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Abstract

In contemporary embedded development, speed and ease of prototyping are cru-
cial. However, the prevalent use of C in this domain not only poses challenges
for those less acquainted with the language but also increases development time.
Python, renowned for its readability and ease of use, emerges as a compelling
alternative. With libraries like NumPy and SciPy at its disposal, Python offers
a rich ecosystem that supports efficient coding practices. MicroPython further
extends this accessibility to the embedded realm, enabling swift development
cycles similar to traditional Python. This thesis investigates the feasibility of
implementing a radar-specific application in MicroPython, lowering the thresh-
old of going from idea to prototype. While previous findings indicate MicroPy-
thon’s sluggishness when performing computationally heavy tasks, we explore a
real-world application leveraging Ulab and a radar API written in C. Our study
contrasts the performance of MicroPython against its pure C counterpart, imple-
menting a surface velocity algorithm. Our approach, with optimized algorithm
design and data handling strategies, showcases a 40% improvement in perfor-
mance compared to the naive implementation, albeit still trailing C by a factor
of three. Our findings underscore the significance of thoughtful algorithm de-
sign and data management in mitigating MicroPython’s performance disparity
with C. Finally, we present a practical guide to aid decision-making regarding
MicroPython adoption in embedded applications.

Keywords: MicroPython, C, optimisations, execution time, memory management, power
consumption, Ulab, embedded development, Radar
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Chapter 1

Introduction

1.1 Context
In many companies, Python is the natural choice when creating demos or proof of concepts.
A reason for this is that it is easy and fast to write in. Another reason is the widespread
competence present among a variety of people. Python is used in many fields within the sci-
entific community, as well as in finance and education, and it has a reputation for being a
good beginner’s language. On the other hand, C might not be on top of the list when thinking
of languages to create quick demos in. It lacks the abstractions and ease of use provided by
Python, and one could argue it demands more effort from the developer. In addition, it could
be assumed that competence in C isn’t as widespread in non-computer science-related fields,
as is with Python. Nevertheless, it is an important programming language, especially within
the embedded community, where it is often the natural choice. Because of the limitations on
memory and computational power in embedded systems, development is confined to a select
few programming languages, and as a consequence of this, embedded development frequently
involves complexity and boilerplate code, which is abstracted in scripting languages, such as
Python.

At Acconeer, Python is used by the algorithm developers to create example applications that
demonstrate different use cases for their radar sensors. Due to limitations of Python and the
targeted embedded hardware, this part of the development is done using a digital environ-
ment connected to the hardware through a PC. Once the example is created and tested, the
program is translated by another team with C competence to run on their embedded devices.
As of now, C has been the only supported language to write applications in on their embedded
devices. However, there is an ambition to make the process of creating freestanding demos,
running directly on the embedded device, easier and faster, as well as to make it available
for Python developers that are lacking knowledge in C. By bringing scripting languages such
as Python to microcontrollers, the complex and time-consuming parts of embedded devel-
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1. Introduction

opment can be reduced and the prototyping of products become much more accessible for
professionals and hobbyists. For this purpose, MicroPython, an optimised Python version
made to be used on microcontrollers, was chosen as a candidate to be explored for future use
in Acconeer’s embedded device.

1.2 Problem Statement
Using MicroPython, we hope to show that it is possible to write real-world applications,
utilising signal processing algorithms on large datasets, in an interpreted scripting language
on microcontrollers. By comparing our implementation of a radar application algorithm to
production code written in C, we investigate if it is feasible to prototype products in Mi-
croPython. The focus of the comparison will be execution time, memory usage, and power
consumption.

MicroPython, a project propelled by community efforts and with limited documentation,
might be challenging for newcomers to learn and troubleshoot. Without comprehensive doc-
umentation or alternative resources, individuals unfamiliar with the platform might struggle
to develop optimised code that will run efficiently on a microcontroller. We aim to investi-
gate different optimisation techniques and construct a guideline with our learnings for others
to use when considering building their own MicroPython program.

1.3 Contribution
Previous studies, like those conducted by Plauska et al. [14] and Ionescu et al. [9], have investi-
gated MicroPython’s performance on embedded systems across various popular algorithms,
comparing it to other popular and emerging languages used in embedded systems. They
found that MicroPython is most suitable as an entry-level language for students, but argued
that it is lacking in performance. Furthermore, Wurl et al. [16] found that MicroPython has
a use case as a control language for nano satellites. Our study aims to contribute to previous
experiments by applying MicroPython in a radar sensor application and comparing it to pro-
duction code written in C. We hope to combine previously found knowledge and evaluate
the feasibility of using MicroPython as a prototyping tool, assessing whether its performance
is sufficient for practical applications. Furthermore, we complement the existing documen-
tation by gathering our experience from this project into guidelines on how to optimise a
MicroPython program.

1.4 Distribution of work
For each part of the process, we have discussed and divided the work to achieve an equal
workload. Felix had a bigger focus on execution time, whereas Malin focused more on mem-
ory aspects. We were both responsible for reviewing the other person’s code. In the writing
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process, Malin handled most of the data and produced the figures, while Felix took a larger
responsibility for the accompanying text.
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Chapter 2

Background

2.1 Acconeer
Acconeer, based in Malmö, Sweden, develops Pulsed Coherent Radar (PCR) sensors with
millimetre precision and low power consumption. A PCR sensor transmits signals in short
pulses with a known starting phase. The signals are reflected by objects and the elapsed time
between transmission and reception of the reflected signal is used to calculate the distance to
the object [4]. Transmitting short pulses instead of continuous waves allows the sensor to be
turned off when using the received data. Measurements can be conducted only when needed
and in the meantime, the sensor is not draining the connected energy source. Due to their
small footprint and power efficiency, Acconeer’s products are being used in businesses such
as automotive, IoT, and agriculture.

In our study we used the A121 sensor, with picosecond time resolution and sub-millimetre
accuracy [1]. The A121 sensor is often found in products where power consumption, mem-
ory (hard disk drive (HDD), random access memory (RAM), Cache) and processor power
is limited, which must be reflected in the code running on the machine. Along with their
sensors, Acconeer develops a software library, Radar System Software (RSS), which handles
communication with the sensor for configurations and data gatherings, etc.

2.1.1 Example Applications
Acconeer provides example applications, written in both C and Python, in order to demon-
strate use cases for the sensor. These examples include Hand Motion Detection, Vibration
Measurement, and Surface Velocity, to name a few. The surface velocity example was chosen
as a base for the MicroPython demonstration, and because of this, it will be described in
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2. Background

further detail in the subsequent section.

Since the Python examples can not run directly on Acconeer’s hardware, they need additional
software in the form of the Acconeer Exploration Tool. This software runs on a Windows or
Linux machine and interacts with the sensor through a server, which gets flashed onto the
Acconeer hardware. The server provides the application with radar data, which in turn runs
the data through different algorithms to calculate distances, speeds, etc. Since the applica-
tion is running on a PC and not an embedded system, performance does not need to be of the
highest priority and Python is chosen for its ease of use, fast development time, and support
for libraries like SciPy and NumPy.

The C example applications are made to be flashed and executed directly on the Acconeer
hardware. These examples mirror the algorithms featured in the Python examples to the best
of their ability, however, considering the nature of the languages, this is not always possible.
Some typical Python features, like list slicing, are not supported in C, which means some
logic in how the data is processed is changed. The NumPy and SciPy functions used in the
Python example have been translated to C but made minimally to just fit the Acconeer algo-
rithms. The C examples also contain some optimisations done to accommodate the memory
constraints imposed by the hardware.

Surface Velocity Algorithm

We used the surface velocity algorithm [3] to test how well MicroPython fits to be used in
embedded radar applications. This algorithm is chosen due to its use of complex data manip-
ulation, signal processing algorithms (such as Fast Fourier Transform) and high requirements
on processor and memory usage.

For this application, the sensor is placed above the running fluid, directed towards the sur-
face at an angle, as shown in Figure 2.1. Fluid running towards the sensor is seen as negative
flow, while fluid running away from the sensor is seen as positive flow.

The sensor data is received as a matrix of complex values, a frame, containing several sweeps
of data. The frame is added to a time series. The Power Spectral Density (PSD) is calculated
using Welch’s method with a hann window. This means the data is split into segments and
smoothed by multiplying it with the hann window. The segments are then fourier trans-
formed and the square magnitude is calculated on the results. Finally, all segments are aver-
aged. After Welch’s method, the algorithm finds all valid peaks in the PSDs. The peak with
the greatest energy is used to estimate the surface velocity of the target.

The code implementations of the algorithm feature a main function that configures the setup.
It also features a loop that calls the measure function that collects radar data, this is followed
by a call to the process function that does all of the data processing which returns a calculated
velocity. To get a deeper insight into how the process function works, see appendix A.1.
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2.2 C

Figure 2.1: Illustration of how to use the surface velocity application
by Acconeer [3].

2.2 C
C, a popular programming language developed in the early 70s, is a weakly typed and com-
piled language. It is compact and versatile, which has led to it being used in an array of
industries. Despite being decades old, it still ranks highly in popularity, and according to
the TIOBE index, C is ranked as the second most popular programming language [15]. It is
often considered the most appropriate language for embedded applications due to its effi-
ciency, low-level control, and portability. It provides the possibility to directly manipulate
hardware peripherals, as well as to access memory addresses using pointers directly.

2.3 MicroPython
MicroPython is an implementation of Python for microcontrollers and constrained systems.
It aims to be compact and efficient. Even though it includes only a subset of the Python
standard library, it is possible to bring Python code directly to a microcontroller through
MicroPython [12]. It’s developed as open-source software (OSS) and is available on GitHub
[7]. MicroPython offers built-in functionality to run directly on several ports (Unix, nRF,
esp32, etc.) and also the opportunity for users to add their own preferred port or submodule
with extensions to the MicroPython library. MicroPython is written with the same syntax and
with the same file extension as Python .py. MicroPython is compiled with the MicroPython
compiler to un-optimised byte-code in .mpy-files, which is interpreted by the MicroPython
interpreter directly on the microcontroller unit (MCU). Apart from just running bytecode,
MicroPython offers the possibility to flash an MCU with the compiler, interpreter, and a
Read–eval–print loop (REPL), making it possible to write code in real-time directly on an
MCU through a communication medium.

13



2. Background

Contrary to C, (Micro)Python is a dynamically typed, interpreted language that uses a garbage
collector for memory management and offers limited access to low-level structures such as
pointers and control of data types. Python has a large standard library containing data struc-
tures and concepts, such as classes and list comprehensions, that are not available in C. By
its nature Python generally performs worse with respect to computation time and memory
utilisation than compiled languages such as C and C++ [5]. According to previous work, this
is also true for MicroPython [14] [9]. These papers show that for certain algorithms Mi-
croPython performs worse than other languages used for embedded development, which is
expected. However, none of these utilises the acceleration of user modules such as Ulab (as
we will see in section 2.5). We believe this approach is not true to the practical use cases of
MicroPython and attempt to prove that the execution of MicroPython on embedded systems
can be considerably better than shown in these studies.

There are several reasons why Python generally would perform worse than C, but as al-
ways, performance is very application-specific. Following are some differences between C
and Python that could affect performance:

Execution C is compiled, while Python is interpreted. Compilers often include several opti-
misation techniques to speed up the execution of source code. The same optimisations
could be impossible to perform in an interpreted language.

Garbage collection Python runs with a garbage collector that has to dynamically find un-
used allocations in memory and remove them to make space for new allocations. C has
no garbage collector, the memory management is placed in the hands of the developer,
who has to allocate and free memory “by hand”. The lack of a garbage collector intro-
duces errors such as memory leaks but also allows controlling how much memory is
being used.

Types In Python you can’t declare types of variables or parameters, which is obligatory in
C. Not declaring types can ease the process for beginners, but it also means that you
can’t limit a variable to a certain size. From this follows that a Python program will
generally occupy more space in memory compared to C for the same operations. In C
there exist different types of different sizes, a int16_t for ints of 16 bits or int32_t
for ints of 32 bits are two examples. Using these sized types in a controlled manner can
reduce the footprint in memory

2.4 Heap Memory Managment
C
C provides the user with control over what is added or removed from the heap. Memory can
dynamically be requested during runtime, and these allocations will then persist until they
are asked to be freed. This means the user must keep track of the “in use” status of objects
on the heap to not run out of memory or do illegal memory accesses. However, it provides
flexibility and can lead to a more efficient program, since memory allocations and frees are
only done when needed.

14
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MicroPython
Unlike C, MicroPython utilises a garbage collector. This means that the memory management
is hidden from the user and allocations and frees are done automatically. When memory is
needed on the heap, the MicroPython garbage collector will do a scan to find unused blocks it
can free. The free/in use status of the blocks are stored in a special bitmap, for faster scanning
[11]. The search is done using a mark-and-sweep method, which starts by traversing the root
set. The root set consists of objects referenced on the stack, that are currently in registers
or are pointers to peripherals. These are set to in use. All other objects referenced by the
objects in the root set are also marked as in use. Once the marking stage is done, the garbage
collector performs a sweep stage, where all objects not marked as in use are cleared.

Garbage collecting reduces the workload for the user, however, it adds execution time and can
lead to memory fragmentation. Memory fragmentation occurs when free memory blocks are
scattered throughout the heap, leading to inefficient memory usage. This typically happens
when memory is allocated and freed in such a way that the available memory is divided into
small, non-contiguous blocks. Too much fragmentation causes problems since there could
technically be enough memory for a new allocation, however it is spread out in smaller seg-
ments throughout the heap. One common way to solve this issue is to include a moving stage.
This means that the garbage collector will push existing in use allocations together, which
leaves all the following memory blocks free. This creates more overhead since the memory
addresses stored in the object pointers have to be updated. Due to the MicroPython garbage
collector (GC) occasionally mistaking primitive values for pointers, the GC has no way of
moving memory allocations on the heap, to avoid accidental overwrites of variables in use
[13]. This means MicroPython users still have to be mindful of how and when they create
objects to avoid fragmentation. One way could be to reuse variables, however, this means
that the scope of the variable will be extended, which blocks that memory region from being
garbage collected and used for something else in between. MicroPython gives the user the
possibility to control the garbage collector in several ways. It is possible to add memory us-
age thresholds for when the garbage collector should collect. It is also possible to turn it off
altogether and manually ask for collections.

2.5 Ulab
Ulab is a NumPy-like array manipulation library. It is compatible with MicroPython and it’s
derivative CircuitPython. We use Ulab in our project to be able to execute more complex
operations on large sets of data in C, through the comfort of Python syntax.

Like MicroPython, Ulab is a community-driven, open-source software that is not fully com-
patible with NumPy or SciPy. Though lacking some functionality, Ulab is a starting point for
MicroPython developers working with, for example, data manipulation. Ulab enables users
to easily include complex algorithms and data manipulation techniques that are faster com-
pared to plain MicroPython. Using Ulab in a project will not only accelerate the execution
of the code but also provide a more Pythonic way of writing Python. In Python, libraries such
as NumPy and SciPy are widely used when handling complex data structures and algorithms.
With this in consideration, Ulab brings MicroPython closer to the feel of ordinary Python.
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2. Background

2.6 Profiling
When measuring the performance of software, there are several approaches and techniques
to be used. We are interested in execution time, memory management, and power consump-
tion and will therefore focus on suitable profiling methods. Since embedded modules are
very minimal and don’t run superfluous processes such as a graphical user interface (GUI),
power consumption can be measured as the total energy over the whole unit during execu-
tion. For measuring execution time, one can use language-supported methods reading values
from the processor or an integrated real-time clock, RTC. Along with execution time, tools
such as valgrind can be used to analyse the total instruction count or cache misses. When mea-
suring memory there are different techniques to consider if measuring stack or heap usage.
Following is a description of techniques used to measure memory utilisation.

2.6.1 Memory
Memory is sometimes a limited resource in embedded systems, which has to be reflected in
the software running on these devices. Potential risks when running a program are allocating
the whole heap memory causing overwrites or errors when running, or filling up the stack
with instructions, causing a stack overflow stopping the execution of the program.

Heap usage
The MicroPython heap is allocated as one big block at the start of program execution. It is
then up to the garbage collector to ensure that unused memory is marked as available within
this block. MicroPython provides a built-in function that shows heap block usage at that
given moment. There is no built-in function for monitoring maximum heap usage during an
execution.

Acconeer provides a tool for heap tracking. It works by registering whenever memory for
an Acconeer-implemented object is being allocated for or freed. By doing this, the tool can
keep track of the maximum heap usage of the C application.

Stack usage
One common way of analysing stack usage in embedded systems is with stack painting. This
is done by initialising the stack area with a repeated pattern, as shown in Figure 2.2. Once the
program has finished running, it is possible to examine the stack and see where the pattern
ends. This is a high watermark and indicates the maximum stack usage during runtime. This
technique is used by both FreeRTOS and Zephyr RTOS to measure stack usage [6][17]. One
downside to this dynamic approach is that it will not give any information on worst-case
stack usage. Since it is a runtime-based analysis, it will only show stack usage for that spe-
cific execution path. Therefore, one would have to exercise all possible execution paths to
get the full picture.

Acconeer provides a function for checking maximum stack usage which is based on stack
painting. MicroPython provides a function showing stack usage during runtime. This works
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2.7 Optimisation

Figure 2.2: Representation of stack painting in memory. A high wa-
termark represents the value read as the max stack usage.

by keeping a reference to the top of the stack, declaring a dummy variable, and checking the
distance between the two memory addresses. It is possible to separate the Python stack from
the C stack. If enabled, the Python stack will be allocated on the heap instead. The function
will then return the stack usage of the Python code.

A different approach is to analyse the stack statically. This can be done either with tools
analysing binary or assembly code or at compile time. GCC (GNU Compiler Collection)
gives the option to compile with -fstack-usage, which generates a .su file that contains
information on stack sizes of the target functions. The benefit of static stack analysis is that
it shows the maximum stack usage of all the functions and not only those on a specific exe-
cution path. However, this method cannot accurately determine stack usage for operations
whose stack usage is determined during runtime, such as variable length arrays and recursive
or indirect function calls.

2.7 Optimisation
When optimising code there are different aspects to take into consideration and different
techniques that might not work together in a final product. When working with MicroPy-
thon there are some special design choices to take into consideration due to its effect on
execution time and memory usage. If the goal is to minimise execution time one would want
to write most of the data handling functions in C and if you focus on development time you
could let the complicated parts of the program be written in MicroPython.

MicroPython provides a guide in their documentation on how to optimise a MicroPython
program for execution time [10]. Many of the optimisations described below would be done
automatically by a C compiler at compile-time. However, for a MicroPython user, these have
to be implemented manually. Following is a quick summary of the recommended optimisa-
tions presented by MicroPython.

Algorithm optimisation Optimising your algorithms is an essential part of optimising mem-
ory management and execution time of your code.

17



2. Background

RAM allocations and buffers Creating objects one time and then reusing them rather than
creating new ones, wasting time allocating memory. Avoiding appending elements to
lists, since this will trigger new allocations and potentially garbage collections.

Memoryview To avoid creating copies of objects, for instance when passing slices of arrays
to functions, one can use Memoryview which is a small, fixed-size object that points
to a slice of an object.

Native code emitter By using the native code emitter, the MicroPython compiler will emit
native opcodes, i.e. machine code, instead of bytecode. The bytecode would be exe-
cuted by the MicroPython virtual machine, whereas the native code is executed directly
by the central processing unit (CPU). MicroPython claims that this is roughly twice as
fast [10].

Viper code emitter Similarly to the native code emitter, the Viper code emitter will produce
machine code. In addition to that§, it will also perform further optimisations related
to integer arithmetic and bit manipulations. It also provides support for the use of
pointers. It is however not fully compliant with all Python code.

Caching Preloading library functions or object variables into local variables can reduce the
look-up time when for example iterating over a data structure.

Constants In MicroPython it is possible to use global constants of an integer value that are
optimised during compilation. This is done by wrapping the value in const(). This
works similarly to the define keyword in C.

Another optimisation technique not recommended by MicroPython but commonly used
is loop unrolling. This technique is used to increase speed by eliminating some of the in-
structions that control a loop and the branch conditions on each iteration. It is done by
expanding the iterations of the loop, i.e. repeating the statements inside the loop. Often,
loop unrolling is done automatically by the compiler. For the GCC compiler, loop unrolling
is done at optimisation level O3 [8].
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Chapter 3

Method

In this chapter, we will describe the method used to implement a working MicroPython
implementation of the surface velocity algorithm and what measures we took to optimise
our solution. Further, we will explain which metrics we chose and how we measured our
results.

3.1 Hardware
We have used the XM126 radar module on an XB122 breakout board. The XM126 is a refer-
ence module that is built with Nordic nRF52840 System on a Chip (SoC) and A121 Pulsed
Coherent Radar (PCR) sensor. The nRF52840 SoC is equipped with a 32-bit 64MHz Arm®
Cortex®-M4 CPU, 256 KB SRAM, and 1 MB flash memory [2].

For the standard nRF MicroPython port, the stack is given 8 kB of RAM, and roughly 247 kB
is left for the heap. When running our application on hardware, we compile our MicroPython
files before flashing onto hardware using a frozen manifest. This means the files will be frozen
into the firmware at deployment and there is no need to load the Python code separately
into a filesystem. Compiling before flashing eliminates the need to include the MicroPython
compiler and REPL.

To build and deploy we used the nRF makefile available in the MicroPython repository. We
included the path to our own C modules by setting the USER_C_MODULES variable.

3.2 Extending MicroPython
We have used MicroPython v1.22.1 on the nRF port for an XM126 board. We have also imple-
mented a sub-module that enables the Acconeer C-library to run through MicroPython. This
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sub-module can be described as a translation layer between C and MicroPython, represented
as the c_mp_layer.c block in Figure 3.1. In the translation layer, pointers to for example
functions and data structures in C are wrapped in special MicroPython object-related types.
By wrapping pointers and not the value directly, we can save the time and memory of copy-
ing each value or struct when traversing between the layers. With our objects and functions
finished, our submodule allows communication and data to flow between the Python and
the C layers.

Figure 3.1: Visualisation of the code stack of C and MicroPython
implementation respectively. HAL stands for hardware abstraction
layer.

When extending MicroPython we define the specifics of the board being used. This includes a
pin mapping, general board information, and a configuration file. When extending MicroPy-
thon with a new module, code is written in C or C++ to enable using certain features from
the C scope in the MicroPython scope. All C code in this project, including the reference C
implementation, was compiled with optimisation level O3.

3.2.1 Ulab
From the Ulab library we extensively used the NDarray data structure and its accompany-
ing methods. These allowed us to handle large data sets effectively. NDarrays can also be
used to construct a memoryview, which is used to reduce the need to copy data in mem-
ory. This can reduce both the size in memory and runtime of a program. Since the welch
function is not included in the Ulab library, we constructed our implementation using the
ulab.utils.spectrogram() method. The Ulab function does a fourier transform, as well
as calculates the squared magnitude. It does not split the data into segments and multiply
them with the hann window, and it also does not calculate averages over the segments.
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3.3 Optimisation
When implementing the surface velocity algorithm we took a naive approach and made it as
similar to the existing Python implementation in Acconeer Exploration Tool as possible, to
make the starting point of our measurements as close to those of a real-life implementation
as possible.

With a functioning implementation of the algorithm, we defined different techniques for
optimising MicroPython. By implementing a version of the algorithm for each defined opti-
misation we could find the best techniques to use and finally combine them to make a more
efficient version of the algorithm.

The final implementations used for comparison were the following:

Standard This is the reference implementation. It was made to look as similar to the Ac-
coneer Exploration Tool application as possible.

All This implementation combines multiple optimisations. The final version was a combi-
nation of Opt read, Native, Cached, Less lookup, Const and Opt alg.

Opt read Three different optimisations related to data reading and storage were combined.

Data buffer Unpacking of the data buffer was done more compactly and efficiently,
using list comprehension and slicing instead of with a for loop and appends. The
unpacking was also moved out of the main function and into the process function.

Memoryview Instead of passing slices of objects to function calls, Memoryviews were
utilised in applicable places.

Specifying data types The NDarray keyword dtype was specified to int16 for all ar-
rays containing data in integer format.

Native The Native decorator was added above all functions to emit native CPU opcodes
instead of the universal bytecode.

Loop unrolling The inner for loop of the welch function was unrolled into four separate loops
which meant the outer loop could be removed entirely.

Cached Certain repeated calculations used in the welch function, for instance, the hann win-
dow, were calculated once and then saved in the containing object to remove unnec-
essary calculations.

Less lookup Caching library variables into local variables in functions to reduce the number
of expensive lookups.

Const Global variables were wrapped in the const() declaration.

Transposed The time series were processed in a transposed format compared to the reference
implementation. This was done to avoid slicing over the matrix columns.
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Opt alg The algorithms were looked through and optimised to avoid unnecessary steps and
loops during the processing.

C This is the reference C implementation provided by Acconeer.

3.4 Profiling
To get comparable, deterministic results, prerecorded data was used. The data consisted of
34 radar frames that had been collected by recording flowing water. The data was copied into
a buffer using memcpy. For the MicroPython implementation, this was done in the C layer,
to have a similar effect on the performance as for the pure C implementation.

To validate the results of the data processing done by the algorithms, the recorded data was
processed in the Acconeer Exploration Tool application. The values calculated by the ref-
erence applications were recorded and used to assure correctness. This was done similarly
for both the MicroPython and the C implementation, using the isClose function, with a
tolerance of 10−6.

3.4.1 Execution time
Measurements of the MicroPython implementation were conducted using the time library
function timed_function to measure the execution time of functions in the algorithm.
Each different version of our algorithm, each with different levels of optimisation, was mea-
sured. To get an average, each program was executed 10 times. Measurements were done both
for the execution time of the whole main function and separately for the execution time of
each sub-function called by the main function to profile the program.

timed_function is a decorator function, a function that’s applied to other functions to
modify its behaviour. In this case, the target function is wrapped by time measurements using
utime.ticks_us() and the time delta calculated by time.ticks_diff(). We choose to
modify the built-in method to produce a dictionary containing all timed functions mapped
to their time measurements during multiple runs of the function to be able to calculate a
mean value of the function’s execution time.

For the C implementation, we used the RTC clock of the Zephyr RTOS. In the same man-
ner, as in the MicroPython case, we measured the execution time of the functions over 10
executions and calculated the mean execution time of each measured function.

Average execution times for the different implementations were also measured for the Unix
port on a Linux x86 system. This was done similarly as for the XM126, however for the C im-
plementation, we used the clock() function provided by the time.h header file, featured
in the standard C library. To get a comparable idea of where the program spends most of its
time, the average execution time of each profiled function was multiplied by the number of
function calls.
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3.4.2 Memory
When measuring memory we focused on the stack and heap usage of our program. In C we
used functions from the Acconeer RSS to measure the stack and in MicroPython we imple-
mented our stack painting function based on the same logic that was used in the Acconeer
example. The stack painting was done in the C layer. The memory addresses for the start
and end of the stack were read from the linker file. This area was then filled with a repeating
pattern. At the end of the execution, the high watermark was evaluated.

For heap usage in the C program, we utilised Acconeer’s heap measurement functions. For
the MicroPython implementation, we had to use a different approach. During normal us-
age, the heap will only be garbage collected once it is close to being full. Because of this, we
chose to manually control the GC during measurements. The approach was to request a col-
lection before allocating a MicroPython object and then check the heap usage immediately
after the allocation. This was done alongside all major allocations to find the place where the
maximum amount of heap space was being used.

3.4.3 Power
To measure the average power needed by the different implementations, we used Joulescope
and its accompanying software. The programs were executed 10 times and the power was
averaged over the performances. The average time to process one frame was read from the
waveforms and the energy needed was calculated using the formula P ∗ t = W .

3.4.4 Instruction count
To measure the number of instructions generated by the implementations, Valgrind with the
tool Cachegrind was used on a Linux machine. We ran the programs one time each with
Valgrind and Cachegrind enabled and noted the generated statistics. The resulting output
files were then analysed further using cg_annotate to get more detailed profiling data.
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Chapter 4

Results

This section presents the results of C and MicroPython implementations. The execution
times of the different implementations are presented in figures, both for the total execution
time and also the execution time for each function of the algorithm, showing how different
optimisations affect the execution time. All times presented are total times, i.e. an accumu-
lation of all calls to that function during runtime. Instruction count, stack usage, and power
consumption are presented in tables and figures show power consumption measured on the
XM126 board running different implementations of the algorithm. In the presented results,
a special focus was made on the All, Standard, and C implementations.

4.1 Time

This section presents the execution time of the different implementations of the surface ve-
locity algorithm. Both the total execution time of the program and the execution time for
each function in the algorithm are presented.

Figure 4.1 and Table 4.1 show the results from profiling each function for three different
implementations. As can be seen in the graph, the process and the welch functions take the
majority of the runtime. Furthermore, the difference between the Standard and All optimisa-
tions differ wildly between different functions. In process, the optimised MicroPython version
runs almost four seconds faster than the standard version, while in the welch function, the
optimised version runs slightly slower.
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Figure 4.1: Execution time for each profiled function in the surface
velocity algorithm. This graph identifies the most troublesome func-
tions to focus on when optimising the program. Process, welch and
find_peaks are the functions that consume the most time in our pro-
gram.
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Function Std. (ms) All (ms) C (ms)
set_config 0.3784 0.2076 0.006484
set_profile 1.385 1.086 0.006109
set_prf 2.701 1.895 0.012265
process 14460 11030 3861
merge_peaks 190.6 166 0.4038
get_peak_velocity 54.99 44.25 0.1553
select_prf 2.121 1.526 0.001875
do_sensor_calibration_and_prepare 89.26 90.18 15.28
hann 408.2 9.558 0.4643
fft_freqs 1.862 2.197 0.02533
fftshift 60.46 59.5 176.2
welch 6064 6156 748.2
get_distance_idx 22.1 24.1 5.294
get_angle_correction 6.301 7.076 0.2295
get_cfar_threshold 155.6 146.3 669.4
init 21 25.6 4.311
find_peaks 1052 170.6 4.281
get_velocity_estimate 293.7 241.2 2.966
dynamic_sf 6.577 7.288 0.009554

Table 4.1: Execution time for each profiled function in the surface
velocity application. Process, welch and find_peaks consume most of
the execution time in the standard implementation.

In Figure 4.2 we can see that the execution time for the profiling gets affected differently
by different optimisations. Notably, the Opt read optimisation made process run slower. The
slower execution is expected since this version moved the unpacking of data from the main
function to process.

In Figure 4.3 we can see that the welch function was barely affected by optimisations, it is
only the cached optimisation that visibly made the algorithm run faster. Opt read performed
worse since it contained an additional cast of an int16 NDarray to a float NDarray. Other
functions were affected more by optimisations, such as find_peaks presented in Figure 4.4. As
can be seen, both Opt read and Opt alg substantially reduced the running time of the function
compared to the standard version of the code. In the end, it was optimised to run in less than
a fifth of the original running time.

Figure 4.5 gives a closer look at the difference in running time of find_peaks for C and the
fully optimised MicroPython implementation. Notice the logarithmic scale on the Y-axis.
The MicroPython version runs almost 100 times slower than the C version.
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Figure 4.2: Execution time of the process function for different im-
plementations. Opt alg and all performed well for this function while
opt read performed worse than the standard implementation.

Figure 4.3: Execution time of the welch function for different im-
plementations. Cached was the only version that performed slightly
better than the standard implementation, while the execution time
was roughly the same or slightly worse for all other implementations.
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Figure 4.4: Execution time of the find_peaks function for different
implementations. All implementations except const reduced the ex-
ecution time for this function. Opt read and opt alg more than halved
the execution time. At the same time, the C implementation is out-
performing MicroPython in such a way that it is hardly noticeable
in the graph.

Figure 4.5: Average execution time for a whole frame of the
find_peaks function for two implementations. Note the logarithmic
y-axis.
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In Figure 4.6 and Figure 4.7 we see total execution time for the entire program when run
with the different optimisations. Besides the all implementation, Opt alg performs the best.
This is evident on both the XM126 and Linux system.

Figure 4.6: Total execution time when running one frame at differ-
ent levels of optimisation on XM126

Figure 4.7: Total execution time when running one frame at differ-
ent levels of optimisation on a Linux x86 system
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4.2 Memory
We measured the stack and the heap usage of the C, the Standard and the All optimisations
implementation in MicroPython.

Table 4.2 presents the measured maximum stack usage of three different implementations

Program Max stack usage (B)
C 2448
Std. 2676
All 2732

Table 4.2: Maximum stack usage of three different implementations
of the surface velocity algorithm. The standard implementation in-
creased the stack size by approximately 2KB and the all implemen-
tation increased the stack size further by approximately 1KB.

of the surface velocity algorithm. The C program has the smallest stack, and the optimised
MicroPython has the largest. Table 4.3 presents the total heap usage of three different imple-

Program Max heap usage (B)
C 33624
Std. 155264
All 153728

Table 4.3: Max heap usage in Bytes of three different implementa-
tions. MicroPython introduces a large overhead for the heap usage.

mentations. The C implementation shows the smallest heap usage and the standard MicroPy-
thon implementation the biggest heap usage. From the table, we can see that MicroPython
uses almost 5 times more heap memory than the C implementation.

4.3 Power
In this section, we present the results of power consumption measurements on the XM126
module when running three different implementations. The algorithm handles a lot of data,
which results in new measurements being triggered as soon as the computations are done.
Over time, the C implementation, which is running faster than the MicroPython implemen-
tations, will trigger more measurements per time unit, each consuming a lot of power, while
the MicroPython versions spend more time in a lower power state, doing computations.
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Program Power (mW) Time (mS) Energy (nJ)
C 136.1 114 15.5
Std. 141.1 515 72.7
All 141.6 309 43.8

Table 4.4: Estimated power, time, and energy needed to process one
frame. Both the decrease in time and total energy consumption for
the All implementation is approx. 40%.

In Table 4.4 we can see that the power consumption to process one frame is pretty similar
across all three implementations, but when considering the processing time, we see that the
C implementation consumes less energy per frame than the MicroPython implementation.

By looking at the figures featured in 4.8, 4.9 and 4.10 it is noticeable that the peak caused
by the sensor doing its measurement is higher for the MicroPython implementations. We
believe the reason for this is how the wait_for_sensor_interrupt is implemented in the
different programs. In the C implementation, the processor is allowed to go into sleep mode
until the finished measurement causes an interrupt. For the MicroPython implementation,
the processor instead busy waits in a loop.

Figure 4.8: Power consumption during one frame for the C imple-
mentation. Elapsed time can be seen in the top row and consumed
effect in the left column. It should be noted that this graph uses the
time unit ms in contrast to s used in the other power graphs. The
higher middle part of the graph represents the sensor doing mea-
surements and the lower parts of the graph when the application is
doing calculations between measurements.
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Figure 4.9: Power consumption during one frame for the Standard
implementation. Elapsed time can be seen in the top row and con-
sumed effect in the left column. The higher middle part of the graph
represents the sensor doing measurements and the lower parts of the
graph when the application is doing calculations between measure-
ments

Figure 4.10: Power consumption during one frame for the All imple-
mentation. Elapsed time can be seen in the top row and consumed
effect in the left column. The higher middle part of the graph rep-
resents the sensor doing measurements and the lower parts of the
graph when the application is doing calculations between measure-
ments
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4.4 Instruction Count
From Table 4.5 we can see that the number of instructions executed is larger for the MicroPy-
thon implementations. The Standard implementation has roughly 4, 75 times the instruc-
tions of the C implementation, and the All implementation has 3, 03 times the instructions.
If we compare this to the execution time, we get a similar result, where the Standard imple-
mentation is 4, 91 times slower and the All implementation is 2, 99 times slower.

Table 4.6 shows statistics of the instruction counts for the five most called functions in the
standard and native implementations. We have used this data to analyse what impact bytecode
has on the instruction count. This is done most effectively by looking at the native imple-
mentation which only affects this type of instructions without optimising other aspects.

The three functions that influence the number of instructions the most are the same for both
programs, with similar percentages. The standard configuration of the Unix port enables
multithreading which is why we see the use of functions like pthread_mutex_lock. This is
not the case when running on the nRF port, where multithreading is disabled. The standard
implementation features the function mp_execute_bytecode which is missing from the
native implementation.

Program Instruction count
C 141,957,489
Std. 674,307,185
All 429,782,708

Table 4.5: Executed instructions, as counted by Cachegrind, on a
Linux x86 system. The standard implementation introduces a lot of
overhead compared to the C implementation, while the all imple-
mentation reduces the instruction count by apprx. 36% from the
increase introduced by standard.

Std. Native
gc_alloc (16.94%) gc_alloc (16.06%)
gc_collect_end (10.50%) gc_collec_end (11.00%)
pthread_mutex_lock (5.90%) pthread_mutex_lock (6.18%)
mp_execute_bytecode (5.08%) pthread_getspecific (4.48%)
pthread_getspecific ( 4.42%) mp_binary_op ( 4.01%)

Table 4.6: Top five most executed functions and percentage of total
instruction count for Standard and Native implementations, calcu-
lated by cg_annotate. Native eliminates the mp_execute_bytecode in-
structions.
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Chapter 5

Discussion

In this chapter, we discuss the results and what we can conclude from them. We discuss time,
power, and memory respectively, and try to answer questions that arose during the study.

5.1 Time
Some optimisations made certain functions slower, while at the same time reducing the over-
all runtime and were included in the final All implementation. One example of this is the
welch function in the Opt read implementation. An int16 to float cast caused the runtime
of the welch function to increase, while, as evident in Figure 4.6, the total execution time was
decreased.

Find_peaks was an especially interesting function to optimise since it didn’t contain calls to
any C-based function and could be considered a more or less pure Python implementation.
This means the performance of this function is directly related to the efficiency of MicroPy-
thon itself. In Opt read, memoryview was utilised, which influenced the execution time sub-
stantially and could be considered a relatively easy thing to add to one’s implementation. The
execution time in Opt alg was reduced due to the possibility of removing all is_nan checks.
These statements are present in the Acconeer Exploration Tool implementation since the
find_peaks function is designed to be universal for all algorithms, however, it is not necessary
for the surface velocity algorithm and they are not part of the C implementation. There is
a lot of variance in the execution time for find_peaks in implementations where this function
wasn’t changed, for example in the Transposed and Loop unrolling implementations. This could
be caused by normal variations in execution time. Despite All taking a fifth of the time to
execute as the Standard implementation, it is still many times slower than the C function.
This is shown especially well in Figure 4.5 where it is possible to see the difference on a log-
arithmic scale. This highlights the potential benefit of implementing computationally heavy
algorithms in C.
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The seemingly small performance benefit of using the native decorator was initially unex-
pected. As stated previously, MicroPython claims in their guide that this would potentially
halve the execution time, compared to standard bytecode [10]. In Figures 4.6 and 4.7 there
is a slight performance increase, however, it is not twice as fast. This could be explained by
analysing Table 4.6. Here it is evident that the function mp_execute_bytecode makes up
5.08% of the instructions of the Standard implementation. Naturally, it is not featured in
the function list of the Native implementation at all. The performance increase could there-
fore be thought to come from the removal of these specific instructions. Since they make up
a relatively small portion of the total program, the total execution time will not be as dra-
matically affected as initially thought.

When comparing Figure 4.7 and 4.6 it is possible to see that the optimisations gave a similar
effect on the execution time for both XM126 and the Linux system. A benefit to this con-
sistency is the possibility to more easily and swiftly experiment with different optimisations
on the Linux system, and then expect similar results once deployed on an embedded unit.
Running MicroPython locally on your PC is a great feature since it could save time in cases
where you have more processing power on that machine than on your embedded device, and
eliminates the hassle of flashing the MCU every time a change in source code is introduced.

For the measurements done on the Linux system, the Transposed implementation was the
only one to perform worse than the Standard implementation. The idea behind transposing
the data was to allow for slicing and calculations to be made row-wise, instead of column-
wise. This can theoretically be more efficient since it is common for matrices to have row
elements stored contiguously in memory, which can be utilised by caching the entire row,
eliminating cache misses as the whole row can be fetched from the cache at once. However,
this did not lead to any decrease in execution time. We think this could be caused by the
way Ulab has implemented NDarrays, however, there was no effort to research this further.
Another reason could be that the overhead of doing the transpose outweighs the benefit of
exploiting spatial locality. There wasn’t any benefit of transposing the data for the XM126
implementation either. This device does not have cache memory, however, there could still
be a potential speed increase if the data is read in burst mode. The lack of impact could be
explained by other accesses being made in between the row operations, which would remove
the positive effect of burst mode.

Loop unrolling was only tried in the welch function. As stated previously, the outer loop
was removed entirely, which meant the inner loop was repeated four times. In Figure 4.3 it
is evident that loop unrolling had no significant effect on the performance of the program.
In this attempt, only four loop condition checks per function call could be removed, which
seems to not have been enough overhead removed to have any noteworthy effect on execution
time. In an attempt to reduce the number of iterations of the inner loops, it was required to
add additional list slicing. This resulted in worse performance, so this approach was aban-
doned. Although not effective as an optimisation in this case, loop unrolling could have a
positive effect in other algorithms and is worth exploring if applicable. It should be noted
that it is not necessary to, as in our case, unroll all iterations of a loop. If the number of
iterations is very high, unrolling the loop only a handful of times could still have a positive
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impact since this means the loop control instructions will be reduced to a fraction.

There was no significant performance benefit of the Less lookup implementation. A reason
for this could be that when compared to the total amount of execution time, the time spent
doing lookups is only a small fraction. Similarly, using const() had no major effect on ex-
ecution time. This implementation is related to Less Lookup since they both are approaches
to minimise lookup time, and the reason for the Const implementation not having any effect
could be attributed to the same reason. To understand what kind of operations make up most
of the execution time, we can look at Table 4.6. A significant amount of the instructions are
related to heap management, in the form of allocations and garbage collections, which could
indicate that the most effective optimisations would be related to that area.

The largest performance improvement was achieved by Opt alg, as can be seen in Figure 4.6.
This highlights the need to be mindful of how the algorithms are implemented to avoid ex-
pensive and unnecessary steps. Similarly, Opt read also had a positive impact on performance
since this reduced the need for some time-consuming allocations. Some algorithm optimisa-
tions done for Opt alg could also be applied to the Acconeer Exploration Tool example.

Some potential optimisation strategies were never implemented. The Viper code emitter
was omitted entirely. The background to this decision was its noncompliance with standard
Python code and its use of special types. For example, Viper supports different types of point-
ers and ints. An angle to this research has been to see if MicroPython is a viable choice when
considering developing Proof of Concepts on embedded systems. Because of this, an impor-
tant aspect to have in mind is accessibility and ease of use for a standard Python developer,
and rewriting the code to take advantage of all the potential optimisations provided by the
Viper emitter felt like too big of a step.

When measuring time, no consideration was taken into probe effect and the potential
overhead created by the measurement itself. This could affect the comparison if it is faster
to measure execution time in C than in MicroPython or vice versa, and should be taken into
account when looking at the results.

5.2 Power
A conclusion to draw from the results of the power measurements is that execution time and
power are closely related. Apart from the busy wait discussed previously, it is not possible
to lower the energy consumed when the sensor measures. If this is considered a fixed con-
sumption, the only place to implement optimisations is during the processing of the data. In
Figure 4.9 and Figure 4.10 it is possible to see that the power level during the lower part of
the graph, i.e. the processing parts, is relatively similar between the implementations. How-
ever, the time spent in that state differs, where the All implementation spends far less time
processing. This results in lower overall energy consumption, which can be seen in Table
4.4. With that said, the C implementation spends even less time in that state and as a result,
consumes the least amount of energy per frame.

Looking at Table 4.4 we can observe an approximately 40% decrease in energy consump-
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tion by optimising for execution time. However, this could still be considered too small of
an improvement if used in an energy-critical application where the application needs to be
very low power. In that case, one would have to find ways to further optimise the MicroPy-
thon code, or switch to a better-performing programming language.

For this specific application, there are no hard limits on time. Doing data processing faster
will result in more measured frames per time unit and a more continuous representation of
the velocity. However, achieving more measurements per time unit is more resource-intensive
since our power consumption is highest during a measure. On the contrary, if we let the sen-
sor measure only once every fixed time interval and go into sleep mode once finished, we can
save energy by doing the data processing fast. This highlights a trade-off between accuracy
and energy, and the winner in both cases is the faster C implementation.

5.3 Memory
The results of the dynamic stack analysis are expected. The number of variables and function
calls are relatively similar between the implementations, however, the MicroPython imple-
mentations contain an additional C layer necessary to make calls from the Python application
down to the Acconeer radar functions written in C. This layer will add additional instruc-
tions on the program stack. There is a slight increase of the stack between the Standard and
All implementations, as seen in Table 4.2. Because of the Less lookup optimisation, there are
more local variables in the All implementation and this could be the reason for the increase
in stack size.

Some efforts to analyse the static stack usage were made, however, did not result in any
valuable insights. For this type of application, it was determined that there was no obvious
risk in only using dynamic stack analysis, since the possible execution paths are straightfor-
ward and will be exhausted during normal execution.

There is a significant increase in heap usage between the C and the MicroPython implemen-
tations. One reason for the rise is the wrapping of C objects. Some objects are needed both in
the MicroPython application and in the C layer and are therefore wrapped in a mp_object
type which will put additional data on the heap. Furthermore, the MicroPython implemen-
tations contain class objects not featured in the C implementation. One example of this is
the Processor object, which contains functions and variables needed in the processing algo-
rithm. As previously mentioned, the XM126 unit was given roughly 247 kB of heap memory,
which meant there was around 90 kB left at the moment of maximum heap usage for both
the Standard and All implementations.

As presented in Table 4.3, it only differed approximately 2 kB between the Standard and
All implementations, which could seem daunting for memory-critical applications. Optimi-
sation was done with execution time in mind, a great difference in heap size was not expected.
To decrease the maximum heap usage further, we could use only bytearrays and force collec-
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tions of the garbage collector, which most likely would increase the execution time. Studying
a minimal implementation in MicroPython is an interesting subject for future studies, and
we hope our guidelines (see Chapter 6) can be useful.

5.4 Future Work
In the current implementation, an extensive C module featuring radar-specific functions, as
well as the Ulab module, is used. To further utilise the performance benefit of C, additional
functionality could be placed in the C layer. For example, the Welch function could be en-
tierly implemented in C. This would make it more similar to the Acconeer Exploration Tool
implementation, where the Welch function is a part of the SciPy library.

For this project, no regard for program flash size was taken, considering the substantial size
of the nRF52840’s flash memory. Due to the substantial size of the nRF52840’s flash memory,
no regard for program flash size was taken into consideration in this project. Program flash
size could be an issue on hardware with memory constraints, and therefore could be an in-
teresting topic for future research. Theoretically, there could be large variations in program
flash size of the different builds, depending on factors such as Python files being emitted as
bytecode or machine code, or if the Python files aren’t compiled at all before flashing.

Another interesting aspect would be to do a user study to see how developers experience
using MicroPython for embedded development. Developer preference could have a big im-
pact on how feasible it is to involve MicroPython in the development process.

5.5 Conclusion
In this study, we implemented a radar-specific algorithm, containing the handling of large
data sets and signal processing algorithms, in MicroPython, and optimised it with a focus on
execution time. We found that the most effective optimisations were achieved by altering
the algorithm and data handling. Combining all optimisations, we achieved to reduce both
execution time and power consumption by approximately 40% and lowered the max heap size
used by 2 kB. We show that with relatively standard optimisation techniques, it is possible to
optimise a high level programming language for embedded use cases. The final MicroPython
program did not measure with the C implementation, however, contrary to previous research,
we suggest that MicroPython can be a part of the commercial market as a prototyping tool
for embedded system development.
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Chapter 6

Guidelines

When working with MicroPython there are different aspects to consider depending on what
kind of project you are working on.

Hardware could make it or break it for your project. A good thing to start with is to decide
what hardware to work on and check if an appropriate port for that platform exists.
If not, is it feasible, given your budget, time, and knowledge, to port it yourself?

Memory What are your restrictions on memory utilisation? For some operations and de-
pending on the application, it could be hard to minimise memory usage. In those
cases, C, or some other high-performance programming language could be the only
viable option.

Time If your application is time-critical, it could be good to start with implementing it in
C and work towards MicroPython from there.

Power The energy consumption will most likely be higher. This could be a problem if the
device is supposed to run on battery for a very long time.

Competence within the team will give you a hint of whether making the switch is worth
it or not. If the application developers are senior C programmers, it could be more
efficient to stick with C.

Although a subset of the Python standard library is integrated into MicroPython, many of
the popular libraries used in Python are not. For example, NumPy and SciPy are not available
in MicroPython. To solve this we have used the Ulab extension (see Section 2.5) to be able to
use efficient data structures and algorithms, similar to NumPy and SciPy.

For us to build the example application, foundational work in C had to be done. This is
because of the translation layer, written in C, that is needed to work with the Acconeer RSS
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API. Once this is established, the applications could be written in Python. One has to be
aware of this initial investment in writing C code before deciding on whether it is worth
using MicroPython or not. It is possible to minimise the translation layer by rewriting the
functions of the API in pure Python, however, this would demand an even bigger initial in-
vestment, and the performance would be even more lacking. We would recommend against
this unless the project is starting from scratch. In that case, it could be worth using MicroPy-
thon to quickly create a working version, and then incrementally move performance-critical
parts into C code.

When writing a typical Python program, memory management is seldom a problem, this
changes when the goal is to execute the code on a MCU with highly restricted memory space.
Regular Python data structures are pretty large and when considering the limitations of the
garbage collection a lot of memory will be filled with data not in use. To decrease the foot-
print of your program, consider helping the garbage collector by deleting variables and re-
stricting the copying of data structures when other means are available.

Furthermore, it could be hard to even reach the desired performance results in pure Python
code. If this is the case one have to consider expanding the MicroPython library with an
external user module, where one can add new functionality through writing C code.

6.1 Using MicroPython
Following is a brief description of how to get started using MicroPython and different tech-
niques to optimise your implementation.

Clone the git repository from the official GitHub page.

Find the appropriate port for the MCU you are planning to use. Depending on what port
you are using, you have to provide additional information such as board-specific con-
figuration. If your port does not previously exist you have to supply everything from
toolchain, boot configuration, and basic drivers for development.

Build external C modules if needed. External modules make it possible to call self-defined
C functions from MicroPython. These can be used to run heavy calculations in C,
communicate with the system through C, or build an API for existing C code to be
used in MicroPython. To include your external modules, you add the path to your
external modules to the SRC_USERMOD_C when building MicroPython with make.

Running MicroPython code on your MCU can either be done when building MicroPython,
by stating the files to be compiled and included in a manifest.py file, or by sending
it to the MCU over the chosen communication channel.

Including Ulab is done by cloning the official Ulab repository and including it on the build
path, similarly to how you include an external C module.

When up and running with development, it is time to plan for optimisations. Optimisation
is highly implementation-dependent and relies on budget, time, and application-specific re-
quirements. Keep in mind that in this study, we have focused on reducing execution time and
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power consumption. The following section would probably look different if we optimised to
reduce memory footprint, and it is up to each developer to find the right method for their
specific application. The techniques we found effective when working in MicroPython for
our specific application are presented below.

Profiling your code is essential when optimising. Identifying the problematic areas of your
code enables you to know where to start. It could be difficult to discern straight from
the source code where the program will spend the most time; therefore, it is always a
good idea to check even if you believe you have a hunch.

Optimising your algorithms is perhaps the most straightforward way to potentially reduce
execution time significantly. Before attempting to optimise with complex techniques
that may make the code intricate and restrictive, reworking the logic and algorithms
is essential.

Using Ulab is recommended, especially when working with a lot of data or heavy computa-
tions. The optimisations achievable using Ulab depend on your implementation. The
following is a description of what we learned from using Ulab:

NDarrays are extremely helpful when working with data and data manipulation. We
found the accompanying data manipulation functions helpful, and the ability to
specify the data type can greatly reduce memory footprint and execution time.

Using Ulab functions whenever possible is essential for reducing execution time and
also operates very similarly to NumPy, which facilitates an easy transition.

Bytearrays are useful when a buffer is needed or generally when handling data minimally.

Memoryview objects are excellent for reducing the footprint when sending data between
functions. They are small objects that point to a part or a whole section of data in
memory. A memoryview can only be constructed from data structures implementing
the buffer protocol, such as bytearrays, arrays, or even Ulab’s NDarrays. Memoryviews
can be sliced and passed as arguments to eliminate the need to copy large sets of data
in memory when using them.

Caching certain repeated operations or variables from other namespaces can potentially re-
duce execution time by removing the overhead of redoing calculations or searching for
functions in other libraries.

The native code emitter reduces overhead by compiling to machine code instead of byte-
code. The effect of this technique seems to vary between different use cases and might
not always significantly affect runtime. Thankfully, it is a low-effort optimisation, only
requiring the use of the decorator function native.

Not all optimisations can be recommended, and we encourage people to follow the Zen of
Python. If an optimisation makes the code more complicated or destroys the readability,
consider not using it. An example of this is loop unrolling, which we would advise against.
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Appendix A

Pseudocode

In this appendix we will present pseduocode that describes the functionality of the process
function featured in the surface velocity example.
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A. Pseudocode

micropython-master\ports\unix\pseudo.txt

function process(result):
    # Get the data segment using double buffering frame filter
    data_segment = double_buffering_frame_filter(result.frame)

    # Update time series data
    shift time_series by -sweeps_per_frame along axis 0
    set the last sweeps_per_frame entries of time_series to data_segment

    # Compute power spectral density (PSD) using Welch's method
    psds, _ = scipy_welch(time_series, sweep_rate)
    
    # Update low-pass filtered PSDs
    if update_index * sweeps_per_frame < time_series_length:
        lp_psds = psds
        lp_psds = lp_psds * psd_lp_coeff + psds * (1 - psd_lp_coeff)

    # Get the index corresponding to the distance of interest
    distance_idx = get_distance_idx(lp_psds)
    set distance_idx to the obtained index
    distance = distances[distance_idx]
    psd = lp_psds[:, distance_idx]
    bin_vertical_vs = bin_rad_vs * get_angle_correction(distance)

    # Apply CFAR threshold to PSD and find peaks
    psd_cfar = get_cfar_threshold(psd)
    psd_peak_idxs = cfar_peaks(psd_cfar, psd)

    if length of psd_peak_idxs > 0:
        if maximum absolute value of bin_vertical_vs at psd_peak_idxs > bin_vertical_vs at slow_zone:
            vertical_v, peak_idx, peak_width = get_velocity_estimate(bin_vertical_vs, psd_peak_idxs, psd)
        else:
            vertical_v, peak_idx = get_velocity_estimate_slow_zone(bin_vertical_vs, psd_peak_idxs, psd)
            peak_width = 0

        if absolute value of lp_velocity > 0 and vertical_v / lp_velocity < 0.8:
            if wait_n < max_peak_interval_n:
                vertical_v = lp_velocity
                increment wait_n by 1
            else:
                reset wait_n to 0
        else:
            reset wait_n to 0
    else:
        if wait_n < max_peak_interval_n:
            vertical_v = lp_velocity
            increment wait_n by 1
        else:
            vertical_v = 0
            peak_idx = None
            peak_width = 0

    # Apply dynamic scaling factor to low-pass filtered velocity
    sf = dynamic_sf(velocity_lp_coeff, update_index)
    if update_index * sweeps_per_frame > time_series_length:
        lp_velocity = sf * lp_velocity + (1 - sf) * vertical_v

    increment update_index by 1
    
    
    return lp_velocity, distance

6/13/24, 11:44 AM pseudo.txt

localhost:55190/43b8c621-3de5-4ec8-951f-49da10752e32/ 1/1

Figure A.1: Pseudocode for the processing function
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Radarapplikationer med MicroPython

POPULÄRVETENSKAPLIG SAMMANFATTNING Malin Åstrand, Felix Apell Skjutar

I vårt projekt utvärderar vi MicroPythons effektivitet i radarapplikationer jämfört med
C. Våra fynd indikerar att MicroPython, trots lägre hastighet, kan vara ett fördelaktigt
alternativ för snabb och enkel prototyputveckling.

Föreställ dig att du bygger en cool ny pryl, t.ex.
ett radarsystem som mäta ythastigheten på ett
vattenflöde. Vanligtvis skriver ingenjörer instruk-
tionerna för prylen med ett programmeringsspråk
som heter C. Det är väldigt lätt för den lilla datorn
i prylen att förstå C, men det kan ibland vara svårt
för människor att göra sig förstådda, speciellt om
man vill testa något helt nytt på begränsad tid.

Python är ett annat populärt programmer-
ingsspråk. Det är lätt att lära sig och låter dig
skriva program snabbt. Därför föredrar många
människor Python när de vill prova nya idéer.
Ofta vill man se att idéen fungerar men bryr
sig inte lika mycket om att programmet kör lika
snabbt som om det skulle vara skrivet i t.ex. C.

MicroPython är en speciell version av Python
som är designad för att fungera på små datorer
inuti prylar, också kallade inbyggda system, som
vårt radarsystem. Det gör programmeringen av
dessa prylar lika enkel som att skriva Python på
en vanlig dator.

I vårt projekt ville vi se om MicroPython kunde
användas för att skapa en radarapplikation på ett

effektivt sätt. Tidigare har Acconeer skrivit radar-
mjukvaran i Python först, och sedan översatt den
till C för att köra på prylen. Vi undrade om vi
kunde hoppa över det andra steget och använda
MicroPython direkt på en radar.

Vi jämförde hur bra vår version av denna
radarapplikation skriven i MicroPython fungerade
gentemot den skriven i C. Vi testade olika knep för
att snabba upp MicroPython genom att använda
olika optimeringstekniker och bibliotek. Vi upp-
täckte att med noggrann planering och optimer-
ing kunde vi göra MicroPython endast tre gånger
långsammare än C. Detta är inte tillräckligt för
att ersätta C, men bra nog för att testa hur väl en
ny idé fungerar på inbyggda system.

Till slut skapade vi en guide för andra att an-
vända när de ska besluta om MicroPython är rätt
för deras projekt. Om du gör en snabb demo eller
prototyp kan MicroPython spara mycket tid och
ansträngning, även om det inte är lika snabbt som
C. För dem som är nya inom programmering av
inbyggda system kan detta göra det mer tillgäng-
ligt och roligt att skapa innovativa prylar.
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