentally scrutinize these theories and thus makes them falsifiable. Secondly, comparing

experimental and simulation results can also help to interpret the experimental results for

complex setups, since in simulations one can control all the parameters freely and thus

potentially narrow down the effect(s) that caused certain pattern observed.

Coherent multidimensional spectroscopy (CMDS) is such a complex experimental setup.1

It is ”an ultrafast optical technique that can study relaxation dynamics with femtosecond

time resolution” (Fresch et al. 2023). In CMDS, the molecular system of interest interacts

with two to four coherent laser pulses and the generated emission is plotted w.r.t. the

excitation and detection frequencies as well as the major time delay, giving information

about the life-times of superpositions and exited states in the probed molecule. (Min-

haeng Cho 2019, p. 8) While perturbative expansions leading to nth-order non-linear

response functions are a common technique to theoretically describe CMDS, a more real-

istic modelling is achieved with explicit, ”brute-force” propagation of the density matrix

of the molecular system at hand (Kenneweg et al. 2024).

For this purpose, there exists a variety of toolboxes, as is pointed out by Kenneweg et

al. (2024). A major one is QuTiP (Johansson et al. 2012, Johansson et al. 2013), a

python-based toolbox. However, the Hamiltonian has to be constructed by the user.

Kenneweg et al. put forward their own toolbox, the quantum dynamics toolbox (QDT),

a MATLAB -based toolbox that provides tools for simulating light-matter interactions,

especially non-linear spectroscopic experiments with explicit density matrix propagation.

As the authors state, their goal is to provide a user-friendly, easy to use modular toolbox,

that handles the construction of the Hamiltonian in the background and that is capable

of replacing individual custom implementations of different research groups, and which

would thereby reduce the likelihood of errors occurring and increase the reproducibility of

results, since different research groups could use a unified basis for their simulation codes.

1In this thesis, we are mainly concerned with Two-dimensional electronic spectroscopy (2DES), that
is, two-dimensional CMDS in the optical and UV range that transfers electrons between molecular energy
levels, because it is one of the most widely used techniques. (Minhaeng Cho 2019, p. 3). The mathematical
formalism is largely the same for 2D-spectroscopy in the infrared-regime.

1

To put this idea into practice, however, is first necessary to test the QDT code for the

kind of simulations frequently performed by a research group to see if it is capable of

achieving the same results as the previous code base of the group, and to compare the

performances. This was attempted in this thesis.

(a) Mueller et al. 2019 (b) Hedse et al. 2023 (c) Hedse et al. 2023

Figure 1: (a) Schematic experimental setup. (b) Electric field vs time plot when for
overlapping pulses. (c) Double-sided Feynman diagrams for artefactual signal due to the
pulse overlap. Image sources see sub-figures.

In particular, a script using the QDT toolbox will be compared to a script from Hedse

et al. 2023, which uses QuTiP . The code, including the construction of the Hamiltonian

was written by Alex Arash Sand Kalaee (see Hedse et al. 2023). The simulation chosen

for testing the two codes is the simulation of pulse overlap artefacts in double quantum

coherence spectroscopy, a type of CMDS (see Hedse et al. 2023). Fig. 1 tries to schemat-

ically illustrate the setup. The motivation for choosing this test system/ simulation task

is that pulse overlap artefacts cannot be modelled using common perturbative approaches

where the pulses are approximated to have zero pulse width, as discussed in Kenneweg

et al. 2024. Thus, pulse overlap artefacts are a suitable testing ground for the two code

bases, since the simulation of pulse overlap artefacts requires explicit simulation of the

density matrix propagation. The first metric/benchmark was set to be reproducing the

results shown in Fig. 2 below, which is taken from Hedse et al. 2023. It is a plot of the

isolated signal components with a frequency that is the difference between modulation

frequency of the first and the second pulse as well as double that frequency, for different

values of the inter-pulse time delay τ .

2

Figure 2: FIG. 4 in Hedse et al. 2023

A secondary objective was to potentially compare the results from both codes, which are

obtained by numerical integration, with calculations based on the perturbative expansion

of the density matrix (see Mukamel 1995, pp. 23-31; or section 7.1.2 for an introduction).

The main limitations of this work are time constraints, especially considering the of the

code bases. This means in particular, that is was not possible to look at the code of

the open-source QuTiP toolbox that is the foundation of the code for Hedse et al. 2023.

Also, there was no time to look at the System class of QDT . Therefore, the code that

does the actual density matrix propagation, i.e., solves the Lindblad master equation, was

not investigated directly.

Furthermore, the reproducibility of results between the code basis was only investigated

for one particular simulation, namely a toy model of pulse overlap artefacts in coherent

multidimensional spectroscopy (CMDS) that used only two pulses. The generalizability

of our results is therefore limited. In particular, QDT also allows for much more complex

systems with several coupled n-level systems and reservoirs to be subjected to simulated

spectroscopic measurements. These simulations of many-body effects have not been sub-

jected to testing. A minor point is that MATLAB itself is not open source, so any issues

stemming from there could not be investigated at all. Lastly, a single, ordinary consumer

laptop was used when probing run times.

In the next section, the theory underlying the toolboxes used will be summarized. In

section 3, details of the performed simulations will be discussed. In section 4, the results

from trying to reproduce the results from Hedse et al. with the MATLAB -based QDT

code will be presented and discussed. Finally, in section 5, the findings will be summarized

and it will be hinted at possible angles for further investigation. The Appendix includes

some derivations of equations discussed in section 2.

3

2 Theory

In quantum mechanics, regardless of the specific atom or molecule whose electronic

states one is concerned with, one commonly idealizes the object of study, in such a way

that we assume that the electrons are confined to occupy one of a few energy levels or

states with defined energies. Also, we usually do not concern ourselves with the spatial

dependence of the wavefunctions associated with these energy levels. In the following, we

refer to this set of possible energies that the electrons can have as the system, and we

are going to explore various mathematical tools and techniques to analyse the systems’

behaviour in experiments. In particular, we want to try to understand how we can model

the time evolution of the . That is, understanding the change in occupation of the energy

levels over time, especially when an external potential is added and/or if we consider the

possible loss of energy from the system to the environment.

2.1 Density Operator

If the initial state of a system is known, the system is said to be in a single

pure state |ψ(t)⟩ (Hamm and Zanni 2011, p. 48) and the time evolution of the system

can described by inserting the wavefunction ψ(r⃗, t) associated with the state into the

Schrödinger equation (Rand 2016, p. 13):

iℏ
d

dt
ψ(r⃗, t) = Ĥψ(r⃗, t) (SE)

However, often the initial state of the system is not fully known experimentally, but

instead only the average values or the probability distributions of certain variables such

as positions and momenta are known. Thus, one needs to combine methods from quantum

mechanics and statistical mechanics to describe the (average) time evolution of the system

(Blum 2012, p. 35; Wong 2022, p. 125).

These states are called mixed states or statistical averages and cannot be described by a

single state vector (Hamm and Zanni 2011, p. 50f.; Blum 2012, p. 38), in its place we

have to introduce a new representation of a quantum systems state, the density operator

ρ̂(t), that can describe pure and mixed states.

For pure states, the use of the density operator can be motivated in the following way:

Consider a pure quantum state described by the state vector |ψ(t)⟩. We can write |ψ(t)⟩
as the sum of i orthonormal eigenstates |ϕi⟩ that are eigenvectors/ -functions of an Her-

mitian2 operator Â, since for all Hermitian operators there exits a complete orthonormal

2I.e., Â† = Â

4

basis of eigenvectors, i.e., the operator is diagonalizable (Neumann 1950):
|ψ(t)⟩ =

∑
i

ci(t) |ϕi⟩ s. t.

Â |ϕi⟩ = ai |ϕi⟩
(1)

where ci(t) = ⟨ϕi|ψ(t)⟩ since the |ϕi⟩ are orthonormal, i.e., ⟨ϕi|ϕj⟩ = δij. We have thus

expressed the state vector w.r.t. a convenient basis, which allows us to apply algebraic

methods to quantum mechanical problems, in particular, the (SE) is transformed from a

differential to an eigenvalue equation. Next, we can rewrite the expectation value of the

observable A, i.e., the expectation value of the operator Â, in the following way (Hamm

and Zanni 2011, p. 48f.):

⟨Â⟩ = ⟨ψ(t)|Âψ(t)⟩

=
∑
i

∑
j

ci(t)
∗cj(t) ⟨ϕi|ajϕj⟩︸ ︷︷ ︸

≡Aij

≡
∑
i

∑
j

ci(t)
∗cj(t)Aij,

(2)

where the definition of Aij in the last row essentially means that we represent the operator

Â as a matrix in its eigenvector-basis. In the following, we can omit taking the spacial

dependence of the eigenfunctions into account, and we treat them purely as orthonormal

basis vectors to the state vectors and operators. Similarly, we will also ignore the spatial

dependence of ρ̂(t) and of other operators Â, since we will treat them largely from an

algebraic view point as matrices in the basis formed by the eigenfunctions.

Equation (2) can be written more neatly if we introduce the density operator (Hamm and

Zanni 2011, p. 49; Hamm 2005, p. 1):

ρ̂(t) ≡ |ψ(t)⟩ ⟨ψ(t)|

=
∑
i,j

ci(t)
∗cj(t) |ϕi⟩ ⟨ϕj| (by: (1)) (3)

⇒ ρij(t) ≡ ⟨ϕi|ρ̂(t)|ϕj⟩ = ci(t)
∗cj(t) (4)

⇒ ⟨Â⟩ ≡
∑
i,j

ρijAij ≡ Tr
(
Âρ̂(t)

)
(5)

From equation (4) we can see that the density operator can be written as a matrix in

the same way as other operators. Therefore, it is often referred to as the density matrix

(Blum 2012. p. 39). In the following, we will mostly refer to operators as operators,

unless we explicitly want to treat them as matrices.

5

For a mixed state consisting of n state vectors |ψn(t)⟩3, i.e., we do not know (fully)

the (initial) state of the system, but we know that the system is in state |ψn(t)⟩4 with

probability Wn, which is assumed to be time-independent because it is due to our lack of

knowledge of the initial state of the system. The expectation value of an operator Â for

the mixed state, is thus given by the arithmetic mean of the expectation values ⟨Â⟩n of

Â for state |ψn(t)⟩ (Blum 2012, p. 38):

⟨Â⟩ =
∑
n

Wn ⟨Â⟩n =
∑
n,i,j

Wncn,i(t)
∗cn,j(t)Aij (6)

If we generalize our definition of ρ̂(t) to mixed states in the following way (Blum 2012, p.

39):

ρ̂(t) ≡
∑
n

Wn |ψn(t)⟩ ⟨ψn(t)| (7)

=
∑
n,i,j

Wncn,i(t)
∗cn,j(t) |ϕi⟩ ⟨ϕj| (by: (1)) (8)

⇒ ρij(t) ≡ ⟨ϕi|ρ̂(t)|ϕj⟩

=
∑
n

Wncn,i(t)
∗cn,j(t), (9)

we once again get for ⟨Â⟩ (Blum 2012, p. 40):

⟨Â⟩ ≡ Tr
(
Âρ̂(t)

)
.

Properties of ρ̂ and measures of the purity of a state

Firstly, from equation (7) it follows for the eigenvalues λn of ρ̂:

ρ̂ |ψn(t)⟩ = Wn |ψn(t)⟩ ≡ λn |ψn(t)⟩

⇒ λn = Wn;
(10)

that is, the eigenvalues of ρ̂ are the probability of being in the pure state |ψn(t)⟩, which
is an eigenstate of ρ̂ for all n. Thus,

0 ≤ λn ≤ 1, λn ∈ R∑
i

λn = 1,
(11)

3|ψn(t)⟩ are not necessarily mutually orthogonal.
4We assume that all |ψn(t)⟩ can be expressed in w.r.t. the same basis {|ϕi⟩}

6

which in turn implies that ρ̂ is Hermitian, i.e., ρ̂ = ρ̂†. Furthermore, each element of ρ̂,

ρij, is given by equation (9). This implies that

ρii ≡ ⟨ϕi| ρ̂ |ϕi⟩

=
∑
n

Wn|cn,i(t)|2

= |ci, tot|2,

(12)

which is equal to the probability Pi of being in state |ϕi⟩ for the case of a mixed state.

This implies that (Blum 2012, p. 39f.):
0 ≤ ρii ≤ 1

Tr(ρ̂) =
∑
i

Pi = 1
(13)

Note that when only measuring the populations of individual energy states (and not

coherences, i.e. superpositions between different states, i.e. via their transition dipole

moments, see Sec. 2.3), one cannot distinguish between pure and mixed states. For

example, there is no difference between knowing with 100% certainty that the system is

in the superposition of states |ϕ0⟩ and |ϕ1⟩, |ψ⟩ = 1/
√
2(|ϕ0⟩ + |ϕ1⟩) and knowing that

the system is either purely in state |ψa⟩ = |ϕ0⟩ or state |ψb⟩ = |ϕ1⟩ with 50% probability

each, the diagonal elements of ρ̂ would be the same in both cases. (Hamm 2005, p. 4)

Moreover, the following properties of the density matrix can be shown (Blum 2012, p.

41f.; Hamm and Zanni 2011, p. 52):Tr(ρ̂) = 1, for pure states

Tr(ρ̂) < 1, for mixed states
(14)

Time evolution of the density operator

The time evolution of the density operator can be derived from the Schrödinger equation

(SE) (Hamm 2005, p. 2; Blum 2012, p. 47-51). This derivation can be found in Sec.

7.1.1 in the Appendix. The results is the Liouville-von Neumann equation (LvNE):

d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂], (LvNE)

where the square brackets in the last line denote the commutator of Ĥ and ρ̂.

7

2.2 Dephasing, Lindblad

This section leans heavily on Schlosshauer 2007, pp. 153-168. The (SE) and (LvNE)

are unitary, thus ”a state stays a state” (Wacker 2024, personal communication). But

we want to (phenomenologically) describe processes where a pure state ”loses coherence”

and becomes a statistical mixture, without having to calculate the time evolution of

the (large) density matrix of the environment. Thus, we need a non-unitary process,

i.e. non-unitary terms added to the (LvNE). This approach is called Master equation

approach, and the equations used are called Master equations . Since we are pursuing a

phenomenological approach, we can in principle add anything. For the sake of reasonable

computational times however, one commonly only considers Master equations that are

first-order differential equations w.r.t. time, and that are furthermore local in time,

d

dt
ρ̂S(t) = − i

ℏ
[Ĥ(t) + ĤC(t), ρ̂S(t)] + L̂(ρ̂S(t)),

that is, the superoperator L̂ should only depend on ρ̂S(t), the density matrix of the system

at time t, and not on ρ̂S evaluated at other times. Here, ĤC(t) is the Hamiltonian due

to perturbation of the system by the environment. This effect is referred to as Lamb-

shift. Additionally, for many systems the following two approximations can be made to

simplify the Master equation: The Born approximation assumes firstly that the coupling

between system and environment is weak s.t. they can be treated separately. Secondly,

it assumes that the system is much smaller than the environment s.t. the environment

is not changed significantly by the systems behaviour and the system, much like the

reservoir used to derive the canonical ensemble in statistical mechanics. The Markov

approximation assumes that if the environment has been altered by the system, these

coupling-induced effects will decay rapidly and the environment will return to its initial

state. This is referred as the environment having no memory. This gives the Born-Markov

master equation, the general form of which is not discussed further here. That is because

we will exclusively use a special case of this equation, namely, the Lindbladian. This

class of master equations is designed to not yield unphysical density matrices, which is a

problem with other classes of phenomenological master equations. More specifically, the

Lindbladian is defined to satisfy the following conditions: λn(ρ̂S(t)) ≥ 0

d

dt
Tr(ρ̂S(t)) = 0

∀t, n.

That is, we demand that our master equation preserves the trace of the density matrix

as well as its positivity. This makes sense, since the eigenvalues λn of ρ̂ are equivalent

to the probabilities Wn of being in the pure state |ψn(t)⟩ (see equation (10)) and should

8

therefore always be non-negative. Also, the diagonal elements of ρ̂ correspond to the

probabilities of being in the state |ϕi⟩, thus the trace should remain unchanged (and

equal to 1). By applying these requirements additionally to the assumptions of the Born-

Markov approximation, we obtain the Lindblad form/ Lindbladian/ Gorini–Kossakowski–

Sudarshan–Lindblad (GKSL) equation):

d

dt
ρ̂S(t) = − i

ℏ
[Ĥ(t) + ĤC(t), ρ̂S(t)] +

∑
α,β

Γαβ

(
Ĵαρ̂S(t)Ĵ

†
β −

1

2
ρ̂S(t)Ĵ

†
βĴα − 1

2
Ĵ†
βĴαρ̂S(t)

)
.

This equation can be further simplified by diagonalizing it:

d

dt
ρ̂S(t) = − i

ℏ
[Ĥ(t) + ĤC(t), ρ̂S(t)] +

∑
i

Γi

(
Ĵiρ̂S(t)Ĵ

†
i −

1

2
ρ̂S(t)Ĵ

†
i Ĵi −

1

2
Ĵ†
i Ĵiρ̂S(t)

)
,

where Ĵi are referred to as jump operators. They correspond to certain non-unitary

processes, such as spontaneous emission and dephasing. Γi corresponds to the rate of the

process associated with the jump operator Ĵi.

2.3 Semi-classical approach & transition dipole operator

When a quantum mechanical system is subjected to an external electric field, this macro-

scopic external field is commonly classically. This is known as a semi-classical approach

or model (see Greenberger et al. 2009, p. 699f.). Although being a simplification, it is

often sufficient to the interaction of light with electronic systems, which is in turn the

basis of spectroscopy. Since we are assuming that the each electron can only occupy one

of two possible energy levels, we can conveniently write the total Hamiltonian in the basis

of these two energy eigenstates |ϕg⟩ and |ϕe⟩ of the system Hamiltonian (see equation (7)

in the Appendix):

Ĥ(t) |ψ2-level⟩ =

(
0 F (t)

F ∗(t) ∆

)
·

(
cg(t)

ce(t)

)
=

(
0 µ⃗egE⃗(t)

µ⃗∗
egE⃗(t) ∆

)
·

(
cg(t)

ce(t)

)
(15)

where ∆ = εe − εg is the energy difference between the excited state and the ground

state when the system is subject to the system (unperturbed) Hamiltonian only, and

F (t) = µ⃗egE⃗(t) is the energy perturbation due to the external electric field. Note that

here we have set the energy of the ground state to zero to simplify the computations. The

above expression introduces µ⃗, the transition dipole operator, that couples the transitions

between states to the external electric field. It is superficially analogous with the classical

dipole moment, for instance, it has the same dimensions (charge times length), but it is

a complex vector operator that contains phase factor from the initial and final state. In

an basis set of states, it can be written as a matrix with its elements being defined as

9

(IUPAC 2014, p. 1558):

µ⃗if ≡ ⟨ϕf | ˆ⃗µ |ϕi⟩ ≡ ⟨ϕf |
∑
n

qn · ˆ⃗rn |ϕi⟩ , (16)

where |ϕi⟩ and |ϕf⟩ are the initial and final states, respectively. The sum over n runs over

all charges in the system and sums up the product of their charge qn and their position.

Intuitively, one might think of the above expression as the expectation value of the electric

dipole moment of the transition state or the superposition between the initial and final

state, or as the expectation value of the dipole moment of the overlap of the wavefunctions

of the initial and final state.

2.4 Coherent multidimensional spectroscopy (CMDS)

Figure 3: Diagram of the course of the spectroscopic measurement with CMDS/ 2DES.
In this example, only delay 2 is varied for simplicity. In the simulations descried later
on, only pulses b and c were used, and delay 2 is referred to as τ . The d in delay2=1*d
corresponds to the step size in which τ is varied. (Own diagram, made with MS Excel)

10

In this section, the basic underlying concepts behind Coherent multidimensional spec-

troscopy (CMDS) are introduced. The goal of these methods is to measure decoherence

times and thereby identify substances as well as molecular structures.

In the following, a quick overview of the experimental procedure is given (see Hedse et al.

2023 and Fresch et al. 2023 for more details): A long sequence of laser pulse trains, with

3-4, short, pulses5 per pulse train, is sent onto a sample; followed by inter-train delay

time that is long relative to the inter-pulse delays within the train and that allows for a

significant amount of spontaneous emission to occur. The base frequencies (wavelengths)

of the light are constant and lie within a relatively broad spectrum since the pulse width -

measured as full width at half maximum (FWHM) - is on the order of 100fs (= 10−13 s).

The spectrum should contain the resonance frequencies of the transitions of interest of

substances (potentially) present in the sample.

The inter-pulse delays within the pulse train are different between different pairs of con-

secutive pulses, and are held constant between different pulse trains within the same

sequence of pulse trains. They are varied between different sequences of pulse trains and

therefore, by plotting the integrated rate of spontaneous emission, which is proportional

to the integrated excited state population, against the inter-pulse delay, the decay times

of the coherences (superpositions) can be determined.

Additionally, the amplitude of each pulse is modulated with a different frequency, s.t.

the Fourier transform (FT) can be used to identify if the rate of spontaneous emission is

proportional to the intensity - and therefore the modulation frequency - of one or more of

the pulses. In the latter case, the frequency of the signal from spontaneous emission would

be the sum and/or difference of the frequencies of the pulses it is proportional to. Fig. 3

tries to illustrate the measurement procedure. Note that Hedse et al. only simulated two

pulses per pulse train, since that is sufficient to demonstrate the pulse overlap artefacts.

3 Methods

3.1 General research methodology

Since the size of theQDT and theQuTiP code was to large, the approach in this thesis was

high-level testing of the codes, in particular trying to get insight into the actual influence

of the different parameters of each toolbox, in particular for QDT , since Kenneweg et al.

claim that the user should be able to perform meaningful simulations ”without requiring

[...] an explicit knowledge of the underlying math”. Since there are many potentially

relevant parameters, this is a multifactorial optimization process, which was approached

5only two in this simulations since we only want to prove the point that pulse overlap causes artefacts

11

iteratively. The results in the next section will therefore be presented together with the

conclusions drawn from the results and the adaptations that were performed and led to

a new set of simulation results.

3.2 Setting up the the simulations with QDT

In the following, we will compare the general simulation approaches of the two codes. A

table with the symbols used in this section can be found on page VII. Both codes simulate

two phase matched, ultra-short laser pulses with a Gaussian envelope and the modulation

phase φk. Thus, the electric field E⃗k(t) of the kth pulse is given by:

E⃗k(t) = E⃗max · exp
(
−(t− tk)

2

2σ2

)
· cos(ω(t− tk) + φk), (17)

where E⃗max is the amplitude of the electric field of the laser pulses, tk is the time when

peak of the kth pulse occurs, ω is the angular frequency of the laser light, φk is the

modulation phase of the kth pulse, and σ is a pulse width parameter of the Gaussian

pulses that is analogous to the standard derivation. The difference between Hedse et

al. 2023 and QDT is that Hedse et al. use modulation frequencies ϕk to modulate the

amplitude of the laser beam and to obtain the modulation phases φk:

φk = 2π · nt∆ttϕk.

⇒ ∆φ = φ1 − φ2 = 2π · nt∆tt(ϕ1 − ϕ2), (18)

where nt is the number of the current pulse train in the pulse train sequence, and ∆tt

is the time difference between two pulse trains. In contrast, QDT , the phase shift ∆φ

between the pulses is obtained by explicit phase-cycling (see Tan 2008 for more details)

instead, which is implemented in the CMDS class of QDT . Phase-cycling systematically

runs through all possible combinations of phases of the two pulses, which means that it is

more efficient at probing pulse phases than phase cycling, but it only works if the desired

pulse phases are divisors of 360◦ or 2π, respectively. This is shown in Fig. 4.

12

Figure 4: Illustration of different strategies for probing inter-pulse phase differences.

Since we are looking for a signal component with whose phase is the difference between

the phases of the first and second pulse, it is sufficient to only vary the phase of second

pulse, φ2, which also speeds up computations considerably. This is illustrated in the phase

cycling 2 scheme in above figure for 12 phases. Mathematically, this means that

∆φ = 2π · nt

N2

, (19)

where N2 is the number of different phases φ2 of the second pulse to be probed. In

the following, for testing purposes, only 6 phases were used in the simulations, though, in

order to reduce run time and to get a first impression of the curve shape. Later the python

code was re-run with only 6 phases as well due to limitations of available computational

power and to enable a better ground for comparison. Also, later on, the number of phases

was increased to test the influence of the number of phases (see Sec. 4.8)

13

parameter value
offset= t1 − t0 0 fs6

Pulse delay step size 5 fs
Total delay steps used 41
gamma0 1.0
N1 1
N2 6
Nt (per τ) 6
runTmax 800 fs
runTstep 0.5 fs

Table 1: Values of the parameters used in the initial simulations, that where different
from the values used in Hedse et al., or that were not specified in the paper. Names typeset
in typewriter font correspond to variable names in the MATLAB script written for the
simulations with QDT . The parameters have the following significance: gamma0 specifies
that QDT should performing the calculations in the lab frame, a opposed to performing
them in the rotating frame. runTmax is is the time up to which the system is to be
simulated, that is, the density matrix to be propagated for each simulation run (pulse
pair/train, see Fig. 3). runTstep is the time step of that simulation run, i.e. the step
size of the numerical integration

Apart from using phase-cycling, the parameters from TABLE 1 from Hedse et al. 2023

were generally used to be able to compare the results with FIG. 4 in Hedse et al. 2023.

That means, a two-level system with an energy difference ∆ = 1.46 eV between the

ground state |ϕg⟩ and the excited state |ϕe⟩. However, the amount of time-steps that

were used to probe the inter-pulse delay τ = t2− t1 in the range [0, 200] femtoseconds (fs)

was reduced from the 334 used in Hedse et al. to 41, because the resolution in τ is not

so important for first comparison of the curve shape of the amplitude vs tau plot. Lastly,

since not specified in Hedse et al., the offset= t1 − t0 of the first pulse, that is, the time

difference between the start of the simulation and the maximum of the Gaussian-shaped

laser pulse, was initially set to 0, but later changed to 200 fs to match with the value

used in Hedse et al. (see Sec. 4.2). Tab. 1 shows the values of the parameters used in the

initial simulations, that where different from the values used in Hedse et al., or that were

not specified in Hedse et al. 2023.

4 Results & Discussion

4.1 Initial results

The result from this simulation with QDT in MATLAB is shown in Fig. 5a. It shows one

signal for each of the 6 phases. Each signal is periodic w.r.t. τ with the same periodicity,

but shifted w.r.t. one another. The shift is proportional to ∆φ. The envelope of the

6This was later changed to 200 fs to match the QuTiP -based script.

14

signals didn’t match FIG. 4 in Hedse et al. 2023 (which is reproduced in Fig. 2 in the

Introduction). In the following, we will describe the conclusions drawn from this initial

result and the changes made to the simulation code/ parameters.

4.2 offset

The envelopes in Fig. 5c and d correspond to the lowest two coefficients of the discrete

Fourier transform (DFT) of the raw signal w.r.t. ∆φ. The procedure of isolating these

envelopes, similar to how it was done in Hedse et al. 2023, will be discussed in Sec. 4.5.

Firstly, regarding the shape of the envelope, it seems that one needs to use offset=200

fs, which is the value used in Hedse et al. 2023. Otherwise, the left tail of the first, and -

crucially - at low values of τ also the second, Gaussian pulse are cut off, i.e., occur before

the start of the simulation window. This means that the sum of areas under the curve of

electric field of the two pulses that is actually fired onto the system increases with τ for

low τ , which most likely explains the positive slope of the signal’s envelope observed for

low τ . From now on, offset=200 fs was always used, which is the value used by Hedse

et al. 2023.

4.3 Oscillations of the signal

Moreover, when the resolution in τ was increased to better resolve the oscillations w.r.t.

τ 7, it turned out that the oscillations actually had a shorter period. At a resolution of

0.02 fs, it was finally possible to resolve the oscillations. This is illustrated in Fig. 14 in

the Appendix. The periodicity was calculated as illustrated in Fig. 15 in the Appendix.

The result is 2.8289 fs. This is within 0.13% error margin of the value of:

h

∆
=

h

1.46 eV
=

h

1.46 · 1.6022 · 10−19 J
= 2.8326 fs,

where ∆ is the energy difference between the ground state and the excited state of the

two-level system.

7It is only shown for ∆φ = 0, but the periodicity is the same for other values of ∆φ

15

(a) offset=0 fs, individual signals (b) offset=200 fs, individual signals

(c) offset=0 fs, ϕ1 − ϕ2 DFT components (d) offset=200 fs, ϕ1−ϕ2 DFT components

Figure 5: Comparing no offset (sub-figures a and c), and an offset of 200 fs (sub-
figures b and d). The legends in sub-figures a and b display the value of ∆φ.

4.4 Explaining the signal’s periodicity w.r.t. τ from the (LvNE)

To explain this periodicity, we are going to make some simplifications and then solve

the (LvNE). The full derivation is given in the Appendix (Sec. 7.1.3). The relevant

Hamiltonian Ĥ(t) is given by (see equation (15)):

Ĥ(t) =

(
0 F (t)

F ∗(t) ∆

)
,

where F (t) is the time-dependent perturbation due to the external electric field. Solving

the (LvNE) for this Hamiltonian yields the following expression for ρ22(t):

ρ22(t) =
2

ℏ2

∫ t

t0

dt′ Im

{
iF (t′)

∫ t′

t0

dt′′ e+i∆ℏ ·(t′′−t′) · F ∗(t′′)

}

16

Now, we need to plug in F (t). Combining equations (15) and (17) yields:

F (t) =
2∑

k=1

E⃗maxµ⃗eg · exp
(
−(t− tk)

2

2σ2

)
· cos(ω(t− tk) + φk);

that is, the Gaussian pulses simulated with QDT and the code from Hedse et al. However,

in the following derivation, we are going to approximate them by Dirac delta functions,

since we are only interested in a more qualitative understanding of the signal’s oscillations:

F (t) =
2∑

k=1

E⃗maxµ⃗eg · σ
√
2πδ(t− tk) · cos(ω(t− tk) + φk).

This yields the following expression for ρ22(t):

ρ22(t) =
Amp

2
·
[
cos2(φ1) + cos2(φ2) + 2 Im

{
i cos(φ1) cos(φ2) · e−i∆ℏ ·(t2−t1)

}]
=

Amp

2
·
[
cos2(φ1) + cos2(φ2) + 2 cos(φ1) cos(φ2) cos

(
∆

ℏ
τ

)]
,

with:

Amp =
4πσ2

ℏ2
∣∣∣E⃗maxµ⃗eg

∣∣∣2 .
Thus, the angular frequency ωs of the signal w.r.t. τ is equal to ∆

ℏ . This model therefore

- at least qualitatively - explains the oscillations of the signal w.r.t. τ with the periodicity

T =
2π

ωs

=
2π

∆/ℏ
=
h

∆
.

Furthermore, the signal is proportional to cos(1 ·∆φ). Note that this 1·(ϕ1−ϕ2) contribu-

tion is thus not a pulse-overlap artefact, because we modelled it under the approximation

that the pulses are delta functions, that is, the pulse width was approximated to be 0.

Additionally, there is a contribution proportional to cos(2 ·∆φ), which is the pulse over-

lap artefact (see FIG. 2 in Hedse et al. 2023). However, the phase shift of the curves

in Fig. 15a to one another is proportional to 1 · ∆φ. This makes sense, because the

un-normalised 1 · (ϕ1−ϕ2) signal component is on the order of 100 times greater than the

2 · (ϕ1 − ϕ2) component. However, in the following, both contributions are always plot-

ted normalised, to be able to compare their τ -dependence. Moreover, also the cos2(φk)

components are four times weaker than the 2 cos(φ1) cos(φ2) cos
(
∆
ℏ τ
)
, and also only φ2

was varied in QDT , which is probably why the periodic phase shift observed between the

signals of different φ only corresponded to the cos(φ1) term.

17

4.5 Isolating the envelope of the signal

We now want to finally isolate the envelope of the m ·∆φ, m ∈ {1, 2} signal component,

which is equivalent to m(ϕ1 − ϕ2) signal component in Hedse et al. 2023, since ∆φ is

proportional to (ϕ1 − ϕ2) for the modulation frequency approach employed there. (see

(18)). Since ∆φ is obtained differently in QDT (See (19)), we will perform a discrete

Fourier transform (DFT) w.r.t. to ∆φ, in order for the approach and its result to be valid

for datasets acquired from either simulation.

Previously, we have seen that the raw signal has components periodic w.r.t. τ and m∆φ.

Mathematically,

ρ22 ∝ a · b, s.t.:

{
a(τ + h/∆) = a(τ)

b(m∆φ+ 2π) = b(m∆φ)

Furthermore, the envelopes/ amplitudes of the signal decrease with increasing τ com-

paratively slowly. This τ -dependence is due to pulse overlap artefacts and spontaneous

emission (see Hedse et al. 2023), both of which are not taken into account by the model

presented in the previous section. Since the time scale over which the envelope varies

is significantly bigger than the period of approximately 3 fs, we can assume the two τ -

dependences to be separable. We can thus write ρ22 as a multivariable function in the

following way:

ρ22

(
τ,

∆

ℏ
τ ±m∆φ

)
,

where the first argument corresponds to the time-dependence of the envelope only, and the

second argument to the τ -dependence due to the cos
(
∆
ℏ τ
)
term as well as the cos(m∆φ)

dependence. The ± comes from the fact that cos(α) cos(β) = [cos(α + β)+cos(α− β)]/2.

Here, we have not considered the φ1+φ2 dependence, because we are not interested in it.

The DFT was performed as follows to isolate the Fourier coefficients Am∆φ of the m ·∆φ
frequency component:

|Am∆φ| =

∣∣∣∣∣ 1Nt

Nt−1∑
nt=0

ρ22

(
τ,

∆

ℏ
τ ± 2πm

nt

Nt

)
· exp

(
2πi ·mnt

Nt

)∣∣∣∣∣
Introducing the substitution

Θ±
m =

∆

ℏ
± 2πm

nt

Nt

18

gives:

|Am∆φ| =

∣∣∣∣∣ 1Nt

Nt−1∑
nt=0

ρ22(τ,Θ
±
m) · exp

(
i ·
[
±Θ±

m ∓ ∆

ℏ
τ

])∣∣∣∣∣
=

∣∣∣∣∣exp
(
∓i∆

ℏ
τ

)[
1

Nt

Nt−1∑
nt=0

ρ22(τ,Θ
±
m) · exp

(
±iΘ±

m

)]∣∣∣∣∣
≡
∣∣∣∣exp(∓i∆ℏ τ

)∣∣∣∣︸ ︷︷ ︸
=1

∣∣AΘ±
m
(τ)
∣∣ ,

which is the Fourier coefficient of ρ22 w.r.t. Θ
±
m and thus not dependent on that variable.

This means that by taking the absolute value of the first and second coefficients of the

discrete Fourier transform (DFT) of the raw signal w.r.t. ∆φ, respectively, our signal

processed in this way only retains the τ -dependence of the slowly varying envelope. This

is what we want since it is equivalent to the processing done in Hedse et al. 2023. This

processing was first conducted with self-written code and then using a function from QDT

to calculate 1
Nt

exp
(
2πi ·m nt

Nt

)
automatically.

4.6 Comparison of intermediate results

After this improvements, the intermediate results obtained with QDT were compared

with the results from python code. The parameters, used in the simulation can be found

in Tab. 2. The isolated envelopes of the signals have a very similar shape, as it can be

seen in Fig. 6. However, they diverge from each other for large values of τ . Thus, further

inspection of the codes was undertaken.

Figure 6: Comparing intermediate results obtained with QDT with results from python
code. Parameters: See Tab. 2.

19

parameter QDT python
N1 1 -
N2 6 -
ϕ1 [MHz] - 0
ϕ2 [MHz] - 50/3
∆tt [ns] - 10
∆ϕ [rad] nt2π/6
Nt 6
integration window* fixed variable
pulse width [fs]** ≈ 141 100
runTstep [fs] 0.5 ≈ 0.1

Table 2: Parameters used in the simulations for Fig. 6
*”fixed”≡ [0, 800] fs, ”variable”≡ [offset+ τ + 2 · FWHM+ 50 fs].
**FWHM of electric field amplitude

4.7 Integration time

The next factor investigated and compared between the two codes was the integration

time of the excited state population (|e⟩ ⟨e|). It turned out that Hedse et al. use a dynamic

integration window of 50 fs starting after the second pulse has subsided, in particular the

integration interval is defined as follows:

[offset+ τ + 2 · FWHM+ 50 fs].

In contrast, the default return function of the CMDS class of QDT uses a static integration

window that in fact runs over the whole simulation time; that is, independent of the value

of τ , the integration interval in QDT is defined as:

[0, 800] fs.

Since the python code was easier to change, for the purpose of comparison of the codes,

the python codes integration window was changed by Andreas Wacker to match the one of

QDT . (see Tab. 3). The simulation results from the changed python code are significantly

altered, but they still do not match with the results from QDT , as can be seen in Fig. 7.

parameter python QDT
integration window* variable fixed fixed
pulse width [fs]** 100 100 ≈ 141
runTstep [fs] ≈ 0.1 ≈ 0.1 0.5

Table 3: Parameters used in the simulations for Fig. 7
*”fixed”≡ [0, 800] fs, ”variable”≡ [offset+ τ + 2 · FWHM+ 50 fs].
**FWHM of electric field amplitude

20

Figure 7: Comparing the results from the python code for two different integration
windows with the results from QDT . The parameters that were changed compared to
Tab. 2 are listed in Tab. 3. ”fix.”≡ fixed, ”var.”≡ variable.

4.8 Number of phases probed

Another difference between the implementations is the number of phase differences cal-

culated. In Hedse et al., the maximal phase difference is equal to

2π(ϕ1 − ϕ2) ·∆tt ·Nt = 2π · 500 kHz · 14 ns · 5000 = 35 · 2π,

which means effectively, a thousand different phase differences were probed, with the in-

crement of the phase difference between subsequent pulse trains being 14π/1000, and each

value of the phase difference was probed by 5 pulse trains, which appears to be redundant.

The effect of increasing the number of phases from 6 to 1000, which is equivalent to what

was simulated in Hedse et al., was studied in Fig. 8.

(a) (b)

Figure 8: The effect of increasing N2. a shows the overlays of the 1 · (ϕ1 −ϕ2) and the
2 · (ϕ1 − ϕ2) contributions for N2 = 6 and N2 = 1000. b shows the relative difference
between the N2 = 6 and N2 = 1000.

21

Apart from an outlier for τ = 190 fs, the relative difference was below 10−4 for the

2 · (ϕ1 − ϕ2) contribution, and even lower for the 1 · (ϕ1 − ϕ2) contribution. Also,

changing the python code from 1000 to 6 phase differences, did not alter the results of

the python code significantly. Therefore, the number of phases is largely irrelevant for the

shape of DFT component’s curves, and most certainly does not explain the differences

observed. Also, it was tried to vary the phases of both pulses, but this also did not alter

the results. This is what we expect, since we are isolating the signal components with

the multiple of the phase difference between the pulses, so it makes sense that only the

pulse difference matters. In the following, other parameters were varied whilst keeping

the number of phases differences at 6 in both codes to speed up the computations and to

make it easier to compare the raw results. Also, only φ2 was varied in both codes since

we are only looking at a signal contribution with the difference frequency.

4.9 Pulse width

The next discrepancy found was in the conversion of the FWHM into the sigma parameter

for the Gaussian envelope of the laser pulses:

|E⃗|(t) =
2∑

k=1

|E⃗0| · exp
(
−(t− tk)

2

2σ2

)
· cos

(
ω(t− tk) +

2π · nt

Nk

)
,

with σ =
FWHM

2
√

2 ln(2)
, and thus:

|E⃗|(t) =
2∑

k=1

|E⃗0| · exp
(
−4 ln(2)

(t− tk)
2

FWHM2

)
· cos

(
ω(t− tk) +

2π · nt

Nk

)
.

However, the QDT code uses exp
(
−2 ln(2) (t−tk)

2

FWHM2

)
, possibly because they define the

FWHM as the FWHM of the laser intensity, which is the square of the amplitude:

1 function exF = inner(t)

2 exF = amp*exp(-2*log (2) *((t-tdsum (1))/(tp)).^2) .*

3 exp(-1i*(we*(t-gamma*tdsum (1)) + phsum (1)))...

4 + amp*exp(-2*log(2)*((t-tdsum (2))/(tp)).^2) .*

5 exp(-1i*(we*(t-gamma*tdsum (2)) + phsum (2)));

6 exF = real(exF);

7 end

Listing 1: Code for the electric field strength over time for a two-pulse sequence of

Gaussian pulses.

Thus, to have the same pulse width as the python code, the pulse width parameter in the

MATLAB code was set to (100 fs)/
√
2. This changed the curves significantly, but still

the differences between the results remained (see Fig. 9 and Tab. 4).

22

Figure 9: Comparing the results from QDT before and after correcting the pulse width
to match the results from the python code. The results from the python code are also
shown for comparison. The parameters that were changed compared to Tab. 2 are listed
in Tab. 4. ”fix.”≡ fixed, ”var.”≡ variable.

parameter QDT python
integration window* fixed fixed fixed
pulse width [fs]** ≈ 141 100 100
runTstep [fs] 0.5 0.5 ≈ 0.1

Table 4: Parameters used in the simulations for Fig. 9
*”fixed”≡ [0, 800] fs, ”variable”≡ [offset+ τ + 2 · FWHM+ 50 fs].
**FWHM of electric field amplitude

4.10 Step size of the numerical integration

Another parameter investigated was the step size of the numerical integration runTstep.

Hedse et al. use a step size of 0.012 fs. As can be seen in Fig. 10 (sub-figure a), decreasing

runTstep from 0.5 fs to 0.1 shifts the curves of both the 1 · (ϕ1−ϕ2) and the 2 · (ϕ1−ϕ2)

contribution slightly upwards, but not anywhere close to the results from Hedse et al.

Further decreasing runTstep from 0.1 to 0.01 fs did not alter the results any further

(sub-figure c), thus it seems that this resolution is sufficient and also that runTstep is

not responsible for the discrepancies.

23

(a) Overlay of runTstep=0.5 and 0.1 fs. (b) Relative difference between runTstep=0.5
and 0.1 fs.

(c) Overlay of runTstep=0.1 and 0.01 fs. (d) Relative difference between runTstep=0.1
and 0.01 fs.

Figure 10: Comparison of results for different values of runTstep. Other parameters
are the same as listed in Tab. 2 for QDT .

Fig. 16 in the Appendix shows the electric field of the second pulse at different values

of runTstep, which shows that runTstep=0.1 fs is sufficient to resolve the oscillations of

the electric field with the laser frequency of 1.45 eV and therefore further strengthening

the claim that this resolution is sufficient. Therefore, runTstep=0.1 fs was used for all

further simulations.

4.11 Unit conversion

A last point of scrutiny was the unit conversions functionalities provided by QDT . Since

the code uses atomic units, the toolbox offers extensive unit conversion factors so that the

user can easily multiply parameter given in SI units by the provided conversion factors

to convert them into atomic units, and the reverse for the simulation results. However,

the conversion factor from fs to atomic time units is 41.49 instead of 41.34, which means

24

an error of 0.37%. This does not affect the results significantly, but it was replaced by a

manually set conversion factor because it might lead to imprecisions at high values of τ :

200 fs · 0.37 = 0.74 fs,

which might be significant w.r.t. a periodicity of 2.85 fs. Motivated by this discovery, the

other unit conversion factor used, the unit conversion factors between electronvolt and

atomic units of angular frequency were checked, but they are correct to high precision.

4.12 Comparison of final results

Fig. 11 shows the overlay of curves of the results obtained with QDT and with the QuTiP -

based python code from the paper from Hedse et al., after both codes were changed to

have matching parameters (see Tab. 5). In particular, the python code was changed in

that ϕ1 was set to 0 and ϕ2 was set so that ∆φ = nt
2π
N2

.

Figure 11: Comparing the final results from QDT with final results from python code,
after trying to have matching parameters. The parameters that were matched are listed
in Tab. 5 below.

parameter QDT python
integration window* fixed
pulse width [fs]** 100
runTstep [fs] 800/213 ≈ 0.1

Table 5: Parameters used in the simulations for Fig. 11
*”fixed”≡ [0, 800] fs, ”variable”≡ [offset+ τ + 2 · FWHM+ 50 fs].
**FWHM of electric field amplitude

As it can be seen from the figure, the results still do not match.

25

4.13 Curve overlays & differing phases

To gain additional insight, ρ22(τ,∆φ) was plotted against τ for fixed values of ∆φ (Fig.

12) and against ∆φ for fixed values of τ (Fig. 13). The parameters of Tab. 5 were used.

Figure 12: Plot of ρ22(τ,∆φ) against τ for ∆φ = 0◦. Other parameters: See Tab. 5.

(a) τ = 0 fs. (b) τ = 96 fs.

Figure 13: Plot of ρ22(τ,∆φ) against ∆φ for fixed values of τ . Other parameters: See
Tab. 5.

It can be seen, firstly that the envelopes diverge w.r.t. each other. Secondly, the curves

for ρ22(τ,∆φ) from both simulations start off in phase for small τ , but seem to get out of

phase for larger values of τ . No explanation could be found to account for this behaviour.

26

5 Conclusions & Outlook

It was not possible to reproduce the results from Hedse et al. with the QDT code, in

particular it was only possible to reproduce FIG. 4 in Hedse et al. 2023 qualitatively,

but not quantitatively. Also after changing the code used in Hedse et al., in order for the

simulation to resemble more closely the simulation performed by theQDT code, the curves

produced by the two code bases have significant quantitative discrepancies between them,

for which no explanation has been found to date, even though several smaller discrepancies

could be resolved, with the differences in the definition of the integration time and the

definition of the FWHM having the largest influence on the results. However, changing

the FWHM parameter in the QDT -based simulation to match the QuTiP -based codes

definition, made the results obtained with QDT more dissimilar from the results obtained

with the python code from Hedse et al., suggesting that there are other factors causing

the differences.

A possible angle for further study could be to investigate why the raw signals from both

simulations start off in phase for small τ , but seem to get out of phase for larger values

of τ .

27

6 References

Adams, Robert A. Calculus: A Complete Course. 8. ed. Toronto: Pearson Education, 2014.

isbn: 978-0-321-78107-9 978-1-4479-5892-5 978-0-273-74290-6.

BIPM, (Bureau international des poids et mesures). “Conférence Générale Des Poids et

Mesures - Comptes Rendus de La 26e Réunion de La CGPM”. In: Comptes Rendus de

La 26e Réunion de La Conférence Générale Des Poids et Mesures (Novembre 2018).

Conférence Générale Des Poids et Mesures. Nov. 16, 2018.

Blum, Karl. Density Matrix Theory and Applications. Vol. 64. Springer Series on Atomic,

Optical, and Plasma Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. isbn:

978-3-642-20560-6. doi: 10.1007/978-3-642-20561-3.

Brown, Peter N., George D. Byrne, and Alan C. Hindmarsh. “VODE: A Variable-Coefficient

ODE Solver”. In: SIAM Journal on Scientific and Statistical Computing 10.5 (Sept.

1989), pp. 1038–1051. doi: 10.1137/0910062.

Curtiss, C. F. and J. O. Hirschfelder. “Integration of Stiff Equations”. In: Proceedings of

the National Academy of Sciences of the United States of America 38.3 (Mar. 1952),

pp. 235–243. doi: 10.1073/pnas.38.3.235. pmid: 16589085.

Envelope (Waves) -Wikipedia. In: Wikipedia. Jan. 5, 2024.

Fresch, Elisa et al. “Two-Dimensional Electronic Spectroscopy”. In: Nature Reviews Meth-

ods Primers 3.1 (Nov. 9, 2023), pp. 1–16. doi: 10.1038/s43586-023-00267-2.

Gear, C. W. “The Numerical Integration of Ordinary Differential Equations”. In: Math-

ematics of Computation 21.98 (1967), pp. 146–156. doi: 10.1090/S0025-5718-1967-

0225494-5.

Greenberger, Daniel, Klaus Hentschel, and Friedel Weinert, eds. Compendium of Quantum

Physics. Berlin, Heidelberg: Springer, 2009. isbn: 978-3-540-70622-9. doi: 10.1007/

978-3-540-70626-7.

Gupta, V. P., ed. Molecular and Laser Spectroscopy. Volume 3. Amsterdam Oxford Cam-

bridge, MA: Elsevier, 2022. isbn: 978-0-323-91249-5.

Hamm, Peter. Principles of Nonlinear Optical Spectroscopy: A Practical Approach - or:

Mukamel for Dummies. Aug. 26, 2005. url: https://www.chem.uci.edu/~dmitryf/

manuals/Fundamentals/Mukamel%20for%20dummies.pdf (visited on 03/01/2024).

Hamm, Peter and Martin T. Zanni. Concepts and Methods of 2d Infrared Spectroscopy.

Cambridge ; New York: Cambridge University Pres, 2011. isbn: 978-1-107-00005-6.

Hedse, Albin et al. “Pulse Overlap Artifacts and Double Quantum Coherence Spec-

troscopy”. In: The Journal of Chemical Physics 158.14 (Apr. 12, 2023), p. 141104.

doi: 10.1063/5.0146148.

IUPAC. Compendium of Chemical Terminology - IUPAC Gold Book. International Union

of Pure and Applied Chemistry, Apr. 24, 2014.

28

https://doi.org/10.1007/978-3-642-20561-3
https://doi.org/10.1137/0910062
https://doi.org/10.1073/pnas.38.3.235
16589085
https://doi.org/10.1038/s43586-023-00267-2
https://doi.org/10.1090/S0025-5718-1967-0225494-5
https://doi.org/10.1090/S0025-5718-1967-0225494-5
https://doi.org/10.1007/978-3-540-70626-7
https://doi.org/10.1007/978-3-540-70626-7
https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/Mukamel%20for%20dummies.pdf
https://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/Mukamel%20for%20dummies.pdf
https://doi.org/10.1063/5.0146148

Johansson, J. R., P. D. Nation, and Franco Nori. “QuTiP 2: A Python Framework for the

Dynamics of Open Quantum Systems”. In: Computer Physics Communications 184.4

(Apr. 1, 2013), pp. 1234–1240. doi: 10.1016/j.cpc.2012.11.019.

– “QuTiP: An Open-Source Python Framework for the Dynamics of Open Quantum

Systems”. In: Computer Physics Communications 183.8 (Aug. 1, 2012), pp. 1760–1772.

doi: 10.1016/j.cpc.2012.02.021.

Kenneweg, Tristan et al. “QDT— AMatlab Toolbox for the Simulation of Coupled Quan-

tum Systems and Coherent Multidimensional Spectroscopy”. In: Computer Physics

Communications 296 (Mar. 1, 2024), p. 109031. doi: 10.1016/j.cpc.2023.109031.

Kong, Qingkai, Timmy Siauw, and Alexandre M. Bayen. Python Programming and Nu-

merical Methods: A Guide for Engineers and Scientists. London: Elsevier, Academ-

ic Press, 2021. isbn: 978-0-12-819550-5 978-0-12-819549-9. doi: 10.1016/C2018-0-

04165-1.

Minhaeng Cho, ed. Coherent Multidimensional Spectroscopy. Vol. 226. Springer Series in

Optical Sciences. Singapore: Springer, 2019. isbn: 9789811397523. doi: 10.1007/978-

981-13-9753-0.

Mueller, Stefan et al. “Rapid Multiple-Quantum Three-Dimensional Fluorescence Spec-

troscopy Disentangles Quantum Pathways”. In: Nature Communications 10.1 (Oct. 18,

2019), p. 4735. doi: 10.1038/s41467-019-12602-x.

Mukamel, Shaul. Principles of Nonlinear Optical Spectroscopy. Oxford Series in Optical

and Imaging Sciences 6. New York: Oxford Univ. Press, 1995. isbn: 978-0-19-509278-3

978-0-19-513291-5.

Neumann, Johann Von. “Eine Spektraltheorie Für Allgemeine Operatoren Eines Unitären

Raumes. Erhard Schmidt Zum 75. Geburtstag in Verehrung Gewidmet”. In: Mathema-

tische Nachrichten 4.1-6 (1950), pp. 258–281. doi: 10.1002/mana.3210040124.

Press, William H., ed. Numerical Recipes: The Art of Scientific Computing. 3. ed. Cam-

bridge: Cambridge University Press, 2007. isbn: 978-0-521-88068-8.

Qutip.Mesolve — QuTiP 4.0 Documentation. 2011. url: https://qutip.org/docs/4.

0.2/modules/qutip/mesolve.html (visited on 05/08/2024).

Rand, Stephen C. Lectures on Light: Nonlinear and Quantum Optics Using the Density

Matrix. Oxford University Press, June 9, 2016. isbn: 978-0-19-181783-0. doi: 10.1093/

acprof:oso/9780198757450.001.0001.

Schlosshauer, Maximilian. Decoherence and the Quantum-To-Classical Transition. Fron-

tiers Collection. Berlin, Heidelberg: Springer, 2007. isbn: 978-3-540-35773-5. doi: 10.

1007/978-3-540-35775-9.

Scipy.Integrate.Ode — SciPy v1.13.0 Manual. url: https://docs.scipy.org/doc/

scipy/reference/generated/scipy.integrate.ode.html (visited on 05/08/2024).

29

https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2023.109031
https://doi.org/10.1016/C2018-0-04165-1
https://doi.org/10.1016/C2018-0-04165-1
https://doi.org/10.1007/978-981-13-9753-0
https://doi.org/10.1007/978-981-13-9753-0
https://doi.org/10.1038/s41467-019-12602-x
https://doi.org/10.1002/mana.3210040124
https://qutip.org/docs/4.0.2/modules/qutip/mesolve.html
https://qutip.org/docs/4.0.2/modules/qutip/mesolve.html
https://doi.org/10.1093/acprof:oso/9780198757450.001.0001
https://doi.org/10.1093/acprof:oso/9780198757450.001.0001
https://doi.org/10.1007/978-3-540-35775-9
https://doi.org/10.1007/978-3-540-35775-9
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

Tan, Howe-Siang. “Theory and Phase-Cycling Scheme Selection Principles of Collinear

Phase Coherent Multi-Dimensional Optical Spectroscopy”. In: The Journal of Chemical

Physics 129.12 (Sept. 22, 2008), p. 124501. doi: 10.1063/1.2978381.

Weisstein, Eric W. Matrix Norm. url: https://mathworld.wolfram.com/ (visited on

03/26/2024).

Wong, Hiu Yung. Introduction to Quantum Computing: From a Layperson to a Program-

mer in 30 Steps. Cham: Springer International Publishing, 2022. isbn: 978-3-030-98339-

0. doi: 10.1007/978-3-030-98339-0.

30

https://doi.org/10.1063/1.2978381
https://mathworld.wolfram.com/
https://doi.org/10.1007/978-3-030-98339-0

7 Appendix

7.1 Additional derivations

7.1.1 Derivation of the (LvNE)

d

dt
ρ̂ =

d

dt

∑
n

Wn |ψn(t)⟩ ⟨ψn(t)|

=
∑
n

Wn

[(
d

dt
|ψn(t)⟩

)
⟨ψn(t)|+ |ψn(t)⟩

(
d

dt
⟨ψn(t)|

)]

=
∑
n

Wn

[(
− i

ℏ
Ĥ |ψn(t)⟩

)
⟨ψn(t)|+ |ψn(t)⟩

(
− i

ℏ
Ĥ |ψn(t)⟩

)†
]

(by (SE))

=
∑
n

Wn

[(
− i

ℏ
Ĥ |ψn(t)⟩

)
⟨ψn(t)|+ |ψn(t)⟩

(
i

ℏ
⟨ψn(t)| Ĥ

)]

= − i

ℏ

(
Ĥ
∑
n

Wn |ψn(t)⟩ ⟨ψn(t)| −
∑
n

Wn |ψn(t)⟩ ⟨ψn(t)| Ĥ

)
= − i

ℏ
[Ĥ, ρ̂] (LvNE)

7.1.2 Interaction picture & perturbative expansion

The goal of this section is to derive an expression for the time evolution of an other-

wise isolated quantum system that is subjected to a weak (optical) interaction that can

be treated perturbatively. The derivations are largely taken from Hamm 2005, pp. 12f.,

16-19; and Hamm and Zanni 2011, pp. 54-57.

We begin by splitting the full Hamiltonian Ĥ(t) into the time-independent system Hamil-

tonian Ĥ0, which describes the total energy of the system in the absence of a perturbation,

and the Hamiltonian of the perturbation Ĥ ′(t), that contains the potential(s) due to the

interaction:

Ĥ(t) = Ĥ0 + Ĥ ′(t), (20)

s.t. ∥Ĥ ′(t)∥ ≪ ∥Ĥ0∥ ∀t8. It is convenient to write Ĥ(t) in the eigenstate basis of Ĥ0.

Working in this space means that the matrix representation of Ĥ0 will be diagonal but

those of Ĥ ′(t) and Ĥ(t) not. It is those off-diagonal elements of Ĥ ′(t) and Ĥ(t) that couple

between the eigenstates. Next, let’s look at the time-evolution of the system subject to

8There are several definitions for the norm of a matrix (Weisstein 2024). However, since we are only
interested in stating that the weak perturbation is weak, we will leave it at this qualitative (and not so
rigorous) statement.

VIII

only Ĥ0:

d |ψ(t)⟩
dt

= − i

ℏ
Ĥ0 |ψ(t)⟩

⇔
d
dt
|ψ(t)⟩

|ψ(t)⟩
= − i

ℏ
Ĥ0

⇔
∫ t

t0

dt
d

dt
(ln |ψ(t)⟩) =

∫ t

t0

dt

(
− i

ℏ

)
Ĥ0

⇔ ln

(
|ψ(t)⟩
|ψ(t0)⟩

)
= − i

ℏ
(t− t0)Ĥ0

⇔ |ψ(t)⟩ = |ψ(t0)⟩ · e−
i
ℏ Ĥ0(t−t0)

⇔ |ψ(t)⟩ ≡ Û0(t, t0) |ψ(t0)⟩ ,

(21)

with

Û0(t2, t1) = e−
i
ℏ Ĥ0(t2−t1) (22)

and using the Taylor to define the exponential of an operator:

eÂ =
∞∑
k=0

Âk

k!
. (23)

Also, Û0 has the following properties that follow directly from its definition (22):

Û0(t1, t1) = 1

Û0(t3, t1) = Û0(t3, t2)Û0(t2, t1)

Û0(t1, t2) = Û−1
0 (t2, t1)

= Û †
0(t2, t1) (unitarity)

(24)

Moreover, from (23) it follows that Û0(t, t0) commutes with Ĥ0, since Ĥ0 commutes with

itself:

Û0(t, t0)Ĥ0 = Ĥ0Û0(t, t0), (25)

IX

which we will use later. Lastly, for the time-derivative of Û0(t, t0), we obtain:

d

dt
Û0(t, t0) ≡

d

dt

(
e−

i
ℏ Ĥ0(t−t0)

)
= − i

ℏ
Ĥ0e

− i
ℏ Ĥ0(t−t0)

≡ − i

ℏ
Ĥ0Û0(t, t0)

= − i

ℏ
Û0(t, t0)Ĥ0

(26)

Now, we use these results to perform a change of variable that eliminates the time-

dependence of |ψ(t)⟩ which is due to the system Hamiltonian Ĥ0:

|ψI(t)⟩ ≡ Û−1
0 (t, t0) |ψ(t)⟩ (27)

From this definition it follows that |ψI(t)⟩ depends only on Ĥ ′(t), i.e., if Ĥ ′(t) = 0,

|ψI(t)⟩ = |ψ(t0)⟩. Also, note that

|ψI(t0)⟩ = |ψ(t0)⟩ . (28)

Now we can show explicitly that the time-dependence of |ψI(t)⟩ is only due to Ĥ ′(t) by

inserting the definition of |ψI(t)⟩ (27) into the (SE):

− i

ℏ
Ĥ(t)

(
Û0(t, t0) |ψI(t)⟩

)
=

d

dt

(
Û0(t, t0) |ψI(t)⟩

)
=

(
d

dt
Û0(t, t0)

)
|ψI(t)⟩+ Û0(t, t0)

(
d

dt
|ψI(t)⟩

)
= − i

ℏ
Ĥ0Û0(t, t0) |ψI(t)⟩+ Û0(t, t0)

d

dt
|ψI(t)⟩

⇔ Û0(t, t0)
d

dt
|ψI(t)⟩ = − i

ℏ
(Ĥ(t)− Ĥ0)Û0(t, t0) |ψI(t)⟩

≡ − i

ℏ
Ĥ ′(t)Û0(t, t0) |ψI(t)⟩

⇔ d

dt
|ψI(t)⟩ = − i

ℏ
Û †
0(t, t0)Ĥ

′(t)Û0(t, t0) |ψI(t)⟩

⇔ d

dt
|ψI(t)⟩ ≡ − i

ℏ
Ĥ ′

I(t) |ψI(t)⟩ , (SEI)

with

Ĥ ′
I(t) ≡ Û †

0(t, t0)Ĥ
′(t)Û0(t, t0). (29)

X

Furthermore, we want to apply the same change of variable to the Liouville-von Neu-

mann equation (LvNE). Firstly, we transform the density operator ρ̂ from the Schrödinger

picture to the Interaction picture:

ρ̂I(t) ≡
∑
n

Wn |ψI,n(t)⟩ ⟨ψI,n(t)|

=
∑
n

WnÛ
†
0(t, t0) |ψn(t)⟩ ⟨ψn(t)| Û0(t, t0)

= Û †
0(t, t0)

[∑
n

Wn |ψn(t)⟩ ⟨ψn(t)|

]
Û0(t, t0)

≡ Û †
0(t, t0)ρ̂Û0(t, t0)

(30)

When inserting this into the (LvNE), we get for the left-hand side (LHS):

d

dt

(
Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

)
=

(
d

dt
Û0(t, t0)

)
ρ̂I(t)Û

†
0(t, t0) + Û0(t, t0)

(
d

dt
ρ̂I(t)

)
Û †
0(t, t0)

+ Û0(t, t0)ρ̂I(t)

(
d

dt
Û †
0(t, t0)

)
= − i

ℏ
Ĥ0Û0(t, t0)ρ̂I(t)Û

†
0(t, t0) + Û0(t, t0)

(
d

dt
ρ̂I(t)

)
Û †
0(t, t0)

+
i

ℏ
Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)Ĥ0

= Û0(t, t0)

(
d

dt
ρ̂I(t)

)
Û †
0(t, t0)

− i

ℏ

[
Ĥ0, Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

]
,

and for the right-hand side (RHS):

− i

ℏ

[
Ĥ(t), Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

]
, (31)

and thus we can write:

Û0(t, t0)

(
d

dt
ρ̂I(t)

)
Û †
0(t, t0) = − i

ℏ

([
Ĥ(t), Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

]
−
[
Ĥ0, Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

])
= − i

ℏ

[
Ĥ(t)− Ĥ0, Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

]
= − i

ℏ

[
Ĥ ′(t), Û0(t, t0)ρ̂I(t)Û

†
0(t, t0)

]
⇔
(

d

dt
ρ̂I(t)

)
= − i

ℏ

[
Û †
0(t, t0)Ĥ

′(t)Û0(t, t0), ρ̂I(t)
]

= − i

ℏ

[
Ĥ ′

I(t), ρ̂I(t)
]

(LvNEI)

XI

As Hamm 2005 (p.15f.) points out, the interaction picture can be interpreted as a

representation of quantum mechanics that lies in between the Schrödinger picture and the

Heisenberg picture. Whereas in the Schrödinger picture, all the time dependence lies in

the states, and in the Heisenberg picture, all the time dependence lies in the operators, in

the interaction picture, the time-dependence due to the system Hamiltonian Ĥ0 is moved

into the operators, so that the states’ time dependence is only due to the perturbative

Hamiltonian [Ĥ ′(t)]. In other words, ”[t]he interaction picture adopts the Schrödinger

picture for the small perturbation Ĥ ′(t), while it uses the Heisenberg picture for the

larger system Hamiltonian [Ĥ0].” (Hamm 2005, p. 15)

Equations (SEI) and (LvNEI) are useful, since in the following, we want to perform

a perturbative expansion of the equations of motion of |ψ(t)⟩ and ρ̂. One can perform

the same expansion with the (SE) and the (LvNE) in their native, Schrödinger-picture

form (see Hamm 2005, p. 12f.), but, as Hamm points out, convergence it not guaranteed

since the expansion would be in powers of the total Hamiltonian. It is therefore preferable

to expand in powers of the much smaller Ĥ ′(t) (Hamm 2005, p. 17). Hence, we will be

expanding equations (SEI) and the (LvNEI) in their interaction picture form instead. We

start with the (SEI) where we integrate both sides:∫ t

t0

dτ
d

dτ
|ψI(τ)⟩ = |ψI(t0)⟩ −

i

ℏ

∫ t

t0

dτ Ĥ ′
I(τ) |ψI(τ)⟩

⇔ |ψI(t)⟩ = |ψI(t0)⟩ −
i

ℏ

∫ t

t0

dτ Ĥ ′
I(τ) |ψI(τ)⟩

(32)

We assume Ĥ ′
I(τ) to be known ∀τ , but we do not know anything more about |ψI(τ)⟩ then

we know about |ψI(t)⟩. Instead, we reinsert equation (32) into itself to obtain |ψI(τ)⟩ ,
which yields the following expression for |ψI(t)⟩:

|ψI(t)⟩ = |ψI(t0)⟩ −
i

ℏ

∫ t

t0

dτ1 Ĥ
′
I(τ1) |ψI(τ1)⟩

= |ψI(t0)⟩ −
i

ℏ

∫ t

t0

dτ1 Ĥ
′
I(τ1)

[
|ψI(t0)⟩ −

i

ℏ

∫ τ1

t0

dτ2 Ĥ
′
I(τ2) |ψI(τ2)⟩

]
= |ψI(t0)⟩ −

i

ℏ

∫ t

t0

dτ1 Ĥ
′
I(τ1) |ψI(t0)⟩

+

(
− i

ℏ

)2 ∫ t

t0

dτ1

∫ τ1

t0

dτ2 Ĥ
′
I(τ1)Ĥ

′
I(τ2) |ψI(τ2)⟩

(33)

XII

This can be iterated to obtain the following expansion:

|ψI(t)⟩ = |ψI(t0)⟩

+
N∑

n=1

(
− i

ℏ

)n ∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τN−1

t0

dτN Ĥ
′
I(τ1)Ĥ

′
I(τ2) . . . Ĥ

′
I(τN) |ψI(τN)⟩

(34)

For N → ∞ and τN → t0 we can therefore write that |ψI(t)⟩ is equal to:[
1 +

N→∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τN−1

t0

dτN Ĥ
′
I(τ1)Ĥ

′
I(τ2) . . . Ĥ

′
I(τN)

]
|ψI(t0)⟩ (35)

If we transform back to the Schrödinger picture, using the relations (27), (28) and (29),

we obtain that:

|ψ(t)⟩ =

[
Û0(t, t0) +

N→∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τN−1

t0

dτN

Û0(t, τ1)Ĥ
′(τ1)Û0(τ1, τ2)Ĥ

′(τ2)Û0(τ2, τ3) . . . Û0(τN−1, τN)Ĥ
′(τN)Û0(τN , t0)

]
|ψ(t0)⟩

(36)

Here we have used the properties of Û0 from equation (22) to replace

Û0(τn, t0)Û
†
0(τn+1, t0) by Û0(τn, τn+1):

Û0(τn, t0)Û
†
0(τn+1, t0) = Û0(τn, t0)Û0(t0, τn+1)

= Û0(τn, τn+1)

If we have an experimental situation where the perturbation Hamiltonian Ĥ ′(t), of for

example an external electric field, can be reasonably assumed to be the finite sum of N

delta-functions or narrow Gaussians (with amplitudes An):

Ĥ ′(t) =
N∑

n=1

An · cos(t− τn) · exp
(
−(t− τn)

2

2σ2

)
σ → 0

≈
N∑

n=1

An · cos(t− τn) · σ
√
2πδ(t− τn),

(37)

we can describe the time evolution of the system with a finite number of terms in our

expansion (36). We can then physically interpret the expansion in the following way:

The system propagates freely, that is only under the influence of the system Hamiltonian,

until time t = τ1, the time of the first pulse of Ĥ ′, i.e., the first point in time where Ĥ ′(t)

is non-zero. At time t = τ1, the system is assumed to interact instantaneously with the

XIII

perturbation Ĥ ′(τ1), potentially changing the populations of some levels, and thereafter,

the system continues to evolve unperturbed - freely - under the influence of Ĥ0 only, until

time t = τ2, and so on. (Hamm 2005, pp. 12f., 16-19; Hamm and Zanni 2011, pp. 54-57).

This can be a useful alternative to numerical integration, especially when using ultrafast

spectroscopic techniques, since we use sequences of ultrafast light pulses, and thus the

electric field applied to the system can be written as in equation (37) (Gupta 2022, p. 17).

Moreover, this expansion can be visualized in a useful manner using so-called single-sided

Feynman diagrams.

The perturbative expansion of ρ̂ is done along the same lines as the expansion of

|ψ(a)⟩ nd yields the following expression (Hamm 2005, p. 18):

ρ(t) = Û0(t, t0)ρ(t0)Û
†
0(t, t0)

+
N→∞∑
n=1

(
− i

ℏ

)n ∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τN−1

t0

dτN

Û0(t, t0) [Ĥ
′
I(τ1), [Ĥ

′
I(τ2), . . . , [Ĥ

′
I(τn, ρ̂(t0))] . . .]] Û

†
0(t, t0)

(38)

This expansion can be illustrated with so-called double sided Feynman diagrams.

7.1.3 Derivation of the signal’s periodicity

To explain the periodicity of the signal w.r.t. τ , we are going to make some simplifications

and then solve the (LvNE). The Hamiltonian Ĥ(t) is given by:

Ĥ(t) =

(
0 F (t)

F ∗(t) ∆

)
,

XIV

where F (t) is the time-dependent perturbation due to the external electric field. We start

by writing out the commutator explicitly:

d

dt
ρ̂ = − i

ℏ
[Ĥ(t), ρ̂]

⇔ d

dt

(
ρ11(t) ρ12(t)

ρ21(t) ρ22(t)

)
= − i

ℏ

(
0 F (t)

F ∗(t) ∆

)
·

(
ρ11(t) ρ12(t)

ρ21(t) ρ22(t)

)

+
i

ℏ

(
ρ11(t) ρ12(t)

ρ21(t) ρ22(t)

)
·

(
0 F (t)

F ∗(t) ∆

)

⇔


ρ̇11(t)

ρ̇12(t)

ρ̇21(t)

ρ̇22(t)

 = − i

ℏ


F (t)ρ21(t) −ρ12(t)F ∗(t)

F (t)ρ22(t) −ρ11(t)F (t)− ρ12(t)∆

F ∗(t)ρ11(t) + ∆ρ21(t) −ρ22(t)F ∗(t)

F ∗(t)ρ12(t) + ∆ρ22(t) −ρ21(t)F (t)− ρ22(t)∆



⇔



ℏρ̇11(t) = +2 Im{F (t)ρ21(t)}

ℏρ̇12(t) = +iF (t)(ρ11(t)− ρ22(t)) + i∆ρ12(t)

ℏρ̇21(t) = −iF ∗(t)(ρ11(t)− ρ22(t))− i∆ρ21(t)

ℏρ̇22(t) = −2 Im{F (t)ρ21(t)}

We only care about the last two lines, since the signal is proportional to ρ22(t) and ρ̇22(t)

only depends on ρ21(t). We proceed by solving the differential equation for ρ21(t), which

is a first-order ODE linear w.r.t. y. Equations of this form, that is

ḟ(t) = −p · f(t) + q(t)

have the following general solution (see Adams 2014, p. 450):

f(t) = e−p·t
[
f(t0) +

∫ t

t0

dt′ e+p·t′ · q(t′)
]
.

We can bring the differential equation for ρ21(t) into this form:

ρ̇21(t)︸ ︷︷ ︸
ḟ(t)

= − i
∆

ℏ︸︷︷︸
p

ρ21(t)︸ ︷︷ ︸
f(t)

+

(
− i

ℏ
F ∗(t)(ρ11(t)− ρ22(t))

)
︸ ︷︷ ︸

q(t)

,

and it thus has the solution:

ρ21(t) = e−i∆ℏ ·t
[
ρ21(t0)−

i

ℏ

∫ t

t0

dt′ e+i∆ℏ ·t′ · F ∗(t′)(ρ11(t
′)− ρ22(t

′))

]
.

XV

Next, we integrate both sides in the differential equation for ρ22(t), which gives:

ρ22(t) = ρ22(t0)−
2

ℏ

∫ t

t0

dt′ Im{F (t′)ρ21(t′)}

To simplify the calculations, we will make some assumptions, in particular about the initial

conditions: We assume that all electrons are in the ground state when hit by the laser

pulse, thus ρ11(t0) = 1 and ρ22(t0) = ρ21(t0) = 0, and that the excited-state population

ρ22(t) remains small compared to ρ11(t) throughout the course of the experiment, thus

ρ11(t)− ρ22(t) ≈ 1. The expressions for ρ21(t)) and ρ22(t) then simplify to:
ρ21(t) = − i

ℏ

∫ t

t0

dt′ e+i∆ℏ (t′−t) · F ∗(t′)

ρ22(t) = −2

ℏ

∫ t

t0

dt′ Im{F (t′)ρ21(t′)}

Now we are ready to insert the first equation into the second one, giving:

ρ22(t) =
2

ℏ2

∫ t

t0

dt′ Im

{
iF (t′)

∫ t′

t0

dt′′ e+i∆ℏ ·(t′′−t′) · F ∗(t′′)

}

Now, we need to insert F (t). Combining equations (15) and (17) yields:

F (t) =
2∑

k=1

E⃗maxµ⃗eg · exp
(
−(t− tk)

2

2σ2

)
· cos(ω(t− tk) + φk).

that is, the Gaussian pulses simulated with QDT and the code from Hedse et al. However,

in the following derivation, we are going to approximate them by Dirac delta functions,

since we are only interested in a more qualitative understanding of the signal’s oscillations:

F (t) =
2∑

k=1

E⃗maxµ⃗eg · σ
√
2πδ(t− tk) · cos(ω(t− tk) + φk).

We thus obtain for ρ22(t):

ρ22(t) =

Amp︷ ︸︸ ︷
4πσ2

ℏ2
∣∣∣E⃗maxµ⃗eg

∣∣∣2 ∫ t

t0

dt′ Im

{
i

2∑
k=1

gk(t
′)︷ ︸︸ ︷

cos(ω(t′ − tk) + φk) · e−i∆ℏ ·t′ δ(t′ − tk)

∫ t′

t0

dt′′
2∑

k=1

cos(ω(t′′ − tk) + φk) · e+i∆ℏ ·t′′︸ ︷︷ ︸
g∗k(t

′′)

δ(t′′ − tk)

}

XVI

Above equation is simplified by introducing the substitutionsAmp =
4πσ2

ℏ2
∣∣∣E⃗maxµ⃗eg

∣∣∣2
gk(t) = cos(ω(t− tk) + φk) · e−i∆ℏ ·t

We now evaluate the integral to get the time evolution of ρ22
9:

ρ22(t) = Amp · Im

{
i

∫ t

t0

dt′ [g1(t
′)δ(t′ − t1) + g2(t

′)δ(t′ − t2)]∫ t′

t0

dt′′ [g∗1(t
′′)δ(t′′ − t1) + g∗2(t

′′)δ(t′′ − t2)]

}

= Amp · Im

{
i

∫ (t1+t2)/2

t0

dt′ [g1(t
′)δ(t′ − t1) + g2(t

′)δ(t′ − t2)]∫ t′

t0

dt′′ [g∗1(t
′′)δ(t′′ − t1) + g∗2(t

′′)δ(t′′ − t2)]

+i

∫ t

(t1+t2)/2

dt′ [g1(t
′)δ(t′ − t1) + g2(t

′)δ(t′ − t2)]∫ t′

t0

dt′′ [g∗1(t
′′)δ(t′′ − t1) + g∗2(t

′′)δ(t′′ − t2)]

}

= Amp · Im
{
i g1(t1)

g∗1(t1)

2
+ ig2(t2)

[
g∗1(t1) +

g∗2(t2)

2

]}
=

Amp

2
· Im { i

[
|g1(t1)|2 + |g2(t2)|2 + 2g∗1(t1)g2(t2)

]
}

=
Amp

2
· [|g1(t1)|2 + |g2(t2)|2 + 2 Im{ig∗1(t1)g2(t2)}]

Since

gk(tk) = cos(φk) · e−
∆
ℏ ·tk ,

9Here, we follow the convention that
∫ b

a
dt′ δ(t′ − a)g(t′) = g(a)/2. Note that this integral could

alternatively be solved using Heaviside step functions.

XVII

when reinserting the expressions for gk(t), we get that:

ρ22(t) =
Amp

2
·
[
cos2(φ1) + cos2(φ2) + 2 Im

{
i cos(φ1) cos(φ2) · e−i∆ℏ ·(t2−t1)

}]
=

Amp

2
·
[
cos2(φ1) + cos2(φ2)

+2 Im

{
cos(φ1) cos(φ2) ·

(
i cos

(
∆

ℏ
τ

)
+ i(−i) sin

(
∆

ℏ
τ

))}]
=

Amp

2
·
[
cos2(φ1) + cos2(φ2) + 2 cos(φ1) cos(φ2) cos

(
∆

ℏ
τ

)]
Thus, the angular frequency ωs of the signal w.r.t. τ is equal to ∆

ℏ .

7.1.4 Numerical integration methods

As previously mentioned, both codes employ explicit propagation of the modelled systems’

density matrices. In other words, they perform numerical integration of the Lindblad

master equation, which is an ordinary differential equation (ODE). ODEs are equations

of the form:

ḟ(t) = G(f(t), t)

Thus a method for numerical integration is required, the choice of which might signifi-

cantly influence run time and accuracy. In the following, a very short introduction to the

numerical integration methods utilized by the two codes. For comparison, Euler’s method

is also quickly mentioned. Euler’s method is the simplest method fo solving ODEs. It

also has the lowest accuracy for a given step size. It approximates the solution linearly

with the first order term of the Taylor expansion of f(t):

f(t+∆t) ≈ f(t) + ∆t · ḟ(t)

= f(t) + ∆t ·G(f(t), t),

where ∆t is the step size of the numerical integration. (Kong et al. 2021, p. 375 f.)

Runge-Kutta methods use more terms in the Taylor expansion of f(t), and approximates

the necessary partial derivatives of G(f(t), t) by evaluating G(f(t), t) at points in the

interval [t, t+∆t], that is G(f(t)+β, t+α), by reverse application of multivariable Taylor

expansions. For many problems, this method offers more accuracy for he same amount

of computational effort. (Kong et al. 2021, p. 383f.; Press 2007, p. 908f.) QDT uses

fourth-order Runge-Kutta. In contrast, qutip.mesolve() uses VODE by default1011.

10Qutip.Mesolve — QuTiP 4.0 Documentation 2011.
11Scipy.Integrate.Ode — SciPy v1.13.0 Manual 2024.

XVIII

”VODE is a[n] initial value ODE solver for stiff and nonstiff systems. It uses variable

coefficient Adams-Moulton and Backward Differentiation Formula (BDF) methods [...].”

(Brown et al. 1989). Both of these methods are linear multistep methods, which means

that taking into account results from more than one previous point. (Kong et al. 2021,

p. 389). Here, a stiff ODE is an ODE whose solution varies slowly, but will diverge easily

and that therefore requires a comparatively small step size to ensure convergence of the

solution. (Curtiss and Hirschfelder 1952; Kong et al. 2021, p. 389) VODE uses BDF since

it is more robust at solving stiff ODEs. (Curtiss and Hirschfelder 1952, Gear 1967).

7.2 Additional figures

(a) ∆τ = 2 fs (b) ∆τ = 2 fs

(c) ∆τ = 0.2 fs (d) ∆τ = 0.02 fs

Figure 14: An increase in τ leads to better resolution of the oscillations of the signal.

XIX

(a) not normalised (b) normalised

(c) dot plot of values for T/2 (d) histogram of values for T/2

Figure 15: Process for calculating the periodicity of the signal: normalize the signal,
and then measure the distance between two points were the signal is (almost) equal to
zero. This distance corresponds to T/2. The legends in sub-figures a and b display the
value of ∆φ. Deviating parameters of the simulation: ∆τ = 0.02 fs, runTstep = 0.1 fs,
offset = 200 fs, 6 phases

(a) runTstep=0.5 fs (b) runTstep=0.1 fs (c) runTstep=0.01 fs

Figure 16: Electric field of the second pulse for different values of runTstep

XX

7.3 Code

7.3.1 MATLAB script for running the simulations

1 clear; clc;

2 s = System;

3 c = CMDS(s);

4 Nilsfstoau =100/2.4188843265857;

5

6 parl = true;

7 runTmax = 800; % fs

8 runTstep= 800/(2^13+1);%fs

9 Offset = 200; % fs (from Andreas)

10 Tmax = 200; % fs

11

12 Tstep = 40+1;

13 pcmax1 = 1;

14 pcmax2 = 6;

15 gamma0 = 1.0; % 0.0 = rot. frame; 1.0 = lab frame

16 w0 = 1.45*s.evtoau;% laser frequency

17 amp = 2*10^ -3*s.evtoau;% E-field amplitude

18 t_pulse = 100/ sqrt (2)*Nilsfstoau; % REAL pulse FWHM !!!

19

20 gaps = [1.46, 2.9 -1.46]*s.evtoau;

21 a= Nlevel(gaps (1));

22 s.addEntity(a, ’two -level -sys’);

23 s.setTmax(runTmax*Nilsfstoau);

24 s.setTimestep(runTstep*Nilsfstoau);

25 s.lso = true; %pre -calculate the lindblad superoperator

26 s.addDissipation(’two -level -sys’, 1.0*10^6* Nilsfstoau , [1 ,0]);

27 s.addDecoherence(’two -level -sys’, 1.0*10^2* Nilsfstoau , [1 ,0]);

28 s.addDecoherence(’two -level -sys’, 1.0*10^2* Nilsfstoau , [0 ,1]);

29

30 c.setEfieldparameter(amp ,t_pulse ,w0,gamma0);

31 c.setdelayMaxs ([Offset , Tmax]* Nilsfstoau);

32 c.setdelaySteps ([Tstep]);

33 c.setReturnFunction(returnExcited)

34 c.setContributions ([1, -1]);

35 c.setPcScheme ([pcmax1 , pcmax2]);

36 c.parallel = parl; % enable parallel computing

37 c.generate_CMDS(’two -level -sys’);

38 test_res=c.CMDSdata;

39

40 timestamp=datetime ();

41 timestamp.Format=’yyMMdd ’’_’’HHmmss ’;

42 timestr=string(timestamp);

43

44 namestr=’mlres’;

XXI

45 disp(namestr+timestr);

46

47 tau_axis=c.delayAxes {1}.*s.autofs;

48 save(strcat(’res’, namestr ,timestr ,’.dat’),’test_res ’,’-ascii’)

49 save(strcat(’Tmax_fs ’,namestr ,timestr ,’.dat’),’Tmax’, ’-ascii’)

50 save(strcat(’runTmax_fs ’, namestr ,timestr ,’.dat’),’runTmax ’, ’-ascii’)

51 save(strcat(’runTstep_fs ’,namestr ,timestr ,’.dat’),’runTstep ’,’-ascii’)

52 save(strcat(’tau_axis_fs ’,namestr ,timestr ,’.dat’),’tau_axis ’,’-ascii’)

7.3.2 MATLAB script for DFT and plotting

1 %% load & pre -process data

2 clear;clc;

3 load workspaceMIN.mat;

4

5 %%%%%% Load Files %%%%%%

6 % namestrs =[" mlres240513_193229 "]; % intermediate curve overlay

7 % namestrs =[" mlres240513_184751 "]; % final curve overlay

8

9 %%%%%% Plot Parameters %%%%%%

10 axis_font_size =17;

11 legend_font_size =15;

12 filetype=’.png’;

13 fftstr=’_fft’;

14 xaxisname =’delay τ (fs)’;

15 yaxisname1=’amplitude (arb. u.)’;

16 yaxisname2=’normalized amplitude (arb. u.)’;

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19 for ii=1: length(namestrs)

20 namestr=namestrs(ii);

21 test_res=load(strcat(’res’,namestr ,’.dat’));

22 transp_test_res=transpose(test_res);

23 Tmax=load(strcat(’Tmax_fs ’,namestr ,’.dat’));

24 xaxis=load(strcat(’tau_axis_fs ’,namestr ,’.dat’));

25 % xaxis= c.delayAxes {1}*s.autofs ;% linspace(0,Tmax ,dim(2));

26

27 dim=size(test_res);

28 disp(dim);

29 pcmax = dim(1);

30

31 %%% plot single phase -shift contribution(s)

32

33 from =1;

34 to =pcmax;

35

36 phases = linspace (0,360, pcmax +1);

XXII

37 phases = phases(from:to);

38

39 tplot=plot(xaxis , test_res(from:to ,:), ’.-’);

40 xlabel(xaxisname , Interpreter=’latex’);

41 ylabel(yaxisname1 ,Interpreter=’latex’);

42 fig= gcf;

43 ax = gca;

44 ax.XAxis.FontSize = axis_font_size;

45 ax.YAxis.FontSize = axis_font_size;

46

47 %%% lagend and colours

48 legmax = max(phases);

49 legstr1 = [];

50 ii=1;

51 for jjj = phases

52 legstr1 =[legstr1;strcat(’$’,string(jjj),’^\ circ$ ’)];

53 tplot(ii).Color=[max(2*jjj/legmax -1,0),max(1-2*jjj/legmax ,0) ,0];

54 ii=ii+1;

55 end

56 l=legend(legstr1);

57 set(l,’FontSize ’,legend_font_size , ’Interpreter ’, ’latex’);

58

59 exportgraphics(fig ,strcat(namestr ,filetype),’Resolution ’ ,400);

60

61 %%% plot phase -weighted avg

62 freqmult =1:2;

63 empti=zeros(size(transp_test_res ,1) ,1);

64 summ =[];

65 legstr2 =[];

66 ii=1;

67 jj=1;

68

69 for fm = freqmult

70 summ=[summ ,empti];

71 ii=1;

72 [~, tweights]=c.calculatePcWeights(fm*[1, -1], [1, dim (1)]);

73

74 for iii = transp_test_res

75 summ(:,jj)=summ(:,jj)+iii*tweights(ii);

76 ii=ii+1;

77 end

78 summ(:,jj)=summ(:,jj)/max(summ(:,jj));

79 legstr2 =[legstr2;string(fm)+"$\cdot(\phi_1 -\phi_2)$ contribution

"];

80 jj=jj+1;

81 end

82

XXIII

83 tplot2=plot(xaxis , abs(summ));

84 xlabel(xaxisname , Interpreter=’latex’);

85 ylabel(yaxisname2 ,Interpreter=’latex’);

86 fig= gcf;

87 ax = gca;

88 ax.XAxis.FontSize = axis_font_size;

89 ax.YAxis.FontSize = axis_font_size;

90

91 l=legend(legstr2);

92 set(l,’FontSize ’,legend_font_size , ’Interpreter ’, ’latex’);

93

94 exportgraphics(fig ,strcat(namestr ,fftstr ,filetype),’Resolution ’ ,400)

;

95

96 %%% save data to csv

97 timestr ="tau [fs]";

98 export1 =[[timestr ,phases];[transpose(xaxis),transp_test_res]];

99 export2 =[[timestr ,transpose(legstr2)];[transpose(xaxis),abs(summ)]];

100 writematrix(export1 ,’matlab_res_ ’+namestr+’.csv’,’Delimiter ’,’tab’);

101 writematrix(export2 ,’matlab_res_ ’+namestr+’_fft.csv’,’Delimiter ’,’

tab’);

102 disp(’matlab_res_ ’+namestr+’_fft.csv’);

103 end

7.3.3 python script for running the simulations

1 import numpy as np

2 import qutip as q

3

4 q.settings.num_cpus = 1

5

6 HBARINV = 1519.267 # 1/hbar , ps^{-1} eV^{-1}

7 HBAR = 1 / HBARINV # hbar , ps eV

8

9 # matrix of zeros except for a one at (i,j)

10 def matrix_ij(n, i, j):

11 m = np.zeros ((n, n))

12 m[i, j] = 1

13 return m

14

15 # string for time dependent interaction hamiltonian in cython

implementation

16 def get_string(displace , tau , omega , phi , delay):

17 return f"exp(-4*log (2) *((t-{ displace })/{tau})**2)*cos({ omega }*(t-{

displace })+2*{np.pi}*{phi}*m*{delay })"

18

19 def get_stringRotWave(displace , tau , omega , phi , delay ,imag):

XXIV

20 return f"exp(-4*log (2) *((t-{ displace })/{tau})**2)*exp({imag }*({ omega

}*(t-{ displace })+2*{np.pi}*{phi}*m*{ delay}))/2"

21

22 # integrate relevant part of lindblad evolution and print to CLI

23 def do_output(m, window , output , n_levels):

24 qobj = sum(output.states[i] for i in window) / len(window)

25 z = np.diag(qobj.__array__ ().real)

26 # print(f"{m}\t" + "\t".join(str(zi) for zi in z))

27 return z[-1]

28

29 def double_quantum_coherence_simulation(

30 cfmu =0.002 , # charge*field*dipole moment , eV

31 phi1 =5.14e-5, # Linear frequency of pulse 1, THz

32 phi2 =5.19e-5, # Linear frequency of pulse 2, THz

33 pulse_width =0.1, # pulse width , ps

34 centre_of_first_pulse =0.2, # Centre of first pulse , ps

35 delay_to_second_pulse =0, # delay centre of second pulse from first ,

ps

36 omega_ev =1.45 , # angular freq. of light , eV

37 dephasing_times =[

38 ((0, 1), 0.1),

39 ((1, 0), 0.1),

40], # (g0,g1 ,..),td: Dephasing time td with weights g0,g1,g_{n_level

-1}, ps

41 relaxation_times =[(0, 1, 1000)], # i,j,tr: Relaxation time tr from

j to i, ps

42 start_time =0, # Initial time , ps

43 end_time =0.8, # Final time , ps

44 integral_window =0.05 , # integral window for data collection , ps

45 sum_all=False , # Result is sum from start to end , otherwise

integral_window after last pulse

46 n_steps =65536 , # Time step during simulation , = 2^16 from start to

end

47 train_delay =14000 , # Distance between pulsetrains , ps

48 n_pulses =5000 , # no. of pulse trains

49 bare_energies =[0.0 , 1.46] , # state energies , eV

50 rot_wave=False # apply rotating wave approximation

51):

52

53 n_levels = len(bare_energies)

54 omega = omega_ev * HBARINV # eV --> rad/ps.

55

56 pulse_times = np.array ([centre_of_first_pulse , delay_to_second_pulse

]).cumsum ()

57 # hamiltonian array to mesolve

58 H0 = q.Qobj(HBARINV * np.diag(bare_energies))

59 if rot_wave:

XXV

60 Hup = HBARINV * cfmu * q.Qobj(np.eye(n_levels , k=1))

61 Hdown=HBARINV * cfmu * q.Qobj(np.eye(n_levels , k=-1))

62 H = [

63 H0 ,

64 [Hup , get_stringRotWave(pulse_times [0], pulse_width , omega ,

phi1 , train_delay ,1j)],

65 [Hup , get_stringRotWave(pulse_times [1], pulse_width , omega ,

phi2 , train_delay ,1j)],

66 [Hdown , get_stringRotWave(pulse_times [0], pulse_width , omega

, phi1 , train_delay ,-1j)],

67 [Hdown , get_stringRotWave(pulse_times [1], pulse_width , omega

, phi2 , train_delay ,-1j)],

68]

69 else:

70 transitions = q.Qobj(np.eye(n_levels , k=1) + np.eye(n_levels , k

=-1))

71 Hi = HBARINV * cfmu * transitions

72 H = [

73 H0 ,

74 [Hi , get_string(pulse_times [0], pulse_width , omega , phi1 ,

train_delay)],

75 [Hi , get_string(pulse_times [1], pulse_width , omega , phi2 ,

train_delay)],

76]

77

78 # Lindbladian dephasing is implemented as the operator

79 # L_l = \sum_d g_{di}|i><i|

80 # with strength \Gamma_d >= 0. (g_{di} are real dimensionless

scalars)

81 # This translates to Bloch -Redfield dephasing in the form of off -

diagonal decay rates

82 # \dot{\rho_{mn}} =1/2 \sum_d \Gamma_d (g_{dm}-g_{dn})^2

83 # (For further discussion , see section 2.3 of my thesis .)

84 # The argument weights is an array (g0, g1, ..., g{n_levels -1}) of

dephasing weights

85 if any(len(weights) != n_levels for weights , _ in dephasing_times):

86 raise ValueError(

87 "All dephasing weight arrays must have same length as

n_levels!"

88)

89 dephasing_operators = [

90 np.sqrt(1 / td) * q.Qobj(np.diag(weights)) for weights , td in

dephasing_times

91]

92

93 relaxation_operators = [

94 np.sqrt(1 / tr) * q.Qobj(matrix_ij(n_levels , i, j))

XXVI

95 for i, j, tr in relaxation_times

96]

97 collapse_operators = dephasing_operators + relaxation_operators

98

99 # time (neglect steps after integration window)

100 base_times = np.linspace(start_time , end_time , n_steps + 1)

101 if sum_all:

102 times= base_times

103 window = np.where(times > 0)[0]

104 else:

105 times = base_times[base_times < (pulse_times [1] + 2 *

pulse_width + integral_window)]

106 window = np.where(times > (pulse_times [1] + 2 * pulse_width))[0]

107

108 # initial state

109 rho0 = q.Qobj(matrix_ij(n_levels , 0, 0))

110

111 # zeroth iteration

112 output = q.mesolve(H, rho0 , times , collapse_operators , [], args={"m"

: 0})

113 ress=[do_output(0, window , output , n_levels)]

114 # reuse qutip information about hamiltonian

115 opts = q.Options(rhs_reuse=True)

116

117 # loop over different trains

118 for m in np.arange(1, n_pulses):

119 output = q.mesolve(

120 H, rho0 , times , collapse_operators , [], args={"m": m},

options=opts

121)

122 ress.append(do_output(m, window , output , n_levels))

123

124 f = open("info.txt", "a")

125 f.write(str(round(delay_to_second_pulse *10000))+" "+str(n_levels)

126 +" "+str(pulse_width)+" "+str(phi1)+" "+str(phi2)

127 +" "+str(train_delay)+" "+str(n_pulses)+"\n")

128 f.close ()

129 return ress

1 from dqc2_multlevel import double_quantum_coherence_simulation

2 from datetime import datetime

3 import numpy as np

4

5 n_puls =6

6 phi_1 =0

7 phi_2 =10** -4/6

8 tr_delay =10000

XXVII

9

10 Tmin= 0

11 Tmax= 0.2

12 Tstep =40+1

13

14 nsteps =8192

15 Intall=False

16

17 Date = str(datetime.now())

18 Date_Str = ’_’+Date [5:7]+ Date [8:10]+ ’_’+Date [11:13]+ Date [14:16]+ Date

[17:19]

19 name="pyres_Nils"+Date_Str+".txt"

20 del Date , Date_Str

21

22 f = open(name , "a")

23 f.write("tau [ps]\t")

24 for phase in range(0,n_puls):

25 f.write(str(int(phase*phi_2*tr_delay *360))+"\t")

26 f.write("\n")

27 f.close ()

28

29 for tau in np.linspace(Tmin , Tmax , Tstep):

30 tau=round(tau ,8)

31 print(str(tau)+’ \t/’+str(Tmax)+’ ps’)

32 ress=double_quantum_coherence_simulation(

33 centre_of_first_pulse =0.2,# ps

34 delay_to_second_pulse=tau , # ps

35 pulse_width =0.1, # ps

36 phi1=phi_1 , # Linear frequency of pulse 1, THz

37 phi2=phi_2 , # Linear frequency of pulse 2, THz

38 n_pulses=n_puls , # no. of pulse trains

39 train_delay=tr_delay , # Distance between pulsetrains , ps

40 n_steps=nsteps , # Time step during simulation , = 2^13

41 end_time =0.8, # ps

42 sum_all=Intall ,

43 rot_wave=False

44)

45

46 f = open(name , "a")

47 f.write(str(tau)+"\t")

48 for res in ress:

49 f.write(str(res)+"\t")

50 f.write("\n")

51 f.close ()

7.3.4 python script for DFT and plotting

XXVIII

1 #%% imports

2 import matplotlib.pyplot as plt

3 import pandas as pd

4 import numpy as np

5 from datetime import datetime

6

7 lw=1.2

8 pstr=r"python: "

9 mstr=r"matlab: "

10 fstr=r"$\cdot(\phi_1 -\phi_2)$ contr."

11

12 #% Read and plot python results

13 pFile = pd.read_csv("pyres_Nils_0513_184447.txt",

14 sep = "\t", # Here we specify what values are seperated by. \t

means we seperate by the "tab" button

15 header = 0) # This skips the first n+1 rows of the file

16

17 pdata = pFile.to_numpy ()

18 px=pdata [:,0]

19 px=px*1000

20

21 pphases=pdata [:,1:-1]

22 N_t=len(pphases [0])

23

24 del pFile , pdata

25

26 #% DFT

27 fm_list =[]

28 for fm in range (1,3):

29 summ_list =[]

30 for pphase in pphases:

31 summ=0

32 for n_t ,el in enumerate(pphase):

33 summ=summ+el*np.exp(fm*1j*2*np.pi/N_t*n_t)

34 summ_list.append(summ/N_t)

35 fm_list.append(summ_list)

36 del summ , summ_list , n_t , el , pphase , fm

37

38 abs_fm_list=np.abs(fm_list)

39 pf1=abs_fm_list [0]/ max(abs_fm_list [0])

40 pf2=abs_fm_list [1]/ max(abs_fm_list [1])

41

42 #% plot python results

43

44 plt.plot(px , pf1 , ’--’, label=pstr+"1"+fstr , linewidth=lw , color=’tab:

blue’)

XXIX

45 plt.plot(px , pf2 , ’--’, label=pstr+"2"+fstr , linewidth=lw , color=’tab:

orange ’)

46

47 #% Read and plot matlab results

48 mFile = pd.read_csv("matlab_res_mlres240513_195045_fft.csv",

49 sep = "\t", # Here we specify what values are seperated by. \t

means we seperate by the "tab" button

50 header = 0) # This skips the first n+1 rows of the file

51

52 mdata = mFile.to_numpy ()

53 mx,mf1 ,mf2=mdata.transpose ()

54 del mFile , mdata

55 plt.plot(mx ,mf1 , ’-’, label=mstr+"1"+fstr , linewidth=lw , color=’tab:

blue’)

56 plt.plot(mx ,mf2 , ’-’, label=mstr+"2"+fstr , linewidth=lw , color=’tab:

orange ’)

57

58 plt.legend(framealpha =1)

59 plt.xlim (0 ,200)

60 plt.ylim(0, 1)

61 plt.grid()

62 plt.xticks(fontsize =13)

63 plt.yticks(fontsize =13, ticks=np.arange(0, 1.1, 0.1))

64 plt.xlabel(r"delay τ (fs)", fontsize =15)

65 plt.ylabel(r"normalized amplitude (arb. u.)", fontsize =15)

66

67

68 #% Save plot to png file

69 Date = str(datetime.now())

70 Date_Str = ’_’+Date [5:7]+ Date [8:10]+ ’_’+Date [11:13]+ Date [14:16]+ Date

[17:19]

71 del Date

72 plt.savefig("curve_overlay"+Date_Str+".png", dpi=400, bbox_inches=’tight

’)

XXX

	Abstract
	Acknowledgements
	Conventions, Abbreviations & Symbols
	Introduction
	Theory
	Density Operator
	Dephasing, Lindblad
	Semi-classical approach & transition dipole operator
	Coherent multidimensional spectroscopy (CMDS)

	Methods
	General research methodology
	Setting up the the simulations with QDT

	Results & Discussion
	Initial results
	offset
	Oscillations of the signal
	Explaining the signal's periodicity w.r.t. tau from the (LvNE)
	Isolating the envelope of the signal
	Comparison of intermediate results
	Integration time
	Number of phases probed
	Pulse width
	Step size of the numerical integration
	Unit conversion
	Comparison of final results
	Curve overlays & differing phases

	Conclusions & Outlook
	References
	Appendix
	Additional derivations
	Derivation of the (LvNE)
	Interaction picture & perturbative expansion
	Derivation of the signal's periodicity
	Numerical integration methods

	Additional figures
	Code
	MATLAB script for running the simulations
	MATLAB script for DFT and plotting
	python script for running the simulations
	python script for DFT and plotting

