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Abstract

The use of antenna arrays allows for direction-of-arrival (DoA) estimation in a
radar system. The antenna elements in an array are conventionally positioned
equidistantly on a grid, but they can also be placed relatively freely to form sparse
antenna arrays. These non-conventional layouts could potentially offer improved
DoA capabilities. In this work, a particle swarm optimization algorithm has been
implemented to find optimal array layouts according to a set of requirements.
These requirements have been based on the ambiguity function, which is related
to the risk of error and to the resolution of the DoA estimations. The results
indicate that the implemented method works as intended, and that it can be
applied to two different geometries. The first geometry is planar and circular,
while the second consists of multiple planar surfaces, positioned to cover 360◦ in
azimuth. A comparison was made between the noise performance of the optimized
arrays and that of a reference array, in which only small differences were seen. The
chosen method was implemented to work for any given dimension of the specified
geometries, and could potentially be used for restrictive dimensions and a varying
number of antenna elements.
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Popular Science Summary

The existence of electromagnetic (EM) waves was first experimentally shown in
the late 19th century, a discovery that would revolutionize the way we communi-
cate. From the first radio to the wireless systems of today, our world has become
increasingly dependent on EM waves in our everyday lives. Parallel to the com-
munication applications, this discovery also led to the development of radar. A
radar system works by sending out signals through an antenna, and listening for
a reflected signal. Oftentimes, it is desired to determine in what direction you are
receiving the reflected signal in order to know where your target is. To explain
how this is done, it is worth taking a look at ourselves. Without much thought,
humans are able to locate sounds that we hear, which is mainly thanks to us hav-
ing two ears. The direction-of-arrival (DoA) can be estimated by comparing how
loud the signal is at each ear, and by sensing the time difference between them.
The latter is essentially what is used by a radar system to do a similar estimation.
For the same reason that we need two ears to determine the DoA, a radar will also
need more than one antenna to do the same thing. Something that we are unable
to experience is that the ability to determine the DoA is dependent on how the
antennas are placed. For instance, if the antennas are badly placed, it can “sound”
like a single signal is coming from multiple directions. In order to help with this
problem, a radar system often has more than two antennas and these antennas
can be positioned in different ways. This raises a question, which is also the aim
of this thesis: how do you place the antennas to get as good DoA estimation as
possible? Unfortunately, there is often an infinite amount of possible solutions to
this problem, so it is impossible to try all of them. Instead, we can once again
be inspired by a natural phenomenon. This time, we look at the way that bird
flocks collaborate when they hunt for insects. In such a flock, each individual bird
wants to find a position in the air with the most amount of food. If they have
once found such a place, they will tend to return there. At the same time, they
will also look at where the other birds are flying, as there could be another spot
with even more insects. While this might sound abstract, this same approach can
be used to find good antenna positions. By allowing an algorithm to search for
antenna positions, it was possible to find satisfactory layouts in different types of
geometries. This method could prove useful when it is needed to place antennas
in restrictive geometries, where it is difficult to find suitable placements.
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Chapter 1
Introduction

1.1 Background

The history of radar can be traced back to the end of the 19th century, and to
early electromagnetic experiments conducted by Heinrich Hertz. With these ex-
periments, Hertz was able to experimentally show the existence of electromagnetic
waves, including their ability to reflect of surfaces [1]. This discovery led to numer-
ous inventions in the following years, of which the wireless telegraph by Guglielmo
Marconi is perhaps the most famous [2]. Less famous is the invention of radar,
which was first patented in 1904 by Christian Hülsmeyer as a way of detecting the
presence of metal objects, such as ships and trains. While the principles of radars
were studied in the coming decades, it was not widely researched until the 1930s,
when the main focus was on military applications. During WW2, radars became
an essential part in Britain’s defense against German bombers. After WW2, the
research was broadened to civilian applications, such as weather radars, which
gained the capability of not only detecting the range to targets, but also the radial
velocity of the target [3]. Thanks to improvements in semiconductor techniques
and signal processing, radars have become frequently used in the automotive in-
dustry in recent years. Here, cameras can be complemented by radar modules
that offer longer range and better visibility in bad weather conditions [4]. These
advantages can also motivate the use of radars in conjunction with surveillance
cameras.

Beyond range and velocity measurements, many radars can also detect the
direction to the target. This is called the direction of arrival (DoA), and is com-
monly implemented by using several spatially separated receiving antennas. As
the received signal is different between the antennas depending on the DoA, this
direction can (potentially) be estimated. The quality of the DoA estimation is
directly linked to the relative positions of the antennas [5].

1.2 Aim and scope

The aim of this thesis is to investigate how the antenna elements in an array should
be placed in order to give the best possible direction of arrival estimation within a
specified angular range. Furthermore, it is of special interest that the estimation is
equally well for all angles within the angular range. The two geometries on which
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2 Introduction

the elements should be placed are illustrated in red in Figure 1.1. In this thesis,
these geometries are called the circular and multiple plane geometry, respectively.
The implementation of the method should be applicable to arbitrary dimensions
of the geometries, and notably an arbitrary amount of sides in the multiple plane
geometry. Furthermore, the multiple plane geometry should be designed to have
invariant performance over azimuth, and should have the same antenna layout on
each individual side. The two geometries are chosen as they can be easily inte-
grated with surveillance cameras. The circular geometry could be placed around
a camera lens, while the multiple plane geometry could surround a so-called dome
camera which offers 360◦ coverage around the z axis.

Rmax

Rmin

x

z

(a) Circular geometry.

z
α

x

y

(b) Multiple plane geometry.

Figure 1.1: Illustration of the two different geometries on which the
antennas can be placed. The allowed positions are illustrated
in red.

In order to achieve the aim, a method of assessing the performance of the arrays
is presented. Based on this method, an optimization algorithm is implemented.
The optimized arrays are simulated, and their noise performance is analyzed.



Chapter 2
Theory

This chapter is divided into four main parts, with the first being a quick intro-
duction to the basic principles of radar. After this, some general antenna theory
is presented and a specific type of antenna, the patch antenna, is described in
further detail. The most substantial part of the theory is about antenna arrays,
and how they are used for DoA estimation. A signal model for antenna arrays is
presented, from which two DoA algorithms are introduced. Some ways of assessing
the performance of an array are also described. Finally, two suitable optimization
methods are outlined.

2.1 Radar

Radar, an acronym for Radio Detection and Ranging, is a system that uses elec-
tromagnetic waves to measure its surroundings. In its most simple form a radar
system only detects the range to a target. This is achieved by transmitting and
timing an electromagnetic pulse that is reflected by the target and then received.
By measuring the time of flight (ToF) of the pulse, the range to the target can
be determined. Modern radar systems have added capabilities beyond ranging,
and are used in a wide range of applications. Some examples are military radars,
weather radars and satellite mapping radars [6]. As the costs associated with radar
systems have reduced greatly in the last decades, they are now used in a wider
range of applications, such as for safety features in cars [4].

Radar systems are often divided into two main categories, pulsed and continuous
wave (CW), based on the characteristics of the transmitted signals. Pulsed radars
repeatedly transmit during short periods of time, and listen for the returned sig-
nals. This allows for both ToF measurement and target velocity measurements,
the latter by using the Doppler shift of the received signal. In many cases, the re-
ceiver is blocked during transmission as to not overpower the receiver. If a signal is
reflected and received during this time, it is not detected. Thus, pulsed radars usu-
ally have a lower limit for range detection. In contrast, the simplest CW radars
transmit a signal with constant frequency over a relatively long period of time.
There is no way of measuring the ToF with this type of CW radar, and they are
thus only used for velocity measurements. Furthermore, as signals are received and
transmitted in the same time, the transmitted power has to be relatively low com-
pared to pulsed radar systems in order to prevent substantial crosstalk between

3



4 Theory

the transmitting and receiving sides [6]. By introducing frequency modulation of
the transmitted signal, a CW radar can also determine range. This type of signal
is called frequency modulated continuous wave (FMCW) and is widely used in for
instance the automotive industry [7].

2.2 FMCW radar

An FMCW radar system frequency modulates the transmitted signal, resulting in
a linear frequency chirp described by:

f(t) = fc +
B

T
t, −T

2
≤ t ≤ T

2
(2.1)

where f is the frequency, fc the center frequency, B the bandwidth and T the
chirp duration. The amplitude variations in each chirp is described by:

A(t) = A0 cos

(
2π

∫ t

−T/2

f(t)dt

)
= A0 cos

(
2π

(
fct+

1

2

B

T
t2
)
− φT0

)
(2.2)

where φT0
is the initial phase of the chirp. The received signal is mixed with the

transmitted signal, producing a constant intermediate frequency, fIF, dependent
on the velocity, v, and range, R, of the target as [7]:

fIF =
2fcv

c
+

2BR

Tc
(2.3)

where c is the speed of light. The velocity v only includes movements towards
or away from the radar system, as only movements in these directions produces a
Doppler shift. If the parameters are chosen beneficially, the effect of v on fIF are
negligible. Each received chirp is sampled, and a discrete Fourier ransform (DFT)
is performed, resulting in a peak at the intermediate frequency [7]. Using (2.3),
the range can then be estimated. This process is illustrated in Figure 2.1.

Time sample

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 R0R1R2R3R4R5R6R7R8R9

Range bin

DFT and rescaling

Figure 2.1: Illustration of the time samples and their transformation
to range bins through a DFT.

In order to also estimate the velocity, v, multiple chirps have to be analyzed
similarly to the range estimation. In order to visualize this process it can be useful
to illustrate the samples of multiple chirps using a grid as in Figure 2.2. Performing
a DFT through the time samples gives the range while a DFT through the chirps
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gives the velocity. More precisely, a Doppler velocity of v gives a frequency peak
at [7]:

fDoppler =
2fcv

c
(2.4)

where the velocity is positive if the object is moving towards the radar.
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(DFT gives velocity)

Figure 2.2: Illustration of the radar data grid.

2.3 Antenna radiation

An antenna radiates electromagnetic fields as a result of currents on the structure
of the antenna. If the currents are time-harmonic, the radiated electric field is
given by E(r, t) = Re

(
E(r, ω)e−iωt

)
, where E(r, ω) is the electric field in the

frequency domain and ω is the angular frequency. In vacuum, E(r, ω) = E(r) is
determined by [8]:

E(r) = iωµ0

(
I+

1

k2
∇∇

)
·
∫∫∫
V

eik|r−r′|

4π|r − r′|J(r
′) dv′ (2.5)

where µ0 is the permeability of vacuum, J(r′) is the current density, I is the
identity operator, r is the observation point, r′ is the source point and k is the
wavenumber, related to the wavelength λ as:

k =
2π

λ
(2.6)

Equation (2.5) can be simplified when the electric field is observed in the far field,
which intuitively is at a distance far from the radiating sources. The requirements
on the observation point r for being in the far field can be formulated mathemat-
ically as [8]:
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r ≫ d

r ≫ kd2

r ≫ λ

(2.7)

where d is the largest extent of the current density (in the case of this thesis, the
largest dimension of the antenna). However, other definitions of the far field exist,
for instance as r > 2d2/λ in [9]. When the requirements for far field are met,
the distance between the observation points and source points, |r − r′|, can be
approximated as:

|r − r′| ≈ r − r̂ · r′ (2.8)

Using this approximation gives the following far field formulation of the electric
field [8]:

E(r) =
eikr

r
F (r̂) +O(r−2) (2.9)

where O(r−2) includes all parts that decrease as r−2 or faster and F (r̂), the
radiation vector, is given by:

F (r̂) =
ikη0
4π

r̂ ×

∫∫∫
V

e−ikr̂·r′
J(r′) dv′ × r̂

 (2.10)

where η0 is the impedance of vacuum and where it can be seen that F (r̂) is
orthogonal to r̂. The corresponding magnetic field, H(r), can be calculated using
Maxwell’s equations for a vacuum that is free of sources:{

∇×E = ikη0H

∇×H = −i k
η0
E

(2.11)

which gives:

H(r) = −i 1

kη0
∇×E =

eikr

η0r
r̂ × F (r̂) +O(r−2) (2.12)

From the electric and magnetic fields, the Poynting vector, S(r̂), is defined as S =
1
2E ×H∗ and gives the complex power density of an electromagnetic wave in the
direction of S. Furthermore, the average Poynting vector is Sav = 1

2Re(E ×H∗)
[9, 10]. Using E(r) from (2.9) and H(r) from (2.12) and ignoring the terms
O(r−2) gives:

Sav(r̂) =
1

2
Re(E(r̂)×H(r̂)∗) =

1

2η0r2
F (r̂)×(r̂×F (r̂)∗) =

r̂

2η0r2
|F (r̂)|2 (2.13)

A commonly used metric for an antenna is the radiation intensity, U(r̂), which
states the radiated power from an antenna in the far field per unit solid angle. It
can be defined using the average Poynting vector as [9]:

U(r̂) = r2 r̂ · Sav(r̂) = r2 |Sav(r̂)| =
|F (r̂)|2
2η0

(2.14)
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From the radiation intensity, the antenna gain, G(r̂), can also be defined. This
gives the ratio between an antenna’s radiation intensity and the radiation intensity
from a (hypothetical) isotropic antenna, both supplied with the same power. The
definition is [9]:

G(r̂) =
4πU(r̂)

Pin
(2.15)

where Pin is the supplied power.
Another important antenna metric, apart from the total gain, is the polariza-

tion of the antenna. In spherical coordinates, F (r̂) is given by two orthogonal
components [9]:

F (r̂) = Fθ(r̂)θ̂ + Fϕ(r̂)ϕ̂ (2.16)

where the directions of θ̂ and ϕ̂ are illustrated in Figure 2.3. Using the notation
from (2.16), the gain can similarly be divided into two components:

G(r̂) = Gθ(r̂) +Gϕ(r̂) (2.17)

where Gθ(r̂) and Gϕ(r̂) are sometimes called partial gains [9].

x

y

z

r

ϕ

θ

θ̂

ϕ̂

Figure 2.3: Illustration of the spherical coordinate system used in
this work.

2.4 Patch antenna

A common antenna type is the patch antenna, also called the microstrip antenna.
The patch antenna is a conformal antenna, meaning it can be placed on a flat or
curved shape, making it especially suitable in low-profile products. It is also char-
acterized by its low production cost as well as easy circuit integration. Depending
on the desired radiation pattern, polarization and other factors, the patch antenna
can take many forms. An example of a specific shape, the rectangular patch, is
illustrated in Figure 2.4. The patch itself is made of a conducting material and is
placed above a ground plane (both illustrated in red, where the ground plane is
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seen as a thin red layer at the bottom). The sheet between these two is often made
of a substrate material, which allows for easy feeding using a microstrip line. A
microstrip line is a type of transmission line that, like the patch antenna, consists
of a thin conducting material above a ground plane [9].

L

W

x

z
y

Figure 2.4: Example of a simple rectangular patch antenna.

The resonances and the radiation patterns of the patch antenna can be ana-
lytically analyzed using different approximate models, one of which is the cavity
model. The cavity model approximates that the electromagnetic field in the an-
tenna structure is confined to the volume below the patch, and above the ground
plane. Both the ground plane and the patch are treated as perfect electric conduc-
tors (PEC) while the sides to the confined volumes are treated as perfect magnetic
conductors (PMC). Solving Maxwell’s equations for this geometry gives that the
lowest resonant frequency, fres,0, is given by:

fres,0 =
c

2L
√
ϵr

(2.18)

where ϵr is the relative permittivity of the substrate [9]. From (2.18) an approx-
imate value of the length can thus be calculated based on the desired resonance
frequency. In the cavity model, all radiation stems from the induced currents in
the PMC surfaces. The main contribution to the far field radiation is from induced
currents along the width of the patch. From (2.9) and (2.10), it can thus be seen
that the E-field is mainly polarized in the yz plane as given in Figure 2.4. The
width of the antenna has an effect on its bandwidth, and a typical starting value
in a design process is [9]:

W =
c

2fres,0

√
2

ϵr + 1
(2.19)

The patch has to be fed in some way in order to excite the fundamental mode. This
can be done as in Figure 2.4, where a microstrip line extends from one of the sides.
However, this does not allow for tuning of the input impedance of the antenna,
which preferably should be matched to the microstrip line which in turn should be
matched to the radio frequency (RF) front end [9]. A discontinuity in impedance
between these parts leads to both power loss and distortion of transmitted and
received signals. The distortion occurs as the signals are reflected multiple times
at the boundaries [11]. One way of solving this is by using an inset fed patch as
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illustrated in Figure 2.5, where il is the inset length, iw is the inset width and fw
is the feed width. According to the cavity model, the E-field under a patch varies
sinusoidally in the length direction, which results in a varying input impedance
depending on where the patch is fed [9]. This theoretical variation is illustrated in
Figure 2.6, where it is assumed that the feed itself does not affect the variations
of the electric field under the patch. The desired impedance can thus be achieved
by iterating the inset length in the design process. Usually, an input impedance of
50 Ω is used. An appropriate width of the microstrip line can be calculated using
an empirical formula (for instance given in [9]).

L

W

fw iw

il

Figure 2.5: Rectangular patch antenna with inset feed.
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Figure 2.6: Variation of the input impedance as a function of feed
position.
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2.5 Antenna arrays

In many radar applications it is desired to detect the direction from which an in-
coming wave is arriving. This direction is often called the direction of arrival (DoA)
or the angle of arrival (AoA). Determining the DoA can be done by sweeping a
directive antenna over an angular range, either mechanically or electronically. By
detecting in which direction the received signal amplitude is at a maximum, the
DoA can be estimated. More commonly, a DoA can be estimated by measuring
the phase of a reflected wave in spatially separated points, which requires the use
of an antenna array [6].

A simple receiver antenna array is illustrated in Figure 2.7 together with an
impinging wave. The distance to the source of the wave is assumed to be large,
meaning that the wavefront (illustrated in red) is planar. As the wavefront reaches
the elements in different times, the phase of the induced currents on the elements
vary. The phase φ of an element placed at the position d with a wave impinging
in the direction r̂ is φ = kr̂ · d. Thus, with an array of N elements defined by
the element positions dn, n = 0, ..., N − 1 the phase variations on the array can
be described by the array vector a(r̂) [5]:

a(r̂) =


eikr̂·d0

...

eikr̂·dN−1

 (2.20)

As is seen in section 2.8, only the relative phases between elements are of impor-
tance in the array vector. This means that the origin for the positions dn can be
set arbitrarily.

1 2 3 4

r̂

Figure 2.7: Antenna array with impinging wavefront.

2.6 MIMO systems

In many applications it can be beneficial to not only use an array of receiving
(Rx) antennas, but also transmitting (Tx) antennas. This forms a multiple input
multiple output (MIMO) radar system, assuming that the transmitted signals are
orthogonal to each other. This orthogonality can be achieved by time-division of
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the transmitted signals. By using a MIMO array, the amount of usable phase
information for DoA estimation can be greatly increased. A MIMO system with
N Rx antennas and M Tx antennas is equivalent to an array with one Tx antenna
and N ×M Rx antennas, assuming that the radar scene does not change between
the transmitted signals. The resulting N ×M array is often called a virtual array,
with a virtual steering vector av(r̂). A MIMO array is illustrated in Figure 2.8,
where it is seen that for a specific direction r̂, the transmitted signals have different
phases which can be calculated as φTx,m = kr̂ · dTx,m. These phases are added
to the phases of the receiving antennas, meaning that when the first Tx antenna
transmits, the resulting received phases are φm=0,n = kr̂ ·(dRx,n+dTx,0). In total,
the combination of all Tx and Rx antennas yields the virtual array vector aV (r̂)
[12]:

aV (r̂) = aTx(r̂)⊗ aRx(r̂) =



eikr̂·(dRx,0+dTx,0)

...
eikr̂·(dRx,0+dTx,M−1)

...
eikr̂·(dRx,N−1+dTx,0)

...
eikr̂·(dRx,N−1+dTx,M−1)


(2.21)

where ⊗ denotes the Kronecker product. Thus, the positions of the virtual antenna
elements are simply dn,m = dRx,n + dTx,m.

Rx Rx Rx Rx Tx Tx

r̂

Figure 2.8: MIMO antenna array with an outgoing and incoming
wavefront. The waves from the Tx antennas are dashed to
illustrate that they do not transmit simultaneously.

2.7 Signal model

The output from a receiver antenna array is, as described in the previous sections,
dependent on the positions of the antenna elements and the direction of the im-
pinging waves. Beyond this, the amplitude and phase of the waves also impact the
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output, as does added noise. Based on multiple signals sd(t) from the directions
r̂d, , d = 1, ..., D and an array vector a(r̂), the received signal x(t) is:

x(t) =
[
a(r̂1) a(r̂2) ... a(r̂D)

]

s1(t)
s2(t)

...
sD(t)

+ η(t) (2.22)

or when sampled:

x[k] =
[
a(r̂1) a(r̂2) ... a(r̂D)

]

s1[k]
s2[k]

...
sD[k]

+ η[k] = As[k] + η[k] (2.23)

where η is the noise vector, that could originate from for instance RF components
and the environment [13]. The noise is often assumed to be complex zero-mean
Gaussian and spatially uncorrelated, meaning that the noise at each antenna is
independent of each other [14]. A useful metric in array signal processing is the
signal to noise ratio (SNR) which can be defined as:

SNR =
|s|2
σ2

(2.24)

where |s| is the peak signal amplitude and σ2 is the variance of the noise.
The signal model above assumes that there is perfect isolation between the

receiving antennas, which is a noteworthy simplification. In reality, each antenna
produces an electromagnetic field as a result of the impinging waves, and this
field in turn affects the phase and amplitude of the other antennas. This effect is
called mutual coupling, and similarly affect the transmitting antennas. In many
cases, mutual coupling is difficult to model and instead requires simulations to be
characterized. Qualitatively, mutual coupling can be reduced by increasing the
distance between the antenna elements [9]. However, there is a limitation in how
much the spacing between elements can be increased, as this ultimately negatively
affects the DoA estimation abilities, further described in section 2.8.3. Mutual
coupling also affects the noise and introduce some spatial correlation.

2.8 Direction of arrival algorithms

Direction of arrival algorithms are used to determine the direction to one or several
sources based on a signal x, which can be acquired from a specific range-Doppler
bin [15]. For this estimation, the array correlation matrix Rxx is often used. This
can be defined as [5]:

Rxx = E[xxH] = E[(As+ η)(sHAH + ηH)] = ARssA
H +Rηη (2.25)

where Rss = E[ssH] and Rnn = E[ηηH] are the source correlation and noise
correlation matrices, respectively. These can not be calculated without a priori
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knowledge of the source or the noise, and in real world scenarios the array corre-
lation matrix has to be approximated as a time average of the signal x:

Rxx ≈
1

K

K∑
k=1

x[k]xH[k] (2.26)

Some common algorithms used for DoA estimation are Classical Beamformer,
Capon, MUSIC and ESPRIT which are described in [5]. Shorter descriptions of
two popular ones, Classical Beamformer and MUSIC, are given below.

2.8.1 Classical Beamformer

The Classical Beamformer (CBF) method, also known as the Bartlett method, is
a simple DoA method given by:

PCBF(r̂eval) =
∣∣aH(r̂eval)Rxxa(r̂eval)

∣∣ (2.27)

where the peaks of the pseudospectrum PCBF(r̂) correspond to the DoAs. A simple
case of CBF is when only a single sample is taken, meaning that the pseudospec-
trum takes the form:

PCBF(r̂eval) =
∣∣aH(r̂eval)xx

Ha(r̂eval)
∣∣ = ∥aH(r̂eval)x∥2

= ∥aH(r̂eval) (As+ η)∥2

=

∥∥∥∥∥∥∥∥
 e−ikr̂eval·d0

...
e−ikr̂eval·dN−1


T  D∑

d=1

sd

 eikr̂d·d0

...
eikr̂d·dN−1


+

 η0
...

ηN−1



∥∥∥∥∥∥∥∥
2

=

∣∣∣∣∣
N−1∑
n=0

e−ikr̂eval·dn

(
D∑

d=1

(
sde

ikr̂d·dn
)
+ ηn

)∣∣∣∣∣
2

(2.28)

A benefit of the CBF is that this form resembles a DFT:

x̂l =

N−1∑
n=0

xne
−i2π l

N n (2.29)

In order for the DFT to be applicable for CBF, and have only non-zero values xn,
the antenna array has to fill a cartesian equidistant grid. A simple such array is
an equidistant ẑ-directed 1D array. Setting the spacing to d and placing the first
antenna in the origin gives the element phases φn = kr̂·dn = kdn cos θ. A common
choice for the spacing is d = λ/2, as this fulfills the Nyquist sampling criteria for
all incident angles, making it possible to determine angles 0◦ < θ < 180◦ if noise
is neglected. The pseudospectrum of such an array with 4 elements is given in
Figure 2.9. Using a fast Fourier transform (FFT) to perform the DFT makes the
CBF computationally efficient, which is a notable advantage of CBF [5].
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Figure 2.9: Classical Beamformer Estimation using a ẑ-directed 1D
array with 4 elements and with incident directions 75◦ and 125◦,
both with equal amplitude.

2.8.2 MUSIC

Another popular DoA method which produces higher resolution pseudospectrums
compared to CBF is Multiple Signal Classification (MUSIC). This method uses
the eigenstructure of the array correlation matrix Rxx, meaning that an eigenvalue
decomposition has to be performed on Rxx. This decomposition makes MUSIC
more computationally intensive than the simpler CBF. Furthermore, the number
of sources D must be known in advance or the eigenvalues have to be searched to
determine this [5].

Assuming D sources impinging on an array with N elements, with D < N , Rxx

has D signal eigenvectors and N −D noise eigenvectors. In the MUSIC algorithm,
the corresponding eigenvalues are sorted from smallest to largest and the N −D
smallest (e1, . . . , eN−D) are assumed to correspond with the noise eigenvectors.
These eigenvectors build up the noise subspace matrix Enoise :

Enoise =
[
e1 e2 ... eN−D

]
(2.30)

Ideally, the noise eigenvectors are orthogonal to the signal eigenvectors at the
directions of arrival. This is utilized in the definition of the pseudospectrum [5]:

PMUSIC(r̂eval) =
1∣∣aH(r̂eval)EnoiseEH

noisea(r̂eval)
∣∣ (2.31)

The pseudospectrum for the same scenario as in Figure 2.9 is given in Figure 2.10.

2.8.3 Ambiguity function

A valuable metric in the design of an antenna array is the ambiguity function,
which is related to the certainty and resolution of DoA estimation. The ambiguity
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Figure 2.10: MUSIC estimation using a ẑ-directed 1D array with 4
elements and with incident directions 75◦ and 125◦, both with
equal amplitude. The SNR is 10 dB.

function gives the normalized correlation between array vectors corresponding to
two incident directions r̂ and r̂eval. It is defined as [12]:

χ(r̂, r̂eval) =

∣∣a(r̂)Ha(r̂eval)∣∣
∥a(r̂)∥ ∥a(r̂eval)∥

(2.32)

There is an obvious similarity between the ambiguity function and the pseudospec-
trum of the CBF as given in (2.27), meaning that the ambiguity function gives a
direct metric on the noiseless performance of the CBF. The ambiguity function
always has a maximum of 1 when r̂ = r̂eval and should preferably have low val-
ues elsewhere. Two important metrics for the ambiguity function are its sidelobe
levels (SLL) and its main lobe width (MLW). The main lobe in the ambiguity
function is the values surrounding the peak value, while the side lobes are all the
local maximas excluding the main peak. The risk of ambiguities in DoA esti-
mates is determined by the height of the SLLs, and they should therefore be as
low as possible to minimize the risk of faulty DoA estimates. It is possible that
χ(r̂, r̂eval) = 1 for several directions r̂eval if the distances between array elements
are too large. In this case, it is impossible to determine the DoA with certainty.
At low SNRs, the DoA performance of an array is typically limited by the SLLs
[16]. When the SNR instead is high, the performance is largely determined by the
shape of the main lobe, which gives an indication of the resolution of the DoA
estimations [17]. When multiple signals are received with different DoAs, it is
beneficial to have a small MLW as this makes it more likely that the signals can
be differentiated. What SNR levels that are considered high or low is however
difficult to determine, and is dependent on the specific array parameters.

As first mentioned in section 2.8.1, a common choice of antenna array is an
equidistant 1D array with half-a-wavelength distance between elements. This is
a type of uniform linear array (ULA). Figure 2.11 shows the ambiguity function



16 Theory

of such an ULA with 4 elements, with an incident angle θ = 90◦. Some impor-
tant definitions are also included in the figure, and the width of the main lobe is
measured at half of the peak value, corresponding to −3 dB of peak value, if the
spectrum is interpreted as given in power.
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Figure 2.11: Ambiguity function of a ẑ-directed half-a-wavelength
ULA with 4 elements. The incident angle is θ = 90◦.

In the case of a multidimensional array, the ambiguity function has to be
evaluated in both θ and ϕ to assess the full DoA performance of the array. As an
example of this, the layout of a 2D array, together with its ambiguity function is
given in Figure 2.12.
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Figure 2.12: The left figure shows the layout of a 2D 9 element
array and the right figure shows its resulting ambiguity function
for an incident angle θ = 90◦, ϕ = 90◦.
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2.8.4 Cramér-Rao Bound

One common tool in the assessment of antenna arrays for DoA estimation is the
Cramér-Rao Lower Bound (CRLB). The CRLB gives the lower bound of variance
for an unbiased estimator, with unbiased meaning that the expected value of the
estimator is equal to the real value of the estimated parameter. In the case of DoA
estimation, this variance is calculated from the array vector and noise character-
istics, and is given in degrees2 or radians2 [13]. It is mathematically intricate to
calculate the CRLB for arbitrary arrays, especially for non-isotropic receivers, and
previous research has mainly focused on derivations for specific geometries, gain
profiles and noise assumptions [14, 18]. It is worth noting that the CRLB does
not consider ambiguities in the DoA estimation, and it is thus only related to the
shape of the main lobe in the ambiguity function.

2.9 Optimization algorithms for antenna arrays

In many cases, the problem of finding an optimal antenna layout for DoA estima-
tion becomes extensive. If the number of antennas and/or size of the bounding
geometry is large, it is impractical or even impossible to test all possible place-
ments. In these cases, an optimization algorithm has to be used. Due to the
often complex nature of the optimization problem, and the risk of finding local
minimas, different stochastic methods have been used in the optimization of an-
tenna arrays. To the author’s knowledge, the two most used classes of algorithms
for optimizing antenna arrays are genetic algorithms (GA) and particle swarm
optimization (PSO) algorithms. Especially genetic algorithms are often used in
beamforming problems for antenna arrays.

2.9.1 Genetic algorithms

Genetic algorithms are inspired by the evolutionary process in order to optimize an
objective function. Specifically, the processes of natural selection, mating and mu-
tation are used. This has proven to be a successful optimization method in many
applications, and has specifically been used for antenna array layouts previously
[12, 19].

In order to use a genetic algorithm, the solution space has to be discretized.
In this way, all potential solutions can be represented by a binary sequence. If
the solution space is built up of several elements, such as several antennas, the
value of each element is represented by a binary sequence called a gene. In a
beamforming problem, the genes can for instance contain the amplitude and phase
of each element. In the case of this report, it is instead the positions of the antenna
elements. The genes build up what is called a chromosome, which has an associated
cost that states its fitness [19].

The first step of a genetic algorithm is to randomly set the values of the genes
in a number of different chromosomes. The associated cost of each chromosome
is then evaluated, and the chromosomes are ranked from best to worst. A certain
number of the worst chromosomes are discarded (for instance the worst half) and
are replaced by new chromosomes. These are produced by mating of the genes
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from the saved chromosomes. In this process, there is a certain probability for
mutation, meaning that one or several genes are altered randomly. The cost of the
new chromosomes are then calculated, and the process is repeated. The number
of iterations can be set in advance, or the algorithm can be set to stop when all
chromosomes have a cost below a certain threshold [19].

2.9.2 Particle Swarm Optimization

Particle swarm optimization is inspired by social models that simulate flock be-
havior of birds and other animals. Like GA, its connection to nature makes it
intuitive to understand. PSO has previously been used for optimization of radia-
tion patterns for 1D arrays [20]. Unlike GA, the solution space does not have to be
discretized for PSO. Each possible solution is instead represented by a vector, d,
that define what is called a particle. Thus, there is an infinite number of positions
in the solution space [21].

The first step of PSO is to randomly initialize a number of particles, and
each particle is also given a random velocity within the solution space. The cost
of the particles are evaluated, and they are moved according to their velocities.
After the associated cost of the particles have been calculated, the next velocity
of each particle, vn, is calculated from the last velocity, vn−1, and position, dn−1,
according to the following formula:

vn =w · vn−1 + b · r1 · (dlocal best − dn−1)

+ r2 · c · (dglobal best − dn−1) (2.33)

where dlocal best is the best position achieved by the current particle and dglobal best

is the best position achieved by any of the particles. r1 and r2 are random variables
uniformly distributed between 0 and 1. w is an inertia factor while a and b are
learning factors. In the original paper introducing PSO, these factors were set to
w = 1, a = 2, b = 2. After the velocity vn has been calculated, the positions are
updated as dn = dn−1 + vn [21].

PSO has been compared to GA in for instance [20] where it was seen that they
offered comparable performance for a phased array optimization problem. It was
also noted that the PSO is easier to implement, as the positional updates are less
complicated to calculate compared to the mutation and mating processes of the
GA.
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Previous work

The problem of assessing and optimizing an array for DoA estimation has been
studied extensively, for instance in [12, 13, 17, 22–24]. The approaches to the
problem differ between papers, and some are focused on specific geometries. The
approaches and results of these papers are summarized below.

In [13], Jackson et al. derived the CRLB for uniform circular arrays, meaning
arrays where the elements are evenly distributed on a circle. Furthermore, they
also used analytical models for patch antenna gain profiles and analyzed how
the directivity of the antennas and the radius of the circle affected the CRLB.
They showed that the CRLB was improved by using directive instead of isotropic
elements.

In [23], Birinci and Tanık optimized a 2D array based on merits derived from
the CRLB and the ambiguity function. In the paper, it is shown that for evaluated
directions, r̂eval, that are close to the “real” direction, r̂, the value of the ambiguity
function is directly related to the CRLB. Thus, only the ambiguity function was
used. A genetic algorithm was used for the optimization, however the discretization
of the geometry as well as the mating and mutation processes were not described in
any detail. The performance of the array was compared to a conventional uniform
circular array, and showed better DoA estimation abilities for a range of SNRs.

In [17] and [22], a similar approach was used. An analysis using the ambiguity
function in conjunction with the CRLB was made. In contrast to Birinci and
Tanık, the CRLB was explicitly used in the optimization by calculating a simple
expression based on the positions of the antenna elements. In [17], this was done
for a 1D array and in [22] extended to 2D. In both of these papers, a special region
of interest (RoI) is defined, which is the angular range in which the array should
be able to perform DoA estimation without ambiguity. Thus, only directions r̂
that were inside the RoI were evaluated in the ambiguity function. As with [23],
the details of the optimization algorithm were limited.

In [12], Di Serio et al. extended the optimization to also handle 2D MIMO
arrays. In the introduction of the article, the approach of [17, 22] is discussed and
some potential improvements are found. It is noted that the interpretation of the
RoI given in these papers neglects interference, meaning that if a wave impinges
from outside the RoI, it can still cause sidelobes within this region. Because of
this, Di Serio et al. evaluated all directions r̂ in the ambiguity function. As with
all the papers above, a genetic algorithm was used but not described in detail.
The CRLB was not used in this paper, and instead the resolution of the array was

19
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evaluated by using the following approximate formulas:

∆ϕ = 1.22
λ

dx
, ∆θ = 1.22

λ

dz
(3.1)

where ∆ϕ and ∆θ are the resolutions in ϕ and θ, and dx and dz are the maximum
extents of the virtual array in x and z direction. The resolution of the array is
not included in the cost function of the optimization algorithm, but is evaluated
in the end.

To the author’s knowledge, the particle swarm optimization method has only
been used for array layout optimization in [24]. Here, Chen et al. analyzed 1D
arrays, and defined the cost to be the peak sidelobe level (PSLL) in the DoA
estimation. The analysis is limited compared to the previously mentioned papers,
and it is unclear if more than one incident direction has been evaluated.
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Method

The general outline of the work can be summarized in 7 steps as given in the list
below.

1. Implementation of Python code used for calculating the array response for
an arbitrary MIMO array, see section 4.1.

2. Definition of a cost function for the DoA estimation capability of an array,
see section 4.2.

3. Implementation of optimization algorithm, see section 4.3.

4. Design of a patch antenna used for optimization algorithm, see section 4.4.

5. Choice of array parameters for optimization, see section 4.5.

6. Simulation of the optimized arrays, see section 4.6.

7. Assessment of noise performance of the optimized arrays, see section 4.7.

4.1 Array response calculations

In the Python code, the array vector was calculated using the formulation of the
virtual array vector as described in section 2.6. Any effects of mutual coupling
between elements were ignored, and it was assumed that all elements had identical
gain profiles. For the circular geometry, all elements were placed in a plane and
with the same orientation. Thus, the received amplitude was modelled to be
identical between elements for a specific DoA. This was not the case for the
multiple plane geometry, as the sides point in different directions. In order to
calculate the signal amplitude for a specific DoA, both the θ and ϕ components of
the gain profile had to be used. Assuming that the n:th Tx antenna transmitted
and the m:th Rx antenna received, the total voltage gain (ignoring phase) was
calculated as:

g(r̂) =
√

Gθ,Tx,n(r̂)Gθ,Rx,m(r̂) +Gϕ,Tx,n(r̂)Gϕ,Rx,m(r̂) (4.1)

where Gθ,Tx,n(r̂) and Gϕ,Tx,n(r̂) are the θ and ϕ components of the n:th Tx,
respectively, and where Gθ,Rx,m(r̂) and Gϕ,Rx,m(r̂) are the θ and ϕ components
of the m:th Rx. The gain profile used for the amplitude calculations were taken
from a simulated patch antenna, described in section 4.4.

21
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4.2 Assessment of array performance

Two ways of assessing the DoA estimation performance of an array are described
in section 2.8.3 and 2.8.4. The Cramér-Rao bound should be used if the goal is to
maximize the theoretical DoA estimation capability of an array for a given SNR.
However, the CRLB does not give any guarantee that the lower bound can be
reached using a practical DoA method. In this work, only the ambiguity function
is used as it considers ambiguities as well as DoA resolution through the MLW.
The two geometries, as given in Figure 1.1, are to a large extent handled in the
same way, with a few exceptions. Below, the assessment of arrays in the circular
geometry is described first followed by the multiple plane geometry.

4.2.1 Circular geometry

To assess the full performance of an array, all combinations of r̂ and r̂eval have to
be evaluated in the ambiguity function. In order to do this numerically, the vectors
have to be discretized into N×M directions r̂(θi, ϕj) and r̂eval(θk, ϕl), where i, k =
1, ..., N and j, l = 1, ...,M . This means that the total number of combinations of
r̂(θi, ϕj) and r̂eval(θk, ϕl) that have to be evaluated in the ambiguity function is
N2 ×M2. If the array is placed in the xz-plane and radiates in the half-space
where y is positive, θi, ϕj , θk and ϕl can be uniformly distributed in the interval
0 ≤ θi, ϕj , θk, ϕl ≤ 180◦. It was determined that setting N = M = 46 offered
reasonable computational times and angular resolution of 4◦.

Following the same notation as in [12], the ambiguity matrix Xij is defined
as:

Xij =

χ(r̂(θi, ϕj), r̂eval(θ1, ϕ1)) . . . χ(r̂(θi, ϕj), r̂eval(θ1, ϕM ))
...

. . .
...

χ(r̂(θi, ϕj), r̂eval(θN , ϕ1)) . . . χ(r̂(θi, ϕj), r̂eval(θN , ϕM ))

 (4.2)

Each Xij has a main lobe and (in most cases) sidelobes, as illustrated in Figure
2.12. As the highest SLL (denoted PSLL) determines the risk of ambiguity in
DoA estimation, it is of special interest. The maximum half-width of the main lobe
(denoted MLWmax) is similarly important for the resolution of the DoA estimation.
Therefore, two matrices are introduced to evaluate these two qualities. The first
is the ambiguity indicator matrix, Q, inspired by [12]:

Q = [Qij ] , Qij =

{
0, PSLL(Xij) ≤ t

PSLL(Xij), PSLL(Xij) > t
(4.3)

where t is the threshold value for the maximum SLL. It is chosen as t = 0.5 in the
optimization algorithm as this is slightly better than the maximum PSLL of the
reference array, which is described in section 4.5. Similarly, a width matrix W is
defined as:

W = [Wij ] , Wij = MLWmax(Xij) (4.4)

where MLWmax(Xij) is the largest possible angle, ∆, between r̂(θi, ϕj) and a
vector r̂w(θk, ϕl) that is part of the main lobe such that χ(r̂(θi, ϕj), r̂w(θk, ϕl)) ≥



Method 23

w. The angle is calculated using ∆ = cos−1(r̂ · r̂w). Here, w defines at what
amplitude the main lobe width should be measured, and it was chosen as w =
0.5. This way of assessing the DoA resolution is more complicated than what is
presented in (3.1), but is also more complete as it considers the resolution in all
possible directions instead of θ and ϕ separately. The retrieval of the values Qij

and Wij are illustrated in Figure 4.1 for a specific ambiguity matrix.
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Figure 4.1: Illustration of the values Qij (4.3) and Wij (4.4) from
the ambiguity matrix.

In some cases, it might not be necessary to optimize an array for all possible
DoAs as a radar system often operates within an angular range of less than 180° in
both elevation and azimuth. While the useful range of a radar system could take
many forms, it is in this work given as θmin ≤ θ ≤ θmax and ϕmin ≤ ϕ ≤ ϕmax for
simplicity. Furthermore, it is denoted the region of interest (RoI). By defining such
a RoI, the ambiguity indicator matrix and the width matrix were evaluated slightly
differently from (4.3) and (4.4). It is important to note that reflected waves that
arrive from outside the RoI can give rise to sidelobes within this region, and result
in false detections. Thus, the ambiguity matrix Xij can not simply be evaluated
for θmin ≤ θk ≤ θmax, ϕmin ≤ ϕl ≤ ϕmax. Instead, if the real direction r̂ lies within
the given range, the whole ambiguity matrix has to be evaluated. However, if r̂
lies outside the range, only values θmin ≤ θk ≤ θmax and ϕmin ≤ ϕl ≤ ϕmax are
evaluated. The width matrix is only evaluated within the specified range. The
ranges used were 45◦ ≤ θ, ϕ ≤ 135◦ for the circular geometry, as this covers a
reasonable angular range when compared to the coverage of surveillance cameras.

From the definition of Q and W , a cost function C was defined. As it is ben-
eficial to have low SLLs and low MLWs, the average SLL and MLW was included
in the cost. In order to ensure that the performance was relatively uniform over
the angular range, the worst-case values were also specifically included. The total
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cost function was thus given as:

C(Q,W , c1, c2, c3, c4) =
c1

NM

∑
i,j

Qij + c2 max(Q)

+
c3

NM

∑
i,j

Wij + c4 max(W ) (4.5)

where max(A) denotes the maximum value contained in a matrix A. The main
objective of the optimization was to reduce all SLLs below the threshold t, while
the secondary goal was to minimize the MLWs. Thus, the parameters were chosen
such that c1 > c3 and c2 > c4. The values used were c1 = 1, c2 = 0.4, c3 = 0.2
and c4 = 0.05, as they were seen to give reasonable results.

4.2.2 Multiple plane geometry

For the multiple plane geometry (illustrated in Figure 1.1b) all sides were used for
the DoA estimation. As the total number of antennas is large, it becomes time-
consuming to use each Tx and Rx for a single DoA estimation. Thus, the array was
simulated such that only Tx antennas on one of the sides transmitted, while all Rx
antennas received. This resulted in a virtual array of size Ns × nTx × nRx, where
Ns is the number of sides, and nTx and nRx is the number of Tx and Rx elements
per side, respectively. One factor that needed special care in the optimization of
the array was that the distance between the four different arrays could be large in
terms of wavelengths. This results in many ambiguities if the total array vector
for all elements is used in the ambiguity function (2.32). To solve this, a DoA
estimation was performed for each individual side instead. As the sides point in
different directions, thus giving different gain profiles, the amplitude information
could be used together with the phase information. A signal model of only the
output amplitudes of the n:th side, An, is introduced as:

An[k] =
[
gn(r̂1) gn(r̂2) ... gn(r̂D)

]

s1[k]
s2[k]

...
sD[k]

+ η[k] (4.6)

where gn(r̂) consists of the combined Tx and Rx gains for the receiving elements
of the n:th side and s is real valued. It is assumed that the gain profile is identical
between elements on the same side and that the gains are voltage gains. Thus,
gn(r̂) is defined as:

gn(r̂) =


gn(r̂)
gn(r̂)
. . .

gn(r̂)

 , gn(r̂) =
√
Gθ,Tx(r̂)Gθ,Rx,n(r̂) +Gϕ,Tx(r̂)Gϕ,Rx,n(r̂) (4.7)

where all the gains are given in the global coordinate system given in Figure 1.1b.
The mean over the elements of An[k] is denoted Ān[k] and can be valuable to
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calculate in order to reduce the effects of noise in the signals. From this, the
vector A[k] containing the mean amplitude of each side is defined as:

A[k] =


Ā1[k]
Ā2[k]

...
ĀNs

[k]

 (4.8)

where Ns is the number of sides.
Based on this signal model and the signal model of (2.23), a new DoA method

is defined. This DoA estimator uses the gain variations of the different sides to
roughly assess in what angular range the DoA is likely to be. With this knowledge,
the phase information is used on one or two sides to determine a more precise DoA.
Assuming that the transmitting side has side index n = nTx and that the side that
receives the maximum mean amplitude Ā has index n = nmax, a pseudospectrum
similar to the CBF is defined as:

Pnew(r̂eval) =
ATRAAA

ATA
×


∣∣anTx

(r̂eval)
HRxx, nTx

anTx
(r̂eval)

∣∣ , if nTx = nmax

0.5
∑

n=nTx,nmax

∣∣an(r̂eval)
HRxx, nan(r̂eval)

∣∣ , if nTx ̸= nmax

(4.9)
where an denotes the array vector of the n:th side and RAA is the correlation
matrix of A, calculated in the same way as in (2.26). Based on the DoA method
given by Pnew, a corresponding ambiguity function is also defined as:

χ(r̂, r̂eval) =
g(r̂)Tg(r̂eval)

∥g(r̂)∥ ∥g(r̂eval)∥
×



∣∣anTx
(r̂)HanTx

(r̂eval)
∣∣

∥anTx
(r̂)∥ ∥anTx

(r̂eval)∥
, if nTx = nmax

0.5
∑

n=nTx,nmax

∣∣an(r̂)
Han(r̂eval)

∣∣
∥an(r̂)∥ ∥an(r̂eval)∥

, if nTx ̸= nmax

(4.10)
where g is given by:

g(r̂) =


g1(r̂)
g2(r̂)

...
gNs

(r̂)

 (4.11)

As the multiple plane array can receive signals from a larger angular range
compared to the circular array, the ranges were increased to cover the full unit
sphere. However, only angles covered by the Tx side were evaluated. These useful
angles are plotted in Figure 4.2, where it is assumed that the tilt of the sides is
α = 20◦ and that the Tx side points in the positive y direction.
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Figure 4.2: The useful angles for the multiple plane layout (see
Figure 1.1b), plotted in black.

4.3 Implementation of optimization algorithm

The two types of optimization algorithms considered for this work were GA and
PSO, as described in sections 2.9.1 and 2.9.2. While GA is the most common
choice for this type of problem, PSO seems to offer simpler implementation. Fur-
thermore, the latter has to the author’s knowledge not been used for 2D array
layout optimization before. It was therefore deemed interesting to investigate the
effectiveness of PSO for this specific problem.

The outline of the optimization method is given below in Algorithm 1, where
Npart is the number of particles, Nit is the number of iterations and w, b, c are
the constants used for updating the particle velocities according to (2.33). For the
circular geometry, the positions of the Tx and Rx elements in the i:th particle are
stored in di,Tx and di,Rx as:

di,Tx =


xi,Tx,1 zi,Tx,1

xi,Tx,2 zi,Tx,2

. . . . . .
xi,Tx,NTx

zi,Tx,NTx

 , di,Rx =


xi,Rx,1 zi,Rx,1

xi,Rx,2 zi,Rx,2

. . . . . .
xi,Rx,NRx

zi,Rx,NRx

 (4.12)

Similarly, the velocities of the Tx and Rx elements in the i:th particle are stored
in vi,Tx and vi,Rx as:

vi,Tx =


vx,i,Tx,1 vz,i,Tx,1

vx,i,Tx,2 vz,i,Tx,2

. . . . . .
vx,i,Tx,NTx

vz,i,Tx,NTx

 , vi,Rx =


vx,i,Rx,1 vz,i,Rx,1

vx,i,Rx,2 vz,i,Rx,2

. . . . . .
vx,i,Rx,NRx

vz,i,Rx,NRx

 (4.13)

In the case of the multiple plane geometry, x and z are replaced by coordinates
in the local coordinate system of a side. These coordinates are called x̃ and z̃, in
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order to distinguish them from the global coordinate system given in Figure 1.1b.
As the layouts should be identical between sides, it is sufficient to only consider
one planar layout in the optimization. The resulting layout is then copied to all
sides.

Some extra steps were added to the implemented PSO compared to the general
description in section 2.9.2. Firstly, the values of the constants w, b, c are reduced
towards the end of the optimization loop. This was added as it was difficult to
choose a set of constant parameters that did not give either too high or too low
average element velocities. Too high velocities discouraged any fine-tuning of the
positions, while too low velocities instead made the algorithm get stuck in local
minimas. Thus, two sets of parameters were found that gave suitable randomness
in the initial search as well as some fine-tuning during the end of the optimization.
Secondly, a maximum allowed speed of individual elements, vmax, was introduced
to reduce the risk of instability in the element movements. The number of particles
was set to Npart = 20.

When the element positions are updated in line 36 and 37 of the pseudocode,
it is possible that the new positions are invalid. This could be either because
at least one element is outside the defined geometry, or it could be because two
elements are closer to each other than the minimum allowed spacing of ∆d. These
cases are handled in line 38 and 39, respectively. In line 38, any element that is
outside the boundary is moved to the first intersect point of the line of movement
and the boundary. Also, the element bounces on the boundary, meaning that the
component of the velocity vector that is orthogonal to the boundary is negated.
In line 39, collisions between elements is handled similarly to bounces on the
boundary. If an element is placed closer than ∆d to another element, the last
element to be moved is placed at a distance ∆d from the other element. As the
elements can collide in several ways, and with multiple other elements, it is difficult
to handle all edge cases. Thus, line 38 and 39 do not always succeed in placing
the elements in an allowed way, which necessitates the validity check in line 11.

The number of iterations that was used in the optimization was largely limited
by the runtime of the algorithm. As to not exceed 24 hour optimization runs on the
available hardware, the number of iterations were limited to 500 for the circular
geometry. Only 300 iterations were used for the multiple plane geometry, due to
the additional computations associated with a larger array.

4.4 Design of antenna elements

The antenna type used in the work is the inset-fed patch antenna as described in
section 2.4. Through manual tuning of the dimensions given in Figure 2.5, the
patch was designed to have a center frequency at 24.125 GHz with a 250 MHz
bandwidth at −10 dB of the reflection coefficient, Γ. The frequency range was
chosen as it covers one of the frequency bands that can be used for commercial
radar applications [25]. The patch and ground plane were simulated as PEC and
the substrate as Rogers RO3003 with a relative permittivity ϵ = 3 and thickness
of 0.254 mm. The size of the ground plane was 20 mm × 20 mm.
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Algorithm 1 Particle swarm optimization pseudocode
1: for i = 1 to Npart do
2: randomly set initial positions di,Tx and di,Rx for particle(i)
3: calculate corresponding virtual array
4: randomly set initial velocities vi,Tx and vi,Rx for particle(i)
5: end for
6:
7: w ← 1, b← 2, c← 2
8: define vector costs of size Npart with current costs
9: for i = 1 to Nit do

10: for j = 1 to Npart do
11: if dj,Tx, dj,Rx not valid then
12: costs(j)←∞
13: else
14: costs(j) ← cost of particle(j)
15: end if
16: end for
17: for j = 1 to Npart do
18: costs(j) ← cost of particle(j)
19: if costs(j) < costlocal best, j then
20: dlocal best, j,Tx ← dj,Tx

21: dlocal best, j,Rx ← dj,Rx

22: costlocal best, j ← costs(j)
23: end if
24: if costs(j) < costglobal best then
25: dglobal best,Tx ← dj,Tx

26: dglobal best,Rx ← dj,Rx

27: costglobal best ← costs(j)
28: end if
29: end for
30: if i ≈ 0.75Nit then
31: w ← 0.5, b← 1.5, c← 1.5
32: end if
33: for j = 1 to Npart do
34: vi,Tx, vi,Rx ← new velocities according to (2.33) using w, b, c
35: reduce element velocities exceeding vmax

36: dj,Tx ← dj,Tx + vi,Tx

37: dj,Rx ← dj,Rx + vi,Rx

38: relocate elements outside of boundary
39: handle collisions between elements
40: calculate virtual array
41: end for
42: end for
43: return dglobal best,Tx, dglobal best,Rx
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4.5 Choice of array parameters

The optimization algorithm was implemented in such a way that it could handle
any number of Tx and Rx antennas, as well as arbitrary dimensions of the ge-
ometries given in Figure 1.1a and Figure 1.1b. In order to limit the scope of the
report, only a few specific choices of parameters were evaluated. For the circular
array, 3 Tx and 4 Rx antennas were used as it is a common choice for commercial
radar products, meaning that the optimized array could be compared to existing
layouts. A conventional array layout using 3 Tx and 4 Rx antennas is given in
Figure 4.3 and 4.4. The dimensions of the circular array as given in Figure 1.1a
were set to Rmin = 15mm and Rmax = 30mm. The minimum distance between
antenna elements was set to ∆d = λ/2 as this is also the closest distance in the
reference array. Thus, mutual coupling effects should be manageable.
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Figure 4.3: Rx and Tx positions of reference ULA.
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Figure 4.4: Virtual array of reference ULA.

A setup with four sides was chosen for the multiple plane array, where each
side consisted of 3 Tx and 4 Rx antennas. As mentioned earlier, each side was set
to have the same array layout. The dimensions of each side was set to 30 mm ×
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40 mm, with a distance of 80 mm from the z-axis to the center point of the sides
and a tilt of α = 20◦. The ULA layout given in Figure 4.3 was used as a reference
layout.

4.6 Simulation of arrays

The optimized arrays were simulated in HFSS to ensure that the array vectors for
different DoAs corresponded to those of the analytical model. This was done by
simulating the responses from the Rx antennas using a PEC sphere with a radius
of 50 mm as a target, placed with a radial distance of 10 m from the arrays. The
dimensions of the substrate and ground plane had to be increased slightly in order
to ensure that the antennas did not extend beyond the boundaries. Specifically,
Rmin was decreased to 10 mm and Rmax was increased to 35 mm. Furthermore,
all sides in the multiple plane geometry were widened to 40 mm × 50 mm. As the
distance from the array to the target is very large in terms of wavelength, a full
wave simulation of the setup was unviable. Thus, the far field characteristics of
only the array itself was simulated separately and used in a shooting and bouncing
rays (SBR) simulator together with the target. The SBR solver in HFSS utilizes
that the target is in the far field of the array, and thus the waves are treated as
optical rays. This means that the angle of reflection is the same as the angle of
incidence onto the reflector. By performing the simulation, mutual coupling effects
as well as effects due to element placement on the geometry are taken into account.

A special FMCW module in the SBR solver was used in the simulation and
resulted in a range-Doppler map for each Tx and Rx pair. From these maps, only
the bins corresponding to a Doppler velocity of 0 m/s and a range of 10 m were
extracted. For each position of the sphere, a response vector x (as given in section
2.7) was thus gathered. In the case of the circular geometry, a CBF DoA estimation
was performed using (2.27), where r̂eval was set as the analytically calculated array
vector. As there was only one “sample” per position of the sphere, the covariance
matrix was reduced to xxH . The deviation of the DoA estimation from the actual
DoA was then calculated. Similarly, the DoA method defined in (4.9) was used
for the multiple plane geometry. Due to the substantial amount of time needed
for the simulations to run, the angular spacing of simulated DoAs could not be as
small as for the optimization. Thus, the angular spacing was set to 8◦ for both
θ and ϕ. Time constraints also limited the analysis to DoAs within the RoI, and
the effects of interfering signals was thus not evaluated.

4.7 Noise performance of arrays

The final step in the evaluation was to investigate the performance of the arrays
with added noise η, as given in the signal models (2.23) and (4.6). This was done
by generating complex zero-mean Gaussian noise with variance given by (2.24),
and by seeing how this affected the average angular estimation deviation in the
RoI. The CBF was once again used for the DoA estimation with only a single
sample (i.e. K = 1). The deviation was evaluated using both the analytical and
simulated array responses. Furthermore, the deviation was calculated from 500



Method 31

instances of signal noise for each DoA, and an average deviation for each DoA was
calculated from this. In the case of the multiple plane geometry, each side has its
own SNR as the received signal amplitudes are different. The signal amplitude to
calculate the SNR from can thus be chosen in different ways. For the results, it
was defined as the signal amplitude of the received signal on the transmitting side.
Furthermore, the noise variance was calculated for each incident angle to match the
SNR, instead of adding a constant noise level based on one incident angle. The
noise performance was evaluated using both the analytical and simulated array
responses.
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Chapter 5
Results

5.1 Patch antenna

The dimensions of the patch antenna are given in Table 5.1 and its resulting
reflection coefficient is plotted in Figure 5.1. The far field radiation pattern of
the antenna is given in Figure 5.2 and 5.3, using the spherical coordinate system
defined in Figure 2.3. Please note that the dB scale is different between plots. The
antenna is mainly polarized in the θ direction, as expected, and its gain profiles
are symmetrical in all plots except for the ϕ component in the yz plane. This
could potentially be caused by the feed which introduces an asymmetry in the
patch antenna.

Parameter L W fw iw il
Value (mm) 3.43 4.42 0.44 0.31 1.1

Table 5.1: Dimensions of the patch antenna using the parameters
defined in Figure 2.5.
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Figure 5.1: Reflection coefficient of the patch antenna. The fre-
quency range of interest is marked by the dashed lines.
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Figure 5.2: Gain in yz plane, swept over θ.
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Figure 5.3: Gain in xy plane, swept over ϕ.

5.2 Optimization results

5.2.1 Circular layout

The element positions of the optimized array are given in Figure 5.4, and the
corresponding virtual array in Figure 5.5. The optimization algorithm managed
to suppress the relevant SLLs so that Q = 046×46, compared to Q of the reference
array which is given in Figure 5.6. Figure 5.7 and 5.8 show the evolution of the
cost and the average movement of particles during the iteration. It can be seen
that the cost reduces greatly during iteration 35 as Q = 046×46 at this point.
Only smaller improvements occur in the later iterations. The average movement
between iterations is relatively high during the first 375 iterations (in the order of
a wavelength) and reduces greatly as the speed parameters are reduced.

The resulting array is further compared to the reference array in Figure 5.9,
where the PSLLs are plotted within the region of interest. Due to the discretiza-
tion, this region has extended slightly from 45◦ ≤ θ ≤ 135◦, 45◦ ≤ ϕ ≤ 135◦ to
44◦ ≤ θ ≤ 136◦, 44◦ ≤ ϕ ≤ 136◦. The values of the two plots are summarized in
Table 5.2. It is seen that the optimized array has a lower maximum PSLL, with
the downside of having a higher average PSLL.
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Similarly, the MLWs of the optimized and reference arrays are plotted in Figure
5.10 and summarized in Table 5.3. The performance is similar, but the optimized
array has slightly lower MLWs.
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Figure 5.4: Rx and Tx positions of optimized array.
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Figure 5.6: Values of Q for the reference array in the full angular
region. Region of interest is marked with the dashed red box.
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Figure 5.8: Average movement of elements per iteration. Vertical
dashed line marks the iteration where the movement parameters
are changed.
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Figure 5.9: Peak side lobe levels in the region of interest.

Array Average PSLL Minimum PSLL Maximum PSLL
Optimized 0.456 0.408 0.500
Reference 0.381 0.323 0.671

Table 5.2: Side lobe values of optimized array compared to reference
array within the region of interest.
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Figure 5.10: Main lobe widths in the region of interest. Values given
in degrees.

Array Average MLW Minimum MLW Maximum MLW
Optimized 31 18 48
Reference 38 25 54

Table 5.3: Main lobe width values of optimized array compared to
reference array within region of interest. All values given in
degrees.

5.2.2 Multiple plane layout

The final antenna layout after an optimization loop consisting of 300 iterations is
given in Figure 5.11. Figure 5.13 and 5.14 show the evolution of the cost and the
average movement of particles during the iterations. The optimization algorithm
managed to suppress the relevant SLLs so that Q = 046×46, compared to Q of the
reference array which is given in Figure 5.12. In this optimization run, it took 175
iterations before this was achieved. The PSLLs of the optimized array and the
reference array are given in Figure 5.15. The variations of PSLLs are seen to be
relatively smooth, except for the angles with the smallest and largest values of ϕ.
These discontinuities are introduced by the shift in the calculation of the ambiguity
function as given by the two cases in (4.10). The PSLL values are summarized in
Table 5.4, which shows the same general tendencies as for the circular geometry.
The maximum PSLL of the optimized array is reduced compared to the reference
array, with the cost of higher average and slightly higher minimum PSLL. The
improvements in MLW because of the optimization are more discernible for this
geometry than for the circular geometry. The MLWs of the optimized and reference
array are given in 5.16. These values are summarized in Table 5.5.
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Figure 5.11: Rx and Tx positions on each side of optimized array.
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region. Region of interest is marked with the dashed red box.



40 Results

50 100 150 200 250 300
0

0.1

0.2

0.3

Iteration

C
o
st

Figure 5.13: Best cost (including historical best) per iteration.
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Figure 5.14: Average movement of elements per iteration. Vertical
dashed line marks the iteration where the movement parameters
are changed.
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Figure 5.15: Peak side lobe levels in the region of interest.

Array Average PSLL Minimum PSLL Maximum PSLL
Optimized 0.396 0.289 0.484
Reference 0.344 0.280 0.653

Table 5.4: Side lobe values of optimized array compared to reference
array within the region of interest.
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Figure 5.16: Main lobe widths in the region of interest. Values given
in degrees.
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Array Average MLW Minimum MLW Maximum MLW
Optimized 21 15 38
Reference 31 23 50

Table 5.5: Main lobe width values of optimized array compared to
reference array within region of interest. All values given in
degrees.

5.3 Simulation results

5.3.1 Circular layout

As described in section 4.6, the response of the optimized array was simulated for
a number of DoAs. By using the analytical model and estimating the DoA from
this, a deviation was found between the actual and estimated DoA. This deviation
is given in Figure 5.17. It can be seen that the deviation is generally small, with a
maximum of 6◦. However, it should be noted that there is no guarantee that the
simulated responses are more accurate than the analytically calculated responses.
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Figure 5.17: Angular estimation error of simulated responses.

5.3.2 Multiple plane layout

In the same way as for the circular geometry, the angular deviations in the RoI
is given in Figure 5.18. While the average deviation is small (1.7◦), there are two
angles with deviations around 10◦.
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Figure 5.18: Angular estimation error of simulated responses.
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5.4 Noise results

5.4.1 Circular layout

The noise performance of the optimized circular array can be seen in Figure 5.19,
together with the noise performance of the reference array. The deviation given
in the figure is the average deviation within the RoI. It can be seen that the
arrays have equal estimation performance for low SNRs where the noise causes
several ambiguities. As the SNR increases, small variations can be seen between
the different instances. The simulated arrays consistently have larger errors than
the analytical arrays. This should be expected, as the simulated arrays exhibit
deviations even without noise. The difference between the optimized and reference
array is small throughout the SNR range.
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Figure 5.19: Angular deviation error for a range of SNRs.

5.4.2 Multiple plane layout

The deviation-to-SNR plot for the multiple plane geometry is given in Figure
5.20, where the minimum SNR has been reduced to 0.1. Comparing this to Figure
5.19, it can be seen the deviations at low SNRs are smaller for the multiple plane
geometry compared to the circular geometry. This should be expected, as the
former utilises gain information that is averaged over several signals, making it
less sensitive to noise. For higher SNRs, the differences between Figure 5.19 and
5.20 are less pronounced. Furthermore, it can be seen that the reference array
performs slightly better for SNRs below around 0.8. This might be explained by
the PSLLs of the arrays, as the side lobes should affect the risk of ambiguities.
Observing Figure 5.15, it can be seen that the number of angles at which the PSLL
is higher for the reference array compared to the optimized array is low. Thus,
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as the deviation is calculated as the mean over all angles in the RoI, the effect
of reducing these sidelobes below the threshold value might not have a significant
effect on the average deviation. For higher SNRs, the optimized array performs
slightly better than the reference array.
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Figure 5.20: Angular deviation error for a range of SNRs.
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Chapter 6
Discussion

6.1 Discussion on results

Based on the results presented in section 5.2, the optimization method seems to
work as intended. For both the circular and multiple plane geometry, the PSLLs
were reduced to below the threshold value of t = 0.5 while also maintaining slightly
lower MLWs than the reference array. From the plots of the evolution of the cost,
it can be seen that the main objective of reducing all sidelobe levels below the
threshold was achieved with the fewest iterations for the circular geometry. The
few other optimisation runs that were made (but not presented in the results)
showed the same tendency. This is noteworthy, as the main objective should be
easier to accomplish for the multiple plane geometry, due the use of more antenna
elements. A reason for this behaviour was not found, but could be because of a
more complex relation between element placements and the resulting ambiguity
function.

Another result that is worth further discussion is the simulation of the multiple
plane layout, as given in Figure 5.18. As pointed out, there are two directions with
a rather high deviation of around 10◦ at the highest θ value. These deviations are
caused by a mismatch of how the signal amplitudes are calculated analytically
compared to the values given by the simulation. In the analytical model, it is
assumed that the sides only receives signals that are covered by their field of
view (FoV). This means that if the normal direction of the side is n̂ and a signal
arrives from the direction r̂, the analytical model assumes that no signal is received
if n̂ · r̂ ≤ 0. This is an approximation, and some signal amplitude is still received
out of the FoV. The two values with higher deviation in the figure comes from
directions just outside of the FoV of the opposing side to the Tx side, resulting
in an estimation error. This problem could probably be addressed by adjusting
the gain profile used in the analytical model to include gain slightly outside of the
FoV.

Lastly, the noise results indicate that the optimized arrays perform similarly
to the reference array. This might mean that it is not valuable to implement the
optimized arrays practically, however the method is still useful as it can be used for
arbitrary dimensions of the geometries and for different RoIs. In order to illustrate
this, two additional arrays were optimized in the circular geometry using different
sets of parameters. The first array consisted of 4 Tx and 6 Rx antennas, while

47



48 Discussion

the second one was optimized for a much thinner geometry with Rmin = 20mm
and Rmax = 25mm. The optimization algorithm managed to suppress all SLLs to
below t = 0.5 for these geometries. The resulting layouts are given in Figure 6.1
for reference. It is worth noting that the reference array would not be able to fit
within the thin geometry.
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Figure 6.1: Additional optimized arrays

6.2 Practical implementation

There are notable challenges that would have to be overcome in order to implement
the optimized arrays instead of the reference array in practice, and which reduces
the potential gain of using them. Firstly, the complexity of the signal processing
could increase significantly, at least if CBF is used as the DoA estimation method.
As described in section 2.8.1, the FFT can be applied on arrays with elements
that are placed on a grid, such as the reference array, in order to make the DoA
estimation efficient. As the optimized array layouts are gridless, extra processing
time would have to be taken into account in a practical implementation. One way
to alleviate this problem would be to instead use the GA, as this naturally places
the elements on a specified grid. While most of the grid points would be empty,
the FFT can still be applied on the resulting sparse array.

Another important aspect to consider is the feeding of the patch antennas. If
the inset-fed patch antenna is used, microstrip lines would have to extend from
each Rx and Tx element to the receiver and transmitter. Finding suitable feeding
routes for the optimized array could potentially be more intricate than for the
reference array depending on the optimized layout.

6.3 Possible improvements

There are several possible improvements to the method that could have been
implemented to improve the effectiveness of the optimization algorithm, as well as
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the accuracy of the quality measures. These improvements are discussed in the
sections below.

6.3.1 Improvements to assessment

The assessment of the arrays in this report has been based on the conventional
ambiguity function as used in several papers for optimization of 1D and 2D arrays,
as well as a newly defined ambiguity function that takes the gain profiles of the
antennas into account. One limitation of the assessment in this report is that
only the single signal case is considered, as it is deemed unlikely that two or more
signals should appear within the same range-Doppler bin. This limitation is also
imposed in the optimization approaches presented in Chapter 3. By considering
the case of multiple signals, the optimization problem would grow substantially,
and it is not clear to the author how it could be efficiently studied. It might prove
sufficient to reduce the SLL threshold t in the single signal case to also ensure
that multiple signals can be detected without ambiguity. Furthermore, the MLW
should be directly linked to the separability of multiple signals. However, this has
to be studied in more detail.

Secondly, the optimization method builds on the assumption that the PSLLs
are related to the risk of DoA ambiguities, and that the MLWs are related to the
resolution. As described in section 2.8.3, these values are relevant in different SNR
ranges. In a real world application, a desired SNR range within which the radar
should operate would probably be presented. Based on this, the requirements on
the PSLLs and MLW could be altered in order to achieve the best performance
within this range. For instance, if the SNR range was high, the risk of ambiguities
would be low and the threshold t could thus be increased.

6.3.2 Improvements to optimization algorithm

While the optimization seems to perform as intended, there are always improve-
ments that could be implemented. One of the limiting factors in the optimization
was the speed. As mentioned previously, the optimization runs took around a
full day on the available hardware. While this is not unmanageable for a single
optimization, it limits the possibility of fine-tuning the parameters to give faster
convergence and lower final cost. There are a few improvements that could be
implemented that might alleviate these problems.

Firstly, the positions of the Tx and Rx antennas are, as groups, translationally
invariant with respect to the performance of the array. This means that if all Rx or
all Tx antennas in an array are equally displaced within the geometry, the resulting
array is identical in performance, at least analytically. This concept can be seen
by observing the formulation of the virtual array vector in (2.21). When the Tx or
Rx antennas are moved, all elements in the vector are phase shifted by the same
amount, which does not affect the DoA estimation. This translational invariance
is not utilized in the optimization algorithm as the best absolute positions of the
Tx and Rx are saved. Secondly, the array performance is also unchanged when
a permutation is performed on the Tx or Rx antennas, respectively. This is also
not taken into account in the optimization, and would probably lead to faster
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convergence.
Beyond speed, other improvements could be implemented to discourage the

optimization from getting stuck in local minimas. This has been the focus of
much research on PSO since the introduction in [21]. In for instance [26], Kao and
Zahara combined the mating and mutation processess of the genetic algorithm with
PSO and showed that this lead to improved solution quality and faster convergence.
However, implementing such an algorithm would further complicate the fine tuning
of the algorithm as more parameters would be introduced.



Chapter 7
Conclusions

In this report, two array layouts have been optimized using the particle swarm
optimization method. The first geometry was planar and circular, while the sec-
ond one consisted of four separate planar surfaces that covered 360◦ in azimuth.
In the optimization of the arrays, they were assessed based on their ambiguity
functions. It was deemed of interest to focus the analysis on two parameters, the
PSLL and the MLW of the ambiguity function, as these are related to the accuracy
of the DoA estimation. The optimization method achieved the primary objective
of reducing the PSLLs to below the threshold value, and could reduce the MLWs
to smaller values compared to the reference array. The resulting arrays were simu-
lated and the responses were seen to be close to the analytical model used for the
optimization. Lastly, the noise performance of the arrays was investigated. Only
a smaller difference between the optimized and reference arrays were found, which
indicate that a practical implementation of the optimized arrays could be hard
to justify. However, the implemented method can handle variations in geometry
sizes and an arbitrary number of antenna elements, and is therefore applicable to
larger arrays or more limited geometries, where conventional arrays either do not
exist or are not usable.
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