_ " _
L ol §
. e
" MASTER’S THESIS2024 \ | 4 !*'r \
e Minimizing the Exposure of

Sensitive Data during Network
Transfers in the Linux Kernel

Anton Wiklund, Joel Johansson

-
’ -
b E
w : P
F o a1 -
> W &
ol o B
. * i
-
e
-

E] r ®
-
g
F

ISSN 1650-2884
LU-CS-EX: 2024-51

DEPARTMENT OF COMPUTER SCiNCE
: LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-51

Minimizing the Exposure of Sensitive Data
during Network Transfers in the Linux
Kernel

Minimera exponeringen av ké’mslig data for
néitverks'dverféringar i Linux kirnan

Anton Wiklund, Joel Johansson

Minimizing the Exposure of Sensitive Data
during Network Transfers in the Linux
Kernel

(Implementations of zeroing and their performance penalties)

Anton Wiklund Joel Johansson

antonwiklund199@gmail.com joel.k. johanson@gmail.com

August 16, 2024

Master’s thesis work carried out at Asperiq AB.

Supervisors: Reine Johansson, reine. johansson®@asperiq.com
Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Flavius Gruian,|[flavius.gruian@cs.1lth.se

mailto:antonwiklund199@gmail.com
mailto:joel.k.johanson@gmail.com
mailto:Reine.Johansson@asperiq.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

This master thesis focuses on minimizing the exposure of sensitive data in the
Linux kernel during network transfers and how much such a solution would af-
fect performance. After studying the network stack and network drivers, the
kernel was modified to overwrite packet data with zeroes before freeing it. Con-
sequently, we could halve the amount of exposed data during transmissions, and
after the transmission, no data would be left in memory. This solution came
with some performance costs as using the regular memset function to zero in-
creased the cache miss rate by 4% and CPU utilization by 1.5%. When the CPU
and memory were under high load, the CPU utilization increased by around 4%.
Using non-temporal stores instead, the cache miss rate was unaffected and used
less of the CPU than memset when the system was under pressure, roughly 2.5%
more than no zeroing. However, the CPU usage was slightly higher than memset,
around 0.5%, when the system was under no pressure.

Keywords: sk_buff, NIC, Linux kernel, network stack, NAPI, memory management,

zeroing, cache po]lution

Acknowledgements

We would like to thank Jonas Skeppstedt for his help and feedback on our work.

We would also like to thank Reine Johansson for his help and guidance throughout the
project.

Thanks also to Martin Agren, Marcel Tovar, and the rest of the Asperiq team for their

help and support.

Contents

(L.1.T Research questions| oL L oL

sk_buft (socket bufter)|.

ZETO-COPY| .« v v v v o

d. .o

sk buff allocacion]

sk_buff deallocation|

Non-temporal storesonx86[. Lo

] Toction
[T Dbl hniconl
2 Background
2.1 NICs and network drivers|
2.2
2.3
24 Linux kernel memory managemen
2.5
2.6
D7
3 Method
B.1

Implementation| o

[3.1.1 Different ways of zeroing]

[3.3.1 Functionality|
E.3.2 Zeroing

4 Implementation|

B Resultd

b1

Exposed data during transmission|

B2

Exposed data after transmission|

O O o Co o N

1
11
13
16
17
17
17
18

19
19
19
20
22
22
23
23

25

29
29
30

CONTENTS

[5.5 Networking CPU utilization| 0L
[6_Discussionl

6.1 What are the implications of zeroing on performance?

6.2 How much less dataisexposedd

[Z__Conclusionl

|Z.1.1 Testing for differentdrivers| 0L
|7.1.2 Testing while maximizing Networking CPU Utilization|

[References]

[Appendix A struct sk_buff|

[Appendix B memset implementations|

|13.1 STOTE SETING| v v v ittt s e
ES.Z Originall
B3 Non-temporall

[Appendix C Zeroing functions

11

45

51
51
52
54

57

Chapter 1

Introduction

The Linux kernel, like any other large software project, is prone to bugs that malicious actors
can exploit. The question is often not if but when bugs and exploits will be discovered; there-
fore, a good approach is to try to limit the damage they can do [6]. There have been numerous
security vulnerabilities during the years that have allowed an attacker to read memory they
are not supposed to. In recent years, attacks such as Meltdown and Spectre have exposed
vulnerabilities in modern hardware using out-of-order execution and branch prediction and
allowed user processes to read arbitrary kernel memory on most modern operating systems,
including Linux. While mitigations exist, these are still a threat, and new forms have been
discovered. An example is RETBLEED, a speculative execution attack exploiting the ret in-
struction rather than jmp, as in the original Spectre attack, on Intel and AMD processors
that can leak arbitrary kernel memory [14].

Threats such as these, which allow the reading of protected memory, can be a genuine
concern for a system that handles sensitive information, as the information at some point is
stored in the memory in cleartext. Therefore, it would be preferable to be able to guarantee
that sensitive data is in memory as short time as possible. This is already done to some
extent in the Linux kernel. There are multiple places where kfree_sensitive(), which clears
the memory before freeing it, is used rather than kfree(), for example, when handling various
encryption keys. However, this is not done for network transfers and packet data. This
is because clearing memory no longer in use comes with performance penalties relating to
CPU workload and memory/caching. The performance aspect of clearing memory is actively
worked on in the kernel [8][7]. It will be especially noticeable for frequently allocated and
deallocated memory, such as packet buffers. However, for a system where the data in the
network packets is sensitive, this might be an acceptable trade-off.

1. INTRODUCTION

1.1 Problem definition

Our work aims to minimize the time that sensitive data is exposed in memory during net-
work transfers in the Linux kernel while minimizing the impact on performance. We focus
especially on the case where a system acts as a router and forwards packets between network
interfaces.

1.1.1 Research questions

+ How can the network stack in the Linux kernel be modified to clear packet data after
it is no longer in use?

+ What are the implications on performance (throughput, CPU load, cache performance)
ofc]earing packet data from memory after it is no longer in use?

« How much less data is exposed in memory by C]earing the packet data from memory
after it is no longer in use?

The overall question is, then, given the performance and effectiveness, is it worth clearing
packet data in memory after it is no 10nger in use?

1.1.2 Related work

Chow ct al. [4] explored the topic of secure deallocation, meaning that the data in memory
was cleared directly at deallocation or within a short time. A part of their work focused
on the Linux kernel, and they modified the slab and page allocators and deallocators in the
kernel to clear the memory at deallocation. The way this was implemented was pages that
contained sensitive data, e.g., network data, were marked as "dirty" when freed and put into a
special pool. These pages would then be zeroed either when reallocated or by a kernel thread
within some time. They tested this modified kernel with a networking workload and saw no
performance differences neither in CPU usage, latency, or bandwidth. Another interesting
takeaway from their work is the fact that they found that even if memory with sensitive data
was reallocated, it was common for only part of that data to be overwritten, so there were
"holes" left of sensitive data that could reside in memory from minutes up to days.

The idea ofclearing memory after it is deallocated, or as it is also called, memory saniti-
zation, is not new in the kernel and has been up on the table before. The previous approach
mentioned used by Chow et al. was based on a series of patches by Christopher Lameter re-
lating to pre-zeroing allocated pages similarly with a kernel daemon called scrubd [5]. There
are also specialized hardened kernels, such as the Pax/GRSecurity one that has an added ker-
nel option CONFIG_PAX_MEMORY_SANITIZE, that will add zeroing with every deallocation.
Patches adding the same kernel option and features have been submitted and discussed mul-
tiple times [T1[3][9]. But nothing has been merged to the mainline kernel, the reason for this
is the concern for performance penalties and more complicated code for a feature that is not
needed and appropriate for the majority of use cases. Also, the feature is not something that
has been prioritized, and the efforts mentioned earlier have all petered out and been aban-
doned. This means that there is no easy way to enable memory sanitization, and this is what

8

1.1 PROBLEM DEFINITION

has motivated our work, adding an ecasier, less intrusive way to clear memory for network
transfers.

The main difference between our work and the previous work mentioned is that we fo-
cus only on the networking part and clearing packet data from memory rather than clearing
all memory. This means that instead of modifying the memory management systems in the
kernel, the allocators, and deallocators, we modify the particular functions used by the net-
working subsystem for deallocations. On one hand, this leads to less added code since the
memory management system does not have to be rewritten and changed. Our implementa-
tion will be less susceptible to changes in this system and have an easier time being applied
to newer kernel versions. But on the other hand, we will be more susceptible to changes in
the networking part of the kernel.

The previous approaches will still work for clearing packet data since they clear a page
whenever it is freed or a short time later; the difference here is that our implementation will
zero the data directly when it is deallocated. This is relevant since packet data is usually stored
in page fragments (part of a page). Multiple page fragments belonging to different packets
might point to the same page, meaning that even if a packet is done and freed, its data will
stay in memory and not be cleared until all of the other packets with their corresponding
page fragments that point to the same page are freed. We found that this could be an issue
when a page fragment is pre-allocated for data to be written to it at a later time by a network
card; then, it could block another page from being freed that other packets point to.

1.1.3 Contribution

Our work further explores the possibility of decreasing the lifespan of sensitive data in net-
work packets, i.c., data stored as cleartext in memory. We examine the possibility of mit-
igating sensitive data leaks in the kernel and to what scale such mitigations would affect
performance. Developers will gain a deeper understanding of how methods to decrease the
lifespan of sensitive data during network transfers work and possibly apply them to other
parts of the kernel. Linux-based system developers will also gain knowledge of ways to en-
hance security in their systems and whether or not it is sensible to implement. Our aim is
also to provide a detailed description of memory management in the Linux networking stack.

1.1.4 Distribution of work

Most of the work has been done by both students together with pair programming. Ideas
and implementation choices have been discussed among both students. However, Anton has
focused more on the non-temporal memset, while Joel has focused more on gathering and
visualizing the performance metrics. Regarding the report, Anton has focused more on the
method, while Joel has focused more on the results. The remaining work has been divided
evenly; one student wrote a section and the other reviewed it.

9

1. INTRODUCTION

10

Chapter 2
Background

This chapter provides an overview of key concepts such as Network Interface Cards (NICs),
network drivers, socket buffers, and memory management mechanisms within the Linux
kernel. Understanding the fundamental components and processes of the Linux networking
stack is essential to the modifications and improvements proposed in our research.

2.1 NICs and network drivers

Anetwork interface card (NIC) is a piece of hardware that connects a computer to a network.
It allows the computer to receive and transmit network packets. They are usually connected
to the rest of the computer (CPU and memory) through a PCIE (Peripheral Component
Interconnect Express) bus. The CPU communicates with the NIC via register writes and
interrupts, and the packets are usually put in a ring buffer that the NIC can read from and
write to.

A-ring buffer is a circular buffer that contains descriptors. Each descriptor contains some
metadata and a pointer to a memory buffer. To increase performance, the ring buffer and
associated data buffers are DMA (Direct Memory Access) mapped on modern NICs. This
means the NIC can read and write directly to the memory via a DMA controller without
going through the CPU.

A network driver is the software that handles communicating with the NIC. In Linux,
cach network driver defines a net_device_ops struct. This struct defines various operations
that each network driver should be able to perform, for example, ndo_start_xmit(), which
is the function used for sending a packet with the NIC. Drivers that use the NAPI (New
API) scheduler also define a napi_struct, which contains device parameters and data used
for scheduling and defines a poll() method. The poll() method tries to read any new packets
received by the NIC.

The NIC, along with the drivers, serves as both the entry and exit point for processing
a network packet. For our work, it is important to understand how the packet data gets

11

2. BACKGROUND

written to memory and the conditions under which it is freed. The following paragraphs will
give an overview of the key steps involved in the transmission and reception processes.

A typical transmission process for a NIC can be seen in figure This varies between
NICs, but in general, the steps are:

1. An upper-layer protocol handler creates a packet and adds headers, etc. The routing
rules then decide what interface this packet is supposed to go to. The packet is then
scheduled for transmission on the network device corresponding to that interface and
put in a queue. After this, the packet is dequeued, and ndo_start_xmit(), defined in
the network driver, is called on the packet.

2. The driver DMA maps the data corresponding to the packet and takes enough TX
descriptors to fit the full packet. The TX descriptors are filled with pointers to the
DMA-mapped data.

3. The driver signals that new TX descriptors are ready for transmission.

4. The NIC reads the new TX descriptors, and DMA reads the data pointed at by the
descriptors into an internal memory buffer. The read packet is then sent out.

5. The NIC raises an interrupt that signals that descriptors have been read and are avail-
able for the CPU to write to. For our purpose, this means that the packets are ready
to be zeroed.

CPU
Protocol handler
Y Interrupt
) . Service <
QDisc/Scheduling Handler
l 5. NIC raises interrupt to signal to CPU that the packet
is sent and gives the TX descriptor back
dev.xmit

1. Scheduler calls xmit from driver that DMA maps skb data to a free tx descriptor

Main
memory 2.CPU t‘ells NIC th?t anew
descriptor is available

TX ring

NIC

4. Packet is
sent

Figure 2.1: NIC TX Control Flow

___3.NIC DMA reads
packet to send

Packet

A typical reception process for a NIC can be seen in ﬁgure In general, the steps are:

12

2.2 SK_BUFF (SOCKET BUFFER)

1. The NIC receives a frame, which it then writes through DMA to the DMA-mapped
memory area specified in an RX descriptor.

2. The NIC raises an interrupt, signaling that a new packet has been received. On the
first of these interrupts, the driver masks the interrupt, which disables it and calls
napi_schedule(), which will start scheduling the NET_RX_SOFTIRQ (more on softirgs
and NAPI later).

3. NAPI starts polling the NIC with the poll method set up in the driver. The poll method
reads available RX descriptors of packets that have been received and creates sk_buff
structs representing the packets that are then sent up through the network stack via
napi_gro_receive() (or similar methods). Some drivers will copy the data from the
DMA mapping in the RX descriptor into a sk_buff; others create the sk_buff around
the data pointer using napi_build_skb() (or a similar method) and then allocate and

DMA maps a new memory area to the RX descriptor. Either way, the RX descriptors
are then handed back to the NIC.

4. If all available packets in the NIC have been read, the interrupt is enabled again. Oth-
erwise, NAPI will continue polling.

CPU

Protocol handler

A

" i 4 RX softird i Interrupt
poll «— et action e NAPTscheduling <« R softirgis__ Service
(softirq) scheduled Handler
A
5. New RX descriptors are read, mapped to an sk_buff
and sent up the stack
—
Main
memory 3. NIC raises interrupt telling CPU that new packets
have been received
RX ring 6. Driver hands RX descriptors
back to NIC
Packet 2. NIC DMA writes the received packets. NIC
to memory
- 1. Packet is
received

Figure 2.2: NIC RX Control Flow

2.2 sk_buff (socket buffer)

A sk_buff, or skb, is the main data structure representing a network packet. Every packet
that is cransmitted or received is handled by an skb. The data structure holds no packet data,
only metadata, and some header fields. Instead, the data is held in associated buffers that the

13

2. BACKGROUND

skb points to. The whole sk_buff structure can be seen in 1isting When clearing packet
data it is important to know what data there is and how that data is stored in order to be
able to clear it. For that, we need to go a bit into detail about the sk_buff struct and how it
stores the data.

The skb data is divided into two parts:

« Head buffer - also called the linear data or non-paged part.
« Paged data - also called the non-linear data part.

The head buffer itself is divided into two parts. The first part is the data buffer, where the
packet data is stored (protocol headers and payload). The second part, stored at the end, is
the shared info represented by the struct skb_shared_info. This structure contains data that
needs to be shared between different skbs pointing to the same head buffer [2]. The structure

can be found in]isting

A sk_buff struct has four pointers pointing to the different locations in the head buffer.
These are:

« sk_buff->head - points to the start of the head buffer

« sk_buff->data - points to the start of the data segment in the head buffer, i.c., the data
after the headers.

« sk_buff->tail - points to the end of the data segment.

« sk_buff->end - points to the end of the head buffer, where the skb_shared_info struc-

ture is stored.

The skb_shared_info struct contains fields used to manage the non-linear part of an skb
and [P fragments. Some of these fields are:

+ skb_shared_info->frag_list: Pointer to the first fragment of a chain of IP fragments that
this skb is a part of. NULL if the skb is not an IP fragment.

« skb_shared_info->frags: Array of pointers to skb_frag_t structures, which represents a
page buffer. These page buffers are the non-linear part of the skb data and store packet
data that is not in the head buffer.

+ skb_shared_info->nr_frags: Number of page buffers in skb_shared_info->frags.

« skb_shared_info->dataref: Number of users of the head buffer that the skb is pointing

to.

Each page buffer can be multiple pages or a segment of a single page. These are repre-

sented by the skb_frag_t scruce, which has three fields:
« skb_frag_t->bv_page: First page associated with the page buffer.
« skb_frag_t->bv_len: Size in bytes of the page buffer.

« skb_frag_t->bv_offset: Start of the page buffer relative to the start of the first page.

14

2.2 SK_BUFF (SOCKET BUFFER)

head
sk_buff - buffer Page
head —f
head room
dat userdata
ata
—1 X
tail
userdata
end
userdata
tail room
Page
sk_buff skb_shared_info
_/
frags[0]
frags[1] —
frags[2]
next fraglist
A\ 4 userdata
sk_buff
next

Figure 2.3: Socket buffer

15

2. BACKGROUND

A visual representation of a socket buffer can be seen in figure

The length of the actual data in the package is stored in sk_buff->len. This length accounts
for both the head buffer and the page buffers. The length of only the data in the page buffers
is stored in sk_buff->data_len. To get the length of the data stored in the head buffer, sk_buft-
>len is subtracted by sk_buff->data_len. There is a function for this called skb_headlen(). So
when zeroing the head buffer, we need to zero skb_headlen() bytes from sk_buff->data.

To handle multiple skbs as a list, the sk_buff scructure has two fields, next and prev. These
fields link together skbs in a doubly linked list. For example, the skbs in skb_shared_info-
>frag_list are linked together this way. If the skb has a frag_list when freed, those skbs are also
freed. This means that we do not have to zero the fragment list when zeroing an skb since
the same function that frees the skb frees each fragment as well.

An skb can also be cloned by the function skb_clone(). This function creates a new sk_buff
struct but copies the pointers from the original. The clone will then point to the same head
buffer and the same skb_shared_info struct, which means that the clone and the original will
also share the same paged fragments. In both the clone and the original, the sk_buff->cloned
will be set to one, and the dataref field in skb_shared_info will be incremented. If the dataref
field is more than 1 when freeing the skb, the data buffers will not be freed and are, in our
case, not safe to zero.

In certain cases, you would want an entirely new copy of another skb. The function
skb_copy() does this. It copies the entire sk_buff structure of the original and the memory
blocks it is pointing at to a new skb. Unlike clones, which share memory, the copy and the
original will not share memory blocks, and thus, the data buffers are safe to zero.

The skb_shared_info structure also contains a field called flags. Descriptions of the flags
can be found in 1isting The SKBFL_SHARED_FRAG is the most important to us and
tells us if at least one of the frags is shared, i.c., used somewhere else (vmsplice, send file, etc.),
and thus, we should not zero it.

A few functions are defined to move around the pointers of the skb. The head and end
pointer should always point to the head and end of the allocated head buffer. However, the
data and tail pointers can be moved around to increase or decrease each area of the head

buffer.

You can also decrease the size of a page fragment. If you want to discard some data at
the beginning of a page fragment, you would add some bytes to the offset and decrease the
size by the same amount. To discard something at the end of a page fragment, you simply
decrease the size with some byrtes.

2.3 Zero-copy

When an application sends data to be transmitted, the kernel usually copies it to a kernel
buffer to pass it down the network stack. However, the Linux kernel supports something
called zero-copy. Zero-copy means the userspace buffer is not copied to a kernel buffer but
passed directly down the network stack. If the kernel later wants to modify that buffer, it
would instead need to copy the userspace buffer to a kernel buffer first. If an skb contains
zero-copied data, the data buffers are not safe to zero.

16

2.4 LINUX KERNEL MEMORY MANAGEMENT

2.4 Linux kernel memory management

The fundamental element of Linux memory management is the page [T1]. The whole physical
memory is split into chunks called pages, usually 4KB or 8KB in size. Each page is represented
by the page struct, which is a very complex struct with many different fields and unions
depending on how it is used. It contains a reference counter to keep track of the number of
users of the page so it can be freed and reused when it is no longer in use.

Pages can be allocated using __alloc_pages() or through wrapper functions, with alloca-
tions specified in orders (e.g., zero-order allocation for one page). Memory allocated in bytes
rather than pages is managed with kmalloc() and freed using kfree(), similar to the userspace
malloc(). To take a new reference to a page, you call get_page(), which increments the ref-
erence counter. To dereference a page, you call put_page(), which decrements the reference
counter and frees the page if the reference counter has reached zero.

2.5 sk__buff allocation

For allocating the actual sk_buff struct, a slab allocator is used. But the important part for
us is how the data buffers are allocated to know how data is written and where it is stored.
There are different ways to allocate the data.

The linear part of the skb (skb->head) is either allocated using a page frag cache or by
kmalloc(). The field sk_buff=>head_frag indicates if the head buffer is allocated as a page
fragment or through kmalloc() (1 if the head buffer is a page fragment).

The non-linear part of the sk_buff is allocated differently. The alloc_skb_with_frags()
function allocates data in both skb->head and skb_shinfo->frags. Typically, the headers are
in the linear part (skb->head), while additional data is in the non-linear part (skb_shinfo-
>frags). This avoids unnecessary copying, as seen in functions like skb_segment(), which splits
]arge sk_buffs without copying data. Mu]tip]e sk_buff instances will then point to the same
memory, so when the original sk_buff'is freed, its data cannot be zeroed out.

When data buffers are first allocated, and data is later copied to these buffers, both the
original data buffer and the sk_buff data buffers need to be zeroed. However, this scenario is
rare. More commonly, drivers allocate a page fragment, DMA map it, and place it in an RX
descriptor. Upon receiving a packet, the driver unmaps the DMA area and calls build_skb()
to construct a new sk_buff around the allocated data. Therefore, once the sk_buft data buffers
are zeroed, the NIC’s page fragment will also be zeroed.

2.6 sk__buff deallocation

The frecing of sk_buffs is more straightforward than the allocation. There are multiple func-
tions for freeing skbs, but they are mainly used to create different tracepoints and have no
functional difference. The two variants are the NAPI variant called from NAPI context and
the normal kfree_skb() called from everywhere else. Both of these functions work the same
way. They both call skb_release_all() on the skb. This function calls skb_release_head_state(),

which frees some structs in the skb. Next, it calls skb_release_data(), which decrements the

17

2. BACKGROUND

dataref counter in skb_shared_info, and if it has reached zero or skb->cloned is not set, it
frees all of the data in the following steps:

1. Go through each frag in skb_shared_info->frags and call napi_frag_unref() on them.
This function will dereference the page (decrement the page counter) associated with
the frag. If there are no more references to the page, it is freed.

2. Ifthereis afrag_list call kfree_skb_list_reason() that goes through it and calls kfree_skb()
on cach of the skbs in it. This means that this skb is part of a fragmented message, and
we want to free all of them.

3. Call skb_free_head(), which checks if skb->head_frag is true, meaning thac the skb-
>head has been allocated with page fragments. If it was allocated with page fragments,
it dereferences the page, which decrements the page reference counter, and if there are
no more references to the page, it is freed. Otherwise, if it was allocated with kmalloc(),

it simply calls kfree() on skb->head.

After freeing the data, the sk_buff struct is put back into the appropriate cache.

The most important part for us here is that, ultimately, the frecing of the data in an
skb boils down to calling skb_release_data(). There are exceptions to this when manipulac-
ing the non-linear part of an skb. In some places, a fragment is simply dropped by calling
napi_frag_unref() or skb_frag_unref(). There are also places where the size of a fragment is
decreased, which means that a part of the fragment is discarded.

2.7 Non-temporal stores on x86

On x86 processors, which we are testing on, you can do what is called non-temporal stores
that write directly to memory without first writing to the cache [10]. Non-temporal instruc-
tions are made for writing data that is written once and then never again, i.e., there is no
temporal locality. To gain performance, they use write combining, meaning that you write
to a buffer, typically consisting of 4-6 cache lines, that is evicted and written to memory at
a later time (buffer is full or some time has passed since last write). This means you do not
have to wait for the full memory write to complete and that multiple smaller writes can be
combined into a larger one. Since they use write combining, the stores are weakly ordered, so
you have to add memory fences yourself (SFENCE or MFENCE). The width of the memory
bus is a cache line, usually 64 bytes, so writing less causes a partial write that decreases the
memory bandwidth. Therefore, partial writes should be avoided.

These instructions are available as part of the Intels SIMD supplementary instruction set,
SSE, and SSE2 (Streaming SIMD Extension). This means that they can only be used on 64-bit
x86 processors supporting SSE/SSE2. However, most modern x86 processors from both Intel
and AMD support these.

18

Chapter 3
Method

3.1 Implementation

This section gives an overview of our imp]ementation; for more details and a description of
the process that led us to our final implementation, see Chapter

All methods that free an skb eventually call skb_release_data(). In this method, all of the
fragments are dereferenced, and then the skb->head is freed by calling skb_free_head(), so it
is in this function we want to zero the data before it is freed. Before each fragment is freed,
we zero the memory area that it is pointing to by mapping the page and doing a memset.
Then we do the same before the skb->head is freed. If it is a page fragment, we map the page
and then do a memset; otherwise, if it was allocated with kmalloc, we simply do a memset
from the data pointer to the tail pointer.

To avoid copying data between skbs when you want to transfer data from one to the
other, data is usually added to the Frags as a page f}agment pointing to that data. This means
that multiple skbs can point to the same data, causing corruption concerns when freed. For
example, if one skb is freed and its data zeroed, another skb pointing to the same data will
also have its data zeroed, even if it is still in use. To define whether data should be zeroed or
not when a skb is freed, we added new fields to skb_shared_info. Using these fields we can
avoid the corruption issue.

We decided to implement zeroing as a sysctl parameter to enable easy switching between
zeroing and no zeroing in the kernel. The zeroing can be turned on or off by setting the
net.core.skb_zeroing to 0 or 1, respective]y.

3.1.1 Different ways of zeroing

One can imagine that writing zeroes to large memory areas that are then freed and not used
again would be sub—optima] for cache perfbrmzmce and po]]ute the cache with useless data.
This will be the case when zeroing packet data since we write to the packet data memory

19

3. METHOD

and then free it, meaning that it will not be used again until reallocated. As mentioned
in non-temporal stores are a way to combat this and write directly to the main memory,
bypassing the cache and, therefore, avoiding cache pollution. We wanted to test if using these
instructions would improve the performance of our zeroing, so we decided to implement
zeroing (memset) in three different ways:

« Simple - just a simple for loop going through each byte and setting it to zero. This was
used as a baseline to compare to the other more complicated memset implementations.

« Store string - this is the normal memset implementation for x86_64 in the Linux kernel.
This implementation was used as a way to compare an optimized memset to our im-
plementation with non-temporal stores to see if using non-temporal stores was worth-
while. More recent x86 CPUs support fast-string operations, referred to as fast-short
REP in the kernel. This means that string operations are more optimized and can op-
crate on the string in groups that may include multiple data elements effectively [10]. If
the processor supports fast-string operations, i.c., if it is a modern Intel x86 processor,
the memset uses the store string instruction (STOSB) with REP, which will repeat the
string instruction until done. If the processor does not support fast-string operations,
another function that uses regular MOV instructions and loops is used. The proces-
sor we tested supports fast-string operations, so the fast-short REP STOSB memset is
used. The asm code for the fast-shorc REP STOSB memset and original memset with
a more detailed explanation can be found in and respectively. If the elements
to zero are known at compile time, the compiler will optimize the call away for mem-
sets smaller than 8192 bytes and inline stores instead. However, the elements are not
known at compile time for our use case, so the memset function will always be called.

+ NT -uses non-temporal instructions, specifically MOVNTI, which does a non-temporal
store from a genera]—purpose register. This imp]ementation was used to see the impact
of cache pollution and to see if using non-temporal instructions would improve per-
formance compared to the regular memset (store string). It is a copy of the original
memset implementation (without store string), where all of the MOVQ instructions
have been replaced by MOVNTI, and the code for handling the tail (if the end of our
storing is not aligned with 8 bytes) has been rewritten to use only use non-temporal
instructions. The original implementation used single-byte stores (MOVB) to handle
the tail, but there is no non-temporal equivalent, so we have to do an unaligned store
instead. This also means the non-temporal implementation only uses NT instructions
for memsets larger than 8 bytes. Otherwise, we simply use byte stores. Sccfor the

full assembly code and a more in-depth explanation of the non-temporal memset.

3.2 Setup

Most of our development and testing was done on virtual machines, primarily QEMU. We
used this rather than actual hardware because of the faster turnaround time for testing new
changes and the added debugging facilities. For instance, QEMU has support for GDB, mean-
ing that you can run the kernel in GDB, add breakpoints, and step through code. It was also
possible to adjust machine parameters such as memory size and use different network cards to

20

3.2 SETUP

| 192.168.0.0/24 5 3 192.168.111.0/24
: subnet subnet

qemu_tap0 eth0 ethl qemu_tap1
>l 192.168.0.3 | 192.168.03 QEMU VM 192.168.111.3(192.168.111.3[

qemu_br0 qemu_br1

= =

qemu_vpeer0 : : qemu_vpeert

qemu_veth0 : : qemu_veth1
192.168.0.1 ; : 192.168.111.1

gemu_ns0 gemu_ns1

Figure 3.1: QEMU test setup

test more possibilities. We ran QEMU with our kernel, and a minimal filesystem was created
with buildroot.

The networking setup we used for QEMU can be seen in figure On the virtual ma-
chine, we created two virtual network cards. These can emulate real network cards, such as
1000, or be virtual, such as virtio. We created two taps on the host attached to the virtual
machine ports (qemu_tap). We also created two separate namespaces (qemu_ns) with a veth
(qemu_veth) and corresponding peer (qemu_vpeer). The namespaces were then connected
to one of the QEMU taps through a bridge (qemu_br). The interfaces connected to port
0 were given IP addresses in the 192.168.0.0/24 subnet and port 1 in the 192.168.111.0/24
subnet. We set up routing inside the namespaces so that packets sent to the other sub-
net were routed through the virtual machine. This setup allowed us to both test forward-
ing /routing through the virtual machine and direct communication from the host to the
virtual machine by running commands inside the namespaces. All of the scripts for set-
ting up QEMU, networking, and other programs used during our thesis can be found at
hteps://github.com/antonwiklund99/exjobb.

For testing on actual hardware, we used a minimal live boot Debian image created using
debootstrap from Debian stable. We used squashfs for the filesystem to get a small image and
added our custom kernel to it. The hardware we were given had multiple RJ45 ports, but
we mainly used two ports, each connected to an external computer via a USB-C to Ethernet
adapter. The USB-C to Ethernet adapter was a Ugreen USB-C to Ethernet Adapter. The
setup can be seen in figure

The performance testing was carried out on a machine with the following specifications:

« CPU: Intel(R) Acom(TM) CPU C3558 @ 2.20GHz (x86_64)

21

https://github.com/antonwiklund99/exjobb

3. METHOD

192.168.0.0/24 192.168.111.0/24
subnet . subnet

etho USB-C to Ethernet etho etho USB-C to Ethernet etho
192.168.0.1 Adapter 192.168.0.2 192.168.111.2] Adapter 192.168.111.1

Computer 2

Computer 1 Test machine

Figure 3.2: Hardware test setup

+ Cores: 4

« NICs: 4x Ethernet Connection X553 1GbE
« Network driver: IGB

« RAM: 4 GB DDR4 @ 2133 MT/s

« L1d: 96 KiB

« L1i: 128 KiB

- L2: 8§ MiB

3.3 Testing

The Linux kernel is a large and complex system, so testing changes can be quite tricky because
the kernel handles so many cases. Testing our imp]ementation, therefore, required extensive
testing to ensure that the kernel still worked as intended and that memory was zeroed cor-
rectly.

3.3.1 Functionality

The casiest way to test if the kernel still works is to simply send packets to it or through it
and see that the data you sent is the same as the one you received. We wrote both clients and
servers to test this for TCP, UDP, and TLS. All of these worked similarly: the server listens
for incoming connections, and the client opens a socket to the server. After the connection
is established, the client sends a lot of predefined data (the same string repeated multiple
times). The server reads all of this and checks that the data received matches what it expects.
We also check the total number of bytes sent versus the number of bytes received to make sure
nothing got lost. We ran these tests with both the server and client on the machine with the
custom kernel and host. We also ran the tests with the machine acting as a router, forwarding
packets from one interface to another by running the server in one namespace/computer and
the client on the other.

The Linux kernel self-tests, kselftests, are a suite of tests for different subsystems in the
Linux kernel. These tests cover many code paths and different kernel functionality. We used
the net self-tests to test that our implementation worked, as it did not break anything for

22

3.4 PERFORMANCE MEASUREMENT

most of the various use cases of the networking code. These tests create internal interfaces
and send traffic to the host only, so the tests mentioned earlier were also needed to test the
network drivers and interaction with actual network cards.

3.3.2 Zeroing

To determine if our zeroing works, we needed some way to see what is in memory. When
using QEMU, this was quite easy since QEMU allows you to dump the entire memory of the
virtual machine using the QEMU monitor and the command dump-guest-memory. We used
the same server-client setup as mentioned inwith a predefined string as data. After the
packets have been sent, we dump the memory and search for the string. We decided to use 4
bytes repeated as the predefined data to avoid false positives but still not miss any remaining
data. We chose 4 bytes after testing different lengths and determining the number of false
positives, with 3 bytes or less there were always multiple false positives, while with 4 it was
much more rare.

For testing on real hardware, we instead used LIMEL This is a loadable kernel module that
can dump the entire memory over a TCP connection when you load it. We tested with the
same client and server on QEMU but had them running on the external computers connected
to the machine.

When testing on both QEMU and hardware, we ran both the server and client on the
machine and also tested just having the machine forwarding. We ran these with different
protocols, such as TCP, UDP, and TLS. On QEMU, we also tried varying the RAM size to
verify that it did not influence the behavior of the kernel and that data was zeroed correctly.
These tests cover most common cases and machines, however it does guarantee absolute cor-
rectness and there might be issues in the zeroing with more uncommon socket options or
protocols.

3.4 Performance measurement

For the performance measurements, we ran the server and client on different computers,
with the machine with the modified kernel between them acting as a router and forwarding
packets from one computer to the other. To measure throughput/bandwidth, we used iperf3,
a tool that sends data over TCP or UDP and measures the bandwidth. You can run this tool
in both directions or only one. We ran all of our tests in both directions. The reason for
measuring the bandwidth is to see if our added zeroing has an impact on the throughput, i.c.,
the added code slows down the critical pach enough that the kernel is not able to put out
enough data to transmit at the NIC’s maximum bandwidth or if it’s unaffected.

When running iperf3, we used various tools to measure the impact on system perfor-
mance. For measuring cache misses, we used perf, a profiler tool for Linux that uses perfor-
mance counters to count hardware events, such as cache references and misses. We wanted
to measure the cache miss rate in order to see the effects of cache pollution that our zeroing
had. A higher cache miss rate indicates that more cache pollution might have occurred.

We used a tool called Netto to measure the CPU utilization of the networking stack.
Netto is an eBPF-based monitoring tool that measures how much time is spent in different

parts of the networking stack e.g. RX and TX softirq, protocol handlers, etc. [13]. This is an

23

https://github.com/504ensicsLabs/LiME

3. METHOD

important measurement to see the impact of zeroing, even if the bandwidth is unaffected,
we can use this to see how much more time is spent if we use zeroing. Correlating CPU
utilization with cache miss rate will also give us more insight into why the different mem-
set implementations behave differently and how the implementation might scale with more
ports.

We also wanted to measure performance when the system was under load, which we did
using the Linux utility stress. With stress, it is possible to put a load on both the CPUs and
memory, so we ran all of the tests, once without stress, once with full CPU load, and once
with both full CPU and memory load.

To measure how much data is exposed, i.e., in memory, during transmission, we used
the QEMU setup described in [3.2) and the server-client setup as in The client sent a
predefined string from one namespace to a server in another namespace routed through the
virtual machine with our modified kernel. Every second, we dumped the entire memory of
the virtual machine. We could then estimate how much data is exposed during transmission
from these memory dumps by searching through each one of them for the predefined string
and counting the number of matches. We used the same predefined string of 4 bytes as in
3.3.2)

To get an idea of what happens with data in the memory after transmission when there
is more traffic routed through the QEMU, we did the same memory exposure test. But this
time, we set up a bidirectional iperf3 connection right after the sensitive data transmission
was completed. We did the test with 10, 100, and 1000 Mbits/sec connections to see the effect
of different amounts of data being sent. The reason for doing this is to model a more realistic
system where traffic simply does not just stop after one transmission but is sent continuously.
This way, we also get an idea of how much of the data is left in memory after transmission and
how much of the same memory is reallocated and overwritten as new packet data is received
and sent. The different bandwidths were chosen to see the effect of different bitrates on
how much data is overwritten, and one can imagine that a higher bitrate would lead to more
packet data having to be stored in memory at a time since network cards send packets in bulk
and buffer them a bit, thus leading to more memory being reallocated and overwritten.

We also did a similar test on actual hardware, but since dumping memory each second
would mean transferring 4GB of data over the network, we could not capture it each second
as we did on QEMU. Instead, we first sent data routed through the machine, then ran iperf3
at a specific bitrate for some time, and after this, performed a memory dump using LiME.

24

Chapter 4

Implementation

In this section, we will describe our implementation and reasoning around the choices we
made. The major difference between our implementation and earlier work on memory san-
itization is that we zero right before freeing rather than after freeing and zero the specific
memory used instead of just full pages when they are released. Instead of modifying the ker-
nel memory management system, we modify the networking code. This makes our solution
more precise but more involved/specific. As mentioned in it also means that we can
zero page fragments directly when they are dereferenced rather than having to wait for all
other page fragments that point to the same page to be freed before zeroing the data, which
in some cases can be an issue.

As mentioned, all methods that free an skb eventually call skb_release_data(). Here, all of
the skb_frags in skb->frags are dereferenced, and the data in skb->head is freed, so we want
to add our zeroing to this function.

The naive implementation is simply calling memzero_explicit() on the entire skb->head.
This will zero the head and add a memory barrier to prevent the compiler from optimizing
it away. Then, for the frags, call memzero_page() with the fragment page, offset, and size.
However, this creates some problems, especially for the non-linear part, since different frags
can be referenced by multiple skbs, and the only reference counter we have is to the actual
page and not each fragment. This means that if we zero a fragment that another skb is sill
using, we will corrupt its data. Also, by calling skb_head_frag_to_page_desc(), an skb->head
can be converted into a fragment in another skb, so by zeroing cither the created frag or the
original head, data can be corrupted.

To keep track of this and avoid zeroing the data that is still in use, we added two new fields
to the skb_shared_info struct, one for keeping track of whether we should zero the skb->head
or not (skb_shinfo->dont_zero_head) and one for where in the frags we should start zeroing
(skb_shinfo->frags_zero_index). Both of these default to zero, so everything is still zeroed if
they are not modified. This helped us solve most of the problems. When a method such as
skb_segment() transfers a fragment to another skb, we simply set the frags_zero_index such
that it would only be zeroed by the new skb and not the original.

25

4. IMPLEMENTATION

But some methods still needed fixing, for example, the method pskb_carve_inside_nonlin-
car(), which carves off some bytes at the start of the skb. In this method, a new skb is created
from the data in the original one from a certain offset, and then the original one is freed. In
this case, we do not want to zero everything after a certain index. Instead, we want to zero
everything before the newly split data. So, another field was needed that tells us if we should
zero everything below or above frags_zero_idx. That field was skb_shinfo->frags_zero_below.

The fields we have added to skb_shared_info are then:
+ dont_zero_head - Indicates whether the head buffer is shared with anocher sk_buff.

« frags_zero_index - Used to only zero up to the n:th, or from the n:th frag in the sk_buff.

« frags_zero_below - If true, then zero the frags up to frags_zero_index, else zero from
it.

The skb_shared_info struct is optimized to fit perfectly into five cache lines if you use the
defaulc number of skb->frags (17) and the cache line size is 64 bytes. This optimization min-
imizes cache misses and enhances performance on systems with 64-byte cache lines, which is
the case for most 64-bit systems, and most modern CPUs are 64-bit. So it is a good idea to
keep this cache alignment. The cache alignment is destroyed by adding three new fields, and
thus, performance is degraded. See listing[4.1] for the structure and alignment. It also caused
the IGB driver to break since it depended on the size of skb_shared_info.

Listing 4.1: pahole output for struct skb_shared_info without bit
fields

struct skb_shared_info {

__u8 flags; /% 0 1 %/
__u8 meta_len; /% 1 1 %/
__u8 nr_frags; /* 2 1 */
__u8 tx_flags; /* 3 1 */
short unsigned int gso_size; /* 4 2 %/
short unsigned int gso_segs ; /% 6 2 %/
struct sk_buff * frag_lisc; /% 8 8 */
union {

struct skb_shared_hwtstamps hwtscamps; /* 16 8 */

struct xsk_tx_metadata_compl xsk_meta; /* 16 8 */
) R TR
unsigned int gso_type; /% 24 4 */
u32 tskey; /% 28 4 */
atomic_t dataref; /* 32 4 */
unsigned int xdp_frags_size; /* 36 4 */
void * destructor_arg; /* 40 8 */
__u8 frags_zero_idx; /% 48 1 %/
bool frags_zero_below; /% 49 1 %/
bool dont_zero_head; /% 50 1 */
/* XXX 5 bytes hole, try to pack */
skb_frag_t frags [17]; /% 56 272 */

/* size: 328, cachelines: 6, members: 17 */
/¥ sum members: 323, holes: 1, sum holes: 5 ¥/
/* last cacheline: 8 bytes */

26

To fix this, we instead used bitfields and borrowed some bits from the gso_type field. This
field is 32 bits and contains flags, but only 18 bits are used. Therefore, we used one bit for
the dont_zero_head and one for frags_zero_below. The maximum number of frags that can
be set in the kernel config is 45 (CONFIG_MAX_SKB_FRAGS), which fits into 6 bits, and
therefore 6 bits were used for the frags_zero_idx. Bitfields come with some performance
penalties since the bits need to be masked out when used. But it should be negligible since
these fields are rarely used, and gso_type already needs to mask when checking for different
flags (bits set). The final struct and its alignment can be seen in 1istir1g

Listing 4.2: pahole output for final struct skb_shared_info

struct skb_shared_info {

__u8 ﬂags ; /><< 0 1 :e/
__u8 meta_len; /* 1 1 */
__u8 nr_frags; /* 2 1 %/
--u8 tx_flags; /* 3 Y
short unsigned int gso_size; /% 4 2)
short unsigned int gso_segs; /% 6 2
struct sk_buff * frag_lisc; /* 8 g */
union {

struct skb_shared_hwestamps hwescamps; /* 16 8 */

struct xsk_tx_metadata_compl xsk_meta; /* 16 8 */
i /* 16 8 */
u32 gso_type :24; /% 24: 0 4 %/
u32 fragsfzerofidx:(w; /% 24:24 4 %/
u32 frags_zero_below :1; /* 24:30 4 */
u3?2 dont_zero_head : 1; /% 24:31 4 */
u32 tskey; /% 28 4 */
atomic_t dacaref; /¥ 32 4 */
unsigned int xdp_frags_size; /* 36 4
void * destructor_arg; /% 40 8 */
skb_frag_c frags [17]; [* 48 272 %/

/* size: 320, cachelines: 5, members: 17 */
1
To perform the zeroing of the fragments, we defined four different functions that were
used in different cases. Those functions were:

+ skb_zero_frags(scruct sk_buff *skb, int from, int to) - Zero the paged fragments in skb
from index from until index to.

« skb_zero_frag(struct sk_buff *skb, int i) - Zero the paged fragment in skb at index i.
« __skb_frag_zero(skb_frag_t* frag) - Zero the paged fragment frag.

« skb_zero_frag_off(struct sk_buff *skb, int i, int off, int size) - Zero size at off from
the paged fragment in skb at index i. Here, off is relative to the starting offset of the
fragment.

Both skb_zero_frags() and skb_zero_frag() call __skb_frag_zero() to do the actual zeroing.
skb_zero_frag_off() does the zeroing itself since it has to consider offset and size. When ze-
roing one or more fragments, we first check whether the SKBFL_SHARED_FRAG is set for
the sk_buff. The skb_has_shared_frag() function does this for us. If it is set, it means that one

27

4. IMPLEMENTATION

or more fragments are shared, and in that case, it is not safe to zero. The function implemen-
tations can be found in Appendix

In skb_release_data, where the fragments are released, we call skb_zero_frags(). If the
field frags_zero_below is true, then we call skb_zero_frags() to zero from the first fragment in
skb_shared_info->frags up to frags_zero_idx. Otherwise, we call skb_zero_frags() to zero from
the fragment at frags_zero_idx and each fragment after it. The modified skb_release_data()
function can also be found in Appendix

The skb_frag_zero() function is used when a single fragment is released. There are two
places where this is the case. The first one is in __pskb_pull_tail(), which expands the header
of a sk_buff'and copies necessary data from the fragments into the skb->head. The fragments
pulled into the head are then released, which, in our case, means we have to zero each one.
The second place is __pskb_trim_head(), which does the same thing, except that the pulled
f:ragments are not Copied to the header but instead discarded.

When only a part of the data in a fragment is pulled, we do not want to zero the whole
fragment, just the pulled part. This is where the skb_zero_frag_off{() function is used. A few

different functions do this, for example, pskb_carve_inside_nonlinear() and skb_segment().

28

Chapter 5

Results

5.1 Exposed data during transmission

The results of the memory exposure measurements described inwith QEMU can be seen
in figure Data was sent with TCP and forwarded through the virtual machine, and the
entire memory was dumped and searched through every second. This means that the exposed
data in memory is the data in the entire memory, however, since packets are forwarded all
of this data will be in network buffers and not copied elsewhere. In the case of no zeroing,
there is about twice as much data in the memory as compared to the case where you zero the
data. It is also interesting to see that when you do not zero the data, it is left in the memory
indefinitely, i.c., until it is overwritten.

29

5. RESULTS

1e6 Data in memory during transmission

1.2 4

—— no_zero
1.0 A

o
o]
I

Bytes in memory
o
[e)}

©
I
1

0.2 A

0.0 _A

0 5 10 15 20 25 30
Seconds of transmission

Figure 5.1: Data in memory during transmission

5.2 Exposed data after transmission

The results of the memory exposure test with traffic routed after transmission, described
in can be found in figure Data was sent with TCP forwarded through the virtual
machine, and the entire memory was dumped and searched through every second. After
the TCP transmission was done, data was sent at a specific bitrate afterward. At around
26 seconds, a significant dip in exposed memory can be seen. That is when the sensitive
data transmission stopped, and iperf3 started transmitting. As suspected, the larger bitrate
overwrote more data in the memory since it requires more memory for buf‘Fering packets,
and thus, more of the old packet data will be reallocated and overwritten by the new traffic
coming through. This can be seen by the lower amount of remaining data for the higher
bitrates. It also seems like some memory with sensitive data is not overwritten by the data
iperf3 sent and is left in memory, which can be seen by none of the different bitrates reaching
zero in the graph. Interestingly, even after running 1000 Mbits/sec for around 20 seconds
through the virtual machine, sensitive data is still exposed in the memory.

30

5.2 EXPOSED DATA AFTER TRANSMISSION

Data in memory during transmission

le6
_— —— 10 Mbits/sec
1.2 A 100 Mbits/s
—— 1000 Mbits/sec
1.0 A
P
o 0.8 A
€
(]
€
£ 0.6 A
w0
2
)
0.4
0.2
0.0 A
0 10 20 30 40

Seconds of transmission

Figure 5.2: Data in memory during and after transmission

We did a similar test on the hardware to see whether it would produce the same results

as on the virtual machine. The results are in table and are from single runs. This test gave

quite inconsistent results. It is hard to say what may happen with the sensitive data after

transmission. It might be that the amount of sensitive data still exposed depended on which

memory the hardware decided to use for routing the iperf3 connection. None of the sensitive

data remained in memory for 10 Mbits/sec for 3 seconds. But for 100 Mbits/sec for 6 seconds,

there were still 786820 bytes of sensitive data in the memory.

[Perf3 Bitrate | Iperf3 Time | Remaining data
- 0 845200 B
1 Mbits/sec 1s 1103888 B
1 Mbits/sec 3s 1208148 B
1 Mbits/sec 6s 784752 B
1 Mbits/sec 10s 10636 B
10 Mbits/sec | 1s 708 B

10 Mbits/sec | 3s 0B

10 Mbits/sec | 6s 824764 B
100 Mbits/sec | 1s 888440 B
100 Mbits/sec | 3s 777128 B
100 Mbits/sec | 6s 786820 B

Table 5.1: Data in memory after transmission on hardware

31

5. RESULTS

5.3 Bandwidth

The results from the bandwidth tests using iperf3 results can be found in table These
measurements are from a single run, running iperf3 for three minutes. Regardless of the
implementation and zeroing or no zeroing, the average bandwidch was unaffected.

TX RX
No zero 926 Mbits/sec | 928 Mbits/sec
Zero simple 926 Mbits/sec | 931 Mbits/sec

Zero store string

928 Mbits/sec

930 Mbits/sec

Zero non-temporal

926 Mbits/sec

927 Mbits/sec

We did the same test while maximizing the CPU and memory load. The results are in

Table 5.2: iperf3

table Again, there were no effects on the average bandwidch.

TX

RX

No zero

928 Mbits/sec

930 Mbits/sec

Zero simple

928 Mbits/sec

930 Mbits/sec

Zero store string

926 Mbits/sec

931 Mbits/sec

Zero non-temporal

925 Mbits/sec

928 Mbits/sec

Table 5.3: iperf3 (Stress CPU and memory)

5.4 Cache miss rate

The results from measuring cache misses with perf can be found in table those were the
results of single runs, running for one minute. We ran these tests multiple times but with
little variation in the final results. The table shows that looping through each byte in the
memory and writing zero to it will have the most significant impact on the miss rate. Using
the standard memset function, even though not as great, also affected the miss rate. Possibly
because it is more optimized than just looping; however, by a]arge margin, it has the most
cache references. When we used non-temporal stores, the cache references and miss rate
barely increased compared to not zeroing at all (within one percent).

Cache References | Cache Misses | Miss Rate
No zero 1556063965 206439289 13.267%
Zero Simp]e 1993791304 512640484 25.612%
Zero store string 2600751429 456596840 17.556%
Zero non—temporal 1350383971 190084247 14.076%

Table 5.4: Perf

32

5.5 NETWORKING CPU UTILIZATION

We also recorded cache references and misses when stress-testing the CPU. The results of
those tests can be found in table Each implementation of zeroing, along with no zeroing,
had a slightly higher miss rate when maximizing the CPU load.

Cache References | Cache Misses | Miss Rate
No zero 1125436296 176940872 15.722%
Zero simple 1724690690 465089172 26.967%
Zero store string 2597597475 504757291 19.432%
Zero non-temporal | 1211218000 202488996 16.718%

Table 5.5: Pert (Scress CPU)

In addition, we recorded the cache references and miss rate when both stressing the CPU
and memory consumption. The results are in table When stressing the memory, we also
increased the cache references by more than ten times, so the misses caused by the networking
code are drowned out. However, the difference in miss rate is still noticeable, with non-
tempora] and not zeroing being about the same and store string slight]y higher.

Cache References | Cache Misses | Miss Rate
No zero 26581337550 4843918736 18.223%
Zero simple 25865549215 4884662107 18.885%
Zero store string 26838374613 4953481209 18.457%
Zero non-temporal | 26306867500 4801968198 18.254%

Table 5.6: Perf (Stress CPU and memory)

5.5 Networking CPU utilization

The results from the networking CPU utilization measurements using Netto can be found in
ﬁgure These are single runs, running for three minutes. The zero simple implementation
had the highest CPU consumption of them all. Even though using non-temporal writes when
writing zeroes to the memory had fewer cache references and a lower miss rate, the regular
implementation of memset had lower CPU utilization, probably because the non-temporal
writes are more time-consuming,.

33

5. RESULTS

Networking CPU utilization

—e— no zero
—8— zero store string
121 —e— zero simple
zero nt
104

o
o
& 81
5
) {
o
]
Pt
o
3 6
8
€
v
2
&

4

24

0 r—e

T T T T T T
0 50 100 150 200 250

Seconds of transmission

Figure 5.3: Networking CPU utilization

In addition, we measured the CPU utilization of the network stack when maximizing the
CPU load. The results can be seen in figure Each implementation had slightly less CPU
utilization, but their relationship stayed the same.

Networking CPU utilization (Stress CPU)

no zero
zero store string
zero simple
zero nt

124

tet

101

Percentage of CPU usage

0 50 100 150 200 250
Seconds of transmission

Figure 5.4: Networking CPU utilization (Stress CPU)

We also measured the CPU utilization of the network stack when maximizing the CPU
load and the memory consumption. The results can be seen in figure When stressing
memory consumption as well, the non-temporal memset implementation consumes less of

34

5.5 NETWORKING CPU UTILIZATION

the CPU than the regular memset implementation, possibly because it uses less of the mem-

ory, as ¢an bf.‘ seen by the cache reférences in table

Networking CPU utilization (Stress CPU & memory)

17.54

15.01

12,54

10.0 1

Percentage of CPU usage
~
w
|

5.01

2.51

0.0 L 4 ®

no zero
zero store string
zero simple
zero nt

0 50 100 150
Seconds of transmission

200 250

Figure 5.5: Networking CPU utilization (Stress CPU and memory)

35

5. RESULTS

36

Chapter 6

Discussion

6.1 What are the implications of zeroing on
performance?

The bandwidth seems unaffected by whether or not we are zeroing or any of the different
zeroing implementations. This indicates that the processing power of the CPU is not the
bottleneck in the system, even at max throughput. Instead, it is the NICs that can only
transmit up to 1000 Mbits/sec. This can also be seen in the CPU utilization, which never
reaches above 13% for any of the implementations. This was not unexpected since we tested
it on a relatively powerful CPU with only two 1 Gbit network ports. For other systems with
less processing power and more or faster network ports, this might be different, and the CPU
could limit the throughput. On our hardware, we saw an increase of about 10%, when the
total CPU utilization of the network stack is only around 10%, which only equates to 1% total
CPU utilization. On a more limited system, where the network stack uses more processing
power, the impact of the zeroing on the total CPU usage would then also be larger and have
more of an impact, and then it could affect the throughput. However, most of the freeing and
then also zeroing is not done in the critical path of the network stack but instead deferred
to later, when the CPU is free, so it is hard to predict if this would be true.

The performance metrics that do differ are CPU utilization and cache misses. The store
string and non-temporal memset are within 1% of each other, with the store string using
slightly less and about 1.5 % more than no zeroing when running with no memory load. The
simple memset is around double the CPU utilization, which can be expected since it will
simply do a bunch of bytes stores in a loop. However, when running stress with memory load
enabled, the NT version performs better than the store string, having up to a 2.5 % difference
in utilization. It may seem surprising that the store string slightly outperforms the NT version
when there is no memory load. Something similar can be seen in measurements performed
by Li et al. [12] concerning whether logging should be cached or not. They discovered that
the execution time was worse for non-cached writes compared to normal cached writes, even

37

6. DISCUSSION

if the cache miss rate was lower. The reasons they gave for this are thatc the MOVNTTI has
more overhead and takes more cycles to execute because of additional data movements and
longer write latency to memory than caches. They also mention the issue of partial writes,
which is when the size of the data in the write combining buffer (WCB) is less than the size
of a cache line when it decides to write to memory. The memory bus and WCB will then
be underutilized. This is likely what we are secing as well. The main reason for using NT
instructions is to avoid cache pollution, but if we are not using a lot of memory, this will
have less of an impact since cache lines still in use will not have to be kicked out prematurely.
The store string will then edge out slightly since the stores have less overhead. This is also
likely why the NT version outperforms the store string when there is more memory pressure.
There is a higher risk of kicking out something still in use since more things will have to
be kicked out. Also, the NT instructions are not affected by whether the memory they are
writing to is in the cache or not. In other words, the cache miss rate has a higher impact when
memory consumption is high.

6.2 How much less data is exposed?

From ﬁgure we can see that at an arbitrary time during transmission, the amount of
sensitive data in memory is around half of what it would be if we do not zero. Then, after
the transmission is completed, no data will be left in the memory. If we do not zero the
data, it is hard to know exactly how long it will remain in the memory. It is only when
the memory block in which the data resides gets used again that it is overwritten and thus
cleared. However, as shown in ﬁgure even when running a 1000 Mbits/sec connection for
20 seconds after transmitting sensitive data, some still reside in the memory. So, the memory
blocks used for some data are not guaranteed to be used again directly. Still, the "exposed”
data here is stored in network buffers, i.e., protected kernel memory, and would require some
exploit or kernel bug to be read by an attacker.

38

Chapter 7

Conclusion

As observed, zeroing packet data once it is no longer in use lessened the amount of packet
data left in memory by a large margin. At an arbitrary time during transmission, we could
cut the amount of data in memory to around half what it would be without zeroing. After
transmission, no data was left in memory, compared to when not zeroing, when data would
reside in memory for an indefinite period, i.e., until overwritten.

Zeroing did come with some performance costs, as, when using the regular memset func-
tion to zero, it had around 1.5% higher CPU usage than no zeroing and about 4% higher cache
miss rate. Because of worsened cache performance, the zeroing with memset used around 4%
more of the CPU when stressing the CPU and memory. However, the cache miss rate was
unaffected when using a memset that uses non-temporal stores to zero. Due to not polluting
the cache, it only used around 2.5% more of the CPU than no zeroing when stressing the CPU
and memory. However, due to using more time-consuming operations, it used s]ight]y more
of the CPU when the CPU and memory were under no pressure.

Our zeroing implementation should be applicable across different placforms other than
x86, such as ARM. However, the non-temporal memset is x86 specific and will only work on
x86 processors that support SSE/SSE2, since it uses special instructions from these extensions
and is written in x86 assembly.

In conclusion, this work has demonstrated that zeroing networking data effectively re-
duces the lifespan of sensitive information in memory. If data security is a high concern, or
if you want to ensure that sensitive data is not retained in memory, zeroing can be a valuable
strategy, provided the performance penalties are acceptable. The non-temporal version is
preferable for a system with high memory consumption. Otherwise, the normal memset has
a slightly better performance.

39

7. CONCLUSION

7.1 Future work

7.1.1 Testing for different drivers

When testing our implementation on the ¢1000 driver, we noticed some data was still exposed
after transmission. After investigating, we saw that when receiving a small packet, the ¢1000
driver allocates a new skb and copies the data into the skb without freeing the original data
received. The data would be left in the DMA-mapped page until it is overwritten. We only
tested on the 1000, rtl8139, and IGB drivers, so we suspect there may be cases similar to the
1000 driver. This work could benefit from more testing on different drivers.

7.1.2 Testing while maximizing Networking CPU Uti-
lization

In our tests, the maximum Networking CPU Utilization never went above 14%. It would be
interesting to see the impact zeroing would have on the throughput when Networking CPU
Utilization is close to 100%. This could be done using more networking devices/ports, a more
underpowered machine, or a faster NIC.

40

References

1]

2]

3]

[4]

kernel-hardening - Merge in PAX_MEMORY_SANITIZE work from grsec to linux-
next. https://www.openwall.com/lists/kernel-hardening/2017/01/18/1.
[Accessed 18-01-2024].

struct sk_buff. https://docs.kernel.org/networking/skbuff.htmll [Accessed
08-05-2024].
Laura Abbott. [RFC|[PATCH 0/7] Sanitization of slabs
based on grsecurity/PaX. https://lore.kernel.org/lkml/
1450755641-7856-1-git-send-email-laura@labbott.name, [Accessed
18-01-2024].

Jim Chow, Ben Pfaff; Tal Garfinkel, and Mendel Rosenblum. Shredding your garbage:

Reducing data lifetime through secure deallocation. In USENIX Security Symposium,
pages 22-22, 2005.

[5] Jonathan Corbet. Faster page faulting through prezeroing. https://lwn.net/

l6]

(7]

Articles/117881/. [Accessed 18-01-2024].

Jonathan Corbet. Kernel security: beyond bug fixing. https://lwn.net/Articles/

662219/, [Accessed 18-01-2024].

Jonathan Corbet. Revisiting the kernel’s preemption models (part 1). https://lun.

net/Articles/944686/. [Accessed 18-01-2024].

[8] Jonathan Corbet. Some upcoming memory-management pacches. https://lwn.net/

Articles/875587/| [Accessed 18-01-2024].

[9] Jake Edge. Sanitizing kernel memory. https://lwn.net/Articles/334747/. [Ac-

[10]

cessed 18-01-2024].

Intel. Intel 64 and ia-32 architectures software developer’s manual volume
1. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html] 2024. [Accessed 03-05-2024].

41

https://www.openwall.com/lists/kernel-hardening/2017/01/18/1
https://docs.kernel.org/networking/skbuff.html
https://lore.kernel.org/lkml/1450755641-7856-1-git-send-email-laura@labbott.name
https://lore.kernel.org/lkml/1450755641-7856-1-git-send-email-laura@labbott.name
https://lwn.net/Articles/117881/
https://lwn.net/Articles/117881/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/662219/
https://lwn.net/Articles/944686/
https://lwn.net/Articles/944686/
https://lwn.net/Articles/875587/
https://lwn.net/Articles/875587/
https://lwn.net/Articles/334747/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

REFERENCES

[11] Robert Love. Linux Kernel Development (3rd edition). Addison-Wesley Professional, 2010.

[12] Jishen Zhao Mengjie Li, Matheus Ogleari. Logging in persistent memory: to cache,
or not to cache? In MEMSYS ’17: Proceedings of the International Symposium on Memory
Systems, pages 177-179, 2017.

[13] Davide Miola. Assessing the impact of Linux networking on CPU consumption. PhD thesis,
Politecnico di Torino, 2023.

[14] Johannes Wikner and Kaveh Razavi. {RETBLEED}: Arbitrary speculative code execu-
tion with return instructions. In 31st USENIX Security Symposium (USENIX Security 22),
pages 3825-3842, 2022.

42

Appendices

43

Appendix A
struct sk_buft

Listing A.1: sk_buff structure

struct sk_buff {

union {
struct {
/% These two members must be firse
struct sk_buff *next;
struct sk_buff *prev;
union {
struct net_device *dev;
/% Some protocols might use this space to
* while device pointer would be NULL.
UDP receive path is one user.
unsigned long dev_scratch;
I
}s
struct rb_node rbnode; /* used in netem,
struct list_head list
struct llist_node Il_node;
}s
union {
struct sock *sk;
int ip_defrag_offset;
}s
union {
ktime_t tstamp ;
ub4 skb_mstamp_ns; /* earliest departure time
}s
* This is the control buffer. It is free

store

ip4 defrag, and tcp

%/

to match sk_buff_head. %/

information ,

SfaCk

to use for every

45

*/

A. STRUCT SK_BUFF

layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone ()
* first. This is owned by whoever has the skb queued ATM.
:'r/

char cb[48] __aligned (8);

union {
struct {
unsigned long _skb_refdst;
void (*destructor)(struct sk_buff *skb);
}s
struct list_head tcp_tsorted_anchor;
gifdef CONFIG_NET_SOCK_MSG

unsigned long _sk_redir;
#endif
1
#if defined (CONFIG NF_CONNTRACK) || defined (CONFIG_.NF_CONNTRACK MODULE)
unsigned long _nfcrt;
#endif
unsigned int len
data,]en;
__ulé6 mac_len ,

hdr_len;
/* Following fields are _not_ copied in __copy_skb_header ()

Note that queue_mapping is here mostly to fill a hole.
:,L/

__ulé6 queue_mapping;

/* if you move cloned around you also must adapt those constants %/
gifdef __BIG_ENDIAN_BITFIELD

#define CLONED_MASK (1 << 7)

#else

#define CLONED_MASK 1

#endif

#define CLONED_OFFSET offsectof (struct sk_buff, __cloned_offset)

/* private: */

__u8 __cloned_offset [0];
/* public: */
__u8 cloned:1,

nohdr:1

fclone:2,

peeked:1,
head_frag:1,
pfmemalloc:1,
pp_recycle:1; /* page_pool recycle indicator ¥/
#ifdef CONFIG_SKB_EXTENSIONS
__u8 active_extensions ;
#endif

/* Fields enclosed in headers group are copied
using a single mcmcpy() in ,,copy,skb,header ()
:,L/

struct_group (headers ,

46

/* private: */

__u8 __pkt_type_offsec [0];

/* public: */

__u8 pke_type:3; /* see PKT_TYPE_MAX */
__u8 ignore_df:1;

__u8 dst_pending_confirm :1;

__u8 ip_summed :2;

__u8 ooo_okay:1;

/% private: */

__u8 __mono_tc_offsec [0];
/% public: ¥/
__u8 mono_delivery_time :1; /* See SKB_MONO_DELIVERY_TIME_MASK */
gifdef CONFIG_NET_XGRESS
__u8 tc_at_ingress :1; /* See TC_AT_INGRESS_MASK */
__u8 tc_skip_classify:1;
#endif
__u8 remcsum_offload :1;
__ud8 csum_complete_sw:1;
__u8 csum_level :2;
__u8 inner,protocol,type:l;
__u8 14 _hash:1;
__u8 sw_hash:1;
gifdef CONFIG_WIRELESS
__u8 wifi_acked_valid :1;
__u8 wifi_acked :1;
gendif
__u8 no_fcs :1;
/* Indicates the inner headers are wvalid in the skbuff. */
__u8 encapsulation 01
__u8 encap,hdr,csum 01
__u8 csum_valid : 1;
gifdef CONFIG_IPV6_NDISC_NODETYPE
__u8 ndisc_nodetype :2;
#endif
#if IS_ENABLED (CONFIG_IP_VS)
__u8 ipvs_property :1;
#endif
#if IS_ENABLED (CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED (CONFIG_NF_TABLES)
__u8 nf_trace :1;
#endif
gifdef CONFIG_NET_SWITCHDEV
__u8 offload_fwd_mark :1;
__u8 offload_13_fwd_mark :1;
#endif
__u8 redirected : 1;
gifdef CONFIG_NET_REDIRECT
__u8 from_ingress :1;
#endif
#ifdef CONFIG_NETFILTER_SKIP_EGRESS
__u8 nf_skip_egress:1;
#gendif

#ifdef CONFIG_TLS_DEVICE

47

A. STRUCT SK_BUFF

__u8 decrypted : 1;
#endif
__u8 slow_gro:1;
#if IS_ENABLED (CONFIG_IP_SCTP)
__u8 csum_not_inet :1;
#endif
#if defined (CONFIGNET_SCHED) || defined (CONFIG_NET_XGRESS)
__ule6 tc_index; /% traffic control index %/
#endif
ul6 alloc,cpu;
union {
_wsum csum ;

struct {
__ul6 csum_start;
_ul6 csum_offset;

}s
15
__u32 priority;
int skb_iif;
__u32 hash;
union {
u32 vlan_all;
struct {
__bel6 vlan_proto;
__ul6 vlan_tci;
1
}s
#if defined (CONFIG_LNET_RX_BUSY_POLL) || defined (CONFIG_XPS)
union {
unsigned int napi_id;
unsigned int sender_cpu;
}s
#endif
#ifdef CONFIG_NETWORK_SECMARK
__u32 secmark ;
#endif
union {
__u32 mark ;
__u32 reserved_tailroom ;
1
union {
__bel6 inner_protocol;
__u8 inner_ipproto;
}s
__ulé6 inner_transport_header;
__ul6 inner_network_header;
__ulé6 inner_mac_header;
__bel6 protocol;
__ulé6 transport_header;

48

__ulé6
__ulé6

network_header;
mac_header;

#ifdef CONFIG_LKCOV

ub4 kcov_handle;
gendif

); /% end headers group ¥/

/* These elements must be at

sk_buff_dacta_t tail ;

sk_buff_dacta_t end;

unsigned char *head |,

*data;
unsigned int truesize ;

refcount_t users ;

gifdef CONFIG_SKB_EXTENSIONS
/* only after
struct fextensions ;

#endif

b

usable

skb_ext

the end,

see

checking —active_extensions !=

Listing A.2: skb_shared_info structure

skb_shared_info {
flags;

struct
__us8
__u8
_u8
__u8
unsigned short gso_size;
this field is
unsigned short gso_segs;

sk_buff *frag_lisc;

meta_len;
nr_frags;

ex_flags;
/* Warning:

struct
union {

not always filled

struct skb_shared_hwtstamps hwtstamps;

struct xsk_tx_metadata_compl xsk_meta;

1
unsigned int
u32

gso_type :24;
tskey;

/*
Warning all fields
:(‘/
atomic_t dartaref;
unsigned int xdp_frags_size;
/* Intermediate layers must

valid

destructor_arg;

remains until

void

/* must be
skb_frag_c

lasc field ,

before

ensure

dataref are

see pskb_expand_head ()
Frags[k&%XfSKBJWLAGS];

in

cleared

>(</

(UFO)!

alloc_skb () for

*/

in

that dCSfTuCITOT,&H’g

skb destrucrtor */

details .

alloc_skb ()

49

A. STRUCT SK_BUFF

Listing A.3: sk_buff flags
/* Definitions for flags in struct skb_shared_info */
enum {

/* use zcopy routines */
SKBFL_ZEROCOPY_ENABLE = BIT (0),

/* This indicates at least one fragment might be overwritten
* (as in vmsplice (), sendfile () ...)

[f we need to compurte a TX checksum , we’ll need to copy
:%/
SKBFL_SHARED_FRAG = BIT (1),

all frags to avoid possible bad checksum

/;{4 segment contains only zerocopy dara and should not bC
Chargcd to fl’lC kCl’Tlt’l memory .
:,L/
SKBFL_PURE_ZEROCOPY = BIT(2),

SKBFL_DONT_ORPHAN = BIT (3),

)

/* page references are managed by the ubuf_info, so it’s safe to

use frags only up uncil ubuf_info is released

SKBFL_MANAGED_FRAG_REFS = BIT (4) ,

50

Appendix B

memset implementations

All of the information about x86 processors in this chapter is from the Intel® 64 and 1A-32
Architectures Software Developer’s Manual Volume 1. For non—tempora] instructions, see
10.4.6.2 Caching of Temporal vs. Non-Temporal Data, and for string operations, see 7.3.9
String Operations [10].

The signature of the memset function is: void memset(void *s, int ¢, size_t n), where s
is the starting address of the memory to set, ¢ is the value to set each byte to, and n is the
count/number of bytes to set.

B.1 Store string

This is the memset implementation in the Linux kernel used for x86 processors with support
for fast-string operations. This is an optimization that exists on Intel processors based on
Ice Lake Client microarchitecture or later, meaning that this implementation will be used
for modern Intel x86 processors and will be faster on these than the original implementation
that uses normal stores.

String instructions work on a string with the index/address stored in the ESI or RDI
register. String instructions can be combined to operate on larger strings than a double
word by using one of the repeat prefixes (REP, REPE/REPX, or REPNE/REPNZ). By storing
the count (number of iterations/bytes) in the ECX register, the string instructions will be
repeated, and the ESI/RDI and ECX automatically incremented/decremented until it is done.

The memset implementation using string operations starts by storing the start address
in the RDI register, the count in the RCX register, and the set value in the RAX register.
It then uses REP STOSB, which repeats STOSB (store string byte in RAX to the memory
address in RDI) until the RCX register reaches zero, automatically incrementing RDI and
decrementing RCX for each iteration.

Listing B.1: memset using fast-short REP STOSB

51

B. MEMSET IMPLEMENTATIONS

movq %rdi | %19
movb %sil (% al
movq %rdx ,%rcx
rep stosb

movqg %r9 ,%rax

RET

B.2 Original

This is the memset implementation in the Linux kernel used on processors that do not sup-

port fast-store string, i.c., older Intel and non-Intel processors. This implementation does

not use any special features and will work on any 64-bit x86 processor. The implementation

uses quad-word stores (MOVQ) as much as possible and single bytes stores (MOVB) to han-

dle remaining bytes at the end not aligned with a quad-word. It also tries to write as many

full cache lines with 8 MOVQs between jumps at a time to improve performance (.Lloop_64).
It works like this:

+ We start by moving the start address to the RDI register and the number of bytes to
set to RDX.

+ We expand the byte value we want to set each byte to from the argument into the
64-bit register RAX.

+ We check if the starting address is aligned with 8 bytes (one quad-word). If it is not,
we jump to the bad alignment label (.Lbad_alignment); here, we check if the count is
less than 8. If it is, we jump to the handle_7 label (.Lhandle_7). Otherwise, if the count
is 8 or larger, we do an unaligned store (MOVQ). An unaligned store is a store that
is not aligned on the store instruction’s data width, i.e., a quad—word store that is not
aligned on 8 bytes. These still work, but they will be split into two separate stores by
the processor and take longer to execute. The address in RDI is then incremented so
it is aligned on 8 bytes, and we jump back to where we would have been if we did not
jump (Lafter_bad_alignment).

+ We copy the count from RDX to RCX and right shift RCX by 6. This is the same
as dividing by 64, i.c., the RCX register is how many full cache lines we can write
(.Lafter_bad_alignment).

+ Loop through each cache line, storing RAX into each memory address in the cache
line with multiple MOVQs, incrementing RDI, and decrementing RCX each iteration
until RCX reaches zero. (Lloop_64)

+ We copy RDX to RCX again so it has the original count and mask out the bits for
the number of bytes after the last full cache line. If it zero we jump to .Lhandle_7.
Otherwise, we shift RCX by 3 so it contains the number of quad-words left to set

(.Lhandle_tail)

+ We loop through each remaining quadword, storing RAX into each memory address
with MOVQ, incrementing RDI, and decrementing RCX each iteration until RCX
reaches zero. ((Lloop_8).

52

B.2 ORIGINAL

+ We then reach the .Lhandle_7 label, mask out the 3 lowest bits from RDX to get the
number of bytes left to set. If it is zero, jump to the end label (.Lende).

+ We loop through cach remaining byte doing a single byte store (MOVB) on RDI, decre-
menting RDX and incrementing RDI each iteration until RDX reaches zero. (.Lloop_1)

« We are done, return. (.Lende)

Listing B.2: memset with only normal stores

movq %rdi %110

/% expand byte value */
movzbl %sil % ecx
movabs $0x0101010101010101 ,% rax

imulqg %rex ,%rax

/% ;1lign dst */
movl %edi ,%r9d
andl $7,%19d

jnz . Lbad_alignment
.Lafter_bad_alignment:

movq %rdx,%rcx
shrq $6,% rex

jz .Lhandle_tail
.p2align 4
.L]oop_64:

decq %TCX

movq %Trax (% rdi)
movq %rax ,8(%rdi)
movq %rax ,16(%rdi)
movq %rax ,24(%rdi)
movq %rax 32(% rdi)
movq %rax ,40(% rdi)
movq %rax ,48(%rdi)
movq %rax ,56(%rdi)
leaq 64(%rdi),%rdi
jnz .Lloop_64

/* Handle tail in loops. The loops should be faster than hard

to predict jump tables. */
.p2align 4
.Lhandle_tail:
movl %edx ,% ecx
andl $63 &(~7),%ccx
jz .Lhandle_7
shrl $3,%ecx
.p2align 4
.L]oop_8:
decl %ecx

movq %rax ,(%rdi)
leag 8(%rdi),%rdi
jnz .Lloop_8

53

B. MEMSET IMPLEMENTATIONS

.Lhandle_7:
andl $7 % edx
jz . Lende
.pZn]ign 4
. Lloop,l :
decl %edx
movb %al (% rdi)
leaq 1(%rdi),%rdi
jnz .Lloop_l
.Lende:
movq %110 ,% rax
RET

.Lbad_alignment:
cmpq $7 ,%rdx
jbe .Lhandle_7
movq %rax ,(%rdi) /* unaligned store */
movq $8,%18
subq %r9,%r8
addq %r8,%rdi
Subq %r8 % rdx
jmp . Lafter_bad_alignment
.Lfinal:

B.3 Non-temporal

This is the implementation of memset with non-temporal stores. As explained earlier, non-
temporal stores are a way to write to memory without polluting the cache; the writes go
directly to memory using write combining to increase efficiency. Non-temporal instructions,
c.g. MOVNTI, are available as part of Intels SIMD supplementary instruction instruction
set, SSE and SSE2. So this implementation only works on 64-bit x86 processors supporting
SSE or SSE2, however on most modern x86 processors from both Intel and AMD these are
supported.
[t is similar to the original memset (see but with some differences:

+ The MOVQ instructions have been substituted with the non-temporal store instruc-
tion MOVNTIL MOVNTI does a non-temporal store from a general-purpose register.
This can either be a quad-word or a double-word store depending on the width of the
register; in our case, we use RAX, which is a 64-bit register; hence MOVNTI will do a
quad-word store.

« Instead of doing byte stores when reaching the Lhandle_7 label, we move the RDI back
so that it is 8 bytes between RDI and the last address we want to store to, e.g., if there
are 5 more bytes to store, we move RDI back 3 bytes so we can do an unaligned quad-
word store.

+ In .Lbad_alignment, if the count is less than 8 bytes, we jump to Lhandle_small instead
of Lhandle_7. This is because we cannot move back RDI to do a non-temporal store

54

B.3 NON-TEMPORAL

since we would then be setting bytes before the starting offset of the target range.
Instead, we do single-byte stores on the bytes.

« Since the non-temporal stores use write combining semantics, the stores will be weakly
ordered. This means that when we are done, we need to add an SFENCE instruction
to ensure coherence ((Lende).

Listing B.3: memset imp]ementation using MOVNTI

movq %rdi %110

/* expand byte value %/
movzbl %sil ,%ecx
movabs $0x0101010101010101 ,% rax

imulq %rcx ,%rax

/* align dst */
movl %edi ,%r9d
andl $7,%r9d

jnz . Lbad_alignment
cmpq $7,%rdx
jbe .Lhandle_small

.Lafter_bad_alignment:
movq %rdx % rcx
shrq $6,%rcx
jz .Lhandle_tail

.pZa]ign 4

.L]oop,64:
decq %1 CX
movnti %rax (% rdi)
movnti %rax ,8(%rdi)
movnti %rax ,16(%rdi)
movnti %rax ,24(%rdi)
movnti %rax ,32(%rdi)
movnti %rax ,40(%rdi)
movnti %rax ,48(%rdi)
movnti %rax ,56(%rdi)
leaq 64(%rdi),%rdi
jnz .L]oop764

/* Handle tail in loops. The loops should be faster than hard

to predict jump tables. */
.pZa]ign 4
.Lhandle_tail:
movl %ecdx ,% ecx
andl $63 &(~7),% ccx
jz .Lhandle_7
shrl $3,% ecx
.pZa]ign 4
.Lloop_8:
decl % e X

movnti %rax (% rdi)

leag 8(%rdi),%rdi

55

B. MEMSET IMPLEMENTATIONS

jnz .Lloop_8
.Lhandle_7:
andl $7 % edx
jz .Lende
/* Move rdi back to do an una]igned store. ¥/

movq $8,%18

subg %rdx %18

subg %18 % rdi
movnti %rax ,(%rdi)

.Lende:
sfence
movq %110 ,% rax

RET

.Lbad,alignment:
cmpq $7,% rdx
jbe
movnti %rax ,(%rdi)
movq $8.%1r8
subq %19 ,% 18
addq %r8 ,% rdi
subg %18 ,%rdx

/:e

.Lhandle_small
/:l-

.Lafter_bad_alignment

/* not

jmp
.Lhandle_small:
andl $7 ,% edx
jz .Lende
.p2align 4
.Lloop_l:
decl %edx
movb %al ,(%rdi)
1caq 1(%rdi),%rdi
jnz .Lloop_1
jmp . Lende
. Lfinal:

unaligned store */

unaligned store */

a nonftemporal store

*

56

Appendix C

Zeroing functions

Listing C.1: modified skb_release_data function

static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason
bool napifsaf‘e)

bl

{
struct skb_shared_info *shinfo = skb_shinfo (skb);
int i;
if (skb—>cloned &&
atomic_sub_return (skb—snohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
&shinfo —>dataref))
goto exit;
if (skb_zcopy(skb)) {
bool skipfunref = shinfo f>flags & SKBFL_MANAGED_FRAG_REEFS;
skb_zcopy_clear (skb, true);
if (skip_unref)
goto free_head;
!
if (shinfo —frags_zero_below)
skb_zero_frags (skb, 0, shinfo—>frags_zero_idx);
else
skb_zero_frags (skb, shinfo—>frags_zero_idx , shinfo-—->nr_frags);
for (i = 0; i < shinfo-—>nr_frags; i++)
napi_frag_unref(&shinfo —>frags[i], skb—spp_recycle, napi_safe);
free_head:

if (shinfo—>frag_lisc)

kfree_skb_list_reason (shinfo f>frag71ist , reason);

skb_free_head (skb, napi_safe);

57

C. ZEROING FUNCTIONS

exit :

/* When we clone an SKB we copy the reycling bit. The pp_recycle
* bit is only set on the head though, so in order to avoid races
* while trying to recycle fragments on __skb_frag_unref () we need
* to make one SKB rcsponsiblc for triggering the rccycl@ path.
* So disable the recycling bir if an SKB is cloned and we have
* additional references to the fragmented part of the SKB.
* Eventually the last SKB will have the recycling bit ser and it’s
* dataref set to 0, which will trigger the recycling
:(—/

skb—>pp_recycle = 0;

Listing C.2: modified skb_free_head function

static void skb_free_head (struct sk_buff *skb, bool napi,safe)
{
unsigned char *head = skb-—>head;

if (READ_ONCE(sysctl_skb_zeroing) && skb_hecadlen (skb)
&& !skb_shinfo (skb)—>dont_zero_head) {
memzero_cxplicit (skb—>data, skb_hecadlen (skb));

}

if (skb—>head_frag) {
if (skb_pp_recycle(skb, head, napi_safe))

return ;
skb_free_frag (head);
}oelse |
skb_kfree_head (head, skb_end_offset(skb));
!
!
Listing C.3: modified skb_zero_frag® functions
void static __always_inline __skb_frag_zero(skb_frag_c¢* frag) {
struct page Fp;
u32 p_off, p_len, copied;
skb_frag_forcach_page (frag, skb_frag_off(frag),
skb_frag_size (frag), p, p_off, p_len,
copied) {
memzerofpagefexp]icit(p, pfofwf, pflen);
!
1

void skb_zero_frag_off(struct sk_buff *skb, int i, int off, int size) {
if (READ_ONCE(sysctl_skb_zeroing) && !skb_has_shared_frag(skb)) {
skb_frag_t *frag = &skb_shinfo (skb)—>frags[il;
memzero_page_explicit(skb_frag_page(frag), skb_frag_off(frag) + off, size);

}

void Skb,zer(),frag(struct sk_buff “‘skb, int i) {
if (READ_ONCE(sysctl_skb_zeroing) && !skb_has_shared_frag(skb)) {
__skb_frag_zero(&skb_shinfo (skb)—>frags[il]);
1

58

}

void skb_zero_frags(struce sk_buff *skb, int from, int to) {
if (READ_ONCE(sysctl_skb_zeroing) && !skb_has_shared_frag(skb)) {
for (int i = from; i < to; i++) {
Skl),(rag,t *f‘rag = &skbfshinf‘o(skb)f>f‘rags[i];
__skb_frag_zero(frag);

59

INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTERAD 2024-06-13

EXAMENSARBETE Minimizing the exposure of sensitive data during network transfers in the Linux kernel

STUDENTER Joel Johansson, Anton Wiklund

HANDLEDARE Jonas Skeppstedt (LTH), Reine Johansson (Asperiq AB)

EXAMINATOR Flavius Gruian (LTH)

Minimera exponeringen av kanslig data
for natverksoverforingar i Linux karnan

POPULARVETENSKAPLIG SAMMANFATTNING Joel Johansson, Anton Wiklund

System som skickar kanslig data 6ver natverk behover vid nagot tillfalle ha den datan
i minnet. Detta arbete undersoker hur man mest effektivt kan minimera tiden den
datan ligger i minnet for operativsystemet Linux, for att mildra potentiella datalackor.

Tank dig att du ska skicka ett krypterat brev till
din kompis. Du skriver forst ner det du vill skicka
pa ett anteckningsblock. Sedan krypterar du med-
delandet och skriver ner den krypterade texten pa
ett brev som du skickar ivig. Om nagon lidser
ditt brev nér det skickas kommer den inte kunna
forsta meddelandet. Men om nagon bryter sig in i
ditt hus och laser ditt anteckningsblock, kommer
den kunna ldsa meddelandet eftersom det star i
klartext dar. Det har kan liknas vid en nétverk-
soverforing, dar man krypterar meddelandet som
ska skickas ut, men originalet finns kvar i datorns
minne. Om nagon hackar sig in i datorn och lyckas
ldsa minnet, kommer den personen kunna lésa den
icke-krypterade datan. Det vi undersoker i detta
arbete ar hur man kan nollstélla minnet dér datan
lagrats, dvs, sudda ut anteckningblocket nér man
har krypterat och skickat ivag brevet.

For att skicka ut eller ta emot paket pa nétver-
ket behover Linux kérnan vid négot tillfdlle spara
paketdata nagonstans i minnet. Det gor den
for att kunna behandla paketet i alla de olika
nétverksdelarna. Néar ett paket inte ldngre behovs,
dvs, det har skickats ivig eller levererats till en
applikation, sa frigérs minnet som anvédndes for
att lagra paketdatan. I vart examensarbete har

vi modifierat Linux kdrnan sa att ndr minnet for
paketdata frigors, skrivs det ocksa 6ver med nol-
lor, vi suddar ut minnet. P& det séittet kommer
paketdatan endast ligga i minnet nar kdrnan be-
hover det. I den normala implementationen kom-
mer datan ligga kvar i minnet till det minnet al-
lokeras av nagon annan och den skriver 6ver det.
Vara tester visar att den tiden datan ligger i min-
net kan variera mycket och att ibland kan data
ligga kvar i en obestamd tid.

Resultaten av var implementation visade
att nollstdllningen inte paverkade hur mycket
néatverkstraffik vi kunde skicka, hastigheten var
den samma oavsett hur vi nollstillde eller om vi
inte nollstéllde alls. Dock sdg vi att den anvinde
nagot mer av datorns resurser. Vi testade dven
att skriva direkt till minnet utan att skriva till
cachen for att undvika "cache pollution", dvs, vi
férhindrar att hdmta minne som endast anvinds
en gang till cachen. Det visade sig vara battre
nir systemet var mer belastat - lite tillgdngligt
minne och hég processor anvindning - men samre
nér det inte var belastat. Vi sag dven att paket-
datan som lag i minnet under nétverksoéverforingar
halverades och att inget var kvar efter.

	Introduction
	Problem definition
	Research questions
	Related work
	Contribution
	Distribution of work

	Background
	NICs and network drivers
	sk_buff (socket buffer)
	Zero-copy
	Linux kernel memory management
	sk_buff allocation
	sk_buff deallocation
	Non-temporal stores on x86

	Method
	Implementation
	Different ways of zeroing

	Setup
	Testing
	Functionality
	Zeroing

	Performance measurement

	Implementation
	Results
	Exposed data during transmission
	Exposed data after transmission
	Bandwidth
	Cache miss rate
	Networking CPU utilization

	Discussion
	What are the implications of zeroing on performance?
	How much less data is exposed?

	Conclusion
	Future work
	Testing for different drivers
	Testing while maximizing Networking CPU Utilization

	References
	Appendix struct sk_buff
	Appendix memset implementations
	Store string
	Original
	Non-temporal

	Appendix Zeroing functions

