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Abstract

We study the Gauss map and derive certain statistical properties, specifically upper
bounds on the decay of correlations. The method is due to Liverani [7], which in turn
is based on foundational work by Birkhoff [1]. One defines a cone of functions, and then
considers the induced Hilbert metric associated to the cone. A strict contraction in this
metric gives exponential decay of correlations. First functions belonging to C1([0, 1]) are
considered and the result is extended to Lip([0, 1]). Second we focus on functions of bounded
total variation on [0, 1]. A result in metric number theory regarding growth of continued
fractions coefficients follows from the exponential decay of correlations for BV . The proof
makes use of a dynamical Borel–Cantelli lemma.

1 Introduction

Dynamical systems and ergodic theory are research fields that deal with the long term behaviour
of systems, where some sort of quantity is preserved. This is modeled mathematically by some
spaceX describing the states, a transformation T describing the evolution in time, and a measure
µ related to the time-invariant property. One says that the measure µ is invariant under T if
µ(T−1A) = µ(A) for all µ-measurable A ⊂ X. The pair (X,T ) is called a dynamical system.
When we include a T invariant measure µ, the triple (X,T, µ) is referred to as a measurable
dynamical system. Classical example often come from mechanics, where the invariant quantity
is the energy of the system. When studying dynamical systems, it is of interest to ask how the
future behaviour of the system depends upon the choice of initial conditions or what is often
called observables. Assuming one has a transformation T and an invariant measure µ, we define
the correlation of the system given two observables f, g at time n as

C(f, g, n) :=

∣∣∣∣∫
X

f · g ◦ Tn dµ−
∫
X

f dµ ·
∫
X

g dµ

∣∣∣∣ .
The speed at which this quantity goes to zero gives information regarding the systems statis-
tical properties. Of course one must specify some collection of observables. For example, if
characteristic functions on Borel sets are allowed, then the correlation becomes

C(χA, χB , n) =
∣∣µ(A ∩ T−nB) − µ(A)µ(B)

∣∣
and if this goes to zero, the system is mixing. In this thesis we shall explore statistical properties
of the Gauss map T (x) = 1

x mod 1 and how the rate of decay differs for different sets of
observables. More specifically, we shall employ a method giving explicit bounds on the speed of
decay, meaning we look at

C(f, g, n) =

∣∣∣∣∫ 1

0

f · g ◦ Tn dµ−
∫ 1

0

f dµ ·
∫ 1

0

g dµ

∣∣∣∣ ≤ D ∥f∥ ∥g∥ ρn

and find upper bounds on ρ. Given that the Gauss is intimately associated with regular continued
fraction expansions, these statistical properties then give information regarding the distribution
and growth of the associated continued fraction coefficients.

The method relies first on defining the Perron–Frobenius operator LT , which is the adjoint op-
erator of UT g = g ◦ T , or simply stated composition with T . Questions regarding the statistical
properties of T can then be rephrased as spectral properties of LT . One then defines a cone of
functions C, which one hopes is mapped strictly inside itself by the operator. What was shown
by Birkhoff in [1] is that this map is a strict contraction in the projective Hilbert (pseudo) metric
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Θ, provided that the image is of finite diameter. This gives exponential decay of correlations
for functions lying in the cone. The results can then be extended to functions lying outside the
cone. This program is carried out by Liverani in both [7] and [6]. The novel part of this thesis
is that the Gauss map does not lie in the collection of maps considered in either of these papers.
We first study a cone of C1 functions, follow the program and establish exponential decay of
correlations. The result is then extended further to all Lipschitz functions on [0, 1]. We move
on to functions of bounded total variation, and yet again show exponential decay. This case is
slightly more technical due to necessity of Lemma 4.7, a lemma which has no analogue in the
cases considered in [7].

Finally we prove a result regarding the frequency of large continued fraction coefficients through,
which can be proved using the exponential decay of correlations for functions of bounded vari-
ation, and a dynamical Borel–Cantelli lemma.

2 Theory

The reader will be expected to be familiar with measure theory, at least to the level expected
after an introductory course in the subject. Some major results and definitions will however be
stated for the readers convenience. The main tool of this thesis, the Perron–Frobenius operator,
is considered vital enough that it is given its own section to shine. To begin however, some
results from projective geometry are showcased.

2.1 Projective geometry and Lattice Theory

In Birkhoff’s book Lattice Theory [1] a general theory of lattices is presented. While the scope
of this field is wide, the chapters on vector lattices and positive linear operators are sufficient
for our purposes. They form the basis of both [7] and [6], which are the main sources of inspi-
ration for this thesis. Presenting a concise, yet sufficiently thorough, introduction to the needed
background will be the goal of this section.

A subset C of a vector space V is called a cone if f ∈ C implies that λf ∈ C for every positive
λ in R. Birkhoffs presentation is for general group structures. We shall limit ourselves to the
theory of vector spaces. By convex positive cone, we shall mean any cone C that satisfies

C ∩ −C = {0}, C + (−C ) = V, C + C ⊂ C .

An example of such a cone that is a subset of Rn, given the canonical basis, is the set of vectors
with non-negative coordinates. It should be clear this cone fulfills all the conditions above. In
fact, this is true given any choice of basis defining the coordinate system. We introduce a partial
ordering on a cone C and denote it by ⪯. The relation is induced by the cone in the following
manner:

f ⪯ g ⇐⇒ g − f ∈ C

where it becomes clear that the relation is dependent on the choice of cone. When one studies
maps from one cone to another, it will be important to keep in mind which relation one is
referencing, and perhaps if one where to be completely clear, the relation would be denoted
by ⪯C . We will disregard this and hope that it shall be clear from context. We shall call two
vectors comparable if λf ⪯ g ⪯ µf for some choice of scalars λ and µ. From this notion of
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comparability, it becomes natural to define

α(f, g) = sup
{
λ ∈ R+

∣∣ λf ⪯ g
}

(2.1)

β(f, g) = inf
{
µ ∈ R+

∣∣ g ⪯ µf
}
.

If either set is empty, set α = 0 or β = ∞ respectively. Together they can be used to define
Hilbert’s projective (pseudo)-metric

Θ(f, g) = log

[
β(f, g)

α(f, g)

]
(2.2)

where if β(f, g) = ∞ or α(f, g) = 0, we put Θ(f, g) = ∞. It is not a true metric, since
Θ(f, af) = 0, and the distance between points may be infinite, but it does fulfill the triangle
inequality and it is symmetric. This we shall prove. The assumption that f, g are comparable
λf ≺ g ≺ µf implies that µ−1g ≺ f ≺ λ−1g, which gives that α(g, f) = β(f, g)−1 and that
β(g, f) = α(f, g)−1. So

Θ(g, f) = log

[
α(f, g)−1

β(f, g)−1

]
= Θ(f, g)

and hence Θ is symmetric. Now for the triangle inequality. Let {λn}∞n=1, {λ̃n}∞n=1 be two
increasing sequences with λn ↑ α(f, h), λ̃n ↑ α(h, g) and analogously two decreasing sequences
µn ↓ β(f, h), µ̃n ↓ β(h, g). Then

λnf ≺ h ≺ µnf and λ̃nh ≺ g ≺ µ̃nh

which can be combined into

λnλ̃nf ≺ g ≺ µnµ̃nf where λnλ̃n ↑ α(f, h)α(h, g) and µnµ̃n ↓ β(f, h)β(h, g)

finally yielding

Θ(f, g) ≤ lim log

[
µnµ̃n

λnλ̃n

]
= lim log

[
µn
λn

]
+ log

[
µ̃n

λ̃n

]
= Θ(f, h) + Θ(h, g)

where we get inequality due to β(f, h) + β(h, g) ≥ β(f, g) and analogously α(f, h) + α(h, g) ≤
α(f, g). We leave it to the reader to ponder when the triangle inequality gives equality. The
previous discussion is summarised into the following theorem.

Theorem 2.1. The function Θ is non-negative, symmetric and fulfills the triangle inequality.
Hence, it is a pseudo metric.

We shall now present a result originally by Birkhoff in [1]. For the proof however, we follow
a more modern approach by Liverani in [6] which does not rely on projective geometry. To
understand the result we must however first introduce the concept of being integrally closed. It
is desirable for the topology of the vector space and the partial ordering to be well behaved in
relation to each other. Let fn be a sequence of functions in C converging to f in the metric
induced by C , with fn ⪯ g. We say that C is integrally closed if for all such sequences, f ⪯ g.
By vector lattice we mean a vector space V with a partial order relation ≤ such that for all
f, g ∈ V both f ≤ g ⇐⇒ 0 ≤ g − f and 0 ≤ f =⇒ 0 ≤ λf (λ ∈ R+) hold.

Theorem 2.2. Let V1, and V2 be two integrally closed vector lattices; P : V1 → V2 a linear map
such that PC1 ⊂ C2, for two closed convex cones C1 ⊂ V1 and C2 ⊂ V2 with Ci ∩ −Ci = {0}.
Let Θi be the Hilbert metric corresponding to the cone Ci. Setting ∆ = supf,g∈PC1

Θ2(f, g) we
have

Θ2(Pf, Pg) ≤ tanh

(
∆

4

)
Θ1(f, g) ∀f, g ∈ C1
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Note that the diameter of PC1 may very well be infinite. In that case one makes the natural
interpretation that tanh∞ = 1.

Proof. Since Θ1(f, g) = log β(f,g)
α(f,g) , when either α(f, g) = 0 or β(f, g) = ∞ then the right hand

side is infinite so the inequality holds. We therefore assume that α ̸= 0 and β ̸= ∞. The
fact that f, g ∈ C1 gives that 0 ⪯ f, g. The assumption that Ci is integrally closed gives that
αf ⪯ g ⪯ βf . This can instead be written as

0 ⪯ g − αf, 0 ⪯ βf − g ⇐⇒ g − αf, βf − g ∈ C1

and by the assumption that PC1 ⊂ C2 we get that P (g − αf), P (βf − g) ∈ C2 or equivalently

0 ⪯ P (g − αf), 0 ⪯ P (βf − g) ⇐⇒ αPf ⪯ Pg ⪯ βPg

which gives that α1(f, g) ≤ α2(Pf, Pg) and likewise that β1(f, g) ≥ β2(Pf, Pg). Consider first
the case when the diameter of the image is infinite. Then we must show that Θ2(Pf, Pg) ≤
Θ1(f, g). This follows immediately by

Θ2(Pf, Pg) = log
β2(Pf, Pg)

α2(Pf, Pg)
≤ log

β1(f, g)

α1(f, g)
= Θ1(f, g).

What remains is the case when ∆ < ∞. The assumption that ∆ < ∞ implies that there must
exist λ and µ both bigger than zero, such that log µ

λ ≤ ∆ where λ and µ also satisfy

λP (g − αf) ⪯ P (βf − g) ⪯ µP (g − αf).

Rewriting these inequalities to isolate Pf and Pg leads to

β + αµ

1 + µ
Pf ⪯ Pg ⪯ β + αλ

1 + λ
Pf

which in turn gives

Θ2(Pf, Pg) ≤ log
(β + λα)(1 + µ)

(β + αµ)(1 + λ)
= log

β
α + λ
β
α + µ

− log
1 + λ

1 + µ

= log
exp Θ1(f, g) + λ

exp Θ1(f, g) + µ
− log

1 + λ

1 + µ

=

[
ex + λ

ex + µ

]Θ1(f,g)

0

=

∫ Θ1(f,g)

0

ex(µ− λ)

(ex + µ)2
dx

≤
∫ Θ1(f,g)

0

ex(µ− λ)

(ex + µ)(ex + λ)
dx

where one can find the maximum of the integrand to be 1−λ/µ
(1+

√
λ
µ )2

, giving

Θ2(Pf, Pg) ≤ Θ1(f, g)
(1 − λ

µ )

(1 +
√

λ
µ )2

now, λ and µ where assumed to fulfill log µ
λ ≤ ∆. Which gives that

1 − λ

µ
≤ 1 − e∆ and

(
1 +

√
λ

µ

)−2

≤ (1 + e−∆/2)−2
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and these two estimates along with some algebra produces

Θ1(f, g)
(1 − λ

µ )

(1 +
√

λ
µ )2

≤ Θ1(f, g)
1 − e−∆

(1 + e−∆/2)2
= Θ1(f, g)

sinh ∆
4

cosh ∆
4

= Θ1(f, g) tanh
∆

4

which proves the desired result.

2.2 Results from measure theory

The reader is assumed to be familiar with the basic results of an introductory course in measure
theory and Lebesgue integration. Some selected results and definitions will however still be
presented for the readers convenience. We begin by stating a well known result that will be of
great importance

Theorem 2.3 (Radon–Nikodym Theorem). Let (X,B) be a measurable space and let ν and µ
be two normalized measures on (X,B). If ν ≪ µ, then there exists a unique f ∈ L1(X,B, µ)
such that for every A ∈ B,

ν(A) =

∫
A

fdµ.

f is called the Radon–Nikodym derivative and is denoted by dν
dµ .

The importance of this theorem will be clear in section 2.3 when discussing the Perron–Frobenius
operator.

Definition 2.4. Let (X1,B1), (X2,B2) be two measurable spaces and µ a measure on X1 and
T : X1 → X2 be a µ-measurable transformation. Then we can define the pushforward measure,
T∗µ by

T∗µ(A) = µ(T−1A), for all A ∈ B2.

We will be particularly interested in the case when X1 = X2 (and B1 = B2)

Definition 2.5. Let (X,B, µ) be a normalized measure space. Then a transformation T : X →
X is said to be nonsingular if and only if T∗µ ≪ µ, or stated explicitly, if for any A ∈ B such
that µ(A) = 0, we have T∗µ(A) = µ(T−1A) = 0

2.3 Perron–Frobenius Operator

The following exposition on the topic of the Perron-Frobenius operator follows that of A. Bo-
yarsky and G. Góra in [2]. They start by introducing the motivation for the PF operator from
the point of view of transformations on stochastic variables, and its consequence on associated
probability density functions. We shall follow in their footsteps. Let X be a random variable on
an interval [a, b] with a given probability density function f . Then the probability of any event
A happening is

P{X ∈ A} =

∫
A

fdλ

where dλ denotes the Lebesgue measure, normalized such that it is a probability measure. A
natural path of inquiry is the following. If one transforms the random variable X trough some
mapping T : I → I, then what is the probability density of T (X)? To deduce this we start by
considering again the probability of an event A.

P{T (X) ∈ A} = P(X ∈ T−1A) =

∫
T−1A

fdλ.
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So what we need is to establish the existence of a function ϕ such that for any measurable set
A, we have that ∫

T−1A

fdλ =

∫
A

ϕdλ.

We begin by defining a new measure µ by

µ(A) =

∫
T−1A

fdλ,

where T is assumed to be non-singular. We will now argue that µ must be absolutely continuous
with respect to the Lebesgue measure. Then the Radon–Nikodym theorem 2.3 gives the existence
of a unique L1 function ϕ such that µ(A) =

∫
A
ϕdλ for all A ∈ B. This will in turn justify

Definition 2.7 defining the Perron–Frobenius operator LT : L1 → L1 by

LT f = ϕ

where ϕ is the density given by Theorem 2.3 where ϕ fulfills∫
T−1A

fdλ =

∫
A

f ◦ Tdλ =

∫
A

LT fdλ =

∫
A

ϕdλ.

Lemma 2.6. The measure µ defined by

µ(A) =

∫
T−1A

fdλ

is absolutely continues with respect to the Lebesgue measure λ for any non-singular T .

Proof. Let A be any λ-measurable set with λ(A) = 0. Then

µ(A) =

∫
T−1A

fdλ

but λ(T−1A) = 0 since T is non-singular by assumption. Hence µ(A) = 0.

The existence of a function ϕ such that LT f = ϕ now follows from the Radon–Nikodym Theorem
2.3. Note that ϕ is unique up to almost everywhere equivalence, and hence LT is well defined
as an operator from L1 to L1.

Definition 2.7 (Perron–Frobenius Operator). Let I = [a, b], B be the Borel σ-algebra of subsets
of I and let λ be the normalized Lebesgue measure on I. Let T : I � I be a non-singular
transformation. We define the Perron–Frobenius operator LT : L1 � L1 as follows: For any
f ∈ L1, LT f is the unique (up to a.e. equivalence) function in L1 such that∫

A

LT fdλ =

∫
T−1A

fdλ

for any A ∈ B

We shall prove some properties of the operator.

Proposition 2.8. The operator LT is linear
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Proof. From the definition of LT and linearity of the integral we get immediately∫
A

LT (αf + βg)dλ =

∫
T−1A

αf+βgdλ = α

∫
T−1A

fdλ+β

∫
T−1A

gdλ =

∫
A

αLT fdλ+

∫
A

βLT gdλ

which holds for all A ∈ B, meaning that

LT (αf + βg) = αLT f + βLT g

holds λ-a.e.

Proposition 2.9. If f ∈ L1 is non-negative a.e., then so is LT f .

Proof. Simply using the definition of LT f∫
A

LT fdλ =

∫
T−1A

fdλ ≥ 0

for all A ∈ B. Hence LT f is non-negative a.e.

‘Note that one can interchange non-negative with positive and the above proposition still holds.
Simply use that T−1A will have non-zero measure as long as λ(A) ̸= 0.

Proposition 2.10. For any f ∈ L1, LT preserves the integral over the entire space I. Meaning∫
I

LT fdλ =

∫
I

fdλ

Proof. Trivially ∫
I

LT fdλ =

∫
T−1I

fdλ =

∫
I

fdλ

where we use that T−1I = I.

Proposition 2.11. The Perron–Frobenius operator LT : L1 −→ L1 is a (weak) contraction

∥LT f∥L1 ≤ ∥f∥L1 .

Proof. Take any f ∈ L1 and write it as the difference of two non-negative functions f = f+−f−.
Then |f | = |f+ − f−| = f+ + f− with complementary support. For |LT f | use Proposition 2.9
to get

|LT f | = |LT f+ − LT f−| ≤ LT f+ + LT f− = LT (f+ + f−) = LT |f |

so one can now estimate the L1 norm by

∥LT f∥1 =

∫
I

|LT f |dλ ≤
∫
I

LT |f |dλ =

∫
I

|f |dλ = ∥f∥1 .

using that LT preserves integrals over I.

We wish to establish a relationship between the Perron-Frobenius operator associated with the
n-th iterate of a map Tn, and the one associated with T . What about compositions of different
maps?

Proposition 2.12. Let T : I � I and S : I � I be non-singular maps. Then LT◦Sf = LTLSf
a.e..
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Proof. Let f ∈ L1 and define the measure µ by

µ(A) =

∫
(T◦S)−1A

fdλ

where by the dual assumption that both T and S are non-singular, we get that µ is absolutely
continuous with respect to the Lebesgue measure λ. Hence by Theorem 2.3 there exists a L1

function, LT◦Sf such that

µ(A) =

∫
A

LT◦Sfdλ =

∫
S−1(T−1A)

fdλ.

However we also have ∫
A

LT (LS)fdλ =

∫
T−1A

LSfdλ =

∫
S−1(T−1A)

fdλ

which holds for every A ∈ B, and therefore LT◦Sf = LT (LS)f a.e. One immediately gets
LnT f = LTnf a.e.

Definition 2.13. We define the so called Koopman operator UT : L∞ → L∞ by

UT f = f ◦ T.

Proposition 2.14. The Koopman operator UT is the adjoint operator of LT , meaning that∫
I

(LT f) · gdλ =

∫
I

f · (UT g)dλ.

Proof. We first prove the result for characteristic functions and extend the result to all g ∈ L∞

by density. Choose A as any measurable subset of I and define g = χA. We then wish to prove
that ∫

A

LT fdλ =

∫
I

f · χA ◦ Tdλ (2.3)

but the fact that this is true becomes clear when writing the right hand side as∫
I

f · χA ◦ Tdλ =

∫
T−1A

fdλ

which is equal the to left hand side of (2.3) by the definition of the Perron–Frobenius operator.
Equality for the general g ∈ L∞ follows directly from the density of simple functions in L∞.

Proposition 2.14 will be of vital importance in the study of decay of correlations. In this field,
the object of study will be the following difference of integrals:

C(f, g, n) =

∣∣∣∣∫
I

f · g ◦ Tndµ−
∫
I

fdµ

∫
I

gdµ

∣∣∣∣ (2.4)

where µ is measure preserving. The goal is to understand how fast this quantity goes to zero,
which measures how quickly our system forgets its initial distribution. The approach that shall
be taken in this thesis lives and dies with the fact that the Koopman operator is adjoint to the
Perron–Frobenius operator, meaning we can instead study

C(f, g, n) =

∣∣∣∣∫
I

LnT,µf · gdµ−
∫
I

fdµ

∫
I

gdµ

∣∣∣∣ (2.5)
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where LT,µ is the Perron–Frobenius operator associated to T under the measure µ. However, it
is at this time not clear why this is preferable to the original formulation. This confusion shall
be alleviated when we show that in many circumstances, one can write down workable explicit
expressions for LT . The following representation is due to Mayer in [8], which will be suitable
for our purposes.

Lemma 2.15. Let T : I � I be a transformation. Assume that there exists a countable collection
of intervals Il, l ∈ F such that

⋃
l∈F Il = I and the different Il have disjoint interior. Also

assume that Tl := T |Il is monotone and Ck for some k ≥ 1. Then

LT f =
∑
l∈F

|ψ′
l(x)|f ◦ ψl(x)χT (Il)(x)

where ψl is the local inverse of the map T restricted to the interval Il.

Proof. By the definition of the PF operator we have∫
A

LT fdλ =

∫
T−1A

fdλ. (2.6)

Using that Tl is invertible, we define T−1
l = ψl (if x ̸∈ Il we will say ψl(x) = 0). Then the right

hand side of (2.6) can be written as∫
T−1A

fdλ =

∫
⋃

l∈F ψl(A∩Il)
fdλ =

∑
l∈F

∫
ψl(A∩Il)

fdλ

where the second equality comes from that all ψl(A ∩ Il) are mutually disjoint. The individual
terms can now be rewritten using a change of variables to get∫

ψl(A∪Il)
fdλ =

∫
A

f ◦ ψl(x)|ψ′
l(x)|χTIl(x)dλ

giving that∫
A

LT fdλ =

∫
A

∑
l∈F

f ◦ ψl(x)|ψ′
l(x)|χTIl(x)dλ =

∫
A

∑
l∈F

f ◦ ψl(x)

|T ′
l ◦ ψl(x)|

χTIl(x)dλ

which holds for all A ∈ B giving that the integrands are equal a.e.

An immediate corollary is that if each Tl : Il � I is surjective (except at perhaps the endpoints
of the interval), then we get the following.

Corollary 2.15.1. If each Tl is onto, then

LT f =
∑
l∈F

f ◦ ψl(x)

|T ′
l ◦ ψl(x)|

.

Hereafter, we will be working under the assumption that T is piecewise surjective. Hence this
is the expression which shall be used from now on.
In (2.4) and (2.5) the correlation is formulated in terms of the measure µ. This is in some sense
the most natural formulation, but it is simultaneously somewhat cumbersome. Since dµ = ϕdλ,
we can write f̃ = f · ϕ and transform (2.4) to

C(f, g, n) =

∣∣∣∣∫
I

f̃ · g ◦ Tndλ−
∫
I

f̃dλ

∫
I

gdµ

∣∣∣∣ (2.7)

=

∣∣∣∣∫
I

LnT f̃ · gdλ−
∫
I

f̃dλ

∫
I

gdµ

∣∣∣∣
9



so one can use the established formulation in section 2.15.1 which is only valid for the Lebesgue
measure.

2.4 The Gauss map and continued fractions

The most natural context in which to introduce the Gauss map is when discussing regular
continued fractions. In the work of A. Ya. Khinchin [3], it is established that any positive real
number x can be written as a continued fraction

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

, an ∈ Z+ (2.8)

where for rational x the expansion terminates after a finite number of coefficients, and for
irrational x the expansion is infinite. The expression in (2.8) is often written more compactly
as

x = [a0; a1, a2, a3, . . . , an]

for rational x and
x = [a0; a1, a2, a3, . . . ]

if x is irrational. In most contexts we are not interested in the integer part of x, so one simply
assumes that a0 = 0 and write

x = [0; a1, a2, a3, . . . ] = [a1, a2, a3, . . . ].

Now the natural question is the following: given an arbitrary x ∈ [0, 1], how does one find its
corresponding expansion? If one wishes to find a1, simply take the reciprocal and round down.
This motivates the definition of the Gauss map.

Definition 2.16. We define the Gauss map T : R → [0, 1] by

T (x) =

{
0, if x = 0
1
x mod 1, otherwise

Using the mapping we can write

T ([a1, a2, a3, . . . ]) = a1 + [a2, a3, . . . ] − a1 = [a2, a3, . . . ]

so from this point of view, the Gauss map acts as a left shift on the sequence of continued fraction
coefficients. Studying the Gauss map as a measure preserving transformation, and ascertaining
its dynamical properties, will therefore in turn yield information regarding continued fraction
expansions. One then wishes to study the dynamical system ([0, 1], T, µ), where µ is such that
µ(A) = µ(T−1A) for all Borel-sets A. There are many such measures, and it is well known that

µ(A) =

∫
A

1

log 2
· 1

1 + x
dλ(x)

is one such [3]. It also has the additional property of being absolutely continuous with respect to
the Lebesgue measure λ. We call ϕ = 1

log 2 ·
1

1+x the invariant density of µ and write dµ = ϕdλ.

10



This particular choice of µ is of particular interest to us. Equation (2.5) tells us that studying
the decay of correlations for for this system is essentially the same as asking: ”how quickly does
an arbitrary observable f converge to the invariant density” (this is why we prefer formulation
(2.5) over (2.4)). In full generality it is of course not possible to answer such a question, but
given some restriction on the observable we can make progress.

3 Decay of Correlations for Differentiable Functions

We shall follow the program established by Liverani and attempt to apply the methods presented
for expanding maps on finite partitions of [0, 1]. The central object of study is the Perron–
Frobenius operator, for which the general form is

LT f(x) =
∑

y∈T−1(x)

f(y)|T ′(y)|−1

but using Corollary 2.15.1 and choosing T to be the Gauss map, we acquire the nicer expression

LT f(x) =

∞∑
n=1

1

(x+ n)2
f

(
1

x+ n

)
.

The first interesting step of the program is to find a cone C of functions that the Perron–
Frobenius operator maps strictly inside itself.

3.1 Establishing an Initial Cone

Some general heuristics were kept in mind when searching for reasonable choices of cones. Firstly,
the goal was to have few and simple conditions. The expressions quickly become unmanageable
when imposing either multiple or complex requirements. Secondly, the conditions must impose
some sort of regularity on the admissible functions. Without such a condition, there is no
reason to hold any confidence in the image of the transformation LTC having finite diameter.
The initial attempt shall be the one parameter family of cones Ca defined by

Ca =

{
f ∈ C1[0, 1]

∣∣∣∣f ̸≡ 0 , f ≥ 0, 0 ≤ −f ′ ≤ af

}

where the cones are thought of as subsets of the Banach space of C1[0, 1] functions. One initial
observation, which gives credence to this being a reasonable choice, is that the invariant density
lies in this cone as long as a is greater than or equal to 1. This observation is of course a luxury.
In a general setting there is no expectation of being a priori able to verify that the invariant
density lies in the cone. However, investigation shows that for the Perron–Frobenius operator
associated to the Gauss map, if one uses crude estimates, the only choice of parameter that can
be shown to be admissible is a = 2. To be clear, other choices of a may also leave Ca invariant,
but we shall not spend more time on this. Hence we get the choice

C2 = C =

{
f ∈ C1[0, 1]

∣∣∣∣f ̸≡ 0, f ≥ 0, 0 ≤ −f ′ ≤ 2f

}

where we have suppressed the parameter index. We show that this choice of cone is invariant.

Lemma 3.1. The cone C as defined above is invariant under LT , meaning LTC ⊂ C .
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Proof. We must show that for any function f ∈ C we have LT f ∈ C . That LT f ̸≡ 0 and
LT f ≥ 0 follow immediately from the expression for LT f . Continuity follows from that LT f
can be written as a series of continuous functions that converges uniformly on [0, 1]. Furthermore,
differentiating the series term by term gives

(LT f)′ =

∞∑
n=1

−f ′
(

1
x+n

)
− 2(x+ n)f

(
1

x+n

)
(x+ n)4

and this series converges uniformly by the Weierstrass M -test. Hence (LT f)′ exists and is
continuous. What remains is showing that

(LT f)′ ≤ 0 and − (LT f)′ ≤ 2LT f, (3.1)

both of which follow from simple calculations. Starting with the leftmost inequality

(LT f)′ =
∞∑
n=1

−f ′
(

1
x+n

)
− 2(x+ n)f

(
1

x+n

)
(x+ n)4

≤
∞∑
n=1

2f
(

1
x+n

)
− 2(x+ n)f

(
1

x+n

)
(x+ n)4

≤
∞∑
n=1

2f

(
1

x+ n

)
1 − (x+ n)

(x+ n)4
≤ 0

where we have used that f ≥ 0 and −f ′ ≤ 2f . Now a final computation treating the rightmost
inequality in (3.1) shows the lemma. We proceed with

−(LT f)′ =

∞∑
n=1

f ′
(

1
x+n

)
+ 2(x+ n)f

(
1

x+n

)
(x+ n)4

≤
∞∑
n=1

2(x+ n)

(x+ n)4
f

(
1

x+ n

)
≤

∞∑
n=1

2

(x+ n)2
f

(
1

x+ n

)
= 2LT f

which uses only that f ≥ 0 and f ′ ≤ 0.

Now that C has been shown to be invariant under LT , we shall proceed to show that the image
LTC has finite diameter under the induced Hilbert metric Θ(f, g), as defined in equation (2.2).
It is clear that in order to bound the diameter, one must find upper and lower bounds for β and
α respectively. A useful trick in this endeavor employed by Liverani in [7] is to note that

diamLTC = sup
f,g∈C

Θ(LT f,LT g) ≤ sup
f,g∈C

≤ Θ(LT f, h) + Θ(h,LT g) ≤ 2 sup
f∈C

Θ(LT f, h)

where h is fixed, so our analysis becomes much more manageable. Choosing h = 1
1+x which

is the (scaled) invariant density reduces our problem to finding suitable expressions to control
α
(
LT f, (1 + x)−1

)
and β

(
LT f, (1 + x)−1

)
. We shall start by deriving expressions for α and β

for general f, g ∈ C . We write explicitly how the parts of the expression for α is found. By
definition α(f, g) is the supremum over all λ that satisfy λf ⪯ g, where ⪯ is the order relation
induced by inclusion in C . Therefore, the condition λf ⪯ g on λ is equivalent to

0 ≤ g − λf, 0 ≤ −(g′ − λf ′), and − (g′ − λf ′) ≤ 2(g − λf)

where solving the system of inequalities leads to

α(f, g) = min

{
inf

g

f
, inf

g′

f ′
, inf

2g + g′

2f + f ′

}

12



and a similar procedure for β gives

β(f, g) = max

{
sup

g

f
, sup

g′

f ′
, sup

2g + g′

2f + f ′

}
.

We pause and reiterate that these expressions for α and β hold for our specific choice of cone
C . A different choice does not only give a different object to bound the diameter of, but also
the way in which we measure distances. Now we evaluate these expressions for LT g and the
invariant density ϕ, and think of the three arguments as functions of g, denoting them by αi and
βi respectively. Since Θ is a projective metric, the distance is invariant under scaling. Therefore
we use 1

1+x over ϕ for simplicity and get

α

(
1

1 + x
,LT g

)
= min{α1(g), α2(g), α3(g)}

β

(
1

1 + x
,LT g

)
= max{β1(g), β1(g), β1(g)}.

To control the αi(g) we shall make use that e−2xg(0) ≤ g(x), which one gets by solving the
differential inequality −g′ ≤ 2g. Now, since C is a cone, we can without loss of generality
assume g(0) = 1. Starting with α1(g)

α1(g) = inf(1 + x)

∞∑
n=1

1

(x+ n)2
g

(
1

x+ n

)
≥ inf

∞∑
n=1

g(0)(1 + x) exp ( −2
x+n )

(x+ n)2

and if one differentiates this series term by term, one discovers that each term is increasing.
Hence we can bound the series by evaluating at x = 0 and remembering that g(0) = 1 gives

α1(g) ≥
∞∑
n=1

exp (−2
n )

n2
≥
∫ ∞

1

exp (−2
x )

x2
dx =

∫ 1

0

e−2udu =
1

2
(1 − e−2) ≥ 0.43.

We proceed with α2(g)

α2(g) = inf(1 + x)2
∞∑
n=1

g′( 1
x+n ) + 2(x+ n)g( 1

x+n )

(x+ n)4
≥ inf(1 + x)2

∞∑
n=1

−2g + 2(x+ n)g

(x+ n)4

≥ 2g(0)e−2
∞∑
n=1

(x+ n− 1)(1 + x)2

(x+ n)4
≥ 2e−2

∞∑
n=1

n− 1

n4

where in the last step we use that the series is increasing by Lemma A.2 and that g(0) = 1.
Hence we get that α2(g) ≥ 2e−2(ζ(3)−π4/90) ≥ 0.032. Ending the arduous process of producing
lower bounds, we handle α3(g) as such

α3(g) = inf(1 + x)2
2LT g + (LT g)′

2(1 + x) − 1

≥ inf

[
(x+ 1)2

2(x+ 1) − 1

]
·

[ ∞∑
n=1

2(x+ n)2g

(x+ n)4
+

∞∑
n=1

−g′ − 2(x+ n)g

(x+ n)4

]

≥
∞∑
n=1

2(x+ n)2g − 2(x+ n)g

(x+ n)4
=

∞∑
n=1

2(x+ n)(x+ n− 1)g

(x+ n)4

≥ 2e−2g(0)

∞∑
n=2

(x+ n)(x+ n− 1)

(x+ n)4
≥ 2e−2

∞∑
n=1

n(n− 1)

(n+ 1)4
= 2e−2

(
π2

6
+
π4

45
− 3ζ(3)

)

13



so we are satisfied with finally getting α3(g) ≥ 0.055. Summarising the results for each αi

α

(
1

1 + x
,LT g

)
≥ min{0.43, 0.032, 0.055} = 0.032.

Despite being repetitive, and labour intensive we shall venture forward and find upper bounds
for βi as such:

β1(g) = sup(x+ 1)LT g ≤ sup

∞∑
n=1

1 + x

(x+ n)2
g

(
1

x+ n

)
≤ g(0)

∞∑
n=1

1

n2
=
π2

6

where we have used Lemma A.1 when evaluating the sum.

β2(g) = sup−(x+ 1)2(LT g)′ = sup(x+ 1)2
∞∑
n=1

g′( 1
x+n ) + 2(x+ n)g( 1

x+n )

(x+ n)4

≤ sup

∞∑
n=1

2(x+ n)(x+ 1)2

(x+ n)4
= sup

∞∑
n=1

2(x+ 1)2

(x+ n)3

using that g′ is negative for all x in [0, 1] we get the estimate. To estimate the last term we use
Lemma A.3 and evaluate at x = 0, giving

β2(g) ≤
∞∑
n=1

2

n3
≤ 2.41.

The final estimate is that of β3 which is controlled by

β3(g) = sup (x+ 1)2
2LT g + (LT g)′

2(x+ 1) − 1

≤ sup
4

3

∞∑
n=1

2g

(
1

x+ n

)
(x+ n)2 − (x+ n) + 1

(x+ n)4
≤ sup

8

3

∞∑
n=1

(x+ n)2 − (x+ n) + 1

(x+ n)4

where one first uses that (x + 1)2/(2(x + 1) − 1) ≤ 4
3 and then that each term in the series is

decreasing. We evaluate at zero to get

β3(LT g) ≤ 8

3
(ζ(2) − ζ(3) + ζ(4)) ≤ 4.1

Summarising gives an upper bound for β in the form of

β

(
1

1 + x
,LT g

)
≤ max

{
π2

6
, 2.41, 4.1

}
= 4.1.

We can from this give a finite upper bound on the diameter of the image of C by

diam(LTC ) ≤ 2 sup
g∈C

Θ

(
1

1 + x
,LT g

)
= 2 sup

g∈C
log

β
(

1
1+x ,LT g

)
α
(

1
1+x ,LT g

) ≤ 2 log
4.1

0.032
= ∆

where ∆ ≈ 9.70601 or less than 9.71. Now making use of Theorem 2.2 where in our case Θ1 = Θ2,
showing the strict contraction in the Hilbert metric. Now setting tanh

(
∆
4

)
= Λ ≈ 0.9845 < 1

we get

Θ (LT f,LT g) ≤ tanh

(
∆

4

)
Θ(f, g) = Λ · Θ(f, g).
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From this point onward, we shall show how to apply this result in order to bound (2.7)

C(f, g, n) :=

∣∣∣∣∫ 1

0

f · g ◦ Tn −
∫ 1

0

fdµ

∫ 1

0

gdµ

∣∣∣∣ =

∣∣∣∣∫ 1

0

LnT f · g −
∫ 1

0

fdµ

∫ 1

0

gdµ

∣∣∣∣
assume wlog that

∫ 1

0
fdλ = 1. Then using that dµ = ϕdx the above can be written as

C(f, g, n) =

∣∣∣∣∫ 1

0

g(LnT f − ϕ)dx

∣∣∣∣
which can be trivially bounded by∣∣∣∣∫ 1

0

g(LnT f − ϕ)dx

∣∣∣∣ ≤ ∥g∥1 ∥L
n
T f − ϕ∥∞ ≤ ∥g∥1

∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

∥ϕ∥∞ (3.2)

In order to proceed we need to relate the supremum norm in (3.2) to the projective distance
between LnT f and ϕ.

Lemma 3.2. For f ∈ C with
∫ 1

0
fdx = 1 and ϕ = 1

log 2 · 1
1+x one has∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

≤ exp [Θ+(LnT f, ϕ)] − 1 ≤ exp [Θ(LnT f, ϕ)] − 1.

Proof. The proof makes use of a trick. We start by considering
Ln

T f(x)
ϕ(x) , for which we wish to

find a bound in terms of the projective distance Θ+. Note that Θ+ corresponds to the cone of
non-negative C1 functions C+, and Θ without subscript to C . This gives us that C ⊂ C+ where
these sets are not equal. We start by considering

LnT f(x)

ϕ(x)
=

LnT f(x)

ϕ(x)
· L

n
T f(y)

ϕ(y)
· ϕ(y)

LnT f(y)

and remembering the definition (2.1) of µ and λ gives that

λ

µ
· L

n
T f(y)

ϕ(y)
≤ LnT f(x)

ϕ(x)
≤ µ

λ
· L

n
T f(y)

ϕ(y)
.

Since this inequality holds for all possible µ and λ, we take the inf over µ and sup over λ to get

exp [−Θ+(LnT f, ϕ)] · L
n
T f(y)

ϕ(y)
≤ LnT f(x)

ϕ(x)
≤ exp [Θ+(LnT f, ϕ)] · L

n
T f(y)

ϕ(y)
(3.3)

which holds for all x, y in [0, 1] Since we assumed that
∫ 1

0
fdx = 1 and ϕ is the density of a

probability measure, we have
∫ 1

0
(LnT f − ϕ) dx = 0. This implies that there for each n must

exist points xn, yn such that LnT f(xn) ≤ ϕ(xn) and LnT f(yn) ≥ ϕ(yn), giving that
Ln

T f
ϕ takes

values both greater and less than one. Hence (3.3) gives

exp [−Θ+(LnT f, ϕ)] ≤ LnT f(x)

ϕ(x)
≤ exp [Θ+(LnT f, ϕ)].

which is equivalent to

exp [−Θ+(LnT f, ϕ)] − 1 ≤ LnT f(x)

ϕ(x)
− 1 ≤ exp [Θ+(LnT f, ϕ)] − 1. (3.4)
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but we also have that ex + e−x ≥ 2 or equivalently, e−x − 1 ≥ 1 − ex. Applying to the leftmost
inequality of (3.4) gives

−(exp [Θ+(LnT f, ϕ)] − 1) ≤ LnT f(x)

ϕ(x)
− 1 ≤ (exp [Θ+(LnT f, ϕ)] − 1)

finally giving ∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

≤ exp [Θ+(LnT f, ϕ)] − 1 ≤ exp [Θ(LnT f, ϕ)] − 1.

The second inequality comes from using Theorem 2.2 with P equal to the identity operator from
C to C+. This proves the lemma.

Remembering that we defined Λ = tanh
(
∆
4

)
together with the lemma gives the bound∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

≤ exp [ΛnΘ(f, ϕ)] − 1 ≤ exp [Λn∆] − 1 ≤ (Λn∆) · exp [Λn∆]

which finally shows the exponential decay of correlations for f ∈ C

C(f, g, n) =

∣∣∣∣∫ 1

0

LnT f · gdλ−
∫ 1

0

gdµ

∣∣∣∣ ≤ D ∥f∥1 ∥g∥1 · Λn

where D is some constant and Λ ≤ 0.985.

3.2 Extending Result

At this time, the decay of correlations has only been established for f ∈ C . We shall by some
simple arguments extend this result to a larger set of functions.

Lemma 3.3. We have exponential decay of correlations for Lip([0, 1]) vs L1[0, 1]) where the
speed of decay is at least Λn as in the previous section.

Proof. Let f be a non-negative decreasing C1 function. If f ∈ C then we are done. Hence,
assume that f does not lie in our cone. Then we must have that −f ′ > 2f at some point
in [0, 1]. Since f is continuously differentiable, f ′ is bounded by ∥f ′∥∞ < ∞. Then we write
f = f+ 1

2 ∥f
′∥∞− 1

2 ∥f
′∥∞. Now both f+ 1

2 ∥f
′∥∞ and 1

2 ∥f
′∥∞ lie in C so for a general positive

h ∈ C1 function, we get by the triangle inequality

C(h, g, n) = C(h+
1

2
∥h′∥∞ − 1

2
∥h′∥∞ , g, n) (3.5)

≤ C(h+
1

2
∥h′∥∞ , g, n) + C(

1

2
∥h′∥∞ , g, n)

≤ D(∥h∥1 +
1

2
∥h′∥∞) ∥g∥∞ Λn +D

1

2
∥h′∥∞ ∥g∥∞ Λn

= D(∥h∥1 + ∥h′∥∞) ∥g∥∞ Λn

For an arbitrary non-negative f ∈ C1, not necessarily decreasing, we can simply decompose f
as

f = (f + ∥f ′∥∞ − ∥f ′∥∞ x) − (∥f ′∥∞ − ∥f ′∥∞ x)

and the exponential decay of correlations follows much the same in this case as in (3.5). Now
we will make use of the fact that any Lipschitz function fL can be approximated arbitrarily well
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in L1 norm by a C1 function f , while simultaneously ensuring that ∥f ′∥∞ ≤ Lip(fL), where
Lip(fL) is the Lipschitz constant of fL. Using this we can bound the correlation decay of a
non-negative fL ∈ Lip([0, 1]) by

C(fL − f + f, g, n) ≤ C(fL − f, g, n) + C(f, g, n)

≤ ∥fL − f∥∞ ∥g∥1 + ∥fL − f∥∞ ∥ϕ∥2∞ +D(∥f∥∞ + ∥f ′∥∞) ∥g∥1 Λn

≤ ε(∥g∥1 + ∥ϕ∥2∞) +D(∥fL∥∞ + Lip(fL)) ∥g∥1 Λn.

Taking the infimum over all epsilon gives that

C(fL, g, n) ≤ D(∥fL∥∞ + Lip(fL)) ∥g∥1 Λn = D(∥fL∥L) ∥g∥1 Λn

for all 0 ≤ fL ∈ Lip([0, 1]) and g ∈ L∞([0, 1]). Since every functions f in Lip([0, 1]) can be writ-
ten as the difference of non-negative Lipschitz functions f = f+ − f−, with Lip(f+),Lip(f−) ≤
Lip(f). Using this we immediately get

C(fL, g, n) ≤ C(f+, g, n) + C(f−, g, n)

≤ D
(∥∥f+∥∥∞ + Lip(f+)

)
∥g∥1 Λn +D

(∥∥f−∥∥∞ + Lip(f−)
)
∥g∥1 Λn

≤ D
(∥∥f+∥∥∞ +

∥∥f−∥∥∞ + Lip(f)
)
∥g∥1 Λn ≤ 2D ∥f∥L ∥g∥1 Λn.

This extends the exponential rate of decay for the correlation to all Lip([0, 1]) functions.

The established program has now run it’s course and no more will be said regarding the cone
C or Lipschitz functions. However, before we move on we make a comment. The achievement
of this section is more than anything a proof of concept. It confirms that the methods work in
the context of the Gauss map. While this will not be surprising to those familiar with the field,
it is nice to have it confirmed. Not yet satisfied, we continue onward.

4 Decay of Correlations for Functions of Bounded Varia-
tion

In section 3 we pose highly restrictive requirements on the cone of functions considered, imposing
both a requirement on being decreasing and continuously differentiable, but also a limitation on
the rate of decrease. This forces us to, in some sense, start with observables qualitatively similar
to the limiting distribution ϕ. This regularity has the effect of giving a fast decay of correlation
for Lip[(0, 1)] vs L1[(0, 1)]. A natural question to ask is then, if we expand the admissible class
of function, what will happen to the decay of correlations? What can be said is that there is in
essence a trade-off between how general of a result can be achieved, and how fast the correlation
will decay. In the upcoming section, we shall consider functions of bounded variation BV [(0, 1)].

4.1 The Gauss-map

In appendix B we define the notion of an expanding map and we wish to show that the Gauss
map fits into this category. The first three properties are trivial, and as such we shall focus on
showing that for some n one has |Tn(x)| ≥ λ > 1 for all x ∈ [0, 1]. It will turn out that n = 2
will suffice, and it will be worthwhile to give this operator its own. We define P := T ◦ T = T 2.

Lemma 4.1. The square map P : [0, 1] → [0, 1] fulfills

|P ′(x)| ≥ 4

for all x ∈ [0, 1] where the derivative exists.
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Proof. The Gauss-map can be written as

T (x) =
1

x
(mod 1) =

1

x
−
⌊

1

x

⌋
where ⌊·⌋ is the floor function. We now write the composition T ◦ T (x) as

T 2(x) =
1

T (x)
−
⌊

1

T (x)

⌋
=

1
1
x −

⌊
1
x

⌋ − ⌊ 1
1
x −

⌊
1
x

⌋⌋ .
We first show that the absolute value of the derivative of the square map is greater than one
where it exists. Differentiating gives

(T 2)′(x) =

(
1

x
−
⌊

1

x

⌋)′ −1

( 1
x −

⌊
1
x

⌋
)2

=
−1

x2
−1

( 1
x −

⌊
1
x

⌋
)2

=
1

(1 − x
⌊
1
x

⌋
)2
.

Since this expression is non-negative, we wish to prove that

(T 2)′(x) =
1

(1 − x
⌊
1
x

⌋
)2

≥ λ

or equivalently

(1 − x

⌊
1

x

⌋
)2 ≤ λ−1.

Due to
⌊
1
x

⌋
≤ 1

x we can conclude that 1 − x
⌊
1
x

⌋
≥ 0. Now using that x

⌊
1
x

⌋
≥ x( 1

x − 1) we get
that (

1 − x

⌊
1

x

⌋)
≤
(

1 − x

(
1

x
− 1

))
= x,

which on the interval [0, 0.5] is less than 0.5, giving that

0.5−1 ≤ 1

(1 − x
⌊
1
x

⌋
)
, x ∈ [0, 0.5] ⇐⇒ 4 ≤ 1

(1 − x
⌊
1
x

⌋
)2
, x ∈ [0, 0.5]

Furthermore, on x ∈ (0.5, 1] we have
⌊
1
x

⌋
= 1, so(

1 − x

⌊
1

x

⌋)
= 1 − x ≤ 0.5

again giving the lower bound of 4. Hence the square of the Gauss map satisfies (P )′(x) ≥ 4 for
all x ∈ [0, 1] such that the derivative exists.

We wish to find the smallest partition such that P is monotone and continuous on each partition
element. It suffices to find the points of discontinuity of P . The points of discontinuity and
hence the points defining the partition that T is monotone on are the reciprocals of the natural
numbers 1

n , n ∈ N+. These can be characterised by the solutions to
⌊
1
x

⌋
= 0. This collection

makes up part of the critical points of the square map T 2. The rest can be found by studying⌊
1

1
x −

⌊
1
x

⌋⌋ = 0

18



or more easily
1

1
x − n

= k =⇒ x =
1

n+
1

k

n, k ∈ N+

Hence the partition for T 2 is the collection of intervals In,k =
[

1
n+ 1

k

, 1
n+ 1

k+1

]
. The facts that

these intervals have disjoint interior and that their union covers [0, 1] (mod 0) are both obvious.
To be clear, two sets being equal mod 0 means the measure of (A ∪B) \ (A ∩B) is zero. That
T 2 is monotone on In,k follows immediately from (T 2)′ being positive in the interiors of In,k.
That the square map is surjective on each interval, follows immediately from applying the map
twice on any interval In,k. For convenience let Pn,k = P |In,k

. Of course P has a well defined

inverse on In,k. Define ψn,k = P−1
n,k. The situation can be summarised with the diagram

In,k In In,k In

I I

T |In,k

P |In,k

T |In

ψk

ψn,k

ψn

where we have explicitly

Pn,k =
1

1

x
− k

− n, ψn,k =
1

k +
1

n+ x

and it will also be necessary to have the derivative of Pn,k

P ′
n,k =

1

(1 − kx)2
.

Composing with ψn,k, taking the reciprocal and absolute value gives

1

|P ′
n,k ◦ ψn,k|

=
1

(1 + k(n+ x))2

So we can now write

LP f(x) =
∑
n,k≥1

1

(1 + k[n+ x])2
f

(
1

k + 1
n+x

)
.

Of course this expression could be more simply obtained by applying LT twice by proposition
2.12. However, it is useful to see explicitly how one can get the intervals In,k, and the functions
ψn,k. As hinted in the title of the current section, we shall be dealing with functions of bounded
(total) variation. Then next theorem is the crucial ingredient in this endeavour.

Theorem 4.2. If f ∈ BV ([0, 1]), then

1∨
0

LP |f | ≤ 6

∫ 1

0

fdx+
1

2

1∨
0

f

where
∨b
a f is the variation of the function f from a to b.
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Proof.

1∨
0

LP f(x) ≤
∑
n,k≥1

1∨
0

1

(1 + k[n+ x])2
f

(
1

k + 1
n+x

)
(4.1)

=
∑
n,k≥1

∨
In,k

f

|P ′|︸ ︷︷ ︸
L

+
|f ◦ ψn,k(0)|

(1 + kn)2
+

|f ◦ ψn,k(1)|
(1 + k(n+ 1))2︸ ︷︷ ︸
R

where we now bound L and R respectively. We begin with R as follows

R ≤ 1

(1 + kn)2
(
|f ◦ ψn,k(0)| + |f ◦ ψn,k(1)|

)
≤ 1

(1 + kn)2
(
2 inf
x∈In,k

|f(x)| +
∨
In,k

f
)

≤ 1

(1 + kn)2

 2

|In,k|

∫
In,k

|f |dx+
∨
In,k

f

 =
2(1 + k + kn)

(1 + kn)

∫
In,k

|f |dx+
1

(1 + kn)2

∨
In,k

f

≤ 4

∫
In,k

|f |dx+
1

4

∨
In,k

f

where one uses that |In,k|−1 = (1 + kn)(1 + k + kn). Now for L we proceed as follows:

L =
∨
In,k

f

|P ′
n,k|

=

∫
In,k

∣∣∣∣∣d
(

f

|P ′
n,k|

)∣∣∣∣∣ =

∫
In,k

∣∣∣∣∣fd
(

1

|P ′
n,k|

)
+

1

|P ′
n,k|

d(f)

∣∣∣∣∣
≤
∫
In,k

|f |

∣∣∣∣∣ P ′′
n,k

(P ′
n,k)2

∣∣∣∣∣ dx+

∫
In,k

∣∣∣∣∣ 1

|P ′
n,k|

d(f)

∣∣∣∣∣ ≤ sup
x∈In,k

∣∣∣∣∣ P ′′
n,k(x)

P ′
n,k(x)2

∣∣∣∣∣
∫
In,k

|f |dx+
1

4

∨
In,k

f

≤ 2

∫
In,k

|f |dx+
1

4

∨
In,k

f.

We now apply the above to (4.1) to get

1∨
0

LP f(x) ≤
∑
n,k≥1

2

∫
In,k

|f |dx+
1

4

∨
In,k

f + 4

∫
In,k

|f |dx+
1

4

∨
In,k

f


≤ 6

∫ 1

0

|f |dx+
1

2

1∨
0

f

finishing the proof.

The end result and the argument are both similar to that achieved in [7], and [5] originally. The
inequality allows the same choice of cones as Liverani. Namely, we can choose Ca as

Ca =

{
f ∈ BV ([0, 1])

∣∣∣∣∣ f ̸≡ 0, f ≥ 0,

1∨
0

f ≤ a

∫ 1

0

f

}
.

which is highly desirable for two reasons. Firstly, we follow the heuristic of imposing regularity
which we mentioned in Subsection 3.1. This regularity is ensured by Theorem 4.2. Secondly,
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there is the practical consideration of much of the the analysis becoming identical. There is
however a non-trivial difficulty that is yet to be seen. We only comment on this now and return
to it when bounding the projective diameter of LPC . The first step is showing that our chosen
cone is mapped strictly inside itself for a suitable choice of parameter a.

Lemma 4.3. For Ca we have LPCa ⊆ Cσa whenever a > 12 and σ = 6
a + 1

2 .

Proof. Let Ca be as above and a ≥ 12. Then

1∨
0

LP f ≤ 6

∫ 1

0

f +
1

2

1∨
0

f ≤ 6

∫ 1

0

f +
a

2

∫ 1

0

f =

(
6

a
+

1

2

)
a

∫ 1

0

f = σa

∫ 1

0

f

where we define σ = 6
a + 1

2 which is less than one if a ≥ 12.

Before moving on to the diameter we need to establish the Lemmas 4.4, 4.5 and 4.8.

Lemma 4.4. The Gauss-map, and hence it’s square, is covering in as defined in Definition B.4.

Proof. Let n ∈ N. Then pick any I ∈ An. Then it is clear that TnI = [0, 1]. Since n ≤ 2(⌈n2 ⌉)
we also have

P (⌈n
2 ⌉)I = (T 2)(⌈

n
2 ⌉)I ⊇ TnI = [0, 1]

Showing that P is covering with N(n) = ⌈n2 ⌉.

Lemma 4.5. Given a partition P of [0, 1] mod 0, if each p ∈ P is an interval with Lebesgue
measure less than 1/2a, then, for each g ∈ Ca, there exists p0 ∈ P such that

g(x) ≥ 1/2

∫ 1

0

g ∀x ∈ p0

Proof. Suppose that the lemma is false. Then for all intervals p0 ∈ P one must have that there

exists a xp ∈ p0 such that g(xp) < 1/2
∫ 1

0
g. In that case we can for an arbitrary p ∈ P estimate∫

p

g ≤ |p|

(
g(xp) +

∨
p

g

)
<

|p|
2

∫ 1

0

g +
1

2a

∨
p

g

where in the first step one uses that g(x) ≤ g(xp) +
∨
p g for all x in p, and in the second our

assumption on our partition P. Now summing over all p ∈ P together with the fact that g ∈ Ca
gives ∫ 1

0

g <
∑
p∈P

(
|p|
2

∫ 1

0

g +
1

2a

∨
p

g

)
≤ 1

2

∫ 1

0

g +
1

2a

1∨
0

g ≤ 1

2

∫ 1

0

g +
a

2a

∫ 1

0

g =

∫ 1

0

g

which is a contradiction.

We shall now give a definition that puts any interval I ∈ An into one of two categories. One
being those we consider well-behaved or ”nice” in relation to T and the other of those considered
poorly-behaved or ”bad”.

Definition 4.6. Let I ∈ An be an interval such that Tn is continuous and monotone on I and
in addition, TnI = [0, 1]. Then I is given by a coding k1, k2, . . . , kn, corresponding to iterated
application of the piecewise inverses ψki to [0, 1]. Explicitly, I = ψkn ◦ · · · ◦ψk1 [0, 1]. Let m ∈ N.
We call I m-nice if ki ≤ m for all i = 1, 2, . . . , n. If I ∈ An is not m-nice it is m-bad.
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Let l = {lk}nk=1 be a sequence of n positive integers. Then define Il = ψln ◦ · · · ◦ ψl1 ◦ ψl1 [0, 1].
It immediately follows that

1 = |TnIl| ≥ λn|Il| so |Il| ≤ λ−n,

and hence choosing n =
⌈
log 2a
log λ

⌉
=
⌈
log 2a
log 4

⌉
is sufficient to ensure that |I| < 1

2a for all I ∈ An.

With this choice for n we have the following lemma:

Lemma 4.7. Let P be a uniform partition of [0, 1] into intervals such that for each p ∈ P we
have |p| = 1

⌈2a⌉ . Pick p0 ∈ P. If m ≥ 2(⌈2a⌉ + 1), then there exists an n such that there exists

an I ∈ An such that I ⊆ p0 and I is m-nice.

Proof. Pick m,n > 0. Note that no m-bad interval in An is ”isolated” in the following sense:
if J is m-bad, then either the interval immediately to the left or right of J is also m-bad. This
is clear when one remembers how the intervals correspond to coefficients in regular continued
fraction expansions.

Figure 1: Typical behaviour of a m-bad interval. Interval between dotted lines is m-bad

Any such clump of m-bad intervals has length less than 1
m , and will necessarily have an m-nice

interval adjacent to it. Since any interval in An has measure bounded above by 4 · 2−n, we can
ensure the existence of an m-nice interval in p0 if the following inequality is fulfilled:

|p0| −
1

m
− 2(4 · 2−n) > 0.

We pick m such that 1
m ≪ 1

2a , for example, choosing m ≥ 2(⌈2a⌉ + 1) gives that

|p0| −
1

m
− 2 · 4 · 2−n >

1

⌈2a⌉ + 1
− 1

2(⌈2a⌉ + 1)
− 8 · 2−n =

1

2(⌈2a⌉ + 1)
− 8 · 2−n
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which is strictly bigger than zero if one chooses n ≥ 4 +
⌈
log(⌈2a⌉+1)

log 2 .
⌉
. Picking such an n proves

the lemma.

Corollary 4.7.1. Consider the square of the Gauss map, P = T 2. Choose the partition, P and

constant m as in Lemma 4.7, and p0 ∈ P. Then it is sufficient to choose n ≥ 1
2

⌈
1 + log(⌈2a⌉+1)

log 2

⌉
to ensure the existence of an interval I ∈ A2n with I ⊆ p0.

Proof. It suffices to follow the same calculations as in the proof of the lemma, with the additional
observation that the measure of I ∈ A2n can be bounded above by 4−n.

Lemma 4.8. Let I ∈ An be an m-nice interval. Then for any x ∈ I

|(Tn)′(x)| ≤ m2n

Proof. The statement follows immediately from the fact that |T ′(x)| ≤ m2 whenever x ≥ 1
m

and the definition of m-nice.

Lemma 4.9. Let g ∈ Ca be a function. If N ≥ 1
2

⌈
1 + log(⌈2a⌉+1)

log 2

⌉
, m ≥ 2(⌈2a⌉ + 1), then

LNP g(x) ≥
∫ 1

0
g

2 ·m4N

for any g ∈ Ca

Proof. If N ≥ 1
2

⌈
1 + log(⌈2a⌉+1)

log 2

⌉
, then Corollary 4.7.1 along with Lemma 4.5 ensure the exis-

tence of an interval p0 ∈ P and an m-nice interval I ∈ A2N completely contained within p0
such that g(x) ≥ 1

2

∫ 1

0
g for all x ∈ p0 and hence also in the m-nice interval I. This gives that

LNP g(x) = LN(T 2)g(x) =
∑

y∈T−2N{x}

g(y)

|(PN )′(y)|
≥

∫ 1

0
g

2 ·m4N

using Lemma 4.8.

4.2 Diameter for BV case

Lemma 4.10. The diameter of LNT Ca is finite for some N and can be bounded by

diam(LNP Ca) ≤ 2 log

[
max{1 + σ; 1 + aσ}
min{(1 − σ); 1

m4N

]
= ∆

where N is as in lemma 4.9 and σ as in Lemma 4.3.

Proof. Lemma B.2 gives that the distance

Θa(1, g) ≤ log

[
max{(1 + σ)

∫ 1

0
g; sup g}

min{(1 − σ)
∫ 1

0
g; inf g}

]

whenever g ∈ Cσa with σ < 1. Now the proof of our lemma relies of choosing appropriate σ and
N . The first observation is that for appropriate choices of a and σ it is true that

LNCa ⊂ Cσa.
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This can be achieved iteratively applying Theorem 4.2 to the variation of LNT f , f ∈ Ca, giving

1∨
0

LNP f ≤
(

1

2

)N 1∨
0

f + 6 · 1 − (1/2)N

1 − 1/2

∫ 1

0

f (4.2)

≤

[
a

(
1

2

)N
+ 12 ·

(
1 − (1/2)N

)] ∫ 1

0

f = σa

∫ 1

0

f

where

σ =

(
1

2

)N
+

12

a

(
1 − (1/2)N

)
and where σ < 1 holds as long as a > 12. Now using Lemma B.2 to bound the diameter and
then applying (4.2) gives

diamLNP Ca ≤ 2 log

[
max{(1 + σ)

∫ 1

0
LNP g; supLNP g}

min{(1 − σ)
∫ 1

0
LNP g; inf LNP g}

]

≤ 2 log

[
max{(1 + σ)

∫ 1

0
LNP g; inf LNP g +

∨1
0 LNP g}

min{(1 − σ)
∫ 1

0
LNP g; inf LNP g}

]

where we use that sup |f | ≤ inf |f | +
∨
f . Now, remembering that g ∈ Ca implies that LNT g ∈

Cσa. This gives

≤ 2 log

[
max{(1 + σ)

∫ 1

0
LNP g;

∫ 1

0
LNP g + aσ

∫ 1

0
LNP g}

min{(1 − σ)
∫ 1

0
LNP g; inf LNP g}

]

= 2 log

 max{1 + σ; 1 + aσ}

min{(1 − σ); inf LNP g
(∫ 1

0
g
)−1

 .
Now finally applying Lemma 4.9 gives

diamLNCa ≤ 2 log

 max{1 + σ; 1 + aσ}

min{(1 − σ);
∫ 1
0
g

2m4N

(∫ 1

0
g
)−1


= 2 log

[
max{1 + σ; 1 + aσ}

min{(1 − σ); (2m4N )−1

]
= ∆

where m and N are chosen as in the lemma.

The coming procedure is very much analogous to the one at the end of section 3 and 3.2 so
details will be somewhat glossed over. We begin by restating, with a slight modification but
without proof, Lemma 3.2

Lemma 4.11. For f ∈ Ca with
∫ 1

0
fdµ = 1 and ϕ = 1

log 2 · 1
1+x one has∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

≤ exp [Θ(LnT f, ϕ)] − 1.
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Lemma 4.12. We have exponential decay of correlations for BV vs L1 with speed of decay at
least (Λ

1
2N )n, Λ = tanh

(
∆
4

)
with ∆ given by Lemma 4.10 and N chosen in accordance to the

lemma.

Proof. Let f ∈ Ca and g ∈ L1. Assume, for the moment, that
∫ 1

0
f = 1, then

C(f, g, n) =

∣∣∣∣∫ 1

0

LnT f · g dx−
∫ 1

0

fdx ·
∫ 1

0

gdµ

∣∣∣∣ =

∣∣∣∣∫ 1

0

LnT f · gdx−
∫ 1

0

g dµ

∣∣∣∣
=

∣∣∣∣∫ 1

0

(LnT f − ϕ)gdx

∣∣∣∣ ≤ ∥g∥1 ·
∥∥∥∥LnT fϕ − 1

∥∥∥∥
∞

∥ϕ∥∞ .

Applying Lemma 2.2 and 4.11 yields

C(f, g, n) ≤ ∥g∥1 · ∥ϕ∥∞ (exp [Θ(LnT f, ϕ)] − 1) ≤ ∥g∥1 · ∥ϕ∥∞ (exp [Θ((L2
T )⌊

n
2 ⌋f, ϕ)] − 1). (4.3)

Now clearly Θ((L2
T )⌊

n
2 ⌋f, ϕ) = Θ(LP )⌊

n
2 ⌋f, ϕ). Now, choosing N as in Lemma 4.10, and writing

⌊n2 ⌋ = kN + r with k ∈ N and r ∈ { 1, 2, . . . , N − 1 } gives that k =
⌊

1
N ⌊n2 ⌋

⌋
we get

Θ(L⌊n
2 ⌋

P f, ϕ) ≤ Θ((LNP )kf, ϕ).

Since ϕ is invariant under LT and LNP is a strict contraction in the projective metric associated
to Ca, we get

Θ((LNP )kf, ϕ) ≤ tanh

(
∆

4

)k−1

Θ(LNP f,LNP ϕ) ≤ tanh

(
∆

4

)k−1

∆

where we can now apply the above to (4.3) to get

C(f, g, n) ≤ ∥g∥1 ∥ϕ∥∞ (exp [Λk−1∆] − 1) ≤ ∥g∥1 ∥ϕ∥∞ ≤ ∥g∥1 ∥ϕ∥∞ Λk−1∆ exp Λk−1∆

when Λ = tanh
(
∆
4

)
, ∆ is as in Lemma 4.10, and k =

⌊
1
N ⌊n2 ⌋

⌋
. Put K̂n = exp Λk−1∆, then

some algebra gives that

∥g∥1 ∥ϕ∥∞ Λk−1∆ exp Λk−1∆ ≤ K̂n · ∥g∥1 ∥ϕ∥∞ Λ−2N · (Λ
1

2N )n.

Finally, let Kn = ∥ϕ∥∞ Λ−2NK̂n (note that K̂n and Kn are both decreasing, and hence
bounded), then

C(f, g, n) ≤ Kn ∥g∥1 (Λ
1

2N )n. (4.4)

Since we assumed that
∫ 1

0
fdµ = 1, we can scale (4.4) by ∥fϕ∥1 to recover the general case and

get a bound for any f ∈ Ca, giving

C(f, g, n) ≤ Kn ∥ϕ∥∞ ∥f∥1 ∥g∥1 (Λ
1

2N )n.

Now let

C(f, g, n) ≤ C(f + a−1
1∨
0

f, g, n) + C(a−1
1∨
0

f, g, n)

≤ Kn ∥ϕ∥∞

∥∥∥∥∥f + a−1
1∨
0

f

∥∥∥∥∥
1

∥g∥1 (Λ
1

2N )n +Kn ∥ϕ∥∞

∥∥∥∥∥a−1
1∨
0

f

∥∥∥∥∥
1

∥g∥1 (Λ
1

2N )n

≤ Kn ∥ϕ∥∞ (∥f∥1 +
2

a

1∨
0

f) ∥g∥1 (Λ
1

2N )n

≤ C ∥f∥BV ∥g∥1 (Λ
1

2N )n

finishing the proof.
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One might at this stage want an explicit example of what the speed of decay may be bounded by.
It can be verified that choosing a = 12.5, N = 3,m = 52 fulfills all the necessary assumptions.
From this we can by Lemma 4.3 calculate σ = 6

12.5 + 1
2 = 49

50 and then ∆ as

∆ = 2 log

[
max {1 + 49

50 ; 1 + 12.5 · 49
50}

min {(1 − 49
50 ); 1

2·5212 }

]
= 2 log

[ 53
4
1

2·5212

]
= 2 log

[
53

2
· 5212

]
,

and from this Λ = tanh
(
∆
4

)
≤ 1 − 10−21 and then finally speed of decay (Λ

1
6 ) ≤ 1 − 2 · 10−23.

4.3 Comparison of Results

It is of some note how drastically different the speed of decay achieved in Section 3 for Lip([0, 1])
functions and that of Section 4 where we handle BV ([0, 1]) functions. Of course, since C1 and
Lipschitz functions on [0, 1] are strict subsets of BV , the optimal decay of correlations is smaller
in the first case. Furthermore, since the approach to find bounds is the same in each instance,
it is from a practical perspective reasonable so suspect better decay estimates as well, although
perhaps not to this extent. A pertinent question would then be whether the reason lies in a
much smaller spectral gap for the operator, or due to the program relying on very non-optimal
bounds. For the first case there is of course nothing to be done, as the spectral gap is the best
possible speed of decay. For example it was proved by P. Levi that

lim
n→∞

∫ 1

0

χ[0,a]LnT (g) dx −→
∫ 1

0

χ[0,a]ϕ(x) dx

converges as qn to the invariant density ϕ with 0 < q < 0.68, and then later numerically
calculated up to 20 decimal places by Wirsing [8] to

q = 0.30366300289873265860 . . . .

If one is instead in the second case, one would have to answer to what degree more optimal
bounds would improve the final result. For example in the BV case, when bounding the infimum
of functions in LPCa we had to introduce m-nice intervals and get the lower bound of (2·m4N )−1,
which is exceptionally small, giving a large diameter. But even if this term could be improved,
would it have a meaningful impact on the result? This is unknown.

5 An application of the Decay of Correlations

In this section we shall be showcasing a result that quickly follows from the decay of correlations
for functions of bounded variation.

5.1 Borel–Cantelli lemma

In [4], Dong Han Kim states two versions of the classical Borel–Cantelli Lemmas, and later
introduces the notion of (Strong) Borel–Cantelli sequences (SBC/BC). We begin by defining
these properties. Let (X,µ) be a probability space and {An}∞n=1 a sequence of subsets of X
with

∑∞
n=1 µ(An) = ∞, and T a measure preserving transformation on X under µ. The sequence

is called a Borel–Cantelli sequence if for µ almost every x ∈ X, Tnx ∈ An hold for infinitely
many n. We shall now define the notion of a Strong Borel–Cantelli sequence. Let SN (x) denote
the number of times Tnx ∈ An holds for n = 1, 2, . . . , N . We can write SN (x) as

SN (x) =

N∑
n=1

χAn
◦ Tn(x) =

N∑
n=1

χT−nAn
(x) =

N∑
n=1

χBn
(x)
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where we define Bn = T−nAn. Now let the quantity EN be defined by

EN = µ(SN ) =

∫ 1

0

SNdµ =

N∑
n=1

µ(Bn) =

N∑
n=1

µ(An)

where in the last equality we use that T is measure preserving. Now we finally say that a
sequence of subsets AN is a strong Borel–Cantelli sequence (SBC) if

lim
N�∞

SN (x)

EN
= 1

holds for µ almost every x ∈ X. One can think of this as if the orbits of an x is ”evenly
distributed” in X. Meaning that the likelihood of hitting a target An at time n, is on average
just the size of An. Since we know that EN must tend to infinity as N � ∞, it is clear that
being a SBC sequence implies being a SB sequence. Now we are ready to use this framework
for our purposes.

5.2 Growth of continued fraction coefficients

Let An = [0, 1/n). A number x is in An if its leading continued fraction coefficient is larger than
or equal to n. This also means that if Tnx is in An if the n-th associated continued fraction
coefficient is greater than or equal to n. We shall show that for a.e. x, the orbit Tnx ”hits”
the collection of shrinking targets An infinitely many times. Another way to view it is that
x ∈ Bn = T−nAn holds for infinitely many n. It shall be nice to establish the following result:

Lemma 5.1. If Ak is defined as above and Bk = T−kAk, then we have

µ(Bk ∩Bl) = µ(Bk)µ(Bl) + O
(

ρ|k−l|

max (l, k)

)
where ρ = (Λ

1
2N ) is the rate of exponential decay from section 4.

Proof. Assume without loss of generality that l > k. Then

µ(Bk ∩Bl) =

∫
Bk∩Bl

dµ =

∫ 1

0

χBk
(x) · χBl

(x)dµ =

∫ 1

0

χT−kAk
(x) · χT−lAl

(x)dµ

=

∫ 1

0

χAk
◦ T k(x) · χAl

◦ T l(x)dµ =

∫ 1

0

χAk
(x) · χAl

◦ T l−k(x)dµ

≤
∫ 1

0

χAk
dµ ·

∫ 1

0

χAl
dµ+ C ∥χAk

∥BV ∥χAl
∥ ρl−k

≤
∫ 1

0

χAk
dµ ·

∫ 1

0

χAl
dµ+D

ρl−k

l
= µ(Ak)µ(Al) + O

(
ρl−k

l

)
where the first inequality follows from the exponential decay of correlations for functions of
bounded variation. The general case follows from interchanging l and k.

Lemma 5.2. The limit

lim
N�∞

SN (x)

EN
= 1

holds for µ almost every x ∈ X.
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Proof. Consider the integral∫ 1

0

(
SN
EN

− 1

)2

dµ =

∫ 1

0

(
S2
N

E2
N

− 2
SN
EN

+ 1

)
dµ (5.1)

=

∫ 1

0

S2
N

E2
N

dµ− 2

EN
· EN + 1 =

∫ 1

0

S2
N

E2
N

dµ− 1

where we use that EN is a constant with respect to the integration and that µ(SN ) = EN by
definition. We shall now make use of the exponential decay of correlations for the Gauss map
and functions of bounded variation∫ 1

0

S2
N

E2
N

dµ =

∣∣∣∣∫ 1

0

S2
N

E2
N

dµ

∣∣∣∣ (5.2)

=
1

E2
N

∣∣∣∣∫ 1

0

S2
Ndµ−

∫ 1

0

SNdµ

∫ 1

0

SNdµ+

∫ 1

0

SNdµ

∫ 1

0

SNdµ

∣∣∣∣ .
Let LN equal the absolute values of the two leftmost terms in (5.2) and then expanding SN (x)2

gives

LN =

∣∣∣∣∫ 1

0

SN · SNdµ−
∫ 1

0

SNdµ ·
∫ 1

0

SNdµ

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
N∑
k=1

χBk
(x)

)(
N∑
l=1

χBl
(x)

)
dµ−

∫ 1

0

N∑
k=1

χBk
(x)dµ ·

∫ 1

0

N∑
l=1

χBl
(x)dµ

∣∣∣∣∣
≤

N∑
k,l≥1

∣∣∣∣∫ 1

0

χBk
· χBl

dµ−
∫ 1

0

χBk
dµ

∫ 1

0

χBl
dµ

∣∣∣∣ .
Since the sum is symmetric in k and l we compute it by considering the diagonal l = k and
adding twice the sum where l > k. Thus we can apply Lemma 5.1 giving

≤
N∑
k=1

µ(Bk)(1 − µ(Bk)) + 2

N−1∑
k=1

N∑
l=k+1

C(χBl
, χBk

, n) ≤ EN + 2

N−1∑
k=1

N∑
l=k+1

O
(
ρl−k

l

)
(5.3)

≤ EN + O

(
N−1∑
k=1

N∑
l=k+1

ρl−k

l

)
≤ EN +D

N−1∑
k=1

1

k + 1

N∑
l=k+1

ρl−k

≤ EN +D
ρ

1 − ρ

N−1∑
k=1

1

k + 1
(1 − ρN−k) ≤ EN + D̃

N∑
k=1

µ(Bk) = (1 + D̃)EN .

Summarising, we apply (5.3) to (5.1) to get

0 ≤
∫ 1

0

(
S2
N

E2
N

− 1

)2

dµ =

∫ 1

0

SN (x)2

E2
N

dµ− 1

≤ 1

E2
N

[∫ 1

0

SNdµ ·
∫ 1

0

SN + (1 + D̃)EN

]
− 1 = 1 +

1 + D̃

EN
− 1 −→ 0

as N � ∞. Finally we get that∫ 1

0

(
S2
N

E2
N

− 1

)2

dµ −→ 1 − 1 = 0
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as N � ∞. It follows immediately that
(
SN (x)
EN

− 1
)2

� 0 holds µ almost everywhere and the

lemma is proved.

The consequence of this lemma, that of the growth of regular continued fraction coefficients, in
some sense fulfills a promise made in the thesis introduction. It was mentioned that the statistical
properties of the Gauss gives information about continued fractions. The above lemma achieves
exactly this, and the crucial ingredient for the proof is the exponential decay of correlations for
functions of bounded variation. This showcases a general fact, that statistical information can be
used to prove results within the fields of metric number theory and Diophantine approximation.

A Diameter details

Here we keep some of the more tedious details connected to showing the diameter of

C =

{
f ∈ C1[0, 1]

∣∣∣∣f ̸≡ 0, f ≥ 0, 0 ≤ −f ′ ≤ 2f

}

is finite.

Lemma A.1. The function t : [0, 1] → R defined by

t(x) =

∞∑
n=1

1 + x

(x+ n)2

is decreasing on [0, 1].

Proof. We show that the derivative is negative everywhere on [0, 1]. Calculating the derivative
gives

t′(x) =

∞∑
n=1

(n+ x) − 2(1 + x)

(n+ x)3
=

∞∑
n=1

n− 2

(n+ x)3
−

∞∑
n=1

x

(n+ x)3

where we can no keep only a few of the initial terms and make worst case estimates for the
remainders. Write

t′(x) =
−1

(1 + x)3
+

0

(1 + x)3
+

∞∑
n=3

n− 2

(n+ x)3
− x

(1 + x)3
− x

(2 + x)3
+

∞∑
n=3

x

(n+ x)3

= − 1

(1 + x)2
− x

(2 + x)3
+

∞∑
n=3

n− 2

(n+ x)3
−

∞∑
n=3

x

(n+ x)3

≤ −1

4
− 1

27
+

∞∑
n=1

n− 2

n3
= −2(ζ(3) − 9/8) − 83/54 + π2/6 < −0.04

so we have proved that t is (strictly) decreasing.

Lemma A.2. The function u : [0, 1] → R defined by

u(x) =

∞∑
n=1

(n− 1 + x)(1 + x)2

(x+ n)4

is an increasing function.
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Proof. Simply differentiating gives

u′(x) =

∞∑
n=1

(x+ 1)(2n2 + n(x− 5) − x2 − x+ 4)

(x+ n)5

where each term is greater than or equal to zero, and hence u is increasing on [0, 1].

Lemma A.3. The function p : [0, 1] → R defined by

p(x) =

∞∑
n=1

(1 + x)2

(x+ n)3

is decreasing on [0, 1].

Proof. It suffices to show that the derivative p′ is negative. Two terms and then a worst case
estimate gives

p′(x) =

∞∑
n=1

2(1 + x)(x+ n)3 − 3(1 + x)(x+ n)2

(x+ n)6
< 0

Lemma A.4. The function l : [0, 1] → R

l(x) =

∞∑
n=1

(x+ n)2 − (x+ n) + 1

(x+ n)4

is a decreasing function.

Proof. The function g(x) = x2−x+1
x4 is decreasing on [1,∞).

B Expanding maps on countable partitions

In this section we shall be attempt to produce explicit bounds on the decay of correlations of
a general collection of maps. Note that in the following section, intervals will be considered
disjoint if the measure (Lebesgue) of their intersection is zero. (Will mostly/only be single
points)

B.1 Assumptions

Definition B.1. A map T : I → I is called expanding if there exists a countable collection of
intervals A = {Il}l∈F with Il = [al, bl] such that

(E1) I =
⋃
l∈F Il

(E2) Int Il ∩ Int Ij = ∅ if i ̸= j

(E3) Tl := T |Il is monotone and Ck for some k ≥ 1

(E4) inf |(Tn)′(x)| ≥ λ > 1 for some n

This is a vital ingredient in showing that the diameter of the image is finite.
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B.2 Diameter estimates

As in the section 3.1, we shall use that

diam(LTC ) = sup
f,g∈Ca

Θ(LT f,LT g) ≤ 2 sup
g∈Ca

Θ(1,LT g).

Lemma B.2. If g ∈ Cνa, ν < 1 then the projective distance Θ(1, g) associated to the cone Ca
can be bounded by

Θ(1, g) ≤ log

[
max{(1 + ν)

∫ 1

0
g; sup g}

min{(1 − ν)
∫ 1

0
g; inf g}

]
Proof. We begin by finding a lower bound for α(1, g), and to do so we solve for λ that satisfy

λ ⪯ g. This gives the double condition on λ that λ ≤ inf g and λ ≤
∫ 1

0
g − a−1

∨1
0 g. Therefore

α(1, g) = min

{
inf g;

∫ 1

0

g − a−1
1∨
0

g

}

and using that g ∈ Cνa gives that −a−1
∨1

0 g ≥ ν
∫ 1

0
g. Applying the α gives that

α(1, g) ≥ min

{
inf g;

∫ 1

0

g − ν

∫ 1

0

g

}
= min

{
inf g; (1 − ν)

∫ 1

0

g

}
which is our desired estimate. Now the process is analogous for β(1, g). We find that for g ⪯ µ

the requirements of µ become µ ≥ sup g and µ ≥
∫ 1

0
g + a−1

∨1
0 g and hence that

β(1, g) = max

{
sup g;

∫ 1

0

g + a−1
1∨
0

g

}

and now g ∈ Cνa instead gives that a−1
∨1

0 g ≤ ν
∫ 1

0
g. Applying yields

β(1, g) = max

{
sup g; (1 + ν)

∫ 1

0

g

}
which finishes the proof.

Definition B.3.

An =

n∨
j=0

T−jA0

which is the partition generated by the preimages of sets in An over Tn.

The notation
∨n
j=0 should not be confused with that of the variation of a function. Their simi-

larity is unfortunate. Definition B.3 could also equivalently be stated as the coarsest partition
such that Tn is continuous and monotone on every I ∈ An. Now we wish to make precise the
notion of a map ”reaching” or ”covering” all areas of its codomain.

Definition B.4. We call a map T covering iff for each n ∈ N there exists N(n) such that, for
each I ∈ An,

TN(n)I = [0, 1]

where this equality as always should be interpreted as equality except a set of measure zero.
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