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Statistical Quantification of Parameters of Heart Rate
Variability Power

Ana Stanojcic

Abstract

Heart rate variability (HRV) describes the variations in time intervals between heartbeats.
The signals are usually recorded from electrocardiogram (ECG) beat detection.
In this thesis, HRV signals of 97 participants were analyzed using spectral and statistical
analysis. The signals are non-stationary, however, the data was treated approximately
short time stationary. Using spectral analysis, power of HRV is expressed using expo-
nential decay model from which parameters (a - multiplier for the exponential decrease
and c - amplitude multiplier) are extracted. The effects of the different factors (age, sex,
SMBQ, length, weight, BMI, state and trait of anxiety) on extracted parameters a and c,
are statistically analyzed.

The Welch’s t-test for the difference of two means of parameter c shows that there is no
significant difference in the average values of this parameter for female and male. The
Welch’s t-test for the parameter a shows significant difference between the mean values
of this parameter for female and male, indicating the faster decay of the power of HRV
(PHRV) for males. Multiple linear regression (MLR) showed that out of 8 tested indepen-
dent variables, only the factor age is significant for the parameter c. MLR for parameter a
shows no significance for any of the tested factors. Also, the MLR model with interaction
term for the two factors (age and state) shows no significant interaction of the two factors
for the parameter c.

Future research could be directed to investigating the regression models for the two pa-
rameters on the samples that include different age categories separately for female and
male participants as well as exploring how the parameters of the model of PHRV relate if
non-linear methods for quantifying HRV are used.
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Populärvetenskaplig
sammanfattning

Denna forskning fokuserar p̊a hjärtfrekvensvariation (HRV), vilket är fluktuationer i tidsin-
tervallet mellan följande hjärtslag. Dessa variationer samlas in genom användandet av ett
elektrokardiogram (EKG). Genom att analysera HRV data fr̊an 97 deltagande, syftar
denna studie till att upptäcka om olika faktorer som ålder, kön, ångest, och kroppsm̊att
p̊averkar HRV. Att först̊a HFV är väsentligt eftersom det är kopplat till diverse olika hjärt-
kärlsjukdomar, där bättre insikt kring HFV kan hjälpa tidigt uppf̊angande och hantering
av hjärt-kärlsjukdomar.

Studien visade att kraften av HRV minskar snabbare hos män jämfört med kvinnor, vilket
tyder p̊a en skillnad i hur män och kvinnors hjärtan reagerar över en längre tid. Ålder
framstod som en betydande faktor av en specifik parameter för HRV, därav indikerar detta
att när människor åldras finns det en anmärkningsvärd p̊averkan p̊a hjärtfrekvensvariation.
Förv̊anansvärt visade inte faktorerna vikt, längd, “body mass index” (BMI) och ångestniv̊aer
p̊averkan p̊a HRV i denna studie.

Dessa fynd åsk̊adliggör vikten av att ha i åtanke kön likväl ålder vid bedömning av
hjärthälsa, vilket leder till en mer skräddarsydd behandlingsplan. Studien föresl̊ar att
framtida forskning bör undersöka HRV med fler faktorer samt större provtagning i syfte
att ådagalägga mer kring HFV. Genom mer precis data kring HRV kan individer gynnas
av förbättrad diagnostik och personifierade behandlingsplaner.

Denna studie upplyser faktorer som p̊averkar hjärtfrekvensvariation, med emfas p̊a ålder
och kön. Dessa insikter är essentiella för framsteg inom personligt skräddarsydd v̊ard och
framtida forskning inom omr̊adet kan leda till bättre hälsa-ingrepp för alla åldrar och kön.
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Chapter 1

Introduction

Heart Rate Variability (HRV) represents the physiological phenomenon of variation in the

time interval between consecutive heartbeats. It is a critical marker for understanding the

function of an autonomic nervous system and overall cardiovascular health. Using spec-

tral and statistical analysis of HRV data, researchers can gain profound insights into the

underlying mechanisms that influence heart rhythms, assess stress levels, and predict po-

tential health issues. Hence, investigating and understanding HRV could indicate changes

in psychological and physiological states of a person. It is of interest to look into different

factors which could induce changes in the heart rate variation, in order to asses the health

of an individual and further recommend different treatments. [1]

In this thesis, different methods of spectral analysis will be utilized to extract the pa-

rameters of the power of HRV (parameter c that represents the PHRV multiplier, and

paraneter a- the exponential decay factor). Statistical analysis will be performed to ex-

plore the relationship between these parameters and different factors of HRV.

The data are obtained from the experiment conducted on a sample of 97 participants

whose breathing was observed in different daily situations, investigating the relationship

between the respiratory frequency and HRV. The model for the power of HRV (PHRV)

is developed with two parameters (PHRV multiplier and the exponential decay factor).

Data are statistically analysed. Welch’s t-test for the difference of two means is conducted

to check if there is significant difference between the mean values of the parameters c

and a of power of HRV for females and males. Multiple Linear Regression (MLR) is
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performed with 8 available factors (age, sex, Shirom-Melamed Burnout Questionnaire

(SMBQ), length, weight, BMI, state of anxiety, and trait of anxiety) to investigate if there

is a linear relationship between parameters of HRV and each of the factors. Results of

the statistical analysis in this thesis allow for conclusions about HRV that can contribute

to the advancement of personalized medicine, improve diagnostic accuracy, and enhance

therapeutic interventions.

1.1 Background Information

Human heart’s contractions are initiated by the sinoatrial node (SA-node). The SA-node

sends an electrical stimulus 60 to 100 bpm (beats per minute) under normal resting condi-

tions depending on age of the individual [2]. These signals trigger the contractions of the

atria of the heart, which in response starts up the contraction of the ventricles. HRV is a

physiological phenomenon that describes slight time fluctuations between two consecutive

heartbeats. HRV is highly non-stationary, and this becomes more profound when HRV

data are measured in naturally non-stationary environments, for example, social stress.

In general, HRV data measured in such situations are more difficult to analyze than those

measured in stationary environments.

HRV can be measured in different ways, but the most convenient and efficient method is

electrocardiography (ECG). ECG produces electrocardiogram which describes the pattern

of the heart beats as changes in voltage of electrical impulses, which are measured through

the electrodes attached to the skin. The typical ECG pattern contains three main parts,

the first peak (P-wave), second peak (QRS complex) and the last peak (T-wave). P-wave

shows how the impulse spreads across the atria causing them to contract and pump blood

into ventricles and then relax. Then, the impulse causes the ventricles to contract as seen

in QRS complex. Lastly, throughout the T-wave, ventricles relax as the impulse stops

spreading (Figure 1.1). In this sense, HRV is the variation in time between the two peaks

of consecutive QRS complexes, known as the RR interval (measured in milliseconds) [3].
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Figure 1.1: QRS complex pattern recorded using ECG

The autonomic nervous system (ANS) is a part of the peripheral nervous system that

regulates involuntary physiologic processes such as blood pressure, heart rate, respiration,

digestion, and sexual arousal. It consists of three divisions: sympathetic (SNS), parasym-

pathetic (PNS), and enteric. The first two are of interest to us. HRV is controlled by ANS,

therefore, HRV is a good indicator of the state of a section of ANS responsible for manag-

ing cardiac activity. Essentially, the heart rate is controlled by the balance between SNS

and PNS. SNS is in-charge of guiding the state of overall elevated activity and attention.

More adrenaline in the SA node leads to increased blood pressure and heart rate. PNS

as the opposite function from SNS, is governing the resting and digesting processes, such

as lowering the heart rate and blood pressure or restarting the gastrointestinal digestion .[4]

HRV signals are considered as non-stationary as they contain both linear and non-linear

contributions. They can be analyzed in frequency domain. SNS is usually associated with

the ”low frequency band” (LF) that ranges from 0.04 to 0.15 Hz. On the other hand, PNS

is associated with ”high frequency band” (HF) ranging from 0.15 to 0.4 Hz. Throughout

this thesis, we will be focusing mainly on the HF interval [5].
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There are certain parameters that have a stronger impact on HRV, such as sex, age,

psychological conditions or disorders. Previous conclusions indicate that females have lower

HRV compared to males, however, this difference decreases over time. Age is another factor

that has shown noticeable influence on HRV, where the HRV values decrease with increase

in age [5]. We will focus on extracting parameters of recorded HRV values using frequency-

domain methods, and then analysing them using statistical methods. The base for the

HRV analysis is the ECG recording from which the HRV time series can be extracted.

1.2 Methods for quantifying HRV

Based on the ECG recording, the series of consecutive RR intervals is analyzed to produce

quantitative outputs, which can be used as variables for research. HRV can be analyzed

using three different methods: 1) time-domain, 2) frequency-domain, and 3) non-linear

methods. The detailed mathematical description of each method exceed the scope of this

thesis, but the main aspects of the most commonly used methods for quantifying HRV

will be outlined.

1.2.1 Time-domain methods

Time-domain methods are the simplest and most intuitive for perform HRV analysis.

They represent direct mathematical operations to the series of successive RR interval val-

ues. These parameters include the standard deviation (SDNN) of RR intervals, the mean

heart rate, mean value of RR intervals. [6]

1.2.2 Frequency-domain methods

In the frequency-domain methods, a power spectral density (PSD) estimate can be calcu-

lated for the RR interval series. The most important periodic component of HRV is the

“respiratory sinus arrhythmia” which ranges from 0.15 Hz to 0.4 Hz and is considered an

“high frequency” oscillation. “Low frequency” oscillations are usually ranging from 0.04
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Hz to 0.15 Hz. The frequency-domain measures which are extracted from the PSD esti-

mate, include absolute and relative power for each frequency band, as well as the LF/HF

power ratio and peak frequencies for each band.

1.2.3 Non-linear Methods

The analysis of complex processes and measures have been developed in the field of non-

linear dynamics, describing the underlying structure of non-stationary, non-periodic but

deterministic series of data. The non-linear features of HRV have can be investigated

using novel methods such as detrended fluctuation analysis (DFA) [7] and adaptive frac-

tal analysis (AFA) [8] that will not be used in this thesis but are commonly used in the

scientific research.

1.3 Aim of the thesis

The aim of this thesis is to complete statistical analysis of the relationship between the

parameters extracted from HRV data and the factors gathered in the experiment. The goal

is to first obtain the spectrograms for recorded signals and then the plot of power of HRV.

The exponential model of extracted power of HRV at each time point will be created.

Using the data from the model, a set of parameters can be estimated and their effect

on HRV discussed. Several analysis will be used among which are Welch’s t-test for the

difference of two means, multiple linear regression (MLR) and MLR with interaction term.

They will give more insight into possible relationship between the parameters of PRHV

and the observed factors of HRV. These findings can help to understand the difference in

statistical properties of HRV for different frequencies of breathing of participants (female

and male).
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Chapter 2

Mathematical concepts

In this section, theoretical outline of different methods of spectral analysis used to process

the collected HRV data and methods for statistical analysis to be used to analyze the

obtained data, are presented.

2.1 Spectral Analysis

Spectral Analysis is one of the most commonly used methods in both theoretical and

applied analysis of stationary stochastic processes. It shows the analysis of continuous

or discrete time-series with respect to frequency-domain descriptions and provides more

insight in characteristics of a time-series, compared to time-domain analysis. [9]

One of the main drawbacks of spectral analysis is that it is a linear method. It considers

HRV time series as a linear combination of the independent oscillatory components, where

interactions between those components are neglected. Discrete Fourier Transform (DFT)

is often used as a method of transforming samples taken at regular time intervals into

amplitudes of scaled sine and cosine functions (frequency domain). Usually, DFT takes

in n, number of time domain signal samples (x[ ]) and decompose them into two frequency

domain (X[ ]) arrays of (n/2)+1 samples, each describing the amplitudes of sine and

cosine functions. [10]
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A DFT for time-series, x(t), t = 0,+1,+2, ..., n− 1 is given as follows:

X(k) =
n−1∑
t=0

x(t)e−i2π kt
n ,

for f = k
n in the interval (−0.5 ≤ f ≤ 0.5). Non-parametric spectrum methods involve

Fourier transform to calculate the power spectrum.

2.1.1 Power Spectral Density (PSD)

Power Spectral Density (PSD), denoted Rx, shows how a time-series signal’s power varies

in the frequency domain. The PSD for a discrete signal has two definitions. The first

definition says that covariance function r(τ) with condition :
∑∞

−∞ |r(τ)| ≤ ∞ will have

symmetric, non-negative, and integrable Fourier transform:

Rx(f) =
∞∑

τ=−∞
r(τ)e−i2πfτ .

The second definition looks at the power of the signal as a limit of an energy signal :

Rx(f) = lim
n→∞

|X(f)|2

n
.

Using PSD analysis which utilises FFT (version of DFT that requires a smaller, finite

number of samples where n = 2s, s being an integer) we describe oscillations in the RR and

transform them into discrete frequencies that help our understanding of the physiological

mechanisms responsible for HRV [11].

2.1.2 Periodogram

Periodogram is a non-parametric, direct way to estimate the PSD under assumption of

signal stationarity, and it is a tool used for discovering dominant periods or frequencies in

the observed series [12]. It can be found as:

R̂x(f) =
1

n
|X(f)|2,
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for every frequency, and relating to the second definition of PSD. We can rewrite this

expression using the estimate of the covariance function as r̂x = 1
n

∑n−1−|τ |
t=0 x(t)x(t+ |τ |),

into a form that resembles the first definition of PSD:

R̂x(f) =

n−1∑
τ=−n+1

r̂x(τ)e
−i2πfτ .

To assure the validity of the estimate, it should have approximate unbiasness and low

variance. We are interested in whether periodogram would be considered as unbiased es-

timator of PSD, so we check the expected value of its definition: E[R̂x(f)] ≈ R(f):

E[R̂x(f)] = R̂x(f) =

n−1∑
τ=−n+1

E[r̂x(τ)]e−i2πfτ =

n−1∑
τ=−n+1

(1− |τ |
n
)rx(τ)e

−i2πfτ .

If we let n→ ∞, then
∑∞

τ=−∞ rx(τ)e
−i2πfτ = Rx(f), meaning that periodogram is in-

deed asymptotically unbiased estimate of PSD. However, for smaller values of n, we use

a rewritten formula for estimation of PSD. In frequency domain, this formula represents

convolution between Fejér Kernel (Kn(f)) and spectral density:

E[R̂x(f)] =

∫ 0.5

−0.5
Rx(u)Kn(f − u) du.

This means that when we convert a signal from time domain into frequency domain and

applying the FFT, we encounter an issue known as ”leakage”. Leakage is energy spilled

over into adjacent frequencies from the true frequency of the signal [13]. It is caused by

inconsistencies in period properties when applying FFT, resulting in height of the signal’s

amplitude being lower compared to the true amplitude height of the signal.

After looking into the expectation of the periodogram, some well-known conclusions re-

garding its variance can be stated. As the number of data points, n asymptotically in-

creases (n → ∞), the variance of periodogram:
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V [R̂x(f)] ≈

 R2
x(f), 0 < |f | < 1

2

2R2
x(f), f = 0,±1

2

Hence, periodogram cannot be seen as consistent estimator of spectral density as it does

not decrease as n → ∞. The conclusion is that periodogram is a biased estimate of spectral

density for a finite number of data samples. In order to correct this, in the next section,

we will introduce the modification of the concept called the lag window kn(τ) (Inverse

Fourier Transform of Fejér’s Kernel).

2.1.3 Modifying the Periodogram

When attempting to estimate the PSD, we run into issues with bias which is caused by

the height of the side-lobes appearing in the Fejer’s Kernel. Therefore, the techniques of

bias reduction should be applied which involve modifying the periodogram, called data

windowing [14]:

R̂w(f) = |
n−1∑
t=0

x(t)w(t)e−i2πft|2.

The idea of windowing is to reduce leakage bias by lowering the heights of side-lobes.

One of the most common technique is the method called the Hanning window, that intro-

duces a new function h(t):

h(t) =
1

2
− 1

2
cos

2πt

n− 1
,

t=0, ..., n - 1, that can be normalized to fit the format of w(t):

w(t) =
h(t)√∑n−1
t=0 h2(t)

.

The modified periodogram using the Hanning window [15] will have lower side-lobes and

wider main-lobe, compared to Feijer’s Kernel. This should result in reduced leakage that

will increase the accuracy of estimation of PSD compared to the regular periodogram.
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2.1.4 Spectrogram

Spectrograms provide valuable insights into HRV by revealing frequency components and

their changes over time. They offer detailed time-frequency analysis for non-stationary

signals but are complex for interpretation and have resolution trade-offs between time and

frequency domains where a higher time-resolution means lower-frequency resolution and

vice versa. In HRV analysis, a spectrogram can show how the power of different frequency

components changes over time. Overall, one can observe how the frequency components

change over time by examining a spectrogram which provides insights into ANS activity

and how well it responds to various stimuli. [16]

2.2 Statistical Analysis

2.2.1 Welch’s t-Test for the Difference Between Two Means

Welch’s t-test is a method of hypothesis testing when the means of two independent groups

are being compared. The two populations do not have the same variance [17].

If X1 ∈ N(µ1, σ
2
1) and X2 ∈ N(µ2, σ

2
2), we will briefly define the null and alternative

hypothesis in the Welch’s t-test test:

H0 :µ1 = µ2,

H1 :µ1 ̸= µ2

When working with Welch’s t-test it is important to understand how the test statistic:

T =
X̄1 − X̄2√

s21
n1

+
s22
n2

,

and degrees of freedom are calculated:

df ≈
(
s21
n1

+
s22
n2
)2

(
s21
n1

)2

n1−1 +
(
s22
n2

)2

n2−1

.
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In these expressions X̄1, X̄2 are the sample means for the two groups, s21 and s22 denote

the sample variances for the two groups, while n1 and n2 represent the sample sizes for

the two groups.

Lastly, we will briefly mention which assumptions must hold for performing of the Welch’s

t-test. Data must be continuous and collected using a random sample. Each investigated

group should have more than 15 observations or the sample data should follow a normal

distribution. [18]

2.2.2 Multiple Linear Regression

Multiple linear regression (MLR) refers to a statistical technique that uses two or more

independent variables to predict the outcome of a dependent variable. The technique

determines the variation of the model and the relative contribution of each independent

variable in the total variance. MLR model is a fit to represent a set of sample data,

with dependent variable (response) y that depends on k independent (regressor)

variables, x1, x2, ..., xk:

y = β0 + β1x1 + β2x2 + ...+ βkxk + ϵ

This equation represents a MLR model with one response y, regressor variables xj and

regression coefficients βj , where j = 0, 1, 2, ..., k. The regression coefficients measure

the expected change in y per unit change in the corresponding xj when all remaining

regressor variables xi(i ̸= j) are held constant. β0 is the y-intercept, and ϵ is the model’s

random error term: ϵi ≈ IID(0, σ2). By using MLR, we can predict behaviour of one

variable based on known information about several other variables. To apply MLR model

the following assumptions should hold:

1) Independently and randomly selected observations (yi) from the population.

2) Linearity: A linear relationship between the dependent variable and the independent

variables. This can be checked by looking for any clear patterns or systematic structures

in the residuals. For example, a Residuals vs Fitted plot can be created. In this plot, each
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point represents a combination of the factor levels and replicates, and the residuals should

be spread randomly around the horizontal line (y=0 ) with no clear pattern.

3) No multicollinearity: Multicollinearity exists when several independent variables in a

model are correlated. Detecting multicollinearity is important because even though it does

not reduce the explanatory power of the model, it reduces the statistical significance of the

independent variables. A common measure of multicollinearity among the independent

variables in a MLR model is Variance Inflation Factor (VIF) which can be considered for

each parameter. VIF describes how severe multicollinearity is in the least square regres-

sion analysis, by measuring the number of inflated variances caused by multicollinearity.

A high VIF of an independent variable indicates a highly collinear relationship with other

variables. Typical way of interpreting the value of VIF is: VIF = 1 (variables not corre-

lated); 1 < VIF < 5 (moderately correlated); VIF > 5 (highly correlated); VIF above 10

is a cause for concern [19].

4) Normally distributed residuals (errors): In this context, residuals represent the

difference between the created line of best fit and the actual data values:

ϵi = yi − ŷi.

The normality of residuals [20] affects the accuracy of the hypothesis tests, the confidence

intervals for the regression coefficients, as well as the validity of the model selection cri-

teria: coefficient of determination R2 and adjusted R2. We will use QQ-plots to compare

the quantiles of the residuals to the theoretical quantiles of a normal distribution. We

expect the residuals to follow a diagonal straight line.

5) Homoscedasticity: Homoscedasticity means that the residuals have constant vari-

ance across all levels of the fitted values [21]. Homoscedasticity can be checked by plotting

scale-location plot. If there is no funnel looking shape or pattern denoting increasing or

decreasing spread of residuals as the fitted values increase, then the model does not suf-

fer from systematic errors related to the levels of the factors. Hence the variance of the

residuals remains constant, satisfying the assumption of homoscedasticity.
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When working with MLR we are interested in the coefficient of determination (R2), a

statistical measure that represents the proportion of the variance for a dependent vari-

able that is explained by an independent variable or variables in a regression model [22].

Essentially, R2 explains to what extent the variance of one variable explains the variance

of the second variable. So, if the R2 of a model is 0.50, then approximately half of the

observed variation can be explained by the model’s inputs.

Another coefficient to be considered is adjusted R2, a modified version of R2 that has

been adjusted for the number of predictors in the model. Adjusted R2 addresses a limi-

tation of R2 and is used to determine how reliable the correlation is and how much it is

determined by the addition of independent variables. R2 will stay the same when adding

more predictors, even if they are not contributing meaningfully. It increases when the new

term improves the model more than would be expected by chance. It decreases when a

predictor improves the model by less than expected. Typically, the adjusted R2 is positive

and always lower than the R2.

So far, we have described how to build a multiple linear regression model with multiple

factors of HRV. The MLR equation, also known as additive model, investigates only the

main effects of predictors. It assumes that the relationship between a given predictor

variable and the outcome is independent of the other predictor variables. This assumption

might not be true. For example, the age factor may affect some other factor which is

referred to as an interaction effect.

The multiple linear regression equation, with interaction term (β3(x1x2)) between two

predictors x1 and x2, can be written as follows:

y = β0 + β1x1 + β2x2 + β3(x1x2) + ϵ.

The coefficient β3 represents the increase/decrease in effect of factor x1 for one unit increase

of factor x2, and equally the increase in effect of factor x2 for one unit increase of factor

x1.
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Chapter 3

Data Processing

3.1 Description of Data

Data used in this thesis are secondary and obtained through an experiment conducted

at the Department of Laboratory Medicine, Division of Occupational and Environmental

Medicine, Lund University [23,24]. There were 97 participants in total, 47 females and 50

males, of ages ranging from 20 to 61. Respiration rate and the HRV measurements were

taken in two instances, as participants were in resting state and in controlled breathing

state. By the controlled breathing state we consider individual’s breathing following the

frequency of the metronome pattern starting at 0.12 Hz and slowly increasing the pace to

0.35 Hz. The data was collected over 5-minute intervals with the sampling frequency of

4Hz. None of the participants were taking any medicine that is known to affect the heart

rate patterns or were suffering from any cardiovascular diseases. Physiological parameters

such as age, BMI, sex and psychological parameter describing stress levels in form of

SMBQ and State and Trait of anxiety measurement were recorded for each participant.

Data collection was conducted as a combination of two medical techniques. Using a strain

gauge attached to a strap that is wrapped over participant’s torso measured changes in

the pressure caused by the inflation/deflation of the torso during breathing, therefore,

providing the information about respiratory signals of the individual [25]. The other

technique was the use of ECG, showing the pattern of heart rate signals. Here, a sample

of respiratory and HRV signal is presented (Figure 3.1).
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(a) Sample of Respiratory signal (b) Sample of HRV signal

Figure 3.1: Samples of Respiratory and HRV signal

3.2 Spectral Analysis

The methods explained in the Mathematical concepts chapter, assume the stationarity or

approximate stationarity of the signals, while the data collection resulted in recorded non-

stationary respiratory and HRV signals of 5-minute lengths. Therefore, the first course

of action was to cut the recordings into shorter, 16 second intervals, and make the data

appear stationary. Additionally, the mean of the data was also adjusted to zero.

As our data was recorded in time-domain, it was needed to be transformed into frequency-

domain, for us to look at the power of the time-series signal. This transformation of the

HRV signal was done by using periodograms as a single-window method. First, the pe-

riodogram of the respiratory signal and periodogram of the HRV signal were created for

every patient by applying the Fourier transform on sectioned segments of the signals. In

attempt to reduce the effect of leakage in periodograms, they were modified using Hanning

window with length of 64.

After creating the periodograms of the HRV signals for each participant, a spectrogram

of HRV and respiratory signals was made (Figure 3.2) to further observe the behaviour of

HRV and extract the time-varying PHRV.

We begin this extraction of data by finding the maximum values of respiratory spectro-

gram at each time point. Then, the frequencies of those maximum values were extracted

for each time point as we can see in Figure 3.2 (a). Next, we used the extracted frequencies

as midpoints to create time-dependent frequency band on the HRV spectrogram.



16

(a) Sample of Respiratory Spectrogram (b) Sample of HRV Spectrogram

Figure 3.2: Sample of Respiratory Spectrogram and HRV Spectrogram

Figure 3.3: Sample of the PHRV over time plot

This frequency band was created individually for each time point and can be seen as the

white continuous line on the spectrogram as seen in Figure 3.2 (b). Lastly, PHRV was

extracted as the average power in the frequency band at each time point and its plot was

created to show its variation over time (Figure 3.3).

Approximately on all PHRV plots of the participants, we can notice that in the first 50

seconds, there is a notable high power. There is also a general trend of decreasing power,

suggesting a reduction in the amplitude of HRV fluctuations. Lastly, the power levels off

at a low value towards the end of the period (beyond 250 seconds), indicating minimal

HRV fluctuations. It is of interest to further investigate the relationship between PHRV

and some physiological and psychological parameters using statistical methods. In order

to proceed with such analysis we needed to extract parameters of PHRV. This was done

by fitting an exponential model in form of:

y(t) = ceat,
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to the graph of PHRV (Figure 3.4). The results were values for a, the decay rate parameter

for each participant, and c, scaling factor that describes the multiplier of the whole PHRV

function.

Figure 3.4: Sample Exponential Model of PHRV

The exponential (red) curve was chosen for the model as it follows the decreasing trend

of the PHRV (blue) well.

However, it is important to mention that the PHRV shows fluctuations around the ex-

ponential model. These oscillations are not captured by the exponential model, which

only represents the general trend. This approximation still provides a solid model for the

further analysis.
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Chapter 4

Statistical Analysis

4.1 Descriptive Statistics

We will start the statistical analysis with a simple descriptive statistics to visualize the

data and get the idea of its spread. Figure 4.1 below shows the summary of descriptive

statistics for the factors of HRV and two parameters of the exponential PHRV model.

The mean age of the participants is 29.6. The distribution of age is positively skewed with

somewhat larger standard deviation of 9.46 years. The distributions of factors SMBQ,

length, weight, BMI and state and trait of anxiety are all quite symmetrical (the values

of the mean and the median are quite similar).

Figure 4.1: Summary metrics for numerical factors
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The histograms (Figure 4.2) show the distribution of the two parameters a and c of the

exponential model for the PHRV:

Figure 4.2: Histograms of parameters a and c of the exponential decay model

We can see that the distribution of the values of the parameter a is negatively-skewed with

majority of data still falling into the interval around the mean value of -0.00987. On the

other hand, the distribution of the parameter c is positively-skewed with only a few values

less than the mean of 0.0517. So, the mean of the data for parameter c (the amplitude of

the PHRV) is bigger than the median indicating that the mean overestimates the majority

of the values in the distribution.

In the following section, the analysis of the parameters c and a of the exponential decay

model of the PHRV will be performed and the relationship between these parameters and

the factors of HRV investigated.

4.2 Welch’s t-test

In the observed sample of 97 participants with approximately equal number of female

(47) and male (50) participants, it is of interest to check whether there is a significant

difference between the mean values of the parameters c and a of PHRV for female and

male participants.

4.2.1 Parameter c

First, we will illustrate the 5-number summary and its visualisation in the form of the

box-plot for the parameter c for the female and male participants:
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(a) Five-point summary for parameter c for females and males

(b) Box-plot for the parameter c for females and males

Figure 4.3: Distribution of parameter c by sex

The box-plots for female and male show that the distribution of the parameter c is quite

similar for the two sexes. The median values, as well as the first and third quartiles are

almost the same. The maximum value of the parameter c for male (0.2250) is somewhat

higher than the maximum value for the female (0.1649).

Welch’s t-test for parameter c

The following table shows the simple statistics needed to perform the t-test:

Figure 4.4: Descriptive statistics for female and male for the parameter c

We can see that the variances and sample sizes of the two populations are different. There-

fore, we will use the Welch’s t-test, that considers the observed constraints.
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Definition of the hypotheses:

Null Hypothesis (H0): There is no significant difference in the average value of the param-

eter c for females and males.

Alternative Hypothesis (H1): There is a significant difference in the average value of the

parameter c for females and males.

Sample calculations for parameter c:

In order to calculate the t-statistic, the difference between the mean values of the param-

eter c: X̄1 − X̄2 was found to be 0.004665447. The standard error of the difference

between two means is given by:

SE =

√
s21
n1

+
s22
n2

=
√
0.000033348 + 0.000059942 ≈ 0.0096598.

Hence, the corresponding t-statistic is:

t =
0.004665447

0.0096598
≈ 0.483.

In the Welch t-test, the degrees of freedom (df ) does not have to be a whole number, and

it is calculated using the Welch-Satterthwaite equation (provided in the Chapter 2) which

takes into consideration sample sizes and variances of the two groups. The df is equal:

df ≈ 8.7014281× 10−9

9.7445736× 10−11
≈ 89.25

We will round the obtained value df to the nearest integer, so df ≈ 89 and we look at

a t-distribution table for the two-tailed test with 89 degrees of freedom and the level of

significance α=0.05. For the two-tailed test, the significance level is split into two tails,

each tail with α/2 =0.025, meaning that the critical t-value for the test is approximately

± 1.987. Therefore, the rejection region for this test consists of the intervals of t-values

less than -1.987 and greater than 1.987.
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Since the absolute value of the calculated t-value 0.483 is less than the critical t-value

1.987, we fail to reject the null hypothesis. This means that at the α=0.05 significance

level, there is no significant difference between the mean values of the parameter c of

PHRV for the female and male groups. This can be interpreted as there is no significant

difference in the amplitude of the PHRV for female and male participants, in this sample.

The majority of the participants are younger, and their heart is in general healthier.

4.2.2 Parameter a

The 5-number summary and the box-plot for the parameter a and the sex of the partici-

pants are given in the Figure 4.5:

(a) Five-point summary for parameter a for females and males

(b) Box-plot for the parameter a for females and males

Figure 4.5: Distribution of parameter a by sex

The distributions of the parameter a with respect to female and male participants, are

somewhat different. The minimum value for the male group (-0.0233) is smaller than the

minimum value for the female group (-0.0158). Also, the median value as well as the max-
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imum value for the distribution of the parameter a for the female are both higher than

the corresponding values in the distribution for male. To check if there is a significant dif-

ference between the mean values of the parameter a in these two groups, we will complete

the Welch’s t-test. The procedure is same as for the parameter c, so for the purpose of

conciseness only the descriptive statistics and the results of the test will be presented in

the following table:

Figure 4.6: Descriptive statistics for female and male and the results of the Welch t-test
for the parameter a

The mean value of the parameter a for females is -0.008597872 while the mean for males is

-0.011064 indicating that the PHRV for the male participants decreases a bit faster than

the PHRV of females. The variance of the parameter a for male is slightly higher so the

values of the parameter a for males are a bit more scattered.

The accepted level of significance α =0.05 gives the same critical t-value of ±1.987. The

calculated t-statistic for the parameter a is (t=3.270) and falls into the rejection region, so

we can conclude that, at α =0.05 significance level, there is significant difference between

the mean values of the parameter a for female and male. The test result is in line with the

conclusion from the descriptive statistics completed earlier that indicates the steeper decay

trend of PHRV for males, and therefore the difference in the mean values of parameter a

for females and males.
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4.3 Multiple Linear Regression

In this section, we will be developing the MLR models [26] to explore the possible linear

relationship between the observed factors of HRV and the parameters c and a of PHRV.

4.3.1 Parameter c

A MLR model is created that takes into account all the 8 independent variables (HRV

factors): age, sex, SMBQ, length, weight, BMI, state and trait of anxiety, against the

parameter c of the PHRV. Prior making predictions based on this model, it is needed to

check if the assumptions for the MLR model hold.

We first check the linearity condition. We have created a diagnostic Residuals vs. Fitted

Values (Figure 4.7 (b)) plot which indicates that the residuals are fairly evenly spread

around the zero line. Some exceptions are visible in a part with bigger fitted values, how-

ever, we could still say that the linearity assumption is reasonably satisfied.

We observe the distribution of the residuals. From the histogram (Figure 4.7 (a)), it can

be seen that most of the residuals seem to be following the normal distribution, however,

this is insufficient to confirm the normality.
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(a) Distribution of the residuals (b) Residuals vs. Fitted Values Plot

(c) Q-Q plot of the residuals (d) Scale-location plot of the residuals

Figure 4.7: Distribution and diagnostic plots of the MLR model

To further explore if the assumption for normality of the residuals holds, Q-Q plot was

created (Figure 4.7 (c)). The Q-Q plot shows that the residuals are approximately normal

but there are some deviations in the tails. More specifically, the points in the right tail

(upper quantiles) deviate more above the line which could indicate outliers.

To check the homoscedasticity assumption, we have created a diagnostic Scale-location

plot (Figure 4.7 (d)). The residuals appear to follow the funnel shape across different fit-

ted values. Therefore, we can say that the assumption of homoscedasticity is not satisfied.

To deal with this issue, we will linearize our model (transform the dependent variable) by

taking a natural logarithm of the both sides of the model.

The plot of residuals vs fitted values (Figure 4.8 (a)) for the transformed model shows

better spread of the points around the x -axis for the assumptions of linearity. We can

notice that the homoscedasticity is satisfied from the scale-location plot (Figure 4.8 (c)),

as the funnel shape effect is now significantly smaller.
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(a) Residuals vs Fitted plot of the residuals (b) Q-Q plot of the residuals

(c) Scale-location plot of the residuals

Figure 4.8: Diagnostic graphs for the assumptions for the logarithmic correction

Finally, we observe that the residuals in the Q-Q plot (Figure 4.8 (b)) have a consistent

spread, indicating that the normality is satisfied. To check the assumption of multi-

collinearity of the linearized model VIF measurement was used (Figure 4.9 (a)).

(a) Table of VIF values for the logarithmic
MLR model

(b) Table of VIF values for the reduced MLR
model

Figure 4.9: Table of VIF values for the two MLR models

For the factors age, sex, SMBQ, state and trait the VIF values range from 1.159 to 4.846

indicating low to moderate multicollinearity, which is generally acceptable. However, the

VIF values for predictors length, weight and BMI, are 55.487, 162.486, and 94.938, re-

spectively. These values are extremely high and indicate severe multicollinearity. The

VIF values suggest that these three factors are highly correlated with one another or with

other predictors in the model which is a cause for concern, as high multicollinearity can

lead to unstable coefficient estimates, inflated standard errors and reduced model inter-

pretability. To address this issue, we decided to remove weight as a variable from the
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linear model, as it had the highest VIF value. Hence, a new linear model was created,

named the ”reduced MLR model”.

(a) Residuals vs Fitted plot of the residuals (b) Q-Q plot of the residuals

(c) Scale-location plot of the residuals
(d) Scatter plot showing the change in c over
age

Figure 4.10: Diagnostic graphs for the assumptions for the reduced MLR model

We will briefly check the reduced model for the assumptions of linearity, homoscedasticity

and normality. The residuals are fairly randomly scattered around zero (Figure 4.10 (a)),

suggesting the linearity assumption is reasonably satisfied. They have a consistent spread

along the horizontal line (Figure 4.10 (c)), indicating homoscedasticity is satisfied. The

residuals are spread evenly along the line (Figure 4.10 (b)), suggesting normality.

The scatter plot of the parameter c vs factor age (Figure 4.10 (d)) shows a moderate

negative correlation. Majority of the points follow the negative linear trend, meaning that

the older the participant, the lower the value of the parameter c. There are a few higher

values of c among younger participants, three of which could be seen as outliers. This can

be explained by the potential individual associated diseases of these participants and are

beyond the scope of our analysis.
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After the reduction of the weight factor, a new table of VIF values was created and we

can see that new values ranged from approximately 1.15 to 4.79 (Figure 4.9 (b)). Hence,

the issue of multicollinearity has been resolved by removing weight. None of the remaining

predictors have VIF values that indicate severe multicollinearity. This correction made it

easier to interpret the effect of each predictor on the dependent variable and improved the

accuracy of p-values, helping to determine the significance of each predictor.

Now that the assumptions have been checked, we will analyze how the p-values, R2 and

adjusted R2 values of the reduced model affect the c parameter of PHRV (Figure 4.11).

Figure 4.11: Summary statistics of the parameter c coefficients, p-values, (R2) value and
adjusted (R2) value in the reduced MLR model

It can be seen that the p-value < 4.251×10−09, indicates a highly significant relationship.

Therefore, at least one of the predictor variables is significantly related to the outcome

variable, parameter c of PHRV. When looking at the p-values in the reduced model, the

only significant predictor of PHRV is age. Parameter state has a second smallest p-value

= 0.180, and, although technically insignificant, might be interesting to be investigated

further. The value of the coefficient of determination R2=0.4383 indicates that approx-

imately 43.83% of the variability in PHRV is explained by the predictors. The adjusted
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R2 is 0.3941, so approximately 39.41% of the variability in PHRV is explained by the

predictors (after adjusting for the number of predictors). The adjusted R2 value is lower

than the R2 value, so some of the predictors in the model may not be contributing much

to explain the variance in HRV.

4.3.2 Parameter a

Now, we will investigate a MLR model that represents the relationship between the pa-

rameter a of PHRV and the factors in ”reduced MLR model”(Figure 4.12).

Figure 4.12: Summary statistics of the coefficients of the parameter a, p-values, R2 value
and adjusted R2 value in the reduced MLR model

The p-values in the reduced model indicate that no factor is statistically significant pre-

dictor for parameter a. The R2 value is 0.1618 so, only 16.18% of the variability in PHRV

is explained by the predictors. The low value of the R2 might also indicate that the linear

regression gives a poor model, and the relationship between the factors of HRV and the

parameter a in the PHRV model are not necessarily in linear relationship. The adjusted

R2 is 0.09584, so approximately only 9.584% of the variability in PHRV is explained by

the predictors. The adjusted R2 is lower than the R2 value, so some of the predictors may

not be contributing to explain the variance in PHRV.
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In conclusion, MLR results indicate that, for parameter c the only statistically significant

factor is age. It might be interesting to further explore the relationship between parameter

c and the factor state, that is potentially significant. MLR analysis for the parameter a

indicates that none of the observed factors are statistically significant. Therefore, in the

next section, additional analysis will be conducted, focused only on the possible effects of

the two factors (age and state) on the parameters a and c of the PHRV model.

4.4 MLR with interaction term

The conclusions of the MLR model, with the factor age being the only statistically signifi-

cant and the factor state being insignificant but with the second lowest p-value in the MLR

model, prompted further investigation of their relationship with PHRV. Hence, a MLR

model for parameter c using factors (age and state) with their interaction was created.

Before looking into the effect of interaction term onto c parameter, we will illustrate the

distribution of the factors age and state (Figure 4.13):

Figure 4.13: Histograms of factors age and state of the exponential decay model

The distribution of the factor age is strongly positively skewed, indicating that the median

age is lower than the mean. The sample consists of mostly younger participants (up to 30

years) and several older than 30. This is a possible motivation for some future research

that could be focused on specific age groups. Samples can be taken with respect to sex

and age groups as they can provide more insight into specific relationships between the

parameters of the model for PHRV and the observed factors. The histogram for the dis-

tribution of the factor state of anxiety is a bit more symmetrical, with a long tail on the

right side. Also, state of anxiety factor is higher among younger participants.
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In the previous section it was shown that taking a natural logarithm of the dependent

variable (linearization of the model) provides better approximations. Therefore, we have

created a MLR model using the logarithmic correction to look into the main factors (age

and state) and their interaction of the parameter c. Firstly, we shall check the assumptions

of linearity, homoscedasticity and normality.

(a) Residuals vs Fitted plot and Q-Q plot of the MLR model with interaction

(b) Scale-location plot of the residuals

Figure 4.14: Diagnostic graphs for the logarithmic correction model with interaction term

The residuals seem randomly scattered around zero on Residuals vs Fitted values, and the

residuals are spread evenly along the diagonal on the Q-Q plot suggesting the linearity and

normality assumption are satisfied (Figure 4.14 (a)). Residuals show a constant spread

(Figure 4.14 (b)), indicating that homoscedasticity is also satisfied.

We will now look into the results of the MLR model with interaction term [27], considering

the factors age and state of anxiety (Figure 4.15).



32

Figure 4.15: Summary of the MLR analysis for factors age, state and their interaction

The multiple linear regression equation, with interaction term (β3(x1x2)) between two

predictors: age (x1) and state (x2), can be written as follows:

y = β0 + β1x1 + β2x2 + β3(x1x2) + ϵ.

By substituting the obtained values for the coefficients in the MLR model with interaction

term, we obtain:

y = −1.2221792− 0.0658867x1 + 0.0104179x2 − 0.0007018(x1x2) + ϵ.

The coefficient β3 = -0.0007018 represents the decrease in age factor for one unit increase

of the state factor. The p-values in the interaction model indicate that no factor is sta-

tistically significant predictor for parameter c. The R2 value is 0.4144 so, 41.44% of the

variability in PHRV is explained by the predictors. This value also indicates that a linear

model is relatively good fit.

The adjusted R2 is 0.3955, so approximately only 39.55% of the variability in PHRV is

explained by the predictors. The adjusted R2 is lower than the R2 value, hence, we could

potentially remove some predictors which are not contributing to explaining the variance

in PHRV.
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Finally, the Figure 4.16, shows the color-coded interaction graph which helps visualizing

and interpreting the interaction effect when the effect of one independent variable (age)

on the dependent variable (parameter c) depends on the level of another independent

variable (state of anxiety). The graph shows the parameter c vs age, colored by the state

of anxiety variable which is classified into 5 categories, each represented by a distinct color.

The colors represent state categories, with category 1 being the lowest range of state values

and category 5 being the highest. Each line represents the relationship between c and age

for a specific state category.

Figure 4.16: Scatter plot of c against age, colored by state

We can observe a low negative correlation between the parameter c and the age of par-

ticipants, indicating that that the parameter c decreases as age increases, across all state

categories. The y-intercepts differ somewhat for each state category meaning that each

state category starts at a bit different value of the parameter c for the minimum age of

20. The gradients of the lines are relatively consistent across different categories of state

of anxiety showing a similar rate of decrease, with the overall highest rate of decrease for

the highest category (5). The parameter c for younger participants (age 20-35) is mainly

between 0 and 0.16 where just a few of them have significantly higher values (outliers).
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This suggests that other factors might influence the value of the parameter c. On the

other hand, older participants (age 45-65) have lower values of the parameter c, (up to

0.025) and a low level of the factor state of anxiety, (1-3). This finding makes sense in the

context of everyday stress level that younger population is exposed to, while older people

often lead relatively stress-less lives.
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Chapter 5

Conclusion

In this thesis, the analysis for HRV signals in frequency domain has been presented. HRV

is the physiological phenomenon of variation in the time interval between heartbeats. It is

measured by the variation in the “RR interval”. The information about the behaviour of

HRV is relevant to many cardiovascular and non-cardiovascular diseases, as well as emo-

tional arousal in mental and social aspects.

In the analysis the Power Spectral Density (PSD) for HRV signals is estimated based on

Discrete Fourier Transform (DFT). The spectrogram of respiratory and HRV signals is

implemented for the estimation of the power of HRV (PHRV) in the HF band and an

exponential model of PHRV is developed. Two parameters, c and a of the exponential

model of PHRV are extracted: parameter c which represents the PHRV multiplier and

parameter a - the exponential decay factor of the PHRV model. The relationship between

the two parameters of PHRV and 8 factors (age, sex, SMBQ, length, weight, BMI, state,

and trait of anxiety) is observed.

The results of the Welch’s t-test for the difference of two means of the parameter c be-

tween females and males show that there is no significant difference between the mean

values of parameter c for female and male groups in this sample. Possible further research

could investigate if there is a significant difference between the mean value of parameter c

between female and male in a sample with older participants. Due to other potential age-

related health issues, one might expect a more visible difference between the mean values

of parameter c for females and males. The Welch’s t-test for the parameter a shows that
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there is a difference between the mean values of this parameter for females and males.

MLR model showed that out of 8 tested independent factors, only the factor age is sig-

nificant for the parameter c. The factor state of anxiety is not significant, however, it has

the second smallest p-value in the MLR model for the c parameter. This was the base to

develop MLR model with interaction term. The results obtained using this model indicate

that the interaction between the factors age and state is insignificant for the parameter

c. As far as the parameter a is concerned, the MLR model developed at 5% significance

level, shows no significant factors for parameter a in the PHRV exponential model.

Further research can be based on a variety of different samples, for example, separate

younger and older female/male samples as well as consideration of the relationship be-

tween parameters of the exponential model of PHRV with respect to other factors that

include specific health-issues, such as atrial fibrilation or other conditions.

In this thesis, we have treated the data as stationary, which is the biggest approxima-

tion made in the analysis. Applying non-linear methods will allow to visually search for

patterns within a time series (a sequence of values from successive measurements). A pos-

sible choice of the non-linear methods would be Detrended fluctuation analysis (DFA) and

Adaptive fractal analysis (AFA). DFA determines the level of non-stationarity of the data.

It extracts the correlations between successive RR intervals over different time scales. Re-

search has shown that DFA might be more precise in predicting fatal arrhythmic events

than that based on traditional methods [7]. AFA utilizes an adaptive detrending algorithm

to extract globally smooth trend signals from the data and then analyzes the scaling of

the residuals to the fit as a function of the time scale at which the fit is computed. A

parameter called Hurst exponent, (H) quantifies the “memory” or serial correlation in a

time series. Advantage of AFA compared to DFA is that AFA can deal with arbitrary,

strong non-linear trends while DFA cannot [8].

Results obtained using non-linear methods could lead to more precise mathematical mod-

els for the trend of the PHRV, and therefore, better analysis of the relationship between

the observed parameters of the model and the factors affecting the HRV.
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