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Abstract

Soil organic matter is a critical component of terrestrial ecosystems, with a significant
role in mitigating climate change. Understanding the formation and decomposition of
soil organic carbon is essential for accurately predicting the carbon cycle and developing
sustainable agricultural and silvicultural practices. In this context, the decomposition
dynamics of fungal dead mycelial residues, or necromass, have been the subject of growing
scientific interest. Fungal necromass can make up more than half of the stable SOC, but its
decomposition dynamics are not well understood, particularly regarding the physiological
state of the fungi at death. In this project, I aimed to test how the fungal physiological
state at death affects the subsequent decomposition of the necromass. I conducted an
experiment using Neurospora crassa, a fungus commonly found in soil, by burying mesh
bags filled with fungal necromass and sequentially collecting them over four months. In our
fungal necromass study, I confronted two distinct decomposition models, based on recent
research, and computed their decay parameters, while also examining alternatives from
plant litter studies. Additionally, I used Diffuse Reflectance Infrared Fourier Transform
Spectroscopy analysis to quantify the biochemical composition of the fungal necromass
initially and during decomposition, suggesting that fungal compounds were driving the
decomposition process. Our results showed that fungal biomass became more enriched
in cell-wall compounds relative to non-structural compounds as the physiological age at
death of Neurospora crassa progressed, but the oldest necromass age did not follow this
trend. This enrichment in structural compounds led to a decrease in fungal necromass decay
rates and a larger fraction of fungal necromass resistant to microbial decomposition. These
findings have important implications for understanding the role of fungi in SOC formation
and developing sustainable land-use practices.



Contents
1 Introduction 1

2 Background 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fungal necromass production and mesh bag decomposition methods . . . . . . 5
2.3 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Soil profile and fungal necromass . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Fungal necromass type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Decomposition data through modelling . . . . . . . . . . . . . . . . . . . . . . 7
2.8 Chemical composition analysis method . . . . . . . . . . . . . . . . . . . . . 7
2.9 Fungal species and biochemical compounds linked with decomposition dynamics 8
2.10 Decomposition results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 9
3.1 Fungal Necromass Production . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Fungal Necromass Decomposition in Soils . . . . . . . . . . . . . . . . . . . . 10
3.3 Fungal Decay Parameters Modeling . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Approach and Model Selection . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Model Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Parameters Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.4 Root Mean Square Error and Akaike Information Criterion . . . . . . . 13

3.4 Fungal Necromass Biochemical Composition . . . . . . . . . . . . . . . . . . 13
3.5 Multi-model Inference on Predictor Analysis Asymptote "A" and Decay Rate "ka" 14
3.6 Statistical Analysis on Initial Necromass Characteristics and Necromass Decay

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results 16
4.1 Necromass Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Decomposition Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Decomposition Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Asymptotic Model Parameters . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Initial Necromass Biochemical Composition . . . . . . . . . . . . . . . . . . . 19
4.2.1 Non Metric Multidimensional Scaling Analysis . . . . . . . . . . . . . 19
4.2.2 Functional Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Carbon to Nitrogen Ratio in Relation to Necromass age. . . . . . . . . 20
4.2.4 Predictor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Necromass Biochemical Changes During Decomposition . . . . . . . . . . . . 23

5 Discussion 26

6 Limitation and future directions 28

7 Conclusion 28



List of Figures
1 Overview of soil dynamics around fungal necromass . . . . . . . . . . . . . . 3
2 Comparison of selected studies on fungal necromass decomposition using buried

mesh bags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Biomass production for the necromass decomposition experiment . . . . . . . 9
4 Overview of the experiment and analysis workflow . . . . . . . . . . . . . . . 10
5 Percent of fungal necromass mass remaining depending on decomposition time

and on fungal necromass age at death. . . . . . . . . . . . . . . . . . . . . . . 16
6 Overview of different model performance fits between the single exponential

and asymptotic models, at different necromass ages and with different parameter
settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Asymptote (A) and decay rate (ka) parameters values from the asymptotic model,
plotted per necromass age (days) . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Non-Metric Multidimensional Scale analysis (NMDS) on initial necromass
biochemical composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Fourier-transform infrared spectroscopy (FTIR) biochemical composition signal
values over initial necromass ages, through different functional groups . . . . . 21

10 Carbon to Nitrogen ratio (C/N) depending on initial necromass age . . . . . . . 21
11 Predictors analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12 Graphs of best predictors versus asymptotic model parameters . . . . . . . . . 23
13 FTIR biochemical signal values depending on decomposition time (arranged per

necromass ages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



List of Tables
1 Summary of our main potential drivers of decomposition. . . . . . . . . . . . . 11
2 Model representation with their corresponding formula and references . . . . . 12
3 Parameter values selected for the model best fit approach on Rstudio . . . . . . 12
4 Wavelength peak annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Results values from model decomposition best fit analysis with single exponential

and asymptotic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Summary of the best model selection per necromass age . . . . . . . . . . . . 18
7 Non-metric Multidimensional Scaling (NMDS) on biochemical changes through

decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

List of Abbreviation

AICc Akaike Information Criterion
ANOVA Analysis of Variance

C Carbon
CO2 Carbon Dioxide

DRIFTS Diffuse Reflectance Infrared Fourier Transform Spectroscopy
FTIR Fourier Transform Infrared Spectroscopy

GC-MS Gas Chromatography-Mass Spectrometry
H Hydrogen

MAOM Mineral Associated Organic Matter
MuMIn Multi-Model Inference

N Nitrogen
NMDS Non-metric Multidimensional Scaling
NMR Nuclear Magnetic Resonance

O Oxygen
POM Particulate Organic Matter
KBr Potassium bromide

RMSE Root Mean Square Error
SOC Soil Organic Carbon



Persons involved
François Maillard (supervisor), Allison Gill (collaborator), Per Persson (collaborator) and Anders
Tunlid (co-supervisor).

1 Introduction
Terrestrial ecosystems store large quantities of organic carbon (C), primarily in soils through
organic matter (Schmidt et al., 2011; Buckeridge et al., 2022). In the current context of climate
change largely caused by anthropogenic CO2 emissions, maintaining and increasing the seques-
tration of C in soils is a key mitigation strategy linked with current climate change politics of
mitigation (Lal, 2004). As such, understanding the formation of stable soil organic carbon (SOC)
is critical not only for accurately predicting the C cycle in terrestrial ecosystems but also adapting
and modifying agricultural as well as silvicultural practices to increase SOC stocks (Lal, 2016).

Soil organic matter can be separated into fractions based on the physicochemical properties
of the organic molecules composing it. Mineral-associated organic matter (MAOM) consists
of small molecular weight molecules adsorbed onto soil minerals, including clay minerals as
well as iron and aluminum oxides (Figure 1). The mineral-adsorbed organic compounds are
thus protected from microbial decomposition and can persist in soils for centuries (Cotrufo
and Lavallee, 2022; Chen et al., 2024). The second fraction of organic matter in soils is called
particulate organic matter (POM). This fraction is composed of insoluble molecules resistant to
microbial decomposition, often long polymers that resist enzymatic attack, and persist in soils
due to their recalcitrance or lack of energetic interest for microbial decomposers. The percentage
of SOC stored either in MAOM or POM largely varies depending on soil types, land uses, and
soil horizons, but POM-C is often dominant in the organic horizons while MAOM-C is more
dominant in mineral horizons (Cotrufo and Lavallee, 2022; Chen et al., 2024).

Recent studies have challenged the belief that most SOC is primarily plant-derived, instead
showing that a substantial fraction of SOC derives from microbial residues, particularly from
mycelial dead residues or fungal necromass. For example, Liang et al. (2019) and Angst et al.
(2021) highlight that fungal necromass-C can make up more than half of the stable SOC. There
is also research which suggests that most of this fungal necromass-C was likely MAOM, with
soluble fungal molecules adsorbing on minerals (see overview in Figure 1). Angst et al. (2021,
2024) found that a large fraction of POM-C is of fungal origin. This is unexpected, as fungal
mycelium is not typically assumed to be composed of particular compounds highly resistant to
microbial degradation. Indeed, in contrast to plant materials composed of lignocellulose, the
fungal cell wall is mainly composed of mannoproteins, β -glucans, and chitin, which are more
prone to degradation than lignin (Brethauer et al., 2020; Vega et al., 2012).

To study the decomposition dynamics of fungal necromass, scientists incubate in-vitro grown
and killed mycelial biomass in mesh bags buried in soils, a method similar to that of studies
on plant litter. Aligning with soil biogeochemistry results, studies using fungal necromass in
mesh bags have found a substantial fraction of initial fungal necromass persisting, often ranging
between 5 to 25% of the initial fungal necromass incubated in soils, depending on the studies
of Brabcová et al. (2016); Beidler et al. (2020); Maillard et al. (2021); See et al. (2021). By
producing and decomposing fungal necromass of different species with various biochemical
compositions, scientists have found that this range of 5 to 25% of necromass mass remaining in
mesh bags is best explained by variation in fungi biochemical composition at death. Specifically,
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melanin, a pigment present in around 50% of soil fungi, likely contributes to the recalcitrance
of melanized fungal necromass due to its aromatic structure, making it difficult to break down
by soil microorganisms (Fernandez et al., 2019). This has been particularly well demonstrated
using Meliniomyces bicolor, a fungal species where melanization can be induced depending on
its growing culture, with melanized M. bicolor residues often presenting 20-30% of initial mass
remaining at the end of the decomposition, while non-melanized M. bicolor necromass harbored
only 8-12% of initial mass remaining at the end of the decomposition. Nevertheless, this also
points out that even non-melanized mycelium presents a substantial fraction of its necromass as
persistent POM post-death (Maillard et al., 2022, 2023b).

An often overlooked aspect of the fungal life cycle is the fact that fungal mycelium in soil
can die at any physiological stage of development or age. This can be caused by a variety of
biological and physical stressors, leading to a wide range of outcomes in mycelia physiological
states at the time of death such as drought events, viral lysis, surrounding bacteria or fungi
producing antibiotics (Sussman, 2013; Camenzind et al., 2023). Considering the death of
mycelial biomass at different physiological states or ages, it can be assumed that young fungal
biomass would possess more non-structural compounds of reserves like trehalose and glycogen,
as well as proteins, making it a higher quality necromass that could be easily degradable by
microbial decomposers (Thevelein, 1984; Fontana and Krisman, 1978). Fungal biomass of an
intermediate age or having peaked in biomass production after having used available C and
nutrients would start to be depleted in storage compounds and its necromass quality at death
would be intermediate, mostly made of some structural compounds structuring the fungal cell
wall like chitin and glucans (Vega et al., 2012). Finally, during a starvation phase, old fungal
biomass would be fully depleted in labile compounds and in structural compounds that can be
partially recycled, thus being of very low quality for microbial decomposers in soils. Collectively,
this indicates that within a single fungal species, fungal biomass at death could likely vary
drastically in biochemical composition and thus presenting contrasting decay dynamics in soils.

In this project, I aimed to test how the fungal physiological state at death affected the subse-
quent decomposition of the mycelial residues. To do so, I worked with a specific species of fungi,
Neurospora crassa, a commonly found soil saprotrophic fungi that is not prone to melanization
(Kuo et al., 2014; Turner et al., 2001). Similar to recent studies on necromass decomposition, I
buried mesh bags filled with fungal necromass in soil and sequentially harvested them over time
(See et al., 2021; Maillard et al., 2023b; Beidler et al., 2020)). I selected decomposition models
from recent decay studies and calculated their corresponding decay parameters for our fungal
necromass decomposition experiment (Gill et al., 2021; See et al., 2021). Additionally, to quan-
tify the biochemical composition of the fungal necromass initially, and during decomposition,
I used Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis. This
allowed us to identify fungal compounds that were driving the decomposition process.

I hypothesized the following: (a) fungal biomass would gradually become more enriched in
cell-wall compounds relative to non-structural compounds as the age of the fungus progressed;
(b) linked with this previous assumption, I anticipated fungal necromass decay rates to decrease
as fungal necromass age at death increased; and (c) I also hypothesized a larger fraction of fungal
necromass would be resistant toward microbial decomposition and thus persist in soils as fungal
necromass age at death increased.
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Figure 1: Overview of soil dynamics with a focus on carbon (C) fluxes. Colors differentiate between
first and second decomposition pathways, arrows specify the decomposition-driven course of carbon flux.
Colors surrounding boxes represent targeted methods used.
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2 Background

Figure 2: Comparison of selected studies on fungal necromass decomposition using buried mesh bags.
"X" indicates a lack of information in a specific column.
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2.1 Overview
Soil organic matter (SOM) is the largest terrestrial carbon (C) reservoir, storing more C than both
vegetation and the atmosphere combined. Soil organic C (SOC) is the metric that directly relates
to the C fluxes entering and leaving the soil, thereby playing a significant role in the global
nutrient cycle (Liang et al., 2019). Fungal necromass, which consists of dead fungal residues,
makes up a substantial fraction of soil organic C (ranging from 10 to 50%) (Liang et al., 2019)).
Its degradation dynamics are directly linked to soil organic carbon (SOC) and soil organic matter
(SOM). Studies have demonstrated that fungal necromass carbon (C) can account for more than
half of the stable soil organic carbon (SOC). For example, Liang et al. (2019) and Angst et al.
(2021) discovered that a significant fraction of SOC is composed of fungal necromass. Therefore,
understanding its decomposition and stabilization in soils is crucial. This is surprising because
fungal mycelium is not generally considered to contain compounds that are highly resistant to
microbial degradation. Unlike plant materials composed of lignocellulose, fungal cell walls are
mainly composed of mannoproteins, β -glucans, and chitin, which are more prone to degradation
than lignin (Brethauer et al., 2020; Vega et al., 2012).

In summary, fungal necromass significantly contributes to stable SOC, despite its compo-
nents being more susceptible to degradation compared to plant materials. This highlights the
importance of fungal necromass in soil carbon dynamics and overall ecosystem functioning.

2.2 Fungal necromass production and mesh bag decomposition methods
To study the decomposition processes of fungal necromass, scientists often use nylon or polyester
mesh bags with varying pore sizes filled with fungal residues. This tool standardizes the
experimental setup and allows for the analysis of the remaining mass at any desired time point
(Beidler et al., 2020). The fungal material placed in the mesh bags can be of various origins
(i.e., different fungal species). Most studies use mycelium, which can easily be cultivated in the
laboratory and then killed to create fungal necromass. Others, like See et al. (2021), might take
samples directly from living organisms (sporocarps) in the field and then prepare the mesh bags
similarly in the laboratory.

2.3 Study area
In terms of geographical representation, the focus is primarily on the northern hemisphere,
with most studies conducted in temperate climates (Fernandez and Koide, 2014; Fernandez
and Kennedy, 2018; Ryan et al., 2020; Maillard et al., 2023a; Beidler et al., 2020), followed
by boreal climates (Certano et al., 2018; Fernandez et al., 2019; Maillard et al., 2021). Eight
studies focus on forest biomes, two of them also addressing peatlands (Fernandez et al., 2019)
and grasslands (Ryan et al., 2020). This provides insights and conclusions on fungal necromass
decomposition primarily in temperate and boreal forests. This pattern of forest ecosystems
being mostly studied for fungal necromass decomposition does not seem to be dedicated by
any ecological relevance as fungi represent an abundant microbial group in most terrestrial
ecosystems, but rather reflects the fact that this research field is relatively new and dominated
by a few research groups that primarily study forest ecosystems. I anticipate that in the future,
more fungal necromass decomposition studies using mesh bags will be conducted in tropical and
boreal biomes.
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Regarding the representation of studies, three of them examined necromass decomposition
in an in vitro environment, which limits observations related to soil origin (See et al., 2021;
Pérez-Pazos et al., 2024; Mancinelli et al., 2023). However, it is important to note these studies
were not focused on comparing biome or soil types together but rather focused on fungal residue
chemical differences (See et al., 2021; Mancinelli et al., 2023); or on the effect of different fungal
necromass decomposers (Pérez-Pazos et al., 2024).

2.4 Soil profile and fungal necromass
The studies by Fernandez and Koide (2014); Fernandez and Kennedy (2018); Fernandez et al.
(2019); Certano et al. (2018); Maillard et al. (2023a) all buried their fungal decomposition
mesh-bags on the O horizon. In contrast, See et al. (2021) and Pérez-Pazos et al. (2024) focused
on the A horizon. The rest of the studies chose to use a depth at the interface of O and A horizon.
These depth differences would most likely impact the resulting mass remaining fungal residues
in buried bags. While the incubation horizon for fungal necromass is not often justified in the
aforementioned studies; O horizon and topsoil layers have been chosen as fungal biomass is high
in these soil layers, and thus the production of natural “necromass” is also high. Now regarding
the relative contribution of plant and fungal C in soil organic C stocks, deep soil layers rather
than topsoil would like be more dominated by fungal necromass-C than plant necromass-C.
Consequently, it would be interesting to study the decomposition of fungal necromass in deep
soil layers to inform global C cycle.

2.5 Fungal necromass type
In terrestrial ecosystems, fungi can occur both as mycelium in soils as well as fruit bodies (their
reproductive structures). Thus, both fungal mycelium and fruit bodies represent sources of
fungal necromass. The studies by Fernandez and Koide (2014); Fernandez and Kennedy (2018);
Fernandez et al. (2019), Certano et al. (2018), Maillard et al. (2021, 2023a), Ryan et al. (2020),
and Beidler et al. (2020) all focus on mycelium. However, some studies also examine other types
of fungal residue, such as rhizomorphs (Certano et al., 2018). Only See et al. (2021) explored the
decomposition of fruiting bodies. Yet, it is very likely that both fungal necromass types, either
mycelial or fruit bodies, experience different decay pathways. For example, mycelium is often
microscopic and often sturdy limiting it is grazing by fauna, while fruit bodies of a large set of
fungi is edible for wildlife and rapidly ingested by fauna.

2.6 Experimental design
In terms of time series, some studies have only one or two time points, while others have multiple
time points over the course of the incubation period. For example, the study by Ryan et al. (2020)
has 9 time points over 90 days, while the study by Fernandez and Kennedy (2018) has only 3
time points over 3 months. The frequency and duration of sampling can affect the results of
decomposition studies. Shorter incubation times and fewer time points may not capture the full
extent of decomposition, while longer incubation times and more frequent sampling can provide
more detailed information on decomposition dynamics. However, only 3 studies Fernandez et al.
(2019); Maillard et al. (2021, 2023a) exceed the amount of 3 months of incubation time, and
they have a maximum of 3 time series. On the other hand, Ryan et al. (2020) has only a 3-month

6



incubation time, but they have the highest capacity to grasp the full extent of decomposition with
9 time series.

2.7 Decomposition data through modelling
The accuracy of decomposition studies depends on having a sufficient number of time series
with a long enough decomposition period. The variability in these parameters among the studies
may explain the differences in the best-fit models chosen. Among the studies that conducted a
best-fit analysis, three found the asymptotic decay model to be the best choice (Fernandez et al.,
2019; Maillard et al., 2021; See et al., 2021), while Certano et al. (2018) and Beidler et al. (2020)
found the double asymptotic model to be more appropriate. Ryan et al. (2020) opted for a more
complex representation using a Multi-G decay model. It is worth noting that both the double and
asymptotic models represent decomposition from a "two-pool" perspective and can be used on
smaller datasets while still providing meaningful results. In contrast, the Multi-G decay model
used by Ryan et al. (2020) is more complex and requires a larger dataset to be effective, which is
reflected in the fact that this study had the most time series.

2.8 Chemical composition analysis method
Studies that conducted chemical composition analysis had different approaches for selecting
which time series of necromass to quantify chemically. Five of them performed chemical
composition analysis before the decomposition experiment and throughout it to assess chemical
changes and link them with decomposition results (Fernandez and Koide, 2014; Certano et al.,
2018; Fernandez et al., 2019; Ryan et al., 2020; See et al., 2021). In contrast, the rest of the
studies chose to only characterize the necromass prior to the decomposition process, also known
as initial necromass (Fernandez and Kennedy, 2018; Beidler et al., 2020; Pérez-Pazos et al.,
2024; Mancinelli et al., 2023). Scientists want to characterize the chemical compounds of fungal
necromass to then link them with decomposition decay trajectories. Typically, some compounds
present in the fungal cell wall, like melanin, prove to be resilient to microbial degradation
in the soil, hence resulting in slower decomposition. Alternatively, intracellular compounds
like nitrogen are considered higher-quality substrates for microbial degradation, hence leading
to faster decomposition rates in the soil (Ryan et al., 2020). The studies also differed in
the techniques selected for chemical characterization. However, they were homogeneous in
using elemental composition (C/N), except for Mancinelli et al. (2023), which mainly focused
on melanin and chitin content. Elemental composition (C/N) was usually coupled with the
biochemical composition FTIR technique (Certano et al., 2018; Fernandez et al., 2019; Ryan
et al., 2020; See et al., 2021; Pérez-Pazos et al., 2024). Additionally, other approaches were used
to analyze chemical composition, such as pyGCMS (Ryan et al., 2020), GC-MS (Beidler et al.,
2020), and chitin content (Mancinelli et al., 2023). Overall, the techniques used likely depend
on the research questions and the specific characteristics that the necromass studied might have
(such as melanin).
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2.9 Fungal species and biochemical compounds linked with decomposition
dynamics

Numerous studies have compared the decomposition dynamics of different fungal species,
highlighting the significance of biochemical composition and decay trajectories. Fernandez and
Koide (2014) demonstrated that fungal tissues with high melanin and low nitrogen content decay
more slowly than those with low melanin and high nitrogen content, indicating that necromass

quality influences decomposition rates. This finding was corroborated by Fernandez et al.
(2019), who showed that initial nitrogen content predicted early decay rates, while melanin
content determined mass remaining after two years, using an asymptotic non-linear decay model.
Similarly, Ryan et al. (2020) found that both melanin and nitrogen content were crucial in
controlling decomposition rates, with high nitrogen content accelerating decomposition when
melanin content was insufficient. Several studies have focused on a single species to eliminate
confounding factors introduced by multiple species. Certano et al. (2018) examined Armillaria
mellea, employing a double exponential decay model, and found that initial nitrogen concentra-
tion positively correlated with mass loss. Fernandez and Kennedy (2018) used Meliniomyces
bicolor, a species with variable melanin content, to confirm the independent effects of melanin
and nitrogen on subsequent decomposition. Other research has explored a broader range of
species. See et al. (2021) investigated a pool of 23 species, proposing a two-pool model of
necromass decomposition with distinct biochemical fractions. Mancinelli et al. (2023) studied
six ectomycorrhizal fungal species and found that, despite similar overall mass loss during
decomposition, each species affected soil organic matter differently due to unique patterns of
cell-wall compound loss. These studies collectively underscore the importance of biochemical
composition, particularly melanin and nitrogen content, in governing fungal necromass decompo-
sition. They also highlight the variability in decay trajectories, with different models employed
to describe these processes. The findings provide valuable insights for incorporating fungal
necromass into biogeochemical models and understanding nutrient cycling in soil ecosystems.

2.10 Decomposition results
For end point mass remaining (A), the values range from as low as 7% to as high as 75% (See
et al., 2021; Mancinelli et al., 2023). Fernandez and Koide (2014) reported a relatively high-end
point mass remaining of 50-60%, while Maillard et al. (2021) reported a much lower value of
8-13%. The other studies fall within this range, with values ranging from 10-25% to 25-60%.

2.11 Summary
Soil organic matter (SOM) is the largest terrestrial carbon reservoir, and fungal necromass
plays a crucial role in carbon sequestration, despite its components being more susceptible
to degradation compared to plant materials. Studies using mesh bags to investigate fungal
necromass decomposition have primarily focused on temperate and boreal climates, particularly
in forest biomes. These studies highlight the importance of biochemical composition, especially
melanin and nitrogen content, in governing decomposition rates and trajectories. Different
experimental designs, including variations in incubation depth, time series, and chemical analysis
methods, have been employed, leading to the use of various decay models. Future research
should expand to tropical and boreal biomes, explore the decomposition dynamics of fungal
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necromass in deep soil layers, and encompass longer decomposition times to better describe the
fungal decay dynamic.

3 Methods

3.1 Fungal Necromass Production
To investigate how the fungal physiological state at death affect the subsequent decomposition of
the fungal necromass, the fungal species selected was Neurospora crassa. I chose this N. crassa
primarily due to its fast growth rate in vitro, allowing for efficient production of biomass. N.
crassa was also a pertinent choice from an ecological perspective, since it is found in a broad
range of ecosystems such as tropical, subtropical, and boreal (Kuo et al., 2014; Turner et al.,
2001). Additionally, N. crassa is also part of one of the soil’s most abundant fungal classes, the
Sordariomycetes from the Ascomycota division (Blaschke et al., 2023). These geographical and
phylogenetical characteristics allowed the use of N. crassa as a representative species to study
the decomposition of mycelial residues in soils.

N. crassa was cultivated in 250 ml flasks filled with 150 ml of liquid potato-dextrose medium
at half-strength, a typical medium for fungal growth. Flasks were agitated at 100 rpm on an
orbital shaker at 20°C, and finally, the biomass was harvested and killed at seven successive
incubations times (following being 2, 4, 8, 15, 29, 46 and 67 days, as shown in Figure 3). By
doing so, I obtained seven different physiological state at death. Figure 3 summarizes all seven
time points collected (days) and mentions their weighted biomass (g/L). The development in
biomass of N. crassa displayed three distinct tendencies. First, steady growth was noticeable
from day 2 until day 8, with a relatively young biomass going from 0.2g/L to 2.6g/L. Then,
from the intermediate range of 15 to 29 days, some mass was definitively lost, going from 3.4g/L
to 2g/L which represented a 41% mass loss. From 29 to 67 days, there was still a mass loss, but
it appeared to be more stabilized, with around 15% mass loss over a longer time range. These
three distinct trends could already be preliminary linked to our hypothesis suggestion around
biochemical composition at various ages.

Figure 3: Biomass production for the necromass decomposition experiment. Numbers in dark red
represented the specific number of growth days before collection.
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The collected fungal biomass was rinsed with distilled water on a sieve in order to remove
any trace of the growth medium. It was then homogenized and frozen at -80°C, which ensured
the death of the mycelium. The resulting fungal biomass was then freeze-dried. The final product
of this process was considered as dead mycelial residues, also called fungal necromass. I then
prepared mesh-bags, or "mycobags", with a dimension of 5 x 10 cm, filled with 50 mg of fungal
necromass before being sealed. The bags had a 43 µm mesh size that allowed the exclusion of
tree roots inside and excludes soil particle penetration. This allowed reliable quantification of
fungal necromass degradation rates (Beidler et al., 2020). The current necromass production
section, the following experiments and analysis sections were summarized in Figure 4.

Figure 4: Overview of the experiment and analysis workflow. "Initial" and "decomposition" were written
as bold to emphasize the different biochemical state between these two and to what analysis they were
inherently linked.

3.2 Fungal Necromass Decomposition in Soils
I buried the mycobags in the topsoil of a 60-year-old Spruce (Picea abies) forest at Lund
University’s Stensoffa field station (55.6951° N, 13.4472° E). I selected a Spruce plantation as
these forests hold significant economic interest in Sweden, and a deeper understanding of their
soil C and nutrient cycles linked to the decomposition of fungal necromass could greatly impact
wood-production potential while maintaining soil C sequestration potential (Jandl et al., 2007).
175 mesh bags were buried in the topsoil of the selected study area. Each mycobag contained
50 mg dry mass of a specific necromass age (2 , 4, 8, 15, 29, 46 and 67 days, as described in
2.1 Fungal Necromass Production). Those 175 mesh bags were divided into 5 randomly chosen
plots within the forest site, with 35 mesh bags per plot. Each plot carried the same experiment
design, which means that they were replicates. Additionally, each plot held 5 mycobags per
necromass age (5 mycobags x 7 necromass age). The mycobags were then collected at different
decompositions stages during summer and fall of 2023 (at days 10, 20, 40, 76 and 117, as shown
in Figure 1). This translated into 5 different times of decomposition for each necromass age.
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In other words, once the experiment was established, mycobags were collected on the days of
decomposition presented in Table 1. As for equipment, a small shovel and field flags were used
to bury and later localize the different samples and plots prepared. Once collected, the mycobags
were brought back to the lab, opened, and the decomposed necromass was carefully removed
to avoid contamination of the fungal dead residues with surrounding soil particles. It was then
transferred into 1.5 ml tubes, frozen at -80°C, and freeze-dried for subsequent analysis. The
experiment started on July 7th, 2023 and ended on November 1st, 2023.

Table 1: Summary of our main potential drivers of decomposition.

Drivers of decomposition Values

Necromass age (day) [2, 4, 8, 15, 29, 46, 67]
Decomposition times (day) [10, 20, 40, 76, 117]

Regarding our data analysis based on the collection of samples in the field, certain abnormal
weather conditions were worth mentioning. Our field campaign started on July 7th 2023 and
ended on November 1st 2023, which coincided with a dry spell that took place mainly in
southern Sweden, where our own experiment took place. Additionally, our experimental sites
were subjected to disturbance by local wildlife (birds, mammals). I found some of our mycobags
detached from their initial location and left nearby on the soil surface. This, combined with
meteorological disturbance, could explain some suprising mass remaining values sampled (as
shown in Figure 5, in the result section), increasing values in the latter stage of decomposition,
despite an overall decreasing mass loss trend.

3.3 Fungal Decay Parameters Modeling
3.3.1 Approach and Model Selection

Once the entire field campaign was completed, the data from the weighted mycobags provided
us with a dataset to fit models on (as shown in the overview analysis in Figure 4). Our field
experiment dataset presented rates of decomposition between time point 0 and time point 117
days for each necromass age (as shown in Figure 5). For this part of the analysis, I chose to
work with two different models, using Gill et al. (2021) decomposition study on plant litter as a
template. The following models were described in the Table 2. Fungal residue decay being a new
field of research, I chose to transpose analysis methods from the more established study area of
plant litter decomposition (Gill et al., 2021), into our fungal necromass decomposition. I therefore
used the same decay models, adjusting model parameters to our necromass decomposition setup.
Additionally, our model selection was based on an index of accuracy (Root Mean Square Error,
RMSE, Chai and Draxler,2014) with a secondary approach to complexity (Akaike Information
Criterion, AICc,Burnham and Anderson, 2002). Models could then be linked with ecological
outcomes, for example single exponential model represented a decomposition pattern with a
steady decay rate, or "k". This would mean that the entire pool of compounds present in the
necromass would decompose in the same manner, as in, at the same speed, and entirely. Further, I
increased mathematical complexity with an asymptotic model, which led us to explore scenarios
with multiple decay rates. Concerning the asymptotic model, two decomposition pools are
effective, one representing a pool with a faster decomposition rate and a second representing
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a slower decomposition rate. This is interesting since I wanted to have an overview on which
compounds, or in a broader scale, which pools of compounds might be linked with the eventual
recalcitrance of our fungal necromass.

Table 2: Model representation with their corresponding formula and references.

Model Formula References

Single exponential X = e−ks·t (Olson, 1963)
Asymptotic X = A+(1−A) · e−ka·t (Hobbie, 2008)

3.3.2 Model Formulas

The models differed in complexity, and their formulas addressed the decomposition rates of the
data in different manners. For example, the single exponential model used a single decomposition
constant (ks) to describe the necromass mass remaining (X), and time of decomposition (t). The
asymptotic model formula, however, brought a more complex approach of two decay rates. The
first one represented a "fast pool" of decay that decomposed at a rate of ka. The second rate stood
for a "slow pool" with a near-zero decay value, represented by a plateau in the decomposition
process, and labelled as asymptote A (Gill et al., 2021). By linking this two-pool perspective
to our biochemical composition introduction hypothesis, I could assess the hypothesis that the
faster pool was composed mainly of labile compounds, while the more recalcitrant one was
harder to degrade.

3.3.3 Parameters Selection

The best fit approach was carried out with RStudio Team (2024), using the programming
script that Gill et al. (2021) used in their plant litter experiment as a template. The modeling
collaboration with the main author began at this point, particularly to receive feedback on how to
adapt Gill et al. (2021) model into our necromass decomposition experiment. Parameters were
selected through an analysis on Geogebra (2024) where formulas were plotted and linked with
our mass loss data analysis (as shown in Figure 5). Five values were selected per model (as shown
in Table 3), and these parameter value range were chosen to reflect the lower and higher extremes
of the decay rates I were analyzing. The aim was to allow a range of parameters that could
explain the data while still providing enough variability in the analysis to reach convergence.

Table 3: Parameter values selected for the model best fit approach on RStudio Team (2024)

Model Parameter Value 1 Value 2 Value 3 Value 4 Value 5

Single exponential ks (day−1) 0.1 0.5 1 1.5 2.5
Asymptotic A (% remaining fraction) 0.8 0.631 0.463 0.294 0.125

ka (day−1) 0.08 0.089 0.0978 0.106 0.115
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3.3.4 Root Mean Square Error and Akaike Information Criterion

From the analysis through the programming code script in RStudio Team (2024), I gathered the
results of the parameter best fit and their corresponding RMSE as well as AICc. Both were useful
in considering how well of a fit our selected models were. AICc for example, was useful for
measuring the complexity of a studied model (Burnham and Anderson, 2002). When looking at
accuracy, or model performance, RMSE was a better selection criteria, as it informed differences
between the decomposition field experiment values and the values calculated from the model
analysis (Hodson, 2022).

3.4 Fungal Necromass Biochemical Composition
To determine the biochemical composition of both initial (as shown in fungal necromass produc-
tion section) and decomposed fungal necromass, I used Diffuse Reflectance Fourier Transform
Spectroscopy (DRIFTS, as shown in the overview analysis in Figure 4). DRIFTS allowed for
relatively rapid analysis of the biochemical composition of organic samples by interpreting
infrared beam absorption profiles in the mid-infrared region, which correspond to molecular
functional groups (C-C, C-O, N-H bonds, etc.). This analysis linked observed wavelength peaks
with regions of the selected spectrum previously characterized in the literature (as shown in
Table 4, (Maillard et al., 2023b; Cocozza et al., 2003; Niemeyer et al., 1992)).

Moreover, DRIFTS enabled the chemical characterization of samples of only a few mil-
ligrams following dilution in Potassium bromide (KBr). This was crucial given the often-rapid
decomposition of fungal necromass in soils and the relatively low fungal necromass mass remain-
ing during decomposition, which would not have been easily done with techniques requiring a
larger sample mass, such as Nuclear Magnetic Resonance (NMR) spectroscopy and pyrolysis
Gas Chromatography-Mass Spectrometry (GC-MS).

Further, each necromass sample was mixed with KBr at a 1% mass/mass ratio (meaning that
for each sample, I used 3mg of necromass for 297 mg of KBr) and analyzed by DRIFTS on a
Fourier Transform Infrared Spectroscopy (FTIR) spectrometer (Bruker Vertex 80 v, Ettlingen,
Germany) in a temperature-controlled room at 21 °C. 184 scans were averaged across the 3800 -
400 cm−1 range at a resolution of 4 cm−1. Background subtraction was performed using a pure
KBr spectrum (300mg KBr), and a baseline correction was used to eliminate baseline distortions.
Both background subtraction and baseline correction were carried out in OPUS software (Bruker
Corporation, 2023), and peak heights were normalized by calculating z-scores on Microsoft
Excel (Microsoft Corporation, 2023). Wavelength peaks were identified based on the literature
on the biochemical composition of fungal biomass and necromass and separated into functional
groups (aliphatics, polysaccharides, amides, and aromatic compounds, as shown in Table 4, see
end of 2. Method) (Certano et al., 2018; Maillard et al., 2023b; Ryan et al., 2020; See et al., 2021).
Peaks that lacked a clear identification based on literature, or were ambiguous, were labeled as
"Unclassified" but were still included in the statistical analysis alongside the identified peaks.
Given that FTIR only allowed relative abundance quantification, functional groups intensities
were interpreted as concentrations. Total carbon (C) and nitrogen (N) contents were quantified
from 3 mg of the fungal necromass. These analyses were conducted by the SilvaTech platform
(INRAE, France) using a CHN analyzer (Carlo Erba NA1500, Italy). I then calculated the C/N
ratio of the fungal necromass prior to incubation in soil. C/N has often been used as an indicator
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for plant residue quality, with high C/N ratio indicating low residue quality and thus slower
decay rates, and higher remaining mass fraction (Ostrowska and Porębska, 2015).

3.5 Multi-model Inference on Predictor Analysis Asymptote "A" and
Decay Rate "ka"

Multi-model inference analysis was conducted from the RStudio Team (2024) package "MuMIn"
to determine potential predictors of fungal necromass decay dynamics. This was conducted by
comparing fungal necromass initial parameters (fungal biomass age at death, C/N ratio, FTIR
functional groups) with decay model parameters (decay rate ka and asymptote A). By using
model selection and averaging, I obtained Fisher statistics p-values and an attributed weight
value per variable.

3.6 Statistical Analysis on Initial Necromass Characteristics and Necro-
mass Decay Models

An analysis of variance (One way ANOVA, Kim (2017)) was conducted on the asymptotic model
parameters (ka, A), as well as the initial biochemical composition (FTIR), followed by a post hoc
Tukey’s test. The reason of these statistic choices was to determine if there was any significant
difference between the means. After conducting the ANOVA, the p-values were significant,
allowing the follow up of the analysis with establishing which groups differed from each other
using Tukey’s honestly significance difference statistical test (Abdi and Williams, 2010).
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Table 4: Wavelength peak annotation with compounds assessment from the literature (Maillard et al.,
2023b; Cocozza et al., 2003; Niemeyer et al., 1992). The "Unclassified" mention represented peaks that
could not be assigned through literature, either because of a lack of information, or ambiguity.

Wavelengths Functional group Potential compound

2926.93 C−H Aliphatic
2857.91 C−H Aliphatic
1660.29 N −H Amide
1537.28 C = O Amide
1453.46 C−H Unclassified
1416.98 C =C Aromatic
1393.67 C−H Unclassified
1371.98 C−H Unclassified
1315.09 C−H Unclassified
1247.86 C =C Aromatic
1202.46 C−O Unclassified
1148.99 C−O Unclassified
1075.81 C−O Polysaccharide
1039.31 C−O Polysaccharide
927.69 =C−H Unclassified
894.67 C−O Unclassified
853.20 C−H Aromatic
853.20 Unclassified Unclassified
822.03 Unclassified Unclassified
802.58 Unclassified Unclassified
759.43 Unclassified Unclassified
704.71 C−H Aromatic
632.39 Unclassified Unclassified
608.69 Unclassified Unclassified
571.91 Unclassified Unclassified
532.10 Unclassified Unclassified
470.39 Unclassified Unclassified
436.64 Unclassified Unclassified
427.82 Unclassified Unclassified
409.23 Unclassified Unclassified
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4 Results

4.1 Necromass Decomposition
4.1.1 Decomposition Data

To analyze the effect of fungal necromass age, or physiological state at death, on the decomposi-
tion dynamics of N. crassa necromass decomposed in forest soils, I plotted the percentage of
necromass mass remaining (dry mass relative to initial) depending on the necromass ages and
decomposition times in soils (as described in figure 5).

Regardless of necromass ages, I observed a first phase of rapid fungal necromass mass loss
within the first 20 days, followed by a plateau phase. However, these general trends were largely
influenced by the ages of necromass, with young fungal necromass at death reaching a plateau
phase in terms of mass loss sooner than older residues. For example, necromass ages 2 and 4
plateaued in mass remaining fraction after 40 days of decomposition, while necromass ages 8
and 15 plateaued after 65 days of decomposition instead. Older necromass ages of 29, 46 and
67 did not clearly plateau by the last decomposition measurement. Additionally, I noticed a
strong effect of necromass age on the quantity of mass remaining at the end of the decomposition,
with necromass ages 2 and 4 around 8% mass remaining fraction at the end of the experiment.
Compared to that, necromass ages 46 to 67 ranged around 50 % mass remaining fraction. Overall,
our results showed that fungal necromass age at death ("necromass age"), was a key driver in the
decomposition dynamics of the mycelial residues in soils.

Figure 5: Percent of fungal necromass mass remaining depending on decomposition time (in days) and on
fungal necromass age at death (in days, n=5 per decomposition time per necromass type).
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4.1.2 Decomposition Models

To analyse what was the best mathematical fit, or what formulas (mathematical models) captured
the complexity of the fungal necromass decomposition rates measured and illustrated in Figure
5, I ran a model comparison of asymptotic versus single exponential based on our selection of
parameters, looked at RMSE as our main selection filter and considered AICc when two models
were on a tie (see Table 5). Concerning the entire analysis, the simple exponential model was
always superseded by the asymptotic model, the latter being then the best candidate (as shown
in Table 6). However, despite our main selection criteria (RMSE) consistently favouring the
asymptotic model, some AICc values also favoured the single exponential model in necromass
ages 2 and 67, indicating momentarily less complexity for the single model. This observation
on AICc values could be linked to RMSE values between models fits being extremely close for
necromass ages 2 and 67 (N2 δ : 0.012 and N67 δ : 0.004). Additionally, these close δ in RMSE
could be observed in Figure 6, in (a) and (b), where the asymptotic and single exponential model
representation were plotted very close to each other, hence the low resulting δ in RMSE. (c)
displayed a situation where the single exponential model was imprecise fitting data points of the
decomposition field data, hence the higher value (less precise) in the δ of RMSE for necromass
age 67, which can be applied for necromass age 2 as well. Overall, despite a few situations
where it was interesting to note that the simple exponential model approached the accuracy of
the asymptotic model, the asymptotic model remained the best-fit model.

Figure 6: Effect of different modeling best fit on specific necromass decomposition. (a) concerned
necromass age 2 using the parameter set 1 and (b) concerned necromass age 67 using the parameter set
2, these two situation represented a scenario where the fit between model was very close. (c) concerned
necromass age 15 using the parameter set 1, which instead, represented a situation where the best fit was
more evident.
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Table 5: Results values from model decomposition best fit analysis with single exponential and asymptotic
models. Bold values referred to the lowest value of RMSE and AICc, according to the selected necromass
age.

Single exponential Asymptotic model

Necromass age ks AICc RMSE ka A AICc RMSE

2 0.134 -12.915 0.064 26.051 0.120 -10.405 0.052
4 0.138 -11.749 0.071 26.448 0.122 -12.411 0.044
8 0.048 -2.962 0.147 0.110 0.241 -23.978 0.017

15 0.033 -1.205 0.170 0.115 0.304 -17.451 0.029
29 0.009 -5.449 0.120 0.05 0.512 -11.198 0.049
46 0.006 -9.988 0.082 0.044 0.614 -17.804 0.028
67 0.006 -17.860 0.043 0.013 0.362 -13.980 0.039

Table 6: Summary of the best model selection per necromass age. This selection is based on RMSE
filtering.

Necromass age Best model fit

2 Asymptotic
4 Asymptotic
8 Asymptotic

15 Asymptotic
29 Asymptotic
46 Asymptotic
67 Asymptotic

4.1.3 Asymptotic Model Parameters

Once the asymptotic model was selected, I plotted its final parameter values (A,ka) for each
necromass age, this was done to determine the physiological state of N. crassa necromass at
death driver (as shown in Figure 7). Both parameters seemed to be affected by the age of the
necromass. A, the remaining fungal necromass fraction with a decomposing rate of 0, increased
from necromass age 2 until 46, and then decreased for necromass age 67. ka or the decomposition
rate, displayed a high decay rate value for necromass age 2, and then gradually slowed down its
rate of decomposition through the other necromass ages. This meant that the decomposition rate,
especially for "younger" necromass age (from age 2 to 8), was relatively fast, until it decreased
to slower rates of decomposition for "older" necromass age (past age 15). However, this pattern
did not translate into a linear relationship for A, the remaining mass fraction, which peaked at
necromass age 46 and decreased for necromass age 67. Additionally, it was then surprising
that necromass age 67 had the slowest decomposition rate but a lower A than 46 or 29. Overall,
these results closely followed the decomposition data of the field experiment seen in Figure 5,
which brought further evidence that the asymptotic model is a suitable model to describe our
decomposition experiment.
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Figure 7: Asymptote (A) and decay rate (ka) parameters values from the asymptotic model, plotted per
necromass age (days). Letters a, b, c, and further combination represented results from the post hoc
Tukey’s test. Preliminary to the post hoc Tukey’s test, a one-way ANOVA test was done on A and ka,
separately. The p-values were respectively p≤0.01 and p≤0.001.

4.2 Initial Necromass Biochemical Composition
4.2.1 Non Metric Multidimensional Scaling Analysis

I analyzed biochemical composition of the N. crassa necromass before decomposition in soils
based on FTIR analysing using Non-metric Multidimensional Scaling (NMDS) followed by
permutational multivariate analysis of variance (PERMANOVA) analysis using the intensity of
peaks listed in Table 4. I plotted the data of our initial necromass chemical composition data
in relation to two default dimensional axis (NMDS1 and NMDS2, see Figure 8), each color
representing a specific necromass age. For this analysis all the wavelengths peaks displayed in
Figure 4 were used. Considering that NMDS1 was the index that captured the most variation in
the data, I observed that the spread of the data followed the chronological order in necromass
ages, with a gradual difference in chemical composition following the growth patterns seen in
Figure 3.

Furthermore, I observed clustering in between specific necromass ages groups. From the
spatial analysis I could easily group necromass age 2 and 4, 8 and 15, and finally 29, 46, 67.
This clustering could be linked to data in Figure 5, which displayed similar clusters based on the
percentage of mass remaining during decomposition, at day 117. The NMDS analysis exposed
that 86% of the variance of the data was explained through the necromass age treatment (p≤0.05).

On the other hand, necromass age 8 in this NMDS analysis fell between the clustering of 8
and the “older” necromass ages group (29, 46, 67). I observed a point at coordinates [0.45,−0.52]
that had further spread and could be labelled as an outlier (as observed in Figure 8). I conducted
a supplementary chemical composition analysis (FTIR) and found a similar result. Overall, the
NMDS and PERMANOVA analysis showed a strong variation (86%, p≤0.05) in fungal biomass
biochemical composition depending on its physiological state at death, or necromass age.
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Figure 8: The initial necromass biochemical composition data obtained from the FTIR peak intensity (as
shown in Table 4) was analyzed using Non-metric Multidimensional Scaling (NMDS) with necromass age
treatment. 86% of the variance can be explained through necromass age treatment.

4.2.2 Functional Groups

Following multivariate analysis, I regrouped FTIR peaks based on the functional groups they
had been assigned to (aliphatic, amide, polysaccharides, and aromatic, as shown in Table 4), and
I analyzed these functional groups depending on N. crassa initial biomass physiological state or
age (as shown in Figure 9).

First, aliphatic (a) functional group signal increased from "young" necromass age and peaked
around intermediate necromass age 15, with a value of 5.5. Past this necromass age it decreased
significantly, and then increased again until necromass age 67. Amide (b) functional group signal
decreased gradually from “young” to “old” necromass age, starting around a value of 6.3, to then
decreased significantly after necromass age 4, to finally reach a value of 4.2 around necromass
age 67. The aromatic group (d) followed a similar trend, with functional group signal decreasing
from "young" to "old" necromass age, from a signal value of 7.5 to 6.25. Furthermore, the
polysaccharide group (c), encountered a gradual relative accumulation of polysaccharide-based
compounds until necromass age 46, where it then decreased for necromass age 67. The way
polysaccharides are behaving follows a pattern that’s quite like what I saw with ’A’ in the earlier
section 3.1.3 Asymptotic Model Parameters.

In summary, these results aligned with the multivariate analysis of N. crassa biomass composi-
tion demonstrating that the biochemical composition of mycelial biomass changed depending on
its age or physiological states, with most changes explained by polysaccharide, amide, aliphatic
and aromatic functional groups.

4.2.3 Carbon to Nitrogen Ratio in Relation to Necromass age.

To analyze further biochemical composition of N. crassa before incubation, I analyzed the fungal
necromass C and N content and calculated C/N ratios (Figure 10). I observed a gradual increase
of C/N ratio from necromass age 2 to necromass age 67, that respectively started at 6 and
gradually reached 19. In other words, the C/N analysis showed that N concentration was higher
in young necromass and decreased with age.
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Figure 9: FTIR biochemical composition signal values over initial necromass ages, through different
functional groups (a), (b), (c) and (d). Two wavelengths signals were summed for "Aliphatic", "Amide"
and "Polysaccharide" groups, respectively (a), (b) and (c). Four wavelengths signals were summed for
the "Aromatic" group, (d). For a better overview of the wavelengths selected for the functional groups,
see Table 4. Letters a,b,c, and further combination represented results from the post hoc Tukey’s test.
Preliminary to the post hoc Tukey’s test, a One-way ANOVA test was done on each functional group data,
with aliphatic (a), amide (b), polysccharides (c) and aromatic (d). The p-values were respectively p≤0.001

(a), p≤0.001 (b), p≤0.001 (c) and p≤0.001 (d).

Figure 10: Carbon to Nitrogen ratio (C/N) depending on initial necromass age.
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Figure 11: Predictors weight plotted according to the independent variables (A, ka) run throught the
multi-model inference. * is a significant p-value inferior to 0.05. *’ is a marginally significant p-value of
0.089.

4.2.4 Predictor Analysis

Here, I attempted to predict fungal necromass decay parameters based on the fungal initial
necromass biochemical composition. I used a multi-model inference approach with a list
of potential predictors linked to the parameters of the necromass decomposition asymptotic
model (A, ka). After the model selection and averaging, I plotted each predictor’s calculated
weight based on their independent variable (as shown in Figure 11). Additionally, I plotted the
preponderant predictor relationship with its corresponding asymptotic parameter (as shown in
Figure 12).

On Figure 11 I observed for the asymptotes A calculated based on N. crassa necromass
decomposition in soil, that polysaccharide was the main predictor with a weight value of 0.82,
and a significant p-value (represented by "*", p < 0.05, F-statistics). Additionally, I observed
that for the decay rates analysis (ka), the main predictor was age with a weight value of 0.89,
and a marginally significant p-value (represented by "*’", p = 0.089, F-statistics). Further, the
analysis on the "A" independent variable makes a clear link between the A fraction decomposing
at rate of 0, or recalcitrant, with the initial chemical concentration of polysaccharide in our
necromass experiment. The relationship was positive, meaning that fungal necromass initially
enriched in polysaccharides compounds based on FTIR spectroscopy presented high asymptotic
remaining fraction values. In Figure 12 I plotted this relationship using a linear regression
and mentioning the corresponding pearson coefficient value of 0.47. Overall, the multi-model
inference approach allowed identification of the necromass biochemical predictors linked with
decomposition parameters. Through this analysis, A was found better explained through the
polysaccharide functional group and ka (although marginally significant) was better explained
through the physiological age at death.
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Figure 12: Graphs of best predictors (polysaccharides, necromass age) versus asymptotic model parame-
ters (A, ka).

4.3 Necromass Biochemical Changes During Decomposition
To analyse the relationships in our complex decomposition data by reducing its dimension, I
chose to, similar to the analysis shown in Figure 8 analysis, use a Non-metric Multidimensional
scaling (NMDS). Two NMDS analysis were conducted, one with a necromass age treatment and
a second with decomposition time treatment, the analysis was summarized in Table 7, which
includes the percentages of the variances explained and their corresponding p-value. After the
multivariate analysis, I regrouped FTIR peaks based on the functional groups they have been
assigned to (as shown in Table 4), and I plotted as shown in Figure 13 these functional groups
signals depending on decomposition time (arranged per necromass ages), this was done to assess
necromass biochemical changes in N. crassa during decomposition.

Previously, on the NMDS analysis of Table 8 (initial necromass), I had 86% of the variance
explained through the necromass age arrangement criterion. However, in Table 7, I observed
a smaller value of 50 % for necromass type treatment, which meant that when I considered
the data spread through the lens of necromass age variable, I could only explain half of the
variation during decomposition (p≤0.05). However, when I only considered the decomposition
time treatment, I noticed a variance value of 0.05, meaning that only 5% of the spread of the data
could be explained trough the decomposition time criteria ( p≤0.05).

Turning our attention back to Figure 13, concerning aliphatic compounds (a), every necromass
ages underwent some resistance in decomposition until t10, resulting in an increase in signal
value from t0 to t10. This did not mean that the necromass decomposing was gaining any aliphatic
compounds through time. However, it meant that, relatively to the decomposition mass loss,
the compound was not degraded in this initial stage and became more relatively abundant in
comparison to other wavelengths signals sampled (b, c, d and other wavelengths in the range
of 400-3800 nm). Further, the opposite trend was observed from t10 to t46 where the signal was
decreasing for all the necromass ages, meaning that most of the sampled compounds linked to
those wavelengths were getting degraded and appeared relatively less present in the chemical
composition. Aside from necromass age 2 and 4 which ended up increasing their signal value
from t0 to t117, the rest of the necromass ages remained stable in signal, although they went
through fluctuations during the decomposition phase. Regarding amide compounds (b), every
necromass age underwent a significant degradation step from t0 to t10, and a resilient step mostly
from t10 to t20, but overall the signal values intensity remained quite close to the initial t0 values.
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Here the necromass of age 15 and 67 underwent relative increase in their signal value of amide
compound from t0. As for polysaccharides (c), necromass ages 8, 29, 46 and 67 were relatively
stable in their relative abundance during decomposition. However, necromass ages 2 and 4, (and
especially 2) underwent a significant relative decrease in their signal value of polysaccharide
compounds from t0. Finally, aromatic (d),there was a quite a relative stable signal intensity in
aromatic compounds for "older" necromass, respectively necromass age 29,46 and 67. However,
the more "younger" necromass, from age 2 until 15, had a significant decrease of relative signal
from t0 to t10, meaning that in those necromass ages, some aromatic compounds channeled by the
selected wavelengths are highly deteriorated from decomposition. The signals were then more
stable until t76. Past that time stamp only necromass age 2 was further decreasing in relative
concentration.

Overall, the NMDS analysis on necromass biochemical changes during decomposition
explained 50% of the variation through necromass age treatment, but only 5% through the
decomposition time. Additionally, our FTIR results showed that "older" necromass had a
rather stable decomposition pattern through (a),(b),(c) and (d). In comparison to that "younger"
necromass ages, especially the necromass ages 2 and 4, got sensible relative increase in signal
in compounds of aliphatic (a), however they decreased significantly in polysaccharide (c) and
aromatic (d).

Table 7: Non-metric Multidimensional Scaling (NMDS), using the following arrangement criteria,
necromass age (a), decomposition time (b). The data used is from the decomposition chemical composition
change gathered from the FTIR analysis.

NMDS decomposition results Necromass type treatment Decomposition time treatment

Variance 0.5 0.05
p-value significance p ≤ 0.05 p ≤ 0.05
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Figure 13: FTIR biochemical signal values depending on decomposition time (arranged per necromass
ages). Different functional groups (a),(b),(c) and (d) were addressed through this FTIR analysis (as shown
in Table 4). Signal values were averaged (lines), and independent wavelength signal were added (dots).
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5 Discussion
In our experiment, N. crassa necromass decomposing in soils underwent an initial phase of rapid
mass loss followed by a plateau phase, a trend consistently observed in other studies on fungal
necromass (See et al., 2021; Brabcová et al., 2016; Maillard et al., 2021; Fernandez et al., 2020).
In terms of decay models, I found that fungal necromass was best represented by an asymptotic
model, independent of the fungal necromass age at death. This model superseded the single
exponential representation and provided an overview of a fast pool with more labile compounds,
expressed through the decay rate ka, followed by a slow pool with a decay rate close to zero,
expressed through an asymptote A. Our results aligned with recent literature describing fungal
necromass decay using an asymptotic model (See et al., 2021; Maillard et al., 2021). However,
they contradicted previous studies that assumed a constant decay rate for fungal necromass
decomposition and used a single exponential model to represent these processes in soil C and
subsequent modeling (Fernandez and Koide, 2014; Sulman et al., 2014, 2017).

In terms of soil biochemical processes, this indicates two distinct phases during fungal
necromass decomposition: The first phase, dominated by high decay rates (ka), likely involves
the rapid transfer of necromass-C into microbial decomposer biomass and subsequent respiration
and emission as CO2. The second, asymptotic phase (A), involves most remaining necromass-C
becoming stable in soils and contributing to SOC stocks.

In agreement with our hypotheses, I identified the fungal age or physiological state at time
of death as an important factor in fungal necromass decay dynamics. While fungal necromass
mass remaining at the end of decomposition ranges from 8 to 30% between species with
contrasting biochemical compositions, I identified variation ranging from 8 to 50% within a single
fungal species (Neurospora crassa) killed at different physiological stages. Specifically, both
fungal necromass decay rates and persistent fractions, or asymptotes, varied greatly depending
on mycelial age at death. However, model decay parameters (A, ka) did not follow a linear
relationship with fungal age at death. For example, while decay rate values gradually decreased
with fungal biomass age at death, the persistent fraction (A) peaked at 46 days of growth for
the model fungal species studied, before declining after 67 days of growth. This indicates that
while fungal age at death is an important factor in fungal necromass decay dynamics, a complex
relationship exists between necromass decomposition and the fungal physiological state at death.

Collectively, this suggests that if most fungal mycelium in soil dies at a young age, most
of the necromass-C will be transformed either into microbial biomass or emitted as CO2 post-
mineralization. Conversely, if fungal biomass dies at an intermediate age (around age 15, 29),
most of the necromass-C might persist in soil as POM. This highlights the physiological state at
death of soil fungal species as a likely key driver in the formation of particulate organic C of
fungal origin. There is still a lot I don’t understand about how fungi die in the soil. To make our
findings more useful in understanding soil carbon biogeochemistry, I need to focus on this topic
in future research.

Interestingly, the strong effect of fungal mycelium age at death on decay dynamics I observed
has not been previously described in the literature. However, comparing the necromass decom-
position of various fungal species, See et al. (2021) found that the biochemical composition
of the fungal necromass was an important factor in decomposition rates and mass remaining
fractions. Thus, I speculate that the necromass age effect observed for N. crassa is due to
mycelium aging processes that induce biochemical differences in biomass composition. Our
findings indicate that the biochemical composition of necromass varies with necromass age.

26



Specifically, I observed that younger necromass residues have a higher concentration of amides,
likely linked with proteins. Additional data brought by C/N ratio analysis also supports this
finding. In contrast, the concentration of polysaccharides in the initial necromass gradually
increases with age, following a nearly linear relationship, until peaking at age 46.

Fungal necromass mass remaining at the end of decomposition in our experiment was
strongly predicted by the initial content of polysaccharide compounds within N. crassa biomass.
As such, the resistance of intermediate-aged N. crassa necromass (29 to 46 days of growth)
in soil could be explained by a relatively higher fraction of structural compounds, such as
polysaccharides composing the fungal cell wall, likely chitin and glucan, when compared with
younger residues. The effect of polysaccharide content appears significantly more precise in
describing the remaining fraction after decomposition (A) compared to the physiological age at
death of N. crassa. This further supports our speculation of necromass biochemical differences
induced by mycelium aging processes. Previous literature describes a portion of polysaccharide
compounds as linked with fungal structural cell wall components, specifically glycosidic groups
or glucan complexes (Chandran et al., 2016; Heidrich et al., 2021). This means that glycosidic
and glucan complexes, usually present in cell walls, could be components in the polysaccharide
group that are highly resistant to microbial decomposition in soils. It is nevertheless rather
surprising that old necromass was found to not present the highest remaining necromass mass at
the end of decomposition. I speculate that N. crassa might have started recycling its cell wall
post-46 days of growth, as highlighted by biomass losses between 46 and 67 days of in vitro
growth, leading to a decrease in polysaccharides quantified by FTIR.

While fungal necromass mass remaining at the end of decomposition was well predicted by
polysaccharide content in fungal necromass before soil incubation, the initial decay rates were
only marginally explained by necromass age at death, with younger necromass types presenting
higher decay rates. This may suggest that FTIR applied to fungal necromass might not be the
best method to assess the labile fraction of fungal residues. Importantly, the C/N ratio, often
used as a predictor of decay dynamics in leaf and wood decomposition studies, did not have
any significant predictive power in our study for either fungal necromass decay rates or mass
remaining at the end of decomposition. This indicates that in-depth biochemical characterization
of fungal necromass pre-incubation is needed to understand the drivers of fungal necromass
decay. Altogether, our results point to fungal mycelial biochemical changes induced by aging
processes or responses to C and nutrient availability in the medium, indicating that the fungal
physiological state is a key driver in fungal necromass decomposition in soils. This finding
supersedes all other identified drivers, such as inter-species biochemical differences (See et al.,
2021), soil or plant parameters (Maillard et al., 2023b), and vegetation types (Beidler et al.,
2020).

I assessed the chemical changes in fungal necromass during decomposition using FTIR.
Surprisingly, I found only minor biochemical changes in N. crassa necromass during decom-
position, with decomposition time accounting for just a few percent (5%) of the biochemical
variation, compared to 50% explained by the biomass age at death. Limited biochemical changes
during decomposition have also been observed by Maillard et al. (2023b) using FTIR, where
both lowly and highly melanized fungal residue FTIR profiles showed marginal changes during
decomposition. Similarly, Ryan et al. (2020) found relatively small biochemical changes in
fungal necromass from three different fungal species using Py-GCMS, with an increase in the
aliphatic (or lipid) fraction relative to the polysaccharide or carbohydrate fraction. These findings
support our results and suggest a consistent rate of decomposition for different compounds in
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fungal necromass. Therefore, by comparing the magnitude of biochemical changes at the time of
death with those during decomposition, I propose that these changes are more closely linked to
the physiological state of the fungus at death rather than to microbial decomposers specifically
targeting one compound group over another during fungal necromass decay.

6 Limitation and future directions
See et al. (2021), Brabcová et al. (2016), and Fernandez and Koide (2014), along with our own
study, all provide valuable insight with comparable meshbag experimental design. These studies
share a limitation of having a short experiment duration. To determine the actual duration of
the slow pool fraction (A), multiple-year studies are needed to further address this question.
Additionally, studies using other fungi species of interest and different experiment designs are
challenging to compare. Our study and See et al. (2021) used different experimental designs,
with ours conducted in the field and theirs in a controlled environment, resulting in non-identical
decomposition conditions. Finally, it would be beneficial to explore more intricate modeling
techniques that are currently being utilized in plant litter research, as mentioned in the study by
Gill et al. (2021). By doing so, the implementation of double exponential and weibull models
could potentially provide a more in-depth and advanced approach beyond traditional asymptotic
modeling representations.

7 Conclusion
This study investigated how the physiological state at death affects the decomposition of Neu-
rospora crassa necromass. Our results demonstrated that fungal necromass decomposition
follows an asymptotic model, with initial rapid mass loss followed by a plateau phase. I found
that N. crassa physiological age at death significantly influences decomposition dynamics, with
intermediate-aged necromass exhibiting greater resistance likely due to higher polysaccharide
content. These findings support that fungal physiological state at death is likely a key driver in
soil C cycling with some fungal necromass ages more likely to contribute to the formation of
soil organic carbon than others. Our results indicate that fungal necromass age or physiolog-
ical state at death is a critical factor in decay dynamics, surpassing inter-species biochemical
differences and environmental factors. I observed that younger necromass decomposes faster,
whereas intermediate-aged necromass persists longer in the soil. However, additional research is
needed to explore long-term decomposition and incorporate our findings into soil carbon models.
This study underscores the importance of considering fungal physiological state at death when
investigating fungal necromass decomposition and its role in SOC formation.
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