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Abstract

This thesis presents the development of a computer vision based robotic system for
flexible sample switching at the European Spallation Source (ESS). At ESS, sam-
ples will be placed in the neutron beam by the instruments. These environments
will be exposed to radiation, making direct access to the samples difficult for per-
sonnel. To maximize scientific output, it is also desirable to minimize the downtime
of the neutron beam. These factors make an automated solution for sample switch-
ing highly desirable. Traditional robotic systems often lack the adaptability needed
to perform in settings that are subject to change. Consequently, it is hard to develop
robotic systems that are general enough to be independent of a specific robotic arm
and the environment, using the traditional approach. This project addresses these
limitations by creating a robotic system capable of operating autonomously in a
dynamic environment.

The system integrates several components: a Stäubli TX60 industrial robot, an
Intel RealSense D435if depth camera, and custom 3D-printed sample handles with
ArUco markers for identification and pose estimation. ROS is used for control and
perception, and EPICS drivers is developed for integration with ESS’s control sys-
tem.

The results demonstrate the feasibility of integrating autonomous robotic sys-
tems into complex research environments, showing promise in improving opera-
tional functionality in sample handling at ESS. Future work will focus on enhanc-
ing system robustness, upgrading hardware, expanding functionality, and further
integration with ESS’s control systems.

Overall, this thesis contributes to the greater field of robotics by providing a
case study of a versatile and adaptable robotic system, highlighting challenges and
solutions in developing autonomous systems for scientific research.

3





Acknowledgments

We would like to express our gratitude to the individuals who supported us through-
out this project. Our academic supervisor, Björn Olofsson, provided guidance and
insightful feedback. We also extend our thanks to Tomasz Bryś and Karin Raths-
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1
Introduction

Traditionally, robotic automation has been characterized by clearly defined oper-
ations within controlled and structured environments. These systems are typically
engineered to execute repetitive tasks with high precision but often lack the flexi-
bility required to adapt to dynamic or unpredictable conditions [Heyer, 2010]. This
rigidity makes traditional robotic automation less suitable when developing general
solutions for dynamic environments.

At the European Spallation Source (ESS), there is a need for sample switch-
ing systems to move samples into and within the neutron beam of the instruments.
Currently, various specialized systems are suggested, such as the one by [Schmid
et al., 2021]. These systems are designed to meet the specific requirements of differ-
ent sample types and instruments. However, these solutions might prove difficult to
generalize and use across different experimental setups. This project aims to over-
come those constraints by developing an autonomous robotic system for a robotic
arm that is both flexible and versatile, capable of operating on different samples
without being limited by constraints such as a specific robot model or a specific
environmental setting. The goal is to design the autonomous system in such a way
that functionality can be easily added, resulting in a greater degree of versatility and
adaptability.

At ESS, there is a target for 95% facility reliability, a high-level goal of the ESS
facility. This goal places significant demands on the processes at ESS [Peggs, S.
et al., 2012]. The robotic system under development in this thesis aims to address
limitations to a specialized system by creating a solution that is flexible and general
enough to be integrated into any of the fifteen instruments at ESS.

The methodology chosen for this thesis includes a literature review of the cur-
rent state of laboratory automation and robotics, followed by practical experimen-
tation to design and develop a system that can make this process more dynamic and
flexible.
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Chapter 1. Introduction

1.1 Background

European Spallation Source ERIC
European Spallation Source ERIC is a research facility currently being built in
Lund, Sweden [About ESS n.d.]. It is Europe’s next flagship big science project
and is funded by 13 European member countries. When finished, it is set to become
the most powerful neutron source in the world and represents a pinnacle to the sci-
entific advancement of materials research. By accelerating protons to 96% the speed
of light and targeting them at a rotating tungsten wheel, neutrons will be generated
through spallation. These will be guided to neutron scattering instrument, enabling
scientist to use the neutrons for research applications [How the Accelerator works
n.d.]

Previous Work
In this section, several key studies that have influenced the development of this
thesis are reviewed. Foundational insights into the use of robotic systems for various
applications, ranging from vision-based control to sample manipulation in scientific
settings, are provided by these works.

Vision-Based Autonomous Robot Control for Pick and Place This article dis-
cusses vision-based pick and place, which is highly relevant to this thesis. The au-
thors also go in-depth into the calibration of a camera fixed in the workplace, a
design choice that is similar to the approach taken in this thesis [Kotthauser and
Mauer, 2009].

Intelligent Automation of Dental Material Analysis Using Robotic Arm with
Jerk Optimized Trajectory Focusing on the optimization of robot trajectories to
minimize jerking motions, this article addresses a critical aspect of robotic automa-
tion: the need to handle sensitive samples without causing damage. This concern is
particularly relevant to the thesis, given that the integrity of samples at ESS must be
preserved to ensure the validity of scientific results [Damaševičius et al., 2020].

Improved sample manipulation at the STRESS-SPEC neutron diffractome-
ter using an industrial 6-axis robot for texture and strain analyses The study
("Improved sample manipulation at the STRESS-SPEC neutron diffractometer us-
ing an industrial 6-axis robot for texture and strain analyses") by Randau et al.
presents an examination of the utility and adaptability of industrial 6-axis robots in
scientific laboratories. It highlights the robot’s versatility in handling diverse sample
sizes and weights, offering manipulation and automated sample changing capabil-
ities, which is important for complex experimental arrangements [Randau et al.,
2015].
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1.2 Questions and Goals

1.2 Questions and Goals

As can be seen in [Randau et al., 2015], robotic automation is used as sample ma-
nipulators in complex research environments. This solution is implemented in the
more traditional way, using the robot language specific to the manufacturer. Simi-
larly, they have written scripts that translate the manufacturer-specific language into
the language of the control system. However, since the control system only accepts
singular commands, they have had to simplify the robot’s movements significantly.
This means that if they were to add more functionality or use the system on another
robot, they would have to invest significant time in developing that capability.

This thesis will investigate whether there is a way around these limitations by
developing a system that is flexible in both its operation and its compatibility with
different robots and environments. The goal is to create a solution that enhances
functionality and adaptability without requiring extensive reprogramming or system
modifications.

• Research questions

– Robotic Automation and System Integration in Research Applica-
tions - How can robotic automation, specifically through the use of in-
dustrial robots, be effectively integrated into research applications for
manipulating samples?

– Precision and Efficiency in Robotic Operations - What levels of pre-
cision and efficiency can be achieved in robotic operations related to the
placement and movement of samples within scientific settings?

– Recognition and Positioning Techniques for Robotic Systems - How
can recognition and positioning techniques be applied within robotic
systems to enhance the identification and manipulation of samples in
research and industrial environments?

• Goals for the European Spallation Source

– Introduction of Robotics Knowledge to ICS - To facilitate the trans-
fer and implementation of robotics knowledge at the Integrated Control
System (ICS) domain at ESS.

– Feasibility for EPICS Integration - To evaluate the feasibility and po-
tential benefits of integrating robotic systems with the EPICS frame-
work, aiming to enhance automation and precision in sample handling
processes.
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Chapter 1. Introduction

1.3 Outline

This thesis is organized into several chapters, each detailing a specific aspect of the
research, development, and findings related to the autonomous robotic system for
sample switching at the ESS. The structure of the thesis is as follows:

• Chapter 1: Introduction - Introduces the context, background and objec-
tives, emphasizing the need for an autonomous robotic system at ESS to im-
prove sample switching processes. Outlines the project’s methodology and
goals.

• Chapter 2: Theory - Covers theoretical foundations, including positioning
and movement, kinematics, and homogeneous transforms. Introduces ROS,
EPICS, and key concepts in robotic perception.

• Chapter 3: System Design - Details the architecture and components of
the robotic system. Describes hardware (Stäubli TX60, Intel RealSense cam-
era, 3D-printed handles) and software (movement, perception, system control
nodes and EPICS integration).

• Chapter 4: Developed System Architecture - Explains the system architec-
ture from user input to robot actuation. Describes inputting sample and task
information, FSM operation for task execution, and EPICS integration.

• Chapter 5: Results - Presents findings from subsystem and system testing.
Includes performance metrics for movement and perception systems, hand-
eye calibration accuracy, and overall system results.

• Chapter 6: Discussion - Analyses key findings, discussing implications, lim-
itations, and challenges. Reflects on design choices, sensor performance, and
system integration. Revisits research questions and goals. Suggests potential
enhancements and expansions of the thesis.

• Chapter 7: Conclusions - Summarizes contributions, highlighting the fea-
sibility and benefits of the developed system for sample switching at ESS.
Emphasizes advancements in robotic automation, system design, and inte-
gration.

1.4 Contributions

The work presented in this thesis was a collaborative effort, with most of the tasks
being performed jointly by the authors. However, much of the Hand-Eye calibration
work can be attributed to Anton Håkansson and most of the EPICS integration can
be attributed to Anthon Andersson.
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1.5 Abbreviations

Generative AI tools were used throughout the work. ChatGPT was used to assist
in troubleshooting and to suggest improvements to code and written text [OpenAI,
n.d.]. GitHub Copilot was used during the development for auto-completion and
generation of boilerplate code [GitHub, n.d.].

1.5 Abbreviations

Table 1.1 List of abbreviations.

Abbreviation Meaning
CV Computer Vision
DB Database

EPICS Experimental Physics and Industrial Control System
ERIC European Research Infrastructure Consortium
ESS European Spallation Source
FOV Field of view
FSM Finite State Machine
ICS Integrated Control System
ID Identification
I/O Input / Output
IOC Input / Output Controller
PV Process Variable
IR Infrared

JSON JavaScript Object Notation
KDE Kernel Density Estimation
MGPI Move Group Python Interface
OPI Operator Interface
PC Personal computer
PnP Perspective-n-Point
PV Process Variable

RANSAC Random Sample Consensus
RGB Red Green Blue
ROS Robot Operating System
SQL Structured Query Language
STL Stereolithography
UI User Interface

UML Unified Modeling Language
URDF Unified Robotics Description Format
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2
Theory

In this chapter, the theoretical background necessary to understand the develop-
ment and operation of the computer vision-based robotic system for flexible sample
switching at the European Spallation Source (ESS) will be presented. This includes
the fundamental concepts of positioning and movement, the workings of the Robot
Operating System (ROS), the principles behind the Experimental Physics and In-
dustrial Control System (EPICS), and important concepts relating to robotic per-
ception.

2.1 Positioning and Movement

Poses and Transforms
Understanding poses and transforms is a key aspect in both the movement and per-
ception part of this work. The terminology used in this thesis is based on [Lynch
and Park, 2017]. Although poses and transforms are mathematically described in
similar ways, their differences can be summarized as follows:

• Pose - Is the position and orientation of an object in space with reference to a
coordinate system.

• Transform - Is the transformation between poses or coordinate frames.

There are several conventions and ways to represent poses and transforms that
have different properties and use cases. The following has been used in this work:

Positions and Translations Positions and translations are described with a vector
of the movement P = [x,y,z]T with reference to a right-handed coordinate system.

Orientations and Rotations

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.1)
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2.2 ROS

Orientations and rotations are described with 3×3 rotation matrices, or param-
eterized using Euler angles φ = [r, p,y]T , Rodrigues vectors r = [a,b,c]T or quater-
nions q = [x,y,z,w]T .

Homogeneous Transforms The homogeneous transform is a compact represen-
tation of a translation and rotation as a single 4×4 matrix.

ATB =

[
ARB

APB
0 1

]
(2.2)

In Equation (2.2) the transformation from frame B to frame A can be seen.

AP = ATB
BP = ATB

BTC
CP = ATC

CP (2.3)

These transformations can be compounded as seen in Equation (2.3).

Kinematics
Forward Kinematics Forward kinematics is the problem of finding a pose from
a set of joint variables, for example what the current end effector pose is [Popovic
and Bowers, 2019].

Inverse Kinematics Inverse kinematics is the problem of finding joint variables
for a pose. For example, how to configure the joints to get the end effector to a given
pose [Popovic and Bowers, 2019].

2.2 ROS

The Robot Operating System (ROS) is an open-source, meta-operating system for
robot applications that provides a set of open-source libraries and tools [Introduction
- ROS Wiki 2018]. As it was widely used throughout the project, this section gives
an overview to some core concepts and tools.

Concepts
Nodes A ROS Node is a runtime process. It is common for a system to have
multiple nodes handling different functionality such as sensor management, motor
control and user input [Nodes - ROS Wiki 2018].

Messages Nodes communicate with each other using messages with a publish
/ subscribe model. Publishers publish their messages to topics that subscribers can
listen to. There are existing standard messages one can use, or it is possible to create
custom messages [Messages - ROS Wiki 2016].

Services and Actions Services are built on top of the message model and allows
nodes to ask other nodes to do work for them through request / reply message pass-
ing [Services - ROS Wiki 2019]. Actions extends the idea of services by offering
monitoring and preemption of tasks [Marder-Eppstein et al., 2024].
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Chapter 2. Theory

Tools
Roslaunch To easily start multiple nodes and set parameters the roslaunch pack-
age can be used. Information regarding the nodes to start and any parameters are
specified in a .launch file [Conley et al., 2019]. When the file is launched, it runs the
commands inside it. This is very useful for starting complex systems and keeping
track of parameters.

RViz RViz is a 3D-visualization tool that can visualize the environment as the
robot perceives it. It can for example show how the coordinate frames are posi-
tioned, how the robot links are configured, point clouds from depth cameras and
much more [Hershberger et al., 2018]. This is useful both for operators and devel-
opers.

MoveIt MoveIt is a motion planning, kinematics and control tool for controlling
robots together with ROS [MoveIt n.d.]. By configuring it with a model of the robot,
adding environmental obstacles and manipulable objects, it is able to plan and exe-
cute trajectories with collision avoidance.

tf2 Tf2 is a ROS transform library that tracks coordinate frames and allows for
transformations between any two connected frames. The overall structure is a tree,
meaning each frame can have multiple children but only one parent. The tracked
transformations can either be static, like the transformation from the world to the
base of the robot arm, or dynamic like the transformation between two joints in the
robot arm [Foote et al., 2019].

2.3 EPICS

EPICS stands for the Experimental Physics and Industrial Control System, which
is an open-source software that provides software infrastructure and tools for large
distributed systems, particularly large science experiments like the European Spal-
lation Source [About EPICS n.d.]. EPICS allows for high-bandwidth hard and soft
real time applications across thousands of computers. This makes it possible to com-
municate with these computers via channel / PV access, e.g., from a central control
room. EPICS normally interacts with real-world I/O and local control tasks.

2.4 Perception

Robotic perception is the capability of robots to understand and interact with their
environment using sensory data, environment modelling, and machine learning al-
gorithms. It involves processing data from various sensors, which can be onboard
the robot or external, to create a detailed representation of the surroundings. This
enables robots to perform tasks such as obstacle detection, object recognition, and
navigation. [Premebida et al., 2018]
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2.4 Perception

Camera model To map coordinates in the image, (u,v), to positions in the world,
(X ,Y,Z), as shown in Equation (2.4), the camera’s intrinsic matrix K and extrinsic
matrix T must be known [Hemayed, 2003]. The scale factor s marks the depth of
the 3D point.

su
sv
s

= K T


X
Y
Z
1

 (2.4)

Intrinsic parameters - The K matrix, describing the camera’s intrinsic parame-
ters, is used to project points from the camera coordinate frame to pixel coordinates.
In this thesis the K matrix is obtained from the ROS CameraInfo message [Cam-
eraInfo.msg 2022]. The K matrix is defined as follows in Equation (2.5), where fx
and fy are the focal lengths, and (cx,cy) are the coordinates of the principal point.

K =

 fx 0 cx
0 fy cy
0 0 1

 (2.5)

Extrinsic parameters - To convert the positions in the camera’s coordinate
frame to other coordinate frames, the camera’s extrinsic matrix needs to be known.
This matrix, which represents the transform between the camera frame and the other
frame, is obtained through extrinsic calibration, such as hand-eye calibration.

ArUco Markers ArUco markers are square, black and white patterns designed for
easy detection in images. Two such markers are shown in Figure 2.1 have unique
IDs for each marker pattern, allowing for distinct identification of different markers.
The core of their functionality lies in the high contrast design, which makes the
detection of the key features easier and more robust. [Detection of ArUco Markers
n.d.]

Figure 2.1 Example of ArUco tags with ID 6 on the left, and ID 7 on the right.

The ArUco library, integrated within OpenCV, provides tools for generating,
detecting, and estimating the pose of these markers. The ArUco module in OpenCV
offers functionalities to detect ArUco markers, estimate their pose, and manage
marker dictionaries [Detection of ArUco Markers n.d.].
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Chapter 2. Theory

2.5 System Controller

Finite State Machine Finite State Machines (FSMs) consists of a unique set of
states. Depending on input and current state, it transitions between these predefined
states [Wilson and Mantooth, 2013].

18



3
System Design

This chapter details the system architecture of the sample switching robot, divided
into two primary sections: Hardware and Software. Each section is divided further
into three chapters: Movement, Perception and System Control, mirroring the three
parts of the autonomous system.

3.1 Preface

At the start of the project, there were pre-existing components in which no develop-
ment work was involved:

1. Stäubli TX60 Industrial Arm with Pneumatic Gripper

2. CS8C Robot Controller

3. Safety cage for the Stäubli TX60

3.2 Hardware

Stäubli TX60 The robot arm used in the project was the Stäubli TX60, a 6-axis
industrial robotic arm, it can be seen in Figure 3.1 and has the technical specifi-
cations described in Table 3.1. It was developed by Stäubli, a Swiss company that
provides industrial and mechatronic solutions [Stäubli n.d.]. Attached to the robot is
a pneumatic gripper, capable of transitioning between its two states: open or closed.

CS8C Controller The CS8C controller controls movement of the robot through
commands. It also features a user-operated pendant, connected by a cable, for man-
ual control.
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Chapter 3. System Design

Figure 3.1 The Stäubli TX60 industrial robot with pneumatic gripper.

Table 3.1 Technical specifications from datasheet [Stäubli, 2007].

Characteristics Model
Maximum Load 9 kg
Nominal Load 3.5 kg

Reach (axis 1 - 6) 670 mm
Degrees of Freedom 6

Repeatability (ISO 9283) ±0.02 mm
Motion Range - Axis 1 ±180◦

Motion Range - Axis 2 ±127.5◦

Motion Range - Axis 3 ±142.5◦

Motion Range - Axis 4 ±270◦

Motion Range - Axis 5 +133.5◦−122.5◦

Motion Range - Axis 6 ±270◦

Robot Cage The robot is installed within a cage featuring an aluminium frame
and clear acrylic glass sides, seen in Figure 3.2. The cage box outside dimensions
measure 1250 (l)×1000 (w)×1354 (h) mm. It includes a sliding acrylic glass door
integrated with the robot controller, restricting operations to manual mode when the
door is open.

Sample Holder and Rack To enhance the robot’s ability in handling samples of
varying sizes and shapes, a sample holder has been engineered to serve as an inter-
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3.2 Hardware

Figure 3.2 Stäubli TX60 in the safety cage.

face between the robot’s gripper and the samples. The prototype holder, manufac-
tured through 3D-printing, can be seen in Figure 3.3a. Key features of the handles
include:

• Gripper interface - The top of the sample features a cylindrical section with
two ears on either side. The cylindrical section matches the cutout in the grip-
per and the ears fit between the gripper’s fingers ensuring that smaller mis-
alignments are corrected when the handle is picked up.

• Base - To allow for the handle to sit on top of the rack’s ports, it has a circular
base extending from the centre of the cylinder.

• Marker platform - For the perception system to detect the handles, markers
are required. Therefore, the base extends on one side into a platform where
markers can be added. The 2× 1 ArUco grids used can be seen attached to
the platform in Figure 3.3a.

• Sample rod - Below the base, a rod extends where samples are intended to
be attached to the bottom. This is included to give clearance between the rack
and the samples when the handle is held in a lifted position in the rack during
the pick and place procedures.

• (Foot) - Some unique handles, such as the target later used in the hand-eye
calibration, include a wide foot at the bottom of the sample rod. When neces-
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Chapter 3. System Design

sary, the foot is included for the attachment of large markers at the bottom of
the handle, or to allow for placement of the handle outside of rack ports.

The sample rack, for the placement of handles, has been manufactured out of
wood. It can be seen, painted in a green colour, in Figure 3.3b. It has ports where
handles with samples can be moved into from the side and placed. An ArUco grid
is attached to one corner to allow for detection using the perception system and as
more area is available, a 2×2 grid is used.

(a) Sample handle with two ArUco
tags.

(b) Sample rack in green, featuring the sample
handle in (a). The rack’s marker can be seen
on the near corner.

Figure 3.3 Images of the sample handle and rack.

Cameras At the start of the thesis, two monochromatic network cameras where
provided. These were found to be unsuitable for the task because of the following
reasons:

• Sensor being monochromatic.

• Narrow field of view for available lenses.

• Unreliable network connection and complicated configuration required to
avoid flooding the network with traffic.

• Low frame rate.

22



3.3 Software

Therefore, it was decided to procure an Intel RealSense D435if depth camera,
seen in Figure 3.4. This was decided on for the following reasons:

• Being a stereo camera, only one is required to get depth information. The
picked models range of 0.2 to 3.0 m aligns with the distances in this applica-
tion [Intel® RealSense™ Product Family D400 Series 2023].

• The field of view of 69 × 42 degs. is wide enough to see the majority of
the cage’s interior when mounted inside [Intel® RealSense™ Product Family
D400 Series 2023].

• Simple to interface with through a USB connection.

• Manufacturer support for ROS with an open source ROS1 wrapper available.

• Price within with the project’s allocated resources.

The depth information that the sensor provides in addition to RGB-data is cal-
culated by having two image sensors identifying matching points in the respective
frame and calculating the shift between them. To improve the performance, it has
an IR projector that projects an invisible pattern that the image sensors can easily
identify and compare. The "f" in the product name indicates that the model used
is equipped with an IR-pass filter. This filter mitigates false depth data caused by
repetitive patterns in the scene. It is specified to provide depth data with an ab-
solute error of ±2%, spatial noise of ≤ 2% and temporal noise of ≤ 1% [Intel®
RealSense™ Product Family D400 Series 2023].

Mounting Bracket To mount the camera to the robot cage. A mounting bracket
was designed and manufactured through 3D-printing. In Figure 3.4 it can be seen
how it connects to the ball joint from the camera’s complementary tripod, allowing
for adjustments of the camera orientation. It is connected to a preexisting bracket in
the cage with two screws. No permanent alterations had to be made to the cage.

3.3 Software

The software for the project is running in three locations in a layout that can be seen
illustrated in Figure 3.5. The three locations are:

1. ROS system on Linux PC - The first location is a Linux computer running
the ROS system where most of the program logic is.

2. ROS drivers on CS8C control cabinet - The second location is the CS8C
control cabinet that is running the robot drivers interpreting the ROS com-
mands and moving the robot.
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Chapter 3. System Design

Figure 3.4 The Intel RealSense D435if depth camera with mounting bracket inside the
robot cage.

3. EPICS on PC - Lastly a third computer can through EPICS provide user
input to the ROS system.

As the code running on the cabinet is harder to monitor, time consuming to
upload and test, and written in the less known VAL3 language, the decision was
made to only add required core functionality to it and have all other program logic
in the ROS part. ROS was used as a result of its open-source status, supporting a
wide range of robotic platforms. In the initial stages of the project, ROS1 drivers
were found for the CS8C controller, which led to the development in this system to
be done in ROS1 as opposed to the newer ROS2.

Movement
The movement software is responsible for controlling the robot. The structure of the
movement node can be seen in Figure 3.6.

VAL3 ROS driver The CS8C controller utilizes VAL3, a proprietary language
specific to Stäubli [VAL3 language n.d.]. Due to the limited familiarity and use
of VAL3 outside of Stäubli, a decision was made to adopt a more universally
recognized approach by leveraging ROS and minimizing the amount of project-
specific code written in VAL3. This was accomplished by utilizing the existing
staubli_val3_driver package that exposes the robot as a ROS server compatible
with MoveIt [Martins, 2020]. This configuration allows the robot to be controlled
by a ROS system running on a separate computer.

Modbus Gripper Control The ROS drivers for the robotic arm, described in the
previous section, lacked functionality for controlling the gripper. This presented a
challenge that required the development of a solution for gripper control, compat-
ible with the existing ROS drivers. The solution was to implement a simple VAL3
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Figure 3.5 System overview with the key components and the location where they are
running.

program, add it to the existing staubli_val3_driver and deploy the modified
driver to the robot. The addition listens to a Modbus port and toggles the gripper to
match the port state. Then the port could be written to by the GripperController
class in the movement node, allowing for gripper control from a separate computer.

MoveIt Configuration In order to control the robot with MoveIt, as required by
the VAL3 drivers, a configuration was necessary. As none was available, a new con-
figuration was needed to be created. To create a configuration, a URDF file describ-
ing the robot is required. An existing URDF describing the robot arm was available
in the package staubli_experimental[vd. Hoorn, 2018], however, the file did
not contain any information about this robot’s end effector. Therefore, the neces-
sary geometries were modelled and a URDF file for the end effector was created.

25



Chapter 3. System Design

Figure 3.6 Simplified UML diagram of the Movement Node.

Now with one file describing the arm and one describing the end effector, a file
describing the entire robot could be created.

With the entire robot described, the graphical user interface "MoveIt Setup As-
sistant" [MoveIt Setup Assistant n.d.] could be used to create the MoveIt config-
uration. With this tool, the ROS package tx60_with_eef_moveit_config was
generated and after necessary manual file alterations to accommodate the VAL3
drivers used, it was possible to control the robot through MoveIt. To facilitate an
easy start-up process for users, a launch file containing information specific to this
individual robot and thesis was created. When launched it starts MoveIt, the VAL3
drivers and RViz, and connects to the server running on the robot.

Move Group Python Interface The MoveGroupPythonInterface (MGPI)
class is a Python interface for controlling the movement of the Stäubli TX60 robot.
This class provides control mechanisms, including setting joint states, setting the
end-effector pose, and gripper operations. Additionally, it has capabilities to record
robot states and offers methods for reporting on the robot’s status and operational
conditions. To allow for safe movement when testing new features or after a new
calibration, it is possible for the user to preview the planned paths in RViz and ap-
prove them before any commands are sent to the robot. This was developed based on
work by [Digumarti, 2023] and a MoveIt tutorial by [Pooley and Lautman, 2013].

Scene Manager The SceneManager class was developed as a wrapper for
MoveIt’s PlanningSceneInterface class to streamline the management of ob-
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jects in MoveIt’s planning scene. This class simplifies the addition, deletion, and
modification of objects within the scene. It is designed to accommodate a dynamic
array of objects without imposing constraints on the scene configuration, enhancing
the adaptability of the environment to various robotic tasks and simulations.

Scene changes can be done via method calls from classes within the same node
or through service requests from classes in other nodes. The scene manager also
allows other nodes to retrieve a list of the currently empty rack ports which allows
for safe placement of samples without the user specifying a specific location.

Movement Server The MovementServer is the top-level class in the Movement
Node and receives commands from the MovementClient in the system control
node. It ensures successful actuation of the robot by verifying the commands and
executing them by calling different MGPI methods. It exposes four different action
servers:

• pickup_sample - Partial implementation of MoveIt’s Pickup action capable
of picking up sample handles from racks. The steps in the pickup can be seen
in Figure 3.7.

• place_sample - Partial implementation of MoveIt’s Place action capable of
placing sample handles in racks. The steps in the placement can be seen in
Figure 3.7. Notably, if the pick fails after the sample has been grasped, it will
try to place the sample and move away to make the failure easier to manage.

• move_to - A custom action that moves the end effector to the pose specified
in the action goal.

• go_home - A custom action that moves the robot to the home position, where
all joint angles are zero and it is completely vertical. This is intended to move
the robot out of the way for the perception system.

Partially implementing MoveIt actions was decided on as MoveIt’s generic ac-
tion definitions allow for additional complexity and features to be added later, even
if they are not currently used by the system. Furthermore, this approach ensures the
node uses a standard interface, facilitating its integration with other ROS software.

Perception
The structure of the perception node can be seen in Figure 3.8.

RealSense ROS Wrapper To use the RealSense D435if stereo camera with ROS,
the existing package realsense2_camera was used [ros-realsense 2024]. It pub-
lishes the sensor data as ROS messages for other nodes to subscribe to. Further, it
publishes camera info containing the camera’s intrinsic parameters and transforma-
tions between the camera’s different coordinate frames.
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Figure 3.7 Movement during pickup (blue) and placement (red) of samples from the rack.
The straight arrows indicate Cartesian movement. The reason for the sideways entry and exit
when holding handles is to allow for large samples to be attached.

Figure 3.8 Simplified UML diagram of the Perception Node.

Camera Calibration To get adequately accurate and precise measurements from
the stereo camera, it was calibrated using the Intel RealSense Viewer, provided in
the Intel RealSense SDK 2.0 library [Intel® RealSense™ SDK 2.0 2024] in accor-
dance to the instructions provided by [Grunnet-Jepsen et al., n.d.]. The calibration
had three main steps:

1. On-chip calibration - Reduces the relative error, or noise.
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2. Focal length calibration - Compensates for focal length imbalance between
the left and right camera.

3. Ground truth calibration - Corrects for absolute errors in the depth measure-
ments.

Marker Detector The class that was responsible for all operations relating to
the detection and pose estimation of ArUco markers was the MarkerDetector.
It included a dictionary of ArUco IDs and tag sizes, important for identifying and
processing different markers. The decision to implement an ArUco-marker based
perception system, within the MarkerDetector class, was driven by several con-
siderations with the goal of developing a flexible and robust system. Initially, al-
ternative methods using deep learning models like YOLOv8 [Jocher et al., 2023]
and DenseFusion [Wang et al., 2019] were considered. However, these approaches
faced the following challenges:

1. High Variability of Sample Types: The diverse range of possible sample
types presented a significant challenge for using deep learning, as it requires
extensive pre-training of the specific objects to be detected. Implementing
such models would necessitate either limiting the variation of samples or fre-
quently retraining the model for new objects. This approach was deemed in-
appropriate as a key aspect of the thesis was increased flexibility, which would
be hindered by such constraints.

2. Low Variability within a Sample Type: Contrary to the point above, for an
experiment with a certain sample type, the variability between different sam-
ples of that type can be extremely low. This would make it difficult for models
to distinguish and identify one sample from another which is important as the
right experiment needs to be conducted on the right sample.

3. Accuracy of Pose Estimation: To accurately determine the pose of a sam-
ple, the position of known key points needs to be determined. This would
require the collection and annotation of a large dataset to achieve the required
accuracy. This was determined to be infeasible within the scope of this thesis.

4. Integration and Reliability: Deep-learning models such as DenseFusion
would also suffer from integration issues, as they often have strict version
requirements, further complicating the integration into this system.

Instead, by using ArUco markers, the system has the ability to dynamically
process a wide array of sample types without constraints on the type of objects. This
choice ensures that the perception system remains adaptable and is not limited by
the physical characteristics of the samples mounted on the handles, thus maintaining
operational flexibility. Further, there are existing methods implemented in OpenCV
for object detection and pose estimation of ArUco markers.
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The actual markers used for the detection of the sample handles can be seen
in Figure 3.9. It was decided to use the smallest predefined dictionary, the 4x4_50
dictionary that has a total of 50 markers. With four markers each reserved for the
hand-eye calibration target and the sample rack, 42 markers are left, allowing for
the simultaneous tracking of 21 samples with two markers each. This was deemed
a sufficient number and allowed for the individual markers to be fairly small while
still being detectable by the perception system at a distance.

Figure 3.9 Sample handle with marker seen from above. Additional information can be
printed on the marker, shown here is the IDs of the individual markers, the marker size, the
distance between the markers, the ID of the object, and the coordinate frame of the marker.

The orientation and rotation of the marker was determined separately in the
following way.

1. Identification: The corners and IDs of the markers in the image frame are
identified using OpenCV’s detectMarkers()method [ArucoDetector Class
Reference n.d.].

2. Orientation: The orientations of the ArUco grids are calculated using
Perspective-n-Point (PnP) pose computation using all the corners of the mark-
ers in the grid. To better deal with outliers the RANSAC scheme is used
[Perspective-n-Point (PnP) pose computation n.d.]. As all the corners of the
marker in the grid are used, the more markers each grid contains the more
accurate and robust the orientation estimation is. This creates a trade-off be-
tween accuracy, marker size and the maximum number of objects that can be
tracked.
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3. Position: The positions of the ArUco grids are calculated using Equa-
tion (3.1), which uses the depth data, the pixel position for the centre of the
grid (u,v), and the camera’s intrinsic parameters, shown in Equation (2.5).

z = depth_image[u,v] (3.1a)
x = (u− cx) / fx · z (3.1b)
y = (v− cy) / fy · z (3.1c)

Sometimes the depth image included invalid pixels. To avoid this issue, any
measurement with a z-value under a predetermined threshold was discarded.

With the robot and camera located within a reflective cage, it was discovered that
the system could accidentally detect reflections from the cage sides. This issue was
mitigated by removing the disruptive cage sides from the image before the marker
identification.

Pose Filtering To get a more robust result, a large number of measurements are
gathered each time and then filtered for the most likely pose.

• Position - The positions of the measurements are averaged.

• Orientation - The orientation is estimated using kernel density estimation
(KDE) [Chen, 2017]. To allow for the filter to manage measurements with an
extremely low level of variation, a small amount of Gaussian noise is added
before estimating. However, this noise is not retained for the returned value.

To further increase the accuracy of the orientation estimations, it was made
possible to add a vertical constraint to objects such as the sample rack and
samples in the rack. This improved the pose estimation as the PnP is good at
determining the yaw angle of a marker when viewed from above but struggles
more with the pitch and roll angles. However, for this to work the hand-eye
calibration, described in the next section, needs to be completed as the de-
tected pose is made vertical with reference to the robot base frame.

Visualizer Visualizer is a class designed to interface with ROS for publishing
images with specific overlays onto ROS topics. This streamlines the visualization
of results from the MarkerDetector.

Hand-Eye Calibration To convert measurements, taken in the camera frame,
to the world or robot frame, the camera’s and the robot’s frames need to be in a
connected transform tree. To connect the transform trees, the camera’s pose with
reference to a coordinate frame in the robot’s transform tree needs to be known.
The HandEyeCalibration class calculates and publishes the required transform
by solving the eye-to-hand calibration problem. This is done in the following steps:
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1. Data gathering: First the robot picks up a calibration target, seen in Fig-
ure 3.10a, that the perception system can easily identify the pose of. Then the system
generates a random pose within an area in front of the camera, seen in Figure 3.10b,
that is facing the approximate camera position. After verifying that the pose is valid
and reachable by the robot, it executes the movement, otherwise it generates a new
random pose. At each point it attempts to record a data-point that consists of the
pair:

• cTt - The transformation matrix from the target frame to the camera optical
frame. This is obtained by the marker detector.

• gTb - The transformation matrix from the robot base frame to the target frame.
This is obtained by tf2 from the robot’s forward kinematics.

(a) Robot holding the hand-
eye calibration target.

(b) The volume that the system generates poses for data
gathering within (blue) displayed in RViz.

Figure 3.10 Images of the data gathering process for the hand-eye calibration.

A key aspect in getting a good result is accurate measurements. This is done
by taking a large number of measurements at each pose and then filtering them to
get the most likely transformation according to the procedure described in the Pose
Filtering section.

2. Calculation: After gathering measurements at a predefined number of poses,
the hand-eye calibration system uses the list of transformations to calculate the cam-
era pose. The transformations involved can be seen in Figure 3.11. This can be done
using the OpenCV function calibrateHandEye() that solves Equation (3.2c) to
obtain bTc. The function is able to perform the hand-eye calibration using methods
by: [Andreff et al., 1999], [Daniilidis, 1998], [Horaud and Dornaika, 1995],
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[Park and Martin, 1994] and [Tsai and Lenz, 1989] [Camera Calibration and 3D
Reconstruction n.d.].

gT (1)
b

bTc
cT (1)

t = gT (2)
b

bTc
cT (2)

t (3.2a)

(gT (2)
b )−1 gT (1)

b︸ ︷︷ ︸
Ai

bTc = bTc
cT (2)

t (cT (1)
t )−1︸ ︷︷ ︸

Bi

(3.2b)

AiX = XBi (3.2c)

where X = bTc

An alternative approach was developed that directly computes the transforma-
tion bT i

c for each data-point using Equation (3.3) and then filters the calculated trans-
formations for the most likely one using the method described in the Pose Filtering
section. This approach will henceforth be called the direct approach and was the
one used for the complete system due to superior performance.

bTc = (cTb)
−1 = (cTt

gTb)
−1 (3.3)

Figure 3.11 The transformations between the robot base, gripper / target, and camera.

3. Publish transform: After the transform bTc has been computed, a transform
that can be published to tf2 needs to be obtained. Since the camera optical frame and
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the robot base frame already have parents those cannot be used directly. An intuitive
choice it to calculate the transformation from the world frame to the camera link
frame. This is done by the following steps:

1. Transform the pose of the origin of the camera link frame to the camera opti-
cal frame.

2. Publishing a fake robot base frame from the camera optical frame using the
calculated transform. Then the pose can be transformed to the fake base link
frame. This circumvents the problem of the robot base frame already having
a parent.

3. Now the pose can be transformed from the real robot base frame to the world
frame.

4. Finally, the pose, now in the world frame, can be used to publish a transform
from the world frame to the camera link frame.

With the camera and robot frame connected, creating the transform tree seen
in Figure 3.12, it is now possible to convert the pose of objects observed by the
camera to any other frame in the tree. As the hand-eye calibration only needs to
be completed once, the HandEyeCalibration class has capability for saving and
republishing transforms, resulting in a fast and predictable system once a calibration
is complete.

In addition to publishing the transform to the camera, this class is responsible for
spawning the objects in the scene that might have moved between executions but are
static when the robot is running, such as the sample rack. Although the class has a
MarkerDetector and its task is related to perception, it is located in the movement
node as it is an integral part of the startup of that node, and it sends movement
commands to the robot through the MGPI. Notably, the MarkerDetector is only
instantiated when new data is recorded. This design allows the class to perform its
other duties even without a connected camera.

Handle Identifier The HandleIdentifier is the top-level class in the percep-
tion node. It is responsible for the object detection and pose estimation of all sam-
ples in the scene. It is constantly running, estimating the pose of all known sam-
ples, and publishing a custom message of their object ID and pose. It uses the
MarkerDetectors methods but converts the detected pose to one that matches the
handle frame seen in Figure 3.13. This makes it easy for other nodes to use the per-
ception results directly without having to deal with frame conversions and matching
markers to objects.

System Control
The system control node is responsible for processing user inputs, such as sample
information and tasks. Then it is responsible for managing the execution of the
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Figure 3.12 Diagram showing the system’s transform tree. Solid lines represent published
transforms and dashed lines represent observations or calculations.

tasks by sequentially requesting the movement node to execute each step. A UML
overview of the node is shown in Figure 3.14.

Sample Database The SampleDB database plays an important role in the opera-
tion of the perception and system control node by managing information about each
sample. To ensure concurrency safety, the database is implemented with SQL. The
Data field is originally a list of integers. However, due to the nature of SQL, the list
is encoded into a JSON string for storage in the SampleDB. A detailed description
of each field in the database is in Table 3.2.

Sample Manager To coordinate operations related to samples between the per-
ception node and SampleDB, the SampleManager was created. An overview of the
class can be seen in Figure 3.15. It has several key features that is integral to the
autonomous system:

1. Message Listening and Object Spawning - SampleManager continu-
ously listens to the /IdAndPoseList message via a callback. This mes-
sage contains the IDs and poses of objects detected by the perception sys-
tem. The SampleManager checks if any of the detected objects exist as
entries in SampleDB. If an object is found, it is spawned in the MoveIt

35



Chapter 3. System Design

Figure 3.13 A sample handle with a marker showing the different coordinate frames.

Table 3.2 Fields in the SampleDB Database.

Field Type Description
Object ID String A unique identifier for each object.
STL Path String Relative file path to the STL file of the object.
Rows Integer Number of rows in the ArUco grid.
Cols Integer Number of columns in the ArUco grid.
Data String Unique ArUco IDs stored in the grid.
Marker Size Float Size of the ArUco tags in the grid, measured in

meters.
Intermarker Quota Float Ratio of distance between consecutive markers.

PlanningScene, ensuring proper collision avoidance.

2. Object Blacklist - The SampleManager has an object blacklist, which con-
tains the IDs of objects that should not be tracked. This is for the situations
when the robot is interacting with a sample, as it will then publish a more
accurate pose for the sample that should not be overwritten.

3. Sample Database Updates - SampleManager has a SampleDB and exposes
services for adding sample information to it.

Movement Client The MovementClient sends actuation commands from the
system control node to the movement node. It has three main functions:
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Figure 3.14 Simplified UML diagram of the System Controller Node.

Figure 3.15 Overview of SampleManager interactions.

1. pickup_sample_handle - Sends a request to the MovementServer to pick
up a sample handle based on its object ID. If this request succeeds, then the
object is blacklisted in the SampleManager.

2. place_sample_handle - Sends a request to the MovementServer to place
the sample handle in the rack. If the place fails when no specific pose was
provided, it will reattempt to place the sample handle in another free rack
port.

3. go_home - Sends a request to MovementClient to set all joint states to zero.

Task State Machine The system controller utilizes a finite state machine (FSM)
architecture to execute tasks. The FSM framework is implemented using the
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SMACH library designed for ROS applications [Bohren, 2018]. The states and ac-
tions connected to it are discussed more in-depth in Chapter 4.

System Controller The SystemController class is the top level class in the
system controller node. It is responsible for starting the node as well as expos-
ing a service that allows other nodes to add task to the execution queue that the
TaskStateMachine then executes.

EPICS
In this thesis, the integration with EPICS (Experimental Physics and Industrial Con-
trol System) takes a unique approach. Typically, integration involves creating a soft
input/output controller (IOC) along with an EPICS database to represent all pro-
cess variables (PVs). However, this implementation is different. Instead of the usual
method, a server application is developed to control and manage all PVs. This ap-
proach leverages the P4P (PVAccess for Python) library, which is a Python wrap-
per around the PVAccess protocol network and is a part of the EPICS framework
[Davidsaver, 2023]. All necessary data for PV creation and data exchange with the
system control is loaded from a JSON file. Consequently, bidirectional information
exchange between the server and the client with the ROS software can be estab-
lished. The server is controlled by user using Phoebus [Phoebus 1.0 Documentation
n.d.], which is an operator interface commonly used in the EPICS community.

ROS-Client The Client subscribes to two process variables, and listens for any
updates to the variables. It translates EPICS datatypes into ROS messages.

Server The Server sets up handlers to manage updates to the process variables,
and initializes these variables based on the JSON configuration. It then runs indefi-
nitely.

OPI The Operator Interface (OPI) is a Graphical User Interface (GUI) built using
Phoebus. Users can utilize this interface to update sample information, select which
sample and task information should be sent to the robot, and execute the tasks.
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Developed System
Architecture

This chapter provides a walkthrough of the entire workflow—from initial input to
final actuation, and through to the representation of information within the system.
The goal is to provide a clear understanding of the system’s architecture and oper-
ation. By examining each stage in detail, this chapter showcases the project’s com-
plexity and technical requirements. A high-level overview can be seen in Figure 4.1.
Apart from the camera’s sampling frequency of 30 Hz, the developed system is call-
back based. This means that tasks are executed as soon as they become available,
otherwise the system is waiting and only updating its scene when new images arrive.

Figure 4.1 High level overview of control interactions.
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User Input
The process begins with the user’s initial input, which serves as the foundation
for operations within the program. At this stage, the user is required to provide
information regarding which samples will be in the scene. Then the user can provide
tasks for the system to execute with the samples. These inputs are entered into the
program either via a user interface on the ROS computer or through EPICS.

Sample Information The sample information needs to be provided to the system
so it knows which samples it can expect in the scene, which markers they are iden-
tified by, and what the sample geometries are. This is import for collision avoidance
and pose estimation. The required information is:

• Object ID - To manage and identify samples throughout the process, the user
provides a unique identifier for each object. This name is used to track the
object within the system and to reference it in logs and output data.

• ArUco Information - Each object is associated with a target for the vision
system. This is typically a row of two markers but can be any matrix of mark-
ers.

• STL Path - The user must specify the path to an STL file corresponding to the
object. This file is essential for rendering the object within the scene, which
is required for accurate collision avoidance.

Task Information In addition to sample information, details regarding the tasks
to be executed by the system can be provided. This consist of the following seg-
ments.

• Object ID - The object ID is the same unique identifier as in the task informa-
tion, allowing the system to connect tasks with the samples that they should
be conducted on.

• Actions[] - The overall task is broken down into a list of smaller actions
that can be combined in any way the user likes. For example, an experiment
where the sample is supposed to be held in the beam for a set amount of
time could be a task with the following list of actions: pick, move_to, wait,
and place. Each action requires information of its type, and the following
additional information can or has to be provided:

– pick: Optional to provide a pick pose, if none is provided the system
locates the sample using the perception system.

– place: Optional to provide a place pose, if none is provided the system
identifies a free rack port to place the sample at.

– move_to: Required to provide a pose to move to.

– wait: Required to provide the wait duration.
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Finite State Machine Operation
The Finite State Machine (FSM) serves as the central control structure, initiating
its process once it is created in the system controller node. This section outlines the
sequence of states the FSM transitions through during a typical task cycle. The high-
level stages of the FSM can be seen in Figure 4.2. The design of this Finite State
Machine prioritizes flexibility to manage a diverse range of sample investigations.
By structuring the Finite State Machine to handle various task types, the system
avoids imposing restrictions on the robot’s operational capabilities. This flexibility
is important as it allows the robot to adapt to different experimental requirements
and tasks without needing reconfiguration.

Figure 4.2 FSM high level flow.

1. Task preparation The first stage in the FSM’s execution, seen in Figure 4.3, is
preparing the system for a new task and fetching one from the task queue. This is
done with the following states that execute in sequence:

1. HomeState - Requests the robot to move to the joint state where all joint
angles are zero. This state is suitable as it prevents the robot from blocking
the perception system when the robot is searching for samples.

2. WaitForTaskState - This state blocks until it is able to pop a task from
the task queue. Once that happens, it outputs the task to the subsequent task
execution stage.

2. Task execution The second stage is the task execution. Seen in Figure 4.4, it
follows a straightforward fetch-execute cycle. In this cycle, the system repeatedly
fetches the next action and then executes it in a dedicated execution state. This
process continues while there are actions left to execute or until an action fails. The
states involved in this stage are:
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Figure 4.3 FSM preparation stage.

1. Fetch state: GetNextActionState - This state identifies the next unexe-
cuted action in the task and transitions to the corresponding execute state. If
all actions are completed, it transitions to the TaskSucceededState.

2. Execute states: These states perform their respective actions. If an execution
succeeds, the FSM transitions back to GetNextActionState; if it fails, the
FSM transitions to ActionFailedState. The different execute states each
correspond to a specific action and are:

• PickState - Sends a PickupGoal to the movement node for execution.

• MoveToState - Sends a MoveToGoal to the movement node for execu-
tion.

• WaitState - Waits for the specified duration.

• PlaceState - Sends a PlaceGoal to the movement node for execution.

3. Failure state: ActionFailedState - If an action fails, the FSM transitions
to this state to attempt recovery or transition to the TaskFailedState.

The task execution is structured in this way to give the user the flexibility to
arrange tasks as they see fit. Additionally, this design allows for easy extension of
the system’s capabilities. New execution states, implementing new actions, can be
seamlessly added to the program.

3. Task post processing. After a task has executed successfully or failed in an un-
recoverable way, the FSM enters the final stage of its cycle: the task post processing,
which can be seen in Figure 4.5. This part is intended for collecting information and
provide feedback to the operator. The post-processing occurs in one of two states:

• TaskSucceededState - As everything executed as expected, the system
transitions back to HomeState.
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Figure 4.4 FSM execution stage.

• TaskFailedState - As an error occurred, this state will stop the system until
the user gives permission to proceed to the HomeState for the next task.

Figure 4.5 FSM post processing stage.

EPICS
To integrate EPICS into the system workflow, a driver was designed to translate
EPICS PVs into ROS messages.

Loading of JSON files Upon starting the EPICS server, predefined tasks and sam-
ples are loaded from two JSON files. This information populates the process vari-
ables.
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OPI The OPI, seen in Figure 4.6, serves as the user interface, displaying process
variables in dedicated boxes. It features two windows for sample and task informa-
tion, respectively. Users can switch between tasks and samples using a drop-down
menu and execute them with separate buttons. The Add and Remove buttons are not
implemented.

Figure 4.6 The Operator Interface.

Client When execute is clicked in the OPI, process variables are updated. The
client listens to execute and execute_task variables. Callback functions extract
and validate the data types of the raw values from these variables. Based on the
information sent, a SampleInfo or Task is created and sent to the system controller
server, initiating the robot’s operation.
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5
Results

This chapter presents the results obtained from the development and testing of the
autonomous system for sample switching at ESS. The results are divided into two
main sections: subsystems and the complete system. In the subsystems section, data
related to pose estimation and hand-eye calibration is detailed, showcasing the per-
formance of individual components. The complete system section presents the full
system, including the execution of an operational cycle.

5.1 Subsystems

Movement
The movement system was able to plan and execute both large, complex movements
and small, precise adjustments within the environment without colliding with cor-
rectly spawned objects. However, the motion could be somewhat jerky, particularly
noticeable at the end of the trajectory. The system was also able to actuate the grip-
per.

Perception
Camera calibration Camera calibration significantly improved the precision of
the perception system. Prior to calibration, two different datasets were collected,
shown in red and blue in Figure 5.1. These datasets include depth measurements
from the camera, taken at known distances. The figure illustrates that the initial
absolute errors in distance measurements were substantial and increased with dis-
tance. Specifically, absolute errors when averaging 100 measurements were in the
range of 1% to 3% and escalated to 4% to 6% at longer distances.

After performing a comprehensive camera calibration, these errors were reduced
to an average absolute error of less than 0.5%. A plot of the measurements’ devia-
tion and its mean at different distances can be seen in Figure 5.2. The distribution
of the measurements at a specific distance can be seen in Figure 5.3.
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Figure 5.1 Mean errors at different distances, before and after camera calibration. Each
data-point is the average of 100 measurements.

Marker detection For the marker detection, key results include the position and
orientation estimations. In the previous section the distribution of the position mea-
surement can be seen in Figure 5.3. For the orientation estimation, the measured
values, their distribution, and the filtered result can be seen in Table 5.1.
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5.1 Subsystems

Figure 5.2 Measured and expected discrepancies. Red dashed lines indicate the span of the
typical working area in the robot cage. Black circles are the mean error of the measurements.

Table 5.1 Rotation results for pose estimation for different marker grids on the same static
target. Each dataset contained 100 measurements. The left column shows a 3D plot of the
rotations, the average rotation, and the result from the KDE filtering. The average and KDE-
filtered rotation are drawn with increased length for better visualization. The right column
shows a histogram of the deviations from the average rotation, with the deviation of the KDE
filtered vector showed as the red dashed line.

Continued on next page
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Table 5.1 – continued from previous page

Hand-eye calibration
Calculation result - The camera link pose was calculated, from the same

recorded data, with the direct method and the methods implemented in OpenCV.
The result, seen in Figure 5.4, shows how the methods by

48



5.1 Subsystems

Figure 5.3 Distribution of errors at a distance of 1.2 m, with the mean value highlighted
and featuring the distribution curve.

[Daniilidis, 1998], [Horaud and Dornaika, 1995] and [Tsai and Lenz, 1989] gener-
ated unusable poses. The methods by [Andreff et al., 1999] and [Park and Martin,
1994] generated more accurate but still unusable results as they were not accurate
enough for sample handling. The direct method generated results with centimetre
accuracy. After manual adjustment, a corrected version of the direct methods re-
sult was accurate enough for sample handling. In Figure 5.4, a corrected version is
shown, with the translation adjusted by −3.3 mm in the X-direction and by −17.6
mm in the Y-direction.

Duration - The different execution times of a hand-eye calibration can be seen
in Table 5.2. The total execution time for a 100 data-point calibration was 34 min-
utes and 13 seconds, with over 99.9% being associated with recording data. The
result for different number of data-points can be seen in Figure 5.5.

Table 5.2 Breakdown of the execution times for the hand-eye calibration.

Step Duration
Pick & Place of target 20.6 s

Record data 20.3 s / data-point
Calculation & Pose publishing 0.5 s

Total (100 data-points) 34 min 13 s
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Figure 5.4 The pose of the camera link frame, relative the robot frame, for different hand-
eye calibration methods. The direction the camera is facing is marked by the black axis. A
manually corrected version, "Corrected", is also included (blue, with longer axes).

50



5.2 Complete System

Figure 5.5 Hand-eye calibration result using the direct method for different number of
data-points. The data is from one calibration and was sliced to get datasets of different sizes.
The arrows in the plot are the x-axis of the camera optical frame.

5.2 Complete System

The duration of a complete pick and place cycle, from the task is received until
the robot is ready for a new task, between two different ports in the sample rack
was measured to an average of 29.4 s. For a more complex task, the execution time
increases, for example the task showed in Figure 5.6 took 40 s to execute, excluding
the 5 s wait duration.
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(a) Home - at the robot’s waiting pose. (b) PickState - at pre pose.

(c) PickState - at pick pose. (d) PickState - at free pose.

(e) MoveToState - at a user specified pose. (f) PlaceState - at pre pose.

(g) PlaceState - at place pose. (h) PlaceState - at free pose.

Figure 5.6 Photos from different stages of the task execution of a task compromised of the
actions: pick, move_to, wait and place. Neither the pick nor the place pose was specified
meaning the robot placed the sample in an available port that it identified.
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6
Discussion

The goal of developing an autonomous system capable of automating the sample
switching process was largely successful, with significant progress made within the
thesis. However, further work is required before the system is ready for real opera-
tions. Many of the classes and methods developed throughout the thesis are general
and can be used in a broader range of robotic applications. Key findings from this
thesis include the development of a hand-eye calibration method that outperforms
OpenCV’s methods, and investigations into pose estimations and creation of filters
to improve these estimations. From a system design perspective, a key finding is the
approach taken in the design of this system, including the considerations necessary
when developing an autonomous system and the methods for creating modular and
general sub-systems.

6.1 Movement

By utilizing MoveIt and adding all objects in robot’s environment to its plan-
ning scene, the robot was able to execute complex movement without collisions.
This is crucial for applications in environments that could contain expensive sci-
entific equipment. The integration with the robot was streamlined, thanks to the
staubli_val3_driver, which was designed to work with MoveIt.

For this project, the high-level methods provided by MoveIt proved sufficient.
However, MoveIt also allows for access to the different steps of the planning
pipeline, enabling further control over the planning process and the ability to pro-
cess intermediate results. This access allows for addressing future advanced opti-
mization problems, such as jerk minimization which might become necessary for
handling fragile materials.

All movement commands are abstracted by the MGPI, ensuring that additional
features, such as the aforementioned optimization, can be implemented without re-
quiring larger changes to the system. This shows how a modular design with clear
responsibilities facilitates easy alterations and upgrades, which is essential for main-
taining a flexible and adaptable system.
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6.2 Perception

The perception part of the project was the sub-system that required the most devel-
opment efforts, in particular to get sufficient pose estimation accuracy. There were
several factors that contributed to measurements with insufficient accuracy, which
are discussed more in-depth in this section.

Camera Calibration
An important breakthrough was the re-calibration of the camera. Initially, it was
not believed that a calibration was necessary to get results sufficiently accurate for
sample handling, however it turned out to be required due to a large absolute error
at a distance. The issue was discovered when trying to pin-point the root cause
of bad results from the hand-eye calibration. To characterise the depth error, an
experiment was set up to measure the depth reading against known distances. This
led to the collection of the datasets before calibration, seen in Figure 5.1. These
showed that the depth errors were larger than the ±2% that was specified in the
datasheet [Intel® RealSense™ Product Family D400 Series 2023]. This indicated
that the issue could be due to either a poor base calibration or faulty sensors. To rule
out the possibility of a calibration problem, a full re-calibration of the camera was
performed. This significantly reduced the depth errors to an acceptable level, which
allowed the development of the hand-eye calibration to proceed.

Pose Estimation
Filtering methods Concerning the pose estimation, gathering multiple measure-
ments, and filtering proved critical for accurate estimations. As the distribution of
the position and orientation measurements differed, different filtering techniques
were utilized.

When examining the spread of the measurements in Figure 5.2, a considerable
variation in the individual measurements can be observed. However, when the mean
value of these measurements is computed, it is around ±1 cm. Furthermore, when
analysing a specific distance, in this case 1.2 m (chosen because it is the approxi-
mate distance from the cameras to the samples), it can be found that the distribution
resembles a Gaussian distribution, whose mean accounts for an error of 1.44 mm.
This is promising, as a Gaussian distribution means that a good estimation can be
obtained by averaging the measurements. The overall implication here is that with
simple filtering it is possible to obtain reasonable distance measurements from the
camera, which is a crucial factor when estimating the pose of objects for the robot
to pick.

As seen in Table 5.1, the orientation estimations had a multi-modal distribution,
meaning averaging was not a valid way to produce better measurements. This can
clearly be observed in the result as the average orientation is nowhere near any of the
estimations. However, it can be seen that the more advanced filter based on Kernel
Density Estimation, successfully managed to identify the most likely orientation,
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corresponding to the highest peak in the histograms in Table 5.1. A key addition
to the orientation filtering was adding a vertical constraint whenever possible. This
solved the issue of the pitch and roll of the marker being difficult to estimate as they
were determined by observing small perspective shifts.

Targets In Table 5.1 it can be seen how the modes become denser, meaning the
estimations are more confident, for targets with more markers in their grid. This is
partially because each marker provides an additional four points to the sample size
for the PnP calculation, making the estimation more robust and accurate. Another
reason is the increased overall size of the target, making perspective shifts from
tilt and roll larger. Therefore, it was not surprising to discover that one marker was
not enough for accurate orientation results, which could also be seen in the plot
in Table 5.1. For objects where high accuracy was required, such as the hand-eye
calibration target and the large sample rack, larger 2×2 target grids proved neces-
sary. On the other hand, the pose of the small sample handles could be determined
with enough accuracy with a smaller 2×1 grid, if they were guided by the vertical
constraint.

Hand-Eye Calibration
Achieving an accurate hand-eye calibration was a prerequisite to get the perception
system to work. Hand-eye calibration makes it possible to transform poses measured
with reference to the camera’s coordinate system to a coordinate system known by
the robot. This also meant that if the hand-eye calibration was not good enough, then
the pose estimation of samples would not be sufficiently accurate for pick and place.
Therefore, an important finding from this thesis is illustrated in both Figure 5.4
and Figure 5.5. Our direct estimation method for determining the camera position
outperformed all hand-eye calibration algorithms provided by OpenCV. However,
it was not perfect and sometimes produced results that were one or two centimetres
off, requiring minor manual adjustments before being accurate enough to handle
samples.

Regarding the OpenCV methods, the methods by [Tsai and Lenz, 1989], [Ho-
raud and Dornaika, 1995] and [Daniilidis, 1998] all produced results with signifi-
cantly incorrect orientation and position, while the methods by [Andreff et al., 1999]
and [Park and Martin, 1994] yielded results closer to the expected values. This dis-
crepancy may be attributed to several factors, including the quality or quantity of
the input data fed into the algorithms. Another potential cause is the optimization
processes converging to local minima. Additionally, it is possible that the thesis’
eye-to-hand configuration, compared to OpenCV’s default eye-in-hand configura-
tion introduces unexpected factors that these algorithms are not designed to handle.
Although the input was adjusted to reflect the different configuration, and the fact
that two of the methods produced results that were close to the actual solution, sug-
gests that input errors are unlikely to be the primary cause.

When looking at Figure 5.5, it is evident that the hand-eye calibration results ex-
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hibit a larger spread when using datasets with fewer data points. Conversely, as the
number of data points increases, the result converges as expected. A limiting factor
for the number of datapoints was the time required for data recording. With 20 sec-
onds required per data-point, as shown in Table 5.2, recording 100 datapoints over
a span of 34 minutes was deemed acceptable. However, for an operational instal-
lation, it may be desirable to gather more data for a more precise calibration. This
could be achieved by accepting a longer data recording duration or by implementing
a more efficient data gathering procedure.

6.3 System Design

The design of the autonomous system is a significant outcome of this thesis. The
thesis provides insights into the considerations when developing such a system.
The goal of developing a modular system, was achieved. By abstracting hardware
specifics with general interfaces and wrapper classes, and leveraging the modular
nature of ROS, a core program that is hardware agnostic was developed. This ap-
proach ensures that changing the robot arm or upgrading the camera only requires
minor software adjustments or configuration changes. This flexibility is crucial for
the future development and operational deployment of the system, as the system
then would be unlikely to consist of the Stäubli TX60 robot arm or the RealSense
D435if sensor. If the project had been developed in VAL3, it would have become
dependent on Stäubli hardware, limiting its adaptability.

Another advantage is the utilization of widely known programming languages
and tools. ROS allows programs to be written in Python or C++, languages that are
well known at ESS. This increases the likelihood of the results being utilized and
lowers the barrier of entry for future development.

The separation of the program into three distinct nodes: a movement node, a
perception node, and a system control node, allowed for separate development and
served to abstract the complex inner workings of each node. This design approach
with abstractions, as discussed for the MGPI in Section 6.1, facilitates easy alter-
ations and upgrades to individual parts of the system without necessitating alter-
ations to the rest. This modularity enhances the system’s maintainability and scala-
bility, ensuring that it can be adapted to evolving requirements and technologies.

6.4 EPICS

The autonomous system was also designed to facilitate easier integration into
EPICS. To leverage the power of ROS, all internal communication within the sys-
tem was implemented through ROS, with top-level user input exposed for EPICS
integration. User input is read in separate nodes and then passed to the system con-
troller through services. This approach resulted in a significantly easier integration
process, where the EPICS client and a ROS node were integrated. When the PV was
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updated, the client listened for updates, extracted the raw values, created two ROS
messages from these values, and sent them to the system control. To facilitate com-
munication back to EPICS, a ROS message containing status information about the
system can be implemented. This message would be translated into a process vari-
able (PV) in the ROS-client node and subsequently update that PV. This approach
allows users to track the system’s progress from the Operator Interface (OPI) during
operation.

Due to limited time, a large EPICS integration was not possible. Currently, pre-
defined samples and tasks can be sent to the robot via an EPICS server-client using
an OPI, demonstrating feasibility. In order for the current OPI to be a viable user
interface for the system, further development is needed. The OPI should allow the
addition of new samples and tasks, not just predefined items. Additionally, imple-
menting a new ROS message type to send status updates back to the EPICS client-
server for OPI display would enhance functionality and align with ESS deployment
needs.

An observation that was made during the development of the system was that
EPICS was not optimal for communicating with databases. This became a signifi-
cant design choice when developing the system and was the reason the SampleDB
was embedded in the ROS system, as opposed to exposing it to EPICS.

6.5 Sample Switching

The system is currently not robust enough to perform continuous unmonitored op-
eration. This is due to inaccuracies in the perception, causing the robot to occasion-
ally misalign with the sample handle during pick-up. When the system experiences
a failure, it often autonomously, preventing the failures from being fatal to the sys-
tem. For instance, if the system fails to place a sample in a rack port, it can attempt
to place it in a different port. Similarly, if it encounters an issue partway through a
pickup, it can reposition the sample before aborting. This self-recovery capability
enhances the system’s robustness and reliability.

Overall, the system demonstrates the feasibility of a more general approach for
sample switching. The use of sample handles and racks allows for a wider range of
sample shapes and sizes. Moreover, the system is flexible regarding the design of
sample racks and handles, allowing for adjustments as needed when evaluating rel-
evant samples for the application. Additionally, the system is flexible in the design
of sample racks and handles, allowing for adjustments as needed when evaluat-
ing relevant samples for the application. If a new design accommodates even more
shapes and sizes of samples, it can be developed and fitted with ArUco markers
accordingly, without needing adjustments to the system.
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6.6 Limitations

The development of this system faced several limitations, with time being one of
the most significant constraints. Despite this, the goal of creating a flexible system
for sample switching has been partially achieved.

While the use of ArUco markers on handles enabled the system to autonomously
identify, pick, move, and place samples, it still requires user input to specify the
tasks to be executed and describe the samples involved. Importantly, an STL file of
the sample is required to ensure proper collision avoidance. However, it is expected
that scientists will already have this file before arriving at ESS, and a coarse model
is sufficient.

As mentioned, the camera performance is a limitation. The factory standard ab-
solute depth error is ±2% at distances below 2 meters, which the filtering efforts
have improved to an accuracy of around ±1 cm. However, this error can still intro-
duce uncertainty during operations. In environments such as at ESS or in industrial
applications, higher precision may be required, necessitating the use of a different
sensor.

The open-source drivers for the robot also proved a limitation as the drivers
found where limited to ROS1. While still widely used, ROS1 will reach its End of
Life in May 2025, making a transition to ROS2 desirable.

6.7 Implications

This thesis highlights several aspects, the most obvious being the difficulty of per-
ception problems. Even when using high-contrast ArUco markers and readily avail-
able pose estimation methods, obtaining accurate measurements is challenging.
While sensor performance is critical for achieving good results, filtering and other
algorithms have been demonstrated to partially compensate for sensor limitations.
Additionally, the developed custom hand-eye calibration method managed to out-
perform the OpenCV methods. This implies that developing specialized methods
for hand-eye calibration, rather than relying solely on open-source methods, can be
beneficial from a performance and control viewpoint.

6.8 Research Questions

Robotic Automation and System Integration
Looping back to the research question, it was deliberately chosen to develop the au-
tonomous system that centralizes the core logic in a single computer, as illustrated
in Figure 3.5. While the system is running on two devices-one computer and the
CS8c controller-the computer handles the main system logic, and the communica-
tion with the robot controller. By focusing the logic on the computer, the system
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simplifies integration with external systems like EPICS, as the single computer acts
as the main interface point for such integrations.

The system was designed to enable user input from outside the ROS envi-
ronment, facilitating straightforward integration with EPICS. This integration is
achieved through an EPICS client that also functions as a ROS node, translating
incoming EPICS PVs into a ROS request message that it sends to the system con-
troller. Basic data types (strings, integers, and floats) are used for inputs, with spe-
cific ROS messages created automatically. Using basic data types for system inputs
simplifies integration, eliminating the need for developing advanced drivers. This
approach enhances the efficiency and adaptability of the system, ensuring commu-
nication between different components and user interfaces.

As mentioned, it would be desirable to have functionality for sending status up-
dates back to EPICS. Implementing this would not be difficult, as the execution
process is tracked, allowing for simple publishing of messages when changes oc-
cur. These messages could then be read by the EPICS node and forwarded to the
operator. However, communication within the system should remain through ROS,
as it is a more powerful tool for robotics than EPICS.

By using the developed autonomous system, it is possible to perform a more
diverse set of experiments, which is desirable from a research standpoint. Beam
time will be expensive for visiting scientists, and it will be important to maximize
the output from the neutron beam. Considering, more functionality such as control
based on experimental feedback should be implemented. This means that the robot
receives feedback from the experiment while it is running, adjusting the sample to
get the highest possible resolution from the neutrons.

Precision and Efficiency in Robotic Operations
Regarding the precision and efficiency, it is evident from the results shown in Fig-
ure 5.2 that there is a lack of precision in the sensor performance of the camera.
Replacing it with a more industrial-grade model could significantly enhance this
performance. The entire system is designed in a modular approach, which makes
it relatively easy to change the camera. A sensor publishing onto the same topics
would require no code alterations, while a completely different sensor would only
require changes to the MarkerDetector class. This was a deliberate design choice
to facilitate easy sensor upgrades.

As discussed, the sensor’s precision is not sufficiently satisfactory, with the cam-
era’s depth measurement accuracy around ±1 cm. When examining the Stäubli
datasheet in Table 3.1, the robot’s repeatability is shown to be ±0.02 mm, which is
significantly more precise than the camera. This indicates room for improvement,
as the perception system’s accuracy currently becomes the bottleneck of the system.

Unfortunately, there was no access to precision instruments that could precisely
measure the repeatability of the system, this made it challenging to evaluate the
exact precision of the robot’s movements. The greatest bottleneck in this case is the
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pose estimation, as an accuracy deviation of around 1 cm can occasionally cause
the robot to fail its tasks. Additionally, the gripper’s gap is not much wider than
the sample handle when open, leaving little margin for error when gripping objects.
This issue could be partially mitigated with a redesigned handle, but it would not
address the underlying problem of measurement accuracy.

The cycle time of the system is approximately 30 seconds, from the home posi-
tion back to the home position. The choice of this specific home state significantly
impacts the cycle speed; however, only small adjustments is needed in case another
home position is more beneficial. It is important to note that this cycle time does
not include holding the sample in a hypothetical neutron beam. Instead, it illustrates
the time required for the pick-and-place operation. This cycle time imposes some
restrictions on how many cycles can be performed within a given time. Currently,
there is no established duration for a neutron instrument investigation. However,
depending on this duration, the movement may need to be optimized to shorten the
cycle time.

Recognition and Positioning Techniques for Robotic Systems
Regarding this recognition and position techniques, in both research and industrial
applications, there is often a level of environmental predictability. This predictabil-
ity necessitates trade-offs in the development of autonomous systems, similar to any
design and development process. Developing a fully autonomous system may not
always be practical, primarily due to the challenges associated with perception. Cre-
ating a general-purpose vision model that can detect objects and estimate their poses
with the required precision is difficult. Moreover, designing such a model to be so
general that it can handle any object—especially given the wide variety of samples
in the ESS environment—is even more challenging due to the inherent complexities
of machine learning.

This led to the design of sample racks and handles, with ArUco markers natu-
rally evolving from this concept. By utilizing these markers, it is possible to give
the samples known key points, which simplifies the object detection and pose es-
timation by searching in the images after the known patterns. Scientists need only
to attach samples to the sample handles, after which the system takes over, man-
aging the remaining part of the process autonomously. This approach balances the
need for precision and efficiency while simplifying the integration of autonomous
systems into existing workflows.

6.9 ESS Goals

Transferring Robotics Knowledge to ICS One of the goals for ESS was the
transfer of robotics knowledge to the ICS division. To achieve this, teaching sessions
were organized for the ESS supervisors and presentations were held for the division.
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These sessions provided the supervisors with a deep understanding of the system,
ensuring they are well-equipped to continue the development work independently.

In addition to teaching sessions, the work has been thoroughly documented. This
documentation includes detailed instructions for setting-up and running the system,
comprehensive system diagrams and logging of activities along with the reasoning
behind key decisions. This report also serves as a critical component of the knowl-
edge transfer process. The codebase itself has been crafted with a strong emphasis
on clarity and ease of understanding. This was achieved through documentation,
consistent commenting, and a well-defined system design.

By focusing on these aspects, a solid foundation for future development has
been laid. Ensuring that ESS and the ICS division can continue exploring the use of
robotics in research applications.

Feasibility of EPICS Integration The feasibility of integrating EPICS into the
system has been successfully demonstrated. The current setup allows tasks and sam-
ple information to be sent to the system via EPICS. Adding functionality for passing
information from the system controller back to EPICS will require little effort, and
there are no technical obstacles for implementing it. The current EPICS drivers and
code can serve as guidelines for the addition of further functionality.

6.10 Future Work

Vision Based Closed Loop Control
For increased accuracy and reliability of the robot’s movement, incorporating a vi-
sion based closed-loop control system could be beneficial. Currently, the perception
system only provides the goal for the movement without monitoring the execu-
tion process. By incorporating a feedback loop using position-based visual servo-
ing (PBVS) and continuous pose estimations of the sample, the robot can adjust its
movement based on real-time data from the perception system, allowing it to pick
and place samples even if the calibration or initial pose estimation is slightly inac-
curate. This approach could also enable the robot to achieve movement precision
beyond its specified capabilities.

Instrument Integration
For the system to be effectively used within an instrument at ESS or a similar fa-
cility, additional functionalities is needed. More actions, in addition to the imple-
mented move_to, should be added for controlled movement within the instrument,
such as moving it along a predetermined trajectory.

Furthermore, incorporating control based on real-time feedback from the instru-
ment’s measurements is a very interesting use of this system. This would enable the
robot to adjust the sample position dynamically, based on the continuous results of
the experiments, ensuring that data is gathered from the most relevant point at all
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times. This adaptive approach could significantly increase the efficiency of scientific
experiments.

Further EPICS Integration
There is also work to be done on the EPICS integration. The system should send
updates back to EPICS, so that users can supervise the robot while it is in operation.
Ideally users should be able to see camera feeds, visualize and confirm movement
like in RViz, and manually control the robot. Users should also be able to input new
sample and task types straight into the OPI, and not depend on updating the JSON
file.
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7
Conclusions

This thesis presents the design and development of an autonomous system for flex-
ible sample switching at the European Spallation Source ERIC. The developed sys-
tem has demonstrated that a computer vision based system can be used for sample
switching.

Additionally, it shows how an external computer with ROS can control a TX60
robotic arm, interface with sensors such as the Intel RealSense D435if depth cam-
era and receive input from an external control system like EPICS. This integration
highlights the modular and adaptable nature of the system, facilitating seamless op-
eration and coordination among components.

The system, after camera calibration and with the aid of pose filtering, proved
capable of picking up, manoeuvring and placing samples. However, the use of more
advanced sensors could improve the operational efficiency and robustness of the
system. Enhancing the accuracy of the computer vision system will increase the
number of completed cycles. Additionally, a more precise system will enable the
incorporation of functionalities such as fine adjustments within the neutron beam.

Furthermore, it has been concluded that, for this experimental setup, the custom
direct hand-eye calibration method can outperform the methods implemented in
OpenCV.

Future work should focus on three key areas to further enhance the system’s
capabilities. First, developing a closed-loop control system based on real-time feed-
back from the perception system could enable more precise movements and adjust-
ments during sample handling. Secondly, integrating the system with the neutron
instruments to receive feedback based on experimental results could significantly
increase the operational efficiency and scientific output. Lastly, further developing
the integration with EPICS should be a priority, to enable full control of the robotic
system through ESS’s control system.

This thesis contributes to the robotics field by providing a study on how to de-
sign and develop a versatile and adaptable autonomous system, highlighting chal-
lenges and solution in various areas in robotics. Additionally, the experimental re-
sults show that the developed system demonstrates promise for operational sample
switching by completing full cycles from detection to actuation.
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