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Abstract 
Forests offer vital ecosystem services but face threats from various stressors, 

including climate change and insect infestations. The European spruce bark beetle 

(Ips typographus L.) poses significant risks to Norway Spruce (Picea abies). Early 

detection of bark beetle infestations is crucial for damage control but challenging with 

traditional methods. This study aims to utilize modern remote sensing technologies, 

particularly high-resolution Unmanned Aerial Vehicle (UAV) imagery, combined 

with the Segment Anything Model (SAM) to segment individual spruce trees and 

detect early signs of bark beetle attacks. Field studies were conducted in Mulatorp, a 

nature reserve in southeast Sweden, capturing UAV images over several months. The 

SAM, a state-of-the-art deep learning model for image segmentation, was used to 

segment individual spruce trees from RGB UAV data. The study aimed to assess 

SAM's zero-shot capabilities, refine its segmentation parameters, and compare its 

outputs with manually validated data. Additionally, the study sought to develop a 

time-series of vegetation indices to detect early signs of bark beetle infestations. 

 

Results indicated that SAM's box prompts yielded better segmentation accuracy than 

point prompts, though the model often merged canopies and missed some trees. 

Despite the high spatial resolution of UAV imagery, SAM detected only 37% of all 

trees and 33% of Norway spruce trees, with an IoU of 0.55 for spruce trees. The 

Green Chromatic Coordinate (GCC) was identified as the most effective vegetation 

index for early detection, showing significant differences between healthy and 

attacked trees as early as June. The findings suggest that while SAM has potential for 

remote sensing applications, its current zero-shot capabilities are insufficient for 

precise tree segmentation without further refinement and training. The study 

highlights the importance of integrating advanced segmentation models with UAV 

imagery for effective forest health monitoring and early intervention in bark beetle 

infestations. Future research should focus on enhancing SAM’s segmentation 

accuracy and expanding field-validated datasets to improve early detection 

frameworks. 
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1 Introduction 

Forests provide numerous ecosystem services, such as timber and pulpwood, 

bioenergy, climate regulation, and recreation (Hansen & Malmaeus, 2016). However, 

there are various abiotic and biotic stressors that threaten our forests. One example of 

such is climate change, which intensifies droughts and weather extremes (Jactel et al., 

2012; Marini et al. 2013). Coupled with this is insect damage. Insect damage causes 

severe ecological and economic damage (Huo et al., 2023). The European spruce bark 

beetle (Ips typographus L.) is an example of such, being an aggressive species that is 

a threat to Norway Spruce (Picea abies (L.) Karst). 

 

Bark beetles are naturally present in spruce forests at lower populations. However, 

there are certain conditions that allow for their rapid population growth, allowing 

them to attack healthy trees. Such conditions are warmer climates, drought events, 

and windstorms (Jactel et al. 2012; Netherer et al. 2019; Schelhaas et al. 2003). As an 

example, the largest documented outbreak in Sweden was triggered by the 2018 

drought killing more than 31 million m3 of spruce trees during the period 2018-2022 

(Schroeder 2023). Such a destruction causes not only economic losses but also poses a 

serious threat to forest ecosystems (Huang et al., 2019).  It is therefore important to 

use and develop methods to monitor these outbreaks to prevent the further spread of 

bark beetles, especially in the early infestation stages. 

 

Early detection of bark beetle infestations can be challenging due to several reasons. 

The only visible symptoms of the initial colonization phase are entrance holes of 

beetles in the tree trunks, brown sawdust and fresh resin flow which are costly and 

difficult to detect in the field (Honkavaara et al. 2020). The colour of the tree crown 

gradually changes from green to yellow, and finally to reddish brown and grey in the 

final stage when the tree dies. At the early infestation stage, the crowns of the 

attacked trees often stay green, coining the term “green attack” in remote sensing 

(Wulder et al. 2006). In this phase, the larvae are still under the bark. Identifying 

attacked trees at an early stage is vital for damage control if they can be removed from 

the forest to control the population and reduce the potential damage caused by the 

future bark beetle generations (Huo et al. 2023). 
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Remote sensing has shown promising methods for bark beetle attack detection, 

providing a more effective approach that field surveys. Numerous studies have 

demonstrated the capabilities of satellite imagery for bark beetle detection 

(Fernandez-Carrillo et al. 2020, Migas-Mazur et al. 2021, Safonova et al. 2019). 

However, challenges remain when detecting bark beetle attacks, such as cloud-covers 

which result in gaps in the time-series, and low spatial resolution that hinders 

individual level detection (Zabihi et al. 2021; Kautz et al. 2024).  

 

Modern remote sensing technologies, such as high-resolution Unmanned Aerial 

Vehicle (UAV) imagery, provide high spatial resolution images that can be used to 

monitor forest health particularly for detecting spruce bark beetle attacks (Barta et al., 

20; Honkavaara et al., 2020; Huo et al 2023). In contrast to other remote sensing 

techniques such as satellite imagery, UAV data allows for a flexible way to acquire 

data since the type of sensor, angles of view, time, and frequency of acquisition can 

be controlled by the user (Alvarez et al. 2021). Moreover, UAV data acquisition in 

comparison to manned aerial vehicles is more cost effective, more user friendly, and 

faster.  

 

Images based methods to detect bark beetle infestations are usually based on the 

crown discoloration caused by disrupted water and nutrient transport of the attacked 

trees (Turkulainen et al. 2023). Such image-based methods include vegetation indices 

derived from multispectral images. Generally, water-stressed trees reflect a higher 

amount of visible light than healthy trees (Ortiz et al., 2013). Research indicates stress 

from lack of water impacts a tree's chlorophyll levels, which leads to decreased visible 

light absorption (Blackburn, 1998, 2006; Carter & Knapp, 2001). This stress is also 

linked to a rise in the reflection of Red-Edge light as a result of both diminished 

chlorophyll a levels and changes in the spongy mesophyll's structure. Furthermore, 

these alterations in the spongy mesophyll are associated with reduced near-infrared 

wavelength absorption in water-stressed trees (Ortiz et al. 2013; Trubin et al. 2023). 

To detect attacked trees, it is important to delineate their areas images, identifying 

pixels belonging to each tree. Deep learning methods provide a useful tool for 

individual crown segmentation. Image analysis tasks and object detection, a 

commonly used deep learning method are convolutional neural network (CNN) (Zhao 
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et al., 2023). CNN models have achieved high accuracies in both individual tree 

detection and crown delineation (Xiao et al. 2020; Lou et al. 2022; Chadwick et al. 

2020; Wu et al. 2020), but require vast amounts of training data and computational 

capacity.  

 

Segment Anything Model (SAM) was released by Meta in April 2023, a state-of-the-

art model for image segmentation. The main advantage of this model is that it can 

segment images without prior specific training and works efficiently with high 

resolution datatsets for segmenting objects of interest. SAM was trained with 11 

million images, creating 100 masks per image, thus having 1 billion masks in total 

(Hu et al., 2023). SAM has promptable features and also has zero-shot capabilities 

(machine learning technique that allows a model to classify objects from unseen 

classes). 

 

To my knowledge, there are very few papers assessing the zero-shot capabilities of 

SAM in a remote sensing context, especially in forest settings. There are papers on 

precision agriculture, and within the field of medical imaging (Carraro et al. 2023; 

Gui et al. 2024; Hu et al. 2023). Since it is a fairly new algorithm that was released in 

2023, this paper aims to fill the gap of applying SAM to the context of precision 

forestry and assessing SAM’s zero-shot capabilities to produce individual tree 

segments.  

1.1. Aims and objectives 

Bark beetle infestations have devastating effects to the forest ecosystem and the 

economy. Finding ways to utilize modern AI methods and high-resolution imagery 

can be crucial to monitor spruce bark beetle attacks. The main aim of this thesis is to 

segment individual spruce trees using Segment Anything Model (SAM) with RGB 

UAV data automatically. SAM has shown promising capabilities in other 

applications, and investigating its capacity in a forested area has not yet been 

investigated. These segments will then be used to create a time-series of different 

vegetation indices for the segments, thereby enabling bark beetle attacked trees 

monitoring.  

• How accurately can SAM delineate individual tree crowns in a zero-shot 

setting with RGB images?  
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• Is the output of SAM sufficient for the segmentation and vegetation 

calculations for UAV images? 

• How early can we detect bark beetle attacks using indices from high resolution 

RGB images? 

• How early can we detect bark beetle attacks using indices from high resolution 

multispectral UAV data? 

The hypothesis of this thesis are outlined below.  

Hypothesis 1: SAM will demonstrate a satisfactory accuracy for automatically 

segmenting individual spruce trees in a zero-shot setting using RGB data. 

Hypothesis 2: The time-series of RGB indices, Red-Edge, and NIR bands and 

spectral indices will enable the early differentiation of bark beetle attacks in forest, 

which can aid in mitigating their impacts on forest ecosystems.  

 

2 Background 

This section covers facts about the bark beetle, machine learning for image 

segmentation, and methods for bark beetle detection to provide context to the study. 

 

2.1. Bark beetle ecology, impacts, and climate change 

Forest insects are a vital part of the forest ecosystem as they consume dead wood and 

renew weakened forests, aiding the nutrient and carbon cycling in these ecosystems. 

Bark beetles, belonging to the family Coleoptera and subfamily Scolytinae, encompass 

around 6000 species worldwide. These insects, named for their reproductive habits 

within the inner bark of trees, primarily feed on the phloem, or true bark beetles, of 

woody plants. However, only a fraction of these species, as highlighted by Bentz and 

Jönssön (2015), Raffa et al. (2008), and Öhrn (2012), are known to cause significant 

economic damage by killing healthy trees.  

 

A notable species causing concern is the spruce bark beetle (Ips typographus L.), 

prevalent in Europe and Asia. This beetle poses a significant threat to the Norway 

spruce (Picea abes (L.) Karst), and like other bark beetles, is ectothermic, relying on 

external temperature for metabolism and development (Öhrn 2012). The adult beetles 

typically overwinter under the bark or in soil and forest litter. With the onset of 

warmer spring temperatures exceeding 18ºC, they begin their flight, seeking breeding 
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material across forests (Öhrn 2012). Their breeding behaviour varies; they utilize 

wind-felled trees during non-outbreak periods and attack healthy trees during 

outbreaks, as described by CABI (2022). The initiation of attacks involves males 

constructing nuptial chambers in the bark and emitting pheromones to attract females, 

who then lay 50-80 eggs in constructed galleries within the bark (Kimoto and Duthie-

Holt, 2006). 

 

Norway spruce trees, like many conifers, have natural defense mechanisms against 

such insect infestations, comprising both a physical barrier (bark) and toxic chemicals 

in the phloem and xylem. These defences, triggered by wounds, are typically effective 

against bark beetles. However, during periods of stress, like drought, or during 

outbreaks, these mechanisms can be overwhelmed, leading to significant tree loss as 

the beetles disrupt nutrient and water transportation (Öhrn 2012).  

 

The frequency of spruce bark beetle generations is climate dependent. While 

traditionally univoltine in Northern Europe, producing one offspring generation per 

year, there has been a noted shift towards bivoltism, with two generations per year 

becoming more common as observed in studies like Lange et al. (2006) and Öhrn 

(2012). The latter noted that flight commencement now occurs over two weeks earlier 

than three decades ago in Southern Sweden, with a second generation often initiated 

but not completed. 

 

Climate change exacerbates the risk of bark beetle outbreaks through both direct and 

indirect effects. Directly, increased temperatures can lead to earlier maturation and 

swarming, potentially resulting in an additional generation annually (Ökland et al. 

2015). A modelling study by Jönsson et al. (2012) also predict an increased frequency 

of attacks and the likelihood of one more generation to completing annually due to 

warming climates in Sweden. Indirect effects, such as drought and wind-felling, also 

significantly contribute to outbreaks and are expected to increase with climate change 

(Jactel et al., 2019; Seidl et al. 2017). Historically, European spruce bark beetle 

outbreaks were primarily storm-induced, but recent years have seen a rise in drought-

induced outbreaks, with the 2018 drought triggering the largest recorded outbreak 

(Hlásny et al. 2021).  
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2.2. Remote sensing and spectral vegetation indices (SVIs) 

Remote sensing is the science and practice of obtaining information about objects or 

areas from a distance using electromagnetic radiation. This field of studies has 

evolved over time, employing various methods and sensors which are tailored to 

specific research and a widespread application in environmental monitoring.  The 

launch of the first Earth observation satellite in the early 1970s marked a milestone, 

allowing public access to data about the Earth’s surface at relatively low costs. This 

development opened the door to multitemporal data collection, enabling the 

observation and analysis of environmental changes over time. The 1990s saw further 

advancements, notably in spectral resolution, enhancing the capability for detailed 

environmental monitoring. Particularly, satellite based remote sensing techniques have 

aided in vegetation health monitoring. However, a resolution of less than 4 m is 

needed to be able to detect individual attacks, particularly in early detection of bark 

beetles more accurately (Zabihi et al. 2021). Another prevailing issue in using 

satellite-based methods is that cloud covers present in the images can cause gaps in the 

time-series creations, especially in the Nordic regions (Krautz et al. 2024). 

An alternative to satellite-based methods is using UAVs. UAVs have shown the 

potential to bridge the gap between field observations and satellite imagery, since low 

altitude flights produce high resolution images (0.02-0.04 m) and is less affected by 

clouds. Moreover, UAV data allows for a flexible way to acquire data since the type 

of sensor, angles of view, time, and frequency of acquisition can be controlled by the 

user (Alvarez et al. 2021).  

 

Another aspect in remote sensing is the development of sensor technology. 

Advancements in sensor technology such as Red, Green, Blue (RGB) cameras, 

multispectral, hyperspectral, and thermal sensors have aided in vegetation mapping. 

Vegetation’s response across the electromagnetic spectrum, captured by these sensors, 

is indicative of its health. For example, RGB cameras record visible light (400-700 

nm), useful in detecting changes in foliage pigmentation and greenness associated 

with stressors like bark beetle attacks. Specifically, stressed trees because of beetle 

activity, exhibit increased reflectance in the visible and Red-Edge bands, linked to 

chlorophyll loss and changes in mesophyll structure (Zabihi et al. 2021b; Ortiz et al. 

2013). These changes are crucially captured by near infrared (NIR) and Red-Edge 
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bands, part of multispectral sensors. The Red-Edge region (680-750 nm) is especially 

informative, highlighting the shift from chlorophyll absorption to cellular scattering. 

 

By integrating high resolution UAV images, RGB, NIR, and Red-Edge data, 

multispectral UAV data facilitates the computation of vital vegetation indices. These 

indices, reflecting different aspects of plant health, are instrumental in diagnosing and 

analysing forest health, particularly in the context of bark beetle infestation impacts. 

Several spectral vegetation indices are used for vegetation health monitoring, the most 

common one being the normalized difference vegetation index (NDVI). NDVI relies 

on the fact that healthy vegetation reflects a lot of light in the NIR spectrum, 

contrasting with non-vegetation objects. It combines Red (R) and NIR bands as a 

ratio. Red-Edge NDVI is also an index used for estimating vegetation health using the 

Red-Edge band and is especially useful for estimating vegetation health in the mid to 

late stages of growth, when the chlorophyll concentration is relatively higher (Ortiz et 

al. 2013). Chromatic indices such as Green Chromatic Index (GCC) and Red 

Chromatic Index (RCC) are simple measures of the phenological traits of vegetation. 

GCC provides a measure of the greenness of the canopy. Both RCC and GCC are 

indices that has been used in numerous studies as a robust metric to characterize the 

canopies’ seasonal changes and for tree health monitoring (Richardson et al. 2018).  

 

2.3. Object detection and segmentation 

Image segmentation involves dividing images into meaningful and non-overlapping 

regions. One major aspect of computer vision involves dividing images into regions 

of interest by grouping pixels according to their color and texture. Image 

segmentation has various applications, such as in autonomous driving, medical 

imaging, and remote sensing. For example, tree segmentation is a desirable product 

for forest inventories and precision forestry (Miraki et al. 2021). 

 

Traditional image segmentation techniques in remote sensing often rely on pixel-

based or object-based approaches. Pixel-based methods, such as clustering and 

thresholding, involve grouping pixels with similar characteristics, while object-based 

techniques focus on segmenting images based on properties of larger regions or 

objects (Hossain and Chen, 2019). However, these methods can be limited in their 
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ability to handle the complexity, variability, and high spatial resolution of modern 

remote sensing imagery (Kotaridis and Lazaridou, 2021). Object detection aims to 

identify and locate objects within images or 3D data, often resulting in bounding 

boxes. Instance segmentation goes a step further by delineating the exact boundaries 

of individually detected objects. Traditional methods for image segmentation include 

region growing, k-means clustering, and watershed algorithms. Watershed 

approaches, for instance, are commonly used to delineate individual tree crowns, 

achieving relatively good accuracies (Qui et al, 2020; Jing et al. 2014; Huo et al. 

2023). 

 

Over the last decade, deep learning methods have been developed, such as U-Net, 

SegNet, Mask R-CNN, and DeepLab (Guo et al. 2023; Lv et al. 2023). Convolutional 

Neural Networks (CNNs) have become a popular choice in remote sensing 

applications due to their ability to capture local and hierarchical patterns in images. 

However, most segmentation algorithms rely on a large amount of data for training 

models, which can be time-consuming, costly, difficult to obtain, and computationally 

demanding (Li et al. 2023). 

 

Meta AI's Segment Anything Model (SAM) represents a new category of 

'foundational models', similar in concept to ChatGPT. These models are trained on 

extensive and diverse datasets, enabling their potential application across various 

research fields. SAM is promising due to its promptable segmentation and zero-shot 

capabilities, which is a model's ability to accurately process new, unseen input data. 

SAM’s promptable features also allow for segmentation with minimal input, using a 

bounding box, single point, or text as guidance (Kirillov et al., 2023). Zero-shot 

segmentation is a method used for image segmentation that employs unlabeled data. 

Various studies have explored SAM’s zero-shot capabilities with natural images, such 

as in rock images, crops, terrain mapping, and leaf segmentation (Ma et al. 2023; Li et 

al. 2024; Williams et al. 2023). A recent study of SAM in remote sensing indicates 

that it has potential for remote sensing applications. Currently, there are no studies 

focusing on delineating trees in a forest using high-resolution UAV imagery, zero-

shot, and SAM. As bark beetle attacks occur at the tree level, an important goal for 

current and future studies is to work with individual tree scales. 
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Several studies on individual tree crown delineation algorithms exist, and it is a 

developing field of study in remote sensing. It is crucial to have algorithms that allow 

for automated and accurate approaches to aid in precision forestry and bark beetle 

detection. 

2.4. Monitoring and detection of bark beetle attacks 

2.4.1 Bark beetle detection 

Bark beetle infestations, though relatively straightforward to identify on the ground, 

present unique challenges for early detection. Terrestrial signs such as red-brown frass 

in bark crevices and small pitch tubes protruding from the bark are classic symptoms 

(Kimoto and Dutchie-Holt, 2006). Additionally, infested conifers may show 

woodpecker damage and a progression of needle discoloration, from yellow-green to 

reddish-brown, before eventually shedding their needles. Methods to study the 

behaviour and monitor bark beetle populations like pheromone-baited traps and 

walking stand transects by foresters, have been effective but are often labour-

intensive, time-consuming, and costly (Lausch et al. 2013). 

A key challenge in early detection is the timing of visible symptoms. While terrestrial 

signs can be observed early in the infestation process, remote sensing typically 

identifies changes in the later stages, marked by a decrease in chlorophyll or water 

content in the canopy (Krautz et al., 2024). In remote sensing applications, infested 

trees are usually categorized into three stages based on crown discoloration: green-

attack, red-attack, and grey-attack (Wulder et al. 2006). 

 

The history of remote sensing for bark beetle detection extends back to the late 1920s, 

with the use of small aircrafts in North America for this purpose (Yuill and Eaton 

1994). This century-long research journey has seen significant advancements in aerial 

imagery, leading to improved detection accuracies, especially for late-stage 

infestations such as those observed in Ponderosa pine in the late 1950s (Heller et al. 

1959). In Sweden, a study on detecting spruce bark beetle in Norway spruce trees was 

conducted by Arneberg et al. (1973), revealing a linear correlation between the time 

after attack and the rate of detection. The advent of Earth monitoring satellites like 

Sentinel and Landsat, followed by the introduction of UAV imagery, has enhanced the 

spectral, temporal, and spatial resolutions, fostering optimism for better and earlier 

detection rates.  
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2.4.2 Spruce bark beetle  

The potential of utilizing Unmanned Aerial Vehicles (UAVs) for early detection of 

spruce bark beetle infestations has been demonstrated through various studies over the 

years. Kloucek et al. (2019) effectively used a low-cost UAV-mounted sensor to 

classify different stages of bark beetle infestation. They detected treetops with canopy 

height models (CHM) and local maxima filtering, along with manually correcting.  

Barta et al. (2022) found that remote sensing methods could detect infested trees as 

early as six weeks post-infestation, a crucial window for taking preventative measures 

against further spread, albeit using manual methods to select polygons of Norway 

spruce forests in different stages of bark beetle infestation. Huo et al. (2023) extended 

this understanding by using multispectral drone images before and during infestation 

periods, revealing that infestations were detectable between 5-10 weeks, with earlier 

detection rates at 15% and increasing to 90% at the 10-week mark. They perform 

individual tree segmentation using the green band with local maxima to detect 

treetops to be used for marker-controlled watershed segmentation.  

 

Further contributions by Turkulainen et al. (2023), Safonova et al. (2019), and 

Schaeffer et al. (2021) emphasize the efficiency of combining UAVs with deep 

learning and machine learning techniques for early detection. Turkulainen et al. 

(2023) study highlights the performance of multispectral and hyperspectral imaging 

over RGB when processed with deep neural networks. Safonova et al. (2019) 

implemented a two-stage CNN architecture to successfully identify fir tree damage 

from bark beetles in UAV RGB images. Schaeffer et al. (2021) complemented these 

findings by using thresholding cellular automata in drone imagery to accurately 

classify infestation stages. Näsi et al. (2018) further illustrated the accuracy of UAV-

based hyperspectral imaging in urban forest settings, pinpointing infested trees at an 

individual level.  

 

Collectively, these studies show that integrating UAV technology with advanced 

image analysis can make early detection of bark beetle attacks feasible and 

increasingly precise. This synergy of remote sensing technologies and analytical 

algorithms is crucial in the fight against bark beetle infestations, offering a promising 

tool for forest health management and conservation efforts. 
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3 Study area and data  

This section outlines the data collection, study area location, and pre-processing steps 

performed with the data before using it.  

 

3.1 Study area 

The drone flights were conducted in Mulatorp, a nature reserve in southeast Sweden 

(56.4194° N, 14.4854° E), approximately 60 ha in size. This part of Mulatorp was a 

traditionally managed forest until the 1980s, featuring various tree densities and types. 

Due to its ecological and historical importance, it has become a nature reserve 

(Länssyrelsen Blekinge, n.d). This area had an ongoing bark beetle outbreak, making 

it crucial to monitor the attacked trees to mitigate further damage (Figure 1). The 

study area consists of a mixed coniferous forest with a few deciduous trees. The study 

was divided into three separate areas, refer to section 4 for more details. 
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Figure 1. Study area map with an image from November 2022 showing the infected 

trees in red dots and healthy trees in green dots.  

3.2 Data  

3.2.1 UAV imagery capture and processing 

A total of 12 flights were done with around 2-week intervals during May 17-

November 18, 2022 (Table 2). RGB and multispectral drone images were captured 

using the DJI Phantom 4 Multispectral drone, a high precision drone with six cameras 

and ½.9 inch CMOS sensors and RTK. The 5 cameras cover the bands Blue (B), 

Green (G), Red (R), Red-Edge (RE), and Near-infrared (NIR) (Table 1). The 

resolution is 5 cm for all the bands.  

 

Table 1. The bands of DJI Phantom 4 multispectral drone and their corresponding 

wavelenghts.  

Bands Wavelength (nanometers) 

Blue (B) 450 ± 16 nm 

Green (G) 560 ± 16 nm 

Red (R) 650 ± 16 nm 

Red-Edge (RE) 730 ± 16 nm 

Near-infrared (NIR) 840 ± 26 nm 

 

The camera and images settings were identical for all flights. During the flight the 

incoming radiation was recorded by the sunshine sensor on the UAV. To normalize 

the images for variations in incoming sunlight and facilitate reflectance calculations, 

data from the UAV flights' sunshine sensor were extracted from the image metadata. 

This involved plotting the incoming light conditions for each band (R, G, B, RE, and 

NIR). The UAV flights that contained irregular and complex light variability during 

the flights were removed. The data with constant light, under either sunny or overcast 

sky were kept for further processing.  

 

The flights were categorized into three categories: (1) consistent sunny incoming 

light, (2) consistent cloudy incoming light with slight variation, and (3) complex 

incoming light. After the categorization of the flights, each image from the flights 

were subjected to exposure calibration, vignetting correction, and radiance 
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normalization. These corrections were performed based on a recently developed 

methodology by Olsson et al (2021). Vignetting is the phenomenon in which the 

image brightness is reduced from the optical centre of the image towards its edges 

(Bal and Palus 2023). The method to minimize the vignetting effect was based on the 

use of vignetting polynomial derived from the metadata of the images. More details 

on the exposure, vignetting, and irradiance normalization were based on and 

explained in Olsson et al. (2021). The corrected images were then processed in 

Metashape software to create georeferenced orthomosaics, based on the method used 

by Thapa et al. (2021). The precise geolocation of the orthomosaic is from a Swedish 

positioning service called SWEPOS with an accuracy of ~ 2 cm. All flights were kept 

at 90 m flying height, with 2m/s speed and with an 80% side and front overlap. The 

processing of the orthomosaic were done by the department. As a result, 3 separate 

orthomosaics were created, and clipped for the study where the area coverages are 

shown in Figure 1. The orthomosaics were clipped to remove the blurry edges where 

the image overlap is low, and these areas will be worked with in parallel as they cover 

different parts of the Mulatorp study area.  

 

Table 2. The flight dates and the corresponding weather conditions during the flights 

Flight date Weather 

22-05-17 Sunny conditions 

22-06-06 Mostly homogenous cloudy conditions 

22-06-22 Mostly homogenous cloudy conditions with some sunny spots for the early 

flights. 

 

22-07-03 Area 1: Mostly stable cloud conditions – a few sunny spots. 

Area 3 : Cloudy with a few sunny spots. 

 

22-07-23 Stable cloudy conditions with shorter periods with drizzle. 

 

22-08-08 Mostly stable cloudy conditions. 

 

22-08-23 Cloudy mostly stable light conditions. 

 

22-09-08 Cloudy mostly stable light conditions. 
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22-09-24 Stable conditions for all seven flights. 

22-10-18 Mostly stable cloudy conditions with a few brighter spots. 

22-11-05 Area 1 and Area 2 in rather stable cloudy conditions.  

No flights at Area 3. 

 

22-11-18 Area 1: 

First flight cloudy until last part.  

Area 2: 

Flight mostly sunny 

Area 3:  

Cloudy condition, but occasionally light snowfall. 

 

 

3.2.2 Field data 

The mutli-temporal images were used to find Norway spruce trees that were 

potentially attacked by bark beetles. Infected trees were identified through the 

orthomosaics UAV images, comparing the images of the dates in June, August, 

October, and November to see the development of the trees, and note the possibly 

infected ones, which resulted in a number of 35 trees. This was verified in the field a 

year later in February 2023 to inspect and confirm the bark beetle infested trees. The 

method of identification was to check for damage of the bark. Additionally, the trees 

were noted whether they were attacked early or late in the summer. 12 trees were 

confirmed to be infected in the field. Due to the low accuracy of GPS in the forest, not 

all trees were confirmed. This field work was performed by the department. From 

these 12 trees, 4 trees were found in the orthomosaics to be suitable for use for 

vegetation index calculations. Figure 2 shows the field photos taken on February 2023 

for some of the confirmed trees. All 4 trees had visible sign of bark damage in the 

higher up in the bark and has visible strong red colouring.  

 

 

4 Methods 

The workflow is illustrated as follows (Figure 2) where orthomosiac creation and 

radiometric calibration was performed on the UAV data. From these images, healthy 
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and attacked trees were digitized from the field data and manual search. The UAV 

data was then used to calculate vegetation indices. To perform the segmentation, a 

small subset of the Area 1 was used to fine tune the parameters of the SAM model. 

This was done by changing the parameters and checking which yielded the best 

delineation between the trees. After the best parameters were chosen, the areas were 

split into tiles and ran for segmentation. A random subset of the tiles were chosen as 

validation data, about 20% of the tiles were used as validation and digitized using 

semi-automatic segmentation with box prompts and point prompts, a feature of SAM 

integrated with QGIS created by Zhao et al. (2023). Finally, the time series were 

created using the healthy and attacked trees data created in the second step. It is 

important to note that for the vegetation indices calculations, manually digitized trees 

were used instead of the SAM output. This is because the segments were not accurate 

enough for the intended index calculations.  

Figure 2. An outline of the workflow performed.  

4.1. Empirical line correction of orthomosaics  

Finally, radiometric calibration is needed to convert DN into reflectance values. 

Surface reflectance is not directly measured by the UAV cameras as light/radiant 

energy is recorded by the image sensor per pixel as a digital number (DN). A 

commonly used method to convert DNs to surface reflectance is the empirical line 

method (Smith and Mitlon, 1999). This method assumes a linear relationship between 

surface reflectance and (R) and radiance recorded by the sensor (L) (Figure 3.). To 

perform this, at least two reflectance panels are needed with their standard reflectance 

values (Table 1.).  
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Figure 3. Empirical line method from Smith and Milton (1999).  

 

The empirical line equation was derived from reflectance calibration panels in the 

corrected individual images (Figure 5). The software used was a produced script 

which took the mean DN values per panel per image (SITES, 2023). The RGB bands 

are notably saturated and therefore was not radiometrically calibrated. Instead, raw 

bands were used. Standard reflectance values were provided by the manufacturer, 

Altisense company (Table 3). 

 

 

 

Figure 4. Reflectance panels for radiometric calibration and the method used to 

extract DN values. The red band panels are notably saturated, making it challenging 

to calibrate with the empirical line method.  
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Table 3. Reflectance calibration panels and their resulting values for each band.  

Band 9% 23% 44% 

Blue 0.071864034 0.217418623 0.382620256 

Green 0.068064604 0.218853955 0.45281708 

Red  0.076557511 0.22275384 0.43940517 

Red-Edge 0.084988391 0.234725921 0.466921599 

NIR 0.100331593 0.251634465 0.497430071 

 

The standard reflectance of the panels and the mean DN of the panel were used to 

convert the orthomosaics into reflectance using the empirical line equation as seen in 

Equation (1). 

 

 

...............................(1) 

Where R is the reflectance, DNcorr is the radiometrically corrected DN value after the 

pre-processing steps, a is the slope of the regressioon line, and b is the intercept. After 

these steps, the calibrated NIR and Red-Edge bands and the raw RGB bands will be 

used to calculate vegetation indices to assess healthy and attacked trees. The resulting 

digitized trees from the aforementioned steps will be used to get the mean values for 

the vegetation indices and time series creation.  

 

4.2 Tree segmentation  

This part covers the architecture of the model used for tree segmentation, and 

accuracy metrics used to analyse the model performance. SAM is currently freely 

accessible, and the source code is made open access. Using SAM for image 

segmentation is straightforward. It compromises of two main functions, the interactive 

and manual selection of target points, text or bounding boxes as input prompts, and 

the automatic mask generator where SAM autonomosly does the image segmentation 

process, given that the parameters are fine tuned to the data.  
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4.2.1 Model architecture  

SAM comprises three key components: a promptable segmentation task, a 

segmentation model (SAM) that enables zero-shot capabilities from input prompts, 

and a data engine (SA-1B) that collects a dataset of over 1 billion prompts. The basic 

architecture of image segmentation includes an encoder and a decoder (Figure 5). The 

encoder extracts features from the image using filters, utilizing deep convolutional 

neural networks (CNN). The mask encoder employs a ViT-H/16 transformer model, 

which handles 16x16 patch sizes. The encoder extracts rich semantic information 

from the input image through convolutional and pooling operations, increasing the 

number of channels while decreasing geographical dimensions to gather both local 

and global contextual data. The SAM model uses CNNs to extract hierarchical 

properties from input images, with deeper layers capturing more abstract 

representations. The decoder reconstructs the segmentation mask from the encoder’s 

low-resolution feature maps through operations like transposed convolutions or 

nearest-neighbor interpolation. It also includes skip connections linking appropriate 

encoder and decoder layers. The decoder generates the final output, typically a mask 

outlining the objects (Guo et al., 2023). 

  

The spatial analysis was conducted using a custom tool, "SamGeo," part of the 

original SAM module. SAM has different models available, including ViT-H, ViT-L, 

and ViT-B, each with varying computational requirements and architecture (Kirillow 

et al., 2023). This study used the ViT-H SAM model, the most advanced and complex 

model available. The automatic mask generator created masks from the images, with 

adjustable parameters to produce task-specific masks. 

 

 

Figure 5. The model architecture adapted from Kirillov et al (2023) showing the 

Segment Anything Model (SAM)’s overview. An image encoder outputs an image 

embedding that can be efficiently queried by various input prompts to produce object 

masks. 
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4.2.2 Model parameters 

To perform the segmentation, the SamGeo instance was generated, since it segments 

the entire image and stores the output as a mask file. Each mask delineates the 

foreground of the image, and each mask has a distinct value. The result is a non-

classified segmented image that was converted to vector shapes. To use automatic 

mask generator, these parameters were tuned (Table 3). The automatic mask generator 

creates a specific number of points in the image based on the parameter 

points_per_side, which controls the density of point sampling. More points can result 

in more detailed segmentation but may increase computational load. The Intersection 

over Union (IoU) parameter helps ensure segmentation quality by eliminating masks 

with low IoU scores. The stability score threshold ensures the segmentation results are 

consistent and not overly sensitive to minor changes in the model's output. Box Non-

Maximal Suppression Threshold is responsible for removing overlapping bounding 

boxes and determines how much overlap is permissible. These parameters set the 

thresholds for removing low-quality or duplicate masks.  

 

Table 3. Fine tuned parameters of the SAM automatic mask generator 

Parameters Definition Range of test values 

points_per_side This parameter specifies the number of points 

to sample along one side of an image. The 

total number of points sampled for 

segmentation will be points_per_side ** 2.  

32 (default) - 200 points 

pred_iou_thresh 

(Prediction IOU 

Threshold) 

This is a threshold value used to filter out 

segmentations based on their predicted 

Intersection Over Union (IOU) score. Only 

segmentations with an IOU score above this 

threshold are considered.  

 

0.60-0.88 

stability_score_thresh This threshold is used to filter segmentations 

based on the stability of their mask 

predictions under changes to the cutoff used 

for binarization.  

 

0.60-0.95 

box_nms_thresh (Box 

Non-Maximal 

Suppression 

This is the IOU threshold used in Non-

Maximal Suppression for filtering duplicate 

masks. NMS is a technique to remove 

0.2-0.8 
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Threshold) overlapping bounding boxes, and this 

threshold helps in determining how much 

overlap is permissible. Ranges from 0-1 

 

 

4.2.3.  Zero shot segmentation and post-processing 

The initial runs of SAM were performed on a smaller subset of the study area and 

inspected visually while adjusting the parameters. The June images were used for the 

segmentation. After the best parameters were chosen, each area/image was tiled to be 

processed separately, as processing the entire image is computationally demanding. 

The images were turned into tiles with 800 × 800 rows and columns, while keeping 

the same resolution. A padding of 50 pixels was also used to ensure that the areas 

overlap. Post-processing steps included removing elongated objects such as fallen 

wood from the raster masks using a measure for roundness. The roundness of each 

object was calculated using the formula in Equation (2) 

 

.....................................(2) 

which quantifies how closely the shape of the object approximates a circle. Objects 

with roundness values below a certain threshold were considered elongated and were 

filtered out from the vector results. 

4.2.4 Validation data creation 

Validation data were created from a randomized subset the June images and were 

semi-automatically digitized using the QGIS SAM plugin, an interactive tool that can 

be used in QGIS that implements SAMs prompting functionalities (Zhao, 2023), 

which allows for promptable segmentation with box boundaries. 20% of the tiles were 

randomly selected and digitized. Trees were digitized using semi-automatic 

segmentation and labelled as non-spruce and Norway spruce trees. Bounding box 

prompts and points were used as a prompt to the model, directly creating object masks 

from the input image. Then, trees that were not detected in the segmentation prompts 

were digitized by hand. The semi-automatic segmentation will also be discussed and 

presented in the results. A total of about 1500 trees were digitized using the QGIS 

SAM plug in. This digitization was done in a semi-automated manner, meaning that 
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the bounding box feature of SAM was used to identify individual trees in the images 

(Figure 6). Point prompts were also explored to compare the output masks of box and 

point prompts. A total of 358 spruce trees were digitized from the 1500 digitized 

trees. 

 

Figure 6. Examples of labelled validation data for spruce trees.  

 

4.2.5 SAM evaluation metrics 

Intersection over Union (IoU)  

To validate SAM, intersection over union (IoU), tree count, canopy fractional cover, 

and tree area comparison will be used. The focus will be on analysing only spruce 

trees since this is the tree of interest. The IoU metric, a widely used method in image 

segmentation tasks, provides a quantitative measure of overlap between two areas - in 

this case, the segmented tree crowns (validation data) and those identified by SAM 

segmentation algorithm (Figure 7).  
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Figure 7. IoU calculation for the vectors mask output of SAM and validation masks.  

 

For each tree crown,the area where the model’s segmentation overlaps with the 

manual segmentation (Intersection) was calculated. Then the combined area of both 

segmentations (Union) was calculated. The IoU score is the ratio of these two areas, 

providing a value between 0 and 1. An IoU of 1 indicates perfect overlap, whereas an 

IoU of 0 signifies no overlap. Higher IoU scores thus reflect greater accuracy of the 

model in replicating manual segmentation. 

 

 

Tree count and canopy fractional cover 

Tree count is another metric to validate the outputs, where the validation data is 

compared to the generated masks produced by SAM. Moreover, grid cells were 

created per image to count the trees in each grid to qualitatively compare the SAM 

output to the validation data. The tree count then is counted per tree centroid within 

each grid cell, resulting in a tree count. Similarly, canopy fractional cover is 

calculated as the ratio of the vegetated area and non-vegetated area (Figure 8). This is 

calculated per grid cell in the validation data and compared to the mask vector data as 

shown in Equation (3) It ranges from 0 to 1, which are normalized values from the 

global maximum and minimum of canopy fractional covers derived from the 

validation data. The number on the grid cells represent the tree counts.  

 

 

...................................................................... (3) 
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Figure 8. Calculation of canopy fractional cover and tree count per grid cell. The blue 

point are the tree centroids and the number on the cells represent the tree counts per 

cell, while the shading is indicative of the canopy fractional cover.  

 

4.3 Vegetation Indices calculation and time series 

Creation of tree segments 

Points collected during the field collection were used as a reference to digitize the 

infected trees. To find the location of the trees, RGB orthomosaics for June, August, 

October, and November images were compared to find declining spruce trees in 

proximity to the points collected in the field.  Since the accuracy of the GPS is low in 

the forest, and some trees were on the edge of the orthomosaics, a few trees were 

omitted resulting in 4 infected trees in total. Healthy trees were randomized as close 

by trees as a reference for the time series calculations. These were used as the regions 

to calculate each mean vegetation index values.  

 

Index calculations  

The standard RGB bands were used to calculate chromatic coordinates, which have 

the capability to monitor the phenology of trees in a forest. The Green Chromatic 

Coordinate (GCC; Eq. 4) and Red Chromatic Coordinate (RCC; Eq. 5) are an 

example of such coordinates that can be retrieved from RGB bands. 

 

................................(4) 
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................................(5) 

Where DNR, DNG, and DNB are the mean digital numbers for the R, G,and B 

channels. The Mean RCC and GCC are computed from the tree segmented areas, for 

both healthy and attacked trees. Moreover, vegetation indices such as Normalized 

Difference Vegetation Index (NDVI; Eq. 6) and Normalized Difference Red-Edge 

Index (NDRE; Eq. 7) were also calculated. NDVI was calculated using the 

uncalibrated NIR and R band, while NDRE was calculated using the radiometrically 

calibrated NIR and Red-Edge bands. 

 

 

............................(6) 

 

.............................(7) 

Additionally, the one standard deviation was measured for all the points in each time 

step.  

Extraction of time series and statistical testing 

The time series were extracted using digitized tree polygons from collected tree point 

data. Zonal statistics were used to extract mean values per tree per flight date, and 

these were averaged to produce the time series plots. The standard deviation for each 

tree was also calculated and plotted with the mean plots. To determine whether 

differences in indices were statistically significant, a Mann Whittney U test was 

performed. This is to account for the lack of normality in the data, so a non-

parametric test was used with the Scipy module in python.  

 

5 Results 

As part of utilizing SAM was to create validation data, below is the results of using 

the box and point prompt feature of SAM. The box prompts yield better results than 

the point prompts, as seen from the figure below. Although the box prompt creates 

valid masks for validation, it still misses a few trees. The box prompts also have no 

issues with spruce trees, as it segments them well, except for a few cases where 
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several trees are merged into one bigger polygon. This issue is more apparent with the 

point prompts, where the trees are segmented into even larger polygons (Figure 9). 

However, there are certain cases that it can detect trees better than the box prompts. 

The semi-automated method worked for some trees, but some trees were missed by 

the box prompts, these had to be digitized manually. Tile 3 was completely missed by 

the point inputs, delineating the whole region as one object. Tile 4 and Tile 2 were 

segmented well with both the boxes and the points, with the boxes segmenting in 

better detail than the points.  
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Figure 9. Box prompts and point prompts for validation data creation and their 

corresponding vector masks.  
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The parameters that were first used were the default settings. By visual comparison, 

we can see that the algorithm is able to detect some individual trees but oftentimes 

merges canopies into one object. An increase in the parameter number of points 

resulted in better detail, but at the expense of increased computational time (Figure 

10).  

  

Figure 10. Fine tuning the parameters from subset image. RGB image is shown and 

overlaid with the different trials, default, 60 points, 100 points,m and changes in 

box_nms threshold.  

 

Changing the parameter “points per side” to 60 resulted in better segmentation 

between individual tree crowns but has problems with ambiguous borders where 

canopies are merged together. The next parameter tuned was the prediction IoU 

threshold, which gave the best results at 0.88. Stability score threshold yielded the 

best results at 0.95 which distinguished trees better. Box nms at 0.2 threshold yielded 

the best results. Increasing the points to 100 yielded in slightly better results, but not 

immensely since it also merged two a few trees together. 200 points yielded no 

difference between 100 and 200. The final parameters kept were default parameters, 

while changing the points to 60 points per side and 0.2 box nms thresh, which 
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separated the trees best visually. Since 100 points did not necessarily make the 

outputs better, 60 points were kept to minimize processing time. 

 

5.1 SAM segmentation results 

Comparing the tree areas between SAM generated masks and the validation data show 

poor agreement (Figure 11a-b). For all the trees, the R2 value is 0.13, a low value of 

fit (Figure 11a). Moreover, the spruce trees show an even lower fit, having an R2 of 

0.11 (Figure 11b). This is contrasting with the expected results, as Norway spruce 

trees are easier to delineate by looking at RGB images since their canopies are very 

distinct. Most of the trees in the validation data are small in size, and it is rarer to find 

larger trees in the data. Therefore, for making this plot trees larger than the maximum 

size of all the trees (80m2) were excluded from the plotting since these are already 

considered to be errors. There is some level of agreement, where several values fall 

within a straight line.  

 

Sam segmentation results 

 

Figure 11. Plot comparison of SAM tree segments of (a) all trees and (b) Norway 

spruce trees and validation data.  

 

Out of all the filtered digitized trees (1448), 549 were detected by SAM (Table 4). 

Among these, 307 Norway spruce trees validation data had a matching 101 trees in 

the SAM data. SAM was therefore able to detect 37% of all the trees, and 33% of all 

the spruce trees. The IoU for all trees have a value of 0.53, and 0.55 for Norway 

A B 
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spruce trees. This value indicates that although individual trees and their individual 

areas are missed by the model, the tree regions are better identified.  

 

Table 4. Tree count of all species and Norway spruce trees generated by the SAM 

created masks and validation data, and IoU values for all trees and spruce trees. 

Variable Count 

All validation trees 1448 

All SAM trees 549 

Spruce validation trees 307 

Spruce SAM trees 101 

IoU all trees 0.53 

IoU spruce trees 0.55 

 

When visually comparing the RGB images next to the masks and validation data, the 

canopy fractional cover and tree counts can be seen and compared to each other 

(Figure 10). Gemerally, SAM has a tendency to miss the detection of some trees, 

group them into a larger region instead of detecting individual trees and segment 

some non-vegetation objects as foreground (trees).  

 

An example of the first scenario is in Figure 12a, where numerous trees are missed 6 

out of 17 trees were detected. An example of the second scenario of grouping 

individual trees into larger regions is Figure 12b where 2 trees were detected out of 

17, but this is due to the model grouping them as one larger polygon composing of 

several trees. Objects with similar textures and colours such as the cluster of spruce 

trees in Figure 12b, have a tendency to be grouped together. Figure 12d shows that 

SAM segments the background soil as trees at times. This, however, is not a great 

issue since post-processing steps can be applied to remove non-vegetation objects in 

the final segments. Finally, Figure 12c and 13d show SAM’s strengths in segmenting, 

where it is capable of detecting several individual trees where the constrast between 

the trees and the soil is high and there is enough space between the trees to be 

distinguished from each other and their canopies are not overlapping. The results also 

show that SAM tends to miss trees in a high tree count and high canopy fractional 
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cover scenario (dark purple grids) (Figure 12f)  and performs better when the trees are 

evenly spaced and less dense (Figure 12d-e).  

A) 

 

B) 
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C)

 

D)

 

E)

F) 
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Figure 12. (A-F) Validation data subset with their corresponding canopy fractional 

cover and tree count and the RGB image for each. The canopy fractional cover ranges 

from 0 to 1 where 1 is the maximum FCC. Tree counts are displayed in the centre of 

each grid.  

 

5.2 Time series of individual bands and vegetation indices  

Manual segments were used to obtain tree crown areas and calculate vegetation 

indices. Below are time series generated from the tree segments and multispectral 

orthomosaics. Figures 13a-f show the calculated bands and vegetation indices per 

flight date. Figure a-b shows the single bands Red-Edge and NIR which were both 

radiometrically calibrated. Red-Edge band (Figure 13a) show that there are no notable 

differences between healthy and infected trees. Figure 13b shows the NIR band, 

showing a difference in early September. The NIR band has high variation in the data 

for both healthy and infected trees, but more so for the infected trees, especially 

towards November.  Figure 13c shows NDRE, which seems to be distinguishable 

from late August and onwards. NDRE also decreases decreases for the infected trees 

over time. Figure 13d shows the GCC, which looks identifiable at an earlier date than 

the rest of the indices. Changes in the GCC vaues between the trees appear more 

pronounced than other indices. Looking at Figure 13e for RCC, a difference can also 

be observed from August and onwards where the values increase for the infected 

trees. Lastly, NDVI (Figure 13f) shows a high standard deviation, and a possible 

differentiation in later August.  
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Figures 13. Vegetation Indices mean values per flight date for (a) Red-Edge band, (b) 

NIR band, (c) NDRE, (d) GCC, (e) RCC, and (f) NDVI bands and indices. The y-axis 

is the value of the indices, while the flight date is on the x-axis for all the figures.  

 

The significance of the differences between the healthy and infected trees are 

illustrated in table 4. The significant values are highlighted in yellow. NDVI and GCC 

start to manifest significant differences between the trees in early August, and the 

differentiation steadily increases with time. GCC already manifests significant 
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differences  already in early June. NDRE and NIR both show significant differences 

in November. Red-Edge show no significant difference at all.  

 

Table 4. Significance < 0.05 of the vegetation indices and single bands over time  

 P-value 

Date NDVI P RCC GCC NDRE RED_EDGE NIR P 

05-17 0.1294 0.5304 0.0506 0.1483 0.3356 0.2718 

06-06 0.2718 0.5749 0.0423 0.4467 0.7028 0.2431 

06-22 0.0970 0.1124 0.0096 0.4467 0.0506 0.0602 

07-03 0.0602 0.0602 0.1917 0.9738 0.7173 0.7173 

07-23 0.1483 0.4076 0.2718 0.3048 0.3810 0.2286 

08-08 0.0236 0.1690 0.0236 0.6685 0.1483 0.1294 

08-23 0.0096 0.2163 0.0122 0.3027 0.2163 0.1124 

09-08 0.0096 0.0122 0.0043 0.7671 0.0970 0.3027 

09-24 0.0423 0.0192 3.7643E-05 0.2163 0.8694 0.8694 

10-18 0.0002 0.0003 0.0002 0.6685 0.1690 0.7173 

11-05 0.0005 0.0002 0.0002 0.0005 0.1734 0.0264 

11-18 3.7643E-05 3.7643E-05 3.7643E-05 0.0710 0.8180 0.6210 

 

Figure 14 shows the progression of the infected trees with time, from June – 

November Note that the images are not all at the same scale, so the sizes of the trees 

may appear different due to varying levels of zoom and do not accurately represent 

their true proportions. Visually, there is no noticeable difference between June and 

August, but the differences manifest in after October. For Tree 6, the tree has declined 

faster than the others, already having lost most of its needles in October.  
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Figure 14. Infected trees confirmed in the field and the RGB orthomosaic images and 

their segments. The figure shows their development over time from june to november.  

 

6 Discussion 

The discussion is divided into two parts, section 6.1 which discusses the SAM 

delineation of tree crowns, and section 6.2 which discuss the spectral indices and 

early detection. 

6.1 Capability of SAM for individual tree crown delineation  

This study aimed to investigate the capabilities of the Meta AI’s Segment Anything 

Model for remote sensing applications- segmenting individual trees from high 

resolution UAV imagery. This section discusses the results, implications, and the 

limitations of using SAM for individual tree crown segmentation. The results from the 

box and point prompts are also discussed.  



37 

6.1.1 Point prompts and box prompts 

Point prompts tend to merge multiple trees into a single object, creating broader tree 

regions instead of distinct individual tree crowns. This merging renders point prompts 

suboptimal for generating precise tree segments. The improved delineation with box 

prompts can be attributed to their intrinsic ability to define clear boundaries for the 

trees by explicitly setting the areas where the segmentation should start and end. By 

providing these defined bounds, box prompts ensure a more accurate and controlled 

segmentation process. 

Although increasing the number of point prompts per object might theoretically 

enhance segmentation accuracy, this approach was not pursued further. Initial trials 

demonstrated that box prompts were not only easier to perform but also delivered 

satisfactory results. Fine-tuning the model by adjusting SAM parameters, such as box 

threshold, stability, and the number of points, significantly influenced the model 

output, as shown in Figure 10. The number of points improved the segmentation up to 

a certain threshold, beyond which no further improvement was observed. This could 

be due to some trees being inherently difficult for SAM to detect because of their 

appearance and low contrast with the background. Since point prompts have issues 

with delineating trees, adding more points could even result in more merged objects. 

This occurs because the model does not explicitly recognize each point as 

representing a unique object; instead, the points are candidates that might be 

combined into a single object, even if they correspond to several different canopies. 

Thus, while point prompts are automatically generated, using box prompts results in 

better tree delineation despite the manual effort required. 

6.1.2 Automatic Mask Generation  

The automatic segmentation approach, which required no prompts or training, was 

also analysed to assess SAM's zero-shot performance. The comparison of tree areas 

between SAM-generated masks and validation data showed a poor fit, with low R² 

values for all trees and Norway spruce trees. SAM tends to overestimate tree areas 

(Figure 11), likely due to its tendency to mask tree regions instead of individual 

objects.  
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Despite having distinct and distinguishable features, the model performed worse on 

spruce trees, rejecting the hypothesis that zero-shot segmentation is currently usable 

for the creation of vegetation indices. Furthermore, due to the merging of trees in the 

resulting masks, only 37% of all trees were detected and 33% of Norway Spruce trees 

are detected. This can be due to that in denser Norway Spruce trees areas, the trees 

begin to have a texture and may appear as one object since their boundaries are not 

clear. However, a moderate IoU indicates that SAM can segment tree regions, with 

better results for Norway spruce trees. This may indicate that although Norway 

Spruce trees are harder to delineate, their regions are slightly easier to be identified 

than other trees. The overall performance of the automatic mask generation is poor. 

This performance could be due to the feature of the point prompts in section 6.1.1: 

each point does not explicitly belong to a unique object; instead, the points can indeed 

merge several features into one. This merging of multiple point features into a single 

object contributes to the overestimation of tree areas and the difficulty in accurately 

segmenting individual tree crowns. 

Figures 12a-f show a comparison between the validation data and SAM-generated 

masks, highlighting the strengths and weaknesses of the model. In well-spaced and 

high background contrast scenarios, SAM can segment a tree well. However, in areas 

with high canopy fractional cover and tree count, SAM fails to capture the individual 

crowns. Additionally, it sometimes fails to distinguish the correct foreground and 

background and may miss detecting tree objects altogether. This further highlight that 

there is room for improvements.  

Thus, while automatic mask generation demonstrates some capability in segmenting 

tree regions, the integration of semi-automatic box prompts significantly enhances the 

precision of tree delineation. This combined approach can achieve satisfactory results 

for individual tree segmentation, highlighting the need for further refinement in zero-

shot segmentation models for more complex tasks in remote sensing applications. 

 

6.1.3. Limitations and related studies 

Various studies have explored the limitations of SAM within the domain of remote 

sensing. SAM faces several challenges, including difficulties in segmenting objects 
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with complex shapes or variable appearances. In natural settings like forests, object 

boundaries often become indistinguishable. At its current state with zero-shot 

segmentation, SAM struggles to handle complex images such as those of forests. 

One significant issue is SAM's tendency to select shadows or background elements 

during segmentation, leading to difficulties in distinguishing between background and 

foreground, resulting in lower performance for tasks such as tree detection in its zero-

shot form (Osco et al., 2023). This problem can be mitigated by thresholding using 

NIR bands, as demonstrated by Huo et al. (2021), to remove shadows and background 

from tree segments. Additionally, SAM is primarily trained on RGB images, which 

prevents the utilization of additional information from multispectral data. For 

vegetation analysis, multispectral bands provide added value, as the spectral signature 

of vegetation is more apparent in the NIR band. 

Despite these limitations, SAM has shown promise in various studies. Sun et al. 

(2024) conducted a study on crop mapping with SAM using prompts for 

segmentation. They concluded that segmentation remains challenging unless the 

parcels are large, regular in shape, and have distinct color differences from the 

surroundings. SAM has demonstrated successful applications in fields such as 

medical imaging and autonomous driving. For instance, a study on medical imaging 

by Stein et al. (2023) demonstrated that fine-tuning SAM with bounding boxes 

positively impacted the results, whereas fine-tuning without bounding boxes led to 

poorer outcomes. 

Osco et al. (2023) further concluded that although SAM has promising capabilities, 

there is still significant room for improvement to address its limitations and enhance 

its performance for task-specific applications. Incorporating a fine-tuning step, such 

as transitioning from zero-shot to one-shot, shows potential for improved results with 

SAM. Currently, the automatic mask generator only supports points and not bounding 

boxes. The implications of this will be discussed in 6.1.3. 

6.1.4. Prospects of SAM for tree crown delineation  

SAM offers several advantages that make it a compelling choice for remote sensing 

applications. Its foremost feature is the ability to perform zero-shot segmentation on 

unseen objects and images without prior training (Kirillov et al. 2023). Another 
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standout feature is SAM's interactive input process, which significantly reduces the 

time and labour required for manual image segmentation. As AI techniques evolve, 

foundational models like SAM provide opportunities for further refinement tailored to 

specific domains. Open-source and user-friendly methods such as SAM unlock 

numerous possibilities for automating tedious and labour-intensive tasks. 

Additionally, SAM's decoupled architecture—comprising a one-time image encoder 

and a lightweight mask decoder—ensures computational efficiency, crucial for large-

scale remote sensing applications. 

  

However, this study demonstrated that for the detailed task of individual tree 

delineation, automatic mask generation without guided box prompts is insufficient. 

Particularly, bounding box prompts show the potential to improve the segmentation 

by fine tuning the model, as demonstrated by this study and supported by other 

studies (Stein et al. 2023; Osco et al. 2023). Combining automatic mask generation 

with semi-automatic box prompts and manual methods can achieve satisfactory 

results for individual tree segmentation. Another approach that could be useful for the 

future is to further automate the bounding box features, to integrate a method to 

automatically delineate bounding boxes from tree images and using this as prompts 

for the model. This could, however, introduce an uncertainty if the algorithm used is 

flawed and inaccurate. Performing one-shot training (where the model is trained with 

minimal training data) as performed by Osco et al (2023) using personalised SAM or 

PerSAM and PerSAM-F may also be an approach to refine SAM’s capabilities 

(Zhang et al. 2023). This was not investigated in this study and future studies can 

include an exploration on these features of SAM.   

 

 

6.2 Spectral response and early detection  

This study investigated the early detection of spruce bark beetle attacks using 

multitemporal and multispectral high-resolution images. The analysis reveals that the 

Green Chromatic Coordinate (GCC) can distinguish between healthy and attacked 

trees as early as June. The Normalized Difference Vegetation Index (NDVI) follows 

in early August, and the Red Chromatic Coordinate (RCC) in September. NDRE and 

NIR show significant differences later in the year, indicating their inefficiency for 

early detection. The Red-Edge band does not show significant differences between 
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healthy and infected trees. GCC stands out by distinguishing tree types within three 

weeks, with a near-significant p-value of 0.0506 in May. However, this early 

difference is not statistically conclusive and is therefore disregarded. 

  

For practical mitigation, the detection time for bark beetle attacks in Sweden is about 

6-9 weeks post-attack (Huo et al. 2023). Using this timeframe, only GCC is effective 

for early intervention. Huo et al. (2023) conducted a similar study on Norway spruce 

in Sweden, finding the Red-Edge band significant three weeks post-attack, and the 

green band five weeks post-attack, though not sufficiently to discriminate between 

healthy and infested trees. Their findings align with this study's results for the NIR 

band, which shows significant differences at 25 weeks post-attack. The discrepancy 

with the Red-Edge band results from Huo et al. (2023) results contrast with the 

findings and hypothesis of research, as the Red-Edge band is usually performing well 

for early attack detection. Kloucek et al (2024) show that healthy and infested trees 

could be distinguished at the early stage of infestation using NIR, which is contrary to 

the results achieved by this study. 

 

Based on the results, flying the drone in June may provide early indications of bark 

beetle. However, more field-confirmed tree samples are needed for thorough testing. 

Various studies show the green band is vital for early detection of bark beetle 

infestations. For instance, Kloucek et al. (2019) in the Czech Republic found that the 

greenness index performed best, while NIR performed lower. Minarik et al. (2016) 

discovered that infested trees had higher DN values in visible wavelengths and 

significantly lower in NIR. These findings underscore the importance of the green and 

red bands for early detection, highlighting the need for further research and field 

validation. 

  

Overall, the indices calculated from RGB bands, such as GCC and RCC, were 

sufficient to distinguish healthy trees from infected ones. Even with uncalibrated RGB 

bands, GCC and RCC still reflected statistically significant differences between 

healthy and infested trees. This indicates that high-resolution UAV RGB and 

multispectral images are valuable tools for forest health monitoring. In contrast, 

multispectral bands like NIR and Red-Edge showed little to no differentiation 
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between healthy and infested trees. NDVI, however, displayed differences starting in 

early August, with these differences increasing over time. 

 

6.2.1. Limitations and related studies  

The study's findings are limited by insufficient samples, necessitating the collection of 

more field data to confirm the presence of suspicious trees. The challenges of 

collecting field data in the forest remain, and this is not something that can necessarily 

change anytime soon. The data collected from the images could not be utilized due to 

the lack of field verification of bark beetle attacks, resulting in a lower number of 

trees that could be investigated. Among the 12 confirmed trees in the field, the 

challenge remained to find them in the images, and some points were at the edge of 

the study area resulting in possible distortion of the pixel values for time series 

calculations, so these were disregarded.  

 

Additionally, differences in spectral signatures before the attack were not considered. 

This is highlighted in the study by Huo et al. (2021), which covered the period before 

the attacks in April, the early stage from May to July, and the middle to late stage 

from August to October. Their results indicated that spectral differences already 

existed at the beginning of the vegetation season before the attacks, suggesting that 

the trees were stressed prior to the beetle infestations. To account for this, flights can 

be performed earlier on in the year before the flight/activities of the spruce bark 

beetles. This is however not apparent in the data as there were no significant 

differences before the attack began.  

 

6.1.3 Future studies: bark beetle health monitoring and individual tree crown 

delineation 

The study aimed to integrate two methods to facilitate early detection of bark beetle 

attacks in Sweden. If the crown delineation had been successful, combining these 

methods could have automated the process, potentially enabling the identification of 

infected trees in UAV images, which could then be confirmed in the field. Future 

research should consider training SAM to improve its suitability for tree delineation in 

remote sensing applications. The vegetation index GCC shows differences as early as 



43 

three weeks after potential attacks. However, the analysis does not account for pre-

attack spectral differences in the trees, which would have been interesting to 

investigate.  

7. Conclusion 

This study explores the capabilities and limitations of SAM for segmentation tasks in 

forest environments and investigates the early detection of spruce bark beetle attacks 

using multitemporal and multispectral high-resolution imagery. 

First, the assessment of SAM's performance revealed that its zero-shot capabilities are 

inadequate for tree segmentation. SAM struggles in complex scenarios, often 

overestimating object boundaries and producing suboptimal segmentation outputs. 

Performance variability with spatial resolution further limits its effectiveness in 

remote sensing applications. Addressing these limitations is crucial for enhancing 

SAM’s applicability, particularly in forest environments. Despite these challenges, 

SAM's box prompts showed potential, suggesting that while its fully automated 

capabilities are limited, further refinement and training could improve its performance 

by including box prompts.  

Second, the study on bark beetle attack detection found that the Green Chromatic 

Coordinate (GCC) is the most effective vegetation index for distinguishing attacked 

trees as early as June. NDVI becomes effective in August, and RCC in September, 

while NDRE and NIR show differences in later stages. The Red-Edge band showed 

no significant differences. The GCC can detect attacks within 6-9 weeks, critical for 

timely mitigation. Additional field-confirmed samples are needed to validate these 

findings. 

The study highlights the need for more comprehensive data collection and the 

integration of early detection methods with advanced segmentation models. Future 

research should focus on training SAM for better tree delineation in remote sensing 

applications and enhancing early detection frameworks using UAV imagery. Overall, 

this study provides insights into Segment Anything Model’s capacity to segment with 

no prior training, and the early detection of bark beetle infestations and emphasizing 

the importance of early intervention, continuous monitoring, and model improvement 

for effective forest health management.
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