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Abstract

This thesis is ultimately concerned with a natural and optimal generalization of the familiar Bell
state measurement on four basis states. Measurements in quantum mechanics are interactive pro-
cesses, meaning the observer actively changes the state they extract information from. Different
measurements differ in the degree of the disturbance induced, and in the amount and type of in-
formation gained. For example, some measurements result in well-defined post-measurement states
while others provide only outcome statistics. The variety of measurements each have unique features
enabling all sorts of fine-tuned and tailored manipulations of quantum states.

Another central feature of the Bell state measurement which the generalized measurements inherit
is that the measurements are constructed of maximally entangled states. Mathematically, this intro-
duces an interesting restriction of the construction of equiangular lines to the subset of maximally
entangled states. Quantum mechanically, this opens the door to unknown yet exciting possibilities
for symmetric joint measurements as SIC-POVMs have done for measurements over single qudits.

In this thesis, equiangular sets of the simplest case of bipartite-qubit states are considered and
interpreted as generalized Bell measurements. The construction of this generalization borrows tech-
niques from frame theory and builds on the tradition of equiangular lines in real and complex
dimensions, so a treatment of the relevant mathematics are presented first. Then a central point
of distinction between the generalized Bell measurements and the Bell state measurement is the
difference between projective measurements and positive-operator valued ones, so a discussion of
measurements in quantum mechanics and entanglement comes next. Finally, explicit constructions
are given and studied in the setting of quantum state discrimination. It is found that the general-
ized five state measurement is comparatively more non-local, or less distinguishable, than the Bell
state measurement even with access to two copies. Furthermore, 5-state separable sets and 6-state
maximally entangled sets are constructed. Various properties including uniqueness and optimality
are also discussed.



CONTENTS 4

Contents

1 Introduction 7
1.1 A Note on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Frames and Welch Bounds 9
2.1 Synthesis, Analysis and Frame Operators . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Tight Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Equiangular Tight Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Welch Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Equiangular Lines, Real and Complex 14
3.1 Equiangular Lines in Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Gerzon’s Absolute Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Equiangular Lines in Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 The Weyl-Heisenberg Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Applications of Equiangular Lines in Quantum Information Theory . . . . . . 18
3.2.3 Equiangular Lines in Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Measurements in Quantum Mechanics 21
4.1 Projective Valued Measurements (PVM) . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Positive Operator Valued Measurements (POVM) . . . . . . . . . . . . . . . . . . . . 22

5 Entanglement 22
5.1 The Schmidt Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Entanglement Measures and LOCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Maximally Entangled States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Equiangular Lines over Maximally Entangled States . . . . . . . . . . . . . . 25
5.4 Constructions in C2 ⊗ C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Results 27
6.1 5 State Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Product State ETF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Maximally Entangled ETF (BSM5) . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.3 Uniqueness of Equiangular Tight Frames . . . . . . . . . . . . . . . . . . . . . 28

6.2 6 State Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.1 Maximally Entangled Equiangular Set from the Regular Icosahedron . . . . . 29
6.2.2 Optimal Maximally Entangled Equiangular Set . . . . . . . . . . . . . . . . . 29
6.2.3 No 6-State ETF Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Quantum State Discrimination (QSD) 31
7.1 Applications of Quantum State Discrimination . . . . . . . . . . . . . . . . . . . . . 31

7.1.1 Taking Advantage of Indistinguishability . . . . . . . . . . . . . . . . . . . . . 31
7.1.2 No-Cloning, No-Signaling, and Quantum State Discrimination . . . . . . . . . 32

7.2 Measures of Successful Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS 5

7.3 Global Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.1 Global Entangled Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.2 PPT Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.3 Separable Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4 LOSR and LOCC Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.1 Distinguishing Bell States with LOCC . . . . . . . . . . . . . . . . . . . . . . 35

7.5 Special Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5.1 Peres and Wootter’s Qu-Trine States . . . . . . . . . . . . . . . . . . . . . . . 36
7.5.2 Nonlocality without Entanglement . . . . . . . . . . . . . . . . . . . . . . . . 36

7.6 Distinguishability of the 5-State Bell Measurement . . . . . . . . . . . . . . . . . . . 37
7.7 Distinguishability of 5 Product State ETF . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Conclusions 37

9 Outlook 38

10 References 39

A Related Discrete Structures 45
A.1 Combinatorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Mutually Unbiased Bases (MUBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B Proofs of Various Upper Bounds 46
B.1 In Rd: Gerzon’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2 In Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C Optimal Configuration of 6 Equiangular Lines of Bipartite Qubit States 47



SYMBOLS AND ACRONYMS 6

Symbols and Acronyms

v̂ Normalized vector v

Z Set of integers

1d All-1’s vector in dimension d

Jd d× d all-1’s matrix

Cd d-dimensional complex space

Hd either Rd or Cd

Rd d-dimensional real space

⊗ Tensor product

σx,y,z Pauli x,y,z matrices

BSM4 Bell state measurement of 4 outcomes

ETF Equiangular tight frame

MUB Mutually Unbiased Basis

POVM Positive operator-valued measurement

PVM Projective-valued measurement

SIC Symmetric informationally complete

SIC-POVM Symmetric informationally complete positive operator-valued measure
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1 Introduction

Entanglement is one of the most surprising predictions to come out of quantum mechanics. Einstein,
Podolsky, and Rosen [1] were the first to envision a scenario where two particles in states ψ1 and ψ2

are brought to interact for a short while before drifting apart in a joint state Ψ which cannot in general
be factorized into pure states of the individual subsystems. They recognized that local measurements
of non-commuting observables on the first particle alone would force the wave function of the second
particle to ‘collapse’ to different states, even though they are far away and no longer interacting
by the time of measurement. They reason that "...either (1) the quantum-mechanical description
of reality given by the wave function is not complete or (2) when the operators corresponding to
two physical quantities do not commute the two quantities cannot have simultaneous reality..."
The conclusion from the subsequent analysis accepted the second and rejected the idea that the
wave function was a complete quantum state representation. It was Aharanov and Bohm [2] who
repackaged the concerns of the authors of [1] into the properties of the singlet state

|Ψ−⟩AB =
1√
2
(|01⟩AB − |10⟩AB), (1)

which is perhaps the more widely recognized symbol of the EPR thought experiment.

The ensuing philosophical discussion about local hidden variables brought us the Bell inequali-
ties [3] which have since experimentally confirmed nonlocality as a truth of nature [4, 5, 6], and
the Kocken-Spekker theorem [7, 8, 9] which reject the notion that quantum observables have pre-
determined values which are revealed at the time of measurement. So the assumption that the wave
function is a complete representation of the state remains undisputed, and measurement outcomes
do not have pre-determined values before measurement. The false dilemma of [1] is side-stepped by
abandoning locality.

The four Bell states

|Φ±⟩AB =
1√
2
(|00⟩AB ± |11⟩AB)

|Ψ±⟩AB =
1√
2
(|01⟩AB ± |10⟩AB)

(2)

are perhaps the simplest set of maximally entangled states which span the space of bipartite qubit
states.

Much of the concern of the time, which persists until today, centers around the moment of measure-
ment whereupon the states of distant parties collapse randomly and instantaneously. Measurements
hold a very special role in the current understanding of quantum mechanics, but they stand in stark
contrast to the rest of the unitarity and determinism of quantum theory. Since they are not known to
be derivable from the other postulates of quantum mechanics, they are taken to be one themselves.
The first measurements formalized in quantum mechanics are projective ones due to von Neumann
[10] which project the state onto one of the orthogonal basis states with a certain prescribed prob-
ability. A consequence of the projection is that of repeatability, where the same measurement made
again on the state returns the same result, so any information of the state orthogonal to this pro-
jected state is irretrievable.
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As an example, a projective measurement of the state |ψ⟩ = α|0⟩ + β|1⟩ projects it to either |0⟩
with probability |α|2 or state |1⟩ with probability |β|2. To be consistent with the laws of probability,
|α|2 + |β|2 = 1. Suppose Alice and Bob are given a state from the set in (2) and they want to
determine which of the basis states they have. To do this, Alice may try to measure her local system
in the {|0⟩A, |1⟩A} basis, and Bob may do the same on his part of the composite state. In the end,
they will have one of the four outcomes {|00⟩, |01⟩, |10⟩, |11⟩}. But then the outcome is just one of
the elements of the computational basis, not one of the Bell basis as originally intended! Just as
entangled states cannot be described by pure states of each of the individual subsystems, we can
construct measurements which cannot be factorized into local measurements on the subsystems.
The measurement which projects onto one of the four Bell states is known as a Bell state measure-
ment, or BSM4. It has found central applications in super-dense coding [11], teleportation [12] (and
consequently, entanglement swapping [13] and quantum repeaters [14] since they are extensions of
the teleporting protocol).

Later it was realized that non-projective measurements offer the possibility to probe the state for
information without completely destroying it. Involving non-orthogonal, non-projective measure-
ments, they were shown to surpass projective ones in many quantum information tasks such as
state estimation [15], quantum tomography [16, 17], quantum cryptography [18, 19], quantum state
discrimination [20, 21], and device-independent quantum information protocols [22, 23]. Achieving
performance of these protocols is important for extracting the full computational advantage that
quantum mechanics has to offer over classical computing. For example, for tasks like quantum to-
mography, this means more accurate and efficient characterization of quantum states. For quantum
cryptographic applications, better performance means lowering the threshold of detection of the sta-
tistical anomalies generated by an eavesdropper, and higher secure key bits generated per qubit used.

But how should such a non-orthogonal measurement be designed? There is only one way to arrange
a spanning set of orthogonal measurements up to rotation, but there are many ways to arrange non-
orthogonal ones. Perhaps equiangular lines may have something to say about this. Equiangular lines
are highly symmetric configurations that go by many names in physics and mathematics: optimal
line packings [24], equilateral point sets in elliptic geometry [25], regular 2-graphs [26], SIC-POVMs
[27], the list goes on. Of course the optimal measurement will depend on the particular task at
hand, but highly symmetric ones seem to make great candidates for optimal general measurements.

We make a note on how such generalized measurements are made in practice. The most com-
mon experimental implementation of POVMs are with photonic bits due to the fact that they are
fast and non-interacting [28]. In addition, quantum computational gates and operations can be
applied easily and accurately to photonic states. There are four degrees of freedom with which the
state of a qubit can be encoded with a photon: polarization [29], orbital angular momentum [30],
spatial modes [31], and time of arrival [32]. POVMs are often implemented with the help of an
ancilla system over which the POVM becomes a projective measurement. With hyperentanglement
of photonic qubits, the augmentation of the dimension required to make a projective measurement
can be achieved by coupling different photonic degrees of freedom. For example, a POVM can be
implemented with entangled path and polarization degrees of freedom [29, 33], and spatial modes
and orbital angular momentum [34].

We have introduced the central themes of this thesis: entanglement, measurements, and equian-
gular lines. This work seeks to extend the current understanding of equiangular lines to bipartite
Hilbert space, beginning with the simplest case of bipartite qubits. Constructions of equiangular



1.1 A Note on Notation 9

lines over product and maximally entangled states are presented, and some proofs of optimality are
derived. Then, their distinguishability properties are studied under measurements with access to
different resources.

In section 2, we discuss redundant bases called frames, which may be more familiar to those ap-
proaching the study of equiangular lines from a background in mathematics or signal processing. The
advantages of non-orthogonal POVMs are revealed in section 3, where real and complex equiangular
lines are discussed. Apart from their application as optimal measurements in quantum mechanics,
equiangular lines have had a long history in discrete mathematics, and a condensed version of it is
presented in this section also. In section 4, we discuss measurements in quantum mechanics, both
projective ones and positive-operator valued ones. Then in section 5, we discuss entanglement and
its relationship to local operations. The contributions of this thesis work are presented in section
6, including some equiangular constructions and a discussion of their properties. Finally in section
7, the discussions of entanglement, local operations, and measurements are brought together in the
context of quantum state discrimination to optimally discriminate the constructions of section 6
with various kinds of measurements.

It is the intention that the work of this thesis will be the content of a future publication.

1.1 A Note on Notation

Throughout, ⟨·, ·⟩ will be used to denote the inner product of vectors in Hd which can stand for
either the Euclidean inner product Rd or the inner product over Hilbert space in Cd. States in
bra-ket notation will be reserved for quantum states in Hilbert space.

2 Frames and Welch Bounds

The expansion of a state f in the standard orthonormal basis {êi}di=1 is a very natural and familiar
way to uniquely decompose a given state f ∈ Hd. The standard orthonormal basis contains the
minimum number of elements needed to span the full d-dimensional space, a given set of expansion
coefficients represent a unique state in this basis, and any two elements in the set are orthogonal,
making them convenient to make calculations with. Orthogonalizing procedures such as the Gram-
Schmidt decomposition of matrices and the prevalence of orthogonal bases in vector and polynomial
spaces such as the Hermite and Legendre polynomials make it seem as though orthogonal bases are
the end of the story.

However, one may go beyond the standard basis and consider redundant bases called frames to
represent a given state. We’ll consider only discrete frames in finite dimensions. Then we have the
following definition of a frame:

Definition 2.1 ([35]). A frame is defined by a set of n ∈ Z vectors {xi}ni=1 and frame bounds
0 < A ≤ B <∞, for which

A||f ||2 ≤
n∑
i

|⟨xi, f⟩|2 ≤ B||f ||2 ∀f ∈ Hd (3)

This is a tight frame when A = B, and a unit-norm frame when ||xi||2 = 1 for all i. We will
only consider unit-norm frames, denoted {x̂i}ni=1. Generally, frame vectors of tight frames will be
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normalized so that A = B = 1. Then it is a normalized tight frame. For brevity, a (n, d)-frame will
denote a frame of n lines in Hd unless it is specified to be real or complex.

The rest of this section will introduce the basics and tools of frame theory and explain how they
relate to the equiangular lines we’re interested in. We’ll find that what frames lack in uniqueness
of expansion and orthogonality they make up for with robustness against noisy losses and erasures.
With this context we will be more appreciative of the features of equiangular lines, which are a
special subset of frames.

2.1 Synthesis, Analysis and Frame Operators

We have the following definitions to describe the action of a frame:

Definition 2.2. [35] For an (n, d)-frame {x̂i}ni=1 and arbitrary state f ∈ Hd with frame expansion
(f1, f2, ..., fn) ∈ Hn where each fi = ⟨f, x̂i⟩, the d × n synthesis operator is the linear map defined
by

V : Hn −→ Hd; f →
∑
i

⟨f, x̂i⟩x̂i. (4)

In other words, it is a matrix which reconstructs or synthesizes the state from the coefficients of the
frame expansion. In matrix form, V is the d× n matrix of the frame vectors x̂i:

V =
(
x̂1 x̂2 ... x̂n

)
(5)

Definition 2.3. [35] For an (n, d)-frame {x̂i}ni=1 and arbitrary state f ∈ Hd, the n × d analysis
operator is the linear map

V † : Hd −→ Hn; f → (⟨f, x̂1⟩, ⟨f, x̂2⟩, ..., ⟨f, x̂n⟩), (6)

which maps states from their expansion in the orthonormal basis to their frame expansion

Definition 2.4. For an (n, d)-frame {x̂i}ni=1, the d× d frame operator F is defined by

F = V V †. (7)

Finally, we come to the Gram matrix of a frame.

Definition 2.5. For an (n, d)-frame {x̂i}ni=1, the n × n Gram matrix G is a real and symmetric
matrix with entries defined by the inner products of the frame vectors:

Gij = ⟨x̂i, x̂j⟩ (8)

In terms of the synthesis and analysis operators, G = V †V . It is the adjoint of F . It is positive
semi-definite and has 1’s along the diagonal.

An important property relating the frame operator and the Gram matrix is that they have the same
eigenvalues. Consequently, they have the same rank and trace. This can easily be shown:

Gv⃗ = λv⃗

=⇒ V †V v⃗ = λv⃗

=⇒ V V †(V v⃗) = λ(V v⃗)

F (V v⃗) = λ(V v⃗)

(9)
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If λ is an eigenvalue of G with eigenvector v⃗, then it is an eigenvalue of F with eigenvector V v⃗.
The humble Gram matrix is used to derive many results throughout, and its power comes from this
relationship to the frame operator. It is good to keep this in mind!

2.2 Tight Frames

We have already defined tight frames in passing, but here we elaborate more on some of their
properties. Recall that for a tight frame {x̂i}ni=1,

A||f ||2 =
n∑
i

|⟨xi, f⟩|2 ∀f ∈ Hd, (10)

Generally, the frame vectors will be sub-normalized so that A = 1. A property which makes tight
frames useful in quantum information theory is given in the following theorem.

Theorem 1 ([35]). The finite sequence {x̂i}ni=1 in Hd is a tight frame if and only if frame operator
F = V V † = AId, where the synthesis and analysis operators V, V † are defined as in 2.1.

Proof. From Parseval’s identity

f =
1

A

n∑
i

⟨x̂i, f⟩x̂i ∀f ∈ Hd (11)

where A is a normalizing factor. Then

Ff = V V †f

= V (⟨x̂1, f⟩, ⟨x̂2, f⟩, ..., ⟨x̂n, f⟩)

=
∑
i

⟨x̂i, f⟩x̂i
(12)

where operators V and V † are as defined in section 2.1. Then, we have that Ff = Af , or

F = V V † = AId (13)

■

This has the consequence that the rows in the V matrix (equivalently, the columns in V †) are an
orthogonal basis for a d-dimensional subspace embedded in Hn.

A special property of tight frames is that every finite normalized tight frame is the orthogonal
projection of some orthonormal basis in a higher dimension, and from every finite normalized tight
frame, an orthonormal basis in a higher dimension can be obtained. In other words, there exists
an n× n projection operator P which projects onto the column space of the synthesis operator V ,
so that ⟨P êi, P êj⟩ = ⟨x̂i, x̂j⟩ for orthonormal basis elements {êi}ni=1 ∈ Hn and finite normalized
tight frame {x̂i}ni=1 ∈ Hd [35]. This result will sound familiar to physicists who are familiar with
Naimark’s dilation theorem since tight frames can be interpreted as general quantum measurements
and orthogonal bases as projective measurements, but more on this later.
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2.3 Equiangular Tight Frames

Finally, we introduce a particularly special frame which are tight frames so they satisfy theorem
1, and the magnitude of the overlap between any pair of states in the set {xi}ni=1 are equal in
magnitude:

α ≡ ±⟨xi, xj⟩ ∀i ̸= j. (14)

Then the states are equiangular, and they make an equiangular tight frame (ETF). The synthesis
operator of an ETF is special for having orthogonal rows and columns with pairwise equal and
minimal overlaps.

2.4 Welch Bounds

We use the overlap of two vectors to denote the degree of non-orthogonality of the vectors. The
smaller the angle between them, the larger the overlap. Welch [36] was the first to put lower bounds
on the maximum of the overlaps of the vectors of any given frame, which we denote cmax. Intuitively,
the Welch bounds quantify how well n frame vectors are able to spread out as evenly as possible in
d dimensions. Of course if n ≤ d, the vectors can be orthogonal, so cmax = 0 and the Welch bounds
are vacuous.

Theorem 2 (Welch bounds, [37]). For unit vectors {x̂i}ni=1 in Cd, define cmax = maxi ̸=j |⟨x̂i, x̂j⟩|.
Then,

c2kmax ≥
1

n− 1

[
n(

d+k−1
k

) − 1

]
(15)

The proof will be given for the case k = 1, which can be found in [38, 24]. When k = 1, equality is
reached when the frame is an ETF.

Proof. Since rank G ≤ n − d, G has at most d non-zero eigenvalues. Let these populate the vector
λ⃗ = (λ1, ..., λd), and define the normalized constant vector û = 1√

d
1d. Then apply the Cauchy-

Schwarz inequality ( d∑
i=1

uiλi

)2

≤
( d∑

i=1

u2i

)( d∑
i=1

λ2i

)
(16)

to obtain ( d∑
i=1

λi

)2

≤ d
d∑
i

λ2i , (17)

where the left-hand side is (Tr G)2 = n2. From the Frobenius norm of the Gram matrix G denoted
||G||F , we have that

||G||2F =
n∑

i=1

λ2i =
n∑

i,j=1

|⟨xi, xj⟩|2. (18)

Substituting (18) into (17),
n∑

i,j=1

|⟨xi, xj⟩|2 ≥
n2

d
. (19)

Equivalently,
n∑

i ̸=j

|⟨xi, xj⟩|2 ≥
n(n− d)

d
(20)
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The lower bound is reached when equality is achieved in (17), which occurs when λ⃗ is proportional
to û. In other words, all non-zero eigenvalues of G are equal to some constant, say t. Then, (17)
gives n2 = d2t2, or t = n

d . Recall that F and G have the same eigenvalues so F = n
d I. Equality

in this expression is achieved for tight frames. From this, we know in fact that in theorem 1, the
constant A = n

d . Now, we use the fact that the average of a set of non-negative numbers cannot be
greater than the largest in the set, which we label c2max. This means

c2max ≥
1

n(n− 1)

∑
i ̸=j

|⟨xi, xj⟩|2 ≥
n− d
d(n− 1)

. (21)

Finally, we have the Welch bound for k = 1.

c2max ≥
n− d
d(n− 1)

. (22)

This is an equality when the maximum overlap is exactly equal to the average, so the lines must be
equiangular. The Welch bound is saturated for an ETF. ■

2.5 Applications

Now we are equipped to see why non-orthogonal bases are useful.

Noise
Suppose a source communicates a signal f of length d which is encoded with a normalized tight frame
{(d/n)x̂i}ni=1 whose analysis operator is given by V , so g = V †f . Then, g is sent to the receiver.
Along the way, the signal is corrupted with noise vector η, so the receiver receives ĝ = V f + η.
We assume the mean of each noise component is centered at zero with variance σ2, and there is no
correlation among noise components. The receiver will try to recover f and their best attempt at a
reconstruction will be denoted f̂ . The objective will be to minimize the difference ||f − f̂ ||.

That frame vectors form over-complete bases means that they are linearly dependent, so
∑

i ηix̂i = 0
for non-zero coefficients ηi is possible, and the noise may self-correct. If the frame expansion used in
g is a tight frame, then V V † = n

d I and the synthesis operator V may be used to optimally reconstruct
f . Before doing that, we decompose η into components perpendicular and parallel to the range of
V : η = η⊥ + η∥. Then,

f̂ = V ĝ = V V †f + V (η⊥ + η∥)

= f + V η∥.
(23)

Due to theorem 44 in [39], we can quantify the reduction of noise in the reconstruction:

E(||η∥||2) =
d2

n2
E(||η||2), (24)

where E(X) expected value of random variable X. So in this simple example, we get that the mean
magnitude of the noise vector squared is reduced by a factor of (n/d)2. For expansion with a general
frame, F = V V † is not the identity so the synthesis operator should not be used for reconstruction.
The Moore-Penrose pseudoinverse, defined by V + = (V †V )−1V † is one potential option in this case
[40].
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Erasures
Sometimes during transmission, some bits are lost or erased. The redundancy of frames offers the
possibility to recover the lost information, given the loss is not too great. For even the best (n, d)-
frames, erasure of more than n − d components certainly leaves a set which does not span Hd so
it is no longer a frame. However, some frames can do much worse than this. In the worst case, a
frame may have one vector which is perpendicular to all others, in which case the erasure of this
component means that the information cannot be reconstructed. Thus, intuitively, the best frames
that perform the best in the face of erasure are those for which the redundancy of the frame is
"spread out as evenly as possible".

An optimal unit-norm, normalized tight frame against m-erasures is defined in [41] as one which
minimizes the function

Fm({x̂i}ni=1) = max
||f ||≤1

max
|J |=n−m

∣∣∣∣f − d

n

∑
i∈J
⟨f, x̂i⟩x̂i

∣∣∣∣, (25)

where m components are erased. In other words, the optimal frame minimizes the distance between
the original signal f and the reconstructed one in the worst case over all signals f and all combinations
of m-erasures. It is shown that the normalized tight frame {x̂i}ni=1 which minimizes this function
for m = 2, also minimizes the maximum overlap of the set

max
i ̸=j
|⟨x̂i, x̂j⟩| (26)

over all normalized tight frames. This, as we will see, is satisfied for a tight frame.

3 Equiangular Lines, Real and Complex

A very special class of frames are those which are equiangular. The defining feature of equiangular
lines are that every pair of lines in the set {x̂i}ni=1 share a common overlap

⟨xi, xj⟩ = ±α ∀ i ̸= j (27)

Throughout, we let µ ≡ |α|2 since we are often only interested in the magnitude of the overlap, not
the sign. Generally, we are interested in the maximum number of equiangular lines in any given
dimension or maximal sets, which we denote n(d). Here, we introduce the study of equiangular lines
in real and complex dimensions and derive some of the most basic results.

3.1 Equiangular Lines in Rd

First, an example:

Example 1 (Mercedes-Benz Configuration). The simplest example are the three lines in R2 which
are the antipodes of a regular hexagon with coordinates, given by

x̂1 =

(
1
0

)
x̂2 =

(
−1/2
−
√
3/2

)
x̂3 =

(
−1/2√
3/2

)
(28)

where ⟨x̂i, x̂j⟩ = −1/2 for all i ̸= j. and depicted in figure 1.
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Figure 1: 3 equiangular lines through the diagonals of a hexagon in R2 (left), and 6 equiangular
lines through the diagonals of the regular icosahedron R3 (right)

3.1.1 A Brief History

Real equiangular lines and the question of maximal sets first showed up in 1948 as equilateral
point sets in elliptic geometry [42], where it was shown that n(3) = n(4) = 6. In 1966, van Lint
and Seidel [25] showed that n(5) = 10, n(6) = 16, and n(7) ≥ 28, and revealed the relationship
between equiangular lines and graph theory. In 1973, Lemmens and Seidel [43] derived a number
of bounds on n(d), including Gerzon’s bound n(d) ≤

(
d+1
2

)
and the relative bound. Crucially, their

work recognized the number theoretic importance of α, which motivated the investigation into the
maximum number of equiangular lines possible for a given angle α in any dimension, nα(d). They
showed that n1/3(d) = 2(d−1) for all d ≥ 15, and that nα(d) > 2d if and only if 1/α is an odd integer.
Subsequent results followed in [44] and [45]. This version of the problem was solved completely in
2022 due to a new result in spectral graph theory which upper bounded the multiplicity of the second
largest eigenvalue of the Gram matrix [46].

3.1.2 Gerzon’s Absolute Bound

Due to the difficulty of coming up with exact constructions, progress in the field has progressed by
deriving progressively tighter upper and lower bounds. Perhaps the most important is the absolute
upper bound which is given by the following theorem.

Theorem 3 (Gerzon’s bound, [47]). In Rd, there are at most n(d) =
(
d+1
2

)
equiangular lines.

Refer to appendix B for the proof. In most dimensions, this bound is not met. Saturation of
Gerzon’s bound is only possible if d = 2, 3, or if d+ 2 is the square of an odd integer [43]. The only
known maximal sets are in dimensions d = 2, 3, 7, 23 [48], and it remains open whether there are
more. However, it has been shown that there exists an infinite number of dimensions satisfying this
condition which do not contain maximal sets [49].

3.1.3 Examples

The following examples illustrate but a fraction of the variety of tools of discrete mathematics that
have been brought to bear on the construction of real equiangular lines.

Example 2. In R3, n(3) = 6, and they are lines through the antipodes of a regular icosahedron,
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d 2 3 4 5 6 7-13 14 15 16 17 18 19 20
N(d) 3 6 6 10 16 28 28-29 36 40-41 48-50 48-61 72-76 90-96
1/α 2

√
5
√
5, 3 3 3 3 3,5 5 5 5 5 5 5

Table 1: Table of best known upper and lower bounds on maximum number of equiangular lines
N(d) in dimension d, along with known angles of construction. [50]

shown in figure 1.

1

A

0
1
p

 ,
1

A

 0
1
−p

 ,
1

A

−1p
0

 ,
1

A

−1−p
0

 ,
1

A

p0
1

 ,
1

A

−p0
1

 (29)

with p = 1
2(1 +

√
5), A =

√
1 + p2, and common overlap α = ± 1√

5
.

Example 3 ([51]). In R8, 28 equiangular lines come from the set of all possible permutations of

v̂ =
1√
24

(3, 3,−1,−1,−1,−1,−1,−1). (30)

They are all orthogonal to 18, so the 28 lines span a seven dimensional subspace of R8.

Example 4 ([52]). The set of equiangular lines in R7 comes from the Fano plane, a very special
incidence structure in combinatorial mathematics. It has seven points and seven lines which are
incident with three points each. Every two points lie on a distinct line, and every two lines intersect
at exactly one point. See figure 2. One may define an incidence matrix N for this structure such

Figure 2: The seven vertices and seven blocks (here represented as lines) of the Fano plane. Blue
numbers label the vertices and pink numbers label the blocks in the corresponding incidence matrix
in (31). The circle labeled by 7 counts as a line since only the incidence relations are relevant.

that the rows are indexed by the vertices and the columns by the lines. Entry Nij = 1 if line j is
incident with point i, and 0 otherwise. The incidence matrix for the Fano plane as indexed in figure
2 is:

N =



1 1 0 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 0 1 1 1 0
1 0 1 0 1 0 0
0 0 1 0 0 1 1
0 1 1 1 0 0 0


(31)
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The columns of this matrix produce seven equiangular lines in R7 whose common overlap equals 1.
If one recognizes the scalar product of two columns as the number of points where the corresponding
lines are incident, this statement is obvious.

To obtain 28 lines from the seven, we’ll furnish them with sign combinations that represent ori-
entations on the Fano plane. From each of the seven columns, four signed vectors are arranged such
that two of the three signs cancel out in the inner product of any two of the four vectors, leaving an
overlap of magnitude 1. Between two signed vectors obtained from different columns, the original
argument for their equiangularity holds. For example, from the first column, we obtain the following
four signed vectors: 

1
1
0
0
1
0
0


−→



−1
+1
0
0
+1
0
0


,



+1
+1
0
0
−1
0
0


,



−1
−1
0
0
−1
0
0


,



+1
−1
0
0
+1

0


. (32)

For a more systematic treatment of the method of sign determination, refer to [52]. The Fano plane is
a simple example of a design in combinatorial design theory, and is not the only one which produces
equiangular lines. A much richer equiangular construction is the 276 lines in R23 from the Witt
design. A discussion of designs and the Witt design is deferred to appendix A.

More constructions can be found in [47] and [53].

3.2 Equiangular Lines in Cd

Complex equiangular lines, or SICs (symmetric informationally complete) as they have been dubbed
by the quantum information community are defined analogously to real equiangular lines, except
that the vectors lie in Cd. A striking departure from the real case is that in every dimension studied,
a full set of d2 equiangular lines {|xi⟩}d

2

i=1 have been found, with overlaps given by

|⟨xi|xj⟩|2 =
δijd+ 1

d+ 1
. (33)

The introduction of SICs to the wider quantum theoretic community is credited to Gerhard Zauner
in 1999 [54], (and independently by Renes in 2004 [27]) where he showed that n(d) ≤ d2, and
conjectured that equality can be reached in every dimension. It remains an open conjecture to this
day. By then, he had also made the connection between SICs and the Weyl-Heisenberg group. In
2004, numerical SICs were constructed up to d = 4 [55]. By 2010, complete solutions have been
found up to d = 50 [56] and by 2017, in every dimension up to d = 151. In higher dimensions
with special symmetries, additional sporadic solutions have been found. Most recently, solutions in
seventeen dimensions up to d = 39604, each satisfying d = n2+3 = 4p where p is a prime have been
found [57]. To get a sense of the magnitude of the problem, finding a solution in d = 12 involves
a system of 15 polynomial equations in 9 variables, with coefficients with up to 40 digits [58]. The
group covariance of SICs under the Weyl-Heisenberg group greatly reduces the problem to one of
finding just one vector.
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3.2.1 The Weyl-Heisenberg Group

All known equiangular constructions are group covariant under the Weyl Heisenberg (WH) group,
(except for one in dimension 8). To be group covariant means that a fiducial vector can be chosen
so that its orbit under the group generates the full equiangular set. The Weyl-Heisenberg group in
dimension d has three generators of order d: the phase (ω), clock (X), and shift (Z) operators which
are related by the following:

Xω = ωX Zω = ωZ ZX = ωXZ (34)

where ω = e2πi/d. Then up to phase factors, the WH group is the direct product of two cyclic groups
Zd ×Zd, and there are d2 distinct combinations of X and Z which comprise the group. For a set of
orthonormal basis vectors {|i⟩}di=1 where each vector is defined by its integer label modulo d and Z
represented by a diagonal operator, the action of X and Z are given by:

X|i⟩ → |i+ 1⟩ Z|i⟩ → ωi|i⟩. (35)

In two dimensions, the clock and shift operators are the Pauli σx and σz matrices respectively. In
d = 3, the matrix representation of X and Z is given by

X =

0 1 0
0 0 1
1 0 0

 , Z =

1 0 0
0 ω 0
0 0 ω2

 , ω = e2πi/3 (36)

Example 5 ([35]). Four unit vectors in C2, generated by the application of Pauli-x and Pauli-z
operators to a fiducial vector ν: {ν, σxν, σzν, σxσzν} where

ν :=
1√
6

( √
3 +
√
3

e
π
4
i
√

3−
√
3

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
(37)

SICs have a lot more to offer than just geometric niceties. This may be hard to see given the
numerical solutions which occupy pages and pages of A4 paper, but a closer look at the numbers
of the SICs reveal unexpected and deep connections to algebraic number theory. The connection is
made possible by the observation that all known fiducial vectors (except in dimension 3) expressed
in the standard basis are expressible in radicals [59]. This is not at all obvious since we know
from the Abel-Ruffini theorem that even polynomial equations of dimension 5 do not have solutions
expressible in terms of a the arithmetic operations +,−,×,÷, and √ [60]. Refer to [59] for a
treatment aimed at physicists with minimal background in Galois theory. For this reason, even
extremely precise numerical solutions (up to 150 digits in some cases [61]) is not enough! Exact
expressions are needed to determine the extension field of the SICs, but they have been slower to
come by. In 2018, 69 exact solutions were extracted from numerical solutions [62] which was enabled
by new results in algebraic number theory.

3.2.2 Applications of Equiangular Lines in Quantum Information Theory

A SIC {|xi⟩}ni=1 can be made into a sub-normalized POVM of rank-one operators, a SIC-POVM,
defined by

Π =

{
d

n
|xi⟩⟨xi|

}n

i=1

(38)
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where Tr(ΠiΠj) = d2

n2

δijd+1
d+1 and

∑
i(d/n)|xi⟩⟨xi| = I. These are often optimal measurements for

many tasks in quantum information theory, for a few main reasons. Broadly speaking, they offer a
minimal, tomographically complete basis for sampling, so all the relevant information of the state
can be obtained with the least number of measurements due to the symmetry. Furthermore, they
feature the largest number of measurement outcomes for an extremal measurement, meaning they
cannot be simulated by a combination of other POVMs [63], and they can tolerate the most amount
of noise before they become simulable with projective measurements [64]. In other words, their
optimal features are unique and are not so easily replicated with other measurements.

A selection of some of their applications is presented here.

Quantum State Tomography (QST)
The objective of quantum state tomography is to reconstruct quantum states from measurements
on ensembles of identically prepared states. The d2 Hermitian matrices obtained from SIC elements
|xi⟩ → |xi⟩⟨xi| span the full d2−1 dimensional space of density operators, and this fact is used in the
proof of the d2 upper bound in appendix B. A full SIC-POVM measurement of the d2 operators is
not only informationally complete since the full density matrix can be constructed from knowledge
of the measurement statistics, it is minimal since d2 is the minimum number of parameters needed to
specify a state. Just as how measurement bias can be strategically introduced into the measurement
design when prior information is known of the state [65], SIC-POVMs provide the least bias when
there is no prior information [15]. In addition, the less redundancy there is among the measurements,
the faster the tomography converges [66]. SICs provide a redundant measurement basis which is
just enough to provide all the necessary information with the least amount of measurement resources.

Quantum Key Distribution (QKD)
QKD aims to create a shared random bit sequence for two communicating parties which is known by
no one else, which they can then use to encrypt and decrypt classical messages. The BB84 protocol
[67] was the first QKD protocol and makes use of measurements on two mutually unbiased bases
(see appendix A), and is perhaps the most technologically mature quantum information processing
application. In principle, its security is guaranteed by the fact that eavesdropper Eve cannot siphon
information without creating a statistical disturbance detectable by Alice and Bob. However, the
two measurement bases ±ẑ and ±x̂ lie on a single plane of the Bloch sphere, so there is potentially
room for a more secure QKD protocol with three mutually unbiased measurement bases which is
demonstrated in [68]. Now, eavesdropper Eve would have three measurement bases to choose from,
lowering further her chances of going undetected. However, this comes at the cost of 3 exchanged
qubits per secure key bit compared to 2 in the BB84 protocol. A more efficient protocol which also
takes advantage of the full Bloch sphere space is presented by the Singapore protocol [18], featuring
four-outcome SIC-POVMs for both Alice and Bob. A source distributes maximally entangled singlet
states to them for which the 16 correlation probabilities pAiBj corresponding to the ith measurement
setting firing for Alice and the jth for Bob, i, j ∈ {1, 2, 3, 4} can be used to verify the expected outputs
of the source. This protocol features a more efficient key rate at 2.41 qubits per key bit compared to
the 6-state QKD protocol, and allows for secure key bit generation under much higher levels of noise.

Entanglement Witnesses
SIC-POVMs have been shown to be useful in constructing stronger entanglement detection crite-
ria. One well-known Schmidt number criterion for entanglement detection of a bipartite state is
the CCNR criterion for Schmidt numbers. By studying the the statistical correlations among a
SIC-POVM measurement instead of those from a projective measurement, entanglement detection
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criteria which are strictly stronger than fidelity witness criteria and CCNR criteria can be obtained.
[69, 70].

Random number generation from entangled qubits
It is known from [71] that the incompatibility of a Bell inequality violation with a local hidden vari-
able model makes it a candidate for secure device-independent random number generation. Since a
SIC-POVM performed on a d-dimensional system allow for d2 measurement outcomes, in principle
2 log d random bits can be securely generated compared to log d with projective measurements on
the same d-dimensional system.

In [63], the authors derive Bell inequalities that are maximally violated with maximally entangled
states and a SIC measurement in Bob’s measuring device. Alice possesses two measurement settings
which she randomly chooses at each round of the Bell experiment. One implements a SIC-POVM
whose outcome a is used for random number generation and the other, which when selected goes
towards verifying the violation of the Bell inequality. Then an upper bound on Eve’s confidence of
Alice’s outcome a is derived from the observed violation of the Bell inequality. Eve’s uncertainty of
Alice’s outcome is used to quantify the randomness of Alice’s random number generator. From nu-
merical studies, the authors report 2 bits of certified randomness from qubits and more randomness
from qutrits with this protocol than any other using projective measurements up to dimension 7.

3.2.3 Equiangular Lines in Experiment

Although SIC-POVMs in principle outperform their projective counterparts in many quantum infor-
mation tasks including quantum tomography, quantum cryptography, device-independent protocols
among others, in practice POVMs are harder to implement. A projective measurement of qubit
states can be implemented simply with a polarizing beam splitter, which splits light into two beams
of orthogonal polarization states. To implement a POVM, a common technique is to use Naimark’s
dilation theorem by coupling the system out with an ancilla to augment the system dimension and
then making a projective measurement on the whole system.

In the following, some examples of experimental implementations of SIC-POVMs are presented.

In 2006, NMR tomography was performed on the nucleus of 1H with 13 C as the ancilla system
[72]. They were able to determine the Bloch parameters of the target state from projective mea-
surements on both systems, and report an average fidelity of 0.92

In 2010, an experimental characterization of an optical qutrit state with SIC-POVMs was accom-
plished using a series of d2 partial polarizing beam splitters arranged in a loop, each corresponding to
an element Πi of the SIC-POVM. The state after a partial polarization remains mostly undisturbed
and is cycled to the next partial polarizer. Crucially, this implementation does not rely on the use
of an ancilla. [66]

In 2015, quantum state tomography using SIC-POVMs is performed on qudit states encoded in
photonic orbital angular momentum states for dimensions d = 6 and d = 10, where optimal pro-
jective measurements using mutually unbiased bases do not exist [73]. They report reconstruction
fidelities in the range of 0.859-0.960 for pure states and 0.818-0.905 for mixed states.
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4 Measurements in Quantum Mechanics

As mentioned in the introduction, measurements in quantum mechanics are taken as postulate.
From Nielsen and Chuang [74], the postulate of measurements reads:

Quantum measurements are described by a collection measurement operators {Mm}
acting on the Hilbert space of the system being measured. The index m refers to the
possible measurement outcomes. If the state of the quantum system is |ψ⟩ immediately
before the measurement then the probability that result m occurs is

p(m) = ⟨ψ|M †
mMm|ψ⟩ (39)

and the system state after measurement is

Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩
(40)

where the measurements Mm are complete,
∑

mM
†
mMm = I.

These conditions ensure consistency with the probabilistic interpretation of the measurements∑
m

p(m) =
∑
m

⟨ψ|M †
mMm|ψ⟩

= ⟨ψ|
(∑

m

M †
mMm

)
|ψ⟩

= 1

(41)

There are two kinds of measurements in quantum mechanics. In the following sections, we define
each and discuss how they relate to each other.

4.1 Projective Valued Measurements (PVM)

The measurements which most are familiar with are projective-valued measurements (PVM) which
were first introduced by von Neumann [10]. The measurement, or observable M , is Hermitian with
a spectral decomposition M =

∑
mmPm, where each of the Pm satisfy the above conditions in

addition to the following:

1. Pm is projective: P 2
m = Pm

2. Pm is orthogonal to all other measurement operators Tr(PiPj) = dδij

Expectation values of observable M in state |ψ⟩ are simply given by ⟨ψ|M |ψ⟩. Since they are
orthogonal, there can be no more than d measurement outcomes which can be a limitation for certain
applications such as in random number generation [63] and state discrimination [75]. Projective
measurements are also repeatable, so once outcome m is obtained from one application of M , an
application ofM a second time will produce the same measurement outcome. This makes them useful
as tools to control decoherence in coupled quantum systems [76, 77]. This is the idea of the quantum
Zeno effect [78], which in spirit is the quantum version of "a watched pot never boils." On the other
hand, in situations such as those of radiative decay, sufficiently frequent measurement events can
accelerate the decay process instead of inhibiting them, which is the anti-quantum Zeno effect [79].
In other applications, selective projective measurements are useful for quantum information tasks



4.2 Positive Operator Valued Measurements (POVM) 22

where an ensemble of well-defined initial condition states are required [80]. So we see that projective
measurements are useful for manipulating certain quantum dynamical processes.

4.2 Positive Operator Valued Measurements (POVM)

Given general measurement {Mm}nm=1, we can define new operators Πm ≡M †
mMm which are posi-

tive semi-definite operators by construction and satisfy
∑

mΠm = I. Then, we say that the {Πm}nm=1

are the POVM elements associated with measurement M . Conversely, given a set of positive semi-
definite operators {Em}nm=1 which resolve the identity

∑
mEm = I, we can reconstruct measurement

operators {Mm}nm=1 by defining Mm =
√
Em. But this decomposition is not unique, so unless we

know the Mm operators are given, only the measurement outcome statistics are known and the
post-measurement state (40) cannot be determined.

PVMs are special cases of POVMs, and this is true when the measurement operators Mm are
projection operators:

Em = P †
mPm = P 2

m = Pm. (42)

However, it is also true that POVMs are special cases of projective measurements, which is the
content of Naimark’s dilation theorem.

Theorem 4 ([64]). For an n-outcome POVM {Πi}ni=1 on H, and pure state |ϕ⟩⟨ϕ| on H′ where
dimH = dimH′ = d, there exists an nd-outcome PVM {Pi}ndi=1 on H⊗H′ such that

Tr(ρΠi) = Tr((ρ⊗ |ϕ⟩⟨ϕ|)Pi) ∀i = 1, ..., n (43)

We see that measurements on the augmented system produce the statistics of the POVM, so POVMs
are also the projections of projective measurements onto a subspace. When the dimension of the
ancilla system and the original system are each d, the full system is d2-dimensional and a projective
measurement can measure d2 outcomes, which is just enough to fix d2− 1 parameters in the density
matrix. [64].

5 Entanglement

Quantum mechanics cannot be fully appreciated without considering multipartite states, since it
is there that the most intuitively confronting, philosophically confounding yet experimentally ir-
refutable predictions of the theory come to light. Namely, stronger-than-classical correlations of
simultaneous measurements of distant particles become possible. This is the content of Bell’s 1964
paper [3] which brought the debate over local hidden variables [1] within the realm of experimental
verification. In the following decades, better and better experiments demonstrated time after time
that quantum mechanics, and in fact any post-quantum theory must be nonlocal [4, 81, 82, 83].
Since the first Bell inequality was published in the 1964 paper, many more variations have come out,
but they all essentially predict upper bounds on the observable correlations between the inputs and
outputs of distant measurement devices when constrained to local classical resources only. Locality
here is defined by independence of the distant party in each round in the sampling. In addition, the
inequalities are all maximally violated by the sharing of a maximally entangled state. However, the
relationship between non-locality and entanglement is not so linear, as we shall see later. For now,
a more in depth treatment of entanglement is in order.
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Throughout this thesis we will only be concerned with bipartite states, but in general, multi-partite
states can be classified into those which are separable, and those which are not. Separable pure
states are those which can be expressed as a tensor product of pure states in each subspace

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ (44)

for an n-partite system in H⊗n, where each |ψi⟩ is the quantum state in the ith system. Those which
cannot be expressed in this form are entangled states. We will see in this section that entanglement
is fundamentally a quantum mechanical phenomenon.

Consider the maximally entangled singlet state from before:

|ψ−⟩ = 1√
2
(|0⟩A|1⟩B − |1⟩A|0⟩B). (45)

A measurement which reveals the state of system A to be in state |0⟩ simultaneously collapses
the state of system B to state |1⟩. If A measures |1⟩, then B will observe |0⟩. This effect is
observable if the roles of A and B are reversed, in any basis they measure, and regardless of how
far apart systems A and B are. In recent decades, this feature of quantum mechanics has found
a home as a resource in quantum information theory. Efforts to quantify entanglement and to
understand the possible manipulations and transformations via protocols for entanglement swapping,
entanglement distillation, and teleportation, among others, have driven much of the understanding.
In this section, we discuss briefly measures of entanglement and their fundamental connection to local
operations. Then, we will discuss maximally entangled states and some properties which facilitate
the construction of bipartite equiangular sets.

5.1 The Schmidt Decomposition

The Hilbert space of a bipartite state is H = HA ⊗ HB. An arbitrary pure state |ψ⟩ ∈ H has
spanning orthogonal bases {|i⟩A} in HA and {|i⟩B} which spans HB. Then for non-negative and
real Schmidt coefficients λi satisfying

∑
i λ

2
i = 1, there exists a Schmidt decomposition given by [74]

|ψ⟩ =
k∑
i

λi|i⟩A|i⟩B. (46)

We define the Schmidt rank r(|ψ⟩⟨ψ|) to be the number k of terms required in the decomposition
of state |ψ⟩. In other words, the Schmidt rank r(ρ) ≥ 1 counts the number of superpositions of
product states needed to produce the state. Separable pure states have no entanglement and have
rank one, so a basis can always be found so the state is a product state.

A generalization of the Schmidt rank exists to characterize the degree of entanglement for mixed
states and is the Schmidt number [84].

5.2 Entanglement Measures and LOCC

We can define a nice measure of entanglement ES from the Schmidt rank given by

ES(ρ) = r(ρ)− 1. (47)
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Then it satisfies the following two properties which we require a general entanglement measure E to
satisfy [85]:

1. ρ is separable ⇐⇒ E(ρ) = 0

2. E(ρ) ≥ E(ΛM (ρ)), ΛM (ρ) ≡ MρM †

Tr(Mρ)
∀M ∈ LOCCX(A : B)

(48)

The first statement is straightforward and says that E(ρ) = 0 when there is no entanglement.
Since r(ρ) = 1 for a separable state, ES satisfies the first condition. The second statement says
that entanglement cannot increase under the class of LOCCX operations. How this set is defined
determines the properties of the entanglement measure. For example, let LOCCLI be the set of all
local invertible (LI) operations, which includes the set of local unitary operations. These operations
change the Schmidt coefficients in the Schmidt decomposition, but leave the Schmidt rank invariant.
This can be easily seen:

T1 ⊗ T2|ϕr⟩ =
r∑
i

λiU1|i⟩A ⊗ U2|i⟩B (49)

The idea of a maximally entangled state depends on the entanglement measure. If ρ is the maximally
entangled state for a general entanglement measure E, the state T1⊗T2 ρ is not maximally entangled
according to E. However, if the entanglement measure is defined over the set of all local invertibles,
then we have from the definition that for a maximally entangled state ρS ,

E(ρ) ≥ E(ΛT (ρ)) ≥ E(Λ−1
T ΛT (ρ)) = E(ρ) (50)

So maximally entangled states can be transformed into each other via local invertible transforma-
tions, and the notion of a maximally entangled state is well-defined. These entanglement measures
are called universal entanglement measures. Since we have shown in (49) that local invertible oper-
ations do not change the Schmidt rank, it is a universal entanglement measure [84]. Entanglement
measures which are not universal but more useful for particular tasks in quantum information theory
are operational measures.

If we allow the LOCC class to include local projections LOCCLP , then the resulting entangle-
ment measure is a monotone of the Schmidt rank, since projections map state |ϕr⟩ → |ϕr−1⟩ and
we’ve shown that the entanglement increases with the Schmidt number [85].

All this is to show that entanglement in defined relative to the definition of local operations.

5.3 Maximally Entangled States

Another way of expressing the peculiar situation is: the best possible knowledge of a
whole does not necessarily include the best possible knowledge of all its parts, even
though they may be entirely separate and therefore virtually capable of being ‘best
possibly known,’ i.e., of possessing, each of them, a representative of its own... I would
not call that one but rather the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought. -Schrödinger, 1935 [86]

Beyond Schmidt ranks and entanglement measures, an important qualitative property of maximally
entangled states is that local states, obtained by tracing out the other part, contain no information
at all; locally, they the parts are in maximally mixed states. All the state information is encoded in
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the correlation between the two distant parts. This is the peculiarity about entangled states which
Schrödinger points out in the above excerpt from [86]. Given many copies of the same bipartite state
|ψ⟩, Alice and Bob learn nothing of the state from making local measurements. In any basis they
measure, they will obtain the two outcomes with 50-50 probability. Only when they come together
and compare their measurement results will they be able to deduce the state. That Alice and Bob
do not learn anything from their nonlocal correlations until they communicate classically is how
they evade jail time for faster-than-light communication.

Mathematically, this is expressed by the fact that the partial trace of the maximally entangled
pure state with respect to any of the subsystems is |ϕAB⟩ the maximally mixed state. The partial
trace is the quantum analog of taking the marginal probability distribution of a probability dis-
tribution of two random variables, where the probabilities over one are summed over to obtain a
probability distribution depending only on one variable. The partial trace over system B of ρAB

produces a reduced density matrix in system A, and is given by

TrB[ρAB] =
∑
i

(IA ⊗B ⟨i|)ρAB(IA ⊗ |i⟩B). (51)

A similar expression is true for tracing out system A.

5.3.1 Equiangular Lines over Maximally Entangled States

In the space of maximally entangled bipartite states, we make use of the fact that all maximally
entangled states can be obtained from another by a unitary matrix in SU(2), since these operations
preserve entanglement as shown earlier. For convenience, we let our "base state" be the first Bell
state |Φ+⟩, so any other maximally entangled state can be obtained from the application of elements
of SU(2).

|ϕ⟩ = U1 ⊗ U2|Φ+⟩, (52)

The SU(2) unitaries are parameterized by the Lie algebra su(2) to Lie group correspondence:

U = eiαv̂·σ⃗ (53)

where α is the rotation angle, v̂ is a unit Bloch vector, and σ⃗ = (σx, σy, σz) where σi are the usual
Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(54)

If we expand the matrix exponential and use the fact that the square of any Pauli matrix is the
identity, we get a very simple expression for an arbitrary SU(2) unitary:

U = cosα+ i sinα(v̂ · σ⃗). (55)

We can further simplify the expression (52) due to a feature of operators which are applied to
maximally entangled states:

U ⊗ Id|ϕ+⟩ = Id ⊗ UT|ϕ+⟩, (56)

where |ϕ+⟩ may be replaced with any maximally entangled state.

To show this, insert the tensor identity element
∑

j,k(|j⟩A|k⟩B)(⟨j|A⟨k|B) into the expression in
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(52):

(U ⊗ I2)|Φ+⟩ = (U ⊗ I2)
1√
2

1∑
i=0

|i⟩A|i⟩B

=
1√
2

1∑
i,j,k=0

|j⟩A|k⟩B⟨j|A⟨k|B[(U ⊗ I2)|i⟩A|i⟩B]

=
1√
2

1∑
i,j=0

|j⟩A|i⟩B⟨j|AU |i⟩A

=
1√
2

1∑
i,j=0

Uji|j⟩A|i⟩B

=
1√
2

1∑
j=0

|j⟩A
(∑

i

Uji|i⟩B
)

= (I2 ⊗ UT)|Φ+⟩

(57)

so letting U ≡ U1U
T
2 , (52) can be rewritten

|ϕ⟩ = U ⊗ I|Φ+⟩. (58)

With this, we derive the following formula for the inner product of a pair of maximally entangled
two qubit states |ϕi⟩ = Ui|Φ+⟩, |ϕj⟩ = Uj |Φ+⟩:

|⟨ϕi|ϕj⟩|2 =
∣∣∣∣12⟨Φ+|U †

i Uj ⊗ I|Φ+⟩
∣∣∣∣2

=

∣∣∣∣12Tr(U †
i Uj)

∣∣∣∣2.
(59)

5.4 Constructions in C2 ⊗ C2

The construction of equiangular lines in two-qubit systems is facilitated by the following angle-
preserving isomorphism from unit vectors in R4 to matrices in SU(2):

v̂ = vte1 + vxe2 + vye3 + vze4 ←→ u = vtiI+ vxσx + vyσy + vzσz, (60)

where {êi}4i=1 are the standard orthonormal basis vectors. It can be verified that values of scalar
products of arbitrary vectors v̂i, v̂j in R4 are preserved under the mapping to the Hilbert-Schmidt
inner products of the matrices. If vectors v̂1, v̂2 ∈ R4 map respectively to u1, u2 ∈ SU(2), then

v̂1 · v̂2 =
1

2
Tr(u†1u2). (61)

Then, the problem is reduced to finding equiangular lines in R4 and then mapping them to unitaries
in SU(2) which define the corresponding maximally entangled states via (58). Such a simple param-
eterization of unitary matrices does not exist for qutrits and beyond, so constructing equiangular
lines in higher dimensions becomes quite a bit more difficult!
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6 Results

Here, we present some equiangular constructions in C2 ⊗ C2, which are the results of this thesis
work.

6.1 5 State Constructions

6.1.1 Product State ETF

The set {Ui ⊗ Vi|00⟩}5i=1 forms an ETF of 5 product states at µ = 1/16 where the Ui ⊗ Vi are given
by

U1 ⊗ V1 = I⊗ I

U2 ⊗ V2 =
(
cos

2π

5
I+ i sin

2π

5
σx

)
⊗
(
cos

4π

5
I+ i sin

4π

5
σx

)
U3 ⊗ V3 =

(
cos

3π

5
I+ i sin

3π

5
σx

)
⊗
(
cos

π

5
I+ i sin

π

5
σx

)
U4 ⊗ V4 =

(
cos

π

5
I− i sin π

5
σx

)
⊗
(
cos

2π

5
I− i sin 2π

5
σx

)
U5 ⊗ V5 =

(
cos

π

5
I+ i sin

π

5
σx

)
⊗
(
cos

2π

5
I+ i sin

2π

5
σx

)
(62)

The local sets {Ui}5i=1 and {Vi}5i=1 themselves cannot be equiangular, since the maximum number
of lines in C2 is 4. However, they each form tight frames, so

5∑
i=1

Ui|0⟩⟨0|U †
i =

5

2
I

5∑
i=1

Vi|0⟩⟨0|V †
i =

5

2
I.

(63)

6.1.2 Maximally Entangled ETF (BSM5)

To make things simpler, we make the following assignments:

a = cos
2π

5
=
−1 +

√
5

4
, b = sin

2π

5
=

√
5 +
√
5

8

c = cos
4π

5
= −1 +

√
5

4
, d = sin

4π

5
=

√
5−
√
5

8
,

(64)

and we make use of the isomorphism in (60). We generate six equiangular lines in R4 by repeated
application of the generator

G =


a −b 0 0
b a 0 0
0 0 c −d
0 0 d c

 (65)



6.1 5 State Constructions 28

to the fiducial 1√
2
(1, 0, 1, 0). Since G5 = I, this construction generates a five-state ETF:

û1 =
1√
2


1
0
1
0

 û2 =
1√
2


a
b
c
d

 û3 =
1√
2


a
−b
c
−d

 û4 =
1√
2


c
−d
a
b

 û5 =
1√
2


c
d
a
−b

 (66)

These are mapped to SU(2) unitaries which produce the ETF in C2 ⊗ C2.

|ϕ1⟩ = |Φ+⟩

|ϕ2⟩ =
1

2

[
(a+ c)|Φ+⟩+ (a− c)|Ψ−⟩+ i

[
(b− d)|Φ−⟩ − (b+ d)|Ψ+⟩

]]
|ϕ3⟩ =

1

2

[
(a+ c)|Φ+⟩+ (a− c)|Ψ−⟩+ i

[
− (b− d)|Φ−⟩+ (b+ d)|Ψ+⟩

]]
|ϕ4⟩ =

1

2

[
(a+ c)|Φ+⟩ − (a− c)|Ψ−⟩ − i

[
(b+ d)|Φ−⟩+ (b− d)|Ψ+⟩

]]
|ϕ5⟩ =

1

2

[
(a+ c)|Φ+⟩ − (a− c)|Ψ−⟩+ i

[
(b+ d)|Φ−⟩+ (b− d)|Ψ+⟩

]]
(67)

where we have applied U †
1 ⊗ I to all states Ui ⊗ I|ϕ+⟩ so that the unitary on state i = 1 is just

the identity with Bloch vector (0, 0, 0). The Bloch vectors of the other four states form a regular
tetrahedron as shown in figure 3. The rotation angle α about the Bloch vector is the same for all
states, but this value can take on one of four values α = arccos(14) +

nπ
4 , n = 1, 2, 3, 4.

Although the five equiangular lines in R4 are group covariant, there seems to be no such group
relation among the maximally entangled states which can be seen from the fact that the five corre-
sponding unitaries do not include inverses for any of the elements. The ETF in the Bloch sphere is
shown in figure 3.

6.1.3 Uniqueness of Equiangular Tight Frames

Supposing Gram matrices G1 and G2 represent two ETFs with common overlap |α|, they must both
have characteristic polynomial λn−d(λ−n/d)d. This is because we know that rank G = rank F , and
for for ETFs, the rank is d. So G1 and G2 both have eigenvalue 0 with multiplicity n− d. Because
the frame operator is proportional to the identity F = cI, all other eigenvalues are equal to some
constant c with multiplicity d. The trace of the Gram matrix is fixed to Tr G = n, so n = c× d and
the eigenvalue is c = n/d with multiplicity d.

So G1 and G2 have the same characteristic polynomial, meaning they are related by a sequence
of index permutations and multiplications of rows and corresponding columns by -1. We know this
because [25] determined that there are 16 distinct classes distinguished by their characteristic poly-
nomials, and all Gram matrices within a class can be obtained from each other by these operations.
The compositions of such unitary operations is of course, unitary, so G1 and G2 are related by a
unitary transformation.

Thus, all ETFs (including the 5-state ETF in R4 and, therefore, the corresponding bipartite qubit
ETF) are unique up to unitary equivalence.
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Figure 3: Bloch vector representation of the unitary matrices which form a set of 5 equiangular lines
in C2 ⊗ C2 when applied to the first Bell state |Φ+⟩. The first state is the identity matrix which is
represented at the origin of the Bloch sphere. The other four form a regular tetrahedron, which is
a (4, 3) real ETF.

6.2 6 State Constructions

6.2.1 Maximally Entangled Equiangular Set from the Regular Icosahedron

Looking at table 1, we notice that the maximum number of equiangular lines in R3 is the same as
that in R4, so we may embed the three dimensional equiangular set in R4, and make the mapping
to C2 ⊗C2 with (60) to obtain 6 maximally entangled equiangular lines. Then, the equiangular set
in R4 comes from the 6 diagonals of the regular icosahedron in (29) with an extra zero in the fourth
dimension appended to each vector. The states they map to are given by

|ϕ1⟩ =
1

A
(|Ψ+⟩ − ip|Ψ−⟩)

|ϕ3⟩ =
1

A
(−i|Φ+⟩+ p|Ψ+⟩)

|ϕ5⟩ =
1

A
(ip|Φ+⟩ − i|Ψ−⟩)

|ϕ2⟩ =
1

A
(|Ψ+⟩+ ip|Ψ−⟩)

|ϕ4⟩ =
1

A
(−i|Φ+⟩ − p|Ψ+⟩)

|ϕ6⟩ =
1

A
(−ip|Φ+⟩ − i|Ψ−⟩)

(68)

6.2.2 Optimal Maximally Entangled Equiangular Set

From the discussion of frames and erasures, we find that the 6 equiangular lines constructed in the
previous section are not the most optimal since they are all orthogonal in the fourth dimension.
We show that the Welch bound cannot be reached for n = 6 in the next section, but we can reach
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µ = 1/9. The states producing this optimal set are given by

|ψ1⟩ = |Φ+⟩

|ψ2⟩ = −
1

3
|Φ+⟩+ i

2
√
2

3
|Φ−⟩

|ψ3⟩ =
1

3
|Φ+⟩ − i

√
2

6
|Φ−⟩ − i

√
5

6
|Ψ+⟩

|ψ4⟩ =
1

3
|Φ+⟩+ i

√
2

3
|Φ−⟩+ i

√
2

15
|Ψ+⟩+ 2

√
2

15
|Ψ−⟩

|ψ5⟩ =
1

3
|Φ+⟩+ i

√
2

3
|Φ−⟩ − i

√
2

15
|Ψ+⟩ − 2

√
2

15
|Ψ−⟩

|ψ6⟩ =
1

3
|Φ+⟩ − i

√
2

6
|Φ−⟩+ i

3√
30
|Ψ+⟩ − 4√

30
|Ψ−⟩

(69)

The proof that µ = 1/9 really is the smallest overlap squared value for n = 6 states for bipartite
qubit states is given in appendix C.

6.2.3 No 6-State ETF Proof

From the Gram matrix, of an equiangular set {x̂i}ni=1 with common overlap ±α, the following matrix
may be defined:

S =
1

α
(G− I), (70)

This real and symmetric matrix has ±1 on all off-diagonal entries, and 0’s along the diagonal. We
will show that from theorem 12 and corollary 13 in [87], when d < n− 1 and n ̸= 2d, the following
quantities must be integers for there to exist an ETF of n lines in Rd:

λ1 =

√
d(n− 1)

n− d
λ2 =

√
(n− 1)(n− d)

d
. (71)

For n = 6 and d = 4, λ1 =
√
10 and λ2 =

√
5/2 so there can be no ETF. Due to the isomorphism

(60), there can be no ETF of 6 states for bipartite qubit states either.

An informal motivation for why this theorem is true follows. Recall that G = V †V and F = V V †

have the same eigenvalues. For an ETF, the eigenvalues for both are 0 with multiplicity n− d, and
n/d with multiplicity d. The characteristic polynomial of matrix S belongs to the ring of integer
polynomials Z[x], since all of its entries are integers. It is well known that complex conjugate roots
of a polynomial with real coefficients come in pairs. A similar statement is true for irrational roots
of polynomials with integer or rational coefficients. For example, the polynomial f(x) = x2 − 2 has
coefficients in the ring of integers, and there are two conjugate roots ±

√
2. So the fact that n ̸= 2d

ensures that the two eigenvalues with multiplicities d and n−d cannot be conjugate pairs of any kind.

In brief, the eigenvalues of G belong to the same field as do the coefficients of the characteristic
polynomial given that n ̸= 2d, and they are all integers.
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7 Quantum State Discrimination (QSD)

Due to the description of general quantum states as superpositions of orthogonal basis states, unless
two bipartite states |ϕ0⟩ and |ϕ1⟩ are orthogonal, applying a measurement on either state generally
produces non-zero probabilities to observe either state. This makes correctly differentiating quan-
tum states harder than determining the outcome of a coin toss. For a given state |ϕi⟩ with prior
probability pi from the set {pi, |ϕi⟩}, how can you design measurements of the state to optimize
your chances of guessing correctly? For differentiating two states, it is known that the minimum
probability of error in discrimination is given by the Helström bound [88]:

Perr =
1

2

(
1−

√
1− 4p0p1|⟨ϕ0|ϕ1⟩|2

)
. (72)

Suppose you in Sweden and your best friend in New York have been distributed two parts of a bipar-
tite state from {pi, ρAB}. Provided that you can only make rotations and measurements on your half
of the bipartite state and communicate with a classical channel, how can you cooperate with them
to optimize your guessing probability then? This is the task of quantum state discrimination. It is
through this task that the relationship between entanglement and nonlocality can be probed with
more nuance. As we’ll see, there are entirely orthogonal product sets which are nonetheless LOCC
indistinguishable, and at the same time there are orthogonal sets of maximally entangled states
which are LOCC distinguishable but become indistinguishable when one is replaced by a product
state [88]. For some states, the distinguishability even depends on who makes the first measurement
[89]. So the relationship between entanglement and nonlocality is not as linear as it may seem at first.

7.1 Applications of Quantum State Discrimination

7.1.1 Taking Advantage of Indistinguishability

Terhal et. al. [90] put this local indistinguishability of entangled states to use with a bit-hiding
protocol. In this protocol, a hider has a reservoir of each of the four Bell states, and encodes a bit
b into state ρ(n)0 for the b = 0 bit and ρ

(n)
1 for b = 1. n quantifies the degree of security of the

protocol. To hide each bit, a set of n randomly chosen Bell states are distributed to Alice and Bob.
If the number of singlet states |ψ−⟩ is even, then the hidden bit is b = 0. If odd, then b = 1. They
demonstrate that the probabilities of successful determination, p0|0 and p1|1, satisfy

−δ ≤ p0|0 + p1|1 − 1 ≤ δ. (73)

They show that δ = 1/2n−1, so as the number of Bell states per hidden bit grows, p0|0 and p1|1
are squeezed closer and closer to a 50-50 distribution, so less and less information of the bit can
be obtained with LOCC. Of course, if Alice and Bob have a quantum channel or have access to
global measurements, they can measure each Bell state one by one and count the number of singlet
states. If they share sufficient prior entanglement, Alice can teleport her Bell states to Bob and he
can also count the singlet states one by one by making global measurements on the whole bipartite
state. From this example, we can see that it is useful to be able to determine for the security of
the bit-hiding how much information the adversarial parties Alice and Bob can gain from the states
they are given access to different resources.
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7.1.2 No-Cloning, No-Signaling, and Quantum State Discrimination

A fundamental result in quantum information theory is the no-cloning theorem, which says that
arbitrary, non-orthogonal quantum states cannot be perfectly replicated. A common justification
for this is due to the linearity of quantum operators [91]. Suppose that for two possible orthogonal
states | ↑⟩A, | ↓⟩A ∈ HA and arbitrary initial state |0⟩B ∈ HB, there exists a unitary evolution U
acting on HA ⊗HB which has the effect

U | ↑A 0B⟩ = | ↑A↑B⟩
U | ↓A 0B⟩ = | ↓A↓B⟩

(74)

As it is a perfect cloner, it should also replicate any superposition of the two. However, we find that

U(α| ↑⟩A + β| ↓⟩A)|0⟩B = α| ↑A↑B⟩+ β| ↓A↓B⟩
̸= (α| ↑A⟩+ β| ↓⟩A)(α| ↑B⟩+ β| ↓⟩B)

(75)

so the linear operator cannot clone arbitrary states. Known orthogonal states, however, can be
cloned. As such, only orthogonal states are distinguishable. It is known that measurements on a
single copy of a quantum state can only provide partial information of the full state. A full determi-
nation of the state requires a reservoir of identically prepared states over which statistical averages
are taken over different observables. [92]. So provided a perfect quantum cloning machine, Bob can
produce the ensemble he needs to make a perfect state determination. It can also be understood to
be that given state |ψ⟩ (|ϕ⟩), Bob can obtain the state |ψ⟩⊗n (|ϕ⟩⊗n) with his cloning machine. In
the limit that n→∞, the states become orthogonal and can be perfectly distinguished with a pro-
jective measurement. So we see that the no-cloning theorem and the state-discrimination problem
are closely related to each other.

In [93], no-cloning is shown to be a restriction of any theory which accepts both nonlocality and
no-signaling (i.e. no superluminal signaling). Naturally, one would expect that no-signaling and
no-cloning are also fundamentally related. Indeed, in [94], the problem of QSD is incorporated into
a communication scenario, and it is shown that in fact that the no-signaling constraint of the semi-
definite program is a tight bound on optimal QSD.

The rest of this section will discuss various measurements and provide some particularly interesting
examples of QSD. Then we will take a look at the distinguishability of the above constructions.

7.2 Measures of Successful Discrimination

Suppose Alice and Bob are separated in space and share a composite state which is drawn from
the ensemble {pi, ρi}Ni , where ρi = |ϕi⟩⟨ϕi|. Their task will be to devise a measurement strategy of
measurements {Ea} with outcomes labelled by a to best determine which state they are given. To
do this, they use the following expression to quantify their success rate Pwin:

Pwin =
1

N

∑
i

Tr(ρiEa) =
1

N

∑
i

⟨ϕi|Ea|ϕi⟩G(i|a) (76)

where Tr(ρiEa) = ⟨ϕi|Ea|ϕi⟩ is the probability that they observe measurement outcome a given state
ρi = |ϕi⟩⟨ϕi|, and post-processing strategy G(i|a) is the probability that Alice and Bob choose state
i given the observation of measurement a. Summing over index i gives Pwin, the total probability
that Alice and Bob guess state i given the measurement outcome when they are given state |ϕi⟩.
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Optimal measurements optimize (76) over all measurements {Ei} and guessing strategies G(i|a).
We impose the constraint

∑
iG(i|a) = 1 which just says that that for a given measurement outcome

a, the probabilities of choosing one of the states in the set must sum to one. Then maximizing over
the guessing strategy G means

max
G

∑
i,a

⟨ϕi|Ea|ϕi⟩G(i|a) =
∑
a

max
G

[∑
i

⟨ϕi|Ea|ϕi⟩G(i|a)
]

(77)

where the sum in the big brackets is a convex combination of the measurement probabilities. It is
known that convex combinations of linear functions find their maxima at extremal points, so the
optimal guessing strategy is a deterministic one. It is straightforward to show that given state ρ
from ensemble {pi, ρi}ni , the maximum success rate for Alice and Bob to determine the state is d/n.
To show this,

1

n

∑
a

Tr(Eaρ) ≤
1

n

∑
a

λmaxTr(ρ) ≤ 1

n

∑
a

Tr(Ea) =
1

n
Tr(
∑
a

Ea) =
1

n
Tr(I) =

d

n
(78)

Where the first inequality follows from choosing ρ to be in the eigenstate of Ea with the largest
eigenvalue. The second inequality holds because a positive semi-definite operator Ea only has non-
negative eigenvalues so the sum of all of them must be greater than or equal to its maximum
eigenvalue.

7.3 Global Measurements

7.3.1 Global Entangled Measurements

The most powerful measurements are of course those which can be performed jointly on both parts of
the system with entangled measurements, meaning that the states |ψi⟩ in measurements {|ψi⟩⟨ψi|}ni=1

are entangled. Any orthonormal basis of maximally entangled states can be perfectly distinguished
with such global measurements, and the set of 5 maximally entangled equiangular set can be dis-
tinguished with 4/5 success rate. This follows from (78). This is the generalization of BSM4 to
non-projective, non-orthogonal measurements.

7.3.2 PPT Measurements

For a multi-partite state to be separable, it is necessary (and sufficient for 2⊗ 2 and 2⊗ 3 systems)
that the partial transpose of the density operator with respect to any partition are also positive semi-
definite density operators. For example, for bipartite state ρAB, we may define T to be the transpose
operator and I⊗ T to be the partial transpose operator leaving A invariant and transposing system
B. Applied to state ρmµ,nν where Latin letters index system A and Greek letters index system B,
we have

(I⊗ T )ρmµ,nν = ρmν,nµ (79)

This criterion follows from the fact that T is a positive operator, but not completely positive so T⊗I
may or may not be, depending on the state ρAB it is applied to. In fact if ρAB is separable, then
the independent action of the transpose on system A or B given by (I⊗T )ρAB is still positive semi-
definite. If ρAB is non-separable, then (I⊗ T )ρAB may or may not be positive semi-definite. So all
separable measurements are necessarily PPT, but there exist states which are separable but not PPT
[95]. This strict inclusion can be used to derive albeit weak upper bounds on the distinguishability
of separable and LOCC measurements.
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7.3.3 Separable Measurements

A separable measurement Π = {Π1,Π2, ...,Πn} where
∑

iΠi = I is one where each Πi operating on
Hilbert space H = HA ⊗HB can be expressed as a convex combination of product operators [95]:

Πi =
∑
j

Pj ⊗Qj (80)

where Pj and Qj are positive semi-definite operators. Separable measurement operators are sepa-
rable, so they are also PPT. Global separable measurements cannot produce entanglement where
there was none initially. Set Sep(X : Y ) is a compact, closed convex set so optimizations can be
easily performed with convex optimization. A sample optimization problem statement

maximize:
∑
i

piTr(ρiΠi)

satisfying:
∑
i

Πi = IX⊗Y

Πi ∈ Sep(X : Y ) ∀i

7.4 LOSR and LOCC Measurements

Now we turn to LOCC measurements. If the measurement outcome of {Πa}na applied to state ρ is
a, then the post-measurement state is

ρ→ ΠaρΠ
†
a

Tr(ΠaρΠ
†
a)

(81)

After one round of LOCC, Alice has made measurement Aa1 with outcome a1, communicated this
classically to Bob, and subsequently Bob has made a measurement Bb1|a1 on his state conditioned
on the result Alice sent him. After two rounds, state ρ becomes

ρ→

(
Aa1 ⊗Bb1|a1)ρ(A

†
a1 ⊗B

†
b1|a1

)
Tr
(
(Aa1 ⊗Bb1|a1)ρ(A

†
a1 ⊗B

†
b1|a1)

) (82)

→

(
Aa2|b1,a1Aa1 ⊗Bb2|a2,b1,a1Bb1|a1

)
ρ
(
A†

a2|b1,a1A
†
a1 ⊗B

†
b2|a2,b1,a1B

†
b1|a1

)
Tr
(
(Aa1 ⊗Bb1|a1)ρ(A

†
a1 ⊗B

†
b1|a1)

) . (83)

Already, after just two rounds, the expressions for the states become quite cumbersome. The LOCC
class includes all strategies involving an infinite number of measurement and communication rounds,
it is clear to see that characterizing and optimizing over the full class of LOCC measurements is a
hopelessly difficult thing to do. Moreover, the full class of LOCC protocols is not a closed set [96].
For this reason, the class of separable measurements is useful for providing tighter upper bounds
on LOCC since all LOCC measurements can be expressed as a separable measurement in the form
given in (80), but not the other way around. See section 7.5 for examples of this. Given an arbitrary
measurement operator in the form of (80), it is generally difficult to tell if this can be decomposed
into an LOCC sequence [97].
The class of LOCC measurements can be further classified into the following variations:

• One-way LOCC (LOCC→): classical communication is limited to one pre-determined direction
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• N-round LOCC (LOCCN ): finite number of LOCC rounds

• unbounded LOCC: infinite rounds are allowed

The relationships between LOCC, SEP, PPT and global entangled measurements are given by [96]

LOCC ⊂ SEP ⊂ PPT ⊂ GLOBAL (84)

In [98], an algorithm is proposed to implement an arbitrary separable measurement when it exists.
In the absence of an exact LOCC implementation, the measurement statistics of a separable mea-
surement can always be simulated by an LOCC measurement [99]. To get a sense of the diversity
of operations which are LOCC, we note that well-known protocols such as quantum teleportation,
quantum key distribution and entanglement distillation are all carried out with LOCC operations.

Finally, we can restrict the communication capabilites of Alice and Bob so that now they are re-
stricted to local operations and shared randomness. This is abbreviated as LOSR.

7.4.1 Distinguishing Bell States with LOCC

For illustration purposes and for later comparison with the distinguishability of BSM5, we study the
distinguishability of the four Bell states (85) under LOCC. The four states are stated again here:

|Φ±⟩AB =
1√
2
(|00⟩AB ± |11⟩AB)

|Ψ±⟩AB =
1√
2
(|01⟩AB ± |10⟩AB)

(85)

With global measurements, the four Bell states can be perfectly discriminated since they are orthog-
onal. The measurement they make is {|Φ±⟩⟨Φ±|, |Ψ±⟩⟨Ψ±|}. Restricted to LOCC with one-copy
only, Alice and Bob have a success rate of 50%, due to the fact that in any basis they measure, they
always project out one bit of information. For instance, if they both measure in the ẑ basis, they
will obtain either {|00⟩, |11⟩} from which they conclude either |Φ±⟩ or {|01⟩, |10⟩} from which they
conclude either |Ψ±⟩.

With two copies, Alice and Bob can perfectly identify the state. To do so, they both measure
in ẑ on one copy, with which they narrow the possibilities down to the same two options from be-
fore. Then they make x̂ on the other to distinguish the remaining two. In fact, the protocol they
use to perfectly distinguish the four states did not require any communication so they are able to
do so with LOSR only.

We collect some well-known results about distinguishing product and maximally entangled states
with LOCC:

• Any two orthogonal pure or entangled states can be distinguished with LOCC [100].

• Any two non-orthogonal pure or entangled state can be optimally distinguished with LOCC.
This means an LOCC measurement can do as well as a separable one [101].

• Any three orthogonal states can be perfectly distinguished with LOCC iff two are product [89].

• Any three linearly independent pure quantum states can be locally distinguished with non-zero
probability [102].
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• At most d states can be distinguished in Cd ⊗ Cd with LOCC [103].

7.5 Special Sets

Here we describe some highly-cited constructions which have demonstrated that entanglement is
not necessary for LOCC to fail to discriminate quantum states. The implication is that nonlocality
exists in the absence of entanglement so they are separate phenomena.

7.5.1 Peres and Wootter’s Qu-Trine States

In 1991, Peres and Wootters constructed the first product states of two qubits for which LOCC
measurements could not do as well as a global measurement [21]. Later, Wootters demonstrated
that a separable measurement could do just as well as global measurements, but LOCC remained
sub-optimal [104]. The qu-trine states from the construction are reproduced here from (28)

|ψ0⟩ =
(
1
0

)
|ψ1⟩ =

(
−1/2
−
√
3/2

)
|ψ2⟩ =

(
−1/2√
3/2

)
(86)

Alice and Bob are each given a part of one of three product states |ψi⟩ ⊗ |ψi⟩ for i = 0, 1, 2.
With LOCC measurements, they are tasked to determine which one they have been given. By
means Monte Carlo simulations of various measurement strategies, they were able to show that an
information gain of 1.262 bits was optimally obtainable from an LOCC measurement whereas 1.369
bits is possible from a global measurement. Chitambar and Hsieh [97] showed that the distinguishing
power of the qutrine states are ordered as follows

LOCC→ ⊂ LOCC ⊂ GLOBAL SEP = GLOBAL ENT (87)

7.5.2 Nonlocality without Entanglement

Nine orthogonal, product 2⊗3 states were presented in a celebrated paper demonstrating nonlocality
in the absence of entanglement. The unnormalized states are given by

|ψ1⟩ = |1⟩ ⊗ |1⟩ |ψ2⟩ = |0⟩ ⊗ |0 + 1⟩
|ψ3⟩ = |0⟩ ⊗ |0− 1⟩ |ψ4⟩ = |2⟩ ⊗ |1 + 2⟩
|ψ5⟩ = |2⟩ ⊗ |1− 2⟩ |ψ6⟩ = |1 + 2⟩ ⊗ |0⟩
|ψ7⟩ = |1− 2⟩ ⊗ |0⟩ |ψ8⟩ = |0 + 1⟩ ⊗ |2⟩
|ψ9⟩ = |0− 1⟩ ⊗ |2⟩

(88)

It is known that orthogonality of a set of states is necessary for perfect distinguishability, but
these states demonstrate that it is not sufficient. It is for the very simple reason that the product
states, with the components in both systems taken together, form an orthogonal set so they are
distinguishable by an observer with access to global separable measurements. However, the nine local
states observed by Alice and Bob in their local systems {|0⟩, |1⟩, |2⟩, |1 + 2⟩, |1− 2⟩, |0 + 1⟩, |0− 1⟩}
are not orthogonal, since nine states cannot be orthogonal in C3. Each local set completes the
orthogonality of the other’s. So Alice and Bob, who locally do not have access to the full orthogonal
set, can only perform local operations and measurements on their totally indistinguishable states.
Refer to [105] for the full proof.
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7.6 Distinguishability of the 5-State Bell Measurement

All numerical results in this section regarding the distinguishability of the states in section 6 were
obtained with Mathematica.

One Copy For LOSR, we optimize the expression

Pwin =
1

5

∑
i

Tr
(
(Aa ⊗Bb)ρi

)
G(i|a, b) (89)

over measurements Aa, Bb, and guessing strategy G(i|a, b). For one-way LOCC, we optimize

Pwin =
1

5

∑
i

Tr
(
(Aa ⊗Bb|a)ρi

)
G(i|a, b) (90)

Where now Bob’s choice of measurement depends on the outcome of Alice’s. The operators Aa and
Bb associated respectively with measurement outcomes a and b are parameterized by

A0,1 =
1

2
(I± a⃗ · σ⃗)

B0,1 =
1

2
(I± b⃗ · σ⃗)

(91)

Then we find that one-way LOCC and LOSR achieve the same success rate at 0.39365.

Two Copies If Alice and Bob are distributed two copies of the maximally entangled state to mea-
sure and are permitted global measurements on the two qubits they receive, optimal measurements
and guessing strategies yields a success rate of 0.7539 for one-way LOCC and 0.7298 for LOSR.

7.7 Distinguishability of 5 Product State ETF

For the 5 product state ETF defined by the unitaries in (62), a separable measurement with subnor-
malized measurement operators formed from the equiangular states themselves achieves the optimal
value P SEP

win = 0.8. An optimal success rate of 0.6906 was obtained for one-way LOCC, and 0.6195
for LOSR.

8 Conclusions

In this thesis we extended the discussion of highly symmetric state configurations in real and com-
plex dimensions to the state space of maximally entangled states. As equiangular lines are really a
special class of frames, many of the tools from frame theory are useful in deriving results for equian-
gular lines (namely, the cospectrality of the Gram and frame operators). In addition, the study of
frames provides helpful context and perspective with which one can better appreciate the features of
equiangular lines. A brief introduction to real and complex equiangular lines was given to highlight
the areas of discrete mathematics that the problem has found connections to, since constructing
them from solving polynomial equations alone is prohibitively difficult.

Then we discussed measurements and the distinction between projective measurements and non-
projective POVMs. Throughout the thesis, the comparison between orthogonal projective bases
and non-orthogonal ones is a running theme. For measurements of maximally entangled states, the
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famous Bell state measurement is used to distinguish the four maximally entangled Bell states. But
what is the most optimal extension of BSM4 to non-orthogonal measurements? Can we achieve a
perfect informationally complete measurement as can be done in complex dimensions? The answer,
we found, is no. In fact, only 6 equiangular lines of maximally entangled states can be found, and
only 5 equiangular lines of maximally entangled states can be constructed to create a quantum
measurement of maximally entangled states. But equiangular lines over maximally entangled states
may do better in quantum information tasks such as bit hiding, a protocol which was described in
the text for BSM4 since we have shown that the 5 equiangular lines are much less distinguishable
locally compared to BSM4, even with two copies.

However, it is well known that qubit systems are often exceptions compared to their bipartite
counterparts in higher dimensions. This we have already suspected since only for bipartite qubit
states is there an isomorphism of states to vectors in R4 due to the happy coincidence that the Pauli
matrices square to the identity. It would be interesting to see what mathematical tools can be used
to cleverly construct equiangular lines in higher dimensions of maximally entangled states.

9 Outlook

Equiangular lines in real and complex dimensions have enjoyed decades of research and applications
to classical and quantum information processing tasks which exploit their great symmetries. Appli-
cations of discrete structures from geometry, combinatorial design theory, spectral graph theory and
group theory have been the inspiration for many equiangular constructions. A natural next step
then is to extend this work to higher dimensions. How many equiangular lines can be constructed
in Cd ⊗ Cd for d > 2? Are there absolute upper bounds that can be derived analogous to those
for real and complex equiangular lines? What discrete structures can be used to systematically
construct equiangular lines? Under what circumstances can equiangular lines in C2⊗C2 be reduced
to equiangular lines in real or complex dimensions?

Although the questions above are interesting in their own right it is also interesting to wonder where
equiangular lines can find applications in quantum information processing or elsewhere. A natural
place to look for applications is where the BSM4 is already useful, such as in teleportation and
entanglement swapping. Frankly, the applications for such maximally entangled equiangular lines is
still unclear. But if the breadth and depth of the applications of real and complex equiangular lines
is any indication, it is worth the effort to think on this more.
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A Related Discrete Structures

A.1 Combinatorial Designs

t-designs form an important class of incidence structures in combinatorial mathematics. A t −
(v, k, λt) design consists of a set P of v points and a collection of blocks B of k-point subsets such
that any set of t points lies in precisely λt blocks [106]. The Fano plane from section 4 is such a
2− (7, 3, 1) design. It consists of 7 points and 7 blocks which each contain 3 points. Any two points
belong only to one block.

Equiangular Lines from the Witt Design
The Witt design, one of the most remarkable structures in all of combinatorics [51], is a fruitful
source of equiangular lines in many dimensions. It is a 4 − (23, 7, 1) design, so it has 23 points
arranged in blocks of 7 points such that any four of them appear only once in the block set. To
construct the incidence matrix N of the Witt design, begin with the polynomial

p(x) = x11 + x9 + x7 + x6 + x5 + x+ 1 ∈ F2[x] (92)

where F2[x] is the polynomial ring with coefficients in the field of integers modulo 2. Then, identify
the point set with P = {xi}23i=1, and define polynomial set S = {p(x)i mod x23 − 1}, the set of
powers of p(x) modulo x23 − 1. Then the blocks B ⊂ S are the polynomials in S with exactly
7 non-zero coefficients. So a block (polynomimal p(x) ∈ B) contains point xi if it has a non-zero
coefficient in p(x). Then the incidence matrix as defined in 4 is a 23 × 253 matrix. From this, the
Seidel matrix of 276 equiangular lines in R23 is given by

S =

(
J23 − I23 J23×253 − 2N

J253×23 − 2N
T

N
T
N − 5I253 − 2J253

)
. (93)

It can be confirmed that this is a 276× 276 matrix. From the principal submatrices of S, 176 lines
in R22 [43], 126 lines in R21 [43], and 90 lines in R20 [107] have been found, among others.

A.2 Mutually Unbiased Bases (MUBs)

Another class of discrete structures that are often mentioned together with SICs are mutually unbi-
ased bases (MUBs). A pair of orthonormal bases {ei}di=1 and {fj}dj=1 in Cd are mutually unbiased
if

|⟨ei|fj⟩|2 =
1

d
∀i, j (94)

MUBs have deep connections to complementarity and incompatible observables in quantum me-
chanics. Perhaps the most familiar example of complementarity is that of measurements in position
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and momentum featured in the formula

|⟨x|p⟩|2 = 1

2π
. (95)

When a full set exists, they are the optimal choice for measurement bases in quantum state tomog-
raphy with projective measurements, since the information produced by measurements in each of
the bases are not redundant. One of their first applications in quantum information theory was
in the BB84 quantum key distribution protocol [67], where they are optimal for the detection of
eavesdropping third parties. They were also used in the improvement to the BB84 protocol [68],
where three MUBs were used instead of two. The difficulty with MUBs is that it is often difficult
to find complete sets. In any dimension d, d + 1 is an absolute upper bound on the number of
MUBs and in prime dimensions, this upper bound can be met. But this is not true in general, and
where maximal sets cannot be found, SICs are the next highly symmetric alternative to consider.
See chapter 12 of [108] for more.

B Proofs of Various Upper Bounds

Each of the proofs are similar in spirit; a one-to-one mapping is made from the n hypothetical
equiangular lines to a set of matrix or polynomial set which is necessarily orthogonal. Then, the
dimension of this orthogonal set bound the maximum number of equiangular lines.

B.1 In Rd: Gerzon’s Bound

Proof that the maximum number of lines in Rd is
(
d+1
2

)
[47].

Proof. For equiangular set {ui}Ni=1, define degree 2 homogeneous polynomials

fi(x⃗) = ⟨ui, x⟩2 − α2⟨x, x⟩ (96)

for arbitrary vector x ∈ Rd, for each equiangular line ui. This is the space of degree 2 polynomials
of the d variables in the vector x. So the dimension of this space is

(
d
2

)
+ d =

(
d+1
2

)
. This is true

because
(
d
2

)
counts the number of degree-2 monomials of the form xixj when i ̸= j, but we also need

to count the d terms when i = j —hence, the additional d. We will show that the set {fi}Ni=1 are
linearly independent. First, we note that

fi(uj) = ⟨ui, uj⟩2 − α2⟨uj , uj⟩ = α2 − α2 = 0

fi(ui) = ⟨ui, ui⟩2 − α2⟨ui, ui⟩ = 1− α2
(97)

Now suppose
c1f1(x) + c2f2(x) + ...+ cnfn(x) = 0. (98)

Replace x = ui so from (97), cifi(ui) = ci(1−α2) = 0 which implies ci = 0. So, the functions fi are
linearly independent and N(d) ≤

(
d+1
2

)
. ■

B.2 In Cd

Proof that the maximum number of lines in Cd is d2 [109].
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Proof. Suppose we have a set of unit n equiangular lines {xi}, so that

|⟨xi|xj⟩| = α i ̸= j (99)

To each xi, we assign a d×d projection matrix Xi = xix
†
i to each of the vectors. This is a Hermitian

matrix and can be checked easily. This set of Hermitian matrices is spanned by d2 basis matrices

{Eii} ∪ {Ejk + Ekj , i(Ejk − Ekj)} (100)

since the basis matrices should be Hermitian. Then, by counting arguments, the space of Hermitian
matrices is spanned by d2 elements. So if we show that the set {Xi} are linearly independent, then
there can be no more than d2 of them. To do this, we first show:

Tr(XiXj) = Tr(xix
†
ixjx

†
j)

= ⟨xi, xj⟩Tr(xix
†
j)

= |⟨xi, xj⟩|2
(101)

This equals 1 if i = j and α2 if i ̸= j. If there is some set of non-trivial coefficients ci such that∑
ciXi = 0, (102)

then the matrices are linearly dependent. We define matrix Yj = Xj − α2Id, and take the Hilbert-
Schmidt inner product

Tr(Y †
j Xi) = Tr(X†

jXi − α2Xi)

= |⟨xi|xj⟩|2 − α2
(103)

This now equals 0 if i ̸= j, and 1−α2 if i = j. Now if we substitute the linear combination in (102),
we have

0 = Tr(Y †
j

∑
i

ciXi)

=
∑
i

ciTr(Y †
j Xi)

= ci(1− α2)

(104)

The sum becomes just a single term, since from (103), the contributions are zero if i ̸= j. And since
the Xi are projection operators, they have eigenvalues 0 and 1, so ci is not negative. And we choose
the vectors to be non-orthogonal, so a > 0, and therefore ci = 0 must be true. Therefore, the set
{Xi} must be linearly independent, and can be no more than d2 matrices. ■

C Optimal Configuration of 6 Equiangular Lines of Bipartite Qubit
States

Recall that for a set of n equiangular lines in Rd with Gram matrix G, rank(G) ≤ d. Recall also
that G has ones along the diagonal and ±α on all the off-diagonal entries. This means that we
want to find sign combinations for the 15 entries above the diagonal (since G is symmetric the
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lower half will automatically be determined) and α which satisfy the two conditions. Then, we
will find that the characteristic polynomial divides λn−d, and all other roots are positive. But 215 is
a lot of sign combinations to go through, and even more difficult if we have to find the best α for each!

To simplify the problem, use the fact that multiplying a row or column of a matrix by a con-
stant c also scales the determinant of the matrix by c. Then if we simultaneously multiply row i
and column i of G − λI by −1, det(G − λI) is unchanged. Luckily for us, spectral graph theorists
have already noticed this, and have classified all such matrices whose characteristic polynomials
(and spectrum) are left invariant after multiplication of their rows and corresponding columns by
-1, or what they call switching operations. (The graph theoretical representation of this operation
motivates the name). The 16 switching equivalent classes for n = d along with their graphical
representations are shown in table 4.1 of [110]. With the help of Mathematica, we find that the 16
characteristic polynomials corresponding to the plots in order from left to right are

p1(α, λ) = (λ− 5α− 1)(λ+ α− 1)5

p2(α, λ) = (λ− α− 1)(λ+ α− 1)3(λ2 − 2(1 + α)λ− 11α2 + 2α+ 1)

p3(α, λ) = (λ+ α− 1)3(λ3 − 3(1 + α)λ2 + 3(1 + 2α− 3α2)λ+ 19α3 + 9α2 − 3α− 1)

p4(α, λ) = (λ+ α− 1)(λ2 − 2λ− 5α2 + 1)(λ3 − (3 + α)λ2 + (3 + 2α− 9α2)λ+ α3 + 9α2 − α− 1)

p5(α, λ) = (λ− α− 1)2(λ+ α− 1)(λ+ 3α− 1)(λ2 − 2(1 + α)λ− 7α2 + 2α+ 1)

p6(α, λ) = (λ− 3α− 1)2(λ+ α− 1)3(λ+ 3α− 1)

p7(α, λ) = (λ− α− 1)(λ2 − 2λ− 5α2 + 1)(λ3 − (3− α)λ2 − (9α2 + 2α− 3)λ− α3 + 9α2 + α− 1)

p8(α, λ) = ((λ− 1)2 − α2)2((λ− 1)2 − 13α2)

p9(α, λ) = (λ− α− 1)(λ− 3α− 1)(λ+ α− 1)(λ+ 3α− 1)(λ2 − 2λ− 5α2 + 1)

p10(α, λ) = (λ− α− 1)(λ+ α− 1)(λ4 − 4λ3 + (6− 14α2)λ2 + (28α2 − 4)λ+ 29α4 − 14α2 + 1)

p11(α, λ) = (λ− α− 1)3(λ− 3α− 1)(λ+ 3α− 1)2

p12(α, λ) = (λ− α− 1)(λ− 3α− 1)(λ+ α− 1)2(λ2 + 2(α− 1)λ− 7α2 − 2α+ 1)

p13(α, λ) = (λ− α− 1)(λ2 − 2λ− 5α2 + 1)(λ3 + (α− 3)λ2 − (2α+ 9− 3)λ− α3 + 9α2 + α− 1)

p14(α, λ) = (λ− α− 1)3(λ3 + 3(α− 1)λ2 − 3(3α2 + 2α− 1)λ− 19α3 + 9α2 + 3α− 1)

p15(α, λ) = (λ− α− 1)3(λ+ α− 1)(λ2 + 2(α− 1)λ− 11α2 − 2α+ 1)

p16(α, λ) = (λ− α− 1)5(λ+ 5α− 1)

(105)


