
MASTER’S THESIS 2024

Modeling Profiling Data in a
Graph Database for
Performance Analysis
Richard Lundberg, Marcus Rettig

ISSN 1650-2884
LU-CS-EX 2024-47

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX 2024-47

Modeling Profiling Data in a Graph
Database for Performance Analysis

Modellering av profileringsdata i en
grafdatabas för prestandaanalys

Richard Lundberg, Marcus Rettig

Modeling Profiling Data in a Graph
Database for Performance Analysis

Richard Lundberg
richard.lundberg.7072@student.lu.se

Marcus Rettig
marcus.rettig.6146@student.lu.se

May 30, 2024

Master’s thesis work carried out at Neo4j Inc.

Supervisors: Simon Priisalu, simon.priisalu@neo4j.com
Jaroslaw Palka, jaroslaw.palka@neo4j.com

Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Per Andersson, per.andersson@cs.lth.se

mailto:richard.lundberg.7072@student.lu.se
mailto:marcus.rettig.6146@student.lu.se
mailto:simon.priisalu@neo4j.com
mailto:jaroslaw.palka@neo4j.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:per.andersson@cs.lth.se

Abstract

Benchmarking is an important part of the development process for any mission-
critical application. By inspecting profiling data, developers can identify bottle-
necks and performance regressions before they reach the customers. Neo4j runs
an extensive benchmarking suite on its database, resulting in a huge collection
of profiling data collected each week. These profiles are commonly visualized
individually as flame graphs which are inspected manually. Finding patterns and
differences among multiple profiles is difficult to do manually, due to the size
and complexity of the data.

We propose a framework for identifying bottlenecks and regressions by modeling
the profiling data as call-stack trees in a graph database. We demonstrate the
usefulness of the framework for cross-profile analysis such as time series analysis
and aggregation-based methods. We conclude that there is much potential in
this approach and our thesis can be used as a decision basis for organizations
wanting to implement a similar framework.

Using a graph database to model profiling data has many advantages and is suit-
able for the tree-like structure of the data. It makes the data more accessible and
facilitates flexible querying in which the user can ask questions about the data
and perform non-trivial aggregation. It has already aided Neo4j in the process
of pinpointing the cause of some performance issues. The main disadvantage is
the complexity involved in importing large quantities of data.

Keywords: Bottleneck, Regression, Call-Stack Tree, Graph Database, Cypher, Neo4j

2

Acknowledgements

We would like to express our gratitude to Simon Priisalu and Jaroslaw Palka for their invalu-
able insights that helped us progress during the work process. We would also like to thank
Jonas Skeppstedt for guiding us through the writing process. Finally, we would like to thank
everyone at Neo4j who provided us with constructive feedback, and special thanks to Love
Leifland and Alfred Clemedtson for our rewarding discussions throughout the thesis.

3

4

Contents

1 Introduction 7
1.1 Problem Statement . 7
1.2 Contribution . 8
1.3 Contribution Statement . 8
1.4 Outline . 8

2 Background 9
2.1 Sampling Profilers . 9
2.2 Flame Graphs . 10
2.3 Graph Databases and Neo4j . 11
2.4 Introduction to Cypher . 12

2.4.1 Basic Cypher . 12
2.4.2 Data Aggregation . 14

2.5 Statistical Concepts . 15
2.5.1 Average . 15
2.5.2 Standard Deviation . 15
2.5.3 Correlation . 15

3 Approach 17
3.1 Work process . 17
3.2 Products . 18
3.3 Automation and Expert Knowledge . 18

4 Modeling and Importing Data 21
4.1 Schema . 21

4.1.1 Modeling . 21
4.1.2 An example . 23

4.2 Flame Graphs to Trees . 23

5

CONTENTS

5 Detecting Bottlenecks 27
5.1 Code Path Potential . 27
5.2 Subtree Potential . 28
5.3 Bottleneck Correlation . 34

6 Detecting Regressions 37
6.1 Time Series Analysis . 37
6.2 Regression Correlation . 39
6.3 Expanding Algorithms . 39

6.3.1 Greedy Selection . 41
6.3.2 Custom Selection . 41
6.3.3 Correlation Selection . 42

7 Evaluation 43
7.1 Flexibility of the Framework . 43
7.2 Cypher vs Local Analysis . 44
7.3 Changes to the Benchmarking Pipeline . 44
7.4 Use Cases at Neo4j . 45
7.5 Presentation of Data . 46

8 Conclusion and Future Work 47
8.1 Conclusions . 47
8.2 Future Work . 48

References 49

Appendix A Cypher Queries 53
A.1 Time Series Analysis . 53
A.2 Correlation . 54

Appendix B Program Output 57

6

Chapter 1

Introduction

1.1 Problem Statement
Neo4j collects large amounts of profiling data each week but the massive size and complexity
make manual examination difficult. Every time a benchmark is run, it results in high-level
metrics such as operations per second and low-level metrics such as the number of samples
collected at each stack frame. Neo4j already has a few automatic regression detection algo-
rithms in place, but these only consider the high-level metrics. The low-level metrics are
usually inspected manually after a regression or bottleneck has been detected — first by the
Benchmarking team, then by the code owners — to pinpoint the problem. This works well for
individual test runs because there are many great visualization tools for such data, particu-
larly flame graphs. Recognizing patterns among metrics from numerous test runs is infeasible
to do manually, however, and that is the problem we will tackle in our project.

Currently, low-level metrics can only be accessed for one test run at a time. This usually
means downloading some files from cloud storage and opening them locally in some visual-
ization tool. This is inconvenient to do manually if we for example want to compare some
metric for a specific function among multiple test runs. Even if we automated this process
it would still be inefficient because the full files would be downloaded, even though we’re
only interested in a single function. These problems could be solved by storing the results
in a database instead of files. More specifically, we will use a Neo4j graph database for this
purpose.

The following research questions will be answered in this thesis:

• Is a graph database appropriate for modeling call-stack trees for performance analysis?

• How can the database be modeled for the detection of bottlenecks and regressions?

7

1. Introduction

1.2 Contribution
During the project, we have developed a framework for analyzing and exploring large sets
of profiling data. We have shown that a graph database, such as Neo4j, can provide a solid
foundation for storing and querying the call-stack tree data required for analysis. Further,
we have implemented several analysis methods, all based on the same proposed database
schema. The purpose of these implementations is primarily to demonstrate the possibilities
of our framework, and to serve as inspiration for future work. An organization looking to
adopt a similar framework may want to design other analysis methods tailor-made for their
specific requirements.

1.3 Contribution Statement
The work has been divided as follows. We have continuously discussed all ideas and come
up with them together. Most of the coding has also been carried out together through pair
programming. However, Richard has focused more on the implementation of correlation and
expanding algorithms while Marcus focused more on the subtree potential and time series
analysis. The writing was divided evenly, where one author wrote a section and the other
reviewed it.

1.4 Outline
The thesis is structured as follows. Chapter 2 provides sufficient background knowledge to
understand graph databases and related concepts used in the remainder of the thesis. Chapter
3 describes the taken approach to answer the research questions and provides an introduction
to chapter 4, 5 and 6. Chapter 4 describes the process of modeling an appropriate schema
and importing data. Chapter 5 and 6 further explain our implementations for detecting
bottlenecks and regressions respectively. Chapter 7 presents an evaluation of the proposed
framework by discussing its practical use. Chapter 8 sumarizes our conclusions and most
important insights and suggests some potential future work.

8

Chapter 2

Background

2.1 Sampling Profilers
A sampling profiler is a tool that captures snapshots of which functions are running at a given
frequency. Frequency-based sampling creates a statistical analysis of the executing program.
Statistical profilers are less intrusive and have lower overhead than event-based deterministic
profilers that sample all methods and influence the execution time by themselves. Functions
that run quickly may however with variability fall in between two sampling time points,
causing the final profile to become less accurate [5].

Neo4j uses the async-profiler in their benchmarks, which is an open-source project available
on GitHub. The async-profiler is proficient in tracing multiple events such as CPU cycles,
cache misses and allocations in Java Heap etc. In this thesis, we focus on traces sampled with
CPU cycles. The profiler may be run with a multitude of options, among others, allowing
for the tracking of compile modes and producing a flame graph of the call traces [2], which is
the topic of the next section. CPU time profiling can be misleading since it only captures the
time that the CPU was busy in each context. It fails to capture many events, such as I/O op-
erations and sleeping or otherwise blocked threads. A more comprehensive way of sampling
is wall-clock time profiling which samples all threads equally, regardless of their status [4]. The
async-profiler is capable of such profiling but it is currently only utilized in a small subset of
benchmarking at Neo4j. Sampling with CPU time places more focus on the actual functions
and disregards circumstantial events. The wall-clock time profiling normally contains large
amounts of superfluous data that can drown out the relevant parts, especially when visually
inspecting it.

9

2. Background

2.2 Flame Graphs
A flame graph is a visual representation of stack traces, intending to simplify the inspection
of CPU usage. The x-axis of the flame graph shows the stack profile population sorted al-
phabetically and the y-axis shows stack depth, building with the root function from zero and
expanding upwards with branching child functions. Since the graph lacks the time dimen-
sion, equivalent stack traces are aggregated along the x-axis. Each function is visualized as a
bar and often color-coded with warm colors, resulting in a resemblance with flames, hence
the name. The length along the x-axis corresponds to the number of samples recorded within
this function or any of its children, often resulting in the main function spanning the entire
base of the graph. A flame graph may be converted into a collapsed file format that represents
each trace as a line in a text file with corresponding samples.

Flame Graph

or..

org/neo4j/cypher/inter..

or..

c..

o..

or..

o..

org/eclipse/jetty/util/thread/QueuedThrea..

org/neo4j/cyph..

java/lang/Thread.run_[0]

or..

o..

or..

o..

org/..

org/neo4..
or..

or..

o..

com/neo4j/bench/macro/bootstrap/Bootstrap.main_[0]
java/lang/reflect/Method.invoke_[0]

org/neo4j/cy..

org/neo4j/cypher/internal/javacompat/ResultSubscribe..

sun/nio/ch/EPollSel..

org/neo4j/cy..

or..

org/neo4j/cypher/internal/runtime/Clo..

org/neo4j/cypher/int..

o..

org/neo4j..

or..

or..

sun/nio/ch/ServerSo..

org/n..

or..

com/neo4j/bench/macro/execution/runner/EmbeddedQueryExecutor.execute

org/neo4j/cypher/inter..

o..

org/neo..

org/neo4j/cypher..

or..

or..

org/neo4j/cypher/internal/runtime/Clo..

com/neo4j/bench/macro/execution/runner/SizeTrackingEmbeddedQueryExecutor.executeAndGetRows

org/neo4j/cypher/int..

com/neo4j/bench/macro/..

org/eclipse/jetty/s..

o..

org..

org..

jdk/internal/reflect/DelegatingMethodAccessorImpl.invoke_[0]

or..

org/neo..

or..

org/neo4j/c..

org..

o..

c..

org/neo4..

com/neo4j/bench/macro/clients/Main.main_[0]

org/neo4j/cypher/inter..

org/neo4j/cyp..
org/neo4j..

org/eclipse/jetty/i..

or..

org/neo4j/cypher..

org/neo4j/cy..

sun/nio/fs/LinuxWat..

org/neo4j/cy..

or..

org/eclipse/jetty/i..

or..

org/neo4j/cypher/int..

org.n..or..

org/neo4j/..

org/neo4j/cypher/inter..
org/neo4j/cypher/..

org/neo4j/cy..

org/neo4j/cypher..

org/n..

org/neo4j/cy..

org/neo4j/cypher..

o..

or..

or..

org/neo4..

o..

org.neo4j..

com/neo4j/bench/macro/execution/runner/Runner.run_[0]

org.neo4j.cy..

org/eclipse/jetty/i..

org/neo4j/cypher/internal/javacompat/ResultSubscribe..

c..

org/neo4..

org/..

com/neo4j/bench/macr..

sun/nio/ch/Selector..

org/neo4j/cypher/internal/runtime/Clo..
org/neo4j/c..

or..

org/ne..

org/neo4j..

o..

sun/nio/ch/Net.accept

org/neo4j/cy..

org.neo4..

org/neo4j/cypher..

o..

org/neo4j/cypher/internal/runtime/Clo..

or..

org/neo4j/cyphe..
org/neo4j/cypher/internal/runtime..

org/neo4j..

org/neo4j/cypher/internal/javacompat/ResultSubscribe..

org/neo4j/cypher/internal/runtime/interpreted/PipeE..

org/eclipse/jetty/util/thread/QueuedThrea..

or..

org.neo4j..

com/neo4j/bench/macro/execution/runner/QueryRunner.runSingleCommand_[0]

org..

org..

org/neo4j/..

org/..

org/neo4j..

org..

or..

org..

org/neo4j/cypher/inter..

org..

o..

org..

org/neo4j/cypher/internal/runtime/Clo..

org/neo4j/c..

org/eclipse/jetty/i..

or..

com/neo4j/bench/macro/execution/runner/EmbeddedQueryExecutor$RowsScoreFun.co..

org/neo4j/c..

or..

com/neo4j/bench/macro/execution/runner/LatencyMeasuringExecutor.execute_[0]

sun/nio/ch/EPoll.wait

org.eclipse.jetty.i..

org/neo4j/cypher..

org/neo4j..

org/n..

com/neo4j/bench/macro/execution/runner/EmbeddedQueryExecutor.executeInTx

org/neo4..

org/neo4j/cypher/internal/javacompat/ResultSubscribe..

or..

org.n.. org..org.neo4j.co..

org/n..

org/n..

org/neo4j..

o..

org/neo..

o..

or..

org..

org/ne..

jdk/internal/reflect/NativeMethodAccessorImpl.invoke0

org/neo4j..

org..

org/n..

o..

c..

com/neo4j/bench/macro/execution/runner/EmbeddedQueryExecutor.executeAndGetRows

org/eclipse/jetty/u..

org/eclipse/jetty/util/thread/QueuedThrea..

org..
org..

or..

org/neo4j..

or..

or..

org/neo4j/cypher/inter..

or..

org/neo4j/cypher..

org..

org/eclipse/jetty/u..

org/neo4j/cypher..

org/n..

org/neo4..

o..

org..

org/neo4j/cyph..

sun/nio/ch/Selector..

or..

or..

org/neo4j/cy..

org/neo4j/cypher/inter..

org/n..
org..

org/..

or..

org..

org/n..

org..

org..

org/neo4j/cypher/internal/runtime/interpreted/PipeE..

org..

org..

org/neo4j/cy..

org/ne..

org/neo4..

sun/nio/ch/ServerSo..

o..

org/neo4j..

or..

org/neo4j/..

org/eclipse/jetty/u..

or..

org/..

org/neo4j..

org/eclipse/jetty/s..

or..

org/neo4..

or..

org/neo4j/cyp..

o..

or..

org/neo4j/cypher..
org/neo4j/cypher..

org/neo4j/c..

org/neo4..

or..

sun/nio/fs/LinuxWat..

org/neo4j/cypher/internal/result/ClosingExecutionRe..

o..

o..

org/n..

o..

com/neo4j/bench/macr..

org/neo4j/cypher/internal/runtime/Clo..

org/neo4..

o..

o..org/n..

or..

com/neo4j/bench/macro/execution/runner/Runner.measurement_[0]

org/neo4..

or..

org/neo4j/cypher/internal/result/StandardInternalEx..

o..

com/neo4j/bench/macro/execution/runner/EmbeddedQuery..

org/neo4j/cypher/internal/runtime..

org/..

org/neo4j/c..

or..

o..

org/neo4j/c..

o..

or..

or..

org/neo4j/cyp..

or..
org/ne..

com/neo4j/bench/macro/clients/RunSingleEmbeddedCommand.run_[0]

org/neo4j/cy..

org/neo4j/cypher/inter..

or..

jdk/internal/reflect/NativeMethodAccessorImpl.invoke_[0]

com/neo4j/bench/macro/execution/runner/QueryRunner.run_[0]

org/neo4..

Figure 2.1: An example flame graph from benchmarking a part of the
community edition of Cypher. We can determine that a main and at
least one secondary thread has been started which causes a division
right from the start. Higher up in the graph, the bars further divide
into subtrees and diminish in size for each split, representing the
total amassed samples in each subtree.

Flame graphs may also be compared by extracting the difference between two given graphs,
denoted as a differential flame graph. The purpose of the differential flame graph is to visualize

10

2.3 Graph Databases and Neo4j

how two separate runs of the same, or preferably at least similar programs have differed in
their resource consumption. The bars of these comparative flame graphs typically display a
red shade for functions that increased and blue shades for those that decreased [3].

Tornetta [7] presents some algebraic properties of flame graphs and suggests, for regression
detection, comparing a statistically significant sample of flame graphs before the regression
with a sample after the regression has occurred, and subsequently examining the distributions
between the two sets. They propose a two-sample Hotelling T 2 test, which is a multivariate
probability distribution suitable for sample statistics.

In figure 2.1 we see an example of a flame graph produced by profiling a specific query in the
community edition of Cypher. The flame graph is normally interactive and hovering a bar
would reveal the number of samples.

2.3 Graph Databases and Neo4j
The core product of Neo4j is its native graph database. In contrast to a relational database,
a graph database stores nodes and relationships instead of tables or documents. In Neo4j’s
graph database, nodes represent entities of a domain and can be classified with labels and
described by properties. A relationship is always directed and connects a source and target
node. Relationships must be classified by a label that describes their type and can, just like
nodes, be described by properties. The advantage of graph databases compared to relational
databases reveals itself when querying for complex connections between entities. Since the
relationships are pre-established, the connections can be instantly traversed without further
calculation during runtime [9]. Figure 2.2 is a simple example of how a small company with
a couple of employees and interconnecting relationships may be stored. Neo4j also has a
built-in web interface that offers the possibility of visually inspecting and interacting with a
graph.

EMPLOYS

since: 2008

E
M
P
LO
Y
S

since: 2014
A
S
S
IS
TA
N
T
_T
O

st
at
us
: t
em
po
ra
ry

Neo4j
Company

name: Neo4j
founded: 2007

Michael
Person

name: Michael
age: 51

position: Manager

Ryan
Person

name: Ryan
age: 34

position: Intern

Figure 2.2: An example of a graph in Neo4j displaying the nodes and
relationships of a small company. Each node is classified by the label
’Company’ or ’Person’ and described by individual properties such as
name and age. The entities are connected by directed relationships
with labels, e.g. EMPLOYS, and their respective properties.

11

2. Background

2.4 Introduction to Cypher
Cypher is a query language, designed by Neo4j specifically for retrieving graph data from a
graph database such as Neo4j. It is a declarative language, allowing the user to "focus on what
to retrieve from [the] graph, rather than how to retrieve it" [8]. Cypher is used extensively
throughout our project. This section is intended to give the reader sufficient background
knowledge to be able to understand the rest of the report. For more in-depth details about
Cypher we refer to the Cypher Manual [8].

2.4.1 Basic Cypher
Most Cypher queries include at least one MATCH statement, which is used to find nodes and
relations in a graph matching a specified pattern. For example,

MATCH (p:Person { name: 'Michael' })
RETURN p

matches and returns all Person nodes where the name property is 'Michael'. It is also
possible to match relationships, for example,

MATCH (p:Person { name: 'Michael' })<-[:ASSISTANT_TO]-(a:Person)
RETURN p, a

matches all ASSISTANT_TO relationships from any person to any person named 'Michael',
and returns all pairs of nodes with such a relationship. Note that the syntax resembles two
nodes with a left-pointing arc between them. Here, p and a are variables bound to the
matched nodes. When matching on multiple properties it may be more readable to spec-
ify the properties using the WHERE keyword. This also allows for more complex expressions.
For example,

MATCH (p:Person)<-[:ASSISTANT_TO]-(a:Person)
WHERE p.name = 'Michael' AND a.age > 30
RETURN p, a

matches all ASSISTANT_TO relationships from any person over the age of 30 to any person
named Michael and returns all pairs of nodes with such a relationship.

It should be noted that the above queries may return the same node twice if they have multi-
ple matching relationships. We can use the DISTINCT keyword to exclude duplicates before
returning data. For example, to return all persons who are the assistant to someone named
Michael, the following query could be used:

MATCH (:Person { name: 'Michael' })<-[:ASSISTANT_TO]-(a:Person)
RETURN DISTINCT a

Another way to do the same thing is to use the WHERE keyword together with an inner
query:

MATCH (a:Person)
WHERE EXISTS ((a)-[:ASSISTANT_TO]->(:Person { name: 'Michael' }))
RETURN a

12

2.4 Introduction to Cypher

That would match any person who has a ASSISTANT_TO relationship to some person named
Michael. It is also possible to order and limit the results. For example,

MATCH (p:Person)
RETURN p
ORDER BY p.age DESC
LIMIT 10

would return the ten oldest people in the database. Here the DESC keyword is used to specify
that the values are ordered in descending order. The LIMIT keyword is then used to select
the first ten records.

Before we can match something, we first need to populate the database. This can be achieved
through either the CREATE or MERGE statements. CREATE is the simplest, and to create the node
with the name Michael that we previously matched, we would write the following code:

CREATE (p:Person { name: 'Michael' })
RETURN p

Similarly, a larger pattern with nodes and relationships can be created all at once in the same
query:

MATCH (p:Person { name: 'Michael' })
CREATE (a:Person { name: 'Ryan' })-[:ASSISTANT_TO]->(p)
RETURN p, a

In this query, the Person node with the name-property 'Michael' is already present in the
database from the previous query and we match it before the CREATE statement. This syntax
displays how to connect new data to existing nodes.

The MERGE statement works similarly but will only create components that are not already
present in the database without having to match them first. For example:

MERGE (p:Person { name: 'Michael' })
RETURN p

In contrast to the CREATE clause, this query would not create a duplicate node since we
are using MERGE and the Person node with the name 'Michael' is already present in the
database.

Another useful clause is UNWIND which transforms a list back into individual rows. For ex-
ample:

UNWIND ['Michael', 'Ryan'] AS firstName
CREATE (p:Person { name: firstName })
RETURN p

It is also possible to pass arguments to Cypher from a given programming language. Argu-
ments are prefixed with the ’$’-sign. For example, in Python:

driver.execute_query(
"""
UNWIND $names AS firstName
CREATE (p:Person { name: firstName })
RETURN p

13

2. Background

""",
{'names': ['Michael', 'Ryan']},

)

The above queries will each create two separate nodes with the names ’Michael’ and ’Ryan’.
This syntax is especially useful when populating a database with millions of nodes, each with
individual property values. Passing arguments allows us to separate the query and the data,
meaning that the same static query string can be reused for variable data.

2.4.2 Data Aggregation
Aggregating data is the process of performing calculations on multiple values to produce
fewer values — many times a single value. This is an important feature for databases for at
least two reasons. First, because the calculations are performed on the same machine that
stores the data it can significantly reduce the amount of data that has to be transferred over
the network. Second, because data is stored in a well-known format, the query language (e.g.
Cypher) can generate an optimized execution plan for running the query efficiently, often
without extra effort from the programmer.

Cypher has many built-in functions for data aggregation. A simple example is the following
query which returns the average age of all Person nodes in the database:

MATCH (p:Person)
RETURN avg(p.age)

Another useful built-in aggregating function is collect which is used to create an aggregated
list. The collect list is often used in conjunction with grouping keys to create groups of data.
For example, the following query returns a list of names for each unique value of age that
exists in the database:

MATCH (p:Person)
RETURN p.age AS age, collect(p.name) AS names
// Example return value:
// { age: 46, names: ['Michael', 'Phyllis'] }
// { age: 81, names: ['Creed'] }

The above query also uses the AS keyword to rename the values included in the returned
records. Note that, in Cypher, all values that are not the result of an aggregation expression
will be used as grouping keys. This is in contrast to SQL where grouping keys are expressed
explicitly using GROUP BY.

In Cypher, it is also possible to perform aggregation in several steps. One way is to use the
WITH keyword to create a chain of calculations where the result of each part of the query is
passed on to the next part. For example, the following query calculates the average age among
the five oldest people in the database:

MATCH (p:Person)
WITH p ORDER BY p.age DESC LIMIT 5
RETURN avg(p.age)

The query first matched all people in the database. Then the five oldest people are selected

14

2.5 Statistical Concepts

and passed to the next step. Finally, the average age is calculated and returned.

2.5 Statistical Concepts
This section contains a short introduction to some basic concepts in statistics and time series
analysis and the notation used in the report.

2.5.1 Average
We denote the average of n observations x1, x2, . . . , xn as

avg(x1, x2, . . . , xn) =
x1 + x2 + · · · + xn

n
.

2.5.2 Standard Deviation
We denote the standard deviation of n observations x1, x2, . . . , xn as

std(x1, . . . , xn) =

√√
1

n − 1

n∑
i=1

(xi − avg(x1, . . . , xn))2.

We often need to account for missing observations in the calculations. If an observation is
missing at a certain time point it means that the sampling profiler sampled it zero times and
the observed value is implicitly zero. Given n observations and m missing observations the
standard deviation can be calculated as

std(x1, . . . , xn+m) =

√√
1

n + m − 1

m · avg(x1, . . . , xn+m)2 +

n∑
i=1

(xi − avg(x1, . . . , xn+m))2

.
The standard deviation is the square root of the variance and is a measure of how much the
observations are expected to deviate from their average.

2.5.3 Correlation
A common measurement for linear correlation between two sets of data is the Pearson cor-
relation coefficient, denoted

pcc({x1, . . . , xn}, {y1, . . . , yn}) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)2
,

where

x̄ = avg(x1, x2, . . . , xn),
ȳ = avg(y1, y2, . . . , yn).

15

2. Background

16

Chapter 3

Approach

Our approach combines several methods that help make sense of large quantities of profiling
data.

3.1 Work process
We employ an iterative work process, where we continuously improve our product based on
new learnings and experience. The tools we build are intended to make it easier for engi-
neers to identify bottlenecks and regressions, so an important part of the process is to collect
feedback from the engineers at Neo4j — our users.

The scope of our work is limited to intuitive methods that produce predictable results that
can be easily understood by us and by our users. Specifically, we focus on statistical methods
and data aggregation. These methods work well for big data sets, too big to fit in memory,
because many calculations can be performed directly in the database.

Our approach relies heavily on the use of a Neo4j database to store data. We built a Java
program that automates the process of importing flame graph data into such a database.
Given a specific benchmark, it downloads the profile recordings and imports them into the
database. We made a few iterations of this program to support new requirements as they
arose. We also put effort into making this program performant to support our iterative work
process.

The rest of our work was carried out iteratively. We started with simple methods that only
consider single functions. We realized early — by looking at the results and feedback from
our users — that single functions are often hard to improve by themselves. In most cases, it
is more important to know in which calling contexts these functions perform badly. For this

17

3. Approach

reason, later iterations of our work focus on methods that consider calling contexts consisting
of multiple functions. The final iterations focus on presenting our results in an intuitive way
to our users.

3.2 Products
Addressing our problem statement, there are two fundamental problems to solve: bottle-
neck and regression detection. Bottleneck detection, in this context, refers to the process of
discovering problematic functions in the code base that are negatively impacting the perfor-
mance of the executing program. Bottleneck detection implies searching for a pattern that is
performing poorly in a space of functions over multiple benchmarks. Regression detection,
on the other hand, looks at variations over time for a single benchmark. This analysis requires
that we have a time series of previous executions with normal behavior and a regressing ex-
ecution with worse performance. The aim is then to identify the cause of this regression,
whether it be a change in the code base or perhaps a bug.

We apply different approaches to tackle the two issues, although they share some similarities.
A common ground to build from is the profiling data that we require to analyze the test runs.
As previously mentioned, Neo4j utilizes the async-profiler in their benchmarking process.
The results of the sampling it performs are represented as flame graphs, which can be folded
into a collapsed format that we subsequently import into a Neo4j graph database. The data is
stringed together in the database as a call-stack tree with both sampling properties from the
profiler and calculated properties for easier querying. With regression detection, we perform
a time series analysis for each function to see if it has deviated from its expected behavior.
With bottleneck detection, we instead calculate a potential improvement if the function could
be reduced to zero samples. We then expand on promising functions to consider a larger
context.

Another approach that applies to both scenarios, is looking at the correlation between the
samples of a function and the execution time of the entire program. An important discovery
we made during this process is that there exist some "usual suspects" that appear both when
looking for bottlenecks and regressions. The intuition is that a small worsening in the per-
formance of a bottleneck function will have a large impact during a regression. Performing a
regression detection may therefore expose the bottleneck functions of a given program.

We focus on identifying suboptimal functions that take large fractions of the total execution
time. According to Amdahl’s law, the overall improvement of a system gained by optimizing
a single part is limited by the fraction of time that is spent on that part [6]. This relationship
is commonly used in the context of parallel computation but can be generalized so that it
applies to a wider domain of optimization.

3.3 Automation and Expert Knowledge
Early on in the process, we realized that building a completely automated system without
human interaction would be infeasible because expert knowledge often is required to make
the final decision. The nature of the profiling data can be quite deceiving, which forces us to

18

3.3 Automation and Expert Knowledge

apply a broader selection to avoid excluding false negatives. This makes it significantly more
difficult to determine which node is the underlying issue and ultimately requires inspecting
the actual code. Knowledge of the code base will quickly expose the false positives and help
identify the real candidate functions for further inspection. Here is where expansions come
into play. Even without a lot of previous experience with the code base, looking at expanded
stack traces will give hints about where the real issue resides. For this purpose, we developed
expanding algorithms that attempt to capture the most relevant branches connected to the
initial candidate functions. Each initial selection is paired with a corresponding expanding
algorithm that looks at the same properties but in a larger context. The system is however
kept modular so that any one initial selection can be expanded with any algorithm, although
it may not always be suitable. For example, one could produce an initial list of candidate
functions from the bottleneck detection and then explore its surroundings with regression
expansion. Normally it makes more sense to expand with the same process as with the initial
selection.

The output is presented in the order of importance deemed by our algorithm. Less important
data is displayed progressively further down. As much data as possible is kept and output to
avoid filtering away false negatives. The number of presented candidates is determined by a
user-specified argument.

19

3. Approach

20

Chapter 4

Modeling and Importing Data

This section further describes the process of importing profiling data to a Neo4j database.

4.1 Schema
When importing huge amounts of data, a suitable graph structure is crucial for efficient query
performance. It is additionally important that the graph is intuitive as the database will be
accessible to many employees and understandability can expedite the process of identifying
bottlenecks or regressions. A clear structure can furthermore assist the developer in the task
of finding problematic functions when visualizing the graph.

4.1.1 Modeling
To reinforce the structure of our schema, we initially outlined our core use cases for the
database. We formulated these use cases by discussing the needs of people who work daily
with benchmarking at Neo4j.

Our core use cases are as follows:

• Find all benchmarks where a specific function took more than a given percentage of
samples.

• Acquire test run, benchmark name and benchmark group from any given function.

• Acquire an entire stack trace tree for a specific test run with an absolute number of
samples.

21

4. Modeling and Importing Data

Secondly, we decided on what data to aggregate and decided on a “Calling context tree” which
resembles the format of a flame graph and keeps enough valuable information for a statistical
analysis.

The structure of our database was influenced by Neo4j’s result store database where the com-
pany currently stores high-level information about previously run benchmarks. The result
store contains information required to access specific benchmarking data from cloud stor-
age, which we use to populate our database. Aligning our model with the structure of the
result store was appropriate to retain homogeneity and for cross-database querying. This also
makes a future merge of the two databases possible. From our core use cases, we produced a
high-level abstraction of our model that served as a basis for our code implementation seen
in figure 4.1.

R
U
N
S

O
F_BEN

C
H
M
AR
K

IN
V
O
K
E
SR

E
C
U
R
S

H
AS
_P
R
O
FI
LE
S

Profile

key:
avgExecutionTime:

totalSamples:

Function

key:
codePath:

depth:
baseSamples:

base:
totalSamples:

total:

Benchmark
group:
name:

TestRun
date:
id:

1

1+

1

1+

0..1

1+

0..1

*0..1

0..1

Figure 4.1: Model Schema. A relationship cardinality is read inde-
pendent of the direction of the arrow e.g., a benchmark maps to at
least one profile and a profile maps to a single benchmark

A profile is uniquely identified by a benchmark and a test run. A test run and a benchmark
may however map to many unshared profiles. The database successively grows into a call-
stack forest connected through test runs and benchmarks with each new flame graph import.
While creating this schema there were a few design choices to consider, such as the direction

22

4.2 Flame Graphs to Trees

of different types of relationships, and how to handle multiple calls to the same method in
different contexts. The direction of the relationships proved a trivial problem as Neo4j asserts
in their graph modeling guidelines: “Although you must store a relationship in a particular
direction, Neo4j has equal traversal performance in either direction...” [9]. The issue with
multiple calls in different contexts to the same function meant that the database would need
to enforce some unique constraint to define a function node other than simply the name of
the function — also known as the code path. After consulting the Neo4j documentation we
deduced that creating a unique key for each node would be suitable to solidify the contrast
between multiple nodes with identical code paths.

With time, our demand for identifying recursive relationships developed. A recursive rela-
tionship may stretch from an ancestor to a far-removed descendant with the same code path,
but never past its first recurrence in each branch.

With this structuring, the core use cases are easily fulfilled with just a few lines of Cypher
code, and the model lends itself nicely to powerful computations in trivial execution time.

Each function node has several properties. The most important ones are explained in the
following list:

• key: A unique identifier for the node.

• codePath: The qualified name of the function.

• depth: The number of invocation edges between this node and the root node.

• baseSamples: The number of samples collected for the trace consisting of the node
and all of its parents.

• totalSamples: The sum of base samples for this node and all of its descendants.

• base: The normalized number of base samples, calculated by dividing the base samples
of the node by the total samples of the root node.

• total: The normalized number of total samples, calculated by dividing the total sam-
ples of the node by the total samples of the root node.

4.1.2 An example
In figure 4.2, we illustrate a simplified example of a single call-stack tree in our database. B1
and B2 have both a RECURS and an INVOKES relationship since they are representations of
the same code path being called at different depths. Note that A1 and A2 also have a RECURS
relationship even though they are not immediate neighbors.

4.2 Flame Graphs to Trees
We begin the process of importing the flame graphs to Neo4j by converting the flame graph
files to a collapsed format. We then parse these files, line by line, generating nodes with cor-
responding properties. The trees are incrementally generated in memory before importing
them into the database. This entire process is multi-threaded, with each thread handling one

23

4. Modeling and Importing Data

RUNS

O
F_
BE
N
C
H
M
AR
K

H
AS_PR

O
FILES

INVOKES

IN
VO
KES

RECURS

R
EC
U
R
S

IN
VO
KE
S

Profile
totalSamples: 20

regressionStatus: false-positive
...:

A1
Function

codePath: A
baseSamples: 2

base: 0.1
totalSamples: 20

total: 1
...:

Benchmark
group: dunder
name: Q1

TestRun
date: 1712650358
id: 228fe89f-d0cf-4dbc-b511-b9ab0abd7944

B1
Function

codePath: B
baseSamples: 3

base: 0.15
totalSamples: 18

total: 0.9
...:

A2
Function

codePath: A
baseSamples: 5

base: 0.25
totalSamples: 5

total: 0.25
...:

B2
Function

codePath: B
baseSamples: 10

base: 0.5
totalSamples: 10

total: 0.5
...:

Figure 4.2: An example of how a test run with a single profile may
be populated in our database.

tree at a time, preserving thread safety as each tree of function nodes is entirely independent
of others. At last, we push the profile node, rooting the tree, and possibly create the bench-
mark and test run nodes with the MERGE operation. Any of these latter two nodes may already
be present in the database or multiple threads may be racing to create them. To handle this
race condition, we enforce a uniqueness constraint on the database which will cause all but
one of these transactions to fail. Luckily, Neo4j is ACID compliant [10], guaranteeing data
validity even in this eventuality.

Importing no more than a given week of benchmarking data means creating tens of millions
of function nodes and yet even larger amounts of relationships. Populating the database at a
sufficient speed is critical for the usefulness of our program. Any given day of benchmarking
data generally constitutes too much information to push in a single transaction and will
throw an out-of-memory error as the heap space runs out on the RAM of the hosting server.
Even pushing just a single profile all at once is infeasible because the query would become too
large. A basic approach to handle these problems is to populate the database in increments,
starting with the root node

CREATE (fn:Function { codePath: "root" })

and later matching the root again and creating any children together with the relationships
between them using the MERGE operation in a separate query:

MATCH (fn:Function { codePath: "root" })
MERGE (fn)-[:INVOKES]->(childFn:Function { codePath: "child" })

This last query will then be repeated for each new node. However, the efficiency of this ap-
proach proved entirely unsatisfactory for our purposes as MERGE acquires locks on all matched
entities before creating the missing elements of a pattern and all internal nodes are matched
once for each of its children. In the final version of our importer, we utilize the UNWIND
operation to first CREATE all of the nodes for a profile:

UNWIND $functions AS f
CREATE (fn:Function { codePath: f.codePath})

24

4.2 Flame Graphs to Trees

Then in the second phase, once again making use of UNWIND and CREATE, we import all of the
relationships between the nodes:

UNWIND $invocations AS i
MATCH (a:Function { codePath: i.fromCodePath })
MATCH (b:Function { codePath: i.toCodePath })
CREATE (a)-[:INVOKES]->(b)

With this implementation, we avoid the unnecessary round-trips of the previous solution as
we only need one query for functions and one for invocations for each profile. Finally, we
merge the profile, benchmark and test run nodes together with their respective relationships.
All these phases are contained within a single transaction and thanks to the atomicity prop-
erty, we can rest assured that if one phase fails, they all fail and are subsequently rolled back.
A failed transaction is retried with exponential backoff [10].

For more efficient data retrieval, we impose several indexes on the database, creating copies of
selected primary data [8]. These indexes significantly reduce access time and speed up the im-
port of relationships since these require initially matching the nodes to be connected.

25

4. Modeling and Importing Data

26

Chapter 5

Detecting Bottlenecks

Software bottlenecks are segments of the code base that negatively affect the performance
of the system as a whole. Subsequently, improving just a few bottlenecks can significantly
improve the overall performance of the system. The Pareto principle (also known as the
"80/20 rule") states that focusing on the top 20% of causes will affect 80% of the consequences.
In other words, optimizing a few vital functions will yield substantial improvements. To
identify these vital bottlenecks, we propose two different approaches: potential and correla-
tion.

5.1 Code Path Potential
Given a single code path, we define the code path potential as the maximum system perfor-
mance improvement in percent that can be achieved by optimizing the given code path. In-
tuitively, this is a measure of how much the system performance would improve if we could
eliminate this code path.

Given a selection of profiles, we want to calculate code path potential for each unique code path
in this selection, and then pick the n code paths with the highest potential. This is achieved
by aggregating the number of base samples for each code path and then dividing by the total
number of base samples of all function nodes in the selection of profiles. We performed the
aggregation step in Cypher as follows.

MATCH
(f:Function)

WHERE
f.profileKey IN $profile_keys

WITH
f.codePath AS codePath,

27

5. Detecting Bottlenecks

sum(f.baseSamples) AS potential
RETURN

codePath,
potential

ORDER BY
potential DESC

With the aggregated data, we calculate the final percentual potential in Python:
df["potential %"] = 100.0 * df["potential"] / df["potential"].sum()

The result is a list of code paths ordered by their potential to improve the program. For a
particular selection of profiles we got the following results:

Code Path p0

org/neo4j/kernel/impl/store/RecordPageLocationCalculator.offsetForId 7.83
org/neo4j/kernel/impl/store/format/BaseRecordFormat.longFromIntAndMod 2.65
org/neo4j/kernel/impl/store/format/BaseOneByteHeaderRecordFormat.has 1.28
org/neo4j/kernel/impl/store/record/RelationshipRecord.initialize 0.99
org/neo4j/kernel/impl/store/format/BaseOneByteHeaderRecordFormat.isInUse 0.85

This would suggest that the offsetForId has the highest potential. It could theoretically im-
prove the system performance by almost eight percent. This is easier said than done, however.
Looking at the source code1

int offsetForId(long id, int recordSize, int recordsPerPage) {
return (int) (id % recordsPerPage) * recordSize;

}

one quickly concludes that this function by itself leaves little room for improvement. Further
noticing that the offsetForId function does not call any other functions, implying that it
is a leaf node in the flame graph. Many of the code paths that we find when looking at
them individually are indeed simple functions close to the leaf set. The reason these simple
functions show up in our results is that they are called many times by other functions. In
these cases, it would be more interesting to compare larger calling contexts instead of single
code paths. Such methods are explored in later sections.

5.2 Subtree Potential
Similar to how we defined code path potential earlier, we define subtree potential as the max-
imum system performance improvement in percent that can be achieved by optimizing a
given subtree containing multiple connected code path nodes. Intuitively, this is a measure
of how much the overall system performance would improve if we could make all code paths
included in the subtree run in zero seconds.

In the end, we want to find a small selection of nodes so that a programmer familiar with the
code can quickly analyze the results. We therefore choose to limit our comparison to subtrees

1Publically available on Github

28

https://github.com/neo4j/neo4j/blob/b76dd4f846db9ba411e531d3e5c458614162c7ba/community/record-storage-engine/src/main/java/org/neo4j/kernel/impl/store/RecordPageLocationCalculator.java#L48

5.2 Subtree Potential

of a given size. We further limit our search to subtrees of a specific shape to reduce the search
space. It might be possible to search the entire search space using constraint programming
which could be explored in future research.

Given a node u, we define the full n-level subtree rooted in u as the subtree containing u and
all its descendants reachable at a distance n from u. The search space will be limited to such
subtrees.

Precalculating potential for each node
Given a node u, the subtree potential of degree n, defined pn(u), is the possible improvement
that can be achieved by improving u or any descendent with a maximum distance n from
u.

For degree 0, only u is considered with no descendants so p0(u) is simply equal to the base
samples of u, that is,

p0(u) = base(u).

For degree 1 we consider u and any immediate children of u so p1(u) is the base samples of
u, plus the sum of base samples for all immediate children of u, that is,

p1(u) = base(u) +
∑

v∈children(u)

base(v) =

= base(u) +
∑

v∈children(u)

p0(v).

Similarly, for degree 2 we get,

p2(u) = base(u) +
∑

v1∈children(u)

base(v1) +
∑

v2∈children(v1)

base(v2)

 ,
and we see that the parenthesis is equivalent to p1(v1). Inserting this we get the simplified
expression

p2(u) = p0(u) +
∑

v∈children(u)

p1(v).

Higher degrees follow the same pattern, so the general case can be neatly expressed recursively
as:

p0(u) = base(u),

pn(u) = p0(u) +
∑

v∈children(u)

pn−1(v).

By precalculating p0, p1, . . . , pn, in that order, we can calculate pn for all nodes in an initial
forest in O(n · |V |), where |V | denotes the number of nodes in the initial forest. This is
sufficiently fast for our purposes, especially since we are mostly interested in relatively small
subtrees.

29

5. Detecting Bottlenecks

Aggregating potential for subtrees
Let Ci denote the set of all nodes with a given code path i. Under the assumption that no
subtree contains any recursions, the potential for the full n-level subtree rooted in i is the
sum of all the nodes reachable by a maximum distance n from any node in Ci . Because we
already precomputed the potential for each node, the aggregated potential is conveniently
and efficiently computed with:

P′n(Ci) =
∑
c∈Ci

pn(c).

The recursion problem
The problem with the simple aggregation P′n(Ci) is, as stated, that it only works under the
assumption that there are no recursions. To illustrate why, let us consider the following
example:

R
E
C
U
R
S

IN
V
O
K
E
S IN

V
O
K
E
S

A1
Funciton

code path: A
base: 0.25

A2
Function

code path: A
base: 0.5

B1
Function

code path: B
base: 0.25

This simple program only has two functions (code paths) A and B. Let us now calculate
P′1(CA). We start by finding all full 1-level subtrees rooted in A, which would be:

R
E
C
U
R
S

IN
V
O
K
E
S IN

V
O
K
E
S

A1
Funciton

code path: A
base: 0.25

A2
Function

code path: A
base: 0.5

B1
Function

code path: B
base: 0.25

A2
Function

code path: A
base: 0.5

Performing the aggregation we get

p1(A1) = base(A1) + base(A2) + base(B1) = 1.0,
p1(A2) = base(A2) = 0.5,
P′1(CA) = p1(A1) + p1(A2) = 1.5.

30

5.2 Subtree Potential

That is, the program can be improved by 150%. Something went wrong because we can
impossibly improve the program by more than 100%. The problem is that the A2 node was
included twice in the sum. Once in p1(A1) and once in p1(A2).

Accounting for recursions
Let us now correct the aggregation to also account for recursions. Because we are only con-
sidering full n-level subtrees we can precalculate a correction term for each subtree. This
term will compensate for everything that would otherwise be counted multiple times. In the
example above we would like to exclude the A2 node from the left subtree, rooted in A1, so
the correction term corresponding to the first-degree subtree potential is c1(A1) = base(A2).
The right subtree, rooted in A2, contains no recursions so its correction term is c1(A2) = 0.
The first-degree aggregated subtree potential is then calculated as follows:

p1(A1) = base(A1) + base(A2) + base(B1) = 1.0,
p1(A2) = base(A2) = 0.5,
c1(A1) = base(A2) = 0.5,
c1(A2) = 0,

P′1(CA) = (p1(A1) − c1(A1)) + (p1(A2) − c1(A2)) = 1.0.

For the general case, the process is similar. Let Sn(u) denote the full n-level subtree rooted in
u. For each immediate recursion edge u → v the nodes in Sn(u) ∩ Sn(v) would be counted
twice. The correction term for u is therefore the sum of all nodes in these intersections,
which will be subtracted when aggregating the result. Because of the tree structure, all such
intersections are mutually exclusive, implying that no node can be subtracted twice. We also
note that each intersection is itself a full subtree of degree strictly less than n. This implies
that the sum of the nodes in Sn(u)∩Sn(v) has already been calculated as the potential of degree
(n− distance(u, v)) for u, where distance(u, v) is the number of invocation edges on the path
between u and v. These principles are illustrated in an example in figure 5.1. Formally the
correction term can be written as

cn(u) =
∑

u→v∈Rn

p(n−distance(u,v))(v)

where Rn is the set of recursion edges u→ v such that distance(u, v) ≤ n.

The corrected aggregated subtree potential of degree n for code path A becomes

Pn(A) =
∑
Ai∈A

pn(Ai) − cn(Ai)

31

5. Detecting Bottlenecks

p3(A2)

p1(A2)

p3(A1)

IN
V
O
K
E
S

IN
V
O
K
E
S

R
E
C
U
R
S

IN
V
O
K
E
S

IN
V
O
K
E
S

IN
V
O
K
E
S

IN
V
O
K
E
S

IN
V
O
K
E
S

A1

C

A2

F

G

B

E

D

Figure 5.1: When aggregating full 3-level subtrees rooted in code
path A, some nodes are included twice because the subtrees in-
tersect due to recursions. The aggregation is corrected by sub-
tracting the intersecting nodes from the final result. In this par-
ticular example, the correction term for the intersecting nodes is
c3(A1) = p3−2(A2) = p1(A2). The aggregated result is P3(A) =
p3(A1) + p3(A2) − p1(A2).

32

5.2 Subtree Potential

where

p0(u) = base(u),

pn(u) = base(u) +
∑

v∈children(u)

pn−1(v),

c0(u) = 0,

cn(u) =
∑

u→v∈Rn

p(n−distance(u,v))(v).

Cypher Implementation
One of the benefits of storing the data in a graph database is that the above aggregations can
be expressed declaratively with Cypher. The first step is to precalculate the potential and
correction terms for each node in some forest from the database. These values will be stored
in two array properties, p and c respectively. We begin by initializing p0 and c0 which is
done by the following Cypher query:

MATCH
(f:Function)

SET
f.p = [f.base],
f.c = [0.0]

This query is self-explanatory. In the real implementation we also have a few WHERE state-
ments to limit the functions to a selection of profiles. The remaining potential values are cal-
culated by running the following query multiple times with incremental values for n:

MATCH
(u:Function)

OPTIONAL MATCH
(u)-[:INVOKES]->(v:Function)

WITH
u,
u.base + sum(v.p[$n-1]) AS potential

SET
u.p = u.p[..$n] + [potential]

This query first matches all functions u in the graph, and their immediate children v. The
potential is calculated according to the above recursive definition and finally appended to
the array property p. Similarly, the correction term is calculated with the following Cypher
query:

MATCH
(u:Function)

OPTIONAL MATCH
(u)-[r:RECURS]->(v:Function)

WHERE
r.distance <= $n

WITH
u,

33

5. Detecting Bottlenecks

sum(v.p[$n - r.distance]) AS correction
SET

u.c = u.c[..$n] + [correction]

This query matches, for all functions u, the functions v whose subtrees would intersect with
the subtree rooted in u. The correction term is calculated as the sum of the nodes in these
intersections according to the above recursive definition.

The final step is to perform the aggregation.
MATCH

(f:Function)
WITH

f.codePath AS codePath,
sum(f.p[$n] - f.c[$n]) AS potential

ORDER BY
potential DESC

This calculates Pn(Ci) for each code path i and returns an ordered list containing the code
path with the highest potential at the top.

5.3 Bottleneck Correlation
A simple intuition about bottlenecks is that they limit the performance of the executing
program, giving rise to an inverse dependence between throughput and time spent in the
bottleneck. Going back to the Pareto principle, we can assume that there exist a vital few
functions that are inhibiting the performance of a program. In the simplest case, the program
is structured as a single branch where no node possesses a relationship to more than a single
child. Here, the performance of the program would be entirely decided by the base samples
collected throughout the branch, most commonly amassed in the leaf node. Over time, this
leaf node would display an almost perfect correlation with the execution time, varying only
due to randomness in sampling. This correlation implies that the trace ending in the leaf
node could be a "problematic" part of the code. Unfortunately, introducing more complexity
in the tree structure will diminish the correlation between bottlenecks and execution time,
as various functions contribute to the limiting factor. The principle that a limiting function
exhibits a relationship to the execution time still holds. In many cases this results in a higher
correlation than most trivial functions. An important distinction here is that correlation
does not imply causation, meaning that just because a function correlates it does not imply
that it is a bottleneck. It does however highlight branches of promise that can be subject
to further investigation. Note that we make an assumption here, that the most problematic
bottlenecks will exhibit a somewhat linear correlation with the execution time as they have a
very direct impact. This could be tweaked in the future by instead looking at some non-linear
measure of correlation, e.g. Spearman’s correlation coefficient.

A perk of looking at correlation is the flexibility in analyzing diverse data. Since each func-
tion will be aggregated separately for each profiling, the function will only be considered
in the executions where it is present. Therefore, one can include various benchmarks from
different programs without impacting the result of a function only present in a few pro-

34

5.3 Bottleneck Correlation

grams.

An aspect to keep in mind when looking at correlation for a given function over multiple
benchmarks is the various environments it appears in. Some benchmarks may run relatively
few other functions, while some benchmarks run sizeable amounts of other time-consuming
functions. This attribute will affect the position and progression of the sampling points.
A separate correlation must be calculated for every benchmark to assure fairness. Finally,
an average correlation can be calculated to represent the overall pattern. Below, in figure
5.2, is an example of two different benchmarks with corresponding sampling points for a
function. If we ignore the diversity in the benchmarks and attempt to fit a correlation on
all of these sample points, it would become more or less a random distribution. Instead,
we handle these benchmarks individually and calculate a mean correlation to find the most
promising candidates. It would also be possible to use another aggregation method such as
max depending on the purpose of our search. All sample points have been normalized, again
to adjust for fairness. Without normalization, a longer-running benchmark would command
more importance.

In appendix A.2, we provide the Cypher code for calculating the Pearson correlation coeffi-
cient for each unique function in a set of benchmarks.

Figure 5.2: An example of how the samples of a function on the x-
axis may correlate with the execution time on the y-axis. The func-
tion has a significantly higher correlation in benchmark 7 than in
benchmark 3. The score(f) = (0.85 + 0.18)/2 in this case, will be
compared with other functions in any of the specified benchmarks.
The lines in the image are for visualization purposes.

The correlation score calculated for a given function f that is present in m specified bench-
marks is calculated through:

score(f) = avg(pcc(X1,Y1), . . . , pcc(Xm,Ym)),

35

5. Detecting Bottlenecks

where Xi is the set of observed samples for f per profile in benchmark i = 1, . . . ,m and Yi is
the corresponding execution time. Note that the number of profiles per benchmark ni may
vary, but the benchmark is only included if ni ≥ 2. This threshold can optionally be set to a
greater number by the user.

36

Chapter 6

Detecting Regressions

In this chapter, we explore methods for regression analysis. This entails identifying a set of
candidate functions or contexts that may be the root cause of a given regression.

6.1 Time Series Analysis
One way to detect regressions is to look at how the profile results change over time. Neo4j
already do this to detect specific benchmarks that take longer to run than usual, by comparing
the current execution time with previous mean values. This is however only performed on
the overall execution time of the profile and gives no information about which particular
functions may have caused the regression. Instead, this is done by manually inspecting the
flame graphs generated by the profiler. These flame graphs contain all the data necessary to
perform automated analysis on a function level, which is the topic of this section.

The basis of this analysis is the intuition that individual functions should be sampled ap-
proximately the same number of times every time the benchmark is run, within some error
margin. We calculate the simple moving average and moving standard deviation for each
function in a benchmark, based on previous observations of this function in the same bench-
mark. Each function is then assigned a score depending on how many standard deviations it
deviates from its previous average. That is:

scoren(x0) =
x0 − avg(x1, x2, . . . , xn)

std(x1, x2, . . . , xn)

where n is the number of previous observations to consider, x0 is the number of total samples
at the current point in time T , x1 is the value at time T − 1, and so on. The value n ≥ 2

37

6. Detecting Regressions

can be chosen arbitrarily. However, we found that n = 10 works well for most of our data.
We use total samples in our implementation to capture information from a larger calling
context. It would also be possible to use base samples. However, in practice, we found that
this produced a result biased towards the leaf set. Finally, it would be possible to use the
precalculated corrected potential values from 5.2 which would act as a middle-ground. If
either total samples or potential is used, it is important to note that we also have to account
for recursions to avoid counting the same value twice. For total samples, this means excluding
all nodes with an incoming recursion edge. In Cypher this is done by adding a WHERE clause
as follows:

MATCH (f:Function)
WHERE NOT EXISTS (()-[:RECURS]->(f))

The full query is available in appendix A.1.

The score will be high for functions that are usually stable and have increased by a large
amount compared to previous observations. This is illustrated in figure 6.1. By calculating the
score for each function and presenting it in an ordered list, we get an overview of candidate
functions that are worth exploring further.

Figure 6.1: Bollinger plot illustrating the scoring function for a spe-
cific function. The blue line shows how the observed value changes
over time. The middle green line is the moving average over ten pre-
vious observations. The green area contains all values that would
deviate less than two standard deviations from the moving average.
The regression point, marked in red, has a score of 4.7 standard devi-
ations and is therefore outside this area. From experience, we found
that two standard deviations usually capture the variation expected
from sampling noise but any value could be used.

38

6.2 Regression Correlation

6.2 Regression Correlation
Another way to identify candidates is to look at the correlation between the aggregated sam-
ples of a function and the total execution time of the benchmarked program. The same
principles as when detecting bottlenecks in section 5.3 apply. A function that fluctuates in
tune with the total execution time is likely to have an inverse dependence on the through-
put.

Specifically for regressions, a dramatic change in samples will overpower all the other sam-
pling time points and somewhat overlook their discrepancies, which will skew the results to
single out the functions that have high extreme values during the time point of the regres-
sion.

The advantage of correlation, as opposed to time series analysis, is that the trees can come
from various benchmark groups and settings. A common situation for the benchmarking
team is when reviewing the past week of regressions, various programs of different types have
dropped significantly in performance. The suspicion is that some common code or library
has changed, which impacts all of them. With time series analysis, one would have to single
out each benchmark, perform the detection and manually attempt to find commonalities
between the identified candidates. With correlation, on the other hand, each function will
only be compared to the respective execution time of its running program. Our correlation
implementation benefits from large quantities of data, as the results become more reliable,
and is capable of potentially identifying the common functions that cause the regression in
any number of benchmarks. Note however that a given function that only appears in a single
benchmark and has a substantial correlation over time, may end up higher on the candidate
list than any function that appears in all the specified benchmarks.

6.3 Expanding Algorithms
Once a set of suspect candidates has been identified, the contexts of their appearances draw
focus. An increase in total samples, causing a function to show up as a candidate for the time
series analysis, may be due to worse performance by itself or it may be exhibiting abnormal
behavior as a symptom of a proximate issue:

• An ancestor has increased the number of invocations of the path that includes this
candidate.

• One or multiple children have increased in samples, meaning there has been a code
change that negatively impacts their execution time.

However, we can not trivially expand every possible parent and child path since the search
would explode in time complexity, especially when looking at large call-stack forests with
many occurrences of the code path in different contexts in each tree.

As the path is expanded, multiple branches may be considered with each step. We choose
which branches to pursue or discard, based on the behavior of the initial guess u in each con-
sidered option. The expansion is carried out in a recursive manner where the prospectiveness
metric of the node u is continuously updated as the path grows.

39

6. Detecting Regressions

The prospectiveness of a child path: v1 → v2 → ... → vn is calculated by looking at the
historical sampling of u|u → v1|v1 → v2| . . . |vn−1 → vn, meaning u in the context of calling
v1, which in turn calls v2 and so forth. For example, in figure 4.2 if we wished to expand
the children of A1 with time series analysis and we have ten previous trees with the same
structure but varying sample properties at each node in the database, the score of the path
’A1/B1’ would be calculated through a standard score of ’A1/B1’ in the regression against
equivalent branches in the previous trees. The question of whether the path would be worth
exploring could be reformulated as "Given that A1 calls B1, how much has A1 deviated from
its normal behavior?".

Algorithm 1 Expansion

Require: branch: Some branch rooted in u
procedure Expand(branch)

if prospectiveness(branch) ≤ some threshold then ▷ Stop criterion
return ∅

else if max depth reached then
return branch

candidates← selectExpansions(any extensions of branch) ▷ Selecion Algorithm
if candidates = ∅ then

return branch
expansions← ∅
for c ∈ candidates do

expansions← expansions ∪ Expand(branch ∪ c)
return expansions

In Algorithm 1, the procedure for expanding out from an initial node is shown. This algo-
rithm was inspired by the zooming algorithm by Ammons et al. [1], but differs by offering more
flexibility. Both the stop criterion and selection algorithm are customizable, keeping the ex-
pansion relevant for both time series analysis and correlation, as well as any future insights.
Note that the stop criterion here is only a simple example of how it could be implemented.
The selection algorithm, as previously mentioned, keeps the expansion from blowing up in
time complexity, its purpose is to ignore branches that appear irrelevant to the cause of the
detected abnormality or correlation in the initial node and instead focus on those branches
that have a high promise of explaining it.

Max depth is specified by the user and restricts the search, which produces quicker results
and keeps the algorithm from trailing off to distant relatives of u if the stop criterion should
be too relaxed. A max breadth can also be implemented in the selection method to narrow
down the search. An argument for these parameters is that the stop criterion may not be easy
to formulate so that it fits all benchmarking data. Capping the search is easy enough and can
be quickly adjusted if the results are found to be unhelpful or too packed with information
to make out the relevant parts.

40

6.3 Expanding Algorithms

6.3.1 Greedy Selection
With our most basic selection algorithm pertaining to time series analysis, we make the fol-
lowing assumption: When traversing the tree either up or down, starting from a given initial
node u, as soon as we come across a child or parent node vn that causes u in this context
to receive a negative score, the current path can be terminated and the results discarded. A
negative score implies that u in the context of being called or calling the path up until and
including the node vn, has accumulated fewer samples in the regression tree than what is ex-
pected from its past behavior. The name greedy however, comes from the mechanic that it
greedily selects to pursue the n ≤ max breadth most promising candidates. This mechanic
only takes score into consideration and fails to consider other properties that might indicate
that this could be an interesting candidate.

6.3.2 Custom Selection
Algorithm 1 can easily be utilized with a custom selection method. Selection is implemented as
an abstract class in Python and provides all necessary functions for Expansion to work. Greedy
selection leaves a lot to be desired, which can efficiently and modularly be implemented with
a custom selection.

As an example of the power of this structure, we implemented a custom selection called informed
selection. Informed selection originates from greedy and applies to regression detection with time
series analysis. It makes the same initial ordering based on the deviation score of each branch,
but then it broadens its perspective and considers some additional factors:

Git change recency walks the git repository and collects data about the latest commit for
each file containing a specific code path. It then produces a weight wt for each code path by
calculating an exponential decay of the recency of the latest commit time t:

wt = e−t∗λ, where λ =
ln 2
t1/2
.

The half-life t1/2 was set to 15 days, as regressions caused by code committed further back
should have been detected earlier.

Compile modes look at the mode of compilation for each considered candidate extension.
Perhaps one of the children of the branch has consistently been compiled with Just-In-Time,
but during the regression behaved abnormally by being Interpreted. The mode of compila-
tion is determined by the JVM and can heavily influence the execution time. The benchmark-
ing team at Neo4j has previously observed significant changes caused by irregular compile
modes.

Depth of the branches looks at the distribution of depths where the branch has appeared in
previous trees. It considers how many new depths have been encountered in the regression
tree and promotes those branches that have behaved abnormally. For example, this aspect
catches if a method has been called an extra time in a recursion, compared to previous be-
havior.

41

6. Detecting Regressions

6.3.3 Correlation Selection
Similarly to greedy selection, correlation selection performs a simple mechanism and chooses the
top n potential extensions. In contrast to greedy however, it possesses no deviation score to
evaluate. Instead, it looks at the measure of how much a given branch correlates with the ex-
ecution time of the entire program. Just like with the initial correlation selection, an average
Pearson correlation coefficient is calculated over all of the specified benchmarks.

The default threshold for the stop criterion when exploring a subtree is trivially set to 0,
meaning that we stop exploring as soon as we consider expanding with a candidate that
causes the current branch to have a non-positive linear correlation with the execution time.
Essentially, this would imply that the samples and execution times possess no linear relation-
ship whatsoever. A more influential parameter is the user-provided max breadth and max
depth.

Another interesting means of exploring could be to reverse the usual selection and instead
look at negative correlations. A negative correlation could imply that spending more time
on this particular function results in faster execution. There could be many explanations as
to why such a relationship would appear. One explanation is that a neighboring function
is a bottleneck or regression and during faster executions, this candidate function has been
given, proportionally, more time. Another explanation that we identified during testing was
that some functions involved in query optimization had a negative correlation, as more time
spent in those methods results in overall faster execution.

42

Chapter 7

Evaluation

In this chapter, we will evaluate the usefulness of our proposed framework. The goal of this
evaluation is to provide organizations looking to implement something similar with insights
to help them in their decision-making process. We will weigh the pros and cons of our frame-
work and alternative solutions which may or may not be more appropriate depending on the
specific requirements of the organization.

7.1 Flexibility of the Framework
The database schema, proposed in 4.1, proved both flexible and efficient for a variety of
analysis methods. Following is a summary of the ones that we implemented to demonstrate
what is possible:

• The subtree potential implementation in section 5.2 demonstrates that schema can be
used for non-trivial data aggregation methods. This implementation also highlights
why a separate relationship for recursions is necessary; without it, the query would be
both more complex and less efficient.

• The implementation in section 6.1 demonstrates how time series analysis methods can
be run directly on the database level. It is also possible to query time series data to
perform local analysis or to create visualizations: This is in fact what we did to create
figure 6.1. This implementation also makes use of the recursion relationship.

• The correlation based implementations in sections 5.3 and 6.2 demonstrates how sta-
tistical methods are supported by the framework.

• The expanding algorithms implemented in section 6.3 demonstrates how search algo-
rithms are supported by the framework. In these implementations, we make multiple

43

7. Evaluation

queries to the database to iteratively expand a subtree. In many cases, it is probably
more efficient to query a larger part of the graph and perform the search locally, which
is also possible.

7.2 Cypher vs Local Analysis
When implementing our methods we tried to put as much logic as possible in Cypher queries.
This turned out to be a good decision for the following reasons:

• Expressiveness: Cypher’s declarative syntax allowed us to focus on what we wanted to
calculate, rather than exactly how to calculate it. We found that many of our Cypher
queries showed a close resemblance to the mathematical expressions that we wanted to
implement. The resulting queries are concise, yet efficient because the Cypher planner
performs many optimizations without any additional effort from our part.

• Memory limitations: Neo4j’s extensive benchmarking suite collects tens of gigabytes
of data each week. Performing aggregation on large data sets locally presents a few
challenges if the data does not fit in memory. The benefit of using a Neo4j database
for these purposes is that it will automatically read chunks of data from a disk into a
page cache to avoid storing too much data in memory while at the same time allowing
fast random access to frequently used data.

• Portability: Because our work was explorative, we used Python for our implementa-
tions to allow us to iterate quickly with a short feedback loop. However, because most
of the calculations are done with Cypher queries it will be easy for the Benchmarking
team at Neo4j to port our methods into Java code when bringing this into production.

One drawback of using a database compared to local analysis is that some algorithms may
be slower if they make many queries to the database. However, in most cases, it is possible
to fetch all the required data from the database into memory before running the algorithm.
This also has the benefit that it is possible to specify exactly which data is needed which could
greatly reduce the amount of data that needs to be transferred over the network.

7.3 Changes to the Benchmarking Pipeline
Keeping the database up to date with the latest profiling data may add some complexity to
the benchmarking pipeline. In some methods, such as time series analysis, only profiles from
a single benchmark are considered and it is feasible to import the required data before pro-
cessing begins. In other methods, such as aggregation methods and queries searching for a
specific benchmark, it is required that all relevant data be present in the database before per-
forming the analysis. A few weeks of data may result in hundreds of millions of nodes and
the import takes several hours to run. In these cases, it is better to import new profiling data
incrementally as it becomes available by running the importer after each benchmark. It is
also a good idea to periodically prune the database of old data to prevent it from growing
indefinitely — one is often only interested in the most recent runs of each benchmark any-
way. Maintaining an up-to-date database adds a step to the benchmarking pipeline but the

44

7.4 Use Cases at Neo4j

advantage is that analysis can be run on demand in a matter of seconds.

7.4 Use Cases at Neo4j
This section describes a few use cases that we identified by collecting feedback and ideas
from the engineers at Neo4j. Our database importer tool will be integrated into Neo4j’s
Benchmarking pipeline to support some of these use cases. These use cases are all made
possible by the use of our database schema.

Queries Targeting Multiple Flame Graphs
Several engineers expressed the desire to be able to run queries on data from multiple flame
graphs. One such query that we heard multiple times was: "I want to find all benchmarks
where a given function took more than x % of the total samples for the benchmark". This was
also one of the core use cases which we used to design the database schema. This query will be
one of the first use cases that is implemented in Neo4j’s benchmarking user interface. Similar
queries are easy to express in Cypher, and the Benchmarking team can now conveniently run
these queries against our database.

Analyzing Subrees and Partial Stack Traces
In our early implementations, we discovered that looking at single functions can be mislead-
ing because the seemingly worst functions are often simple ones that are called many times.
On multiple occasions, we also received feedback from engineers that single functions are
rarely a problem by themselves, and rather it is the context in which they are called that is of
interest. Our database schema allows much flexibility for analyzing calling contexts where
several functions are involved. Cypher’s built-in ability to match paths between function
nodes makes it easy to perform aggregations on partial stack traces instead of single nodes.
The pre-calculated potential properties, described in section 5.2, make it possible to query
subtrees of a specific shape. The RECURS relationship makes it convenient to handle the spe-
cial cases that arise when a function calls itself.

Assigning Regressions to the Correct Team
Identifying a set of suspect candidate functions also helps with deducing what people and
resources to deploy. It is commonly not the benchmarking team that tackles the detected
issues, and coordinating efforts from the wrong team is both costly and time-consuming.
Even when our program does not produce the exact function that caused a regression, it can
indicate an appropriate team to assign. Looking at the code path of a candidate function
often reveals the name of the team that maintains it, in which case, assigning the correct
team becomes a trivial task.

45

7. Evaluation

7.5 Presentation of Data
Presenting the data in an interpretable manner is a crucial requirement of our product.
Through several iterations of providing developers with our output, and receiving construc-
tive feedback, we developed an interactive output format, in which, the user can selectively
display more specific details of the results. Appendix B is an example of such an output
produced from running the regression detection program with time series analysis. Other
algorithms produce a similar output but with corresponding metrics. The output is highly
customizable through user-provided arguments and aims to convey dense information intu-
itively. In contrast, the very first iteration consisted of a single large list of candidates without
any explanation or guidance, which was received as confusing and overwhelming. Just as the
output format was developed iteratively, it will likely continue to evolve as more teams adopt
the framework and progressively expose new requirements.

The output as it is presented today, has already been of some use to the company when iden-
tifying causes of regressions and assigning the correct team.

46

Chapter 8

Conclusion and Future Work

8.1 Conclusions
In this thesis, we proposed a framework for exploring large sets of profiling data by mak-
ing queries against a Neo4j graph database. Our proof of concept application successfully
demonstrates the possibilities of the framework by implementing a data-importing tool and
a few different analysis methods. Our importing tool will be integrated into Neo4j’s bench-
marking pipeline and some new user interfaces that make queries based on our schema are
planned.

A Neo4j graph database is a good choice for modeling call-stack trees for performance anal-
ysis. It allows the analyst to write powerful aggregation queries for large sets of data that
would not fit in memory. The built-in ability to pattern-match on paths between multiple
nodes in the graph is very useful for analyzing calling contexts.

We proposed a simple yet powerful database schema, and our implementations show that
this schema can be used for both time series analysis and aggregation methods. An organi-
zation may use our framework to build a set of analysis tools tailor-made for their specific
requirements. We received much feedback from engineers at Neo4j, and the consensus is that
high flexibility in the initial selection, e.g. the ability to filter on a specific set of benchmarks,
is crucial. Another important component is that the result presented to the user is easy to
interpret and does not overwhelm the user.

One potential downside of the framework is the added complexity of importing data because
an extra step has to be integrated into the benchmarking pipeline. On the other hand, using
a database reduces the complexity when handling datasets too large to fit in memory. In
conclusion, the framework may be excessive for small sets of profiling data but provides
many benefits otherwise.

47

8. Conclusion and Future Work

8.2 Future Work
Our database can used to query data needed for local analysis methods such as machine learn-
ing. Such methods are out of scope for this thesis but could be explored further in future
research. For example, Xie et al. [11] propose a visual analytics framework for anomaly detec-
tion in call-stack structures. They utilize a One-Class Support Vector Machine with a custom
stack2vec embedding that could be applied to the call-stack trees in our database.

Another suggestion for future work is to implement a reverse functionality to what we do
today, which would collect data from our database to produce a flame graph. This would
allow for the creation of flame graphs from filtered or aggregated data. For example, it would
be interesting to produce an average flame graph from historical data and subsequently create
a differential flame graph between the current flame graph and this historical average.

Yet another future topic could be to integrate heap allocation for our selection methods, or
as a completely new feature. The async-profiler is already capable of collecting such measure-
ments and heap allocation could potentially expose previously shrouded issues. With small
modifications, our database schema could be adjusted for such analyses.

The effectiveness of our implemented methods may be amplified by the use of wall-clock time
profiling instead of CPU time profiling, which has a larger coverage. A future endeavor to ex-
plore such differences would be beneficial to deciding what mode of profiling to run.

48

References

[1] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding and removing performance
bottlenecks in large systems. In Martin Odersky, editor, ECOOP 2004 – Object-Oriented
Programming, pages 172–196, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[2] async profiler. async-profiler repository. https://github.com/async-profiler/
async-profiler. Accessed: March 12, 2024.

[3] B. Gregg. The flame graph : This visualization of software execution is a new necessity
for performance profiling and debugging. Queue - Cloud Debugging, 14(2):91 – 110, 2016.

[4] B. Gregg. Systems Performance: Enterprise and the Cloud. Addison-Wesley professional
computing series. Addison-Wesley, 2 edition, 2021. pp. 187 - 189.

[5] IBM. Sample-based profiling. https://www.ibm.com/docs/en/mon-diag-tools?
topic=perspective-sample-based-profiling. Accessed: April 2, 2024.

[6] G. M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), page 483–485, New York, NY, USA, 1967. Association for Comput-
ing Machinery.

[7] G. N. Tornetta. On the algebraic properties of flame graphs, 2023.

[8] Neo4j, Inc. Cypher manual. https://neo4j.com/docs/cypher-manual/5/
introduction/. Accessed: April 3, 2024.

[9] Neo4j, Inc. Neo4j documentation. https://neo4j.com/docs/. Accessed: April 5,
2024.

[10] Neo4j, Inc. Neo4j python driver manual 5. https://neo4j.com/docs/
python-manual/current/transactions/. Accessed: April 8, 2024.

49

https://github.com/async-profiler/async-profiler
https://github.com/async-profiler/async-profiler
https://www.ibm.com/docs/en/mon-diag-tools?topic=perspective-sample-based-profiling
https://www.ibm.com/docs/en/mon-diag-tools?topic=perspective-sample-based-profiling
https://neo4j.com/docs/cypher-manual/5/introduction/
https://neo4j.com/docs/cypher-manual/5/introduction/
https://neo4j.com/docs/
https://neo4j.com/docs/python-manual/current/transactions/
https://neo4j.com/docs/python-manual/current/transactions/

REFERENCES

[11] C. Xie, W. Xu, and K. Mueller. A visual analytics framework for the detection of anoma-
lous call stack trees in high performance computing applications. IEEE Trans. Visual.
Comput. Graphics, 25(1):215 – 224, 2019.

50

Appendices

51

Appendix A

Cypher Queries

A.1 Time Series Analysis
MATCH

(fn:Function)
WHERE

fn.profileKey IN $profile_keys AND
NOT EXISTS (()-[:RECURS]->(fn))

MATCH
(run:TestRun)--(profile:Profile)

WHERE
profile.key = fn.profileKey

WITH
fn.codePath AS codePath,
run.date AS date,
profile.key AS key,
sum(fn.totalSamples) AS samples

ORDER BY
date DESC

WITH
codePath,
collect(key) AS keys,
collect(samples) AS samples

WITH
codePath,
CASE keys[0] WHEN $profile_keys[-1] THEN samples[0] ELSE 0 END AS
candidate,
CASE keys[0] WHEN $profile_keys[-1] THEN samples[1..] ELSE samples END

53

A. Cypher Queries

AS historic
WITH

*,
CASE size(historic) WHEN 0 THEN 0 ELSE apoc.coll.sum(historic) /
$window_size END AS mean

WITH
*,
CASE WHEN size(historic) > 0

THEN sqrt(
(apoc.coll.sum([x IN historic | (x - mean)^2]) +
($window_size - size(historic)) * mean^2) / ($window_size - 1)

)
ELSE 0

END AS std
RETURN

codePath AS code_path,
CASE WHEN std > 0

THEN (candidate - mean) / std
ELSE 0

END AS score
ORDER BY

score DESC

A.2 Correlation
MATCH

(fn:Function)
WHERE

fn.profileKey IN $profile_keys
MATCH

(profile:Profile)--(benchmark:Benchmark)
WHERE

profile.key = fn.profileKey AND
profile.metricMean IS NOT NULL

WITH
profile.metricMean AS metricMean,
fn.codePath AS codePath,
benchmark,
sum(fn.baseSamples) AS samples

ORDER BY
samples DESC

WITH
codePath,
benchmark,
collect(samples) AS x,
collect(metricMean) AS y

WHERE
size(x) >= $leastOccurrences

54

A.2 Correlation

WITH
*,
apoc.coll.avg(x) AS xhat,
apoc.coll.avg(y) AS yhat

WITH
*,
apoc.coll.sum([

i in range(0,size(x) - 1) | (x[i] - xhat) * (y[i] - yhat)
]) AS nominator,
sqrt(apoc.coll.sum([

xi in x | (xi - xhat) ^ 2
]) * apoc.coll.sum([yi in y | (yi - yhat) ^ 2])) AS denominator

WITH
*,
CASE WHEN denominator > 1e-8 THEN nominator / denominator ELSE 0 END
AS pcc

RETURN
codePath AS code_path,
collect(benchmark) AS benchmarks,
collect(pcc) AS pccs,
avg(pcc) AS avg_pcc,
collect(x) AS x,
collect(y) AS y

ORDER BY
avg_pcc DESC

55

A. Cypher Queries

56

Appendix B

Program Output

57

Result

Help

This document is a summary of the code paths that changed the most during the reported regression. These code paths deviated
enough to become probable sources to the regression and are referred to as candidates.

Each candidate code path has the following information:

Expected: The historical average number of samples for the candidate code path. This value is based on a number of previous test
run observations, specified by window_size .

Actual: The observed number of samples at the time of the reported regression.

Diff: The difference between Actual and Expected.

Score: The difference between Actual and Expected, normalized by the standard deviation of historical observations. The score
will promote code paths which are usually stable, but have deviated significantly during the reported regression.

Status: The status column may have the following values:

+ The code path is observed for the first time.

- The code path has been observed historically, but not during the reported regression.

Plot: Each candidate code path also includes a plot of the historic values and the current actual value with the regression date marked
in red. These plots also display the moving average based on window_size (default 10), previous observations and a lower and upper
bound, 2 standard deviations from the moving average. For intuition, a candidate with a score of 2.0 would appear excactly on the upper
band. These bands are commonly referred to as Bollinger bands.

Each candidate code path may also include a few call stack contexts which may be of interest. These call stack contexts can be viewed
by expanding the Child/Parent collapsed sections. The call stack contexts have been explored in an iterative manner where a single
code path has been added at each iteration and the new call stack discarded or further pursued. Each row displays the values produced
from evaluating the call stack so far.

For Child Traces, the candidate code path is displayed at the bottom of the table. Each row above represents the stack trace between
the call stack on this row and the candidate code path at the bottom. For example, if the three bottom rows are read , parse , run (see
example table below) and we are looking at the candidate code path run , then the row read represents the entire stack trace
run;parse;read , i.e. run calls parse which in turn calls read . The "candidate" diff/score on the row read is then the diff/score value
for run given that it calls parse and that parse calls read .

Trace Diff Candidate Diff Candidate Score Status

readChar 1.0 1.0 1.0

read 1.0 1.0 1.0

parse 1.0 1.0 1.0

run 1.0 1.0 1.0

For Parent Traces, the candidate code path is displayed at the top of the table. Each row below represents the stack trace between the
call stack on this row and the candidate code path at the top. For example, if the three top rows are read , parse , run (see example
table below) and we are looking at the candidate code path read , then the row run represents the entire stack trace run;parse;read ,
i.e. read is called by parse which in turn is called by run . The "candidate" diff/score on the row run is then the diff/score value for
read given that it is called by parse and that parse is called by run .

Trace Diff Candidate Diff Candidate Score Status

read 1.0 1.0 1.0

parse 1.0 1.0 1.0

run 1.0 1.0 1.0

main 1.0 1.0 1.0

Parameters

Benchmark group: accesscontrol

Benchmark name:
Q29_(deployment,EMBEDDED)_(execution_mode,EXECUTE)_(host,m5d.large)_(jdk,17)_(planner,DEFAULT)_(runtime,INTERPRETED)_(store_forma

Git Branch: dev

Overview

Candidate 1

Code Path Expected Actual Diff Score Status

scala/collection/immutable/ArraySeq$ofRef.unsafeArray 0.1 7 6.9 21.8197

Plot

Parent Traces

Candidate 2

Code Path Expected Actual Diff Score Status

scala/collection/mutable/ArrayBufferView. 0.2 8 7.8 18.4993

Plot

Parent Traces

Trace Diff Candidate Diff Candidate Score Status

scala/collection/mutable/ArrayBufferView. 7.8 7.8 18.4993

scala/collection/mutable/ArrayBuffer.view 7.8 7.8 18.4993

scala/collection/mutable/ArrayBuffer.view 7.6 7.8 18.4993

scala/collection/IndexedSeqOps.reverseIterator 9.3 7.8 18.4993

scala/collection/IndexedSeqOps.reverseIterator$ 9.3 7.8 18.4993

scala/collection/mutable/ArrayBuffer.reverseIterator 9.3 7.8 18.4993

<proprietary> 99.8 7.8 18.4993

<proprietary> 143 7.8 18.4993

<proprietary> 321.8 7.8 18.4993

<proprietary> 321.8 7.8 18.4993

<proprietary> 321.8 7.8 18.4993

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-05-30

EXAMENSARBETE Modeling Profiling Data in a Graph Database for Performance Analysis
STUDENT Richard Lundberg, Marcus Rettig
HANDLEDARE Jonas Skeppstedt (LTH), Simon Priisalu (Neo4j), Jaroslaw Palka (Neo4j)
EXAMINATOR Per Andersson (LTH)

Modellering av profileringsdata i en
grafdatabas för prestandaanalys

POPULÄRVETENSKAPLIG SAMMANFATTNING Richard Lundberg, Marcus Rettig

Att identifiera långsam kod i mjukvara är en viktig, men tidskrävande uppgift. Vi
undersöker hur profileringsdata kan modelleras i en grafdatabas för att underlätta
processen att identifiera flaskhalsar och regressioner.

Programkod brukar delas in i mindre bitar, så
kallade funktioner. Tiden det tar att köra hela
programmet är summan av hur mycket tid som
spenderas i varje funktion. För att optimera pro-
grammet vill man därför hitta de mest tidskrä-
vande funktionerna och försöka förbättra dessa.

program

tid: 1 sekund

läs

tid: 2 sekunder

beräkna

tid: 5 sekunder

skriv

tid: 3 sekunder

Genom att köra ett program med ett så kallat
profileringsverktyg kan man göra mätningar kring
hur funktioner anropar varandra och hur mycket
tid som spenderas inuti dessa. Resultatet brukar
kallas för profileringsdata och kan visualiseras i en
trädliknande struktur, till exempel som i bilden.
På företaget Neo4j görs hundratals sådana mät-
ningar varje dag vilket resulterar i tusentals träd,
där varje träd består av tusentals funktioner.

Vi har undersökt hur man kan analysera stora
mängder profileringsdata genom att lagra den i en
grafdatabas. De mest populära databaserna just
nu representerar data i tabellformat, men en graf-
databas lagrar istället data som noder och rela-
tioner. Till exempel kan noder representera per-
soner i ett socialt nätverk och relationerna kan
representera vänskap mellan två personer. En
grafdatabas passar även utmärkt för de trädlik-
nande strukturer som beskrevs ovan eftersom så-
dana strukturer är problematiska att representera
i tabellformat.

I en grafdatabas kan användaren ställa frågor,
till exempel: "I vilka testkörningar tog denna
funktionen mer än två sekunder?", eller "Hur lång
tid tog denna funktionen idag jämfört med förra
veckan?". Svaret på den första frågan kan iden-
tifiera funktioner som ofta presterar dåligt och
därför påverkar prestandan för hela systemet, så
kallade flaskhalsar (eng. bottlenecks). Svaret på
den andra frågan kan identifiera funktioner som
går långsammare idag än de gjorde för en vecka
sedan, så kallade regressioner (eng. regressions).

Vårt arbete visar att en grafdatabas är ett
lämpligt verktyg för att modellera profilerings-
data. Vår föreslagna databasstruktur går att an-
vända för flertalet analysmetoder och ökar till-
gängligheten till data insamlad över tid.

	Introduction
	Problem Statement
	Contribution
	Contribution Statement
	Outline

	Background
	Sampling Profilers
	Flame Graphs
	Graph Databases and Neo4j
	Introduction to Cypher
	Basic Cypher
	Data Aggregation

	Statistical Concepts
	Average
	Standard Deviation
	Correlation

	Approach
	Work process
	Products
	Automation and Expert Knowledge

	Modeling and Importing Data
	Schema
	Modeling
	An example

	Flame Graphs to Trees

	Detecting Bottlenecks
	Code Path Potential
	Subtree Potential
	Bottleneck Correlation

	Detecting Regressions
	Time Series Analysis
	Regression Correlation
	Expanding Algorithms
	Greedy Selection
	Custom Selection
	Correlation Selection

	Evaluation
	Flexibility of the Framework
	Cypher vs Local Analysis
	Changes to the Benchmarking Pipeline
	Use Cases at Neo4j
	Presentation of Data

	Conclusion and Future Work
	Conclusions
	Future Work

	References
	Appendix Cypher Queries
	Time Series Analysis
	Correlation

	Appendix Program Output

