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Abstract

User Equipment (UE) grouping entails categorizing multiple UEs, including mo-
bile phones or smart devices, according to defined criteria. It provides valuable
insights for applications to optimize network resources, enhance handover pro-
cedures, and improve user experience. This study investigates UE grouping in a
Fifth Generation (5G) Time Division Duplex (TDD) system based on Uplink (UL)
Sounding Reference Signal (SRS) channel fingerprints using Machine Learning
(ML) techniques. Specifically, the study comprises two main blocks: UE position
and direction estimation, and UE grouping.

In the first block, the estimation model for UE position and Course Over
Ground (COG), the actual direction of motion, is developed. This model utilized
UL SRS channel estimation results collected from 5G TDD Base Station (BS) for di-
verse routes, including both Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
scenarios. Channel Transfer Function (CTF) snapshots are created according to
system specifications using SRS data. To ensure the accuracy of the CTF when
encountering missing SRS, we applied forward-filling to maintain data integrity.
CTF snapshots are synchronized in time with Global Navigation Satellite System
(GNSS) data. Supervised ML techniques, culminating in an ensemble model re-
fined with post-processing methods, achieved highly precise estimation results.
The positioning Root Mean Square Error (RMSE) is less than 0.93 meters and the
direction RMSE is less than 9◦ across all routes.

In the second block, clustering algorithms are used to group UEs based on
their estimated positions and directions. Firstly, the timestamps of the UEs’ data
are synchronized to assume they move simultaneously despite being measured at
different times. Moreover, to ensure a fair assessment of clustering results, more
UEs are needed than measured ones. Each route is then split into two halves,
treating the first and second halves as distinct virtual UEs derived from real data
measurements. Various clustering methods are applied based on the estimated
features to see how models group UEs differently. It has been demonstrated that
the sensitivity of the clustering models can be adjusted by modifying the ini-
tialization parameters to align with the specific criteria of various network func-
tionalities. Additionally, the best beam prediction models are presented in the
Appendix as an application area of SRS signals.
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Popular Science Summary

Have you ever wondered how your smartphone knows precisely where you are?
Imagine using your phone to stream a movie or video call a friend on a busy
street. Why does the signal sometimes weaken, or does the video start buffering?
Since many people use the same network simultaneously, it can get crowded up
in the digital world! What if the network could adapt to the dynamic radio envi-
ronment and provide optimal performance in various situations? This would en-
sure that your favorite shows do not pause at the most exciting moments or that
you do not encounter connection issues during important online job interviews
or meetings. We have an idea! We are using advanced computer techniques to
figure out exactly where each user is and in which direction they are facing. This
way, we can ensure that everyone’s signal stays strong and their videos keep
streaming without pauses.

How does it work? Think of it as having a bunch of invisible helpers in the
sky who can see where everyone is and where they are headed. These helpers,
powered by machine learning, analyze all the data from base stations to cre-
ate a digital map of the world around us. Here is the exciting part: Once we
know where everyone is, we can start organizing things better. We can group
users based on their locations and directions, similar to organizing cars on a busy
highway to keep traffic flowing smoothly. This approach allows for strategic ca-
pacity planning and load balancing based on user population, enhancing over-
all user experience. Service providers can strategically plan the placement of
new base stations based on user distribution to maintain service continuity ef-
fectively. With machine learning and sophisticated data analysis, 5G networks
are getting smarter every day! This technology opens up a world of possibilities,
and we invite you to be a part of it by delving into our thesis report, "User Equip-
ment Grouping in 5G TDD System using Machine Learning", to understand our
methodology for utilizing data received at the 5G base station and see how ac-
curately we could estimate user positions and directions. Furthermore, we have
explored various options for grouping users to optimize network performance.
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Preface

This Master’s Thesis was conducted at Ericsson AB in Lund, Sweden, from Jan-
uary to June 2024. The primary focus is demonstrating the potential of the pro-
posed user grouping framework. The study proposed an ensemble model to es-
timate user position and direction. Subsequently, the estimated features were
leveraged to accomplish UE grouping. The study employed ML techniques de-
veloped using Python to achieve these goals. The findings provide valuable in-
sights for network planning, optimization processes, and further enhancements.
The results of this project have led to a patent invention filing at Ericsson AB.
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Chapter1
Introduction

This chapter outlines the project’s motivation and goals, providing essential back-
ground information. It delves into the methodology and approach adopted. Ad-
ditionally, it incorporates a thorough literature review to contextualize the study
within existing research. Finally, the thesis structure is detailed to guide readers
through subsequent sections and enhance overall understanding.

1.1 Motivation

Smartphones or Internet of Things (IoT) devices that communicate over a cel-
lular network are called UEs. As technology advances, the number of UEs and
their applications grow, increasing the need for optimal radio resource manage-
ment. In 5G networks, effective Radio Access Network (RAN) optimization is
vital to meet users’ demands for higher data rates and reliability. Geographical
UE grouping helps the network adapt to dynamic environments by providing
valuable UE pattern information.

As 5G networks advance, the optimal use of radio resources becomes in-
creasingly vital for diverse applications and services, ranging from Ultra-Reliable
Low-Latency Communication (URLLC) to Massive Machine-Type Communica-
tion (mMTC) [1]. Consequently, meeting users’ growing needs becomes more
challenging. The increasing demand for higher data rates and reliability, driven
by advancing technology, requires effective management of radio resources. The
optimization of the RAN is an essential process, and it affects the efficiency and
reliability of wireless communication systems. The adaptability of the RAN do-
main to the dynamic radio environment is a crucial aspect from the network
performance perspective in 5G cellular network systems. The geographical UE
grouping can meet these adaptation requirements by providing information about
UE patterns to the network.

The project aims to demonstrate the efficacy of traditional ML methods ap-
plied to UE channel measurements within a real-world commercial system. This
involves accurately estimating UE positions and headings using these methods.
Furthermore, the study investigates the application of different clustering tech-
niques to group UEs based on their position and heading information. The over-
arching goal is to showcase how these approaches can enhance the understand-
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2 Introduction

ing of UE behavior in dynamic radio environments, thereby contributing to im-
proved network performance and adaptation in 5G cellular networks. This way,
we prove that UE grouping is also feasible for real-life datasets. The results pro-
vided in this work may be useful input for many potential works.

• The demand for standalone positioning capabilities within 5G New Radio
(NR) systems is becoming more pressing. GNSS technology can often be
untrustworthy owing to jamming, shadowing, and multipath propagation
problems [2]. The proposed model can be utilized for internal positioning
capabilities within 5G NR systems.

• Effective network resource management is crucial for optimal performance
in modern telecommunications. Dynamic geographical UE grouping can
enhance load balancing by providing insights into user distribution among
severe cells. This approach helps to prevent congestion and optimizes the
usage of network resources.

• Guided by geographical data, strategic infrastructure construction enables
the precise placement of new BSs or small cells in areas with high UE den-
sity. It also assists in planning network capacity to accommodate demand
during peak periods.

• UE displacement patterns can be used to enhance handover procedures.
They allow the network to predict and schedule target cells ahead of time,
minimizing handover failures and ensuring continuous service.

Thus, the project findings can collectively enhance network resource utilization,
improve user experience, and streamline planning and optimization processes.

1.2 Project Goals
This thesis explores the potential of geographical UE grouping. Firstly, it pro-
poses classical ML techniques and Deep Neural Network (DNN) models for ac-
curately estimating the positions and directions of UEs. It then focuses on the
potential of clustering methods to group UEs based on these estimated features.
The targets of this research project can be expressed as follows:

• Data Collection: Collecting the necessary data and conducting compre-
hensive analysis is pivotal for achieving optimal model performance. This
study considers the uplink condition where mobile UE transmits SRS to
the BS in different scenarios. The UE is positioned near the GNSS receiver,
which serves as a ground truth reference. This close placement ensures pre-
cision in location data. SRS channel estimation results include information
about UL channel characteristics, while GNSS data provides knowledge of
the UE position. It is crucial to employ varied scenarios and routes to assess
the model’s capabilities accurately. Furthermore, time alignment of GNSS
and SRS data is essential while creating a unified dataset.

• UE Position and COG Estimation: This step includes the development of
a model to accurately estimate the 2D position (X and Y coordinates) and
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COG of the UE using the collected dataset. This dataset is utilized with dif-
ferent supervised ML models, including Linear Regression, Decision Tree,
Random Forest, Feedforward Neural Network (FNN), and Convolutional
Neural Network (CNN). By employing various models, the study aims to
compare their performance and develop the most effective model. SRS data
serve as features during training and are directly inputted into the models.
In contrast, GNSS data serve as labels or targets for the model, consisting
of local coordinates and COG information.

• UE Grouping: The final task involves presenting different UE clustering
methods using the estimated position and COG. This step focuses on clus-
tering UEs based on their spatial and directional features using various
clustering algorithms. K-means is utilized with a predefined number of
clusters. Additionally, dynamic clustering methods such as Hierarchical
Clustering and Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) are employed to provide a comprehensive view. Each algo-
rithm is realized with various initializations, and clustering outputs are
commented on. Unlike the previous case, this task has no specific accuracy
criteria like RMSE or R2 score for performance evaluation.

The general overview of the project is shown in Figure 1.1 by highlighting two
main blocks of the project with related tasks.1

Figure 1.1: Problem definition

1.3 Approach and Methodology

The project commences with an extensive literature review in this field. A com-
prehensive understanding of ML methodologies and beamforming principles is
attained through theoretical exploration. Data is collected from a real-world 5G
TDD BS. Supervised ML techniques, including DNN models, are employed to es-
timate the local coordinates and COG of UEs, encompassing a meticulous process
spanning data comprehension, feature engineering, model development, rigor-
ous evaluation, iterative refinement, and comprehensive testing. Furthermore,
diverse clustering models are explored to evaluate how various models with dif-
ferent parameters group UEs.

1Moreover, an optimal beam selection model is implemented to identify the beam that
transmits the highest quality signal for specified UEs, demonstrating possible applications
of SRS signals. This work is presented in the Appendix for further reference.
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1.4 Literature Review
In the literature, previous works addressing similar research topics are analyzed.

The study in [3] explores the potential of DNNs for positioning outdoor
users in 5G NR systems using UL SRS channel estimation results. This analy-
sis is based on real-world data from 5G BSs. The findings indicate a mean posi-
tioning error of less than 10 meters across all test scenarios, including LOS and
NLOS conditions. In research [4], a supervised ML model is employed to classify
LOS and NLOS scenarios using GNSS and 5G signals. Additionally, an Extended
Kalman Filter (EKF) integrates observable measurements with LOS information
from GNSS and 5G signals, enabling accurate estimation of UE position. The re-
sults reveal positioning errors of less than 30 centimeters indoors and 2 meters
outdoors.

In [5], SRS data from a lab simulator were used to build and assess differ-
ent classification models for UE movement. A binary neural network achieved
a classification accuracy of 98% for determining whether UEs were moving or
stationary. A multiclass neural network is also adapted to classify UE move-
ment at speeds of 30 km/h and 100 km/h. In comparison, a Support Vector
Machine (SVM) and Logistic Regression models provided 95% and 93.8% accu-
racy, respectively. In [6], supervised and unsupervised ML models are demon-
strated to classify UEs using higher-layer channel measurement reports. Sim-
ulated data includes UEs such as bicycles, cars, pedestrians, motorcycles, and
buses. An Extra Trees Regressor achieves the best performance with a misclas-
sification rate of only 2% using pedestrian, car, and motorcycle data. In [7], two
algorithms, the Spectral Analysis Method (SAM) and the Time-based Spectrum
Spreading Method (TSSM), are introduced to estimate the velocity of mobile UE.
These methods are computationally efficient and do not necessitate updates to
existing UE or the 3rd Generation Partnership Project (3GPP) standard protocol.
Speed classes are defined as [0, 30), [30, 60), [60, 90) km/h, and greater than 90
km/h. The accuracy of classifying speed into these four categories is greater than
98%.

1.5 Thesis Organization
The thesis is systematically structured to facilitate understanding and analysis.
Chapter 2 lays the groundwork by providing essential background on communi-
cation systems, beamforming, Multiple-Input Multiple-Output (MIMO) technol-
ogy, 5G NR, and ML concepts. Chapter 3 details the data measurement system
and environment. Chapter 4 introduces the development of ML models for UE
position and direction estimation, along with the discussion of results. Chapter 5
explores various UE clustering methods and analyzes their performance. Finally,
Chapter 6 wraps up the thesis by summarizing the findings, drawing conclusions,
and outlining potential future research directions. In the Appendix, the develop-
ment of optimal beam selection models using ML and DNN are presented.



Chapter2
Technical Background

This chapter offers a comprehensive overview of wireless communication and
ML fundamentals. Chapter 2.1 covers various aspects of wireless communica-
tion channels, including propagation scenarios, fading phenomena, and channel
characteristics. The discussion extends to MIMO technology. Chapter 2.2 moves
on to the 5G NR standard and the role of SRS. The focus subsequently shifts to the
GNSS in Chapter 2.3. Furthermore, Chapter 2.4 explores supervised ML models,
including Linear Regression, Decision Tree, and Random Forest, as well as clus-
tering models like K-means clustering, Hierarchical clustering, and DBSCAN.
Lastly, the discussion encompasses neural networks, including FNN, CNN, and
other critical deep learning concepts, establishing a foundational understanding
of the techniques relevant to the project’s objectives.

2.1 Wireless Communication

2.1.1 Overview

First Generation (1G) was launched in the 1980s, using analog signals for essen-
tial voice calls. Second Generation (2G) introduced Short Message Service (SMS)
with a low data rate in the following decade. In the early 2000s, Third Genera-
tion (3G) networks offered faster data rates, enabling video calls, mobile internet,
and multimedia messaging. Around 2010, Fourth Generation (4G), particularly
Long-Term Evolution (LTE), brought even faster speeds and better connectiv-
ity. LTE, an Orthogonal Frequency Division Multiplexing (OFDM)-based radio
access technology, supports scalable bandwidths up to 20 MHz and advanced
multi-antenna transmission. MIMO, vital for high data rates in 4G, enables multi-
stream transmission to enhance spectrum efficiency and link quality while using
adaptive beamforming with antenna arrays to improve signal gain and reduce
interference. In 5G, critical differences from 4G include greater spectrum use in
millimeter-wave bands, directional beamforming antennas, longer battery life,
and higher bit rates over larger areas [8].
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6 Technical Background

2.1.2 Fundamental Concepts of Wireless Channels
Communication systems enable the transfer of information between devices, which
are classified into wired and wireless types. Information is transmitted through
channels in these systems. In communication, the channel is described as the
medium through which electromagnetic waves propagate between transmitters
and receivers. Wired communication utilizes channels such as Ethernet, fiber
optics, or coaxial cables. This work concentrates explicitly on wireless communi-
cation.

• Wireless Channels: In wireless communication, signals can experience
diffraction, reflection, or scattering when encountering obstacles, which re-
sults in multipath propagation. These phenomena highly impact the per-
formance of the wireless communication system. Therefore, understanding
channel properties is essential for effective wireless communication.

In wireless communication, it is essential to grasp the difference between LOS
and NLOS conditions to gain insight into signal propagation and network dy-
namics.

• LOS Channel: In the LOS channel, there is a direct, unobstructed path
between the transmitter and receiver. Owing to minimum attenuation and
interference, this provides more reliable signal transmission.

• NLOS Channel: Obstacles like buildings or trees along the signal path
cause reflections, diffraction, or scattering. These propagation mechanisms
can cause signal attenuation due to multipath propagation, making it more
susceptible to interference.

Understanding path loss, large-scale fading, and small-scale fading is essential
for comprehending how these factors affect wireless signal transmission and re-
ception.

• Path Loss: It measures the attenuation in signal strength as the signal trav-
els through space. Variables like distance, frequency, and environmental
conditions influence signal strength.

• Large-Scale Fading: Also known as shadowing, it occurs when barriers
like buildings block the direct path between the transmitter and receiver.
This causes a lack of consistency in signal strength.

• Small-Scale Fading: Small-scale fading involves variations in signal am-
plitude and phase occurring over short distances or time intervals due to
the interference of multiple signal components, which can be constructive
or destructive [9].

The CTF is crucial for assessing how various factors impact the channel and for
characterizing its behavior.
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• Channel Transfer Function: As a key term in communication systems, the
CTF clarifies how the signal is altered as it passes through a communica-
tion channel. It gives information about a frequency-domain depiction of
the channel’s impact on the transmitted signal. Moreover, the channel im-
pulse response provides the time-domain portrayal of the channel. The
CTF allows the analysis and characterization of channel behavior in the
frequency domain, which is vital to designing and optimizing communi-
cation systems. A general formulation of the CTF is presented in Equation
(2.1).

H( f ) =
Y( f )
X( f )

, (2.1)

where H( f ) represents the CTF and it determines how the channel alters
the input signal, X( f ) presents the Fourier transform of the input signal
x(t), and Y( f ) stands for the Fourier transform of the output signal y(t).

2.1.3 MIMO Systems
MIMO technology utilizes multiple antennas at both the transmitter and receiver
ends to enhance communication performance, as shown in Figure 2.1. MIMO sys-
tems can provide increased data rates, enhanced link reliability, and improved
spectral efficiency through the expanded degrees of freedom. MIMO systems
serve various purposes like spatial multiplexing, spatial diversity, or beamform-
ing.

Figure 2.1: MIMO system

• Spatial Multiplexing: As one of the vital use cases in MIMO communi-
cation systems, it enhances data transfer by enabling the concurrent trans-
mission of multiple data streams within the same frequency band. In other
words, utilizing multiple antennas at the transmitter and receiver side ben-
efits from spatial dimensions to enhance data throughput and spectral ef-
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ficiency. By employing orthogonal spatial channels, spatial multiplexing
allocates distinct data streams to various transmit antennas, enabling se-
vere paths. On the receiver side, channel estimation and equalization tech-
niques may be used to recover the transmitted data streams and improve
the channel capacity. Although spatial multiplexing provides substantial
capacity improvements, its effectiveness can be limited by factors like spa-
tial correlation and fading. Overall, it is an essential technique in modern
wireless communication, which enables increased data rate and improved
spectral efficiency.

• Spatial Diversity: Another important aspect of MIMO systems is spatial
diversity. It provides resistance to the negative impacts of fading and im-
proves the reliability of wireless transmissions. Like the previous use case,
it takes advantage of the existence of numerous antennas on both the trans-
mitting and receiving sides. Conversely, it benefits from transmitting sev-
eral copies of the same data throughout severe paths. This aspect mini-
mizes the fading effects observed according to the multipath propagation.
The main idea of that aspect is that it increases the probability of having
at least one of the transmission paths sustain a satisfactory Signal-to-Noise
Ratio (SNR). Moreover, spatial diversity techniques like Maximum Ratio
Combining (MRC) provide a selection of the optimum combination of re-
ceived signals and optimize the reception process.

• Spatial Beamforming: It improves signal strength and quality by directing
the transmitted signal in the targeted direction. By leveraging the spatial
aspect of the wireless channel, spatial beamforming facilitates the genera-
tion of directional transmission patterns. That aspect efficiently directs the
transmitted signal towards the intended receiver. This is accomplished by
modifying the phase and amplitude of signals transmitted from each an-
tenna element within the array. This ensures constructive interference in
the desired direction and destructive interference in the other directions.
In this way, signal amplitudes increase in the targeted direction while sig-
nals interfere with each other in other directions. Spatial beamforming can
be executed through diverse algorithms like Maximum Ratio Transmission
(MRT), Zero Forcing (ZF), or Minimum Mean Square Error (MMSE). Spa-
tial beamforming is widely used in various wireless communication sys-
tems like cellular networks, Wireless Fidelity (Wi-Fi), radar systems, or
satellite communication [10].

Moreover, MIMO systems enhance the resolution of the radio channel state
by utilizing multiple antennas in the spatial domain to capture and process de-
tailed information about the propagation environment. Multiple antennas enable
the capture of diverse signal paths, enhancing the amount and diversity of data
available for analysis. Each antenna enriches the collected data about channel
behavior. This improved spatial resolution facilitates more accurate estimation
of Channel State Information (CSI), essential for optimizing signal processing
and enhancing communication reliability. Utilizing these detailed measurements,
MIMO systems can better characterize the channel’s behavior, resulting in more
precise and resilient channel estimation.
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2.2 5G NR
5G NR is an international standard in 5G networks. Released by 3GPP, it aims to
enhance mobile broadband capabilities and support a variety of services with di-
verse performance and cost requirements. In 5G NR, the TDD method optimizes
spectrum utilization by dynamically assigning time slots for UL and downlink
transmissions according to traffic demands. In a TDD system, an SRS is a UL
reference signal transmitted by UE, as shown in Figure 2.2, and utilized by Next-
Generation NodeB (gNB) to estimate CSI. Both the UE and BS know SRS, a signal
modulated using OFDM. BS estimates the UL channel state considering SRS [11].

Figure 2.2: Channel estimation in 5G TDD systems

OFDM is a transmission technology that enhances spectrum efficiency by
employing orthogonal sub-carriers, thereby preventing overlap among them. More-
over, the symbol period of each subchannel is extended to minimize interference
from multipath delay spread by employing the cyclic prefix. The cyclic prefix is a
guard interval, which is added to the beginning of each symbol. The robustness
of OFDM to channel impairments and its capability to achieve higher data rates
make it a popular digital modulation technique [12].

A Resource Block (RB) is the smallest allocation of resources to a user, com-
prising both time and frequency components. An RB consists of 12 subcarriers
and one time slot, equating to a duration of 1 millisecond. SRS is transmitted in
predefined subcarriers in RBs. SRS is used for uplink channel sounding. Typi-
cally, SRS covers one, two, or four consecutive OFDM symbols and is positioned
within the last 6 symbols of a time slot. In terms of frequency, an SRS exhibits a
’comb’ pattern, indicating that it has transmitted on every Nth subcarrier, where
N can be either two or four [13] as illustrated in Figure 2.3.

Wireless environments are dynamic, and the channel undergoes rapid changes
due to variations on its conditions. This necessitates the use of SRS for accurate
channel estimation. Furthermore, the received SRS is unique for each UE because
various objects interact with the transmitted signal and affect the signal propa-
gation as the UE moves. Accurate channel estimation, facilitated by the SRS, is
essential for advanced features such as massive MIMO and beamforming. By
providing precise CSI, the UL SRS helps optimize the use of the available spec-
trum, enhancing the reliability and efficiency of the communication link. SRS is
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Figure 2.3: Example of SRS time/frequency structure

capped at a maximum of four antenna ports at the UE side. Additionally, trans-
missions of SRS from different devices can utilize frequency multiplexing within
the same frequency range by using distinct combinations considering different
frequency offsets [14].

2.3 GNSS

Positioning determines an object’s location relative to a fixed reference point within
a coordinate system and may include different information like direction, ori-
entation, and velocity. Various positioning systems have been developed using
different physical phenomena. GNSS, a worldwide system, is a key player in
the field of precise positioning and timing. It comprises multiple satellite con-
stellations, including the Global Positioning System (GPS) maintained by the
United States, Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
operated by Russia, and Galileo managed by the European Union. These satellite
navigation systems work in harmony to provide geolocation and time informa-
tion globally, enabling a wide range of practical applications and benefits [15].
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2.4 Machine Learning
Artificial Intelligence (AI) develops computer systems to allow them to carry out
tasks that require human intelligence. Thus, computers can learn and achieve a
specific task without the requirement of explicit coding. In the process of learn-
ing, there are two categories based on data structure:

• Supervised Learning: The ML model is trained using labeled data with
correct answers. So, the model can learn from the relationship between
the input feature and target variables. This learning type is popular for
regression and classification tasks.

• Unsupervised Learning: ML model is trained using unlabeled data. It
means that target values are not defined. This learning type is popular for
clustering, anomaly detection, and pattern exploration tasks [16].

Firstly, we will provide a detailed explanation of the three main supervised
ML techniques: Linear Regression, Decision Tree, and Random Forest, which will
be used for UE position and direction estimation.

2.4.1 Linear Regression
Linear Regression is a basic supervised ML algorithm that estimates continuous
numerical outcomes. It finds a linear relationship between the input and output
variables in the dataset. Moreover, it calculates coefficients to minimize the dif-
ference between predicted and actual values [17]. Its straightforward nature and
ease of interpretation make it popular in different application areas, including fi-
nance and healthcare. The main form of Linear Regression formulation can be
expressed as:

y = a +
N

∑
i=1

mixi, (2.2)

where y: the dependent variable, x: the independent variable, a: the intercept,
m: the weight determined during the training process, and N: the number of in-
put features. Basic Linear Regression model visualization is shown in Figure 2.4,
where it consists of a single input feature and a single output. It should be noted
that although values are typically represented in matrices, for the sake of simplic-
ity in explanation and visualization, they are presented in a single dimension.
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Figure 2.4: Linear Regression model

2.4.2 Decision Tree
Another supervised ML method, Decision Tree, is used for classification and re-
gression by repeatedly dividing the data, as can be seen in Figure 2.5. It creates
a hierarchical tree where every internal node makes decisions based on features,
dividing data to maximize homogeneity. This approach allows easy visualization
and comprehension of the resulting tree structure [17].

Figure 2.5: Decision Tree model

The root node is the starting point of the decision-making process. Decision
nodes evaluate the input and determine whether to proceed to another decision
node or a leaf node. Leaf nodes, which do not have any child nodes, represent
the predicted variable. A section of the tree that starts with a decision node and
ends with a leaf node is referred to as a sub-tree. Also, nodes with one or more
child nodes are known as parent nodes.
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Hyperparameters, the preset settings that guide how an ML algorithm be-
haves, are the levers of control in the training process. Unlike model parameters
learned during training, hyperparameters are predefined and remain constant
throughout the training process. There are some hyperparameters that are im-
portant for the Decision Tree model.

• Max Depth: That parameter limits the tree’s possible maximum depth,
which prevents overfitting.

• Min Samples Split: It defines the minimum number of samples that must
split an internal node. It avoids having nodes for insufficient samples.

• Samples Leaf: This parameter specifies the minimum number of samples
in a leaf node.

• Criterion: It specifies a function used to measure a split’s quality. The cho-
sen function will be specified while presenting the developed model.

2.4.3 Random Forest

Random Forest is another supervised ML model utilized for classification and
regression. As an ensemble learning model, it improves the model’s performance
by integrating multiple decision trees. It improves accuracy and robustness by
combining the predictions of multiple decision trees. Trees are built by randomly
selecting subsets of the data. This approach increases diversity and thus reduces
overfitting. The Random Forest model is presented in Figure 2.6. That model
uses the same hyperparameters as the Decision Tree model, such as max depth,
min samples split, and criterion. Moreover, it introduces a new hyperparameter
called the number of estimators.

• n_estimators: It specifies how many trees can be utilized in the model.

Figure 2.6: Random Forest model

Now, we will discuss three important clustering models: K-means cluster-
ing, Hierarchical clustering, and DBSCAN, which will be used for UE grouping.



14 Technical Background

2.4.4 K-means Clustering
The K-means algorithm groups the data by dividing samples into K sets with
equal variation, as shown in Figure 2.7. This method necessitates a specific num-
ber of clusters. Initially, centroids are chosen, often by selecting samples from
the dataset. Then, the algorithm applies three stages iteratively until centroids
become stable:

• The model assigns each sample to its closest centroid.

• Subsequently, it generates new centroids by calculating the average of all
samples assigned to each centroid.

• The model calculates the disparities between old and new centroids [18].

Figure 2.7: K-means clustering model

2.4.5 Hierarchical Clustering
Hierarchical clustering organizes clusters by merging similar ones into larger
groups, forming a tree-like structure as presented in Figure 2.8. It starts with
individual data points as leaves and combines them gradually, showing different
levels of similarity [18]. In other words, the model first assigns each sample to a
cluster. Then, it calculates the distance for any pairs of clusters. Although many
distance metrics exist, the most popular ones are Euclidean distance and Man-
hattan distance shown in Equation (2.3) and Equation (2.4), respectively. After
that, the model continues to apply the three following steps until all samples are
labeled in the same cluster:

• The model finds clusters that have a minimum distance from each other.

• The closest clusters are merged.

• The distance matrix is updated accordingly.

Thus, the model defines clusters by comparing calculated distances between data
points and an initialized threshold value.

d(p, q) =

√
n

∑
i=1

(pi − qi)2 (2.3)
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d(p, q) =
n

∑
i=1

|pi − qi|, (2.4)

where p and q represents the different points, and d refers to the distance.

Figure 2.8: Hierarchical clustering model

2.4.6 DBSCAN Clustering
DBSCAN identifies clusters by considering dense regions of data points surrounded
by sparse ones. It focuses on core samples, densely packed data points closely
connected, and non-core points nearby. The clusters’ density is regulated by ini-
tialized parameters ϵ(epsilon) and MinPts [18].

• ϵ: It clarifies the neighborhood size. A small size may mark many points
as outliers, while a large size could merge clusters.

• MinPts: The smallest number of neighbors within the defined ϵ.

• Core Point: A point is considered a core point if it has a greater number of
neighboring points than the specified MinPts within the radius of ϵ.

• Border Point: A point with fewer number of neighbors than MinPts within
ϵ.

• Noise or outlier: A point which is outside of the neighborhood.

The model is represented in Figure 2.9 with clarification of defined terms.
During clustering, the model first labels each point as unvisited. Later, at

each step, it checks whether the point has been visited. If the point is visited, the
model skips that point and continues with the next point. Otherwise, it labels
that point as visited and calculates each point in the defined ϵ. If the number of
neighbors is less than the predefined minimum number of neighbors, that point is
stated as noise. Otherwise, the model creates a new cluster group and adds this
point. After that, any points in the neighborhood size are added to this group.
The model continues this process iteratively until all points are labeled as visited.
DBSCAN differs from Hierarchical clustering in that it groupings based on the
density within a predefined neighborhood size rather than relying on the distance
between individual samples.
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Figure 2.9: DBSCAN clustering model

2.4.7 Neural Networks

Artificial Neural Networks (ANNs) are modeled according to the intricate struc-
tures found in Biological Neural Networks (BNNs). They are able to solve a
wide range of problems, such as classification, prediction, or pattern recognition.
While the biological nervous system is highly complex, ANNs simplify this com-
plexity to focus on key aspects relevant to information processing. By analyzing
data, ANNs can learn tasks without direct programming [19].

In this section, we will explore two primary types of neural networks: FNN
and CNN.

Feedforward Neural Networks

A basic FNN is composed of layers of interconnected neurons. Data flows through
the network via forward propagation. In other words, each layer’s output is out-
standing as the input for the subsequent layer. FNNs do not have feedback con-
nections [20]. There are three main sections:

• The input layer: The first layer receives unprocessed data and is fed into
the system. Neurons in the input layer represent features of the input data.
Its main purpose is to transfer this raw data to the following layers via
activation functions and weighted connections for processing and trans-
formation.

• The hidden layer: Estimating neurons in the hidden layers entails apply-
ing activation functions to aggregate weighted inputs. This operation en-
ables the model to realize non-linear relationships. The associations be-
tween neurons are structured in layers, and weights are adapted during
training to minimize errors.
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• The output layer: The output layer presents the regressed values based
on the processed input data. Each node within the output layer shows a
different predicted outcome.

FNN models are mainly used for image recognition, anomaly detection, and time
series prediction. A basic FNN model representation is shown in Figure 2.10.

Figure 2.10: FNN model

Convolutional Neural Networks

A basic CNN is a type of neural network designed to process grid-like data.
CNNs are structured to adaptively acquire spatial hierarchies of features using
a series of convolutional layers. That model is composed of several layers: con-
volutional, pooling, fully connected, flatten and output layers.

• The input layer: The input layer takes raw data; each neuron represents a
feature like FNN.

• Convolutional layer: Convolutional layers use filters to acquire local pat-
terns. These filters have learnable weights. These weights are updated con-
tinuously during the training to improve feature detection. By employing
that layer, the model can learn increasingly abstract features.

• Pooling layer: Pooling layers decrease spatial dimensions and emphasize
essential information. Therefore, the most important features are kept, and
computational complexity is reduced.

• Flatten layer: That layer changes the shape of the previous layer output
into a one-dimension. Thus, it becomes suitable for fully connected layers.

• Fully connected layer: These layers establish connections between each
neuron in the current layer with the previous layer neurons. Each neuron
within a fully connected layer gathers input signals from every neuron in
the previous layer and computes an output. It employs activation func-
tions.
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• The output layer: The output layer presents the final prediction similar to
the FNN [21].

CNNs are highly popular for assignments like image classification, object detec-
tion, or time series forecasting because CNN models are able to learn hierarchical
data representations. A Simple CNN model is represented in Figure 2.11.

Figure 2.11: CNN model

2.4.8 Dataset Management

In supervised learning and neural network models, datasets consist of features
and labels, where features are the input variables used to make predictions, and
labels are the target variables. Developing an ML model consists of three key
steps: training, validation, and testing. To effectively train and evaluate the
model, the dataset is divided into separate subsets for each of these processes.

• Training: In supervised ML models, during the training process, model pa-
rameters are updated continuously to reduce the difference between pre-
dicted and actual results. That step aims to generate a general model per-
forming well on unseen data.

• Validation: In that step, model performance is evaluated using a differ-
ent dataset from the training dataset. It shows the model’s generalization
ability by making predictions from unseen data. Validation is essential for
identifying possible overfitting and updating hyperparameters.

• Test: In the testing process, the developed model performance is evalu-
ated on a different dataset unseen during validation and training. Model
performance is measured using different metrics like R2 score and RMSE.

Understanding the concepts of bias, variance, overfitting, and underfitting is cru-
cial for assessing the performance and robustness of ML models.
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• Underfitting: Underfitting refers to the model’s inability to have an ad-
equate relationship between the input and target variables. This occurs
when the model is too simple to achieve a given task. Thus, the model
performs poorly for all training, validation, and test sets.

• Overfitting: Overfitting occurs if a model shows strong performance on
training data but fails on new, unseen data. It can be observed when the
model is too complex for more straightforward tasks. As a result, the model
begins to memorize instead of learning. This lack of generalization does
not allow the model to make accurate predictions on new data.

• Bias: An error type, bias, occurs when trying to handle complex problems
with simpler models. High bias refers to underfitting, which means the
model’s learning ability is poor. As a result, the difference between actual
and predicted variables is high.

• Variance: It defines the sensitivity of the model through to the training data
fluctuations. High variance can cause overfitting due to high sensitivity. As
a result, finding balanced bias and variance is vital for model performance.
[22].

Furthermore, there are several advanced techniques in ML that play crucial roles
in improving model performance:

• K-fold Cross Validation: The method involves randomly splitting the data
into k subsets and then iteratively training the model k times. In other
words, one subset is designated as the validation set at each training iter-
ation while the others act as the training set. Thus, the model is trained,
as shown in Figure 2.12. That technique enhances the robustness of the
model since it prevents overfitting by train and validating the model with
different subsets of the data at each split [23].

Figure 2.12: K-fold Cross Validation

• Early Stopping: In neural networks, the training process continues for a
specified number of epochs. With early stopping, training is terminated
if validation results deteriorate progressively. If the model continues the
training, although validation loss is getting larger continuously, overfitting
will occur.
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• Ensemble Models: A combination of several model predictions can reduce
overfitting and improve model reliability. Moreover, there are some terms
that are useful for determining developed model performances.

In regression analysis, two metrics are commonly used to assess model perfor-
mance:

• RMSE: It calculates the average deviation between predicted and actual
values by calculating the square root of the average squared differences, as
shown in Equation (2.5).

RMSE =

√
∑N

i=1(Predicted − Actual)2

N
, (2.5)

where N: the total number of samples, i: the iteration number.

• R2 Score: It evaluates how effectively a regression model works using
Equation (2.6). It can vary between 0 and 1. When it is closer to 0, it means
that the model is not able to explain any variability in the dependent vari-
able. Otherwise, when it is closer to the 1, it becomes closer to the perfect
explanation.

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳi)2 , (2.6)

where i is the iteration number, yi is the actual value, ŷi is the predicted
value, and ȳi is the mean of the actual values.

Moreover, in neural network architectures, loss and epoch are two important
terms during the training process.

• Epoch: At each epoch, the model processes a subset of the training dataset,
called a batch. The model weights and biases are updated according to the
calculated loss at each epoch to improve model performance. The epoch
number is a fundamental hyperparameter and should be determined ac-
cording to the problem’s complexity [24].

• Loss: It evaluates how the model’s predictions and actual labels differ from
each other during training. In other words, it quantifies the discrepancy
between predicted outputs and target values. This metric is used to update
model parameters.
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System Description

This section provides a detailed overview of the measurement scenarios. It also
describes the 5G TDD system specifications and the equipment used, specifically
the UE and the GNSS receiver.

3.1 Measurement Setup

Required measurement for this study is performed at Lund, Mobilvägen 12. Four
routes were considered: clockwise, clockwise random, anticlockwise, and anti-
clockwise random, each evaluated for both LOS and NLOS scenarios. Due to
technical restrictions, each measurement is conducted with a single UE. Mea-
surements of different routes are not performed simultaneously. A commercial
5G NR TDD system is considered in a single-user massive MIMO scenario, with
UL SRS data processed by the BS.

As shown in Figure 3.1, the 5G commercial-grade BS is positioned on the
roof of Ericsson’s office at Lund. Green lines present clockwise routes, while pur-
ple lines specify anticlockwise routes. Moreover, thin lines represent randomized
moved users, as thick lines show systematic movement. In the LOS scenario, the
roof garage area, characterized by an unobstructed path between the BS and the
measurement area, allowed us to capture the optimal signal conditions. Con-
versely, the NLOS scenario, a ground garage area with multiple obstructions,
such as a building and trees blocking the direct path, provided insights into the
signal performance in more challenging environments. The relatively low dis-
tance between the two scenarios yields a fair comparison. Furthermore, to ensure
a fair evaluation of UE position and direction estimation models, the routes are
augmented with randomized versions rather than relying solely on predefined
routes.

A UE for SRS data and a GNSS receiver for GNSS data were placed closely
together on a measurement van. The user completed five laps during each mea-
surement to gather sufficient data for training and testing. Measurements for all
routes are performed on the same day. It should be mentioned that the weather
was clear. Future studies could expand on this work by including measurements
at different times of the day or under varying weather conditions to understand
the impact of these variables on signal quality. Exploring measurements under

21
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varying weather conditions, such as rain or fog, could reveal how these envi-
ronmental factors affect signal propagation and reliability. Moreover, conducting
measurements with multiple UEs simultaneously would provide a dataset more
similar to real-world scenarios.

Figure 3.1: Measurement setup

3.2 SRS DATA

The NR system spans across two frequency bands: Frequency Range 1 (FR1), en-
compassing frequencies from 0.45 GHz to 6 GHz, and Frequency Range 2 (FR2),
covering from 24.25 GHz to 52.6 GHz. The UL SRS pilot signals were captured
and analyzed using a commercial Ericsson 5G BS operating in TDD mode within
the mid-band spectrum centered at 3.85 GHz. So, the FR1 frequency band is em-
ployed, which is suitable for good coverage.

In the system utilized for this study, the UE is equipped with four antennas,
while the BS boasts 64 beams. Specifically, in the 5G TDD system employed,
the numerology is set to 1, supporting the 100 MHz bandwidth (BW), with 273
RBs utilized. It comprises consecutive subcarriers in the frequency domain and a
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specific time duration in the time domain.
Subcarrier spacing(∆ f ), symbol durations, cyclic prefix lengths, and slot

configurations within transmission frames are among the critical factors that nu-
merology in 5G stipulates, as presented in Table 3.1. These parameters are essen-
tial for supporting a range of application requirements and effectively allocating
network resources. 5G numerology improves overall performance and user ex-
perience by allowing networks to flexibly adapt to changing traffic needs through
flexibility and scalability.

µ ∆ f = 2µ · 15 kHz Cyclic prefix
0 15 kHz Normal
1 30 kHz Normal
2 60 kHz Normal, Extended
3 120 kHz Normal
4 240 kHz Normal

Table 3.1: 5G numerologies

Considering the BW and numerology configuration, the allocation includes
normal CP, subcarrier spacing of 30 kHz, and designation of 137 Sub-Carrier
Groups (SCGs). Moreover, each 2 RBs refers to 1 SCG. Unlike the default SRS
tracing configuration, we sample every 3rd SCG across the entire BW, as shown in
Figure 3.2. Theoretically, all sampled SCGs should contain SRS. However, some
data is missing due to technical limitations. The handling of this missing data
will be explained in Chapter 4.1.1. This method yields a higher resolution of the
CTF. BS captured channel responses from only 2 out of the 4 possible UE antenna
ports simultaneously related to the data-streaming system’s capability. To cap-
ture a snapshot of the complete channel estimate per frame, a total of 64x2x46 UL
SRS channel estimate data are expected, which are obtained aperiodically in sev-
eral milliseconds. The Android smartphone device, OnePlus Nord 5G AC2003,
was used as a UE to generate SRS data, continuously transmitting data to remain
in connected mode, thereby ensuring it consistently reported SRS in the UL to the
BS.

3.3 GNSS DATA
As seen on the left side of Figure 3.3, a Swift GNSS receiver is a ground truth
reference strategically positioned close to the UE to ensure precise location data.
The measurement van completed all routes to record data comprehensively. The
UE, identified as the black unit on the right, continuously transmits data and
remains connected to generate SRS data. This setup allows the UE to report SRS
consistently to the BS in the UL. The position information for these measurements
comes from the Swift GNSS receiver, renowned for its high accuracy and reliabil-
ity. By utilizing the GNSS data from the Swift unit, we ensure precise and reliable
results across a range of testing and operational situations. This configuration is
crucial for maintaining the integrity of the measurements and ensuring that the
data collected accurately reflects the UE’s position and movement within the test
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Figure 3.2: System specifications

environment. The high precision of the Swift GNSS receiver not only enhances
the validity of the experimental data but also provides a solid foundation for an-
alyzing and optimizing the performance of the developed models.

Figure 3.3: Data measurement
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UE Position and Direction Estimation

This chapter includes an analysis of GNSS and SRS data and preprocessing tech-
niques. It details the development of the supervised ML models such as Linear
Regression, Decision Tree, and Random Forest and presents their results. Ad-
ditionally, it describes the development of FNN, CNN, and the proposed en-
semble model with applied postprocessing techniques. Furthermore, model per-
formances are calculated for position and direction estimation using RMSE and
R2 score. Cumulative Distribution Function (CDF) plots are presented for posi-
tion and direction estimations. Finally, comparison plots for estimated and actual
routes are presented for each scenario.

4.1 Data Analysis

The dataset comprises SRS data transmitted from the UE to the BS and GNSS
data that provide information about the UE’s position. This section thoroughly
analyzes and prepares the dataset for training using various preprocessing tech-
niques.

4.1.1 SRS Data

The recorded BB trace files containing relevant and irrelevant features were re-
trieved from the BS. The data format is transformed into the data frame format
from the string, as depicted in Figure 4.1.

Figure 4.1: SRS trace file
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Irrelevant features are filtered out, resulting in each data line comprising relevant
features, as can be seen in Figure 4.2.

Figure 4.2: Filtered SRS data

• UTC Time: Universal Coordinated Time, the global standard.

• SFN: A System Frame Number (SFN) is an identifier used in mobile net-
works, ranging from 0 to 1023.

• Layer: UE Antenna Number, which can be between 0 and 3.

• Directions: BS Directional Antenna Number.

• Exponent: BS Directional Antenna Related Exponent.

Since the BS needs to manage memory efficiently due to hardware constraints, it
employs the Q15 format when recording SRS trace files. Q15 format represents
numbers using 16 bits, where 1 bit is used for the sign (positive or negative).
To obtain decimal values from Q15 format, variables in direction blocks are first
converted to binary. The initial bit is used to define the sign, while the remaining
bits represent the fractional part of the number as presented:

X = (−1)s × 2(exp−7) × 1
frac

, (4.1)

where s is the sign, exp is the exponent, f rac is the fraction. For example, the
first data row, direction1 feature, can be considered, where the hexadecimal rep-
resentation is ’0x00CE017A’. Each value of the exponent feature corresponds to
direction1 through direction8, respectively, in the same row. So, the first value of
’22221122’, which is ’2’, represents the exponent for the first direction. The prefix
’0x’ indicates that the number following it is in hexadecimal format. The ’00CE’
part identifies the real part, while ’017A’ specifies the imaginary part. After hex-
adecimal to binary transformation:
Real Part in Binary: 0000000011001110
Imaginary Part in Binary: 0000000101111010
Since the first bit of both the real and imaginary parts is 0, their signs are positive.
Then, it is converted from Q15 format into decimal.

Xreal = (−1)0 × 2(2−7) × 1.206 (4.2)
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Ximag = (−1)0 × 2(2−7) × 1.378 (4.3)

X = 0.0376875 + 0.0430625j (4.4)

|X| = 0.0572 (4.5)

Later, the amplitude of X is saved to the dataset. Since signal amplitude gives
useful information about the position of UE regarding the power of the signal
and distance relationship as explained in Chapter 2.1.2.

As some sub-channel matrices are missing during SRS transmission, missing
channel estimate values need to be handled. If the amount of missing data in
a full channel matrix exceeds 30%, that frame is discarded to prevent possible
performance decrement. Otherwise, the forward-filling algorithm is employed
to maintain the CTF validity, as illustrated in Figure 4.3. Additionally, in cases
where there are duplicate channel estimation results for the same SCG, only the
latest estimate is retained.

Figure 4.3: Handling of the missing data
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At each SCG, SRS data is observed for UE1 and UE2 or UE3 and UE4 instead
of the complete sequence (UE1, UE2, UE3, and UE4). Therefore, the received data
is grouped in pairs regardless of the UE number, and the SRS channel estima-
tion snapshot is generated by averaging the channel matrices across the SCGs, as
shown in Figure 4.4.

Figure 4.4: Channel snapshot generation per frame

4.1.2 GNSS Data
The obtained GNSS dataset encompasses both relevant and irrelevant features,
as illustrated in Figure 4.5.

Figure 4.5: GNSS dataset

Irrelevant features are filtered out as shown in Figure 4.6.

Figure 4.6: Filtered GNSS data
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• Latitude: The north-south position of a point on Earth’s surface, measured
in degrees.

• Longitude: The east-west position of a point on Earth’s surface, measured
in degrees.

Next, the built-in function ’utm.from_latlon’ is utilized to calculate the X and
Y coordinates, which are based on the geographical shape of the world. This
function will not be explained as it is beyond the scope of this study. Moreover,
measured data coordinates were averaged and assumed as the center. Then, local
coordinates are defined accordingly. The final version of the GNSS dataset is
shown in Figure 4.7.

Figure 4.7: Final GNSS data

4.1.3 Total Dataset

Furthermore, the GNSS dataset contains data at each 100 ms, while SRS channel
estimation results are generated at much higher but various update rates. Firstly,
GNSS data was interpolated. Then, the datasets are time-aligned. As a final step
in the data preprocessing, some signal amplitudes are observed with relatively
small amplitudes at each beam due to measurement errors. So, the threshold is
determined, and if the signal amplitude is less than the threshold at each beam,
data is removed from the dataset. These steps were performed for each scenario.
The SRS data section of the created dataset in Figure 4.8 is assigned to the models
as features, while the GNSS data part is determined as targeted values.

Figure 4.8: The created dataset
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4.2 The Developed Models and Results

Firstly, the LOS clockwise scenario will be studied for each model. Then, the pro-
posed final model will be employed for all scenarios. The model will be trained,
validated, and tested separately for each scenario dataset.

4.2.1 Traditional Supervised ML models

The SRS data amplitudes are scaled to a range between 0 and 1. Subsequently,
the dataset is divided, allocating 20% for testing and 80% for training and val-
idation purposes. This 80% portion is then further divided into five folds for
cross-validation. The K-fold cross-validation technique, where K is set to 5, is ap-
plied to assess model performance and generalization. The model’s performance
is evaluated on unseen data to ensure robustness and reliability.

Linear Regression Model

The Linear Regression model’s performance across various datasets for the LOS
clockwise scenario is presented in Table 4.1. ‘Average Channel Matrix 1x128’ is
explained in Chapter 4.1.1. ‘UE averaged Channel Matrix 1x64’, is the averaged
version of this data over UEs. ‘Biggest Amplitude Channel Matrix 1x128’ is a se-
lection of the biggest amplitudes over SCGs instead of averaging. ‘Full Channel
1x5888’ is a serialized version over SCGs. Additionally, the square root of the
dataset is taken before scaling, and its performance is then evaluated. As antici-
pated and clarified in the background section, taking the square root improves
estimation results. However, neither position estimation nor COG estimation
yielded results within an acceptable range. ‘Distance’ term refers to position esti-
mation error regarding estimated and actual coordinates. ‘X’, ‘Y’, and ‘Distance’
RMSE values are presented in meters while ‘COG’ RMSE is presented in degrees.

Full Channel 1x5888
Linear Regression Linear Regression (sqrt)

X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)
RMSE 6.865 5.63 54.56 8.88 4.2 4.14 46.3 5.9
R2 Score 0.87 0.86 0.73 0.95 0.92 0.81

Average Channel Matrix 1x128
Linear Regression Linear Regression (sqrt)

X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)
RMSE 5.3 4.8 42.56 6.87 3.45 3.49 37.75 4.91
R2 Score 0.92 0.91 0.84 0.97 0.95 0.87

UE Averaged Channel Matrix 1x64
Linear Regression Linear Regression (sqrt)

X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)
RMSE 5.53 4.67 44.87 7.24 3.66 3.72 39.63 5.23
R2 Score 0.91 0.9 0.81 0.96 0.94 0.86

Biggest Amplitude Channel Matrix 1x128
Linear Regression Linear Regression (sqrt)

X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)
RMSE 5.81 4.95 50.33 7.63 3.71 3.85 44.54 5.35
R2 Score 0.9 0.89 0.775 0.96 0.935 0.82

Table 4.1: The Linear Regression model’s performance across dif-
ferent datasets
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Decision Tree Model

Then, the Decision Tree model is developed using presented hyperparameters in
Table 4.2.

Parameter Value
Criterion squared_error
Max Depth None
Min Samples Split 2
Min Samples Leaf 1

Table 4.2: Decision Tree parameters

The performance of the Decision Tree model is evaluated across various datasets
for the LOS clockwise scenario, as shown in Table 4.3. The presented results
are obtained using the square root of the channel snapshots. It is evident that
the Decision Tree models provide significantly better results for both position
and direction estimation. Due to the significantly larger size of the ‘Full Channel
1x5888’ dataset, it requires extremely high computational time and will not be
considered anymore.

Full Channel 1x5888 Average Channel Matrix 1x128
X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)

RMSE 0.795 1.84 30.37 2.00 0.76 1.00 25.1 1.26
R2 Score 0.998 0.985 0.92 0.9984 0.996 0.943

UE Averaged Channel Matrix 1x64 Biggest Amplitude Channel Matrix 1x128
X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)

RMSE 0.773 1.13 23.52 1.37 0.83 1.29 28.42 1.54
R2 Score 0.9983 0.994 0.95 0.998 0.993 0.93

Table 4.3: The Decision Tree model’s performance across different
datasets

Random Forest Model

The Random Forest model is subsequently developed using the defined hyper-
parameters in Table 4.4.

Parameter Value
N_Estimators 100
Criterion squared_error
Max Depth None
Min Samples Split 2
Min Samples Leaf 1

Table 4.4: Random Forest parameters

The results of the Random Forest model using different datasets for the LOS
clockwise scenario are presented in Table 4.5. As expected, the Random Forest
model provides the best position and direction angle estimation results until that
step with 0.897m RMSE for positioning and 15.25◦ RMSE for direction.
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Average Channel Matrix 1x128
X(m) Y(m) COG(◦) Distance(m)

RMSE 0.45 0.78 15.25 0.897
R2 Score 0.9994 0.9972 0.9788

UE Averaged Channel Matrix 1x64
X(m) Y(m) COG(◦) Distance(m)

RMSE 0.48 0.7 16.98 0.85
R2 Score 0.9994 0.9978 0.974

Biggest Amplitude Channel Matrix 1x128
X(m) Y(m) COG(◦) Distance(m)

RMSE 0.65 0.84 20.74 1.06
R2 Score 0.9988 0.997 0.962

Table 4.5: The Random Forest model’s performance across different
datasets

4.2.2 Deep Neural Networks

FNN Model

An FNN model is constructed with seven hidden layers, each containing 512, 256,
128, 64, 32, 16, and 8 neurons, respectively, in addition to an input layer with 1024
neurons, as illustrated in Figure 4.9. The output layer features three neurons: X-
coordinate, Y-coordinate, and COG estimation. The model utilizes an ’Average
Channel Matrix’, whose size is 1x128. Following this, the input data undergoes
preprocessing steps, including taking the square root of channel snapshots and
linear scaling between 0 and 1. To evaluate the model’s performance and ensure
robustness, K-fold cross-validation is applied, further enhancing the reliability
of the results. Moreover, the determined hyperparameters, including learning
rate, batch size, number of epochs, optimizer function, and loss function, are pre-
sented in Table 4.6. These hyperparameters were chosen based on the best results
obtained after testing various options. ’ReduceLROnPlateau’ refers to decreasing
the learning rate by a factor of 0.2 after the validation results have worsened for
five consecutive epochs. The minimum learning rate is limited to 0.0001.

Category Parameter Values

Model Architecture
Number of Layers 8
Layer Sizes 1024, 512, 256, 128, 64, 32, 16, 8 neurons
Activation Functions ReLU

Hyperparameters

Learning Rate 0.001
Batch Size 64
Epoch 200
Optimizer Adam
Loss Function MSE

Callbacks
Early Stopping Patience = 10
ReduceLROnPlateau Patience=5, Factor =0.2, Min_LR = 0.0001

Table 4.6: The developed FNN model parameters
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Figure 4.9: The developed FNN model

CNN Model

The designed CNN model consists of 2 Convolutional layers, 2 Pooling layers,
and 3 fully connected layers, as shown in Figure 4.10. The input data, represented
as ’Average Channel Matrix’, with 1x128 size, undergoes preprocessing steps,
including taking the square root and scaling. The employed hyperparameters
are represented in Table 4.7. After various attempts, the learning rate, batch size,
number of epochs, optimizer type, and loss function parameters are selected the
same as those of the developed FNN model. Furthermore, Callback parameters
are also set to the same variables.

Category Parameter Values

Model Architecture
Number of Conv. Layers 2
Convolutional Filters 128, 64
Kernel Sizes 3x3, 3x3
Pooling Layers MaxPooling (2x2), MaxPooling (2x2)

Model Architecture
Number of Layers 3
Layer Sizes 128, 64, 32 neurons
Activation Functions ReLU

Hyperparameters
Learning Rate 0.001
Batch Size 64
Epoch 200
Optimizer Adam
Loss Function MSE

Callbacks
Early Stopping Patience = 10
ReduceLROnPlateau Patience=5, Factor =0.2, Min_LR = 0.0001

Table 4.7: The developed CNN model parameters
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Figure 4.10: The developed CNN model

As can be seen in Table 4.8, the developed FNN and CNN models demonstrate
even greater accuracy than the Random Forest model. Moreover, their perfor-
mance is very close to each other. Thus, there is an excellent potential to develop
an ensemble model and get more accurate estimations.

The Ensemble Model

The proposed ensemble method attempts to increase accuracy and filter out po-
tential outliers. It averages estimation of developed CNN and FNN models, as
presented in Figure 4.11.

Figure 4.11: The developed ensemble model

The proposed ensemble model provides more consistent and reliable results. Fur-
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thermore, the best results are achieved in position estimation by applying the
postprocessing method, averaging current and previous estimations, resulting
in a position estimation with an RMSE of just 0.3 meters, as presented in Table
4.8. After applying a postprocessing technique, the direction estimation RMSE
increased from 6.44◦ to 7.1◦. However, considering the improved performance in
position estimation and potential outlier filtering, a slight reduction in direction
estimation accuracy may be deemed negligible. Current and previous estima-
tions are averaged since measured data are recorded in milliseconds, and user
cannot be far away from the previous situation nor change their direction much.

FNN CNN
X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)

RMSE 0.24 0.256 7.32 0.35 0.277 0.34 7.33 0.44
R2 Score 0.9998 0.9997 0.995 0.99979 0.9995 0.995

Ensemble Ensemble - PostProcessing
X(m) Y(m) COG(◦) Distance(m) X(m) Y(m) COG(◦) Distance(m)

RMSE 0.24 0.27 6.44 0.36 0.2 0.23 7.1 0.3
R2 Score 0.9998 0.9997 0.996 0.99988 0.99976 0.995

Table 4.8: Performance comparison of the DNN Models

Afterwards, the proposed ensemble model was tested across all four routes for
both LOS and NLOS scenarios and presented in Table 4.9 and Table 4.10.

Clockwise Clockwise - Random
X(m) Y(m) COG(◦) Distance X(m) Y(m) COG(◦C) Distance(m)

RMSE 0.2 0.23 7.1 0.3 0.29 0.35 8.97 0.454
R2 Score 0.99988 0.99976 0.995 0.9997 0.9995 0.99

Anticlockwise Anticlockwise - Random
X(m) Y(m) COG(◦) Distance X(m) Y(m) COG(◦) Distance(m)

RMSE 0.23 0.21 8.36 0.31 0.26 0.26 8.56 0.36
R2 Score 0.9998 0.9998 0.993 0.9998 0.9997 0.993

Table 4.9: The proposed ensemble model performance for LOS
routes

It is evident that the model’s performance on the clockwise-random route is
slightly worse than on other LOS scenarios, such as the anticlockwise route in the

Clockwise Clockwise - Random
X(m) Y(m) COG(◦) Distance X(m) Y(m) COG(◦C) Distance(m)

RMSE 0.53 0.35 6.33 0.64 0.52 0.39 5.8 0.65
R2 Score 0.99976 0.9995 0.9956 - 0.9998 0.9994 0.996 -

Anticlockwise Anticlockwise - Random
X(m) Y(m) COG(◦) Distance X(m) Y(m) COG(◦C) Distance(m)

RMSE 0.53 0.75 8.76 0.92 0.48 0.44 8.37 0.65
R2 Score 0.9997 0.998 0.991 - 0.9998 0.9991 0.991 -

Table 4.10: The proposed ensemble model performance for NLOS
routes
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NLOS scenario. A possible reason for this discrepancy is measurement error, as a
significantly higher amount of missing data was observed in these two datasets
compared to the others.

For all routes, the RMSE for positioning is calculated as less than 0.93 meters,
and for direction estimation less than 9◦. The difference between the LOS and
NLOS performance of the model is clear in positioning estimation. While max-
imum RMSE is observed as 0.45m in the LOS scenario, it is calculated as 0.93m
in NLOS, as more than twice. Surprisingly, the direction estimation accuracy is
not affected by channel condition for both LOS and NLOS scenarios; RMSE of
direction is observed between 5.8◦ and 9◦. Moreover, the random movement of
users slightly affected the results, and its impact was less than expected in terms
of RMSE.

Moreover, the suggested Ensemble-PostProcessing model’s CDF is plotted
in Figure 4.12 for both LOS and NLOS scenarios. The CDF plot reveals that 90% of
the position errors are less than 0.56 meters, indicating a high level of accuracy for
the position estimation model for the even worst-case route in the LOS scenario.
Similarly, the plot shows that 90% of the direction estimations have lower RMSE
than 5.71◦, demonstrating the model’s precision in estimating direction. This
level of performance highlights the effectiveness of the Ensemble-PostProcessed
model in terms of reliable and accurate estimations. Moreover, unlike the RMSE
tables, the effect of random movement is evident here. The CDF plots of ran-
domized routes exhibit slightly inferior results compared to predefined routes for
both positioning and direction estimations. Below side of the same figure, NLOS
scenario CDF plots can be examined. As expected, the model’s performance is
slightly worse due to the fading effects explained in Chapter 2.1.2, but it remains
within an acceptable range. Surprisingly, the COG estimation performance of the
model is even better than the LOS scenario. The CDF plot reveals that 90% of the
position estimations have RMSE less than 1.39 meters while %90 of the direction
estimations have RMSE less than 5.52◦. However, despite their low probability,
some position estimations exhibit RMSE greater than 2m, while certain direction
estimations exceed an RMSE of 15◦, indicating the presence of outliers.

Subsequently, the user’s position and direction estimation in LOS and NLOS
scenarios are plotted in Figure 4.13, with the angle of the arrow indicating the
user’s direction. This figure represents the UE position and direction at each se-
lected time instant. Since the dataset includes data at intervals of a few millisec-
onds, every 100th sample is plotted to enhance readability. Moreover, the size
of the arrows is increased to improve the readability of the figure. According to
the figures, it is evident that the estimation of the user’s position and direction is
highly consistent for all routes. The user adheres to the predefined routes at each
time instant, accurately maintaining the specified direction and position. There is
no unexpected position or direction estimation in the figure. In other words, there
are no UEs located outside the defined routes or directed towards areas outside
those routes.
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Figure 4.12: CDF of the proposed ensemble model
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Figure 4.13: The estimation results of UE movement for each route
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Furthermore, the estimated and actual routes (based on GNSS data) are com-
pared for both scenarios and all routes in Figure 4.14. Red lines denote the esti-
mated routes, while blue lines represent the actual routes. In the LOS scenario,
it is evident across all routes that the model achieves accurate estimates. Only a
small number of outliers are observed specifically in randomized routes. How-
ever, in the NLOS scenario, more outliers are observed for each route, indicating
discrepancies between the estimated and actual routes. Overall, the accuracy of
route estimation is higher in structured movement patterns (clockwise or anti-
clockwise) when compared with randomized versions. Random movements re-
sult in slightly more outliers. However, as explained, different parameters affect
accuracy, like missing data amount.



40 UE Position and Direction Estimation

Figure 4.14: Comparison of actual and estimated routes



Chapter5
UE Grouping

Evaluating the effectiveness of user grouping in a 5G system involves assessing
its alignment with specific criteria for network functionalities. This study does
not aim to establish universally optimal clustering parameters, given their de-
pendence on specific network function domains. Optimization of clustering pa-
rameter settings or the determination of one approach’s superiority over another
is not our focus. Rather, we emphasize showcasing the potential of the proposed
user grouping framework within a commercial 5G NR system.

In this task, grouping UEs based on estimated position and direction fea-
tures is aimed. Three different clustering models are developed, and their results
are commented on. Firstly, it should be noted that, for each LOS and NLOS sce-
nario, we have four routes, which means four UEs. However, data measurements
of different routes are performed at different times. So, clockwise, clockwise-
random, anticlockwise, and anticlockwise-random user movements should be
synchronized in the same time interval, as shown in Figure 5.1.

Figure 5.1: Time alignment of different routes

Thus, it can be assumed that they move simultaneously. Moreover, 4 UEs

41
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could be insufficient to analyze grouping results. There is a need to increase the
number of UEs. Initially, the first four minutes of data from each scenario were
filtered. The LOS Anticlock Random route dataset, having the shortest time in-
terval, was used to determine the time limitation for each UE. Later, each route
is divided into two cycles, treating them as separate entities, effectively doubling
the number of users for a more fair analysis, as presented in Figure 5.2.

Figure 5.2: Doubling the number of users

Finally, the user’s position and direction features are recorded every 30 sec-
onds during UE movement. It should be noted that since UE grouping was
checked every 30 seconds over a 1 minute 30 seconds period, we were able to
double the number of UEs. If the measurements had provided data for a longer
duration, we could have performed clustering with a significantly larger number
of UEs. The same steps were applied to NLOS routes, and different clustering
models were then implemented.

5.1 K-means Clustering

K-means clustering models are developed using defined initializations in Table
5.1. In K-means clustering, two different approaches were studied for the LOS
scenario: one with 2 clusters and another with 3 clusters.

Initially, the clustering model was developed based only on the UE position
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Category Parameter Values

Model Architecture
Number of Neighbors [2, 3]
Distance Metric Euclidean
Weights uniform
Algorithm auto

Table 5.1: K-means clustering model parameters

to see how the direction would affect it. The K-means clustering results for LOS
scenarios with varying numbers of clusters are depicted in Figure 5.3. Each user
is denoted by an arrow representing their estimated direction and position, with
colors distinguishing between different clusters. As expected, the model effec-
tively grouped users based on UEs’ positions. Notably, as the number of clusters
increased to 3, the model’s sensitivity heightened. An anomaly was observed at
Elapsed Time: 00:00 for 3 number of cluster case, where closely positioned red
and blue arrows did not cluster together as anticipated.

Figure 5.3: LOS scenarios K-means clustering based on only posi-
tion

Next, the model was developed using the same parameters but included the
COG in addition to the X and Y coordinates. Figure 5.4 illustrates the results,
showing that UEs can now be clustered into different groups even when closely
located but in opposite directions. Increasing the number of clusters to 3 high-
lighted the influence of direction on clustering.

5.2 Dynamic Clustering
Based on the results of K-means clustering, it is evident that static clustering with
a predefined number of clusters may not effectively capture the diverse positions
and directions of UEs. Therefore, there is a need for dynamic clustering methods
that can adjust to varying features across different time instances. These methods
would allow for a more flexible grouping of UEs based on their changing spatial
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Figure 5.4: LOS scenarios K-means clustering based on the posi-
tion and direction

and directional attributes, enhancing the adaptability and relevance of cluster
assignments in dynamic network scenarios. Firstly, developed models will be
defined. Later, the results of Hierarchical clustering and DBSCAN clustering with
two different initializations will be compared. Moreover, like the previous case,
clustering based on position and based on position and direction will be studied
to compare their difference.

5.2.1 Hierarchical Clustering
The hierarchical clustering model is developed with presented variables in Ta-
ble 5.2. Ward method groups data points into clusters to minimize the variance
within each cluster. The model identifies the clusters by comparing the selected
threshold and calculated distance matrix at each time sample. This flexibility re-
moves limitations on the number of clusters, offering adaptability to the dynamic
environment. Moreover, by adjusting the threshold, users can fine-tune the sen-
sitivity of the clustering, allowing for more or less sensitive groupings as needed.

Category Parameter Values

Model Architecture
Metric Euclidean
Compute Full Tree auto

Linkage
Linkage ward
Distance Threshold [0.5, 1.0]

Table 5.2: Hierarchical clustering model parameters

5.2.2 DBSCAN Clustering
The DBSCAN clustering model, as defined by the parameters in Table 5.3, is im-
plemented with a minimum number of neighbors set to 1 to avoid designating
any user as noise. This approach ensures that each user is assigned to a clus-
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ter based on the density of neighboring points within a specified neighborhood
size. The clustering process demonstrates the model’s ability to dynamically ad-
just the number of clusters based on the density of UEs in different neighborhood
sizes, resulting in variable cluster counts across iterations. This flexibility, similar
to hierarchical clustering, removes the constraint of predefining the number of
clusters and allows for customization of clustering sensitivity through ϵ adjust-
ments, facilitating either finer or broader groupings based on the application’s
requirements.

Category Parameter Values

Model Architecture
ϵ [0.5, 0.6]]
minPTS 1

Metrics
Metric Euclidean
Algorithm Auto

Table 5.3: DBSCAN clustering model parameters

5.2.3 Clustering Comparison

Firstly, the clustering model results based on the only position for both LOS and
NLOS scenarios are depicted in Figure 5.5. This approach groups users primar-
ily by their spatial proximity, disregarding their directional differences. In the
LOS scenario at Elapsed Time: 01.00, DBSCAN with ϵ = 0.5 reveals three dis-
tinct clusters: blue, red, and black, where UEs close to each other are grouped
together. Increasing ϵ to 0.6 merges the blue arrows into the black cluster due to
their proximity. Hierarchical clustering with a threshold of 0.5 exhibits a more
refined clustering with four groups, but increasing the threshold to 1.0 results in
clustering similar to DBSCAN with ϵ = 0.5. In the NLOS scenario at Elapsed Time:
00.30, DBSCAN with ϵ = 0.5 shows three clusters, reflecting UEs in close proxim-
ity. Surprisingly, increasing ϵ to just 0.6 results in all UEs being clustered together,
indicating the model’s limitation in distinguishing UEs. Conversely, hierarchical
clustering with a threshold of 0.5 exhibits four distinct groups, demonstrating
greater sensitivity. Increasing the threshold to 1.0 decreases the model’s sensitiv-
ity, aligning clustering with the results of DBSCAN with ϵ = 0.5. Thus, the choice
of model initialization significantly impacts the clustering outcomes.

Subsequently, the performance of Hierarchical clustering and DBSCAN clus-
tering is evaluated across various initializations for both LOS and NLOS scenar-
ios using UE data based on position and direction at different time instances, as
illustrated in Figure 5.6. At Elapsed Time: 00.00 in the LOS scenario, DBSCAN
with ϵ = 0.5 demonstrates effective clustering by not grouping UEs in the same
cluster even when they are closely positioned but have opposite directions. How-
ever, increasing ϵ to 0.6 causes the model to group UEs in opposite directions
together. Hierarchical clustering with a threshold of 0.5 produces results similar
to DBSCAN with ϵ = 0.5. When the threshold is increased to 0.6, it clusters UEs
together that are slightly further apart or have different directions.

These observations underscore the sensitivity of clustering outcomes to pa-
rameter settings and initialization choices across different scenarios. The distinc-
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Figure 5.5: Dynamic clustering based on only position
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Figure 5.6: Dynamic clustering based on position and direction
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tion between clustering based solely on position and incorporating direction be-
comes particularly evident when models are initialized with small threshold and
ϵ values, indicating higher sensitivity. Generally, users are grouped as antici-
pated by both models. However, there are instances where UEs that are expected
to be grouped together are not clustered as anticipated, or conversely, those that
should not be grouped together are clustered. Due to the absence of labeled data,
accuracy estimation for this task is challenging. Nevertheless, the project aims to
demonstrate the feasibility of achieving well-grouped results in clustering with-
out definitive correctness.



Chapter6
Conclusions

This chapter represents an overview of the primary findings of the study, and it
also explores potential directions for future research and advancement.

6.1 Conclusions
In conclusion, this study focuses on UE grouping using ML techniques, utilizing
a dataset that includes four distinct user routes: clockwise, clockwise random,
anticlockwise, and anticlockwise random, considered for both LOS and NLOS
scenarios. This diverse dataset ensures robust analysis and validation of the pro-
posed methodologies across various real-world environments. The effectiveness
of the presented ensemble model in estimating UE position and COG using UL
SRS channel estimation results is evident, achieving highly accurate estimations
with less than 0.93m RMSE for positioning and less than 9◦ RMSE for direction.
Fewer outliers were observed in the route estimations for LOS scenario clockwise
random and anticlockwise random routes. Moreover, more outliers were seen in
the estimation of NLOS routes. Additionally, the randomness of movement did
not significantly affect the estimation results regarding RMSE. On the other hand,
in CDF plots, it was clear that the proposed ensemble model results are slightly
worse in randomized routes than in predefined routes.

Developing and analyzing various clustering methods based on the esti-
mated positions and COG of UEs provide valuable insights for network planning
and resource optimization with load balancing and capacity planning possibili-
ties. Moreover, the exploration of clustering models based on only position ver-
sus both position and direction clearly presented the effect of the direction on the
clustering results. Furthermore, the models developed for beam region selection
and prediction have demonstrated promising accuracy levels, confirming the ef-
fectiveness of the developed ensemble model. This research provides results that
can lead to significant advancements in the 5G network optimization field.
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6.2 Future Work
The presented study offers various possibilities for continuation. Below, potential
future explorations are elucidated:

• Data measurements are conducted individually for each user route and
then aggregated in this study. Conducting simultaneous measurements for
multiple users could provide a more comprehensive dataset for analysis.

• Broadening the scope to include measurements from more than four users
simultaneously could enrich the dataset and improve the project’s applica-
bility to diverse scenarios.

• The model could incorporate channel impulse response as an input, along
with the transfer channel function, enabling a comparison of model accu-
racies.

• UE position and direction in the next milliseconds can be predicted.
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Chapter7
Appendix

As an extra task, UL SRS channel estimation results are utilized to both select
and regress the best beams for current and future cases, which could enhance tar-
geted beamforming. For this task, we utilized the UE Averaged Channel Matrix
1x64, previously created for the UE position and direction estimation task. The 16
beams with the highest signal amplitudes were classified as the best beam region
and labeled as 1, while the others were 0. Various ML models, including Lin-
ear Regression, Random Forest Classifier, Random Forest Regressor, FNN, and
CNN, were implemented using the UE Averaged Channel Matrix 1x64 as input.
For classifier models, the beam indices were used to regress. For regressor mod-
els, the output provided the probability of each beam, and the top 16 beams with
the highest probabilities were selected. Two tasks were studied: first, using cur-
rent SRS data to regress the current 16 best beams; second, using current SRS
data to regress the future 16 best beams. Table 7.1 presents the performance of
various ML models in selecting the optimal 16 beam regions. Model accuracy
is determined by assessing the number of correctly regressed best beam indices.
By combining the results from Linear Regression, FNN, and CNN models, an
ensemble model is created, achieving the highest accuracy of 0.977.

Best Beam Estimation
Model Accuracy
MultiClass Multioutput 0.82
Linear Regression 0.93
RNN 0.95
Random Forest C. 0.954
Random Forest R. 0.965
FNN 0.972
CNN 0.97
Ensemble 0.977

Table 7.1: Best beam estimation results

Table 7.2 showcases the effectiveness of different ML models in forecasting
the optimal next 16 beam regions for UL based on current UL channel estimate
SRS data. Through a fusion of outcomes from Linear Regression, FNN, and CNN
models, an ensemble model is formed, achieving an impressive accuracy of 0.963.
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While the anticipation of future beam regions is marginally lower than current
selections, it remains within an acceptable range, as anticipated.

Best Beam Prediction
Model Accuracy
MultiClass Multioutput 0.78
Linear Regression 0.92
RNN 0.925
Random Forest C. 0.934
Random Forest R. 0.95
FNN 0.958
CNN 0.953
Ensemble 0.963

Table 7.2: Best beam prediction results

As a feature work, the best beam region for downlink can be estimated using UL
SRS due to reciprocity of the TDD system.
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