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Abstract

The age of the center of our galaxy is poorly known. Determining the ages of individ-
ual stars in the galactic center usually requires isochrone fitting on a Hertzsprung-Russel
diagram, which in turn requires knowledge of the star’s fundamental parameters, such as
surface gravity, which is often determined with spectroscopic methods; and metallicity,
which affects the shape of the isochrone. This can only be done for dwarf and subgiant
stars, as in their respective regions of the diagram the isochrones are well separated and
distinct. Such analysis has been performed for dwarf stars in the outer regions of the galac-
tic bulge, but not for dwarf stars in the inner bulge due to the high amounts of extinction.
However, infrared wavelengths are less extincted. To this end, this project investigates
infrared wavelengths of synthetic stellar spectra for spectral lines sensitive to changes of
0.25, 0.5, 0.75, and 1.0 dex in log g. Synthetic spectra are produced in PySME. Changes
in log g are investigated by dividing two synthetic spectra varying by a certain dex in
log g while sharing all other input parameters to create the so-called response curve, where
regions that vary between both spectra have values greater or less than 1. Peaks in this
response curve thus indicate spectral lines sensitive to changes in surface gravity. Response
peaks with a strength greater than 2% are analyzed qualitatively as a large sample, as well
as individually in representative cases. A small analysis with synthetic Gaussian noise is
performed to qualitatively determine at what signal-to-noise ratios (S/R) the synthetic
spectrum or the response curve become unrecognizable to inform future observations of
these spectral lines in bulge stars. It is concluded that large numbers of sensitive peaks
exist in the chosen wavelength range, most are considered weak (of response ≈ 2%). Of
the identified peaks, C I, Si I, Mg I, and H I transitions account for the majority of sensi-
tive spectral lines. These are suggested as avenues for future theoretical work in synthetic
models of dwarf stars.
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In Plain Sight: The Unknown Stars of our Galaxy

Astronomy has often been called humanity’s oldest science: ever since we could recog-
nize ourselves as such, humans have been gazing at the stars and wondering. Our access
to technology has only expanded our horizons of observation, which uncover new questions
about the universe and our place within it. Even though we can now observe galaxies
billions of light years away, some of the most enigmatic stars are a little closer to home.

Aside from the stars themselves, our galaxy is composed in large part of free-floating
gas and dust, molded by gravity, radiation pressure, and supernova shockwaves into all
sorts of beautiful shapes. However, this dust also absorbs and scatters starlight, causing
stars behind concentrations of this dust to become significantly dimmed in a phenomenon
known as extinction. Depending on where a star is located in the galaxy relative to us, it
could be subject to varying amounts of extinction, and those lying in the galactic plane
(where most of this dust is located) will be the most heavily extincted.

The stars of the galactic center, known as the bulge, have long remained mysterious
due to the intense extinction their light suffers before it reaches our telescopes. Some of
these stars can be made up to 100 times dimmer—for small dwarf stars, this can make
them virtually unobservable. Thus, if we are to understand this population of stars, novel
observation methods must be employed. To this end, this project focuses on infrared light,
which is much less subject to extinction than shorter wavelengths.

Scientists can learn a great deal about a star by analyzing the imprint certain elements
leave on the star’s light. Such a graph is known as a spectrum. It is a fingerprint of sorts,
showing the composition of the star (by which lines appear at what wavelength), as well as
many of the star’s properties (by the shape and strength of specific spectral lines). Two of
these properties, the effective temperature and surface gravity of the star, have well-known
effects on the spectral lines of the visible spectrum.

However, in the case of surface gravity, knowing exactly which spectral lines are affected
is necessary, and this is not well known for the infrared region. In order to make observation
of the bulge dwarfs with infrared telescopes at all feasible, these spectral lines must first
be identified, and adequate candidates for study selected from this sample. This, in short,
is the aim of this project.

Learning more about the dwarf stars of the galactic center has numerous implications
for our understanding of both our galaxy itself and how galaxies form generally. Perhaps
most of these stars are incredibly similar in age and composition, suggesting a common
origin in space and a rapid phase of star formation. Perhaps they have a great range of
ages and all sorts of masses and temperatures, which would point to a continuous seeding
of the galactic center with stars from diverse locations. Perhaps we will uncover a situation
we have yet to conceive, and unearth even more questions about the history of our galaxy.
Whatever the case, these stars present a tremendous opportunity to expand our knowledge
horizon, and with it enrich both science and humanity.
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Chapter 1

Introduction

1.1 Motivation: Our Little Niche

Every project forms a piece of a larger whole. Such a thing is obvious, and yet it bears
reiterating. Where a project lies in the great web of its field informs its scope, its focus,
what past knowledge it draws from and what new knowledge it hopes to create. So let me
begin by placing this project within its proper context.

The centers of spiral galaxies, and the center of our Milky Way in particular, have been
an active focus of modern astronomy. They are known as ”bulges” in the case of spiral
galaxies, in reference to how the density of stars and dust make these features appear
to burst at their seams with light. However, their relative brightness compared to the
rest of the galactic disk belies the difficulty of observing the bulge stars themselves. The
aforementioned dust is but one part of the highly varied interstellar medium, which tends
to absorb and scatter starlight with surprising effectiveness. Such is its density in the line of
sight of the bulge that stars in this region are extincted by between 2 and 3.5 magnitudes,
according to Figure 6 of Gonzalez, O. A. et al. (2012). Thus, already dim (and numerous)
dwarf stars become too faint to observe in visible wavelengths. This poses a particular
problem for our understanding of the galactic bulge, as we have thus far only characterized
a minority of its stellar population.

One of the most important properties of a star is its age, which is usually determined
via a technique known as isochrone fitting. Isochrones are curves on a Hertzprung-Russell
(HR) diagram that represents a population of equally-old stars of different masses, as
shown in Figure 1.1. In order to adequately determine the age of a star, one must know
its surface gravity and its temperature to a high degree of accuracy, and where exactly the
star lies on the HR diagram will determine exactly how much accuracy is required for each
parameter. Consider Figure 1.2; for a ”horizontally flat” section of an isochrone, significant
uncertainties in temperature will scarcely affect a determination of which isochrone a star
belongs to. Significant uncertainty in luminosity, however, may leave this rather ambiguous.
Thus, if we are to adequately characterize this enigmatic region of our galaxy, we must
turn our telescopes to its much more numerous dwarf stars, and accurately determine their

2



1.1. MOTIVATION: OUR LITTLE NICHE CHAPTER 1. INTRODUCTION

fundamental parameters. In particular, we must focus them on their infrared spectra, as
infrared radiation is less subject to extinction from the interstellar medium. This poses
new challenges, however, as the known spectral lines used to determine surface gravity are
not present at infrared wavelengths.

Figure 1.1: Theoretical isochrones for near-solar metallicities. Produced by Ivan
Ramirez, Astronomy/Physics Professor at Tacoma Community College. https://

commons.wikimedia.org/wiki/File:Isochrones_of_several_ages.png.

Herein lies our little niche. Without access to the regular methods to determine surface
gravity, new ones must be investigated. This project is a proof-of-concept of sorts, aiming to
evaluate the viability of determining surface gravity from infrared spectra of dwarf stars in
the galactic center. This is done by the creation of synthetic spectra with PySME, covering
a range of surface gravity and metallicity values typical of galactic-center dwarf stars in
the sample from Bensby et al. (2017). Gravity-sensitive peaks are found in this wavelength
range. Gaussian noise is then added to a representative sample of these peaks to model the
effects of real observations, and to judge whether these peaks will be visible even in noisy
data. Versions of this methodology have been employed in past, such as in Nandakumar
et al. (2023), where stellar parameters are determined for giant stars using near-infrared
spectroscopy and an iterative method with SME, with an eye to future applications in
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1.2. THE GALACTIC CENTER CHAPTER 1. INTRODUCTION

Figure 1.2: A star fitted onto isochrones as determined by Demarque et al. (2004). Plot is
taken from Figure 4 of Bensby et al. (2010). Solid lines represent isochrones for 5, 10, and
15 Gyr, from left to right. Dotted lines represent isochrones in steps of 1 Gyr from 0.1 to
20 Gyr.

Galactic center astronomy. These methods are employed again in Nandakumar et al. (2024)
in a successful study of Bulge giants, proving the reliability of this approach. Indeed, the
work of this thesis is to lay the groundwork for a parallel method for dwarf stars.

1.2 The Galactic Center

Our galaxy and others like it are characterized by their structure. It is self-evident in our
nomenclature: they are called ”spiral galaxies,” in reference to the great arms that curve
outward from a central dense region, itself seen to assume all sorts of shapes across our
sample of spiral galaxies. Predictably enough, these central regions are known as ”bulges.”

Barbuy et al. (2018) provides an extensive and recent overview of the state of the liter-
ature on galactic bulges, as well as the many open questions presently in the field. The one
that primarily concerns this thesis is the question of the Bulge’s age, as determining the
precise ages of Bulge stars will greatly constrain scenarios of the galactic center’s forma-
tion. Previous literature reviews, such as the equally extensive one by Wyse et al. (1997)
already revealed that our assumptions about the Bulge’s age—that it was the oldest part of
the galaxy—was being undermined by new discoveries, and Barbuy et al. (2018) provides
salient examples. It mentions the finding of ”two or three dozen” metal-rich dwarf stars,
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1.3. OBSERVING THE BULGE CHAPTER 1. INTRODUCTION

which implies at least a second generation of star formation seeded by nucleosynthesis from
ancient supernovae. What proportion do these young stars form of the Bulge population?
When did they form? Were they formed in the Bulge, or do they come from other popu-
lations that migrated inwards? These are some of the questions that such findings bring
to mind, and are among the questions that this thesis aims to build towards answering.

Many projects have already moved in this direction. In Bensby et al. (2017), for in-
stance, the authors use spectroscopic methods to determine the ages of 90 microlensed
dwarf stars in the outer Bulge, determining that a significant portion of these stars are
much younger than earlier models predict. However, this sample only covered between 2-8
degrees of galactic latitude-longitude coordinates; in other words, the outer reaches of the
galactic bulge. It is within this inner 2 degrees that our interest lies, as the stars within this
region are the most heavily extincted. The following sections will thus detail the specific
challenges involved with observing these stars and how the fundamental parameters of a
star, particularly surface gravity, affect spectral lines.

1.3 Observing the Bulge

The interstellar medium (henceforth ISM) is composed of a great variety of gaseous and
particulate matter, in multiple stages of ionization, with a structured distribution resulting
in regions of higher relative density. Its dust components are agreed to be mostly silicates
and carbon-based molecules, some of which are coated in frozen volatiles such as water
or methane (Stelter & Eikenberry 2020). The gas, meanwhile, is primarily hydrogen,
alongside helium and trace amounts of heavier elements (Herbst 1995). In our galaxy,
notable overdensities of the ISM occur in star-forming regions, in planetary nebulae, in
hydrogen clouds, and in the spiral arm structures. The reason behind the ISM’s infamous
hampering of astronomical observations lies in the interactions between light and matter,
as well as the sheer distances involved in said observations. Even though the ISM may
be less dense in some regions than the best laboratory vacuums on Earth, the distances
that photons emitted from stars travel are so vast that extinction becomes significant.
Extinction is typically measured in units of magnitudes dimmed per kiloparsec. Therefore,
the difficulty of observing the galactic center may now be apparent: in order for light from
these stars to reach Earth, it must travel through several kiloparsecs of the galactic plane,
which contains the highest densities of the ISM, before reaching our instruments.

As the effects of extinction decrease rapidly with increasing wavelength, our choice of
observing in infrared bands minimizes the effect of extinction, while still leaving identifiable
spectral features in our observation range. Even by limiting our observations to infrared,
dwarf stars are incredibly faint, a problem which is only magnified by the tremendous
distances involved. Bensby et al. (2017) makes use a technique known as microlensing to
magnify the brightness of these Bulge dwarfs. According to Einstein’s theory of general
relativity, potent enough gravitational fields are able to bend the pathway of light. When a
mass (such as another star) lies between our telescope and our target, the middle mass can
act as a lens of sorts, magnifying the object behind it and making it appear brighter in the
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1.4. THE STELLAR SPECTRUM CHAPTER 1. INTRODUCTION

process. The best known examples of this gravitational lensing occur with incredibly heavy
masses the size of galaxies or supermassive black holes, though this effect is still visible
with stellar mass objects—hence the term ’microlensing.’ The stars of the galactic center
exist in both much greater in density and orbit with much greater velocities than stars
of the galactic disk, which makes these microlensing events occur with sufficient enough
frequency to be readily observable. When such an event occurs, the apparent magnitude
of the target star increases by a factor of up to several hundred times, thus making it
observable to our instruments.

1.4 The Stellar Spectrum

When photons are generated in the fusion processes of a star, they are absorbed and re-
emitted constantly until they eventually reach a star’s more transparent upper layers: what
we would consider its ”surface,” known as the photosphere. These are the photons that
reach our telescopes, and thus our only way to obtain information about the star. Due
to this, the spectral information provided by this light is paramount to characterizing a
star in detail, and thus much research has been done in understanding the behavior of
spectral lines with respect to a variety of parameters. Three of these—surface gravity,
effective temperature, and metallicity—are known as the fundamental parameters, and
surface gravity and metallicity will be what primarily concerns this project.

1.4.1 The Fundamental Parameters

Pressure Dependence

Earth’s gravity plays a crucial role in determining the pressure gradient of its atmosphere.
So too does the gravity of a star determine the pressure gradient of its photosphere, with
various effects on the spectral lines. It is for this reason that pressure and gravity depen-
dence can be considered to be synonymous.

Determining a dwarf star’s surface gravity with spectroscopic methods poses numerous
challenges. Firstly, pressure effects in spectral lines are weaker than temperature effects.
Usually, this is counteracted by the fact that, across the universal stellar population, grav-
ity can vary over 4-5 orders of magnitude, while temperature varies across only a single
order (Gray (2022)). Restricting our sample to dwarf stars removes this statistical advan-
tage. Secondly, the species used for gravity determination at lower wavelengths are not
guaranteed to exhibit peaks in the H-band. New candidates will thus have to be discov-
ered. Additionally, only a minority of spectral lines are sensitive to pressure, unlike the
temperature dependence, which affects all spectral lines.

Surface gravity in spectroscopic astrophysics is measured in CGS units as the logarithm
of the surface gravity, denoted henceforth as log g.
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1.4. THE STELLAR SPECTRUM CHAPTER 1. INTRODUCTION

Metallicity Dependence

Metallicity is a measure of how much of a star is composed of elements heavier than
hydrogen, and is defined in many different ways to suit different kinds of observations. In
this case, the iron abundance ratio definition will be used, commonly denoted as [Fe/H],
and defined as such:

[Fe/H] = log

(
NFe

NH

)
∗
− log

(
NFe

NH

)
⊙
. (1.1)

Thus, metallicity values with this definition are reported relative to the solar metallicity.
Metallicity directly relates to the abundance of particular elements in a star. As the

strength of a spectral line largely depends on the sheer number of absorbants in the photo-
sphere, higher metallicities will uniformly increase the strength of spectral lines belonging
to elements other than hydrogen. Conversely, any of the star’s hydrogen peaks will be over-
laid by metallic peaks at high metallicities; as will be seen in the Results section, hydrogen
features are much more visible at low metallicities.

Temperature Dependence

Though we do not consider temperature as an independent variable, it is important to
understand how temperature affects the spectral line. As the excitation and ionization
processes that produce spectral lines to begin with are highly temperature dependent,
temperature has the greatest effect on the strength of a spectral line (Gray 2022). Thus,
any variation in the strength of a spectral line between two different stars is likely to be
mostly caused by a difference in temperature, especially so in a sample of dwarf stars of
similar mass as aforementioned.

Parameter Determination from Spectral Lines

SME employs an iterative method to determine stellar parameters by comparing an ob-
served spectrum to a synthetic spectrum, generated with an initial guess of unknown vari-
ables that were not previously determined by other means. The program then changes the
desired value by a small amount, and compares the two spectra again—this process repeats
until the two spectra match as closely as possible. Using this method, specific parameters
can be fixed, and others left as free parameters to be solved for by the iteration. This is the
aforementioned method used to determine fundamental parameters in Nandakumar et al.
(2023). Their determination of effective temperature relies in the excitation balance of Fe
I lines, while their determination of surface gravity relies on the ionization balance of Fe I
and Fe II lines. Thus, the clear presence of a sufficient number of these spectral lines is a
prerequisite for a spectroscopic determination of these variables. They are able to perform
this analysis with giant stars in the near-infrared as these lines are visible and numerous.
However, these lines are much weaker and much fewer in the spectra of dwarf stars. This
prevents the application of this exact method.
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Chapter 2

Methodology

As mentioned in the previous chapter, this thesis makes use of the Python version of
Spectroscopy Made Easy (SME), originally developed in 1996 to fit an observed stellar
spectrum onto a synthetic spectrum. The creation of such a synthetic spectrum is a rather
remarkable achievement: the shape of a spectrum and the lines within it are the result of
dozens of simultaneous processes. Even something as fundamental as which lines appear
in the spectrum requires highly detailed and accurate atomic and molecular transition
data from innumerable lab experiments across the world. In order to generate a synthetic
spectrum, SME thus requires a list of all electron transitions that might occur in the stellar
photosphere within a desired wavelength range, and all their associated data, compiled into
a file known as a linelist.

For this project, such a linelist was obtained from the VALD database, spanning a wave-
length range of 14300Å to 18000Å. This was chosen to correspond with the approximate
coverage of H-band detectors on the European Southern Observatory’s CRIRES instru-
ment. In choosing this wavelength range, we center our objective to show the viability
of this method—were a viable set of spectral lines identified in this interval, observation
could begin immediately with existing instruments.

Further centering this project on previous work, we refer to the sample of Bulge stars
found in Figure 4 in Bensby et al. (2017), and choose our fundamental parameters ac-
cordingly. The majority of the sample stars have a log g between 3.5 and 4.5, centered
around an effective temperature Teff of 5500K, with metallicities hovering between [Fe/H]
= 0.3 and [Fe/H] = -1.0. Thus, these will be the ranges encompassing our set of synthetic
spectra. A total of 15 synthetic spectra are created, using all combinations of the follow-
ing parameters. Furthermore, synthetic Gaussian noise with three different signal-to-noise
(S/N) ratios will be added to these spectra to investigate at which signal qualities the
spectrum can still be recognized.

• log g: 3.5, 3.75, 4.0, 4.25, 4.5

• Teff : 5500K

• [Fe/H]: -1.0, 0.0, 0.3
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2.1. CODE CHAPTER 2. METHODOLOGY

• S/N: 30, 50, 100

These ranges cover the typical sorts of fundamental parameters observed for F and G-
type dwarfs and subgiants, which are the potential population of interest in future H-band
studies that concern this thesis. For the purposes of this investigation, we assume that
effective temperature is fixed by other means, such as excitation balance, and could thus
be input as a fixed parameter in SME.

2.1 Code

Aside from PySME itself, two additional Python scripts were made. The first one creates
a synthetic spectrum and saves it as a file by specifying input parameters for SME. The
second reads and divides pairs of these spectrum files element-wise, such that only one
parameter changes from one spectrum to another. We call the resulting curve a response
curve, which represents the sensitivity of a particular region of the spectrum to changes in
particular parameters. Response R is measured as a ratio of relative fluxes R = I

I0
. The

full code blocks are included in the appendix.

2.1.1 Spectrum Generator

Due to the aforementioned complexity of simulating a stellar spectrum, SME includes a
large number of input parameters. These include:

• teff: Effective temperature of the star, in Kelvin.

• logg: Surface gravity of the star, in log base 10 of CGS units.

• monh: Overall metallicity of the star, in log base 10 relative to the Sun’s abundances.

• vmic: Microturbulence velocity in km/s.

• vmac: Macroturbulence velocity in km/s. Includes the star’s rotational velocity.

SME also requires a provided set of abundances. Below are constant values set for some
of the above parameters across all synthetic spectra. Figure 2.1 provides a sample range
of one such synthetic spectrum.

Table 2.1: Table of fixed input variables.

Parameter Value Unit
teff 5500 K
vmic 1.0 km/s
vmac 2.0 km/s
Spectral Resolution ∆λ 0.006 Å
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2.1. CODE CHAPTER 2. METHODOLOGY

Figure 2.1: A sample of two prominent Fe I absorption lines as well as nearby features.
The spectrum was created with the Spectrum Generator code file in Appendix B1. Peaks
are annotated with scipy.findpeaks.

Microturbulence values are chosen as typical values for dwarf stars in reference to
Bensby et al. (2013). Macroturbulence serves simply as a peak broadening parameter,
with negligible changes to a line’s equivalent width, and so is set arbitrarily.

SME also models the shape of the stellar atmosphere, and is programmed to accommo-
date for several different models. This thesis makes use of a MARCS model atmosphere
as detailed in Gustafsson et al. (2008), with plane-parallel geometry.

2.1.2 Spectrum Reader

With a variety of different spectra created, the Spectrum Reader program selects a pair
of spectrum files that vary by a particular dex in log g and divides them by each other,
creating the so-called response curve. Once generated, it runs scipy.find peaks to locate
the regions in the spectrum most sensitive to the independent variable based on a chosen
input threshold. Using the information from the linelist it then associates a peak in the
response curve to a particular atomic or molecular species.

Depending on the threshold, this can produce hundreds, or even thousands, of response
peaks—many of which are separate instances of the same changing peak in the original
spectrum. The task then becomes to represent this wealth of information in a clear and
concise manner, with a particular focus on peaks that show a strong response to log g.

Additionally, this portion of the code is the one responsible for producing the plots in
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Section 3, as well as adding Gaussian noise to a spectrum after loading for Section 3.3.
When generating the response curves in such a way, unique noise arrays are generated for
each spectrum to adequately simulate separate instances of observation.
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Chapter 3

Results and Discussion

3.1 An Overview

At a constant Teff of 5500K, the code found a total of 78 peaks sensitive to a change
of 0.25 dex in log g, and displaying a response R of at least 2% within the wavelength
range. This minimum is chosen for two reasons: one, to select for peaks with a noticeably
prominent response to changes in log g; two, to exclude smaller peaks that would likely be
undetectable in noisy data. The properties of sensitive peaks, including response strength,
wavelength, and species are shown in Figures 3.1 to 3.3, for varying minimum R. Refer to
Appendix A for histograms of response peaks for 0.5 and 1.0 dex in log g.

Figure 3.1 arranges all peaks in the response curve that meet the 2% threshold by
their response strength. Different metallicities are shown as different colors. Notable
here are the large number of weak responses, as well as the significant number of low-
metallicity responses. As perhaps expected, most sensitive peaks exhibited only a minor,
yet detectable, change in log g, with the strongest responses between 3% and 4%. In this
case, the difference between a ”strong” and a ”weak” response is quite minor.

Figure 3.2 arranges these peaks by species. Notable here is the significant presence
of Si I peaks at low metallicity, which is unexpected. There are also more Fe I peaks at
[Fe/H] = −1.0 than at higher metallicities, which is equally unexpected. At [Fe/H] = 0.0
and [Fe/H] = 0.3 Mg I accounts for a significant plurality of peaks sensitive to log g. There
is also a notable number of H I peaks, with similar numbers present for each metallicity.

It must be noted here that, according to spectroscopic theory, an Fe I peak should not
be sensitive to changes in log g. The fact that the code marked 7 peaks as such is evidently
an error, likely a result of a linelist entry being too close to the one truly responsible for
the absorption peak. This is thus an error in my results.

Figure 3.3 arranges these peaks by their wavelength. Notable here is how most of
the peaks are clustered at longer wavelengths, as well as the large number of sensitive
peaks at [Fe/H] = −1.0 at these longer wavelengths. Their number roughly appears
to increase with increasing wavelength. This trend is also followed by sensitive peaks
at [Fe/H] = 0.0. Though there are also a larger number of sensitive peaks at higher
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wavelengths for [Fe/H] = 0.3, the disparity is not as striking, and the prior trend cannot
be established conclusively.

Figure 3.1: Histogram of all response peaks with R > 2% for 0.25 dex in log g, sorted by
R.
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Figure 3.2: Histogram of all response peaks with R > 2% for 0.25 dex in log g, sorted by
species.

Figure 3.3: Histogram of all response peaks with R > 2% for 0.25 dex in log g, sorted by
wavelength.

14



3.2. SELECTED PEAKS CHAPTER 3. RESULTS AND DISCUSSION

We immediately notice some noteworthy trends. For 0.25 dex the majority of the sensi-
tive spectral lines are concentrated at the latter half of the wavelength range. Furthermore,
the majority of these peaks exhibit a weak sensitivity to log g. A near-majority of the sen-
sitive peaks result from C I transitions, with significant samples of other metals including
Mg I, Fe I, and Ti II, among others, at [Fe/H] values of 0.0 and 0.3. We also notice an
intriguing sample of hydrogen and magnesium peaks at [Fe/H] = −1.0. These hydrogen
peaks also exhibit a particularly strong response at 1 dex.

A representative sample of these peaks is closely examined in the following sections.

3.2 Selected Peaks

Four peaks are selected for further study: Mg I, Fe I, Si I, and H I. The Si I peak will be
used to examine Gaussian noise in Section 3.3. In the following plots, the left side shows
response peaks for different dex in log g, and the right side shows the spectrum itself for
different values in log g.

Figure 3.4 shows a Mg I peak at 14306.9Å, and its corresponding response in four
different dex in log g. While not important to our results, Figure 3.4 provides a perfect
example of a peak that is not sensitive to log g next to one that is. The deep absorption
peak is essentially unchanged in intensity for all four values of log g. Figure 3.5 shows a
supposed Fe I peak at 14631.7Å, and its corresponding response in four different dex in
log g. As mentioned in the previous section, Fe I is theoretically not sensitive to log g;
thus, the code marking this peak as such is an error. Figure 3.6 shows a Si I peak at
16129.0Å, and its corresponding response in four different dex in log g. Figure 3.7 shows
a H I peak at 16806.5Å, and its corresponding response in four different dex in log g. It
has a particularly extended wavelength range, as the peak wings are much more prominent
than for the metallic peaks.

Table 3.1: Table of selected representative peaks, with references from VALD’s list of
linelist references.

Species Wavelength (Å) Reference
Mg 1 14306.9 Kurucz & Peytremann (1975)
Fe 1 14631.7 Kurucz (2014)
Si 1 16129.0 Kurucz (2007)
H 1 16806.5 Kramida (2010)
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Figure 3.4: Mg I Response for 1, 0.75, 0.5, and 0.25 dex in log g, with synthetic spectra
visually representing various steps of change.

Figure 3.5: Fe I Response for 1, 0.75, 0.5, and 0.25 dex in log g, with synthetic spectra
visually representing various steps of change.
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Figure 3.6: Si I Response for 1, 0.75, 0.5, and 0.25 dex in log g, with synthetic spectra
visually representing various steps of change.

Figure 3.7: H I Response for 1, 0.75, 0.5, and 0.25 dex in log g, with synthetic spectra
visually representing various steps of change.

3.3 Artificial Noise

We now add varying intensities of Gaussian noise to the selected peaks of the previous
section. Three S/N values, simulating high, medium, and low noise are chosen: 30, 50,
and 100 per pixel respectively. The noise arrays are added to the base spectra before the
response curve is created, resulting in significant magnification of random noise. In Figures
3.8 and 3.9, the peak structure is only vaguely recognizable when compared to Figure 3.6;
without the unmodified spectrum as reference, it would be almost impossible to discern the
response peak from the surrounding continuum. In Figure 3.10, meanwhile, the response
peak can indeed be identified from the continuum, and its amplitude can be somewhat
discerned.
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Figure 3.8: Si I response and spectra with S/N = 30. Notice how the previously clear
response is rendered almost unrecognizable without prior signal processing.

Figure 3.9: Si I response and spectra with S/N = 50. Though the noise in the response
curves is noticeably reduced, the peak structure is still far from visible.
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Figure 3.10: Si I response and spectra with S/N = 100. The location of the peak can
finally be discerned, but its exact amplitude from the continuum is ambiguous at best.

3.4 Discussion

The first result we can glean is an encouraging one: there appears to be no shortage of
peaks in the H-band that are sensitive to changes in surface gravity. Particularly, the
abundance of sensitive Mg I and Si I peaks provide a wide sample for comparison and
calibration. As seen in Figures 3.4 and reffig: Si I, a 0.25 dex change in log g produces a
response of ≈ 2% in both peaks. There are further options as shown in Figures 3.1, A.1,
and A.4, particularly the notable H I peaks at the end of the wavelength range for low-
metallicity stars. However, as 3.1 illustrates, only a small number of these peaks exhibit
a response greater than 2%. Robust observational equipment will thus be necessary to
distinguish the vast majority of these responses in real observations.

The primary obstacle will be the quality of the observed spectrum, which is typified
quite plainly in Section 3.3. Though the shape of the original spectrum can still be identified
in Figures 3.8, 3.9, and 3.10, their corresponding responses vary from entirely unrecogniz-
able at low S/N to having an identifiable peak structure at high S/N. This results from
how the response function is constructed as a ratio between two spectra. As variations on
both spectra are random, regions that would have a small or negligible response in Figure
A.8 could have an elevated response in any of the figures in Section 3.3. The opposite is
also true: regions with response peaks could have their response reduced. These combined
are particularly clear in Figure 3.10; the minor response peaks in Figure A.8 are effectively
lost, and the primary peak at 15852.6Å can barely be recognized. This highlights the
need for robust signal processing of the observed spectra, both for iteration with SME’s
synthetic spectra and for the potential creation of similar response curves.

There is also the matter of the Fe I false-positives. This presents a rather problematic
prospect for the rest of the results, for two reasons. For one, if seven peaks in this case
were misidentified, there is every reason to believe other peaks were misidentified, too. For
another, it shows that, in the current iteration of the code, there is no adequate vetting
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mechanism to exclude false-positives from the results. Any future investigation along these
lines would have to address both of these points to further refine their results, and minimize
the instance of such false-positives.

Despite this, we say with some confidence that, for dwarf stars with Teff ≈ 5500 and
log g ≈ 4.0, Mg I, Si I, C I and H I absorption peaks in the H-band present a viable
observation target for existing infrared observation infrastructure. H I peaks and wings
are of particular interest, as they exhibited the strongest responses of the sampled spectral
lines. Furthermore, across all sampled dex in log g, a handful of Ti II peaks at solar and
higher metallicites were found, potentially allowing for ionization balance studies as is
used in the determination of Teff . Such studies would require a much higher sample size,
however. The vast majority of sensitive peaks belong to ground-state species.

Indeed, the final result of this project is the uncovering of numerous lines of research.
Naturally, it would be of interest to attempt to recover the synthetic spectrum and the
response curve after the Gaussian noise is applied, in order to test observational and
computational methods with sample data. The aforementioned peak species, and their
precise behaviors, are also each worth dedicated research, as numerous of these sensitive
peaks are bound to appear in the spectra of Bulge dwarfs. Naturally, this theoretical
treatment will eventually need to be put to the test with real observations. Before these
are approved, however, it pays to have a robust hypothesis and clear expected behaviors
for a specific sample of spectral lines in mind, such that any gaps in the models can be
quickly identified. For the moment, this uncovering shall suffice.

3.5 Conclusion

Every project forms a piece of a larger whole—and though this one inhabits a rather humble
corner, it is still one with importance. There were numerous points during this project
which necessitated a reduction of scope; originally, the project aimed to compare this
theoretical approach with fresh observations of microlensed bulge dwarfs, and furthermore
would have examined response curves in Teff and metallicity. These reductions, however,
allowed for a more focused investigation on surface gravity sensitivity than would have been
otherwise possible. Furthermore, the absence of observational data allowed this thesis to
fully embrace its theoretical and simulational character, rather than need to elaborate a
hypothesis from scratch and test it within the same work. In this regard, the limitations
encountered during the elaboration of this thesis proved beneficial.

In summary, this work has determined the presence of numerous pressure sensitive
spectral lines in H-band wavelengths, using models of stellar atmospheres parameterized
to model the known properties of dwarf stars in the galactic center. As more observa-
tional studies are performed on this enigmatic population, these models and parameter
ranges can be further refined, thus improving the determination of stellar ages, with mul-
tiple implications in the study of our galaxy’s history. With the above findings in mind,
we recommend future observations with the CRIRES spectrograph to make use of wave-
length setting H1582, as it is slanted the most towards longer wavelengths out of the four
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available H-band settings. This assessment is made in reference to the latest available
version of the CRIRES User Manual at time of writing (Period 114, Phase 2). Please
ensure to use the most recent version of the manual on the European Southern Observa-
tory’s website (https://www.eso.org/sci/facilities/paranal/instruments/crires/
doc.html). CRIRES data is based on the prior papers by Kaeufl et al. (2004), Arsenault
et al. (2014), and Dorn et al. (2023).

With this said, we conclude this thesis.
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Appendix A

Additional Plots

Figure A.1: Histogram of all response peaks with R > 2.5% for 0.5 dex in log g, sorted by
R. Notable here are the large number of weak responses.

Table A.1: Table of selected representative peaks, with references from VALD’s list of
linelist references.

Species Wavelength (Å) Reference
C 1 14420.1 Ralchenko et al. (2010)
C 1 15852.6 Ralchenko et al. (2010)
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APPENDIX A. ADDITIONAL PLOTS

Figure A.2: Histogram of all response peaks with R > 2.5% for 0.5 dex in log g, sorted by
species. Notable here are the large number of C I, Si I, and Fe I absorption peaks that are
sensitive to log g.
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Figure A.3: Histogram of all response peaks with R > 2% for 0.5 dex in log g, sorted by
wavelength. Notable here is how the peaks are clustered near the middle of the wavelength
range, with a roughly decreasing number of peaks with decreasing metallicity.

Figure A.4: Histogram of all response peaks with R > 5% for 1 dex in log g, sorted by
R. Notable again is the rapidly diminishing number of peaks as R increases, across all
metallicities.
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Figure A.5: Histograms of all response peaks for R > 5% on the left and R > 10% on the
right for 1 dex in log g, sorted by species. Notable here is the large number of C I peaks for
R between 5% and 10%, whereas for R > 10%, H I peaks are the majority. Notable also
is how the number of H I peaks above the threshold increases with decreasing metallicity.

Figure A.6: Histograms of all response peaks for R > 5% on the left and R > 10% on the
right for 1 dex in log g, sorted by wavelength. Notable here is the concentration of peaks at
the beginning, middle, and end of the wavelength range for weak responses, with responses
of R > 10% tending towards higher wavelengths.
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Figure A.7: C I response for 1, 0.75, 0.5, and 0.25 dex in log g, with synthetic spectra
visually representing 1 dex of change.

Figure A.8: C I response for 1, 0.75, 0.5, and 0,25 dex in log g, with synthetic spectra
visually representing 1 dex of change. Notable here is the presence of a peak adjacent to
the C I peak of interest with a much lower sensitivity to changes in log g.
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Appendix B

Code

B.1 Spectrum Generator

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from pysme.sme import SME_Structure as SME_Struct

4 from pysme.synthesize import synthesize_spectrum

5

6 from pysme.abund import Abund

7

8 # Loading spectrum files

9 def load_file(logg , teff , monh):

10 # global file

11 file = np.load(f"/home/santiago/Thesis Spectra /{logg}, {teff}, {monh

}/ spectrum_{teff}_{logg}_{monh}.npy")

12 return file

13

14 # Find nearest index function

15 def find_nearest_idx(array , value):

16 array = np.asarray(array)

17 index = (np.abs(array - value)).argmin ()

18 return index

19

20 # Add noise to a spectrum , given a signal to noise ratio (SNR)

21 def add_noise(SNR , signal):

22 signal_mean = np.mean(signal)

23 standard_deviation = signal_mean/SNR

24 noise = np.random.normal(signal_mean , standard_deviation , len(signal)

)

25 signal = signal + noise

26 return signal

27

28 # Linelist creation

29 from pysme.linelist.vald import ValdFile

30 vald = ValdFile("/home/santiago/Example/Infrared.lin") # Atomic data for

wavelength range
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31 lambda_array = vald.wlcent

32

33 # NOTE: n is the number of points for linspace. Use 600000.

34 def create_spectrum(n, logg , teff , monh):

35

36 sme = SME_Struct ()

37

38 # Definition of core variables

39

40 lambda_start = 14300

41 lambda_end = 18001

42

43 sme.wave = np.linspace(lambda_start , lambda_end , n)

44 sme.linelist = vald

45

46 sme.teff , sme.logg = teff , logg

47

48 sme.abund = Abund.solar()

49 sme.ipres , sme.iptype = 50000 , "gauss" # Resolving power of

instrument

50 sme.monh = monh # metallicity; scales with given abundances.

51

52 # Microturbulence , macroturbulence , rotational velocity

53 sme.vmic , sme.vmac , sme.vsini = 1.0, 2.0, 0.1

54

55 # SME comes with a few model atmospheres see Atmosphere section

56 sme.atmo.source = "marcs2012p_t1 .0.sav"

57 sme.atmo.method = "grid"

58 sme.atmo.geom = "PP"

59

60 # Setting mu

61 nmu = 7

62 sme.mu = np.flipud(np.sqrt (0.5*(2* np.arange(nmu)+1)/nmu))

63

64 # Create synthetic spectrum!

65 sme = synthesize_spectrum(sme)

66

67 # Save spectrum to file

68 spectrum = np.array ([sme.wave[0], sme.synth [0]])

69 np.save(f"spectrum_{teff}_{logg}_{monh}", spectrum)

70 file = np.load(f"spectrum_{teff}_{logg}_{monh}.npy")

71

72 return file

73

74 def graph_spectrum(lambda_start , lambda_end , SNR):

75

76 # Choosing parameters of spectrum to graph

77 print(’CHOOSE YOUR PARAMETERS:’)

78

79 logg = input("Set logg value:")

80 teff = input("Set teff value:")
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81 monh = input("Set monh value:")

82

83 # loading correct spectrum:

84 spectrum = load_file(logg , teff , monh)

85

86 # Add noise to spectrum

87 if SNR != 0:

88 spectrum [1] = add_noise(SNR , spectrum [1])

89

90 # Obtain plotting indices

91 index_start = find_nearest_idx(spectrum [0], lambda_start)

92 index_end = find_nearest_idx(spectrum [0], lambda_end)

93

94 # Plotting

95 plt.plot(spectrum [0][ index_start:index_end],

96 spectrum [1][ index_start:index_end ])

97 plt.xlabel(’Wavelength ’)

98 plt.ylabel(’Relative Flux’)

99 plt.title(f’Teff = {teff}, logg = {logg}, monh = {monh}’)

100

101 return print(’Graph Done!’)

B.2 Spectrum Reader

Note: the written code produces misaligned x-axis labels for the species histograms (Fig-
ures 3.2, A.2, and A.5). These were edited manually to align the x-axis labels to their
corresponding bar.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import matplotlib.ticker as mtick

4 from matplotlib.ticker import ScalarFormatter

5

6 import scipy.signal as scipy

7 from itertools import combinations

8 from itertools import product

9 import sys

10 sys.path.append("/home/santiago/Example/")

11 from ResponseClass import *

12

13 # Linelist creation

14 from pysme.linelist.vald import ValdFile

15 vald = ValdFile("/home/santiago/Example/Infrared.lin") # Atomic data for

wavelength range

16 lambda_array = vald.wlcent

17

18 # Find nearest index function

19 def find_nearest_idx(array , value):

20 array = np.asarray(array)

21 index = (np.abs(array - value)).argmin ()

22 return index
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23

24 # Loading spectrum files

25 def load_file(logg , teff , monh):

26 file = np.load(f"/home/santiago/Thesis Spectra /{logg}, {teff}, {monh

}/ spectrum_{teff}_{logg}_{monh}.npy")

27 return file

28

29 # Check length of a spectrum

30 def check_file_len(logg , teff , monh):

31 file = np.load(f"/home/santiago/Thesis Spectra /{logg}, {teff}, {monh

}/ spectrum_{teff}_{logg}_{monh}.npy")

32 return len(file [0])

33

34 # Add noise to a spectrum , given a signal to noise ratio (SNR)

35 def add_noise(SNR , signal):

36 signal_mean = np.mean(signal)

37 standard_deviation = signal_mean/SNR

38 noise = np.random.normal(signal_mean , standard_deviation , len(signal)

)

39 signal = signal + noise

40 return signal

41

42 # Response object dictionary

43 curve = {}

44

45 # Variables

46 logg_values = np.array ([3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5])

47 teff_values = 5500

48 monh_values = np.array ([-1.0, 0.0, 0.3])

49

50

51 ### CREATE RESPONSES ###

52

53 def create_responses(thresh , prominence , SNR):

54

55 variables = ["logg"]

56

57 count = 1

58

59 for delta in variables:

60 for i, k in product(range (21), range (3)):

61

62 # Define variables

63 if delta == "logg":

64 delta_values = list(combinations(logg_values , 2))[i]

65 control = "teff"

66 control_value = teff_values

67

68 logg = [delta_values [0], delta_values [1]]

69 teff = teff_values

70 monh = monh_values[k]
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71

72 file_1 = load_file(delta_values [0], teff , monh)

73 file_2 = load_file(delta_values [1], teff , monh)

74

75 # Add noise to file

76 if SNR != 0:

77 file_1 [1] = add_noise(SNR , file_1 [1])

78 file_2 [1] = add_noise(SNR , file_2 [1])

79

80 # Initialize response object

81 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"] = Responses(delta , delta_values , control , control_value

, monh)

82

83 # Create response

84 wavelengths = file_1 [0]

85 response = np.divide(file_2 [1], file_1 [1])

86 peaks_indices = scipy.find_peaks(response , height=thresh) #

an array of indices of peaks

87 # peaks_indices = scipy.find_peaks(response , height=thresh ,

prominence=prominence) # an array of indices of peaks

88

89 peaks = []

90 species = []

91 responses = []

92 references = []

93

94 for n in peaks_indices [0]:

95

96 # Populating of peak and species lists

97 peak_wavelength = np.round(wavelengths[n], 1)

98 peaks.append(peak_wavelength)

99

100 peak_index = find_nearest_idx(vald.wlcent , wavelengths[n

])

101 species.append(vald.species[peak_index ])

102 references.append(vald.reference[peak_index ])

103

104 peak_response = response[n]

105 responses.append(peak_response)

106

107 # Assign values to response object

108 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"]. wavelength = wavelengths

109 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"]. response = response

110 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"]. peak_species = species

111 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"]. peak_values = peaks
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112 curve[f"{delta }={ delta_values}, {control }={ control_value},

monh={monh}"]. peak_responses = responses

113

114 print(count)

115 count += 1

116

117 print(f’{delta} done!’)

118

119 return curve

120

121

122 ### GRAPH RESPONSES ###

123

124 def graph_responses(lambda_start , lambda_end):

125

126 peak_species = []

127 peak_values = []

128 peak_keys = []

129

130 all_peak_species = []

131 all_peak_values = []

132 all_peak_keys = []

133

134 # Flagging all unique peaks in all response curves

135 for key in curve:

136

137 # Check if the response curve has peaks that passed thresh

138 if not curve[key]. peak_species:

139 print("Curve has no peaks that meet threshold.")

140 else:

141 for i in range(len(curve[key]. peak_species)):

142

143 # Add peak , if not already in list , and if within bounds

144 if curve[key]. peak_values[i] not in peak_values and curve

[key]. peak_values[i] > lambda_start and curve[key]. peak_values[i] <

lambda_end:

145

146 peak_species.append(curve[key]. peak_species[i])

147 peak_values.append(curve[key]. peak_values[i])

148 peak_keys.append(key)

149

150 # Populate peaks_to_plot with all necessary info

151

152 all_peak_species.append(curve[key]. peak_species[i])

153 all_peak_values.append(curve[key]. peak_values[i])

154 all_peak_keys.append(key)

155

156 print(f"{len(peak_species)} unique peaks found!")

157

158 # Sort lists by ascending wavelength
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159 peak_values , peak_species , peak_keys = (list(t) for t in zip(* sorted(

zip(peak_values , peak_species , peak_keys))))

160 all_peak_values , all_peak_species , all_peak_keys = (list(t) for t in

zip(* sorted(zip(all_peak_values , all_peak_species , all_peak_keys))))

161

162 # Place lists into output matrix

163 peaks_matrix = [peak_species , peak_values , peak_keys]

164 peaks_to_plot = [all_peak_species , all_peak_values , all_peak_keys]

165

166 # Plotting of peaks

167 for i in range(len(peaks_matrix [1])):

168 figure_ID = f’{peaks_matrix [1][i]}, {peaks_matrix [0][i]}’

169

170 fig , axs = plt.subplots(3, 1, num=figure_ID)

171 fig.suptitle(f’{peaks_matrix [0][i]} peak response at {

peaks_matrix [1][i]} ’)

172 plot_offset = 500

173

174 main_peak_wavelength = peaks_matrix [1][i]

175

176 for j in range(len(peaks_to_plot [1])):

177

178 peak_wavelength = peaks_to_plot [1][j]

179

180 # Fishing out curve parameters from library

181 monh = curve[peaks_to_plot [2][j]]. monh

182 if curve[peaks_to_plot [2][j]]. delta == "teff":

183 teff = curve[peaks_to_plot [2][j]]. delta_values

184 logg = curve[peaks_to_plot [2][j]]. control_value

185 if curve[peaks_to_plot [2][j]]. delta == "logg":

186 logg = curve[peaks_to_plot [2][j]]. delta_values

187 teff = curve[peaks_to_plot [2][j]]. control_value

188

189 wavelengths = curve[peaks_to_plot [2][j]]. wavelength

190 response = curve[peaks_to_plot [2][j]]. response

191

192 if np.isclose(main_peak_wavelength , peak_wavelength) == True:

193

194 peak_index = find_nearest_idx(wavelengths , peaks_to_plot

[1][j])

195

196 if monh == -1.0:

197 axs [0]. plot(wavelengths[peak_index -plot_offset:

peak_index+plot_offset],

198 response[peak_index -plot_offset:peak_index+

plot_offset],

199 label = f’logg = {logg}, teff = {teff},

monh = {monh}’)

200 plt.xlabel(’Wavelength ’)

201 plt.ylabel(’Response (I/I0)’)

202
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203 fig.legend(loc=’center left’, bbox_to_anchor =(1, 0.5)

)

204 axs [0]. annotate(f’{peaks_matrix [0][i]}’,

205 (peaks_matrix [1][i]+0.5 , response[

peak_index ] -0.02))

206

207 if monh == 0.0:

208 axs [1]. plot(wavelengths[peak_index -plot_offset:

peak_index+plot_offset],

209 response[peak_index -plot_offset:peak_index+

plot_offset],

210 label = f’logg = {logg}, teff = {teff},

monh = {monh}’)

211 plt.xlabel(’Wavelength ’)

212 plt.ylabel(’Response (I/I0)’)

213

214 fig.legend(loc=’center left’, bbox_to_anchor =(1, 0.5)

)

215 axs [1]. annotate(f’{peaks_matrix [0][i]}’,

216 (peaks_matrix [1][i]+0.5 , response[

peak_index ] -0.02))

217

218 if monh == 0.3:

219 axs [2]. plot(wavelengths[peak_index -plot_offset:

peak_index+plot_offset],

220 response[peak_index -plot_offset:peak_index+

plot_offset],

221 label = f’logg = {logg}, teff = {teff},

monh = {monh}’)

222 plt.xlabel(’Wavelength ’)

223 plt.ylabel(’Response (I/I0)’)

224

225 fig.legend(loc=’center left’, bbox_to_anchor =(1, 0.5)

)

226 axs [2]. annotate(f’{peaks_matrix [0][i]}’,

227 (peaks_matrix [1][i]+0.5 , response[

peak_index ] -0.02))

228

229 return peaks_matrix

230

231 def precision_graph(lambda_start , lambda_end):

232

233 response_keys = []

234 cont = "Yes"

235 colors = [’#377 eb8’, ’#ff7f00 ’, ’#4 daf4a’, ’#d62728 ’]

236

237 # Selecting response curves

238 manual_input = input("Manual input? Yes or No: ")

239

240 while cont == "Yes":

241
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242 if manual_input == "Yes":

243

244 response_keys.append(input("Copy and paste string: "))

245

246 else:

247

248 print("Choose your response parameters , in metallicity order:

")

249

250 delta = input("Choose delta variable: ")

251 delta_values = input("Set delta values as (1, 2): ")

252 control = input("Choose control variable: ")

253 control_value = input("Set control value: ")

254 monh = input("Set monh value: ")

255

256 response_keys.append(f"{delta }={ delta_values}, {control }={

control_value}, monh={monh}")

257

258 manual_input = input("Manual input? Yes or No: ")

259 cont = input("Add another response? ")

260

261 # Plot response curves

262

263 plt.suptitle(input("Set plot title as string: "))

264

265 for key in response_keys:

266

267 if curve[key]. delta == "logg":

268 logg = curve[key]. delta_values

269 teff = curve[key]. control_value

270

271 if curve[key]. delta == "teff":

272 logg = curve[key]. control_value

273 teff = curve[key]. delta_values

274

275 monh = curve[key].monh

276

277 # Obtain plotting indices

278 index_start = find_nearest_idx(curve[key].wavelength ,

lambda_start)

279 index_end = find_nearest_idx(curve[key].wavelength , lambda_end)

280

281 plt.plot(curve[key]. wavelength[index_start:index_end],

282 curve[key]. response[index_start:index_end],

283 label = f’logg = {logg}’)

284

285 plt.legend(title=f’teff={teff} K, monh={monh}’)

286

287 plt.xlabel(’Wavelength ’)

288 plt.xticks(fontsize =8)

289 plt.ylabel(’Response (I/I0)’)
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290

291 return response_keys

292

293 def create_response_histograms(logg_start , logg_end , thresh):

294

295 teff = 5500

296

297 # Response Parameters

298 delta = ’logg’

299 delta_values = (logg_start , logg_end)

300 control = ’teff’

301 control_value = teff

302

303 # Defining keys

304 key_1 = f"{delta }={ delta_values}, {control }={ control_value}, monh =0.3

"

305 key_2 = f"{delta }={ delta_values}, {control }={ control_value}, monh =0.0

"

306 key_3 = f"{delta }={ delta_values}, {control }={ control_value}, monh

=-1.0"

307

308 # Load peak responses

309 peak_responses_1 = curve[key_1]. peak_responses

310 peak_responses_2 = curve[key_2]. peak_responses

311 peak_responses_3 = curve[key_3]. peak_responses

312

313 # Load peak species for minimum% thresh

314 peak_species_1_five = []

315 peak_species_2_five = []

316 peak_species_3_five = []

317

318 for i in range(len(curve[key_1]. peak_species)):

319 if curve[key_1]. peak_responses[i] > thresh:

320 peak_species_1_five.append(curve[key_1]. peak_species[i])

321

322 for i in range(len(curve[key_2]. peak_species)):

323 if curve[key_2]. peak_responses[i] > thresh:

324 peak_species_2_five.append(curve[key_2]. peak_species[i])

325

326 for i in range(len(curve[key_3]. peak_species)):

327 if curve[key_3]. peak_responses[i] > thresh:

328 peak_species_3_five.append(curve[key_3]. peak_species[i])

329

330 # Load peak species for 10% thresh

331 peak_species_1_ten = []

332 peak_species_2_ten = []

333 peak_species_3_ten = []

334

335 for i in range(len(curve[key_1]. peak_species)):

336 if curve[key_1]. peak_responses[i] > 1.10:

337 peak_species_1_ten.append(curve[key_1 ]. peak_species[i])
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338

339 for i in range(len(curve[key_2]. peak_species)):

340 if curve[key_2]. peak_responses[i] > 1.10:

341 peak_species_2_ten.append(curve[key_2 ]. peak_species[i])

342

343 for i in range(len(curve[key_3]. peak_species)):

344 if curve[key_3]. peak_responses[i] > 1.10:

345 peak_species_3_ten.append(curve[key_3 ]. peak_species[i])

346

347 # Load peak lambdas for 5% thresh

348 peak_lambdas_1_five = []

349 peak_lambdas_2_five = []

350 peak_lambdas_3_five = []

351

352 for i in range(len(curve[key_1]. peak_values)):

353 if curve[key_1]. peak_responses[i] > thresh:

354 peak_lambdas_1_five.append(curve[key_1]. peak_values[i])

355

356 for i in range(len(curve[key_2]. peak_values)):

357 if curve[key_2]. peak_responses[i] > thresh:

358 peak_lambdas_2_five.append(curve[key_2]. peak_values[i])

359

360 for i in range(len(curve[key_3]. peak_values)):

361 if curve[key_3]. peak_responses[i] > thresh:

362 peak_lambdas_3_five.append(curve[key_3]. peak_values[i])

363

364 # Load peak lambdas for 10% thresh

365 peak_lambdas_1_ten = []

366 peak_lambdas_2_ten = []

367 peak_lambdas_3_ten = []

368

369 for i in range(len(curve[key_1]. peak_values)):

370 if curve[key_1]. peak_responses[i] > 1.10:

371 peak_lambdas_1_ten.append(curve[key_1 ]. peak_values[i])

372

373 for i in range(len(curve[key_2]. peak_values)):

374 if curve[key_2]. peak_responses[i] > 1.10:

375 peak_lambdas_2_ten.append(curve[key_2 ]. peak_values[i])

376

377 for i in range(len(curve[key_3]. peak_values)):

378 if curve[key_3]. peak_responses[i] > 1.10:

379 peak_lambdas_3_ten.append(curve[key_3 ]. peak_values[i])

380

381 ### PLOT HISTOGRAMS ###

382

383 colors = [’#377 eb8’, ’#ff7f00 ’, ’#4 daf4a’]

384 labels = [’monh = 0.3’, ’monh = 0.0’, ’monh = -1.0’]

385

386 # Response Histogram

387

388 plt.figure("fig_response")
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389

390 peak_responses = [peak_responses_1 , peak_responses_2 ,

peak_responses_3]

391

392 if logg_start == 4.25:

393 bins = np.arange(1, 1.04, 0.0025)

394 if logg_start == 4.0:

395 bins = np.arange(1, 1.07, 0.005)

396 if logg_start == 3.5:

397 bins = np.arange(1, 1.16, 0.01)

398

399 plt.hist(peak_responses , bins=bins , stacked=True , color=colors , label

=labels)

400

401 plt.xlim(left=thresh)

402 if thresh > 1.045:

403 plt.ylim(top =100)

404 if logg_start == 4.0:

405 plt.ylim(top =100)

406

407 plt.xlabel(’Response ’)

408 plt.ylabel(’N’)

409 plt.xticks(fontsize =8.5)

410 plt.legend ()

411 plt.title(f’Response Peaks for logg={ delta_values}, teff={

control_value}’)

412

413 # Species Histogram , 5%

414

415 plt.figure("spec_response_5%")

416

417 peak_species_five = [peak_species_1_five , peak_species_2_five ,

peak_species_3_five]

418 print(peak_species_five)

419

420 bins = list(set(sum(peak_species_five , [])))

421 print(bins)

422

423 if len(bins) > 0:

424 plt.hist(peak_species_five , bins=len(bins), stacked=True , color=

colors ,

425 label=labels , width =0.5)

426

427 plt.xlabel(’Peak Species ’)

428 plt.ylabel(’N’)

429 plt.legend ()

430 plt.suptitle(f’Peak Species for logg={ delta_values}, teff={

control_value}, R > {((thresh -1) *100) :.1f}%’)

431 else:

432 print("No peaks meet threshold.")

433
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434 # Species Histogram , 10%

435

436 plt.figure("spec_response_10%")

437

438 peak_species_ten = [peak_species_1_ten , peak_species_2_ten ,

peak_species_3_ten]

439 print(peak_species_ten)

440

441 bins = list(set(sum(peak_species_ten , [])))

442 print(bins)

443

444 if len(bins) > 0:

445 plt.hist(peak_species_ten , bins=len(bins), stacked=True , color=

colors ,

446 label=labels , width =0.5)

447

448 plt.xlabel(’Peak Species ’)

449 plt.ylabel(’N’)

450 plt.legend ()

451 plt.title(f’Peak Species for logg={ delta_values}, teff={

control_value}, R > 10%’)

452 else:

453 print("No peaks meet threshold.")

454

455

456 # Wavelength Histogram , 5%

457

458 plt.figure("lambda_response_5%")

459

460 peak_lambdas_five = [peak_lambdas_1_five , peak_lambdas_2_five ,

peak_lambdas_3_five]

461

462 plt.hist(peak_lambdas_five , bins=np.arange (14000 , 18000 , 500),

stacked=True , color=colors , label=labels)

463

464 plt.xlabel(’Wavelength ’)

465 plt.ylabel(’N’)

466 plt.legend ()

467 plt.title(f’Peak Wavelengths for logg={ delta_values}, teff={

control_value}, R > {((thresh -1) *100) :.1f}%’)

468

469 # Wavelength Histogram , 10%

470

471 plt.figure("lambda_response_10%")

472

473 peak_lambdas_ten = [peak_lambdas_1_ten , peak_lambdas_2_ten ,

peak_lambdas_3_ten]

474

475 plt.hist(peak_lambdas_ten , bins=np.arange (14000 , 18000 , 500), stacked

=True , color=colors , label=labels)

476
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477 plt.xlabel(’Wavelength ’)

478 plt.ylabel(’N’)

479 plt.legend ()

480 plt.title(f’Peak Wavelengths for logg={ delta_values}, teff={

control_value}, R > 10%’)

481

482 overview_peaks = []

483

484 return overview_peaks

485

486

487 def graph_spectrum(lambda_start , lambda_end , SNR):

488

489 # Choosing parameters of spectrum to graph

490 print(’CHOOSE YOUR PARAMETERS:’)

491

492 logg = input("Set logg value:")

493 teff = input("Set teff value:")

494 monh = input("Set monh value:")

495

496 print(’CHOOSE YOUR OTHER PARAMETERS:’)

497

498 logg2 = input("Set logg value:")

499 teff2 = input("Set teff value:")

500 monh2 = input("Set monh value:")

501

502 print(’CHOOSE YOUR OTHER PARAMETERS:’)

503

504 logg3 = input("Set logg value:")

505 teff3 = input("Set teff value:")

506 monh3 = input("Set monh value:")

507

508 print(’CHOOSE YOUR OTHER PARAMETERS:’)

509

510 logg4 = input("Set logg value:")

511 teff4 = input("Set teff value:")

512 monh4 = input("Set monh value:")

513

514 colors = [’#377 eb8’, ’#ff7f00 ’, ’#4 daf4a’, ’#d62728 ’]

515

516 # loading correct spectrum:

517 spectrum = load_file(logg , teff , monh)

518 spectrum2 = load_file(logg2 , teff2 , monh2)

519 spectrum3 = load_file(logg3 , teff3 , monh3)

520 spectrum4 = load_file(logg4 , teff4 , monh4)

521

522 # Add noise to spectrum

523 if SNR != 0:

524 spectrum [1] = add_noise(SNR , spectrum [1])

525 spectrum2 [1] = add_noise(SNR , spectrum2 [1])

526 spectrum3 [1] = add_noise(SNR , spectrum3 [1])
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527 spectrum4 [1] = add_noise(SNR , spectrum4 [1])

528

529 # Obtain plotting indices

530 index_start = find_nearest_idx(spectrum [0], lambda_start)

531 index_end = find_nearest_idx(spectrum [0], lambda_end)

532

533 # Plotting

534 fig , axs = plt.subplots(1, 1)

535

536 axs.plot(spectrum [0][ index_start:index_end],

537 spectrum [1][ index_start:index_end],

538 label=f’logg={logg}’)

539

540 axs.plot(spectrum2 [0][ index_start:index_end],

541 spectrum2 [1][ index_start:index_end],

542 label=f’logg={ logg2}’)

543

544 axs.plot(spectrum3 [0][ index_start:index_end],

545 spectrum3 [1][ index_start:index_end],

546 label=f’logg={logg3}’)

547

548 axs.plot(spectrum4 [0][ index_start:index_end],

549 spectrum4 [1][ index_start:index_end],

550 label=f’logg={logg4}’)

551

552 plt.legend ()

553 plt.xlabel(’Wavelength ’)

554 plt.ylabel(’Relative Flux’)

555 plt.xticks(fontsize =8)

556 plt.suptitle(input("Set graph title: "))

557

558 return print(’Graph Done!’)

559

560 def get_citation(peak_species , peak_wavelength):

561

562 peak_index = find_nearest_idx(vald.wlcent , peak_wavelength)

563 vald_species = vald.species[peak_index]

564 vald_wlcent = vald.wlcent[peak_index]

565

566 if peak_species == vald_species:

567 print(vald.reference[peak_index ])

568 print(f’Wavelength offset: {peak_wavelength -vald_wlcent}’)

569 print(f’Peak Index: {peak_index}’)

570 else:

571 print(’Species do not match.’)

B.3 Response Class

1 import numpy as np
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2

3 class Responses:

4

5 def __init__(self , delta , delta_values , control , control_value , monh)

:

6

7 self.wavelength = np.array ([])

8 self.response = np.array ([])

9 self.delta = delta

10 self.delta_values = delta_values

11 self.control = control

12 self.control_value = control_value

13 self.monh = monh

14 self.peak_species = []

15 self.peak_values = np.array ([])

16 self.peak_responses = np.array ([])

17 self.references = []
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