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Abstract

To investigate the non-zero nuclear Schiff moment exhibited by PT -violating nu-
clei, this paper examines the prediction of shapes and excited states of Radium iso-
topes by applying different Skyrme-like models. The calculations were conducted by
employing computational programs incorporating both the Hartree-Fock-Bogoliubov
method and Hartree-Fock + BCS with an effective Skyrme force. A preliminary sur-
vey of nuclear properties that contribute to the enhancement of the nuclear Schiff
moment is also presented.

The content, findings and text of the thesis are results of my work. Syntax and grammar of the text
have been polished with the aid of ChatGPT.
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1 Introduction
Measuring the electric dipole moment (EDM) of atoms stands out as one of the most
promising ways to investigate CP-violation and is actively pursued by numerous ongoing
research efforts. The electric dipole moment EDM refers to the separation of positive and
negative charge within the atom along its angular momentum axis [1]. It is known that
this dipole moment is virtually fully screened by the constituent atomic electrons.

However, a component known as the nuclear Schiff moment is responsible for inducing
a non-zero permanent atomic EDM when both parity (P) and time reversal (T ) are
simultaneously violated [2], indicating the presence of CP-violating forces. This nuclear
Schiff moment is extremely sensitive to PT -violation, making it a prime candidate for
this study.

The expectation of the nuclear Schiff moment ⟨S⟩ can be evaluated using perturbation
theory since it is induced by a very weak PT -violating interaction V̂PT ,

⟨S⟩ =
∑
n>0

⟨Ψ0|ŜZ |Ψn⟩⟨Ψn|V̂PT |Ψ0⟩
E0 − En

≈ 1

∆E
⟨Ψ0|ŜZ |Ψ1⟩⟨Ψ1|V̂PT |Ψ0⟩. (1)

Where, ŜZ denotes the Schiff moment operator along the symmetry axis (Z-axis), |Ψn⟩
are excited opposite parity states of the ground state |Ψ0⟩, with the condition that I ̸= 0.
This expression can then be simplified further by only considering the first excited state
|Ψ1⟩, which exhibit the smallest energy difference ∆E = E0−En compared to the energy
E0 from |Ψ0⟩. In the absence of V̂PT , ⟨S⟩ will always be zero.

Furthermore, the magnitude of the nuclear Schiff moment is highly amplified in specific de-
formed nuclear shapes. Deformed nuclei refer to nuclei that exhibit non-spherical shapes,
arising from uneven nucleon density distribution caused by the collective motion of nucle-
ons within the nucleus. Octupole and quadrupole moments are empirical quantities which
can be measured from experiments to quantify the deformity of these nuclei. Quadrupole
deformed nuclei typically resemble either a prolate ellipsoid or an oblate ellipsoid. On the
other hand, octupole deformed nuclei often exhibit a pear-like shape and are commonly
known as pear-shaped nuclei.

Pear-shaped nuclei are known to exhibit spontaneous P-violation due to their assymetrical
shape under reflection. Studies have shown that the restoration of this symmetry leads to
the formation of parity doublets within these nuclei, particularly in odd mass nuclei [3, 4,
5]. Parity doublets are observed as rotational band heads with nearly degenerate states of
opposite parity but the same spin, resulting in an enhanced nuclear Schiff moment. This
makes odd mass pear-shaped nuclei valuable candidates for this study, especially Radium
isotopes, Ra223 and 225 with very close-lying parity doublet seperation ∆E of ≈ 50keV
[3, 6].

Our study focuses on the aforementioned features which enhance the nuclear Schiff mo-
ment, by mainly employing the Hartree-Fock-Bogoliubov (HFB) method. This approach
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allows us to compare the predictions of shapes and excited states between different theo-
retical models and its relation with the nuclear Schiff moment.

2 Background Theory

2.1 Hartree-Fock (HF)

The Hartree-Fock (HF) Theory applies the variational approach to solve for a single-
particle potential from two-body interactions until a self-consistent mean field is obtained.
It is based upon the assumption that each nucleon moves independently in a mean field
potential induced by all other nucleons in the system. This is justified phenomenologically
by the nuclear shell model [7]; the nucleons are described in terms of orbitals and shells
with discrete energy levels, analogous to the shell structure of electrons in atoms.

An example Hamiltonian acting on a many-body system may be expressed as [8]:

Ĥ =
A∑
i=1

t̂i +
1

2

A∑
i ̸=j

v(ri, rj), (2)

where Ĥ represents the Hamiltonian operator, t̂i denotes the kinetic energy operator for
the i-th particle, v(ri, rj) represents the two-body interaction depending on the particles’
positions ri, rj and A is the total number of particles in the system.

In the HF approximation, the many-body problem of Eq. 2 is simplified by introducing
an average single-particle potential, often referred to as the HF potential. This potential
accounts for the mean field experienced by each particle due to the presence of all other
particles in the system. This approximation leades to a single-particle Schrödinger-like
equation [7]:

ĥ =
A∑
i=1

ĥi ; ĥi = t̂i + v(ri), (3)

The sum of the one-body Hamiltonian operators ĥ can be derived and follows from as-
suming a a Slater Determinant ΦA(r1, r2, . . . , rA) as the trial wave function (see Appendix
A). The goal is to find the eigenfunction corresponding to the lowest energy E0, which
approximates the exact ground state determined through the variational approach.

The expectation value of the Hamiltonian can be written in terms of the Slater determi-
nant as:

E = ⟨ΦA|Ĥ|ΦA⟩ (4)

=
A∑
i=1

⟨i|t̂i|i⟩+
1

2

A∑
i,j

[
⟨ij|V̂ |ij⟩ − ⟨ij|V̂ |ji⟩

]
1 (5)
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with ⟨ij|V̂ |kl⟩ =
∫∫

dr1 dr2 ϕ
∗
i (r1)ϕ

∗
j(r2)v(r1, r2)ϕk(r1)ϕl(r2). Since fermions are indis-

tinguishable, it is implied that the interaction is symmetric with respect to change of
coordinates which results in the symmetry of ⟨ij|V̂ |kl⟩ = ⟨ji|V̂ |lk⟩.

The variational method involves optimising the single-particle orbitals {ϕk}k=1,··· ,A. This
is done by minimising the energy functional E with respect to ϕk. This optimization
process seeks to find the single-particle orbitals that collectively minimize the energy
functional. The solution is obtained when

δE =
⟨ΦA|Ĥ|ΦA⟩
⟨ΦA|ΦA⟩

= δ

[
⟨ΦA|Ĥ|ΦA⟩ −

A∑
i

ϵi

∫
dr |ϕi|2

]
= 0

ϵi is the Lagrange multiplier that serves as a constraint to preserve the norm of each state
(
∫
dr|ϕi|2 = 1) during the variation process.

Since |ΦA⟩ is complex, the real and imaginary part can be treated independently. Solv-
ing the functional derivative E with respect to ϕi or ϕ∗

i yields equivalent result as the
Hamiltonian is hermitian.

Perfoming the variational approach to the kinetic energy term with respect to ϕ∗
k yields:

δ
A∑
i=1

⟨i|t̂i|i⟩ =
∫

∂

∂ϕ∗
k

[
ϕ∗
i t̂ϕi

]
δϕ∗

kr

=

∫
t̂ϕkδϕ

∗
kdr,

and for the first term in the potential shows:

δ
A∑
i,j

⟨ij|V̂ |ij⟩ =
∫

dr1

∫
dr2

[
A∑
i,j

ϕ∗
j(r2)v(r1, r2)ϕk(r1)ϕj(r2)

]
δϕ∗

k(r1)δi,k (6)

+

∫
dr1

∫
dr2

[
A∑
i,j

ϕ∗
i (r1)v(r1, r2)ϕi(r1)ϕk(r2)

]
δϕ∗

k(r2)δj,k (7)

= 2

∫
dr1

∫
dr2

[
A∑
j

ϕ∗
j(r2)v(r1, r2)ϕj(r2)

]
ϕk(r1)δϕ

∗
k(r1). (8)

where δa,b is the Kronecker delta, defined as δa,b =

{
1, if a = b

0, if a ̸= b
.

From the Born interpretation, the probability density of finding a particle at a given point
in space is given by the square of the magnitude of the wavefunction associated with that

1In Eq .5, the term ⟨ij|V̂ |ij⟩ suggests that interaction between two fermions in the same quantum
state i = j is possible. However, due to the inherent antisymmetry of the wave functions in the Slater
determinant, this term vanishes upon calculation. This ensure that Pauli exclusion obeyed, where no two
fermions can occupy the same quantum state simultaneously.
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particle. Thus, the particle density for a system with A particles is
∑A

i |ϕi(r)|2 = ρ(r).It
is noted that the integration of particle density results in the total number of particles∫
ρ(r)dr = A. Expressing Eq. 8 in terms of ρ(r) yields

δ
A∑
i,j

⟨ij|V̂ |ij⟩ = 2

∫
dr1VH(r1)ϕk(r1)δϕ

∗
k(r1),

with the Hartree potential denoted as VH(r1) =
∫
dr2v(r1, r2)ρ(r2).

Upon closer inspection, one would notice that the potential of a particle at r1 due to
interactions with other particles are described by ρ. Since ρ also includes the contribution
of the particle at r1, this would mean that the potential includes interaction of the particle
with itself (self-interaction), which is un-physical. This discrepancy is accounted for in
the latter potential term in Eq. 5.

Performing the variational method to the latter potential term leads to

δ

A∑
i,j

⟨ij|V̂ |ji⟩ = 2

∫
dr1

∫
dr2

[
A∑
j

ϕ∗
j(r2)v(r1, r2)ϕj(r1)

]
ϕk(r2)δϕ

∗
k(r1).

By introducing a non-local density term,
∑A

j ϕ∗
j(r2)ϕj(r1) = ρ(r1, r2), the equation sim-

plifies to

−1

2
δ

A∑
i,j

⟨ij|V̂ |ji⟩ =
∫

dr1

∫
dr2VF (r1, r2)ϕk(r2)δϕ

∗
k(r1).

where the Fock potential is expressed as VF (r1, r2) = −v(r1, r2)ρ(r1, r2).

By introducing the Fock operator V̂Fϕk(r) =
∫
VF (r, r

′)ϕk(r
′)dr′, the final expression is

obtained whereby the orbital is an eigenfunction of the Hamiltonian operator:[
t̂+ VH + V̂F

]
ϕk(r

′) = ϵkϕk(r
′).

The Hartree potential VH can be interpreted as a mean potential induced and experienced
by all particles in the system. The Fock term VF can be regarded as unique local potentials
which correct for the self-interacting problem encountered in VH . This is due to the "-"
sign in VF which takes into account for the antisymmetric nature of a fermionic system.

2.2 Pairing Correlations

Nucleons of opposite spin and momenta can be paired up to achieve lower energy states
compared to their unpaired counterparts, leading to a net lowering of the total energy
of the system. This effect is particularly evident in nuclei with even number of nucle-
ons. These interactions are described by the pairing correlations, defined as short-ranged,
attractive, nucleon-nucleon forces.

Within the Bogoliubov formalism, the sum over all possible pairs of nucleons leads to
the emergence of a collective superfluid state. This state is characterized by the coherent
motion of nucleon pairs and can be effectively described using quasi-particles [7].
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2.3 Hartree-Fock-Bogoliubov (HFB) and Hartree-Fock + BCS
(HF+BCS)

The Hartree-Fock-Bogoliubov (HFB) theory and the BCS (Bardeen-Cooper-Schrieffer)
theory both address pairing correlations within quantum many-body systems, but they
do so through different approaches. In the HFB theory, the Bogoliubov transformation
is applied to the Hartree-Fock Hamiltonian, incorporating pairing correlations within
the system. Conversely, in the HF+BCS approach, the pairing correlations are treated
subsequent to the HF calculation.

In the BCS model, the concept of quasi-particles treats the system’s ground state as a
"vacuum" with respect to these quasi-particles. Bogoliubov’s work introduced a linear
correlation between these quasi-particles and the "bare" particles of the system, effectively
incorporating the pairing correlations within the HFB approximation [7].

2.3.1 Hartree-Fock-Bogoliubov (HFB) Theory

The Hartree-Fock-Bogoliubov (HFB) theory involves applying the so-called Bogoliubov
transformation to the Hartree-Fock (HF) Hamiltonian to incorporate pairing correlations
within the system. This introduces a new field, known as the pairing field [7].

Within the HFB framework, the ground state of the many-body system, denoted as |0⟩,
is obtained as a vacuum or reference state with respect to the quasi-particles. The wave
function which fulfills this condition is called the HFB wave function, denoted as |Φ⟩. The
bare vacuum state represented by |−⟩ signifies the absence of particles. The ansatz for
the HFB ground state is then given by [7]:

|Φ⟩ =
∏
k=1

βk|−⟩, where βk|Φ⟩ = 0 for all k = 1, . . . ,M.

Here, βk represents the quasi-particle annihilation operator introduced in Appendix B.

Similar to the derivation of the HF equation, the general Hamiltonian applied here consist
of a one-body and two-body density dependent term [9]:

H =
∑
l1l2

tl1l2c
†
l1
cl2 +

1

4

∑
l1l2l3l4

vl1l2l3l4c
†
l1
c†l2cl4al3 ,

where vl1l2l3l4 = ⟨l1l2|v|l3l4⟩ − ⟨l1l2|v|l4l3⟩.

Analogous to the HF solution, the approximation of the exact ground state is obtained
using the variational approach [9]:

δE[ρ, κ] = δ
⟨Φ|H|Φ⟩
⟨Φ|Φ⟩

= δ

[
Tr

(
(t+

1

2
Γ)ρ− 1

2
∆κ∗

)]
= 0.
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With the self-consistent fields Γ and ∆ defined as:

Γij =
∑
kl

viljkρkl , ρkl = ⟨Φ|c†l ck|Φ⟩ =
(
V ∗V T

)
ij
,

∆kl =
1

2

∑
ij

vijklκkl , κij = ⟨Φ|clck|Φ⟩ = −
(
UV †)

ij
.

Here, ρ and κ denote the density matrix and the pairing tensor respectively. Γ represents
the self-consistent Hartree Fock (HF) field, while ∆ is the self-consistent pairing field.

Variation of E[ρ, κ] with respect to both ρ and κ results in the final HFB equation:(
ĥ− λ ∆̂

−∆̂∗ −(ĥ∗ − λ)

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
.

2.4 Skyrme Interaction

V =
∑
i<j

V (i, j)︸ ︷︷ ︸
two-body term

+
∑
i<j<k

V (i, j, k)︸ ︷︷ ︸
three-body term

(9)

The Skyrme interaction [10] provides a framework to describe the effective interaction
potential between nucleons within the nucleus. It is expanded from a general many-body
interaction represented by Eq. 9, comprising of both a two-body and a three-body term.
The two-body term is expanded in terms of low momentum in k-space, reflecting the
physical constraint that the nucleons are bounded within the nucleus and thus exhibit
limited momentum. The three-body term assumes a zero-range δ force, significantly
simplifying the expression.

The result of this expression yields several free parameters that are fitted to various
phenomenological data. Examples include the SkM* [11], SLY4 [12], and UNEDF0,1
[13, 14] parametrizations. Each parametrization corresponds to a specific set of coupling
constants that are fitted to experimental data such as nuclear binding energies, charge
radii, and excitation spectra. These parametrizations provide different levels of accuracy
and are tailored to different nuclear systems and phenomena.

The SLY4 parametrization focuses primarily on spectroscopic properties and equation of
state of neutron-rich matter such as neutron stars. On the other hand, UNEDF puts
emphasis on heavier and deformed nuclei for fitting, with the aim to achieve a more
accurate description of nuclear properties.

2.5 Multipole Moments and Beta Parameters

The multipole moment, Ql is an intrinsic quantity derived from an expansion in spherical
harmonics. It describes how the shape is deformed relative to a perfect sphere. In ex-
perimental settings, this amounts to the electric multipole moments, which correspond to
deviations in the charge distribution from spherical symmetry and can be measured using
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spectroscopic techniques. These measurements offer valuable insights into the complex
shapes of the nucleus.

With the assumption of axial symmetry, we define the quadrupole and octupole moment
operators, denoted as Q̂2 and Q̂3 respectively, in Cartesian coordinates as:

Q̂2 = ⟨2Z2 −X2 − Y 2⟩,
Q̂3 = ⟨Z(2Z2 − 3X2 − 3Y 2)⟩.

Here, Z represents the symmetry axis, while X and Y correspond to the perpendicular
axes.

The multipole moments can then be quantified by a unit-less deformation parameter βl

to describe the deformation of a nucleus while also accounting for volume conservation
[15]. The deformation parameter βl is defined here to be:

βl =

√
(2l + 1)π

3

Ql

A[R0]l
,

where A is the mass number of the nucleus, Ql is the intrinsic multipole moment of order
l, and the nuclear radius defined as R0 = 1.2[fm]. A detailed derivation of both Ql and
βl is provided in Appendix C.

Fig. 1: Visualization of common nuclear shapes represented by deformation parameters
βl using Eq. 10.

A radial function function depending on the polar angle [15],

R(θ) = R0

[
1 +

lmax∑
l=2

(
βlYl0(θ)−

[βl]
2

4π

)]
(10)

can be expressed in terms of spherical harmonics, Yl0(θ) and the deformation parameters,
βl to efficiently characterise the axially deformed shapes of nuclei. This is shown in Fig. 1,
which it illustrates various common nuclear shapes plotted using R(θ).
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2.6 Nilsson Model and the Particle + Rotor Model

The Nilsson model [16] is based on the combination of the deformed single-particle model
and the rotor scheme [17], which assumes that the valence nucleon moves in a deformed
potential created by a rotating even-even core. This integration enables the generalization
of the shell model to deformed nuclei, especially for odd-mass deformed nuclei. With the
assumption of axial symmetry, the total spin is given to be I = j + R. j represents the
single-particle angular momentum and R is the collective rotation of the system, which
is perpendicular to the symmetry axis (z-axis). This is illustrated in Fig. 2a).

Fig. 2: Visualization of the single-particle + rotor model with different coupling schemes.
a) General depiction of the model. b) Weak coupling scheme. c) Strong coupling scheme.

For small deformation (|β2| ≲ 0.1), we assume R = 0, as the moment of inertia J will be
small for a spherical nucleus. This is the case for nuclei with / close to closed shells. The
even-even core of the nucleus will have a larger energy spacing compared to the energy
spacing between the single-particle states. Hence, we get that I ≈ j. This is commonly
known as the "weak coupling" scheme, as depicted in Fig. 2b).

In the case of a well deformed nucleus, the "strong coupling approximation" is imple-
mented, as shown in Fig. 2c). It postulates that the projection of both I and j onto the
symmetrical axis, K and Ω respectively, would be equivalent K = Ω.2 This assumption
arises from considering R to be orthogonal to the symmetry axis and therefore does not
contribute to the projections. This configuration is found to have the lowest energy and
is expected to be favored in ground states [17]. It may also be appropriate to assume that
in the ground state, the core may rotate such that R cancels out jR, the projection of j
onto R, resulting in the lowest possible I. This leads to the approximation of I ≈ K in
this regime.

In the Nilsson model, each value of j corresponds to (2j+1) orbitals, which are represented
by sets of Nilsson quantum numbers. These sets of quantum numbers are denoted by
Ωπ[NnzΛ] in the cylindrical basis. N represents the principal quantum number and π is
the parity of states (−1)N . Assuming that the axis of the symmetry is the z-axis, Ω is the
projection of the s.p angular momentum j along the z-axis, nz is the number of quanta
along the z-axis of the anisotropic harmonic oscillator potential and Λ is the projection
of the orbital angular momentum onto the z-axis. The quantum numbers projected onto

2K and Ω may be used interchangeably in this scheme.
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the symmetry axis are considered approximately good quantum numbers. This means
that they remain unchanged throughout the system’s motion due to the assumed axial
symmetry.

Furthermore, K is equivalent to the band head’s angular momentum in a rotational band.
Consequently, the lowest band head corresponds to the ground state of an odd-mass
nucleus. This concept is vital for comparing our predictions to experimental data.
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3 Computational Programs
The computational programs implemented in this study consist of the HFBTHO codes,
namely HFBTHOv2 [18] and HFBTHOv4 [19] and the SkyAx code [20]. These codes were
chosen mainly due to their easy accessibility online and well-established benchmarks. We
assume default values for the parameters, unless specifically specified.

3.1 HFBTHO Code

HFBTHO [19, 18] is a computational code proficient at solving Skyrme-Hartree-Fock-
Bogoliubov (HFB) equations. It employs axial symmetry to reduce computational com-
plexity and utilizes a Harmonic oscillator basis for expanding quasi-particle wave func-
tions. The program achieves the self-consistent solution by iteratively diagonalizing the
HFB Hamiltonian using Skyrme-like energy densities and zero-range pairing interactions.
This approach accurately represents the system’s nuclear structure, especially in deformed
nuclei, while optimizing computational efficiency.

3.2 SkyAx Code

SkyAx [20] is a computational program designed to solve the Hartree–Fock (HF) equations
using a two-dimensional mesh, incorporating Skyrme functionals and axial symmetry.
Moreover, SkyAx includes pairing interactions separately using BCS theory. Unlike the
iterative diagonalization method used in the HFBTHO code, SkyAx employs a damped
gradient iteration method to approach the solution. This method not only requires less
computational resources but also enables SkyAx to be faster compared to HFBTHO.
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4 Findings
The range of Radium isotopes, from Ra212 to Ra228, serves as a starting point for this
analysis. Previous studies [21, 22] have highlighted this region for its notable octupole
deformation. Moreover, it includes isotopes known to exhibit extremely small parity
doublet separations [3].

4.1 Even Radium (Ra) Isotopes

To obtain a simplified overview of the Ra isotopes, we initially focused solely on constrain-
ing Q2. Additionally, we employed the Nilsson diagram to enhance our comprehension of
the correlation between the shapes and the energy of the nucleus.

Fig. 3: a) Plot showing quadrupole Q2 constraints of even Ra isotopes with octupole
Q3 = 0 obtained using HFBTHOv4, UNEDF1 and 16 oscillator shells. b) Diagram
depicting Nilsson orbitals plotted against β2 for neutrons, computed using HFBTHOv2,
SLY4, and 16 oscillator shells for Ra216.3

The isotopes presented in Fig. 3a) are denoted as A
ZXN , where A represents the total

number of nucleons, Z indicates the proton number and X is the element.

In Fig. 3a), a few distinct trends are apparent. Firstly, as the mass of the even Ra isotopes
increases, a consistent decrease of the energy minimas are observed. This is expected of

3It is important to note that β2 in Fig. 3 were computed from HFBTHOv2, and that β2 mentioned
here refers to these computed values.
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medium to heavy nuclei, as the nuclear binding energy per nucleon is fairly constant in
this regime ≈ 8MeV [7]. This explains the increased binding of nucleus and the relatively
uniform energy decrease when additional pairs of neutrons are added. Subsequently, there
is a clear shift to the right (β2 > 0) in the energy minima as mass increases, implying a
deformation towards more prolate shapes. As the isotopes deviate from the magic number
(N = 126), they become more deformed as it is much more energetically favourable. This
trend can be understood from Fig. 3b), where above N = 126, the single-particle states
become more bounded as β2 increases positively. Another interesting observation is that
Fig. 3a) suggests that Ra212 to Ra216 would likely have a spherical or relatively spherical
shape (β2 ≈ 0). The trend observed also suggests that the increase in β2 becomes less
pronounced as we move from Ra218 to Ra228, indicating a slower rate of change in
nuclear deformation compared to lighter isotopes. However, it’s important to note that
these findings offer only a partial understanding of isotope stability, as they solely focus
on the quadrupole moments.

For consistency, the labeling of the Nilsson orbitals in Fig. 3b) were obtained from the
solutions at which the quadrupole constraints were set to Q2 = 17, β2 ≈ 0.19. It was
observed that the Nilsson labels, computed by the HFBTHOv2 code, may vary depending
on the regions |β2| ≲ 0.1, |β2| ≲ 0.2, and |β2| ≳ 0.25.

Skyrme- Deformed Skyrme- Deformed
N, Orbital HFB Harmonic N, Orbital HFB Harmonic

Potential Osc. Potential Osc.

5, p1/2 1[501] 1[501]

7, j15/2

1[750] 1[770]

6, g9/2

1[660] 1[651] 3[741] 3[761]
3[651] 3[642] 5[752] 5[752]
5[633] 5[633] 7[743] 7[743]
7[624] 7[613] 9[734] 9[734]

9[615] 9[604]

6, i11/2

1[651] 1[640]
3[642] 3[631]
5[622] 5[622]
7[613] 7[624]
9[604] 9[615]
11[606] 11[606]

6, d5/2 1[640] 1[631]

Table 1: Comparison of relevant Nilsson labels obtained from the Skyrme-HFB potential
using HFBTHOv2 at β2 ≈ 0.19, and those derived from assuming a deformed harmonic
oscillator (Osc.) [23].

The experimental interpretations of this region |β2| ≲ 0.25 are often labeled using the
Nilsson assymptotic quantum numbers Ωπ[NnzΛ]. However, these quantum numbers ob-
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tained from self-consistent solutions with Skyrme interactions may deviate from the ones
obtained using a pure oscillator model. This is especially true for smaller deformations
|β2| ≲ 0.1. Therefore, Table 1 serves as a comparison of these Nilsson labels from both
approaches.

4.1.1 Shapes of Even Ra isotopes

To proceed with our investigation, a full HFB+BCS treatment was applied to these iso-
topes by utilising the SkyAx code.

Fig. 4: Cross-sectional density plot generated using SkyAx, UNEDF1. The colour map
here illustrates the density of the nucleus, ρ [nucleons/(fm3)]. The axis of symmetry and
the radial axes are represented by z and r respectively. Unlike β2, the negative sign for
β3 is not of any importance as it merely dictates the orientation of the symmetry axis.

The results are shown in Fig. 4. In this figure, Ra214 and Ra216 appear to exhibit little
to no deformation. As the mass increases from Ra218 to Ra228, the rate of increase
of β2 drops. The trends observed here appear to align well with our interpretation of
Fig. 3. With a full minimization, Ra218 to Ra228 were predicted to have an octupole
deformation. This octupole deformation, characterized by β3, is observed to increase from
Ra218 to Ra224, after which it starts to decrease.

The alignment of these trends indicate that the isotope with the largest β3 falls within
the range of Ra220 to Ra226, consistent with findings from previous studies [22, 24].

4.2 Analysis of Different Skyrme Models

The calculations for the octupole deformation of even Ra isotopes were performed on the
HFBTHOv2, HFBTHOv4, and the SkyAx codes. The HFBTHO codes were ran first with
constraints and without Lipkin-Nogami (LN) to probe the nuclei to be deformed, then
it is restarted with LN and applying "kick-off" mode, where the first 10 iterations are
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constrained and released thereafter. The Lipkin-Nogami (LN) method [25, 26] is applied
to approximately restore the particle numbers before variation.

When parity is broken, in the case of octupole deformed nuclei calculations, the centre of
mass of the nucleus may drift along the symmetric axis. This effect is mitigated in the
HFBTHO codes by constraining the dipole moment, Q1 to 0 throughout all calculations.
For the SkyAx code, this issue is inherently taken into account by a shift operator acting
on each single-particle wave function while also constraining Q1 to 0.

A recent study, on the basis of SLY4 and SKM* concluded that the octupole deformation
of Ra isotopes is highly dependent on the Skyrme parameterization [24]. Taking this into
consideration, the pairing interaction parameters for both neutrons and protons, denoted
by "vpair_n" and "vpair_p" were set to -258.2. This adjustment was then applied to all
proceeding HFBTHO calculations using the SLY4 parameterization. The pairig potentials
for the other parameterizations in both the HFBTHO and SkyAx codes were set as default
values.

The experimental data denoted as Exp. in Fig. 5 are derived from Ql values obtained
through experimentally fitted rotational models based on measurements of electric tran-
sitions [21]. Since these measurements only involve contributions from protons, we infer
that each nucleon equally contributes to the intrinsic multipole moment, which is then
converted to βl using Eq. 12. Additionally, alongside the experimental data, we use the
results from another nodel, namely the Finite-Range Droplet Model (FRDM) [27] as
a benchmark for our calculations. The FRDM employs a macroscopic-microscopic ap-
proach, which is based on the droplet model with finite-range nuclear forces to describe
nuclear properties.

In Fig. 5a) and b), both β2 and β3 were derived from the Q2 and Q3 values obtained
from the HFBTHO codes. It is gathered that these multipole moments Ql may have
been defined differently in the HFBTHO codes, with Q2 defined by Eq. 11 and Q3 by
Eq. 13. Consequently, β2 was calculated using Eq. 12, while β3 was derived from Eq. 13.
Additionally, both β2 and β3 values were directly obtained from the SkyAx results. Ac-
cording to the SkyAx documentations [20], the final definitions of βl should match those
calculated from the HFBTHO codes.
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Fig. 5: comparison of calculations using different Skyrme functionals and codes with
experimental data and results from the FRDM, showcasing β2 and β3 values plotted
against Ra isotopes. The experimental data is denoted as (Exp.).

Comparing the results presented in Fig. 5, it is evident that, with the exception of FRDM,
HFBTHOv2:SLY4, and SkyAx:UNEDF1+LN, the examined models consistently predict
Ra224 to have the highest β3 value. However, FRDM and SkyAx:UNEDF1+LN differ,
suggesting Ra222, while HFBTHOv2:SLY4 predicted the peak to be at Ra226, in agree-
ment with previous calculations which also incorporated a lower pairing potential for SLY4
[24]. Experimental findings suggest an increase in β3 from Ra224 to Ra226 [28], which
is only predicted by HFBTHOv2:SLY4. These predictions regarding the region of largest
β3 are also consistent with results from previous studies [22, 24]. It is worth mentioning
that despite numerous attempts, the self-consistent solution of the HFBTHOv4:UNEDF1
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model for Ra228 failed to converge.

In Fig. 5c), the SkyAx models illustrate the influence of incorporating LN (Lipkin-Nogami)
corrections in the calculations. It is observed that both models, when including LN,
predict values closer to the experimental data compared to their counterparts without
LN corrections. Additionally, It was noted in the SkyAx documentation [20], that the
pairing interaction is defined differently for different Skyrme parameterizations for the
code. The pairing potential for SkyAx is density dependent while UNEDF1 assumes a
delta-function.

The tabulated results from both the HFBTHO codes are gathered in both Table 3 and 4
for reference.

4.3 Odd Radium (Ra) Isotopes

4.3.1 Initial Survey of Odd Ra Isotopes Using Quasi-particles

A preliminary analysis of the odd Ra isotopes was conducted using the quasi-particle
approach in the HFBTHO code. This method treats quasi-particles as "blocking candi-
dates", allowing for the addition or removal of a quasi-neutron from an even nucleus. The
term "blocking candidates" refer to specific quasi-particle states energetically favoured by
the valence neutron. The HFBTHO codes are capable of listing out these states within
2MeV of the neighbouring even nucleus it computes on, provided that it is activated. How-
ever, comprehensive self-consistent calculations for odd systems have not been extensively
explored due to the considerable time investment required.

The "blocking candidates" described below were directly obtained from calculations on
even Ra isotopes using the HFBTHOv2 code. In this analysis, we assumed that a nucleon
is removed from a filled orbital.

Ground state Ψ0 First excited band head Ψ1

Isotopes
Iπ Interpretation Iπ Interpretation

Ra215 9/2+ ν (g9/2+) - -
Ra217 9/2+ ν (g9/2+) 11/2+ ν i11/2+

Ra219 I = 7/2+, K = 1/2,
ν (1+[651])*, i11/2+ ; I = 9/2+, K = 5/2,

ν (5+[633])*, g9/2+

Ra221 5/2+ ν (5+[633]), g9/2+ 5/2− ν (5-[752])*, j15/2−*
Ra223 3/2+ ν (3+[631]), i11/2+ 3/2− ν (3-[761]), j15/2−
Ra225 1/2+ ν (1+[640])*, d5/2+* 3/2− ν (3-[741])*, j15/2−*
Ra227 3/2+ ν (3+[631]), i11/2+ 5/2+ ν (5+[633]), g9/2+

Table 2: Experimental data for j and K quantum numbers obtained from [29] and find-
ings for Ra219 from [29, 30]. In this table, ν represents the valence neutron placed in
the specified Nilsson orbital configuration 2Ωπ[N nz Λ]. The asterisk (*) indicates the
interpretation and labels based on experimental I, Fig. 3b) and Table 1.
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From the tabulated data in Table 2, the lowest-lying band head of the rotational bands
from experimental data [29] is treated as the ground state, Ψ0, while the subsequent
lowest-lying band head is represented as Ψ1. In Section 2.6, it was inferred that the
total spin of the system, denoted as I, is interpreted here as j for Ra215 and Ra217,
which exhibit little to no deformation. However, for Ra221 to Ra227, where stronger
deformations are observed, I is treated to be K instead.

Since Ra219 lies within the transitional region, it is treated differently. The Ra219 data,
highlighted in blue in Table 2, presents the interpretation of experimentally observed I
from a recent study [30].

Fig. 6: Quasi-neutron energy calculations for Ra215 to Ra227, obtained from neighbor-
ing even nuclei using HFBTHOv2 with different Skyrme functionals: (a) SLY4 and (b)
UNEDF0. The Nilsson labels are represented as 2Ωπ[N nz Λ] and are obtained from the
code. The excitation energy here is taken to be the difference between the quasi-neutron
energy and the predicted ground state energy. 4

Fig. 6 designates three regions based on the predicted shape of the nuclei: Spherical,
Transition, and Well Deformed. In the Spherical region, only the j-shells were considered
for these nuclei with small deformations (|β2| ≲ 0.1). For well-deformed nuclei, Nilsson
labels were employed to characterize the valence neutron. Within the spherical region,
both models predicted g9/2+ as the ground state, agreeing with experimental observa-
tions. The subsequent arrangement of j-shells of both predictions are the same albeit the
energy gaps between subsequent j-shells differ. With SLY4 having a larger gap between

4Ra217 has been left out and discussed separately in Fig. 7.

20



g9/2+ and i11/2+, while UNEDF0 has a larger energy gap between i11/2+ and j15/2−.

In the transition region, a ground state K = 5/2 of Ra219 was predicted by both models,
although the Nilsson labels differ. The predicted K = 5/2 state agrees with the inter-
pretation for the experimentally observed first excited band head with I = 9/2+, based
on theoretical calculations from recent study [30]. This is inferred to be the odd neutron
occupying the g9/2+ orbital with K = 5/2. In Fig. 3, this is labeled as 5+[633], according
to Table 1. The experimentally observed I = 7/2+ is deduced to stem from the valence
neutron occupying the i11/2+ orbital with K = 1/2. This orbital labeled as 1+[651] in
Fig. 3 is predicted to be close to the ground state for both models, matching experimental
observations [29]. The energy for the predicted 1+[651] state is approximately 6.4keV
and 31.4keV respectively for SLY4 and UNEDF0.

In the well-deformed region, both models predicted Ra221 to have a ground state based on
K = 5/2, in agreement with experimental observations, despite originating from different
orbitals, as shown in Fig. 6. The experimental band head state interpreted as origi-
nating from 5+[633] was also anticipated by both interactions albeit at higher energies
(SLY4=1131.69keV, UNEDF0=788.489keV). The subsequent experimentally observed
band head with I = 5/2−, inferred to stem from 5-[752], was also found by both models
(SLY4=1784.6keV, UNEDF0=1222.52keV).

For Ra223, both models predicted a state with K = 3/2, closely situated to the predicted
ground state at 24.1258keV and 10.0607keV for SLY4 and UNEDF0 respectively. This
aligns with the 3+[631] state, deduced from experiment. This orbital is labeled as 3+[642]
in Fig. 6 as referenced from Table 1. The next lowest band head observed in the experiment
originates from occupying the 3-[761] orbital. This orbital, identified as 3-[741] in Fig. 6,
was not predicted by either models.

Based on the experimentally observed I = 1/2+, the ground state for Ra225 was inferred
to derive from occupancy of the 1+[640] orbital. This is in agreement with the predictions
of both models. However, the subsequent observed band head, deduced to be attributed
to the 3-[741] orbital from Table 1 and Fig. 3, was not found by both models.

The calculated ground state of Ra227 from both interactions was obtained to be 1+[631],
as shown in Fig. 6. Meanwhile, the lowest-lying band head observed experimentally is
interpreted to arise from 3+[631], depicted as 3+[642] in Fig. 6, according to Table 1. This
configuration is predicted by both models, with 3+[642] being much closer to the ground
state for UNEDF0 (at 262.543keV), while SLY4 at 749.057keV. The following band head
from experiment, deduced to originate from 5+[633] was also successfully found by both
interactions, however, at lower energies compared to the 3+[642] state (SLY4=362.056keV
and UNED0=213.368keV).

Experimental observations have indicated the presence of parity doublets I = 3/2± and
I = 1/2± in Ra223 and Ra225, respectively [3, 6]. However, these parity doublets are
not predicted by our calculations, as parity is not restored in this analysis. Only upon
restoration would each mean-field state provide two experimentally observed states (parity
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doublets). A simplified comparison, focusing only on the ground states and the first two
excited states of the Ra isotopes in the well deformed region is presented in Appendix D
Fig. 9.

Fig. 7: Comparison between quasi-neutron energies predicted by both neighbouring even
isotopes of Ra217 and experimental data of Ra217 [29], denoted as (Exp.). The predictions
are obtained from the solutions of HFBTHOv2 employing SLY4.

The Exp. energy levels depicted in Fig. 7 were interpreted in similar fashion as in Table
2. The ground state is inferred as the lowest-lying band head observed in the experiment,
and the subsequent states are identified as the next lowest band heads.

Fig. 7 presents the quasi-neutron energy calculations for the even Ra isotopes, Ra216 and
Ra218, denoted as (216+q.p) and (218-q.p) respectively, alongside experimental data for
Ra217. Starting from the deformed Ra218 (218-q.p), we plotted all the quasi-neutron
energies, with coloured labels indicating the interpreted lowest K originating from each
j-shell: g9/2+, i11/2+, and j15/2− based on Fig. 3 and Table 1.

It is observed in Fig. 7 that (216+q.p) displays large energy gaps with degenerate orbital
energy levels, resembling Fig. 3b) at β2 = 0. At (218-q.p), energy gaps between these
interpreted orbitals appear to lie closer to experimental values and the energy levels appear
more spread out, resembling those in the well-deformed region presented in Fig. 6.

These observations suggest that Ra217 may occupy a transitional region. It was also
highly predicted in Fig. 5 that the Radium isotopes start to deform after Ra216, further
corroborating this notion.
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5 Conclusion
Nuclei undergoing spontaneous symmetry breaking adopt a pear shape. Upon symme-
try restoration, this leads to the formation of closely spaced parity doublets, resulting
in a heightened sensitivity to CP-violating effects. In this work, the utilization of low-
momentum Skyrme-type interactions has proven effective in predicting the shapes of Ra-
dium nuclei, reproducing observed trends in nuclear structure. In addition, the predic-
tions of spins for both the ground state and excited state have been shown to be in good
agreement with experimental observations. This study has also demonstrated that the
octupole deformation is highly sensitive to the strength of pairing potential, with the
HFBTHOv2:SLY4 model using modified pairing potential exhibiting the highest perfor-
mance.

Based on these findings, we advocate for further exploration through full many-body calcu-
lations, employing these inter-nuclear potentials and incorporating symmetry restoration
techniques. Emphasizing the optimization of pairing potential strengths and conducting
systematic assessments of nuclear Schiff moments is expected to yield significant advances
in our understanding of CP-violation.
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Appendix A: Slater Determinant
A Slater determinant is described as an anti-symmetrized product of single-particle wave
functions to describe a multi-fermionic system with A particles [9]:

ΦA(r1, r2, . . . , rA) = A [ϕ1(r1)ϕ2(r2) . . . ϕA(rA)] ,

The operator A in the expression ensures that all possible permutations of the single-
particle wave functions are considered, while also normalizing the Slater determinant to
fulfill the anti-symmetric condition:

ΦA(r1, r2, . . . , rA) =
1√
A!

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕA(r1)
ϕ1(r2) ϕ2(r2) · · · ϕA(r2)

...
... . . . ...

ϕ1(rA) ϕ2(rA) · · · ϕA(rA)

∣∣∣∣∣∣∣∣∣
Appendix B: Bogoliubov Operators
The quasi-particle operators are obtained through a linear transformation from the bare
particle operators5 cl and c†l given by [7]:

β†
k =

∑
l

Ulkc
†
l + Vlkcl.

Here, U and V represent coefficients required to fulfill fermionic commutation rules. Both
indices k and l span the configuration space from 1 to M . The configuration space here has
dimension M which depends on the number of oscillator shells, N0 used in calculations.
This transformation results in operators acting on a 2M -dimensional space:(

β
β†

)
=

(
U † V †

V T UT

)(
c
c†

)
= W†

(
c
c†

)
,

where W is defined as:
W =

(
U V ∗

V U∗

)
.

This linear relationship connects the quasi-particle operators (β, β†) with the particle
operators (c, c†).

5cl and c†l are known as the particle creation and annihilation operators, βl and β†
l are known as the

quasi-particle creation and annihilation operators.
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Appendix C: Derivation of Multipole Moments and Beta
Parameters
In general, if an axial symmetry is assumed, the multipole moment operators, Ql can be
written in the form:

Q̂l = ⟨rlYl0(θ)⟩,

where rl represents the radial part of the multipole moment operator and Yl0(θ) is the
spherical harmonic function symmetric around the Z−axis.

To simplify the expression, Yl0(θ) can be rewritten using legendre polynomials as:

Yl0(θ) =

√
2l + 1

4π
Pl(cos(θ)).

Pl(cos(θ)) is the associated Legendre polynomial of degree l.

It is convenient to incorporate an additional factor of
√

16π
2l+1

into Q̂l, which simplifies the
operators to:

Q̃l = ⟨2rlPl (cos(θ))⟩. (11)

The additional factor incorporated provides a simpler expression when transformed in
cartesian coordinates using cos(θ) = Z/r and r =

√
X2 + Y 2 + Z2 leads to:

Q̃2 = ⟨2Z2 −X2 − Y 2⟩
Q̃3 = ⟨Z(2Z2 − 3X2 − 3Y 2)⟩.

The beta parameters βl is derived from the expansion of the multipole moment Ql:

Q̃2 =
A
∫ 2π

0

∫ π

0

∫ R(θ)

0

[
r2 sin(θ)Q̂2

]
drdθdϕ∫ 2π

0

∫ π

0

∫ R(θ)

0
r2 sin(θ) drdθdϕ

=

(
3A[R0]

2

√
5π

β2 +
6A[R0]

2

7π
β2
2 +O[β2]

3

)
+

(
4A[R0]

2

5π
+

117A[R0]
2

22
√
5π3/2

β2 +
1431A[R0]

2

910π2
β2
2 +O[β2]

3

)
β2
3 +O[β3]

3,

Q̃3 =
A
∫ 2π

0

∫ π

0

∫ R(θ)

0

[
r3 sin(θ)Q̂3

]
drdθdϕ∫ 2π

0

∫ π

0

∫ R(θ)

0
r2 sin(θ) drdθdϕ

=

(
3A[R0]

3

√
7π

β3 +O[β3]
3

)
+

2
√

5
7
A[R0]

3

π
β3 +O[β3]

3

 β2

+

(
445A[R0]

3

44
√
7π3/2

β3 +O[β3]
3

)
β2
2 +O[β2]

3.
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Here, R(θ) is the nuclear radius depending on the polar angle θ. This is expressed in
terms of βl,

R(θ) = R0

[
1 +

lmax∑
l=2

(
βlYl0(θ)−

[βl]
2

4π

)]
, where R0 = 1.2[fm]A

1
3 .

Taking only the first-order in the expansion, the general form for βl (for l = 2, 3) is defined
as

βl =

√
(2l + 1)π

3

Q̃l

A[R0]l
. (12)

Using the definition of Ql = rl
√

2l+1
16π

Pl (cos(θ)) would instead yield:

βl =
4π

3

Ql

A[R0]l
. (13)
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Appendix D: Supplementary Plots

Fig. 8: This plot is the same as Fig. 3a), but with the addition of experimental data[31]
for comparison, indicated by the blue lines ( ).

27



F
ig

.
9:

C
om

pa
ri

so
n

of
bo

th
SL

Y
4

an
d

U
N

E
D

F
0

pr
ed

ic
ti

on
s

ob
ta

in
ed

fr
om

Se
ct

io
n

4.
3.

1
ag

ai
ns

t
ex

pe
ri

m
en

ta
l
(E

xp
.)

da
ta

[2
9]

fo
r

R
a2

21
to

R
a2

27
.

T
he

pl
ot

s
de

pi
ct

th
e

ev
ol

ut
io

n
of

th
e

in
te

rp
re

te
d

sp
in

s
K

fr
om

th
e

gr
ou

nd
st

at
es

to
th

e
se

co
nd

ex
ci

te
d

st
at

es
,

re
pr

es
en

te
d

by
th

e
co

nn
ec

ti
ng

lin
es

.
T

he
fir

st
an

d
se

co
nd

ba
nd

he
ad

s
fr

om
E

xp
.d

at
a

ar
e

in
fe

rr
ed

to
be

th
e

fir
st

an
d

se
co

nd
ex

ci
te

d
st

at
es

,r
es

pe
ct

iv
el

y.

28



Appendix E: Tabulated Results and Data
SLY4, No = 20

Ra Q2 (fm2) Q3 (fm3) β∗
2 β2 β3 B.E (MeV)

212 59.337 0.003 0.007064 0.007 0.000 -1636.598237
214 3.580 0.001 0.00042 0.000 0.000 -1653.609856
216 5.919 0.002 0.000683 0.001 0.000 -1664.850360
218 922.407 1787.047 0.104112 0.107 0.091 -1676.453180
220 1227.410 2462.391 0.135640 0.140 0.123 -1688.711284
222 1450.699 2970.456 0.157176 0.164 0.146 -1700.050138
224 1656.612 3379.353 0.176059 0.184 0.163 -1710.693816
226 1867.562 3496.320 0.194869 0.204 0.166 -1720.842240
228 2061.648 2850.745 0.211721 0.222 0.133 -1730.431135

UNEDF0, No = 20

Ra Q2 (fm2) Q3 (fm3) β∗
2 β2 β3 B.E (MeV)

212 16.365 0.011 0.001953 0.002 0.000 -1641.378739
214 4.326 0.008 0.000508 0.001 0.000 -1658.210568
216 7.429 0.004 0.000859 0.001 0.000 -1670.940753
218 805.795 2022.049 0.091047 0.094 0.103 -1683.448688
220 1131.728 2486.98 0.125223 0.130 0.125 -1695.921126
222 1374.331 2787.868 0.149067 0.155 0.137 -1707.841926
224 1571.822 3001.201 0.167296 0.175 0.145 -1719.145022
226 1768.366 2939.249 0.184884 0.193 0.139 -1729.878966
228 1996.796 2332.747 0.205295 0.215 0.109 -1740.237210

Table 3: Tabulated results for Ra212 to Ra228 from HFBTHO v2 calculations with
different Skyrme interactions. No represents the number of oscillator shells, β∗

l is obtained
directly from the code, βl is calculated from the multipole moments Ql as defined in
section 4.2, and B.E represents the total binding energy of the nucleus.
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SLY4, No = 20

Isotope Q2 (fm2) Q3 (fm3) β∗
2 β2 β3 B.E (MeV)

212 59.338 0.000 0.007064 0.007 0.0 -1636.598238
214 3.580 0.000 0.000420 0.000 0.000 -1653.609856
216 5.920 0.000 0.000683 0.001 0.000 -1664.850360
218 921.944 1756.280 0.104063 0.107 0.090 -1676.452798
220 1224.698 2356.057 0.135365 0.140 0.118 -1688.711078
222 1445.533 2800.396 0.156669 0.163 0.138 -1700.048435
224 1647.147 3117.876 0.175160 0.183 0.151 -1710.690843
226 1850.799 3106.656 0.193326 0.202 0.147 -1720.837233
228 2037.009 2322.095 0.209520 0.220 0.108 -1730.424945

UNEDF0, No = 20

Isotope Q2 (fm2) Q3 (fm3) β∗
2 β2 β3 B.E (MeV)

212 16.365 0.000 0.001953 0.002 0.000 -1641.378739
214 4.326 0.000 0.000508 0.001 0.000 -1658.210568
216 7.429 0.001 0.000859 0.001 0.000 -1670.940753
218 800.042 1909.394 0.090438 0.093 0.097 -1683.447619
220 1130.175 2406.602 0.125066 0.129 0.121 -1695.920766
222 1373.789 2732.421 0.149014 0.155 0.134 -1707.841725
224 1571.422 2948.646 0.167258 0.174 0.142 -1719.144830
226 1767.895 2879.956 0.184840 0.193 0.137 -1729.878761
228 1994.866 2198.639 0.205120 0.215 0.103 -1740.236459

UNEDF1, No = 20

Isotope Q2 (fm2) Q3 (fm3) β∗
2 β2 β3 B.E (MeV)

212 12.062 0.000 0.001435 0.001 0.0 -1644.294624
214 4.25 0.00 0.000498 0.001 0.0 -1660.524879
216 8.547 0.000 0.000985 0.001 0.0 -1672.465875
218 830.188 1391.441 0.093666 0.096 0.071 -1683.767450
220 1183.157 2185.961 0.130618 0.135 0.109 -1696.159764
222 1424.646 2612.289 0.154145 0.161 0.128 -1707.892353
224 1633.792 2846.424 0.173426 0.181 0.138 -1718.970156
226 1840.592 2619.605 0.191954 0.201 0.124 -1729.534512
228 - - - - - -

Table 4: Same as Table 3 but instead with HFBTHO v4.
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Isotope Half-life (Units)

Ra212 13.0 seconds
Ra213 2.73 minutes
Ra214 2.4 seconds
Ra215 1.66× 10−3 seconds
Ra216 1.82× 10−7 seconds
Ra217 1.6× 10−6 seconds
Ra218 25.9× 10−6 seconds
Ra219 9.0× 10−3 seconds
Ra220 1.8× 10−4 seconds
Ra221 28 seconds
Ra222 33.6 seconds
Ra223 11.4 days
Ra224 3.6 days
Ra225 14.9 days
Ra226 1.6× 103 years
Ra227 42.2 months
Ra228 5.75 years

Table 5: Lifetimes of Radium Isotopes. [29]
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