
Validation of exoplanets exhibiting
dynamical interaction

Warsame Mohamed Ali

Division of Astrophysics
Department of Physics



2024–EXA232

Degree project of 15 higher education credits
June 2024

Supervisors: Judith Korth & Alexander Mustill

Division of Astrophysics
Department of Physics
Box 118
SE-221 00 Lund
Sweden



Abstract

The Transiting Exoplanet Survey Satellite (TESS) uses transit photometry to detect ex-
oplanets. To confirm if it is a planet, a second detection method is used to determine
the planet’s mass. But with the number of candidates waiting for confirmation, statistical
tools have been developed to validate exoplanets so that false positives could be ruled out
quickly. One such tool is the Tool for Rating Interesting Candidate Exoplanets and Re-
liability Analysis of Transits Originating from Proximate Stars (TRICERATOPS) [Giacalone
et al., 2021].

TRICERATOPS works well for systems with strict periodicity but I investigated its perfor-
mance in validate systems exhibiting dynamical interactions or Transit Timing Variations
(TTVs). For a system to be deemed as validated, it needs a false positive probability (FPP)
below 0.015. An FPP between 0.015 and 0.5 indicates a likely planet while an FPP above
0.5 indicates a false positive. By varying the TTV amplitude, TTV period, and impact
parameter of the transit of a mock system, I tested how well TRICERATOPS worked.

I discovered that TRICERATOPS struggles to validate a planet with a relative TTV am-
plitude of 5.38% of the transit duration and it increases until a relative TTV amplitude
of 17.9% where the FPP reaches 1. Varying the TTV period at an amplitude below this
limit does not seem to have an effect on the FPP. There is no reliable interpretation of the
FPP when above this limit. The impact parameter caused the FPP to increase at about
b = 0.5− 0.6 as it increased.

The conclusion of this test is that TRICERATOPS is not a viable tool for systems with TTVs
unless the TTVs have been carefully corrected. Otherwise, the system may be classified as
a false positive.





Popular science description

When people think about space they may think about something practical like the satellites
that orbit the Earth and help us in our day-to-day lives. Or they think about something
more fantastical like aliens on another world, like from Star Trek. This project leans toward
the fantastical side of the spectrum but is not quite the same. It is about validating exo-
planets around distant stars. These planets have been detected using the transit method.
This means we measure the light coming from a star and when that light dims, it means an
object has eclipsed it. If this happens at regular intervals, we know there is the possibility
of there being an exoplanet and we can find its size from how much light is blocked. The
problem is then, how do we know if it is a planet we are seeing and not maybe a binary
system where two stars orbit each other? We cannot see the planet, so we use another
detection method like radial velocity, which detects massive planets close to the star by
seeing how much the gravitational forces from the planets affect the star. This is perfect
because transits are easier to detect for massive planets close to the Sun! That means these
planets are likely to be gas giants like Jupiter where a year on the planet takes on average
5 days. Hence, it is very unlikely there is any alien life on these planets.

Scientists discover many candidates, so they created tools to determine which of these
candidates are the most interesting to focus on. One of these tools is the Tool for Rating
Interesting Candidate Exoplanets and Reliability Analysis of Transits Originating from
Proximate Stars or TRICERATOPS like the dinosaur. This tool analyzes data from a transit
and calculates the probability of the object being a false positive. It allows scientists to
determine what object to do follow-up studies on.

But what about the dynamical interaction? This could mean that the star has more
than one planet orbiting around it, just like our own solar system. These planets will
affect each other with their gravity, slowly varying their orbital period. They are no longer
at regular intervals, which means that the length of a year on the planets is going to vary.
Now the question this project seeks to answer is if TRICERATOPS can be used to accurately
validate planets that have these irregular orbits. This is important to further help scientists
not waste time doing follow-up observations on objects that cannot be exoplanets so that
they can focus on discovering new worlds in this galaxy. And perhaps discover some aliens
along the way.
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Chapter 1

Introduction

The search for exoplanets has been fascinating, with new technologies and methods being
developed to discover more and more about exoplanets and planetary systems. Simply
put, exoplanets are planets that are outside our solar system, orbiting other stars. Just
like the planets in our system, they come in different varieties from small rocky planets
to large gas giants and even possible Earth-like planets. A definition of an exoplanet is
given by the International Astronomical Union’s (IAU) Commission F2: Exoplanets and
the Solar System in 2018. It defines the upper mass limit of exoplanets as the mass limit for
deuterium burning at 13MJ

1 and the stability of the Lagrange points L4 and L5. Lagrange
points are positions where the gravitational influence from two more massive objects on a
smaller mass object, is in equilibrium. The L4 and L5 points are stable Lagrange points.
For these points to be stable, the mass of the orbiting object needs to be less than 1/25th
of the central object [Cornish, 1998]. Lastly, the lower mass limit of planets is sufficient
mass to assume hydrostatic equilibrium and a round shape, like Ceres. The definition has
been updated from its original 2003 version to include new insights gained over the years,
and it will continue to be revised in the future.[Lecavelier des Etangs and Lissauer, 2022].

As of 2nd of April 2024, 5602 planets have been confirmed2, the first detected in 1988
and confirmed in 2003 was γ Cephei Ab using the radial velocity method [Hatzes et al.,
2003]. This is a method where the wobbles of the star as it is being slightly moved by the
orbiting planet can be detected through spectroscopy. The spectrum of the star shifts as it
moves away or towards the observer. This is called redshift and blueshift respectively. From
these movements, the mass of the planet causing the wobbles can be determined. The first
exoplanet to be found and confirmed around a main-sequence star was around 51 Pegasi
in 1995, called 51 Pegasi b, using the radial velocity method [Mayor and Queloz, 1995]. 51
Pegasi b is what is known as a Hot Jupiter which are massive gas giants that orbit very
close to their host star. Due to the close proximity to the star, the atmosphere of the gas
giant gets heated, leading to its name Hot Jupiter. Gas giants are the most massive planets

1This is only for objects with solar metallicities. This mass limit will be different depending on the
metallicity of the object.

2https://exoplanets.nasa.gov/ Accessed: 2 April 2024
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so the upper mass limit of a Hot Jupiter is around 13 Jupiter masses [Lecavelier des Etangs
and Lissauer, 2022]. The lower mass limit is generally seen as 0.1 MJ [Wang et al., 2015].
Hot Jupiters have short orbital periods, generally seen as 10 days or less[Wang et al., 2015].

The transit photometry and radial velocity methods are ideal for discovering Hot Jupiters
because of their size and proximity to their star. Transit photometry is observing a star in
broadband photometry at high cadences to detect a decrease in brightness coming from the
star as a planet transits, blocking the light from reaching us. It is the most successful and
most frequently used method to detect exoplanets, having detected 74.4% of the exoplanets
discovered according to NASA as of 2nd of April 2024 3. The planet HD 209458 b was first
discovered using the radial velocity method but was the first planet to be detected using
transit photometry. This could prove that this was a planet and not a binary or stellar
variability by calculating the density of the planet from the mass and radius [Charbonneau
et al., 2000]. This is part of the confirmation of planets where both methods are used to
get the mass and radius [Landau, 2018]. The order in which they are discovered does not
matter. This is why Hot Jupiters are perfect for the radial velocity and transit methods
due to their large mass and radius. However, the transit made by a Hot Jupiter could
be confused with a transit coming from an eclipsing binary in the background behind a
brighter star. There are also a lot of candidates already detected but have not been con-
firmed4. This has shown the need for validation of the candidates.

Validation is the process of ruling out the candidates that are not exoplanets [Giacalone
et al., 2021]. These unwanted candidates are known as false positives and include scenarios
where eclipsing binaries or instrumental errors cause the signal. Thousands of possible
exoplanets have been detected5, far too many to do follow-up investigations on all of them.
There are ways to validate exoplanets like multiband photometry where the light intensity
from an object is measured at multiple wavelengths to find different transit depths at dif-
ferent bands [Giacalone et al., 2021]. A faster way to distinguish between false positives
and actual exoplanets is using validation tools. Validation tools are statistical tools used
for the validation process by analyzing the light curve data from telescopes, statistically
determining the probability of there being a planet there. The tool I will use is the Tool
for Rating Interesting Candidate Exoplanets and Reliability Analysis of Transits Origi-
nating from Proximate Stars (TRICERATOPS) [Giacalone et al., 2021]. It determines the
likelihood of the signal coming from a planet or not by assuming a linear periodicity in the
transit, meaning that the transit happens at a fixed time interval. With strict periodicity
and Bayesian statistics, TRICERATOPS can accurately determine the likelihood of the signal
being from a planet or not and if there are unresolved stars blended in with the light we
see. Now we are presented with a new challenge, however. Can TRICERATOPS determine
if the transit signal is an exoplanet or a false positive if we have a dynamical interaction

3https://exoplanets.nasa.gov/ Accessed: 2 April 2024
4https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html Accessed: 2 April 2024
5https://exoplanets.nasa.gov/ Accessed: 2 April 2024
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between multiple bodies orbiting the same star? This dynamical interaction is the gravita-
tional forces of the bodies affecting each other, causing a variation in the orbital period and
breaking the periodicity. The variations in the periods are called Transit Timing Variations
(TTVs) [Agol et al., 2005] and that is what I aim to answer in this thesis by creating my
own mock TTV transit data and see if TRICERATOPS can validate the candidate.

In Chapter 1, the necessary background information, theory, and idea behind validation
and TRICERATOPS will be provided. In Chapter 2, I will explain the methodologies used in
the thesis. In Chapter 3, I will present and analyze the results to evaluate the impact of
TTVs on TRICERATOPS. In Chapter 4, I will end with a summary and a conlcusion.

1.1 Transit Photometry

1.1.1 How transit photometry works

The way the transit method works is that telescopes equipped with photometers measure
the brightness of stars. When an object passes by between the star and the telescope,
a portion of the light will be blocked which is detected by the photometer. The flux at
that moment in time will be lowered and is called a primary transit. When the object
orbits behind the star, any light it would reflect or emit is now blocked from reaching the
telescope which can be seen on the light curve as a smaller transit curve. This is called a
secondary eclipse [Deeg and Alonso, 2018]. The object orbiting the star has to orbit right
between the observer and the star itself to be detected. This is denoted by the impact
parameter, b, with b = 0 for a central transit, and b = 1, for when the object grazes the
top of the star. The impact parameter is related to the inclination i by

b ≡ a

Rs

cos i, (1.1)

with the semi-major axis a and the radius of the star Rs[Deeg and Alonso, 2018] and can
be seen in Fig.1.1. The inclination is the measure of the tilt of the planet’s orbit around the
star. In addition, the impact parameter will also affect the look of the transit light curve.
A central transit will have a steep ingress and egress with a slightly rounded bottom to
the curve due to limb darkening as the intensity of light is weaker at the limbs of the star,
while a grazing transit will have a more gradual ingress and egress leading to a shallower
and pointier curve due to the limbs darkening and a shorter transit time as seen in Fig. 1.2.

Models are often used to simulate light curves and one such model that I will use is the
quadratic transit model created by [Mandel and Agol, 2002] included in the PyTransit
package[Parviainen, 2015]. This model describes the limb darkening as a quadratic function
and it is a good approximation. It is described as

I(r) = 1− γ1(1− µ)− γ2(1− µ)2, (1.2)

3
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Figure 1.1: Figure showing the transit with the total transit duration tT , the full transit
duration tF and depth of the transit ∆F . A side view shows the inclination i of the orbit
and a top view shows the semi-major axis a of the orbit[Deeg and Alonso, 2018].

where γ1 and γ2 are the limb darkening coefficients with γ1 + γ2 < 1. These coefficients
determine how much the limb darkens where I(r) is the normalized specific intensity where
I(0) = 1. r is the normalized radial distance from the center, r = 0 is the center of the
star, r = 1 is at the limb of the star, µ is the cosine angle between the line of sight and
the normal to the stellar surface, µ = cos θ. At the center of the star µ = 1 and at the
limb µ = 0 where µ can be written in terms of r as µ =

√
1− r2 [Mandel and Agol, 2002].

The width of the transit curve is the duration of the transit. When the planetary disk first
touches the star, it is called first contact. When the planetary disk has fully gone over the
edge is called the second contact. Similarly, there will be third and fourth contacts as the
planet passes the star. As seen in Fig. 1.1, the total duration of the transit, tT , is from the
first to the fourth contact while the time of totality, tF , is between the second and third
contacts [Deeg and Alonso, 2018].

From the depth of the light curve ∆F seen in Fig.1.1, we can determine the size of the
object orbiting the target star because the change in flux is related to the sizes of the
star and the planet. Assuming the flux coming from the object itself is negligible and a
spherical shape for both star and planet, we can see that the change in flux is given by,

∆F ≈

(
Rp

Rs

)2

= k2, (1.3)

4
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Figure 1.2: Figure showing the effect on the light curve caused by the differing impact
parameters of a warm Neptune around a Sun-like star. The solid lines are grazing or near
grazing, while the dashed lines are full transits. [Gilbert, 2022].

where k is the ratio between the radius of the planet Rp and the star Rs. It is only exactly
true for a uniform stellar disk with no limb darkening. This equation is used to determine
the radius of the planet. With a follow-up investigation using the radial velocity method,
the mass can be determined as well, which along with the radius can tell us more about
the planet and its composition. A planet is deemed confirmed if both of these parameters
have been measured and thus, its density can be measured [Deeg and Alonso, 2018].

The time between transits is the orbital period of the planet. Two or more transits are
required to determine the orbital period. That is why it is easier to use the transit method
for planets with short orbital periods in the range of a few days where the object can be
seen regularly like Hot Jupiters for example. A smaller orbital period results in a larger
transit probability for the object.

Variations in the orbital period or TTVs occur and can be caused by gravitational forces
from other bodies orbiting the same star. The planets in these systems accelerate and
decelerate each other, breaking up the strict periodicity a lone planet would have. The
variations can be likened to an oscillator with a TTV amplitude, TTV period, and a TTV
phase. The orbital period of the planet will oscillate around the mean period so we can ap-
proximate this using a sinusoidal wave. The y-axis will be the orbital period of the planet
in question and the x-axis is time. The amplitude of the sinusoidal wave is the maximum
deviation of the orbital period or TTV amplitude, while the period of the sinusoidal wave
shows how frequently these deviations in the orbital period occur. This is shown in Fig.
1.3.

TTVs can be used as a detection method. Since TTVs come from planets accelerating

5
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Figure 1.3: Figure showing what the TTV amplitude, TTV period, and TTV phase are.

and decelerating each other, these perturbations can be used to gain knowledge about the
perturber. As an example of a similar situation, we have Neptune. Before Neptune was
discovered, astronomers noticed that Uranus sped up and slowed down. Leverrier used
these perturbations to calculate the position of Neptune. So from TTVs, we can infer that
there could be one or more planets perturbing the planet we are seeing. It is also possible
to discover an unseen planet using this method, like Kepler-46c. Additionally, more can
be inferred about the eccentricity of the orbits and the resonances of the planets [Agol and
Fabrycky, 2018].

1.1.2 Transiting Exoplanet Survey Satellite

The TESS mission, led by the Massachusetts Institute of Technology (MIT), is an all-sky
surveying mission with the main objective of finding exoplanets smaller than Neptune that
can be followed up with spectroscopic analysis to determine the mass and atmospheric
compositions. The sky is divided into sectors for TESS to observe. TESS focuses on
main-sequence dwarfs with spectral types F5-M5 which are not too bright as to obscure
any potential exoplanets due to the small transit depths the planets will make. M-type is
of special interest because these stars are abundant and their small size makes a transit
deeper. TESS also focuses on planets with a period of less than 10 days, because of the
preference of short period targets for transit photometry. However, it searches for planets
with periods above 40 days at the ecliptic poles.

TESS uses four identical cameras with f/1.4 lenses giving a 24x24 degree field of view
each with an effective aperture of 10 cm with a 2-minute cadence for a selection of stars
with full-frame images returned every 30 minutes. TESS uses silicon charge-coupled de-
vices (CCDs) sensors to measure the brightness of a star with a bandpass of 600 to 1000
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nm. Sensitivity to red light is preferred since planets are easier to detect around smaller,
cooler, and redder stars. The orbit of TESS maximizes the sky coverage and is a stable
platform for the observations. The orbit of TESS is elliptical with the closest point to
Earth being 17 Earth radii away, so that it can transfer the data back to Earth6[Ricker
et al., 2015].

1.2 False positives
Planets are not the only objects to orbit stars. The false positives can come from something
like an eclipsing binary which can look similar to a signal from a planet under the right
circumstances [Deeg and Alonso, 2018]. Normally an eclipsing binary will have a deeper
transit curve than a transiting planet. But there are cases where the transit curves can
be mistaken for each other like when the transiting object is a brown dwarf or a star with
the radius of a large gas giant. Another potential origin for a false positive signal could be
when an eclipsing binary is near a brighter star or is in the background of a star we are
measuring. This could cause the transit curve of an eclipsing binary to be shallower like a
transiting planet curve, because the brighter star adds to the total flux. Another way to
get a false positive is when we have a grazing binary, which is a transit with a high impact
parameter. Just like for the transit of planets, the transit curve for an eclipsing binary will
be shallower at a high impact parameter due to the limb darkening of the star. The curve
can then be shallow enough to be mistaken for a transiting planet.

There are ways to confirm if the signal is coming from a planet or an eclipsing binary,
however. Taking the grazing binary as an example, their transit light curves will have a
distinct V-shape to them compared to the U-shape from transiting planets transiting near
the center of the star as seen in Fig. 1.2. Conversely, a transiting planet with a high impact
parameter will also have this V-shape and could mimic an eclipsing binary with a shallower
transit curve like a blended eclipsing binary. Additionally, if the mass of the star is known,
the density of the star can be determined. If it is inconsistent with the expected density
of a star with that temperature, it could be a false positive. Another method to detect
false positives is follow-up investigations with a different detection method like the radial
velocity method to determine the mass of the orbiting object and therefore its density to
determine what the object is but this is costly and time-consuming [Cameron, 2012]. A
possible way to distinguish binaries from transiting planets could be the secondary eclipse.
When both stars of a binary have similar surface brightness, the primary and secondary
eclipses will have similar depths. This could be confused for a transiting planet that has
half the orbital period as the binaries. When the surface brightness of the stars is different,
the primary and secondary transits will have visibly different depths. Those can be clas-
sified as a false positive eclipsing binary [Sullivan et al., 2015]. There are also statistical
validation tools like TRICERATOPS that can be utilized to quickly determine if a planetary

6https://tess.mit.edu/science/ Accessed: 26 March 2024
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candidate is a planet or an eclipse. These statistical tools are faster than multicolor pho-
tometry or reconnaissance spectroscopy which can be used to identify false positives.

Eclipsing binaries are not the only type of false positives. Other possible sources for false
positives include artifacts from the instruments and starspots traveling across the surface
of the star. Validation or confirmation using a second detection method is important to
confirm the object and ideally, it would be possible to follow up on every single planet
candidate. But the amount of candidates is just too large to follow up on all of them. So
tools had to be created to decide which ones to follow up on.

1.3 Validation

1.3.1 Validation tools

Exoplanet validation using statistical tools has become an important part of the exoplanet
search. With the large amounts of candidates found by Kepler, TESS, and other tele-
scopes, it became increasingly difficult, expensive, and time-consuming to do follow-up
investigations to confirm all of them. Candidates are now validated by algorithms to sta-
tistically determine the probability of the exoplanet being a false positive just from the
light curve and the known data. Some of these validation tools are BLENDER, VESPA and
PASTIS[Torres et al., 2004, 2005, Morton, 2012, Díaz et al., 2014, Santerne et al., 2015,
Giacalone et al., 2021]. With these tools, scientists could now prioritize what target stars
were likely to have an exoplanet. However, these tools are not suited for use with TESS
data. TESS has a wide view over the sky. This means that TESS has more contamination
than the Kepler telescope and similar telescopes like the Convection, Rotation and plane-
tary Transits telescope (CoRoT). A new tool was therefore created, made for TESS called
TRICERATOPS[Giacalone et al., 2021].

1.3.2 TRICERATOPS

TRICERATOPS is a validation tool utilizing Bayesian statistics to determine if the signal is
an exoplanet or a false positive. It uses the primary transit along with the known data of
the target and nearby stars. TRICERATOPS will display the TESS Object of Interest (TOI),
which is the target star, and any star within a 10-pixel radius where each TESS pixel is
21”. Light propagates in all directions so the light from all of these stars is mixed making
them all potential origins. TRICERATOPS needs to determine the flux from each star to
identify which can be the source of the signal. The size of the transiting object will be
different for each star because each star has a different flux. The size is therefore needed
to determine the probability of the object being a planet and is calculated from the transit
depth.

Next is determining what kind of scenarios can produce the given signal. There are 18

8
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scenarios in total which TRICERATOPS calculates the relative probabilities for, with 3 of
them being scenarios where the transit signal is coming from a nearby star instead of the
target star. That is determined by the transit depth for the star being ∆Fs < 1. Table 1.1

Table 1.1: The 18 scenarios TRICERATOPS tests for [Giacalone et al., 2021].

Scenarios Description of the scenarios
TP, EB, EBx2P No unresolved companion
PTP, PEB, PEBx2P Unresolved bound companion
STP, SEB, SEBx2P transiting primary or secondary star
DTP, DEB, DEBx2P Unresolved background star
BTP, BEB, BEBx2P transiting target or background star
NTP, NEB, NEBx2P No unresolved companion

nearby star is the host

shows there are three main scenarios TRICERATOPS considers. A transiting planet (TP),
an eclipsing binary (EB), or an eclipsing binary with double the period (EBx2P). The
transiting planet or eclipsing binary could be transiting the target star with no unresolved
companions (Fig. 1.4 (a)), the primary or secondary star of an unresolved bound compan-
ion (Fig. 1.4 (b)), or an unresolved background star (Fig. 1.4 (c)), or a nearby star could
be hosting the transiting object with no unresolved companion (Fig. 1.4 (d)) [Giacalone
et al., 2021].

Figure 1.4: Figure showing what the different scenarios from Table 1.1 look like. (a)
is a transit with no unresolved companions, (b) is a transit with an unresolved bound
companion where the planet can orbit either star, (c) is a transit with an unresolved
background star where the planet can orbit either star and (d) is the transit with no
unresolved companions but the planet orbits a nearby star instead of the target star. The
target star is signified by the red cross. Image created by Amelie Bormann.
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Chapter 2

Method

2.1 Description of the problem/goal
TRICERATOPS as a validation tool does well for transit signals exhibiting a strict periodicity
on the orbital period. This is not always the case. There are many systems with multiple
planets causing the periods to vary. The change in the periodicity may make it difficult to
determine if the transit signal we are seeing is an exoplanet or not. The signal we get will
be smeared when phase folding light curves with TTVs. Phase folding is when the transit
light curves are layered on each other. This is depicted in Fig. 2.1. This is due to the period
changing making it difficult to gain information from the light curve. To get a good signal,
the light curves need to be lined up by taking into account the period variations caused
by the TTV. This TTV could hypothetically fool TRICERATOPS and cause it to think that
it is seeing a false positive. This project aims to determine to what extent TRICERATOPS
can validate exoplanet candidates that exhibit dynamical interaction from other nearby
planets. How large can the TTVs be before TRICERATOPS misclassifies a transiting planet
as a false positive?

2.2 TRICERATOPS probability calculations
The way TRICERATOPS calculates the probability of each scenario is through Bayes’ theo-
rem,

p(Sj|D) ∝ p(Sj)p(D|Sj), (2.1)

where p(Sj|D) is the posterior probability of the scenario Sj happening given the data
D, p(Sj) is the prior probability of scenario Sj and p(D|Sj) is the marginal likelihood of
getting the data D if scenario Sj occurs. The data input into TRICERATOPS is the light
curve, the transit parameters, stellar parameters and populations. After p(Sj|D) has been

10
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Figure 2.1: Figure showing the difference when phase folding with a TTV of 0.5 hours and
without a TTV. The TTV phase fold is more smeared.

calculated for each scenario, the relative probability of each scenario can be calculated.

Pj =
p(Sj|D)∑
j p(Sj|D)

. (2.2)

Then we can determine the False Positive Probability (FPP) by subtracting the probabil-
ities of the transits around the target star from 1,

FPP = 1− (PTP + PPTP + PDTP ). (2.3)

TRICERATOPS also calculates the Nearby False Positive Probability (NFPP) for the three
scenarios where the transit is coming from a neighboring star[Giacalone et al., 2021].

NFPP =
∑

(PNTP + PNEB + PNEBx2P ). (2.4)

2.2.1 Scenario priors

Priors are the previously known knowledge and assumptions. In TRICERATOPS, they come in
the form of the scenario priors which will give an initial probability for each scenario before
data is taken into consideration. An example of a prior that TRICERATOPS uses comes from
the frequency of transiting planets and eclipsing binaries at different periods essentially
determining which of the two scenarios is the most likely at this period. TRICERATOPS
accomplishes this by assuming the probability distribution as a broken power law with the
range 0.1 days to 50 days. For transiting planets, this break occurs at Porb = 10 days,
and for eclipsing binaries, this break occurs at Porb = 0.3 days. This can be seen in Fig.
2.2. TRICERATOPS will take these probability densities into account when calculating the
probabilities of the scenarios. There are other priors which TRICERATOPS takes into account
like the radius of the transiting object and the mass ratio between the eclipsing binaries.
More detail about the other scenario priors are in Appendix A.
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Figure 2.2: Figure showing the priors that TRICERATOPS uses. It depicts the probability
density of planets and binaries for a given orbital period [Giacalone et al., 2021].

2.2.2 Marginal likelihood

Each scenario TRICERATOPS calculates the probability for, has an associated parameter
vector θj, which needs to be included in the calculations for the marginal likelihood p(D|Sj).
The parameters are the inclination i, the radius of the planet Rp, the mass ratio between

Table 2.1: Table showing the parameter vector for each scenario.

Scenario Parameter vector θj
TP, NTP i, Rp

EB, EBx2P, NEB, NEBx2P i, qshort
PTP, STP i, Rp, qlong
PEB, PEBx2P, SEB, SEBx2P i, qshort, qlong
DTP, BTP i, Rp, simulated star
DEB, DEBx2P, BEB, BEBx2P i, qshort, simulated star

the host star and short-period stellar companion qshort like a binary, the mass ratio between
the host star and long-period stellar companion qlong like an unresolved bound companion
and "simulated star" generated by TRILEGAL. TRILEGAL is a galactic model created to
simulate different types of stars. In this case, TRILEGAL simulates stars with properties
consistent with the target star in a cone around the line of sight of the target. The marginal
likelihood is therefore expressed as

p(D|Sj) =

∫
p(θj|Sj)p(D|θj, Sj)dθ, (2.5)

where p(θj|Sj) is the prior distribution of the model parameters and p(D|θj, Sj) is the
marginalization of the likelihood all integrated over the parameter vector θj. This integral
can not always be solved analytically so it is determined using Monte Carlo sampling.
Further details on the marginal likelihood can be found in Appendix A. TRICERATOPS
creates fits for each scenario to check it against the light curve it has been given. These
fits are made using PyTransit [Parviainen, 2015] where the best fitting scenario is the

12
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Figure 2.3: On the left, the full normalized light curve for the transit detected around
TOI-682 at TESS sector 9. Transits are visible at times 1546, 1553, 1560 and 1562. On
the right, the phase folded light curve for the transit detected around TOI-682. The plots
are created using lightkurve [Lightkurve Collaboration et al., 2018].

most likely scenario. The scenarios use the quadratic limb darkening coefficients based on
effective temperature Teff and log(g) of the star for the simulated limb darkening.

2.3 Description of methodology

2.3.1 TRICERATOPS used on a non-TTV system

I first decided to use TRICERATOPS on a non-TTV system to test the tool and see if it worked
properly. I will use this example to demonstrate how to use TRICERATOPS. I selected star
TOI-682, which is a G-type star [Quinn et al., 2021]. It has the TESS Input Catalogue
number, TIC 429304876, and it was observed in sector 9 as the target. I downloaded the
light curve with 120 seconds exposure time from the "Barbara A. Mikulski Archive for
Space Telescopes" database (MAST)1 through the lightkurve Python package for Kepler
and TESS data analysis [Lightkurve Collaboration et al., 2018]. I normalized the light
curve and phase-folded it. To phase fold, I needed the epoch time of the center of the
transit along with the orbital period. The epoch time can be seen in the plot on the left in
Fig. 2.3 and the orbital period is found on the Exoplanet Follow-up Up Observing Program
(ExoFOP) website2. Using lightkurve, I could then fold the light curve and truncate it to
reduce the amount of unnecessary data from the baseline. Figure 2.3 shows the normalized
and the phase folded light curves.

I defined the star and sector for TRICERATOPS. It generates a plot with the target star
and all stars within a 10-pixel radius, where each pixel is 21” shown on the left side of
Fig. 2.4. All of the stars and any possible unresolved companions could be the origins of
the transit signal. Without any high-resolution data TRICERATOPS assumes no unresolved
stars beyond a 2.2” distance. The plot shows the TESS magnitudes of all of the stars.

1https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html Accessed: 23 April 2024
2https://exofop.ipac.caltech.edu/tess/Accessed: 23 April 2024

13

https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
https://exofop.ipac.caltech.edu/tess/


2.3. DESCRIPTION OF METHODOLOGY CHAPTER 2. METHOD

Figure 2.4: Figure to the left: Plot of the target star, TOI-682, showing all the stars
within a 10-pixel radius and their magnitudes. The pixels with red borders are the defined
aperture pixels, taken from the figure created by SAOImageDS9. Figure to the right: Plot
showing the flux contributed by each pixel. Aperture pixels are shown with red borders
in this plot. The plots were generated by TRICERATOPS [Giacalone et al., 2021, Giacalone
and Dressing, 2020].

Another plot is also shown on the right side of Fig. 2.4 with the flux on each pixel with a
color plot. TRICERATOPS generates a table with information about all the stars within the
circle like TIC ID, stellar parameters, and coordinates. In these plots, TRICERATOPS uses
an aperture to extract the light curve. I used an imaging and visualization software called
SAOImageDS9 to find the shape of the aperture. I entered these pixels into TRICERATOPS
and they are highlighted with the red borders in Fig. 2.4.

TRICERATOPS needs the transit depth for the object to determine which of the stars can be
candidates for hosting the transit signal by TRICERATOPS. I used the database on ExoFOP
to find the transit depth given in parts per million. For TOI-682, the transit depth is
0.001213. After inputting the transit depth, TRICERATOPS generates the same table with
the information about the stars from before, but now includes the flux ratio of all stars
and the possible transit depth if the star was the host star of the transit signal, shown in
Fig. B.1. It does this by first calculating the flux ratio Xs for all stars. The flux ratio
is calculated by assuming the Point Spread Function (PSF) of each star is a circular 2D
Gaussian peak with the area under the peak as the total flux of a star which is determined
by the TESS magnitude of the star. The standard deviation is determined using the TESS
Pixel Response Function (PRF) which depends on the location of the CCD the star was
observed on. TRICERATOPS fits it to a 2D Gaussian gives a standard deviation between
0.6 and 0.9 pixels so a deviation of 0.75 pixels was chosen for all stars to make it simple.
Most of the light will hit 75% of the pixel. The flux from a star is integrated and divided
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over the total flux through the aperture, giving the flux ratio for the star Xs. The possible
transit depth for all stars can be determined by

∆Fs =
∆Fobs

Xs

, (2.6)

where ∆Fs is the transit depth of the signal around the specified star and ∆Fobs is the
observed transit depth. Any star that is too faint, where ∆Fs > 1, can then be ig-
nored[Giacalone et al., 2021].

TRICERATOPS now only needs the light curve data and the orbital period before it can
start calculating the probabilities. I read the phase-folded light curve data I saved earlier
and input the orbital period which could be found on ExoFOP. The period for TOI-682
is 6.8... days. I bin the light curve data down to 100 bins to reduce the time it takes for
TRICERATOPS to complete the calculations. TRICERATOPS then calculates the probability
for each scenario and displays the results. It shows the FPP, NFPP, and a table of all
the scenarios and their probabilities along with other information for each scenario, Fig.
2.5. The information includes the stellar parameters like the mass and radius and fitting
parameters like the impact parameter. It also shows the transiting object’s estimated ra-
dius and the eclipsing binary’s mass. The results will be slightly different every time the
calculations are made unless the seed is defined and not randomized each time the code is
run. For this reason, I ran it 10 times and took an average probability. After this, the fit
for each scenario could be overlaid over the transit plot to visually see which scenario fits
the best3[Giacalone et al., 2021, Giacalone and Dressing, 2020]. TRICERATOPS recommends
running it 20 times but I only did 10 because of a lack of time. For light curves with
TTVs, TRICERATOPS is used similarly but with some alterations. These alterations will be
explained in Section 2.3.3.

Running TRICERATOPS on the transit detected around TOI-682 gave FPP = 0.0095 ±
0.0061. This means the transit signal can be considered a validated planet. Figure 2.5
shows that the most likely scenario for the transit is a transiting planet with no unre-
solved companions at ∼ 76% chance of that scenario being true. The figure also shows the
estimated parameters for the planet or eclipsing binary for each scenario. The radius of
the planet estimated by TRICERATOPS is 3.633787R⊕ which is close to the tabulated value
on ExoFOP at 3.74186 ± 0.251835R⊕. With these results, the planet can be considered
validated. TRICERATOPSmakes a fit for each scenario which can be seen in Fig. 2.6.

2.3.2 Mock data

For the TTV systems, I decided to use mock data. The mock data is generated through
transit injections to explore the limits of TRICERATOPS. The transit injections utilized the

3https://triceratops.readthedocs.io/en/latest/tutorials/example.html Accessed: 3 March
2024
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Figure 2.5: Table generated by TRICERATOPS listing the scenarios and the probabilities of
the likelihood of these scenarios. This only shows the results for one TRICERATOPS run. The
final result is the average FPP of 10 runs [Giacalone et al., 2021, Giacalone and Dressing,
2020].

Figure 2.6: Figure showing the TRICERATOPS fit for six of the scenarios compared to the
light curve for TOI-682 where the scenario TP was the best fit. The x-axis is the days
from the transit center with the middle tick being 0 with the distance to each tick being
0.1 days [Giacalone et al., 2021, Giacalone and Dressing, 2020].
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Figure 2.7: On the left, light curve from TOI-199 at sector 1. The light curve was duplicated
once to increase the time for more transits. On the right, Transits with a TTV amplitude
of 30 minutes injected into the light curve from TOI-199.

PyTransit package for the quadratic transit model [Parviainen, 2015]. To inject a transit,
I needed a raw light curve with no obvious transits. I chose TOI-199 in Sector 1, seen in
Fig. 2.7. TOI-199 is a G-type star with two long-period planets [Hobson et al., 2023]. I
take a sector with no apparent transit. I duplicated the sector so that I could fit more
injected transits. More transits increase the signal strength when I phase-fold them later
and it will potentially have more TTVs. Each sector is roughly 30 days so the light curve
spans about 60 days. I could then inject the transits with TTVs using a code provided to
me by Judith Korth. It reads the normal light curve and then injects the transit which is
altered by different parameters. These parameters are the TTV amplitude, TTV period,
orbital period, impact parameter, stellar density, and transit depth. The TTV model is
created according to the sinusoidal TTV model from the equation

TTV amplitude · sin((2 · π · tcslinear)/TTV period + TTV phase), (2.7)

where tcslin is the transit center time following the linear ephemeris. The idea was to
individually vary the TTV amplitude, TTV period, and impact parameter. While one of
these parameters is being varied, the rest are constant. This is done to see how much
each parameter affects TRICERATOPS and to see at what point it can no longer validate a
planet. The other parameters (the orbital period, transit depth, and stellar density) are
kept constant throughout the whole process. Once the injected light curve is done it can
be saved and used on TRICERATOPS.

I decided that the injected transit should come from a Hot Jupiter because of their large
transit depths because they can resemble eclipsing binaries in their transit signals at higher
impact parameters. For the simulation to be as representative as possible, I wanted to use
the average orbital period for Hot Jupiters as the mean period for the TTV transit in-
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Figure 2.8: Histogram showing the amount of Hot Jupiters for each period interval. The
x-axis has been divided into 200 bins.

jections. From NASA’s exoplanet archive4, I downloaded the data of all known transiting
planets with masses 0.1MJ−13MJ and with P ≤ 10 days and I put them into a histogram.
The histogram is in Fig. 2.8. I determined the mean orbital period to be < P >≈ 3.5±1.8
days.

I set the stellar density to be equal to the stellar density of TOI-199. The stellar den-
sity is ∼ 1.83 g/cm3, taken from ExoFOP. The radius ratio between the planet and the
star is 0.1. This will give a transit depth of 0.01, from Eq. 1.3. The light curve with the
injected transits can be seen in Fig. 2.7.

2.3.3 TTV system

The process of using TRICERATOPS for a system with TTVs is the same as in Section 2.3.1
with a couple of exceptions. The step with lightkurve is skipped because I created the
used light curve in Section 2.3.2. Additionally, a mask was included to truncate the light
curve at the probability calculation step. The mask considers only the transit data between
-0.3 and 0.3 days from the transit center. This is done so that there is no excess of data
that will prolong the calculation time for the probabilities. The transit curve is still fully
visible so no important information is lost.

Varying TTV amplitude

I set the TTV period constant at 60 days and the impact parameter constant at b = 0. I
injected a light curve with different TTV amplitudes from 0 hours to 0.6 hours in 0.05-hour

4https://exoplanetarchive.ipac.caltech.edu/ Accessed: March 22
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increments, while also calculating the relative TTV amplitude of the transit duration so
that the results can be used on a signal with different stellar and planetary parameters as
well. Then I phase-folded the light curves while not accounting for TTVs, seen on the Fig.
2.1. This means that the phase folding follows the linear approximation of the planet’s
position following the mean orbital period I determined for a Hot Jupiter. I saved the
transit model as a .fits file and used it on TRICERATOPS which calculated the FPP and
likely scenarios for all the amplitudes.

Varying TTV period

When varying the TTV period, I decided to test many different periods. The TTV ampli-
tude was set constant at the two cases, at the limits of where TRICERATOPS could validate
planets. The impact parameter is still at b = 0. The TTV periods I tested are 20, 40,
50, 60, 70, 80, 100, 120, and 600 days. I also wanted to see what would happen if the
TTV period was double that of the orbital period. Additionally, I had the idea to change
the TTV phase to see if that would also affect the resulting FPP as I increased the TTV
period. I changed the phase from 0 to 0.2 and to 0.4. I injected the light curve with transits
with these properties and input them into TRICERATOPS.

Varying TTV impact parameter

When I wanted to test the impact parameter, I tested it at the same TTV amplitudes as
the TTV period case. I tested TRICERATOPS to see if it could distinguish a planet with
high impact parameter from an eclipsing binary and to see how the FPP changes with
higher impact parameters. I kept the period constant throughout the process at 60 days. I
started the impact parameter at b = 0.1 with the idea of increasing the impact parameter
by 0.1 until I reached 1. I injected the light curves with these properties and input them
into TRICERATOPS.
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Chapter 3

Results and Discussion

Varying TTV amplitude

By checking the FPP for a different amount of TTV amplitudes ranging from 0 to 0.6
hours, I found that TRICERATOPS could no longer validate a planet with the stellar and
planetary parameters that I have chosen at a TTV amplitude of between 0.1 and 0.15 hours
when not correcting for TTVs. This is between 6 and 9 minutes. At the TTV amplitude at
0.15 hours, the FPP was in the likely planet section but with a substantial standard devi-
ation. The FPP for the TTV amplitude at 0.1 hours which corresponds to a relative TTV
amplitude of 3.58% of the transit duration, is FPP ≈ 0.007 ± 0.021 with a low standard
deviation and for any lower TTV amplitudes, the FPP is within the same range for FPP
and standard deviation. For the TTV amplitude of 0.15 hours, a relative TTV amplitude
of 5.37% of the transit duration, the FPP ≈ 0.425 ± 0.464. The FPP first reaches the
not-a-planet zone at 0.25 hours or 15 minutes, a relative TTV amplitude of 8.95% of the
transit duration, FPP ≈ 0.6 ± 0.490, again with a substantial standard deviation. Once
the FPP reaches the region around FPP = 1 the standard deviation becomes smaller.
This is at a TTV amplitude of 0.5 hours, a relative TTV amplitude of 17.9% of the transit
duration, in this case. The FPP is FPP ≈ 1 and continues at higher TTV amplitudes. In
Fig. 3.1, the FPPs of the measured TTV amplitudes can be seen both when the TTV has
been corrected for and when it has not been corrected.

The results suggest that TRICERATOPS does not work well at relative TTV amplitudes
larger than 3.58% of the transit duration. TRICERATOPS becomes very unreliable in the
region between 3.58% and 17.9% while not validating anything above 17.9%. While the
average from 10 runs is taken, the standard deviation is very large, and most of the time
the standard deviation spans multiple regions of between TTV amplitudes of 0.15 hours
and 0.45 hours. With this, I can not confidently say that what we have is a validated planet
or even a likely planet that we can follow up on and it is a big problem with TRICERATOPS.
If the light curve is not phase-folded properly, the results may not be reliable.
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Figure 3.1: Figure showing the calculated FPPs for a range of TTV amplitudes with the
TTV period set to 60 days and impact parameter set to 0. The points for the corrected
and uncorrected TTVs that are next to each other are at the same TTV amplitude but are
shifted slightly off each other to improve readability.

Varying TTV period

Changing the TTV period to the listed TTV periods in Section 2.3.3. The TTV amplitudes
I used were 0.1 hours where TRICERATOPS could accurately validate the planet and 0.15
hours where TRICERATOPS predicted a likely planet but with a large uncertainty. For the
0.1 hours TTV amplitude case, I have plotted the measured FPP for each TTV period in
Fig. 3.2, it can be seen that the FPP is mostly in the validated region with the occasional
spikes, most notably at a TTV period of 120 days with a small one at 50 days. Not pictured
in the plot is the FPP for the TTV periods at 600 days because this provided no result for
multiple TTV amplitudes similar to the TTV amplitude at 0.25 hours not providing any
result for the TTV period of 120 days. The 600-day TTV period had FPP = 0.1 ± 0.3
which is in the likely planet region. This means that at low enough TTV amplitudes, the
TTV period does not affect the FPP too much. These are still acceptable FPPs for follow-
up observations. For the 0.15 hours TTV amplitude case, I have plotted the measured
FPP for each TTV period in Fig. 3.2. From the plot, we can see that the FPP ranges
from validated at low TTV periods like 20 days, to likely with a higher FPP leading to a
higher standard deviation for the middle region with 50 days as the peak. The FPP seems
to become smaller from there, reaching the validated region at 120 days again. However,
the 600-day TTV period gave a NaN as the result for when the TTV was corrected. I am
unsure why this happened and it did continue at the 0.25-hour TTV amplitude as well.
At a TTV amplitude of 0.25 hours, most points have increased FPP with all but the TTV
period at 70 days being validated which can be seen in Fig. B.3. Additionally, the FPP
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Figure 3.2: Figure showing the FPP for a range of TTV periods with the TTV amplitude
set to 0.1 hours and impact parameter 0 on the left, and the FPP for the same range of
TTV periods but with a TTV amplitude of 0.15 hours on the right. The corrected and
uncorrected points that share the same TTV period have been shifted slightly away from
each other to improve readability.

for the TTV periods of 50 and 60 days are not in the not-a-planet region. Additionally,
the 600-day TTV period did not yield any results for the corrected case, it had a similar
issue with the 120-day TTV period.

For the 0.1-hour TTV amplitude case, the spike at 120 seconds could attributed to how
TRICERATOPS calculates the average FPP value, where a few of the 10 runs might have
high FPPs, which throws off the average. Given that the FPP has consistently been low
at this TTV amplitude for all periods, it appears that TRICERATOPS performs reasonably
well. However, it is different for the 0.15-hour TTV amplitude case. The high FPPs at
certain TTV periods, where TRICERATOPS struggles to confidently validate a planet and
only classifies them as likely planets, clashes with the low FPPs at other TTV periods like
20 days and 120 days. The 0.25-hour TTV amplitude case also shows no clear pattern in
the FPP values. One explanation for that random pattern could be the way I am sampling
the TTV points at a constant grid with few points. In such a case a sampling feature
problem called aliasing could occur. This can happen when there are not enough samples
or the samples align in a way that causes the reconstructed sinusoidal wave to differ from
the expected sine wave by the signal, as shown in Fig. 3.3.

Increasing the number of samples may overcome this problem as long as the TTV pe-
riod is not a multiple of the orbital period. To take more samples, more transits need to be
added to the mock data. When we observe real exoplanets, the observing time needs to be
increased to gather more data. The TTV period affects the validation of TTVs in that the
transit may align in such a way that not accounting for the TTV may make it impossible for
TRICERATOPS to validate a planet. The inverse is also true, however. The transits may line
up in such a way that completely negates the TTV if the TTV period is double the orbital
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Figure 3.3: Figure showing how multiple waves can be fit to the Radial Velocity data
because of lack of data points. The long-period wave is an alias of the short-period wave
[Hatzes, 2016]. It works similarly for the TTV period where the data points are the
observations of the transit. If the data points align with or are near the mean orbital
period, TRICERATOPS will think that the amplitude is small or non-existent.

period or if every time the planet transits, its orbital period is close to the mean period.
Due to the lack of a pattern when the TTV period is changed with the low amount of data
points I have, the TTV period can not be used to determine the FPP of the system reliably.

To explore the effect of aliasing, I changed the TTV phase to get different samplings
of the TTV. For this, I changed the phase from 0 to 0.2. This shift could change the
part of the sine wave where the transit is detected, potentially altering the results. For the
0.1-hour TTV amplitude case, the change in phase has no influence (Fig. B.4 in appendix).
This is also the case for when the phase is increased to 0.4 (Fig. B.6 in appendix). This
means that at low TTV amplitudes, the signal will either be validated or deemed suitable
for follow-up investigations, regardless of the TTV period or phase. Similarly to the case
with a phase of 0, no discernible pattern emerged for the 0.15-hour and 0.25-hour TTV
amplitude cases when the phase was increased to 0.2 and 0.4, further indicating that the
TTV period is not reliable for FPP calculations as it increases. These plots can be seen
in Fig. B.5 and Fig. B.7, respectively. To overcome aliasing and possibly achieve accurate
FPP calculations, more data points will be needed.

Varying TTV impact parameter

First I started the 0.1-hour TTV amplitude case where the FPP increases as the impact
parameter is increased with the FPP increasing at a similar time as the corrected case.
The FPPs have large standard deviations that cross through all three regions in the graph.
That means that we can not be certain if these are good candidates for follow-up investi-
gations. This can be seen in Fig. 3.4. The same goes for the 0.15-hour TTV amplitude
case where already at 0 impact parameter, we have a high FPP corresponding to a likely
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Figure 3.4: Figure showing the FPP as the impact parameter increases with a constant
TTV amplitude at 0.1 hours and a constant TTV period at 60 days on the left, and for a
TTV amplitude of 0.15 hours on the right. The corrected and uncorrected points that share
the same impact parameter have been shifted slightly away from each other to improve
readability.

planet and the FPP increases from there. This can be seen in Fig. 3.4. This is most likely
due to the already high FPPs for these scenarios at b = 0 and from there, the FPP should
increase as the impact parameter increases. It does so at b = 0.5 but starts dipping down
at b = 0.9, possibly due how TRICERATOPS does the calculation for the FPP. Similarly, the
0.25-hour TTV amplitude stars in the not-a-planet region, as seen in Fig. B.8 (appendix).
With the large standard deviations, it is still possible that it follows the trend of increasing
the FPP with higher impact parameters but it is not explicitly visible. For the corrected
TTV we can see that the FPP stays in the validated planet region until b = 0.6, which
means that TRICERATOPS can be used to reliably classify transit signals when the impact
parameter is 0.5 or less but remains unreliable for any uncorrected TTV.

TRICERATOPS can determine that a signal is a planet even with a high impact parame-
ter when the TTV is corrected for but when it is not corrected for, TRICERATOPS does
struggle with the validation of these planets, but it does not determine these signals to
come from eclipsing binaries with a high probability until we reach an impact parameter
of 0.9. This could be because the transit depth is still the same as for the planet we in-
jected. If the transit depth had been deeper, TRICERATOPS may determine the signal to
come from an eclipsing binary that does not have to graze the limb of the target star. So
while TRICERATOPS does not get fooled by the high impact parameter with the shallow
transit depth to think there is an eclipsing binary, it does still struggle with validation at
the region of 0.1 hour TTV amplitude. With the large standard deviations, it is hard to
determine if the candidate is good for follow-up investigations or not.
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Chapter 4

Summary and conclusion

Because of the large number of exoplanet candidates waiting for confirmation, statistical
validation tools were created to validate exoplanets and determine if they are worth doing
follow-up investigations on. One of these tools is the Bayesian statistics tool TRICERATOPS.
TRICERATOPS statistically determines the relative probability for a range of scenarios like
if the signal is a transiting planet or an eclipsing binary for example and the FPP of
the signal. TRICERATOPS works well when the orbital period is constant so I have tested
TRICERATOPS to see how TTVs affect the validation of exoplanets. To do this I injected a
transit into an empty light curve. These transits have TTVs and the strength of the TTV
is determined by the TTV amplitude and TTV period. I also tested how TRICERATOPS
would do with increasing impact parameters where the light curve starts to resemble the
transit curve of an eclipsing binary.

By testing the viability of TRICERATOPS it can be seen that TRICERATOPS is not a use-
ful tool for systems with a relative TTV amplitude of 5.37% of the transit duration and
above. The FPPs go from a validated planet to a likely planet but with a large standard
deviation showing that the FPP could possibly be in the validated planet and the not a
planet regions. TRICERATOPS is very unreliable since the FPP result I have is an average
of 10 FPPs because it is inconsistent between the 10 runs. It becomes consistent again at
a relative TTV amplitude of 17.9% of the transit duration and above where FPP ≈ 1.
So TRICERATOPS is not reliable for use for systems with a relative TTV amplitude above
5.37% of the transit duration because the results are unreliable.

The TTV period is not a parameter that can be used for accurately determining the FPP,
especially for relative TTV amplitudes above 5.38% of the transit duration. According to
the plots I generated when changing the TTV period, the resulting FPP did not show a
pattern for higher TTV amplitudes. This is possibly caused by aliasing. The same problem
persisted when increasing the phase of the sinusoidal wave. The only reliable results were
when the relative TTV amplitude was 5.38% of the transit duration and less where the
FPP remained low.
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For the impact parameter, it behaves similarly to what I previously expected with the
FPP increasing when increasing the impact parameter. As the shape of the transit starts
looking more like the shape made from eclipsing binaries but with no change to the transit
depth, the FPP increases when we correct for TTVs and when we do not correct them. The
high FPP values come from TRICERATOPS determining that the signal comes from either
an eclipsing binary scenario of some kind or that the transiting planet is not transiting the
target star but a companion. The plots show that if the TTV is corrected for, a signal
with an impact parameter of 0.5 or less works well with TRICERATOPS while it remains
unreliable for systems where the TTV is not corrected for. When the TTV is corrected
for, they all have a sharper increase in FPP at around b = 0.5− 0.6.

In conclusion, TRICERATOPS works well for systems with strict periodicity. When that
periodicity is broken, it starts to struggle to validate planets with relative TTV amplitudes
of 5.38% of the transit duration. This is a low percentage so when a system with TTV
is being used on TRICERATOPS, the results will be unreliable at best. For example, the
only known case where a HJ has TTVs, TOI-1130c, has a TTV amplitude of 12% relative
to its transit duration and would fall in the problematic region Korth et al. [2023]. The
TTVs have to be corrected for and even so, if the correction is not made carefully, the sys-
tem being investigated could falsely be classified with high FPP due to how TRICERATOPS
calculates the FPP. It is recommended to run the calculations many times and take the
average FPP but when 9 out of 10 runs result in an FPP near 0 and the last run is 1,
throws off the average. This can be enough to take a system from being a validated system
to being a likely planet with a large standard deviation. So if you are using TRICERATOPS,
be extra careful when correcting the TTVs.
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Appendix A

Additional information

Scenario priors

The prior probability of the orbital period p(P
′

orb) is calculated by integrating the proba-
bility distribution p(Porb) between P

′

orb − 0.1 and P
′

orb + 0.1.

p(P
′

orb) =

∫ P
′
orb+0.1

P
′
orb−0.1

p(Porb)dPorb. (A.1)

The distribution for transiting planets comes from studies of planetary occurrence rates as
a function of orbital period [Giacalone et al., 2021] and looks like,

p(Porb) ∼

{
P 1.5
orb 0.1 days ≤ Porb ≤ 10 days

P 0.0
orb 10 days < P orb ≤ 50 days

, (A.2)

The distribution for eclipsing binaries is based on data from the Kepler Eclipsing Binary
Catalog [Kirk et al., 2016, Giacalone et al., 2021]. The distribution looks like this

p(Porb) ∼

{
P 5.0
orb 0.1 days ≤ Porb ≤ 0.3 days

P 0.5
orb 0.3 days < P orb ≤ 50 days

, (A.3)

Each scenario has a different set of parameter vectors θj. Parameter i is the inclina-
tion of the orbit and assuming an isotropic distribution of the orbits, the distribution of
the inclinations will be given as,

p(i) ∼ sin i. (A.4)

The inclination goes from 0◦ to 90◦ where at 90◦ the planet is edge-on. The frequency of
discovered exoplanets increases with a higher inclination. The parameter Rp is the radius
of the planet and depends on the host star. Giant planets, around Rp > 6R⊕, are 10
times as rare around M-type stars compared to the FGK stars. So the distributions of
the radii around M-type and FGK-type stars are given as separate broken power laws
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with the breaks at Rp = 3R⊕ where the rate stays constant below it and Rp = 6R⊕ to
account for giants. The range is 0.5R⊕ − 20R⊕[Giacalone et al., 2021]. For M-type stars
the distribution looks like,

p(Rp) ∼


R0.0

p 0.5R⊕ ≤ Rp ≤ 3R⊕

R−7.0
p 3R⊕ < Rp ≤ 6R⊕

R−0.5
p 6R⊕ < Rp ≤ 20R⊕

. (A.5)

For FGK-types the distribution looks like,

p(Rp) ∼


R0.0

p 0.5R⊕ ≤ Rp ≤ 3R⊕

R−4.0
p 3R⊕ < Rp ≤ 6R⊕

R−0.5
p 6R⊕ < Rp ≤ 20R⊕

. (A.6)

The parameters qshort and qlong are the mass ratios for stellar companions. qshort is between
a star and its short-range stellar companion like a binary while qlong is for long-range stellar
companions like unresolved bound companions. This is given as a broken power law with
the break at 0.3 because the densities of binaries at q > 0.3 are well known. The range is
0.1-1[Giacalone et al., 2021]. For qshort the distribution looks like,

p(qshort) ∼

{
q0.3short 0.1 ≤ q ≤ 0.3

q−5.0
short 0.3 <q ≤ 1.0

, (A.7)

and for qlong the distribution looks like,

p(qlong) ∼

{
q0.3long 0.1 ≤ q ≤ 0.3

q−0.95
long 0.3 <q ≤ 1.0

. (A.8)

The excess of stellar twins is also considered. Stellar twins are stars that have a similar
mass where the mass ratio is q > 0.95. Ftwin is determined by taking the number of stars
with q > 0.95 over the number of stars with q > 0.3. Ftwin for qshort is Ftwin = 0.3 and for
qlong it is Ftwin = 0.05.

The last parameter is the "simulated star" and it is the properties of a star simulated
by TRILEGAL. These are used for scenarios with unresolved background stars where the
lights from the target and the background star blend. To determine the properties of
the blended stars, stars in a 0.1 deg2 area around the target are simulated. By removing
the simulated stars that are brighter than the target and dimmer than TESS magnitude
21, a distribution of possible background and foreground stars is created. For scenarios
where a simulated star is needed, one of the possible background or foreground stars is
selected[Giacalone et al., 2021].
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Marginal likelihood continued

Equation 2.5 can not always be solved analytically so the marginal likelihood is deter-
mined by using arithmetic mean estimation and Monte Carlo sampling. It can then be
approximated to

p(D|Sj) ∼
1

N

N∑
n=1

p(D|θ(n)j , Sj), (A.9)

with θ
(n)
j being the nth sample from the parameter prior distribution and N is the total

number of samples taken. A good amount of samples is N = 106. More samples lead to
a more accurate approximation but will take longer to compute. Fewer samples and the
variance in the marginal likelihood will be large. The number of parameters to marginalize
over is reduced to reduce the variance. The period is fixed, the eccentricity is 0, mass, ra-
dius, and effective temperature are exact and can be taken from the TESS Input Catalogue
(TIC) database if no parameters are given. If the star is not in the TIC database, stellar
estimations can be made for the radius and temperature if the mass is given [Giacalone
et al., 2021]. 84% of confirmed exoplanets with Porb < 30 days have e < 0.2 and 72% of the
confirmed eclipsing binaries with Porb < 10 days have e < 0.2. The majority of TOIs have
Porb < 30 days so the assumption is valid. Unresolved background stars with no known
estimates are given an assumption based on their mass [Giacalone et al., 2021].

p(D|θ(n)j , Sj) is calculated from

p(D|θ(n)j , Sj) = p(Dtra|θ(n)j , Sj) · w(n), (A.10)

with p(Dtra|θ(n)j , Sj) being the likelihood of transit data and w(n) being a weight for the
ability to rule out unresolved companions by using high-resolution imaging to decrease the
likelihood of the scenarios with unresolved companions. For scenarios with no companion
stars w(n) = 1. For scenarios with unresolved bound companions, the weight is calculated
by first finding the magnitude difference between the primary and secondary stars. This
is done using the mass of the target and the nth value of qlong. The contrast curve from
high-resolution imaging is used to determine the angular separation where both stars would
be distinguishable. With no high-resolution data, the angular separation is assumed to be
2.2”[Giacalone et al., 2021]. The angular separation can be converted to an orbital period
using the parallax of the target star and the mass of both stars. This period with Equation
(23) in [Moe and Di Stefano, 2017] calculates the frequency of bound stellar companions.
A similar process is used for unresolved background and foreground stars aligned with the
target star. These calculations are made from the results of the TRILEGAL simulations
for the unresolved background star scenarios. The separation and the total number of
simulated stars are used to estimate the frequency of unresolved stars aligned with the
target[Giacalone et al., 2021].
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The likelihood of transit data p(Dtra|θ(n)j , Sj) is calculated from

p(Dtra|θ(n)j , Sj) ∝
∏

exp

[
− 1

2

(
yl − f(tl|θ(n)j )

σ

)2]
, (A.11)

with yl being the flux of the lth data point, f(tl|θ(n)j ) represents the flux given by the model
for parameter vector θ(n)j at the time of the lth data point, and σ is the uncertainty of the
flux. Equation A.11 is solved by modeling light curves according to Section ??.
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Plots and Figures

Figure B.1: Table generated by TRICERATOPS with information of each star within a 10-
pixel radius of TOI-682. The important columns are the flux ratio, and transit depth,
showing which stars can host the transit signal [Giacalone et al., 2021, Giacalone and
Dressing, 2020].
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Figure B.2: Table generated by TRICERATOPS with information of each star within a 10-
pixel radius of TOI-199. The important columns are the flux ratio and transit depth,
showing which stars can host the transit signal [Giacalone et al., 2021, Giacalone and
Dressing, 2020].
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Figure B.3: Figure showing the FPP for a range of TTV periods with the TTV amplitude
set to 0.25 hours and impact parameter 0. The corrected and uncorrected points that
share the same TTV period have been shifted slightly away from each other to improve
readability.
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Figure B.4: Figure showing the FPP for a range of TTV periods when the TTV amplitude
is constant at 0.1 hours, the impact parameter is constant at 0 and the phase is 0.2. The
corrected and uncorrected points that share the same TTV period have been shifted slightly
away from each other to improve readability.
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Figure B.5: Figure showing the FPP for a range of TTV periods with the TTV amplitude
set to 0.15 hours, impact parameter 0 and TTV phase 0.2 on the left, and the FPP for
the same range of TTV periods but with a TTV amplitude of 0.25 hours on the right.
The corrected and uncorrected points that share the same TTV period have been shifted
slightly away from each other to improve readability.
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Figure B.6: Figure showing the FPP for a range of TTV periods when the TTV amplitude
is constant at 0.1 hours, the impact parameter is constant at 0 and the phase is 0.4. The
corrected and uncorrected points that share the same TTV period have been shifted slightly
away from each other to improve readability.
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Figure B.7: Figure showing the FPP for a range of TTV periods with the TTV amplitude
set to 0.15 hours, impact parameter 0 and TTV phase 0.4 on the left, and the FPP for
the same range of TTV periods but with a TTV amplitude of 0.25 hours on the right.
The corrected and uncorrected points that share the same TTV period have been shifted
slightly away from each other to improve readability.
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Figure B.8: Figure showing the FPP as the impact parameter increases with a constant
TTV amplitude at 0.25 hours and a constant TTV period at 60 days. The corrected and
uncorrected points that share the same impact parameter have been shifted slightly away
from each other to improve readability.
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Codes

Average orbital period for Hot Jupiters

1 # -*- coding: utf -8 -*-
2 """
3 Created on Fri Mar 22 16:07:28 2024
4

5 @author: warsa
6 """
7

8 from astropy.io import ascii
9 import numpy as np

10 import matplotlib.pyplot as plt
11

12 file = ascii.read("C:/Users/warsa/Downloads/Hot_Jupiter_List_excluding_13
+M.csv") #read csv file of all the periods

13 period = file["pl_orbper"] #only take the columns that are about the
periods

14 print(period)
15

16 n = 10 #how many days we will show on the plot
17

18 std = np.std(period)
19 print(f’standard deviation = {std}’)
20

21 mean = np.mean(period)
22 print(f’mean = {mean}’)
23

24 median = np.median(period)
25 print(f’median = {median}’)
26

27

28 plt.hist(period , bins =200, range =[0,n], color="darkorange")
29 plt.title("Counts per Orbital Period of Hot Jupiters \n $0.1M_J - 13M_J$"

, fontsize =14)
30 plt.xlabel("Orbital period [days]", fontsize =14)
31 plt.ylabel("Counts", fontsize =14)
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32 plt.tick_params(axis=’both’, which=’major’, labelsize =14)
33 plt.savefig("HotJupiterOrbitalPeriod.pdf")
34 plt.show()

Transit Injection

1 #!/usr/bin/env python
2 # coding: utf -8
3

4 # This notebook is an example on how to create a mock light curve and
inject a transiting planet with an orbit that shows TTVs

5

6 # In[1]:
7

8

9 get_ipython ().run_line_magic(’pylab’, ’inline ’)
10

11

12 # In[2]:
13

14

15 from astropy.table import Table
16 from pytransit import QuadraticModel
17 from pytransit.orbits import as_from_rhop , i_from_ba , fold , epoch
18 from pytransit.orbits import d_from_pkaiews
19 import matplotlib.pyplot as plt
20

21

22 # First , we read a light curve to get time , flux and flux errors to
create the mock light curve and where we inject the transiting planet
. Here , we read a light curve of sector 1 of TIC 309792357

23

24 # In[3]:
25

26

27 tb = Table.read("tess2018206045859 -s0001 -0000000309792357 -0120 - s_lc.fits"
)

28

29

30 # In[4]:
31

32

33 time = tb[’TIME’].value.data+ tb.meta[’BJDREFI ’]
34 flux = tb[’PDCSAP_FLUX ’].value.data
35 flux_err = tb[’PDCSAP_FLUX_ERR ’].value.data
36 m = isfinite(time) & isfinite(flux)
37 time = time[m]
38 flux_err = flux_err[m]/ median(flux[m])
39 flux = flux[m] / median(flux[m])
40

41

42 # Next , we create a long array based on the light curve data that we read
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. We create a longer light curve by duplicating the existing real
light curve data. The light curve has a length of a typical TESS
sector (~30 days), thus , we duplicate the data in terms of a TESS
sector (nsectors)

43

44 # In[5]:
45

46

47 def create_final_time_and_flux_arrays(time , flux ,flux_err , nsectors):
48 tt = zeros(time.size)
49 tt[1:] = diff(time)
50 final_time = time [0] + tile(tt, nsectors).cumsum ()
51 final_flux = tile(flux , nsectors)
52 final_flux_err = tile(flux_err ,nsectors)
53 return final_time , final_flux ,final_flux_err
54

55 f_time , f_flux , f_flux_err =create_final_time_and_flux_arrays(time , flux ,
flux_err , 2)

56

57

58 # We plot the created light curve array
59

60 # In[6]:
61

62

63 xlabel(’Time [days]’, fontsize =18)
64 ylabel(’Normalized flux’, fontsize =18)
65 title(’Light curve for TOI -199 from sector 1 \n duplicated once’,

fontsize =15)
66 plt.tick_params(axis=’both’, which=’major’, labelsize =12)
67 plot(f_time , f_flux)
68 plt.tight_layout ()
69 #savefig(’TOI -199 _sector_1_light_curve.pdf ’)
70

71

72 # Now , we define some parameters needed for the transit injection and the
TTV model.

73

74 # In[7]:
75

76

77 p = 3.539183488226514 # orbital period of the transiting planet in
days

78 rho = 1.830659 # stellar density in unit of solar density
79 b = 0 # impact parameter
80 t0 = 0 # time of first transit
81 k = 0.1 # planet to star radius ratio
82

83 depth = k**2 # transit depth
84

85 ttv_ampl = 0.1/24 # ttv amplitude in days (h/24= days)
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86 ttv_per = 60 # ttv period in days
87

88

89 # We create a ttv_model according to a sinusoidal TTV with TTV amplitude ,
TTV period , and TTV phase. It needs the linear (unperturbed) transit
center times

90

91 # In[8]:
92

93

94 def ttv_model(tcs_lin , ttv_ampl , ttv_per , ttv_phase = 0):
95 return ttv_ampl*sin ((2*pi*tcs_lin)/ttv_per+ttv_phase)
96

97

98 # We create the transit signal that will be injected to the TESS light
curve.

99

100 # In[9]:
101

102

103 def create_ttv_lc(time , p, rho , b, k, t0, ttv_ampl , ttv_per , ttv_phase =
0):

104

105 a = as_from_rhop(rho ,p) # scaled semi -major axis
106 inc = i_from_ba(b,a) # orbital inclination in

radians
107 tm = QuadraticModel(interpolate=False) # transit model assuming

quadratic limb darkening
108

109 epochs = epoch(time , t0, p) # transit epochs (transit
number)

110 phase_lin = fold(time , p, t0) # phase calculated based
on the linear ephemeris

111 lcids = zeros(time.size ,int) # light curve indices (
see PyTransit documentation)

112 lcids [1:] = cumsum(clip(diff(epochs) ,0,1))
113 epids = unique(lcids) # epoch indices
114 tm.set_data(time , lcids , epids = epids)
115

116 tcs_lin = t0 + unique(epochs) *p # transit centers based
on linear ephemeris

117 ttv = ttv_model(tcs_lin , ttv_ampl , ttv_per) # transit timing
variations calcuated using the ttv_model

118 tcs_ttv = tcs_lin + ttv # transit centers based
on the TTV model

119

120 phase_ttv = phase_lin - ttv[epids[lcids]] # phase based on TTV
model

121

122 return tcs_ttv ,phase_lin , phase_ttv , tm.evaluate(k,[0.2 ,0.3] , tcs_ttv ,
p,a,inc)
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123

124

125 # We call the function create_ttv_lc
126

127 # In [10]:
128

129

130 tcs , ph_lin , ph_ttv , flux_model = create_ttv_lc(f_time , p, rho , b, k, t0,
ttv_ampl , ttv_per)

131

132

133 # We plot the transit with a phase based on the linear and TTV model
134

135 # In [11]:
136

137

138 xlabel(’Phase’, fontsize =18)
139 ylabel(’Normalized flux’, fontsize =18)
140 title(’Phase folded TTV and Linear Ephemeris \n TTV amp =0.1h’, fontsize

=15)
141 plt.tick_params(axis=’both’, which=’major’, labelsize =16)
142 xlim(-0.3, 0.3)
143 plot(ph_lin , flux_model * f_flux ,’.’,label="Not Corrected")
144 plot(ph_ttv , flux_model ,’.’,label="Corrected", color=’black’)
145 legend ()
146 plt.tight_layout ()
147 #savefig(’TTV_vs_Linear_0 .1 hr_amp_60days_per_b =0.pdf ’)
148

149

150 # We also plot the created light curve with the TTV model
151

152 # In [12]:
153

154

155 xlabel(’Time [days]’, fontsize =18)
156 ylabel(’Normalized flux’, fontsize =18)
157 title(’Transit injected light curve for TOI -199 \n sector 1 TTV amp =0.1h’

, fontsize =15)
158 plt.tick_params(axis=’both’, which=’major’, labelsize =12)
159 plot(f_time , f_flux * flux_model)
160 plt.tight_layout ()
161 #savefig(’TOI -199 _sector_1_TTV_light_curve_0 .1 h_60days_TTVper_b =0.pdf ’)
162

163

164 # We save the injected transit model as a fits file. The Model parameters
are saved in the fits header.

165

166 # In [13]:
167

168

169 tb = Table([f_time , ph_lin , ph_ttv , flux_model , f_flux*flux_model ,
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f_flux_err],
170 names=’time phase_lin phase_ttv model_flux flux flux_err ’.split

())
171

172 tb.meta[’t0’] = t0
173 tb.meta[’p’] = p
174 tb.meta[’k’] = k
175 tb.meta[’b’] = b
176 tb.meta[’rho’] = rho
177 tb.meta[’ttv_ampl ’] = ttv_ampl
178 tb.meta[’ttv_per ’] = ttv_per
179 tb.meta[’ttv_pha ’] = 0
180

181 for i,tc in enumerate(tcs):
182 tb.meta[f’tc_{i}’] = tc
183 #tb.write(’test_ampl_0 .1 h_per_60_TOI -199 _sector1_b =0.0 _stellardensity

=1.83 _phase =0. fits ’, overwrite=True)
184

185

186 # In[ ]:

TRICERATOPS used on TOI-682

1 #!/usr/bin/env python
2 # coding: utf -8
3

4 # In[2]:
5

6

7 import numpy as np
8 import pandas as pd
9 import time

10 import lightkurve as lk
11 from lightkurve import TessLightCurve
12 import matplotlib.pyplot as plt
13 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
14 import triceratops.triceratops as tr
15

16 #finding the transit curve
17 search_result = lk.search_lightcurve("TIC 429304876", author = "SPOC",

cadence="short")
18 print(search_result)
19 lc = search_result.download ()
20 lc = lc.normalize ()
21 lc.plot()
22 print(lc)
23

24

25 # In [24]:
26

27

28 #phase fold
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29 period = lc.to_periodogram("bls").period_at_max_power
30 folded_lc=lc.fold(period=period , epoch_time =1546.29)
31 folded_lc.plot(marker=’.’, linestyle=’none’, markersize =4)
32 print(period)
33

34 #truncate the plot/data
35 folded_truncated_lc = folded_lc.truncate ( -0.2 ,0.2)
36 folded_truncated_lc.plot(marker=’.’, linestyle=’none’, markersize =4)
37

38 ###For saving data. If data is already saved , comment out this stuff
39

40 # Creating a table with time , flux , and flux error
41 folded_table = folded_truncated_lc.to_table ()
42 #folded_table = folded_lc.to_table ()
43 print(folded_table)
44

45 # Saving the Astropy table to a CSV file
46 # Saving the specified columns from Astropy table to a CSV file with

headers
47 selected_columns = ["time", "flux", "flux_err"]
48 folded_table[selected_columns ].write("TOI -682. csv", format="csv", names=

selected_columns , overwrite=True)
49

50

51 # In[4]:
52

53

54 get_ipython ().run_cell_magic(’time’, ’’, ’\nID = 429304876\ nsectors = np.
array ([9])\ntarget = tr.target(ID=ID, sectors=sectors)\n\nap = np.
array ([[913 ,881] ,[914 ,881] ,[915 ,881] ,\n
[913 ,880] ,[914 ,880] ,[915 ,880] ,\n [913 ,879] ,[914 ,879]])\
n\n#plot\ntarget.plot_field(sector=9, ap_pixels=ap)\n\n#table\ntarget
.stars\n’)

55

56

57 # In [26]:
58

59

60 apertures = np.array([ap])
61 target.calc_depths(tdepth =0.001213 , all_ap_pixels=apertures) #tdepth is

the transit depth in ppm /1 ,000 ,000
62

63 #table
64 target.stars
65

66

67 # In [29]:
68

69

70 get_ipython ().run_cell_magic(’time’, ’’, ’\n# read in the light curve\
nlightcurve = pd.read_csv ("TOI -682. csv", header=None)\n\n# Convert
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all columns to numeric values\nlightcurve = lightcurve.apply(pd.
to_numeric , errors=\’coerce\’)\n\n# Remove rows with NaN or infinite
values\nlightcurve = lightcurve.dropna ()\n\n# Extract time , flux , and
flux_err\ntime , flux , flux_err = lightcurve [0]. values , lightcurve

[1]. values , lightcurve [2]. values\nP_orb = 6.8392388\n\
nlightcurve_binsize = (time.max() - time.min()) / 100\ nlightcurve =
TessLightCurve(time=time , flux=flux , flux_err=flux_err).bin(
time_bin_size=lightcurve_binsize)\nprint(lightcurve)\n\ntarget.
calc_probs (\n time=lightcurve.time.value ,\n flux_0=lightcurve.
flux.value ,\n flux_err_0=np.mean(lightcurve.flux_err.value) ,\n
P_orb=P_orb\n)\n’)

71

72

73 # In [30]:
74

75

76 df_results = target.probs
77 print("FPP =", np.round(target.FPP , 4))
78 print("NFPP =", np.round(target.NFPP , 4))
79 df_results
80

81

82 # In[ ]:
83

84

85 target.plot_fits(time=time , flux_0=flux , flux_err_0=np.mean(flux_err),
save=True)

86 #plt.savefig ("test.png")
87

88

89 # In [36]:
90

91

92 get_ipython ().run_cell_magic(’time’, ’’, ’\nFPPs = np.zeros (10)\nfor i in
range (10):\n target.calc_probs(time=lightcurve.time.value ,\n

flux_0=lightcurve.flux.value ,\n
flux_err_0=np.mean(lightcurve.flux_err.value) ,\n
P_orb=P_orb ,\n parallel=True ,\n

verbose =0)\n FPPs[i] = target.FPP\n\nmeanFPP = np.round(np.
mean(FPPs), 4)\nstdvFPP = np.round(np.std(FPPs), 4)\nprint ("FPP =",
meanFPP , "+/-", stdvFPP)\n’)

93

94

95 # In [33]:
96

97

98 #selected_columns = ["time", "flux", "flux_err "]
99 #lc[selected_columns ].write("TOI -682 _full_lightcurve.csv", format ="csv",

names=selected_columns , overwrite=True)
100

101
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102 # In [34]:
103

104

105 #print(lc.meta)
106

107

108 # In [35]:
109

110

111 #print(lightcurve.meta)
112

113

114 # In[ ]:

Example of how TRICERATOPS was used on TOI-199

1 #!/usr/bin/env python
2 # coding: utf -8
3

4 # How to apply ‘triceratops ‘ on a star using our injected transit model
with TTVs

5

6 # In[1]:
7

8

9 import numpy as np
10 import pandas as pd
11 from astropy.table import Table
12 import time
13 from lightkurve import TessLightCurve
14 from numpy.random import seed
15 import matplotlib.pyplot as plt
16 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)
17

18 import triceratops.triceratops as tr
19

20

21 # ## Example #1
22 #
23 # $\textbf{First , let’s apply the tool on the example we just created

using TIC 358248442 and sector 69}$
24 #
25 # Begin by defining the target star object with the ‘target(ID, sectors)‘

class. The arguments for this class are ‘ID‘ (the TIC ID of the star
) and ‘sectors ‘ (the sectors in which the star was observed). ‘ID‘
should be an integer and ‘sectors ‘ should be a numpy array.

26 #
27 #
28

29 # In[2]:
30

31

51



APPENDIX C. CODES

32 get_ipython ().run_cell_magic(’time’, ’’, ’ID = 309792357\ nsectors = np.
array ([1])\ntarget = tr.target(ID=ID, sectors=sectors)\n’)

33

34

35 # Next , let’s define the aperture used to extract the light curve , plot
an image of the field , and display a table of nearby stars.

36 #
37 # $\textbf{Note , the aperture we take from the DS9}$
38 #
39 # The aperture should be a 2D numpy array with the formal ‘[[col#, row#],

[col#, row#], [col#, row#], ...]‘, where where each ‘[col#, row#]‘
is the column and row number of the pixel.

40 #
41 # An image of the field can be plotted with the ‘.plot_field(sector ,

ap_pixels)‘ method. This method takes as optional arguments ‘sector ‘
(the image sector you would like to plot) and ‘ap_pixels ‘ (the
aperture we just defined).

42 #
43 # We can display a table of the stars in the image with the ‘.stars ‘

attribute. This table contains the separation and position angle of
each star from the target star , so that each can be identified in the
plot. Note that the scale of a TESS pixel is about 20 arcseconds.

44

45 # In[3]:
46

47

48 ap = np.array([ [1353 ,1972] , [1354 ,1972] , [1355 ,1972] ,
49 [1352 ,1971] , [1353 ,1971] , [1354 ,1971] , [1355 ,1971] ,

[1356 ,1971] ,
50 [1352 ,1970] , [1353 ,1970] , [1354 ,1970] , [1355 ,1970] ,

[1356 ,1970] ,
51 [1352 ,1969] , [1353 ,1969] , [1354 ,1969] , [1355 ,1969] ,

[1356 ,1969] ,
52 [1354 ,1968] , [1355 ,1968]])
53

54 target.plot_field(sector=1, ap_pixels=ap)
55

56 target.stars
57

58

59 # We can now determine which stars in the aperture are bright enough to
produce the observed transit. $\textbf{The transit for injected
transiting planet has a depth of ~10000 ppm}$. We’ll use the ‘.
calc_depths(tdepth , all_ap_pixels)‘ method to do this. This method
takes as arguments ‘tdepth ‘ (the transit depth of the candidate) and
‘all_ap_pixels ‘ (a numpy array of all apertures). After doing this ,
the ‘.stars ‘ table includes the flux ratio contributed by each star
in the aperture and the transit depth each star would have if it were
the host of the signal.

60

61 # In[4]:
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62

63

64 apertures = np.array([ap])
65 target.calc_depths(tdepth =0.01, all_ap_pixels=apertures)
66

67 target.stars
68

69

70 # After doing this , we can calculate the probability of each scenario
using the ‘.calc_prob(time , flux_0 , flux_err_0 , P_orb)‘ method , which
requires as arguments ‘time ‘ (times from phase -folded light curve in
units of days from transit center), ‘flux_0 ‘ (normalized flux from

phase -folded light curve), ‘flux_err_0 ‘ (flux error values of the
target ’s phase -folded light curve), and ‘P_orb ‘ (orbital period of
the TOI in days).

71 #
72 # If you have a lot of data points , I recommend binning your light curve

down to ~100 to save time. Binning your data is poor practice when
fitting light curves for a planet ’s parameters , but it doesn ’t yield
significantly different results for our purposes. This should only
take a few minutes.

73

74 # $\textbf{We do this:}$
75 #
76 # $\textbf {1. for the phase folded data accouted for the TTVs}$
77 #
78 # $\textbf {2. for the phase folded data based on the linear ephemeris}$
79 #
80 # $\textbf{considering the same random number}$
81

82 # In[5]:
83

84

85 get_ipython ().run_cell_magic(’time’, ’’, ’\n# read in the light curve\
nlc_ttv = Table.read(" test_ampl_0 .1 h_per_60_TOI -199 _sector1_b =0
_stellardensity =1.83. fits")\ntime , flux , flux_err = lc_ttv[\’
phase_ttv \’].value.astype(\’d\’), lc_ttv[\’flux\’]. value.astype(\’d
\’), lc_ttv[\’flux_err \’].value.astype(\’d\’)\nP_orb =
3.539183488226514\n\nm = abs(time) <0.3\ ntime = time[m]\nflux = flux[m
]\ nflux_err = flux_err[m]\n\nseed (0)\n\nlc_ttv_binsize = (time.max()-
time.min())/100\ nlc_ttv = TessLightCurve(time=time , flux=flux ,
flux_err=flux_err).bin(time_bin_size=lc_ttv_binsize)\n\ntarget.
calc_probs(time=lc_ttv.time.value , flux_0=lc_ttv.flux.value ,
flux_err_0=np.mean(lc_ttv.flux_err.value), P_orb=P_orb)\n’)

86

87

88 # Now that that’s done , let’s check out a table of our results with the
‘.probs ‘ attribute and calculate the false positive probability and
nearby false positive probability using the ‘.FPP ‘ and ‘.NFPP ‘
attributes. We expect a scatter of a few percent in our probabilities
, so don’t be alarmed if it’s slightly different with each run. We

53



APPENDIX C. CODES

can also plot the transit fits of each scenario using the ‘.plot_fits
(time , flux_0 , flux_err_0)‘ method.

89

90 # In[6]:
91

92

93 df_results = target.probs
94 print("FPP =", np.round(target.FPP , 4))
95 print("NFPP =", np.round(target.NFPP , 4))
96 df_results
97

98

99 # In[7]:
100

101

102 target.plot_fits(time=time , flux_0=flux , flux_err_0=np.mean(flux_err))
103

104

105 # In[8]:
106

107

108 get_ipython ().run_cell_magic(’time’, ’’, ’\n# read in the light curve\
nlc_lin = Table.read(" test_ampl_0 .1 h_per_60_TOI -199 _sector1_b =0
_stellardensity =1.83. fits")\ntime , flux , flux_err = lc_lin[\’
phase_lin \’].value.astype(\’d\’), lc_lin[\’flux\’]. value.astype(\’d
\’), lc_lin[\’flux_err \’].value.astype(\’d\’)\nP_orb =
3.539183488226514\n\nm = abs(time) <0.3\ ntime = time[m]\nflux = flux[m
]\ nflux_err = flux_err[m]\n\nseed (0)\n\nlc_lin_binsize = (time.max()-
time.min())/100\ nlc_lin = TessLightCurve(time=time , flux=flux ,
flux_err=flux_err).bin(time_bin_size=lc_lin_binsize)\n\ntarget.
calc_probs(time=lc_lin.time.value , flux_0=lc_lin.flux.value ,
flux_err_0=np.mean(lc_lin.flux_err.value), P_orb=P_orb)\n’)

109

110

111 # In[9]:
112

113

114 df_results = target.probs
115 print("FPP =", np.round(target.FPP , 4))
116 print("NFPP =", np.round(target.NFPP , 4))
117 df_results
118

119

120 # In [10]:
121

122

123 target.plot_fits(time=time , flux_0=flux , flux_err_0=np.mean(flux_err),
save=True)

124

125

126 # If you plan to quote these results in a paper , you should run ‘.
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calc_probs ()‘ several times and quote the mean and standard deviation
of the FPP. This way , you can show that your result is not sensitive
to the intrinsic scatter in the calculation.

127 #
128 # We illustrate this below by calculating the FPP 20 times. We use the

optional argument ‘parallel ‘ to enable parallel light curve
simulation , which makes the calculation ~5x faster. Enabling
parallelization yields the same results as the non -parallel option ,
so you should feel free to set this argument to ‘True ‘ at all times.

129

130 # In [11]:
131

132

133 get_ipython ().run_cell_magic(’time’, ’’, ’n = 10\ nFPPs = np.zeros(n)\ns0
= np.zeros(n)\ns1 = np.zeros(n)\ns2 = np.zeros(n)\ns3 = np.zeros(n)\
ns4 = np.zeros(n)\ns5 = np.zeros(n)\ns6 = np.zeros(n)\ns7 = np.zeros(
n)\ns8 = np.zeros(n)\ns9 = np.zeros(n)\ns10 = np.zeros(n)\ns11 = np.
zeros(n)\ns12 = np.zeros(n)\ns13 = np.zeros(n)\ns14 = np.zeros(n)\
nfor i in range(n):\n seed(i)\n target.calc_probs(time=lc_ttv.
time.value , \n flux_0=lc_ttv.flux.value , \n

flux_err_0=np.mean(lc_ttv.flux_err.value), \n
P_orb=P_orb ,\n parallel=True ,\n

verbose =0)\n FPPs[i] = target.FPP\n s0[i]=
target.probs["prob "][0]\n s1[i]= target.probs["prob "][1]\n s2[i
]= target.probs["prob "][2]\n s3[i]= target.probs["prob "][3]\n s4[
i]= target.probs ["prob "][4]\n s5[i]= target.probs ["prob "][5]\n s6
[i]= target.probs ["prob "][6]\n s7[i]= target.probs ["prob "][7]\n
s8[i]= target.probs["prob "][8]\n s9[i]= target.probs["prob "][9]\n
s10[i]= target.probs["prob "][10]\n s11[i]= target.probs["prob

"][11]\n s12[i]= target.probs["prob "][12]\n s13[i]= target.probs
["prob "][13]\n s14[i]= target.probs ["prob "][14]\n\n\nmeanFPP = np.
mean(FPPs)\nstdvFPP = np.std(FPPs)\nprint ("FPP =", meanFPP , "+/-",
stdvFPP)\n\ntb = Table([s0, s1, s2 , s3, s4, s5 , s6 , s7, s8 ,s9 ,s10 ,
s11 , s12 ,s13 , s14 , FPPs], \n names=\’TP EB EBx2P PTP PEB
PEBx2P STP SEB SEBx2P DTP DEB DEBx2P BTP BEB BEBx2P FPP\’.split())\n\
ntb.write(\’TOI -199_0.1 h_amp_60days_per_TTV.csv\’, overwrite=True)\n’
)

134

135

136 # The FPP is favorable , but is not low enough to validate the planet.
137

138 # In [12]:
139

140

141 get_ipython ().run_cell_magic(’time’, ’’, ’n = 10\ nFPPs = np.zeros(n)\ns0
= np.zeros(n)\ns1 = np.zeros(n)\ns2 = np.zeros(n)\ns3 = np.zeros(n)\
ns4 = np.zeros(n)\ns5 = np.zeros(n)\ns6 = np.zeros(n)\ns7 = np.zeros(
n)\ns8 = np.zeros(n)\ns9 = np.zeros(n)\ns10 = np.zeros(n)\ns11 = np.
zeros(n)\ns12 = np.zeros(n)\ns13 = np.zeros(n)\ns14 = np.zeros(n)\
nfor i in range(n):\n seed(i)\n target.calc_probs(time=lc_lin.
time.value , \n flux_0=lc_lin.flux.value , \n
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flux_err_0=np.mean(lc_lin.flux_err.value), \n
P_orb=P_orb ,\n parallel=True ,\n

verbose =0)\n FPPs[i] = target.FPP\n s0[i]=
target.probs["prob "][0]\n s1[i]= target.probs["prob "][1]\n s2[i
]= target.probs["prob "][2]\n s3[i]= target.probs["prob "][3]\n s4[
i]= target.probs ["prob "][4]\n s5[i]= target.probs ["prob "][5]\n s6
[i]= target.probs ["prob "][6]\n s7[i]= target.probs ["prob "][7]\n
s8[i]= target.probs["prob "][8]\n s9[i]= target.probs["prob "][9]\n
s10[i]= target.probs["prob "][10]\n s11[i]= target.probs["prob

"][11]\n s12[i]= target.probs["prob "][12]\n s13[i]= target.probs
["prob "][13]\n s14[i]= target.probs ["prob "][14]\n\n\nmeanFPP = np.
mean(FPPs)\nstdvFPP = np.std(FPPs)\nprint ("FPP =", meanFPP , "+/-",
stdvFPP)\n\ntb = Table([s0, s1, s2 , s3, s4, s5 , s6 , s7, s8 ,s9 ,s10 ,
s11 , s12 ,s13 , s14 , FPPs], \n names=\’TP EB EBx2P PTP PEB
PEBx2P STP SEB SEBx2P DTP DEB DEBx2P BTP BEB BEBx2P FPP\’.split())\n\
ntb.write(\’TOI -199_0.1 h_amp_60days_per_linear.csv\’, overwrite=True)
\n’)

142

143

144 # In[ ]:

Results plots example, impact parameter

1 # -*- coding: utf -8 -*-
2 """
3 Created on Fri May 10 10:58:47 2024
4

5 @author: warsa
6 """
7

8 import matplotlib.pyplot as plt
9

10 b = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] #impact
parameter

11 b_offset = [0.02, 0.12, 0.22, 0.32, 0.42, 0.52, 0.62, 0.72, 0.82, 0.92,
1.02]

12

13 TTV = [1.1102230246251566e-17, 2.2204460492503132e-17, 2.2204460492503132
e-17, -2.2204460492503132e-17, 5.551115123125783e-17,
1.398629605464663e-08, 0.08802842217472101 , 0.010044176667242355 ,
0.08674510374034655 , 0.0005548847214168151 , 0.12409350481875725] #
The FPPs for when TTV is corrected for

14 TTV_std = [3.33066907387547e-17, 4.440892098500627e-17, 4.440892098500627
e-17, 1.0877919644084145e-16, 1.5895974606912447e-16,
4.1958570604107525e-08, 0.18122829558830136 , 0.022781038381823097 ,
0.2578138750606026 , 0.0015065431067043252 , 0.08780111345305526] # The
standard deviation for the FPPs when the TTV has been corrected for

15

16 Linear = [3.890152059893292e-06, 0.09863420546049541 , 1.3450607250220514e
-07, 0.15986178876446838 , 0.07637873049320434 , 0.1044358886163935 ,
0.28759819395941255 , 0.09721906263524328 , 0.3186319180142518 ,
0.0036340092222574504 , 0.49770787380854975] # The FPPs for the the
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TTV is not corrected for
17 Linear_std = [1.1498507562608107e-05, 0.2959021732905084 ,

3.8658756187941456e-07, 0.31154930802132386 , 0.17648479453355548 ,
0.2968950273219815 , 0.42730483655274315 , 0.28878040931285565 ,
0.40353949230795677 , 0.005937313921526824 , 0.2265726941204414] # The
standard deviation for the FPPs when the TTV is not corrected for

18

19 plt.scatter(b_offset , TTV , marker="x", color="k", label="Corrected")
20 plt.scatter(b, Linear , marker="o", color="k", label="Not corrected")
21 plt.title("FPP at different impact parameters with \n TTV amplitude of

0.1h", fontsize =16, weight="bold")
22 plt.ylabel("FPP", fontsize =16)
23 plt.xlabel("Impact parameter", fontsize =16)
24 plt.ylim(-0.05, 1.05)
25 plt.xlim(-0.02, 1.05)
26 plt.errorbar(b, Linear , yerr=Linear_std , fmt="none", ecolor="black",

capsize =5)
27 plt.errorbar(b_offset , TTV , yerr=TTV_std , fmt="none", ecolor="black",

capsize =5)
28 plt.axhspan (0.5, 2.0, color="red", zorder=-10, alpha =0.1)
29 plt.axhspan (0.015 , 0.5, color="orange", zorder=-10, alpha =0.1)
30 plt.axhspan (-1.0, 0.015, color="lightgreen", zorder=-10,alpha =0.3)
31 plt.tight_layout ()
32 plt.legend ()
33 plt.annotate("Likely planet", (0.01 , 0.42), fontsize =16)
34 plt.annotate("Not a planet", (0.01 , 0.7), fontsize =16)
35 plt.tick_params(axis=’both’, which=’major’, labelsize =14)
36 plt.savefig("impact parameter 0.1h.pdf")
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