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Abstract

As the problem of memory-safety continues to pose a significant threat to the
software ecosystem, developers need to consider strategies to address these vul-
nerabilities. For high-performing applications built on the C/C++ programming
languages, solutions have to be easy to adapt without compromising too much on
performance. In this thesis, high-performing 5G software is evaluated using the
CHERI hardware architecture designed to significantly improve memory-safety.
The research was based on two metrics: The required effort to port the software
and the overhead of the memory-safe architecture compared to the standard im-
plementation. The results show that only around 1% of the total lines of code
had to be re-written for the program to successfully run. The overhead of the
two measurements of the benchmark were 38% and 53% compared to baseline,
and are believed to come from addressable architectural limitations.

Keywords: Memory-safety,CHERI,AArch64,5G,C,C++
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Chapter 1

Introduction

In a presentation at the 2019 BlueHat conference, Matt Miller, speaking on behalf of Mi-
crosoft presented an analysis of common vulnerabilities and exposures in their software and
services. The report showed that around 70% of the vulnerabilities addressed through a se-
curity update each year are related to memory safety issues[18]. The main root causes were
heap corruptions, use-after-free, type-confusions and uninitialized use-related vulnerabili-
ties, also showing that spatial safety issues were the most pervasive vulnerability category[18].
Four years later in December of 2023, the National Security Agency (NSA) with its partners
released "The Case for Memory Safe Roadmaps” Cybersecurity Information Sheet (CSI)",
stating that "The authoring agencies recommend software manufacturers evaluate multiple MSLs be-
fore integrating them into their programs of work"[1], MSL being an abbreviation for memory-safe
languages. These warnings show authorities’ clear stance on memory-safety, the prevalence of
memory-safety vulnerabilities in the software ecosystem and the importance for companies
to take these vulnerabilities seriously.

There are several programming languages that solve the problems of memory-safety. Lan-
guages Like Java, C# and Go are instances of inherently memory-safe languages[19]. In ad-
dition, Rust has emerged in recent years as a fast, memory-safe language. By utilizing the
ownership-based resource management design, an owner is introduced to each value which
prevents memory-safety issues such as dangling pointers, buffer overflow/over-reads and
uninitialized memory accesses[26]. Regardless, C/C++ are still some of the most widely used
programming languages in the IT industry[17], meaning that these issues are unlikely to go
away any time soon.

Over the past decade, researchers from SRI International and the University of Cam-
bridge have been researching and developing the Capability Hardware Enhanced RISC In-
structions (CHERI) architecture as a proposed solution to memory-safety related attacks for
historically memory-unsafe languages such as the C/C++ programming languages[20]. With
the launch of the Arm Morello CPU, companies can now implement and evaluate the per-
formance of software on physical CHERI-supported hardware. Should existing applications
be viably portable to CHERI while achieving satisfactory performance it could potentially
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1. Introduction

have a significant impact on the global software ecosystem for C/C++ applications that would
otherwise be conceivable victims of exploitable memory-safety vulnerabilities.

1.1 Research Objective
The aim of this master’s thesis is to investigate the portability and performance of CHERI by
applying it to 5th generation telecommunications software. In order to limit the scope of this
thesis, the program is assumed to achieve memory-safety directly by compiling the program
with pure-capabilities, relying on the Formal proofs of the Morello security properties[11]. Any
required manual change was documented and explained. The portability metric was assessed
by evaluating the required technical effort to retrofit the 5G applications to be run on the
Morello board. More specifically, how much in the source code must be added or changed
for the program to properly run. The performance is determined by running the program
on a benchmark test and analyzing completed instructions, the cycle count and performance
events through the built-in Arm performance counters.

1.1.1 Contribution to Research
Since the CHERI architecture can achieve memory safety for C/C++ applications without
having to re-write the entire code base to a different language, it is a particularly attractive
prospect for developers looking to improve software security. This thesis aims to serve as
a practical example of how an industry application can be ported and run on the memory-
safe CHERI architecture. Another desired outcome is to provide companies, researchers and
other entities interested in this technology with valuable insights into how CHERI-compiled
C/C++ based programs perform in relation to a conventional C/C++-compiled program.

1.1.2 Research Questions
1. Can 5G software be ported and run on the CHERI architecture?

2. How does the CHERI architecture affect the performance of critical base-station soft-
ware?

3. How does the performance of the ported pure-capability 5G software compare against
other existing CHERI benchmarks?

1.2 Related Work
Although there are several scientific reports on the performance and security around CHERI,
there has been limited published research on how the architecture works in practice for soft-
ware applications in the industry.
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1.2 Related Work

1.2.1 CHERIoT
CHERIoT: Complete Memory Safety for Embedded Devices is an article published in collaboration
with and the CHERI research team at the University of Cambridge as well as researchers
from ARM, Microsoft and Google[2]. The article presented an adaption of the CHERI-
architecture for embedded systems and evaluated it on an end-to-end IoT application. The
report demonstrates that an fine-grained memory protection safety can be enforced with a
capability-based ISA extension, co-designed with an RTOS and compartmentalization model[2]. The
report also show that strong security guarantees can be provided with modest hardware cost,
and presents hardware extensions designed to improve the performance of a safe, shared heap.
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Chapter 2

Background

2.1 Computer Architecture and Organization
A computer implementation can be divided up into two parts: organization and hardware[12].
Organization, also called the microarchitecture, defines high-level components of a computer
such as the internal design of the CPU and the memory system. Hardware, on the other hand
refers to detailed the logic design and packaging technology[12], such as integrated circuits.

2.1.1 Instruction Set Architecture
Instruction Set Architecture (ISA) is a component in the computer that can be viewed by the
programmer. The principles of ISA can be understood by studying the Reduced Instruction
Set Computer (RISC) and the five stages necessary to execute an instruction[12]:

Instruction Fetch (IF) fetches the next instruction from memory.

Instruction Decode (ID) decodes the instruction fetched. If the instruction is based on a
condition, this stage tests the condition to see if a branch operation should be per-
formed.

Execution (EX) executes the instruction using the Arithmetic Logical Unit (ALU). In this
stage, arithmetic expressions, either on data in registers or on immediate, sign-extended
instructions.

Memory Access (MEM) can read and write to memory. For a load instruction, the memory
fetches data from the desired memory address.

Write-back (WB) writes the result of the instruction operation to the register specified in
the instruction.

11



2. Background

To maximize the use of these stages, the instructions are pipelined, meaning that as soon
as an instruction goes from the IF stage to the ID stage, the IF stage can accomodate a new
instruction. Therefore, a five-stage instruction pipeline can execute a maximum of five in-
structions in one clock cycle[12].

2.1.2 Instruction stalls
In a perfectly pipelined CPU core, one instruction will be executed in each pipe stage and
all resources will constantly be occupied with a task. However, there are situations where a
stage is unable to perform useful work and is forced to wait one cycle or more. For this rea-
son, a stall is introduced which means that the CPU waits until it can perform useful work
again. The stalls that can appear in a CPU can be divided into two categories: frontend stalls
and backend stalls. Frontend stalls concern the instruction fetch stage and the instruction
decoder stage, whereas backend stalls concern the execution stage, memory stage and write-
back stage. An example of how the frontend and backend stalls are divided is displayed in
Figure 2.1.

A branch-misprediction is one example of a frontend stall. This happens for instance
when a superscalar CPU expects a logical if-statement to be true and starts fetching instruc-
tions from that branch. If the logical statement turns out to be false, all the fetched in-
structions have to be disregarded and new instructions have to be fetched, leading to wasted
clock-cycles and additional stalls. The backend stalls concerns data-related stalls. When
cache-misses occur, the CPU has to wait for the cache to refill the new data, and if other
instructions depend on the fetched data they too have to stall. Backend stalls are also defined
as each stalled CPU cycle where no micro-operations can be issued due to the fact that no
micro-operations can write its results nor complete its execution[13]. Instructions that have
reached the end of their pipeline stage in this way are described as "retired".

Figure 2.1: A representation of the Front and Backend of an Arm
v8.2 Carmel CPU core. Image taken from the report Memory-Aware
Fair-Share Scheduling for Improved Performance Isolation in the Linux
Kernel [link]
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2.1 Computer Architecture and Organization

2.1.3 Clocking Methodology
Reading and writing of data has to happen in a predictable, structured way in order to avoid
undefined behavior. To create this predictability, there has to be a mechanism in the com-
puter that describes when signals can be read and written. This is where the clocking method-
ology comes in: to determine when data is stable in relation to the clock and to ensure data
validity[9]. The edge-triggered clocking methodology is one instance of such a mechanism,
where stored values may only be updated at a clock edge, represented by an alternating con-
trol signal[9]. A visual representation of the edge-triggered clocking methodology is pre-
sented in Figure 2.2.

Figure 2.2: A representation of the edge-triggered clocking method-
ology.

2.1.4 Memory Hierarchy
In order to utilize resources efficiently, computer memory is divided up as a hierarchy. The
top layer which lies closest to the Central Processing Unit (CPU) is small but fast, whereas
each consecutive level becomes larger and slower in access time[4]. The main memory, or
Random Access Memory (RAM) stores memory words in a binary representation called a cell,
which can store 2n elements and represent it as information[5]. The memory cells propagate
over data buses, which are a number of physical wires. The RAM is volatile, meaning that the
information will be lost once the power supply is disconnected, in contrast to non-volatile
memory such as memory on the disk.

The memory unit that succeeds the RAM in a typical memory hierarchy is called a cache.
The practical application of caches is based on two principles: Temporal locality, or the con-
cept that memory which has been reached is likely to be referenced again in the near future,
and spatial locality, the idea that memory which is physically close in proximity to the fetched
memory is likely to be referenced in the near future[4]. Therefore, the cache memory is kept
smaller than the main memory unit, thus requiring less clock cycles for loads and stores if the
memory exists in the cache. Upon a cache miss when the desired information is not located,
the cache fetches a line, which is a set of adjacent words, from the memory[4]. A computer
usually consist of three caches, where the third level cache can be shared between multiple
CPU:s.

In the top layer lie the special memory registers, which are responsible for direct com-
munication with the CPU[22]. For instance, the Instruction Register (IR) holds the current
instruction being executed, while the Program Counter Register (PC) holds the address of
the instruction[22]. These registers are typically small, but data is also very fast to access.
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2. Background

2.2 Memory safety
A program has the property of memory safety when it ensures that every memory access
is well defined as per the specification of the language[19]. This property is violated when
memory accesses either happen to access memory locations that have not yet been allocated
or having been freed which is called temporal safety violation, or when memory is accessed
beyond the memory that has been specifically allocated for the program, called a spatial safety
violation[19]. Memory-safe programming languages such as Java, C# and Go enforce mem-
ory safety. However, the C/C++ languages do not provide any information about whether a
specified memory region is safe to access, exacerbated by type casts between pointers and the
conflation between arrays and pointers[19].

An instance of a spatial safety violation is heap overflow, when out-of-bound memory
access is done as a result of insufficient bound checking for memory that has been allocated
to the heap[14]. An example of a heap overflow safety-violation is presented in listing 2.1.

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4

5 int main () {
6 char* buffer = (char *) malloc (10 * sizeof (char));
7 strcpy (buffer , "Hello");
8 // Attempt to copy more data into the buffer than its allocated

size
9 strcat (buffer , " world! This is a heap overflow violation .");

10 printf (" Buffer contents : %s\n", buffer );
11 free( buffer );
12 }

Listing 2.1: An example of a heap overflow

2.3 CHERI
2.3.1 Design goals
The University of Cambridge had the following design goals as a framework for what would
become the CHERI architecture: Fine-grained memory protection, software compartmen-
talization, formal modeling and verification and a viable transition path. A short explanation
of the design goals follow[24]:

Fine-grained memory protection aims to improve software resilience by addressing vulner-
abilities caused by low-level bugs, such as buffer overflows as well as control-flow and
pointer corruption. The objective of the CHERI-memory protection is to maintain
the integrity, provenance and monotonicity of pointers, meaning that pointers should
be unforgeable and restricted only to access their designated memory space.

Software compartmentalization aims to encapsulate memory and software into isolated com-
ponents to reduce the impact of security vulnerabilities. This is achieved through in-
address-space protection.
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2.3 CHERI

Formal modeling and verification aims to improve existing CPU and software by the intro-
duction of new formal methodologies and to extend existing ones.

A viable transition path aims to improve hardware portability to make sure that software
applications can benefit from increased software security without requiring significant
modifications to the source code.

2.3.2 CHERI Capabilities
CHERI introduces architectural capabilities to current Instruction-Set Architectures (ISA)
to improve the memory safety of historically memory-unsafe programming languages[24].
This is made possible by increasing the size of conventional pointer types to include ac-
cess bounds and permissions. A capability pointer will be double the size of a conventional
pointer plus one additional bit for the tag, which means that a 64-bit integer pointer will
result in a 128-bit capability pointer with an additional 1-bit as a validity tag[24]. The addi-
tional 1-bit validity tag is out-of-band, meaning that it is independent from the register data,
and follows the capability between register and memory. This feature allows programming
languages like C/C++ which are inherently memory unsafe to be extended with safe pointers.
The contents of a capability are presented in Figure 2.3. In contrast to the regular pointer
which solely contains an address space, the capability pointer also contains bits for permis-
sions, the object type and permission bounds.

The permission bits describe the architecturally defined capability permissions such as
whether the capability is enabled or prohibited to load or store data. The o-type, or object
type, describes what object the capability is as well as whether the capability is sealed or
not, while the 32-bit bound is the address space that can be accessed. Sealed capabilities
are immutable, non-dereferenceable capabilities that become invalid when modified.[24]. In
order to accommodate this increased data width, the architecture extends General Purpose
Registers (GPRs) to hold the increased size of the pointer as well as the tag bit[24]. Special-
purpose registers are also extended. The program counter (PC) is also extended with bounds
and permissions, called the Program Counter Capability (PCC).

Figure 2.3: A figure depicting a 128-bit capability. The permission
mask is parameterized, while the o-type and bounds are 18-bits and
32-bits respectively.
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2. Background

2.4 Next-Generation Radio Access Network
The 5th generation mobile network protocol as defined by the 3rd Generation Partnership
Project (3GPP) is designed to standardize the control and management of cellular network
radio resources. The User Equipment (UE) connects to a base station (gNodeB), which in turn
is connected to the core network[21]. The connection, or link between the base station and
the UE is called the bearer, and a UE can be simultaneously connected to multiple bearers at
once. The protocol stack defines each layer necessary to connect and maintain the signal be-
tween the GnodeB and the UE. The protocols stack consist of the following: The Radio Link
Control/Medium Access Control layer (RLC/MAC), the Packet Data Convergence Protocol
(PDCP), the Radio Resource Control (RRC), and the physical layer. A brief description of
each layer is presented below[21][10], and a visual representation in Figure 2.4.

Physical is responsible for channel encoding such as multiple-input, multiple-output (MIMO)
and multiantenna processing as well as signal to time-frequency resource allocation.

Radio Link Control manages Service Data Units (SDUs) that are being sent from the PDCP,
through SDU segmentation and re-transmission should the packets arrive corrupted.
The frames that then ingress from the RLC to the MAC layer are called Package Data
Units (PDUs). There are three transmission modes for transmission of upper layer
PDUs: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode
(AM).

Medium Access Control handles the mapping between the logical and transport channels in
order to find logical channels to the RLC and upper layers. It also handles scheduling
and priority handling as well as error correction (ARQ and HARQ).

Packet Data Convergence Protocol manages the encryption/decryption and transfer of data
between the SDAP layer and RLC. Each payload packet gets assigned a unique sequence
number defined by the PDCP, which is then used for tracking successful delivery to the
receiver. The sequence number is also used by the receiver to detect duplicate packages.

Service Data Adaption Protocol is responsible for the mapping of radio bearers and the
Quality of Service (QoS) flows.

Radio Resource Control is responsible for the "dialogue" of the connection between the gN-
odeB and UE. RRC manages establishing, maintaining and interruption of the connec-
tion as well as broadcasting system information and participating in the handover of
a connection based on the connection quality between the UE and the cells.

2.5 Setup
2.5.1 ARM Morello CPU
In collaboration with Linaro and the Universities of Cambridge and Edinburgh, Arm has de-
veloped the prototype system Morello. This experimental CPU is based on the Arm Neoverse-
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2.5 Setup

Figure 2.4: A representation of the 5G user-plane protocol stack

N1 CPU with a set of capability extensions. The hardware parameters for the modified
Morello (SoC) processor are the same as the original: A 4-way decode, 8-way issue, 11 stage
pipeline system which has a 128-entry re-order buffer and a three-level cache. The Morello
CPU itself runs at 2.5GHz[11]. The operating system (OS) that was used was CHERIBSD OS
version 14.0, which is a FreeBSD-modified OS designed specifically for CHERI.

The Morello CPU-Microarchitecture has been extended to accomodate the 128-bit capa-
bility registers. The capability registers are extended to hold the capability tag as well as the
full capability data width, and the CPU caches have a meta-data tag every 128 bits[11]. The
system buses are also expanded to carry the 1-bit capability tag alongside the capabilities.
However, the data paths which connects to memory is not increased to accommodate the in-
creased size of capability pointers, meaning that moving data between registers and memory
take additional cycles[11]. There have also been changes to the load and store unit to ensure
in-range memory accesses and that the capability has correct permissions.

The Morello architecture also defines a capability-based permission check. This check
controls if a capability is prohibited from being stored to specific memory locations that
restricts capability stores[11], and generates a memory fault if such is the case. The memory
fault is used to enforce temporal safety for the Morello architecture[11], however support for
temporal safety has not yet been fully integrated in the CHERIBSD version used for this
thesis[25].

2.5.2 LLVM-Morello
LLVM is a project containing tools, libraries and header files to, as specified on the LLVM
official website: process intermediate representations and converts it into object files[16]. One of the
tools included under the LLVM umbrella is the Clang project, which for the C language fam-
ily provides tooling infrastructure and a language front-end[15]. The Clang-project includes
a ggc-supported compiler, which carries the same name as the project[15].

The CHERI LLVM-project is created particularly to support CHERI-compiled code, the
version used for this project being the morello-compatible llvm version[8]. The LLVM-
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2. Background

Morello version particularly designed for Morello supports different compilation modes,
such as native AArch64 C/C++ compilation, as well as the AArch64-PURECAP ABI, which
assigns capabilites to all pointers. Note that AArch64 and AArch64-PURECAP ABIs cannot
be linked together. A simple C-program compiled with LLVM-Morello is presented in Ap-
pendix A. LLVM-Morello was built using the cheribuild.py script defined by the University
of Cambridge from their CTSRD-CHERI git repository[7]. The kernel file was generated
on a Linux device, and then booted on the Morello CPU. The version that was selected was
the CHERIBSD operating system with a Morello Pure-capability architecture, since it is the
most mature OS out of the supported operating systems as of the writing of this report.

2.6 Early performance results from the pro-
totype Morello microarchitecture

2.6.1 Background
In September 2023, the CHERI research team from the University of Cambridge released a
technical report on how the SPECInt 2006 benchmark performed on the Arm Morello ar-
chitecture using CHERI-capabilities[23]. The report also describes architectural limitations
of the Morello microarchitecure. This report was used in the evaluation and analysis chap-
ter for comparing and explaining the results produced in this thesis. The benchmark was
first compiled with a hybrid AArch64 ABI, which was set as the baseline for the overhead
calculations. Different capability-ABIs were then evaluated against this benchmark[23]. De-
scriptions of these compilation modes are presented below and the result of the benchmark
tests in table 2.1.

Purecap ABI is the regular configuration. This mode uses capabilities for all pointers, in-
cluding sub-language and and language-level pointers. These ABIs are also called AArch64c.

Benchmark ABI is a modified version of the Purecap ABI to combat certain shortcomings of
the Morello architecture. The two main differences are that the global program counter
capability (PCC) and the return capabilities are extended to have global bounds as
a work around for the branch-predictor currently not supporting the prediction of
bounds.

P128 and P128 Forced Global Offset Table (GOT) ABI are intended to analyze pointer-size
growth and measure the associated overhead. Pointers and intptr_t are extended to the
same width as the 128-bit capability while only the integer part is used by the code gen-
erated, meaning it can utilize existing AArch64 microarchitecture while enabling the
analysis of the overhead of increasing the width of the pointer. Moreover, the compi-
lation renders the access policy of global variables via the Global Access Table as per
the default AArch64 policy.
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2.6 Early performance results from the prototype Morello microarchitecture

Compilation mode Overhead

Geomean Purecap ABI 28.01%
Geomean Benchmark ABI w/o data dependency fix (w/o larger store queue) 14.97%
Geomean Benchmark ABI w data dependency fix (w/o larger store queue) 7.40%
Geomean Benchmark ABI w data dependency fix (w/ larger store queue) 5.70%
Geomean P128 Forced GOT w data dependency fix (w/ larger store queue) 2.98%
Geomean P128 (w/ data-dependency fix) (w/ larger store queue) 1.82%

Table 2.1: Performance Results of the SPECInt Benchmark from the
report Early performance results from the prototype Morello microarchi-
tecture[23].

2.6.2 Micro-architectural limitations
There are four micro-architectural limitations of the Morello architecture that are mentioned
in this report. These limitations have an impact on the performance of CHERI, but are be-
lieved to be resolvable[23]. The first limitation is the PCC branch-prediction functionality,
where speculation of the changes in the PC bounds are prevented, resulting in additional
stalls. The Benchmark ABI mentioned prior was created to solve this issue. Another limi-
tation is the Data-dependent exception, which introduces a stall in the address translation
of capability stores[23]. This stall is consciously introduced to handle data-dependent excep-
tions on stores. The third limitation revolves around Untuned store throughput and buffer
sizes, which is caused by the memory bus not having been widened to accommodate store-
pair instructions[23]. This results in store-pair 128-bit capabilities having to occupy two
store-buffer entries instead of one. Lastly, there are limitations for the MADD instruction
stemming from code-generation inefficiencies for some memory access on Morello.
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Chapter 3

Methodology

This chapter describes the process of porting, running and evaluating the performance of
5G software onto the CHERI architecture using the Morello CPU. In order to narrow the
scope of this thesis, only the RLC and MAC part of the 5G protocol stack was tested. The
benchmark test is a pre-defined benchmark created to simulate packet flow and interaction
between the RLC and MAC layer. The software was considered ported once all associated
tests run successfully.

3.1 Porting the software to the Morello hard-
ware

Software for the RLC-MAC functionality of the 5G OSI layer was added to the Morello
board. The main objective was to make relevant changes in the code, and document the
required changes that have to be made in order for the software to run. An RLC MAC
benchmark test was used to determine whether the program runs properly or not. The code
is written in C/C++, and was compiled using the LLVM-Morello clang compiler. Once the
RLC and MAC benchmark passes the associated test, the program was copied to a separate
version which will contain the pure-capability version of the program. Relevant changes were
then made in order to run the program, and the changes were documented. The first ver-
sion was then compared to the pure-capability version in terms of code required to correctly
compile and run the associated test. The portability was evaluated by measuring the number
of changed lines of C/C++ code that are required to be changed in relation to the total size of
the code base.
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3. Methodology

3.2 Performance Evaluation
The performance evaluation was done by comparing how the regular-compiled version fares
against the pure-capability version in terms of number of cycles and number of instructions
executed. This comparison is selected to ensure equal CPU prerequisites, both for the archi-
tecture and the CPU itself. The AArch64 Performance Monitoring Unit (PMU) will then be
used to calculate the clock cycles, execution time, number of retired instructions and to ana-
lyze performance events. The Morello architecture mostly follows the event space defined for
an Armv8 implementation, but also has additional events related to capability instructions.
When compiling a non-capability AArch64-ABI with LLVM-Morello, the capability-related
events will show 0 as the program only executes Armv8 instructions. Furthermore, the pro-
gram was locked to only run on one CPU in order to obtain more accurate results.

Two principal performance events were studied: Number of cycles and amount of instruc-
tions retired. To be able to access the PMU from user space, the PMUSERENR_EL0 flag has
to be set for the program to function properly. Specifically for Morello, system permissions
for userspace have to be set by the kernel. This can be done in cheribsd/sys/arm64/include/cherireg.h,
where the flag CHERI_PERM_SYSTEM_REGS is included in the userspace permissions.

The performance events follow the ARMv8 implementation, with the addition of CHERI
specific events in the address space 0x0200-0x03FF. The additional instructions that was of
particular interests are listed below and are specified exactly as per the Arm® Architecture
Reference Manual Supplement Morello[3]. These instruction are particularly interesting as
the number of RD/WR capability instructions can be compared with the regular AArch64
ABI as to better understand the difference in performance.

L1D_CACHE_RD_CTAG (0x021C): Attributable Level 1 data cache access, read, valid ca-
pability. The counter counts each access counted by L1D_CACHE_RD which loaded
a valid capability.

L1D_CACHE_WR_CTAG (0x021D): Attributable Level 1 data cache access, write, valid ca-
pability. The counter counts each access counted by L1D_CACHE_WR which stored
a valid capability.

L2D_CACHE_RD_CTAG (0x0226): Attributable Level 2 data cache access, read, valid ca-
pability. The counter counts each access counted by L2D_CACHE_RD which loaded
a valid capability.

L2D_CACHE_WR_CTAG (0x0227): Attributable Level 2 data cache access, write, valid ca-
pability. The counter counts each access counted by L2D_CACHE_WR which stored
a valid capability.

Two key functionalities of the RLC and MAC software were studied: the receival of MAC
Protocol Data Units (PDUs), and the construction of MAC PDUs, where each components
will have separate measurement points. The RLC-MAC code was first compiled with regular
AArch64 ABI with O3 optimization, and thereafter with AArch64-Purecap ABI O3. An
evaluation was made on execution time of the benchmark as well as performance before and
after compiler optimization. The compiled version of the AArch64-Purecap ABI was then
be compared to how well it performs relative to the benchmark AArch64 ABI.
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Chapter 4

Implementation

In this chapter, the porting and running of the RLC and MAC-5G components on the
Morello architecture are described more in detail. The first part of the chapter describes
the process of porting and running the RLC MAC software to Morello with the use of con-
ventional clang compilation. Secondly, statistics over the required number of changes made
is presented, followed by a more in-depth description of the changes required in order to
compile and run the benchmark with CHERI capabilities.

4.1 Porting the AArch64-ABI
Two versions of the same benchmark test were created: One which generated a functioning
AArch64 ABI and one a Purecap-ABI. In order to adapt the software to the CheriBSD op-
erating system, the distinctions of what constitutes a change due to CHERI needed to be
made. For instance: certain libraries required for the program to run have to be re-purposed
for CheriBSD due to the program originally having been developed for Linux. A library not
existing can lead to multiple changes having to be made in the code for the program to be
built. One instance of this is the Linux Tracing Tool Next Generation (LTTNG). As of writ-
ing this report there is no known working version for the tool on CheriBSD, meaning that all
trace-points in the original code have to be removed if the program is to be run. This change
will be categorized as indirect, while all purely CHERI-related changes will be categorized
as direct.

The direct and indirect changes made to the code are presented in Figure 4.1. These
changes were extracted by breaking down the git diff between the unedited version and the
complete version. Note that additions, deletions and changes of a line all constitute "changes",
and that these changes are represented as a percentage of the lines changed compared to the
total code base. The number of lines of C++ code made up 1.03% of the total lines of C++ in
the program. Only indirect changes had to be made no further lines for the C++ code other
than the ones changed for the AArch64 ABI compilation had to be made.
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Figure 4.1: Changes required to port and run the CHERI-adapted
RLC-MAC benchmark. Direct changes are all changes related to
CHERI-capabilities, while the indirect changes related to working
around libraries not yet ported to CHERI.

The indirect changes which required the most amount of effort came from having to de-
couple the LTTNG tool from the RLC-MAC software which is currently not supported on
CheriBSD. Nevertheless, the software was not dependant on any key functionalities of LT-
TNG, meaning it could be disregarded. The second largest change had to do with name dif-
ferences between include files for Linux and FreeBSD, which had to be updated accordingly.
Additionally, the Google Protobuf library which is a mechanism that serializes structured
data had to be ported in order to generate the required files. A ported version of this library
could be found in the CHERI-PORTS-DASA section of the CHERI git.

4.2 Porting the Purecap-ABI
4.2.1 Heap Allocation in Pure-Capability Mode
The heap allocator used for the RLC-MAC software had to be modified in order to work
with capabilities. Most notably, the size of objects like structs will increase in relation to reg-
ular C-programs if they contain capabilities. What this means is that if an original C or C++
program has been designed assuming a certain length of the pointers, certain changes have
to be made to assure functional correctness and efficiency when porting a CHERI-version
of the program. For a 64-bit architecture like AArch64-Morello Purecap, every capability
increases the total size of the struct by 8, which can have implications for data alignment as
described in Figure 4.2. One solution is to remove or decrease the size of sub-objects in the
struct in order to compensate for the increased space that the capability pointer requires.
Another solution is to increase the page size on the heap allocator at the cost of reducing the
number of page entries. For this thesis, the former was chosen by reducing the maximum
buffer capacity for a sub-object.
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Another change had to do with the inheritance of capability bounds. When assigning
a struct using memory derived from an object with a larger memory space, narrowing the
bounds may be necessary if the struct only needs access to parts of the larger memory. This
can be achieved using the cheri_bounds_set() function, which takes a pointer and a size and
returns a new capability with the boundaries from the given capability + the specified size.
Note that pointers that are initialized to NULL and later assigned to the existing address
will not inherit the bounds of the larger object. In this case, cheri_address_set() has to be
used, which allows the NULL pointer to receive the same bounds and address as an existing
pointer.

Figure 4.2: A figure depicting a theoretical heap allocator. The
changed structural integrity of the object has to be accomodated
for when using CHERI capabilities, otherwise the heap can be mis-
aligned.

4.2.2 Type-cast inherited bounds
When porting the heap-allocator, a manual CHERI-adjusted change had to be made to ensure
that each PDU was properly compartmentalized. A visualization of this problem is described
in Figure 4.3. As a demonstration of the change, consider the following code in Listing 4.1.
Here, a heap of size 1024 is created and a struct data_t that we want to insert into the heap.
By assigning data_t into the first slot of the heap, the bounds of the heap object automatically
gets inherited. Since the heap was written without regards to access bounds, this would give
the object access to the entire heap, even with pure capabilities allowed. Figure 4.4 displays
the results of executing Listing 4.1 without row 17.

One solution is to use the cheri_bounds_set(void *c, size_t x) function[25]. This function
allows the programmer to narrow the bounds of a capability c so that the lower bound be-
comes the current address and size x determines the upper bound. With this function, the
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heap can be compartmentalized by narrowing the bounds of each object capability to only
be able to access the bounds of their assigned slot. Figure 4.5 displays the results of executing
listing 4.1 with row 17, which sets the bounds of "data" correctly.

Figure 4.3: A figure depicting a theoretical heap allocator. Type-cast
inherited bounds may have to be narrowed manually to ensure full
compartmentalization.

Figure 4.4: A figure depicting the result of running the code de-
scribed in Listing 4.1 excluding line 17. The bounds for the object
data_t will inherit the bounds and permissions of the heap.

Figure 4.5: A figure depicting the result of running the code de-
scribed in Listing 4.1 including line 17. The bounds for the object
data_t have been narrowed due to the cheri_bounds_set function.
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1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <cheriintrin .h>
4 # define HEAP_SIZE 1024
5

6 typedef struct data_t data_t ;
7

8 struct data_t {
9 int x;

10 int y;
11 };
12 int main () {
13 int* heap;
14 data_t * data;
15 heap = (int *) malloc ( HEAP_SIZE );
16 data = ( data_t *) heap;
17 data = cheri_bounds_set (data , sizeof ( data_t ));
18 printf ("heap bounds : %#p\n",heap);
19 printf (" data_t bounds : %#p\n",data);
20 }

Listing 4.1: This code demonstrates how bounds can be narrowed
after an object has inherited bounds from another object. The
bounds for the capabilities "heap" and "data" would be the same
without the cheri_bounds_set function written on line 17.
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Chapter 5

Performance Testing and Evaluation

5.1 Performance Results
Table 5.1 and 5.2 presents the median of each event category after running the RLC MAC
benchmark test. The values are presented as a percentage of how the pure-capability CHERI
benchmark performed against the non-CHERI compiled benchmark. The difference be-
tween the number of retired instructions was relatively small, while the number of cycles
were significantly larger. This results in an increased CPI, slowing down the total execution
time. Figure 5.1 illustrates the overhead based on the execution time for both functions. The
increase show that the Build Mac PDU function requires 53% more cycles in the version with
pure-capabilites, which is 25% above the geometric mean of the performance for the SPECInt
benchmarks.

Figure 5.2 show the increased number of data cache accesses for the pure-capability bench-
mark test. The largest increase came from the L1D cache writes in the Process Received MAC
PDU function, which increased by 72% compared to the non-capability benchmark. This is
in large contrast to the reads in the Process Received MAC PDU function, where the increase
was only 36%. In addition to the cache reads and writes, table 5.2 presents the number of the
read/write accesses where a capability tag was set in at least one part of the access. Despite the
overall cache writes having increased the most for the Process Received Mac PDU, a larger
portion of the Build Mac PDU writes had a capability tag set.
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Event Build Mac PDU Process Received Mac PDU

CYCLES 53% 38%
INST_RETIRED 6% 17%
CPI 44% 17%
L1D_CACHE_RD 26% 36%
L1D_CACHE_WR 45% 72%
L2D_CACHE_RD 23% 19%
L2D_CACHE_WR 27% 24%
L3D_CACHE 18% 13%
STALL_FRONTEND -33% 27%
STALL_BACKEND 122% 23%

Table 5.1: Performance Results of the RLC-MAC benchmark test

Event Build Mac PDU Process Received Mac PDU

L1D_CACHE_RD_CTAG 52% 58%
L1D_CACHE_WR_CTAG 55% 36%
L2D_CACHE_RD_CTAG 32% 37%
L2D_CACHE_WR_CTAG 31% 27%

Table 5.2: Shares of loads and stores where a capability tag was set
in at least one part of the access

Build Mac PDU Process Received Mac Pdu
0

20

40

60

80

100

53

38

%o
ve

rh
ea

d
co

m
pa

re
d

to
A

A
rc

h6
4

O
3

ba
se

lin
e

Execution time

Figure 5.1: Overhead of the Purecap ABI compared to the baseline.
The dashed line represents the geometric mean of the SPECint Pure-
cap ABI.
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Figure 5.2: The increased number of data cache accesses for the Pure-
cap ABI compared to the baseline
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Chapter 6

Discussion

6.1 Portability
While parts of the code had to be adapted to a new operating system and to the Purecap
ABI, the changes required were marginal in contrast to the massive code base that the 5G
software component was built on. Allowing for the possibility of setting capability bounds
significantly improved the flexibility of the C/C++ program and made it easy to tailor the
bounds of pointers for specific purposes. Such was the case for the heap-allocator, were the
bounds of capabilities could be narrowed to segment each element on the heap.

The libraries that were used could be found in the CHERI-ports-dasa section of the
CTSRD-CHERI Github maintained by the University of Cambridge[6]. It is important
to note that as of the time of writing this thesis, not all libraries are directly portable to
CHERIBSD. Such was the case with LTTNG, which has a ported working version on FreeBSD
which can be found under the FreeBSD equivalent of this port. On the other hand, a CHERI-
compiled version of the googletest library did not require any changes to be ported onto
CHERIBSD and compiled to a Purecap-ABI, meaning that there are libraries that the pro-
grammer can port themselves.

In regards to type-cast inherited bounds: It is important to manually check each case
to make sure that the bounds are sufficiently restricted, as was the case for the RLC MAC
Purecap-ABI: Even though the program passed all test cases, there were still pointers which
arguably had access to more than was needed.

6.2 Performance
The performance of the measured functions Build Mac PDU and Process Received MAC PDU
in the RLC-MAC benchmark had an overhead of 53% and 38% respectively compared to the
baseline. The overhead could be derived from an increase in backend stalls, stemming from a
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increase in the number of reads and writes to the L1, L2 and L3 cache. Although this overhead
was slightly higher than the SPECInt geometric mean of 28%, the results were anticipated and
performed better than the 471.omnetpp and 483.xalancbmk SPECInt benchmarks.

The current version of Morello came with microarchitectural limitations presented in
section 2.6.2. However, the results obtained from the SPECInt benchmarks also show a sig-
nificant improvement in performance once these limitations are addressed. As an example,
the Benchmark ABI with data-dependency fix and larger store queue decreased the over-
head of the geometric mean from 28.01% to 5.70%. The Purecap-ABI that was compiled and
evaluated in this thesis had no improvements to the microarchitecture, and so addressing
the microarchitectural limitations of Morello could reduce the overhead of the Purecap-ABI
implementation to similar levels.

6.2.1 Analysis
The overhead compared to the baseline can be attributed to the increase in number of cache
accesses in all data caches, leading to an increase in the number of backend stalls. The micro-
architectural limitations described in section 2.6.2 contribute to the increase in cache ac-
cesses. For instance, the data-dependent exception which adds a stall upon address transla-
tion of capabilities upon stores contributes to the increase in the number of backend stalls.
Additionally, the store-pair instructions for 128-bit capabilities are executed in multiple cy-
cles and occupy two store-buffer entries. These instructions are identified in an analysis of
the generated assembly instructions for the Purecap ABI, were stp (store-pair) assembly in-
structions are used frequently.

Another contributing factor could be that the 128-bit capabilities require more memory
than the 64-bit pointers, which would result in less information available at one time in the
smaller cache and thus more cache misses overall. However, this does not necessarily explain
the increase in L3 cache accesses for the Purecap ABI, since the cache size is large enough that
it should be able to accommodate the increased size of a capability as opposed to a pointer.
One hypothesis is that the increase could come from the size of objects such as structs having
been chosen to perfectly align with cache blocks, whereas the increased size of capabilities
would create a misalignment.

Despite the significant overall increase in backend stalls for the Build Mac PDU function,
the frontend stalls decreased by 33%. One possible explanation is that possible frontend stalls
have been masked by backend stalls, making it an artificial decrease. The frontend stalls for
the Process Received MAC PDU function was significantly higher, and could depend on the
PCC branch-prediction section 2.6.2.

34



Chapter 7

Conclusion

This thesis proves that complex, high-performing 5G software can be ported to the CHERI
architecture, requiring few changes to the written C/C++ code. The performance tests of
CHERI-enabled software show a 38-53% increase in overhead, which is believed to largely
stem from solvable architectural limitations of Morello. Based on these findings, the con-
clusion is made that CHERI is a viable option for improving the memory-safety of C/C++
programs.

7.1 Future work
This thesis primarily focused on proof-of-concept of the CHERI architecture on 5G applica-
tions, whereas the performance was presented on the as-is implementation of the ported and
run program. Future research should be focused on better understanding how the overhead
can be mitigated, particularly by addressing the architectural limitations of Morello. A fu-
ture Morello update could see the introduction of the Benchmark ABI, which would be ideal
for evaluating how the 5G-software performs when these limitations are addressed.

Due to the limited scope of this thesis, only the RLC and MAC components of the OSI
layer were studied. More comprehensive, all-encompassing simulations should be made to
better understanding how CHERI-capabilities affect the correspondence between multiple
components of the OSI layer. Another component that should be further understood is how
temporal safety plays into the software, as this thesis mainly focuses on implementing spatial
safety programming.
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7.2 Research Questions
RQ1 Can 5G software be ported and run on the CHERI architecture? Yes. This thesis

proved that the RLC and MAC functionalities can be ported and run with CHERI
using the Arm Morello CPU, both for a compiled AArch64 ABI and a CHERI Purecap
ABI. For the RLC and MAC program, only around 1% of the existing C/C++ code had
to be rewritten.

RQ2 How does the CHERI architecture affect the performance of critical base-station
software? The median overhead of the two most important functions in the RLC
and MAC program was 53% and 38% for the CHERI Purecap ABI in relation to the
AArch64 ABI.

RQ3 How does the performance of the ported pure-capability 5G software compare against
other existing CHERI benchmarks? The overhead measured in the RLC and MAC
benchmark test was compared to a SPECInt 2006 benchmark test of the Morello CPU
conducted by researchers at the University of Cambridge. The geometric mean over-
head of this benchmark was lower than the RLC and MAC, except for the 471.omnetpp
and 483.xalancbmk benchmarks where the overhead was higher.

7.3 Summary
The results of this thesis show that the RLC-MAC component of the 5G layer can be ported
and run on the Arm Morello architecture, requiring very few changes to the C/C++ code
which the software is built on. In total, 1.03% of the total C++ code and 0.98% of the total
C code had to be changed to fully port the CHERI-compiled version. The most significant
CHERI-related changes were done in the heap allocator. The changes included alignment
corrections such as reducing the size of the objects in order to accommodate the increased size
of each pointer. Additionally, the bounds for some capabilities had to be manually narrowed
in order to ensure full compartmentalization of the heap in the implementation.

The performance results show that the median overhead for the two measured functions
were 53% and 38% respectively, stemming from an increase in L1,L2 and L3 data cache accesses.
The increase in cache-accesses can be attributed to the capabilities requiring more memory in
the cache, resulting in more cache-misses and in-term more clock cycles. Micro-architectural
limitations of the Morello CPU are also factors that contribute to the increased overhead.
One limitation described by the CHERI Research team at the University of Cambridge is
that memory buses have not been widened, meaning that store-pair instructions executed on
capability-pointers require additional cycles[23].

In comparison to the Geometric mean of the Purecap ABI in the SPECInt 2006 bench-
mark which was tested on the Morello CPU by researchers at the University of Cambridge,
the measured overhead from the performance test of the 5G software was higher. However,
the performance was still lower than certain individual benchmarks, and the overhead is
expected to drop once architectural limitations of the Morello CPU are addressed.
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Appendix A

Compiling a simple CHERI-C program us-
ing clang-morello C/C++

Compiling, linking and running C and C++ programs works like any regular program com-
piled with clang. Only when the compiler flags -march=morello and -mabi=purecap are in-
cluded in CFLAGS and LDFLAGS will the program be compiled with CHERI capabilities.
Consider the basic C-program c-test.c with an int pointer a, where the size and address of a
is printed. In the default case, the size of a will be 8 bytes, whereas the address will be 0x01.
However, compiling the program with the Purecap flags returns a pointer of size 16, and an
address space for which memory addresses the pointer is allowed to access. Trying to access
memory addresses outside of this range with the capability will throw an exception.

Listing A.2 show standard AArch64-generated assembly code while Listing A.3 show the
Purecap equivalent, both compiled from the same C code in Listing A.1. Added assembly
instructions such as scbnds and clrperm are necessary to modify the boundaries and permis-
sions of the capability. The results of the compilation are shown in Figure A.1. In the figure,
the address space was printed using #p, which is a cheri-specific instruction to allow the
programmer to study the bounds and permissions of a capability. Additionally, if the pro-
grammer wants to edit the capabilities themselves they should use the cheriintrin.h library,
which contains important functions for narrowing and aligning bounds.

Figure A.1: Compiling and running the code in Listing A.1, first to
a normal AArch64-ABI and then to a Purecap-ABI.
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A. Compiling a simple CHERI-C program using clang-morello C/C++

1 # include <stdio.h>
2

3 #ifdef __CHERI_PURE_CAPABILITY__
4 # define PRINTF_PTR "#p"
5 #else
6 # define PRINTF_PTR "p"
7 #endif
8

9 int main(void){
10 int* a;
11 printf ("Size of pointer : %zu\n", sizeof (a));
12 printf (" Address of pointer : %" PRINTF_PTR "\n", a);
13

14 }

Listing A.1: C Example

1 0000000000010 a3c <main >:
2 10 a3c: ff 03 81 02 sub csp , csp , #64 // =64
3 10 a40: fd 7b 81 42 stp c29 , c30 , [csp , #32]
4 10 a44: fd 83 00 02 add c29 , csp , #32 // =32
5 10 a48: e0 d3 c1 c2 mov c0 , csp
6 10 a4c: 08 02 80 52 mov w8 , #16
7 10 a50: 08 00 00 f9 str x8 , [c0]
8 10 a54: 00 38 c8 c2 scbnds c0 , c0 , #16 // =16
9 10 a58: 09 70 c6 c2 clrperm c9 , c0 , wx

10 10 a5c: 80 00 80 90 adrp c0 , 0 x20000 <main +0x60 >
11 10 a60: 00 c4 42 c2 ldr c0 , [c0 , #2832]
12 10 a64: 23 00 00 94 bl 0 x10af0 <printf +0 x10af0 >
13 10 a68: e1 07 40 c2 ldr c1 , [csp , #16]
14 10 a6c: e0 d3 c1 c2 mov c0 , csp
15 10 a70: 01 00 00 c2 str c1 , [c0 , #0]
16 10 a74: 00 38 c8 c2 scbnds c0 , c0 , #16 // =16
17 10 a78: 09 70 c6 c2 clrperm c9 , c0 , wx
18 10 a7c: 80 00 80 90 adrp c0 , 0 x20000 <printf +0 x10abc >
19 10 a80: 00 c8 42 c2 ldr c0 , [c0 , #2848]
20 10 a84: 1b 00 00 94 bl 0 x10af0 <printf +0 x10af0 >
21 10 a88: e0 03 1f 2a mov w0 , wzr
22 10 a8c: fd 7b c1 42 ldp c29 , c30 , [csp , #32]
23 10 a90: ff 03 01 02 add csp , csp , #64 // =64
24 10 a94: c0 53 c2 c2 ret c30

Listing A.2: AArch64-Purecap assembly

1 0000000000210 b3c <main >:
2 210 b3c: ff 83 00 d1 sub sp , sp , #32 // =32
3 210 b40: fd 7b 01 a9 stp x29 , x30 , [sp , #16]
4 210 b44: fd 43 00 91 add x29 , sp , #16 // =16
5 210 b48: 80 ff ff 90 adrp x0 , 0 x200000 <register_classes >
6 210 b4c: 00 c0 15 91 add x0 , x0 , #1392 // =1392
7 210 b50: 01 01 80 d2 mov x1 , #8
8 210 b54: 33 00 00 94 bl 0 x210c20 <printf@plt >
9 210 b58: e1 07 40 f9 ldr x1 , [sp , #8]

10 210 b5c: 80 ff ff 90 adrp x0 , 0 x200000 <register_classes +0x14
>

11 210 b60: 00 18 16 91 add x0 , x0 , #1414 // =1414
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12 210 b64: 2f 00 00 94 bl 0 x210c20 <printf@plt >
13 210 b68: e0 03 1f 2a mov w0 , wzr
14 210 b6c: fd 7b 41 a9 ldp x29 , x30 , [sp , #16]
15 210 b70: ff 83 00 91 add sp , sp , #32 // =32
16 210 b74: c0 03 5f d6 ret

Listing A.3: AArch64 assembly
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Improving memory-safety for inherently unsafe C/C++ applications is very important,
but has to be made scalable without compromising too much on performance in order
to be feasible. This thesis demonstrates that 5G software can be ported and run on
the memory-safe CHERI-architecture.

Changing your home address typically involves
contacting the authorities and registering your
new address with them. Imagine if you instead
could maliciously register yourself on your neigh-
bors address and with that gain full permission to
enter and make changes to their home. This exam-
ple may sound a bit bizarre, but it holds similar-
ities to memory safety vulnerabilities of memory-
unsafe programming languages. This master’s
thesis explores Capability Hardware Enhanced
RISC Instructions (CHERI) that aims to address
these vulnerabilities.

In this thesis, 5G software was implemented on
the CHERI architecture. The objective was to
evaluate if it was possible to run part of the 5G
functionalities on CHERI, and if so, how many
changes to the code would be required. The hard-
ware used was the Arm Neoverse N1 with Morello
SoC, which is a processor that can compile com-
puter code with CHERI-capabilties. These ca-
pabilities introduce concepts like permissions and
access bounds for otherwise memory-unsafe pro-
gramming languages, particularly C and C++.
Once the software was ported, the CHERI imple-
mentation was tested against a non-CHERI ver-
sion. This allowed us to measure the overhead

that a CHERI-compiled version produced. The
results were then compared with existing perfor-
mance evaluations of the Morello CPU.

The results show that the CHERI-architecture
is portable to the 5G software. In fact, only
around 1% of the C/C++ code had to be re-
written for the program to run. The overhead
was a few percentage points higher than the per-
formance of existing results, but is likely to dras-
tically decrease if architectural limitations of the
hardware are addressed.

Figure 1: Compartmentalized memory addresses
using CHERI.
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