
Comparing and Optimizing an
Identity-Based Post-Quantum Scheme

Department of Electrical and Information Technology, Lund
University

Supervisors: Guo Qian (EIT), Nilson Anders (Bosch)
Examiner: Johansson Thomas

By
Brante William
Montebovi Max

2024

Security is a process, not a product.
– Bruce Schneier

i

Abstract

The objective of this thesis is to evaluate the performance of the IBE scheme over
NTRU lattices presented by Ducas, Lyubashevsky, and Prest (2014) on different plat-
forms. The motivation behind this study was to explore a post-quantum IBE scheme
and determine its viability on different platforms and specifically on an ARM64 CPU.
Our goal was to parallelize the bottlenecks identified during our initial tests using SIMD
instructions and GPU programming. Additionally, we aimed to demonstrate that IBE
schemes may be better suited for certain scenarios than traditional PKI. We used CUDA
to execute parts of the code on GPUs in one case, SIMD instructions to increase com-
puting performance in the other cases and comparing this to the use of the open source
library NFLlib. A profiler was used to identify hotspots during the initial executions
and optimization continued from there. We found that the user key generation with
CUDA was slower than the standard implementation, but encryption and decryption
both gained a boost, similar to the NFLlib results. Tests with AVX2 SIMD instructions
showed similar performance to the standard implementation for user key generation,
while the encryption and decryption achieved performance increases. The Neon SIMD
instructions used on the ARM64 platform made user key generation, encryption and
decryption faster than the standard implementation.

ii

Contents

Acknowledgement x

1 Introduction 1
1.1 Literature review . 1
1.2 Motivation . 1
1.3 Goal . 2
1.4 Contributions . 2
1.5 Overview . 2

2 Background 4
2.1 Key exchange methods . 4
2.2 Public key encryption . 5

2.2.1 RSA . 7
2.3 Identity-based encryption . 8

2.3.1 Key revocation . 10
2.4 Post-quantum cryptology & quantum computers 10

2.4.1 How quantum computers breaks cryptography 11
2.4.2 Hybrid schemes . 13

2.5 Lattices . 13
2.6 NTRU . 14

2.6.1 Key creation . 15
2.6.2 Encryption and decryption . 16
2.6.3 Signing . 16
2.6.4 NTRU lattice . 17

2.7 Learning with errors . 18
2.8 IBE NTRU . 18

2.8.1 IBE key generation . 19
2.8.2 Encryption and decryption . 20
2.8.3 IBE threat model . 20

2.9 Parallelization technologies . 23
2.9.1 CUDA . 23
2.9.2 SIMD . 23

3 Methodology 26

iii

3.1 Client server setup for ID-based NTRU in C++ 26
3.2 Hardware . 28
3.3 Software . 28

4 Implementation and Pseudocode 30
4.1 CUDA implementation . 30
4.2 SIMD implementations . 34
4.3 NFL implementation . 41

5 Results 44
5.1 Master key creation . 44
5.2 User key generation, encryption and decryption 45

5.2.1 x86 . 45
5.2.2 ARM . 49

5.3 Distributions . 52
5.3.1 x86 . 52
5.3.2 ARM64 . 56

6 Discussion 59
6.1 Measurements . 59
6.2 Comparison with PKI setup . 61

6.2.1 Architectural differences . 61
6.2.2 Identification . 63
6.2.3 Key generation and management 64
6.2.4 Differences in maintaining CIA 65

6.3 IBE in practice . 65
6.3.1 Internal vehicle communication 65
6.3.2 Email system . 66
6.3.3 Updating and distributing keys 67

7 Summary and outlook 68
7.1 Results . 68
7.2 Future work . 69
7.3 Outlook . 69

Bibliography 74

Appendix A 75

iv

List of Figures

2.1 Digital signature scheme. 6
2.2 Model of a public key cryptosystem where Alice sends an encrypted

message to Bob. 7
2.3 Model of an identity-based signature scheme. Alice signs the message

with her ID combined with a signature key so Bob can verify the sender
of the message. 9

2.4 Model of an identity-based cryptosystem showing the steps needed for
Alice to send an encrypted message to Bob. A signature is also neces-
sary for Bob to be able to confirm the source of the encrypted message. 10

2.5 A 2-dimensional lattice (dots) with one good vector basis (black) and
one bad vector basis (grey). 14

2.6 Threat model for an IBE system. It shows two users requesting to join
but only Alice has the right. The model also shows that both server and
users need a secure storage to store the keys in. 21

2.7 ALU using SIMD. 25

3.1 UML diagram of the Client and Server classes. 27

5.1 Median master key generation time plotted for all platforms. 45
5.2 Median user key generation time on the x86-1 and x86-2 platforms for

the standard, CUDA and SIMD (AVX2) implementations. 48
5.3 Median encryption time on the x86-1 and x86-2 platforms for the stan-

dard, CUDA, NFLlib and SIMD (AVX2) implementations. 49
5.4 Median decryption time on the x86-1 and x86-2 platforms for the stan-

dard, CUDA, NFLlib and SIMD (AVX2) implementations. 49
5.5 Median user key generation time using the standard and SIMD (Neon)

implementations on the ARM64 platform. 51
5.6 Median encryption time using the standard and SIMD (Neon) imple-

mentations on the ARM64 platform. 51
5.7 Median decryption time using the standard and SIMD (Neon) imple-

mentations on the ARM64 platform. 52

v

5.8 Master secret key and user key generations. 53
5.9 User key generations. 54
5.10 Encryptions on platform x86-2 using Standard and AVX2 methods on

two different charts. 54
5.11 Encryption times on platform x86-2 using GPU and NFL methods on

two different charts. 55
5.12 Decryption times on platform x86-2 using Standard and AVX2methods

on two different charts. 55
5.13 Decryption times on platform x86-2 using GPU and NFL methods on

two different charts. 56
5.14 Distribution of 10 Master Key generations on platform ARM64 for

N=1024. 57
5.15 User key generations. 57
5.16 Distribution on 1000 encryptions on platform ARM64 using Standard

and Neon methods on two different charts. 58
5.17 Distribution on 1000 decryptions on platform ARM64 using Standard

and Neon methods on two different charts. 58

6.1 Certificate request and management for a user in PKI. The user sends a
certificate signing request to the certificate authority and gets a certifi-
cate in return. 62

6.2 Identity-based encryption scheme setup. The model shows a user re-
questing the Key Generation Center / Trusted Authority to join. The
figure also shows what both entities have and the steps being taken dur-
ing a request to join. 63

7.1 Gperf chart of the original implementation, key generation part. 75
7.2 Gperf chart of the original implementation, encryption and decrytion part. 76

vi

List of Tables

3.1 The different platforms that were used to perform measurements on. . . 28

5.1 Times in s for Master Key generation on the different platforms. 45
5.2 Times in ms for different implementations on x86-1. 46
5.3 Speedup relative to the standard runwith the sameN (standard time/new

time) on x86-1. 47
5.4 Times in ms for different implementations on x86-2. 47
5.5 Speedup relative to the standard runwith the sameN (standard time/new

time) on x86-2. 48
5.6 Times in ms for different implementations run on ARM64. 50
5.7 Speedup relative to the standard runwith the sameN (standard time/new

time) on ARM64. 50

vii

List of acronyms

ALU Arithmetic Logic Unit
AVX Advanced Vector Extensions
CA Certificate Authority
CIA Confidentiality, Integrity and Availability
CPU Central Processing Unit
CRT Chinese Remainder Theorem
CSR Certificate Signing Request
DH Diffie-Hellman
FFT Fast Fourier Transform
GPU Graphics Processing Unit
IBE Identity-Based Encryption
ID Identity
IoT Internet of Things
LWE Learning With Errors
MITM Man-In-The-Middle
MPK Master Public Key
NIST National Institute of Standards and Technology
MSK Master Secret Key
NFLlib NTT-based Fast Lattice library
NP Non-deterministic Polynomal time
NTRU N-th degree Truncated polynomial Ring Units
NTT Number Theoretic Transform
PKI Public Key Infrastructure
RA Registration Authority
SIMD Single Instruction, Multiple Data
SNDL Store Now, Decrypt Later
SVP Shortest Vector Problem
TA Trusted Authority
TPM Trusted Platform Module

viii

Popular Science Summary

With the accelerated quantum computer development, we have come to a point
where current public key infrastructure is under threat and threatens the safety
of individuals, corporations and institutions. Thankfully other methods classified
as post-quantum secure algorithms are being developed and tested. One such is
an identity-based encryption scheme relying on the Learning With Errors (LWE)
and NTRUSign algorithm which we implemented and tested on different devices.

The security of the digital world we use today relies on public key infrastructure (PKI),
cryptography which uses one public key, one private key and a proof of ownership of the
public key. Most widely adopted versions use RSA or a version of the Diffie-Hellman
key exchange. The problem is that both RSA and Diffie-Hellman can be broken using a
decent quantum computer. For this reason other algorithms need to be considered, two
of which are NTRU and LWE. In identity-based encryption schemes you replace the
public key with a known ID, this removes the need for a ”proof of ownership” which
could decrease the complexity of the overall system.

We took an existing implementation in C++ of a specific identity-based encryption
scheme, modified and optimized it using CUDA, SIMD and the C++ libraryNFLlib. We
implemented our code on different devices and found that even weaker hardware could
deliver acceptable performance. It was possible to speed up encryption/decryption us-
ing all optimization techniques however using SIMD proved the best with speedups as
high as 13 times faster. Generating private keys for users only improved when using
SIMD on an ARM64 processor. We also compared the scheme to standard PKI and
found that it could be beneficial to use an identity-based scheme in some instances.
Some processing time and storage needed for authentication in ordinary PKI can be
avoided using identity-based encryption, however distribution of keys remains a prob-
lem. Revoking an ID is also a problem and it would therefore be recommended to use
time constrained IDs over static IDs.

ix

Acknowledgments

We would like to thank our supervisor, Anders Nilson at Bosch R&D Lund who pro-
vided us with guidance and support throughout this entire master thesis. We would also
like to thank Qian Guo, our supervisor at LTHwho also gave us valuable feedback when
writing this report.

x

Chapter 1

Introduction

1.1 Literature review

The idea of an identity-based cryptosystem was first introduced by Adi Shamir in 1985
and has come a long way since. A contribution to the field was the work by Ducas and
Lyubashevsky and Prest in 2014, who presented an efficient IBE scheme over NTRU
lattices. Their scheme showed that key generation, encryption, and decryption could
be done with reasonable parameters on a laptop in an acceptable time. The work and
results by Ducas et al. were promising but further exploration was needed to test the
scheme on more platforms and its potential for further increased speeds. Compared to
other IBE schemes this appeared more promising and overall complete while also being
argumentatively post-quantum secure.

1.2 Motivation

The evolution of quantum computers has accelerated in recent years and doesn’t appear
to be slowing down. There exists quantum algorithms that could break the cryptogra-
phy currently used today and it is important to find replacements for this reason. The
most commonly used asymmetric cryptographic schemes also rely on public key infras-
tructure (PKI) which uses certificates to validate the authenticity of public keys. PKI
therefore requires some managing overhead that can be avoided by using identity-based
encryption.

1

1.3 Goal

With lots of research pouring into quantum computers we wanted to look at some
promising post-quantum secure schemes as well as combining these with identity-based
encryption. The ID-based NTRU scheme we chose came with the post-quantum secu-
rity of NTRU-lattices and practicality of identity-based encryption. Another interesting
part is to compare identity-based encryption with the traditional, widely used public key
infrastructure schemes to find areas were one is more suitable than the other.

We also wanted to test this scheme in different scenarios to see how this type of scheme
holds up for different practical use cases. The goal was to set up a client-server sys-
tem where the server acted as a trusted authority, responsible for key generation and
the clients were entities with an identity and had the ability to both encrypt and decrypt
messages sent amongst each other. We would also measure the time for different pro-
cedures in the scheme and implement it in various ways to try and make it faster.

To test and time the identity-based scheme, we used different techniques to try to speed
up encryption, decryption and key generation. These techniques were CUDA program-
ming for GPU acceleration and SIMD instructions to fully utilise registers and the ALU.
These techniques were compared to both the standard implementation and an implemen-
tation using the NFLlib library, mentioned by Ducas et al. We also found it important
to test the identity-based encryption scheme on an ARM64 and use ARM Neon SIMD
architecture in the implementation to see the adaptability of the IBE scheme.

1.4 Contributions

We did multiple implementation variants of Ducas et al.’s identity-based encryption
scheme and tested them on different hardware. We tested GPU and SIMD optimization
and most importantly ran tests on a comparatively low powered ARM64 processor with
Neon SIMD optimization. Our results showed that it is possible to run an IBE scheme
on an ARM64 and also the fact that a speedup with Neon SIMD instructions is possible
and worth implementing fully on lattice based encryption.

1.5 Overview

Firstly, the background in this thesis covers the fundamentals of cryptography, subjects
like key exchange, PKI, and the main topic: identity-based encryption. The background

2

also covers post-quantum cryptography, quantum computers and how hybrid schemes
are an option for the near future. The identity-based scheme used for our tests is de-
scribed as well. How the encryption, decryption and key generation works are also cov-
ered besides the underlying math of the scheme. Lastly the methods for parallelization
are described with the GPU programming language CUDA first and then what SIMD
is and how it works.

The methodology explains how the client/server setup works for the ID-based NTRU
scheme and how it was implemented. Gperf was used to find bottlenecks in the code
and as a indicator to where optimisation was needed and those charts can be found in
Appendix A.

Three different hardware platforms were used for the testing and those were ARM64,
x86-1 and x86-2. The ARM64 platform was performance wise the weakest of the three,
x86-1 was a desktop computer and x86-2 was a virtual machine running on Google
Cloud Computing. The different implementations are the standard (C++), CUDA, Intel
Intrinsics SIMD and Neon SIMD, as well as a fifth implementation using a C++ library
optimized for lattice based operations called NFLlib.

The pseudocode and explanation of the implementations are covered in chapter four.
From these different implementations and tests on different hardware, times for encryp-
tion, decryption and different key generations was obtained and are shown in various
tables in the result section. Tomake it easier to compare, the speedupwas also calculated
as well as charts showing the distributions of our results. Lastly this thesis discusses the
obtained results, advantages with IBE, differences from PKI and scenarios where IBE
could be worth considering.

3

Chapter 2

Background

2.1 Key exchange methods

To be able to use symmetric encryption the communicating parties must share a secret
key. One option the two parties have is to exchange the key in person, to make sure
both have a copy of the key and no one else. The key exchange could also be done
out-of-band via a courier, a letter or through some other trusted method.

Now only of historical interest, the American computer scientist and mathematician
Ralph Merkle had an idea for a key exchange method that could be done over an in-
secure channel. His idea was that for two parties; Alice and Bob, to agree on a key,
Bob would send multiple puzzles to Alice were each puzzle could be solved after some
computing and the solution would give Alice a unique secret key. Each puzzle has an
unique identifier so Alice can send the identifier in clear text back to Bob along with the
message encrypted with the key. Bob can look up the key for that identifier and decrypt
the message. If a third party; Eve, eavesdrops the channel she would not get hold of the
key and her best chance to get the key is to solve all the puzzles Bob sends to Alice.
With many puzzles this will be too computationally expensive for Eve to successfully
decrypt the message [44]. This key would then be used for both encrypting and de-
crypting the messages, i.e. a symmetric key. The key exchange he came up with made
it possible for two communicating parties to agree on a key without too much effort and
an eavesdropping third party would have to commit a lot more effort in order to get the
key [14, 25].

In 1976 Whitfield Diffie and Martin Hellman suggested a new public key distribution
scheme that is based on the the mathematically hard discrete logarithm problem. For

4

Alice and Bob to perform the DH (Diffie-Hellman) key exchange they use two public
parameters chosen by a trusted third party. These parameters are an integer g and a
prime p. Alice picks a secret integer a and sends the value A ≡ ga (mod p) and Bob
sends the value B ≡ gb (mod p) where b is a secret integer chosen by Bob. They then
use these values to compute the shared secret by raising the published value to their
respective secret integer modulus p and get the following:

Ab ≡ Ba ≡ gab (mod p)

A third party listening to the channel will only get the valuesA andB and even with the
public parameters p and g, the shared secret gab (mod p) cannot be computed without
the secret values a or b [37].

If the third party listening to the channel is active then the classical Diffie-Hellman
protocol can be exposed to a Man In The Middle (MITM) attack. If Eve wants to per-
form a MITM attack on Alice and Bob’s secret sharing, Eve sits in the middle and acts
like she is the intended target. Alice and Bob are unaware of Eve’s presence and think
they communicate directly with each other. When Alice asks for Bob’s key, Eve will
relay this query to Bob. When Bob sends his key Eve will save that and give Alice
another key. Eve can then decrypt and read all Alice’s messages and then encrypt them
and send them to Bob without Alice and Bob knowing. Preventing a man in the middle
attack on a Diffie-Hellman key exchange protocol can be done by using authentication,
which we will cover later, or another way is to not send the keys in plain but rather
somewhat scrambled [19].

2.2 Public key encryption

In a public key cryptosystem there exists two non-symmetric keys, one public and one
private key. This system can be used both for encryption and one-way authentication.
If Alice wants to send Bob a message she can encrypt the message with Bob’s public
key and then Bob can decrypt it with his private key. If Alice would like to sign this
message so Bob can verify it was she who sent it, Alice can put her signature and en-
crypt it with her private key and Bob can decrypt the signature with Alice’s public key.
Thus verifying that Alice is the sender. Another useful part of public key encryption
is that the number of keys needed for encrypted communication is drastically smaller
than that of symmetric key encryption. Take the example ofN participants: if each par-
ticipant would want to be able to communicate with each other using symmetric keys,

5

there would need to be one key for each communication channel, resulting in (N−1)N
2

keys. But using asymmetric keys, only 2N distinct keys are required; one public and
one private key for each participant [14].

A public key infrastructure includes a CA (Certificate Authority) and an RA (Registra-
tion Authority) to create, handle and distribute digital certificates. A digital certificate,
also known as an identity certificate, is used to prove that a public key is valid and it
contains the public key, identity of its owner and a digital signature of someone that
has verified the content. The tasks of the RA and CA can often be done by the same
entity but specifically the RA makes sure that the user that receives the certificate is
legitimate while the CA generates and verifies certificates. A PKI usually also have a
certificate storage to store certificates and that storage could also contain a revocation
list of certificates that are no longer valid [27].

Figure 2.1: Digital signature scheme.

If someone wants to send an encrypted message and also prove that the message ac-
tually is from them some form of information must be added to the message. Digital
signatures solve this problem and they act as the equivalence of signing a non-digital
paper with ink. A digital signature scheme needs a couple of parameters added to the
PKI. Firstly, it needs another pair of private and public keys. Then it needs a signing
algorithm and an algorithm for verification. The scheme works by using the private key
together with the signing algorithm and the message, or a hash of the message to create

6

a signature. Since only the sender has access to the private signature key, the signature
will ensure the integrity of the message. When the receiver gets the signed message, the
signature must be verified. This is done with the verification algorithm that takes the
message, the signature and the public verification key. These steps are shown in figure
2.1 where Alice sends a message to Bob. If the signature matches with the sender’s pri-
vate signature key and the message, the verification will pass. If it does not match, the
receiver cannot know who sent it [37]. In figure 2.1 it is not sufficient for Alice to only
encrypt ”Alice” or some other static message with her private key and use that as the
signature because an eavesdropper can take that signature, attach it to their messages,
and pretend the messages come from Alice. Instead her signature should be unique in
each signed message which can be done by using information sent in the message.

Figure 2.2: Model of a public key cryptosystem where Alice sends an encrypted mes-
sage to Bob.

2.2.1 RSA

In 1978 Rivest, Shamir and Adleman provided an implementation of the public key
cryptosystem Diffie and Hellman proposed in 1976. Their implementation is called
RSA after its creators, a so called ”one-way” function because it is easy to compute in
one direction and difficult in the opposite direction [31].

7

If Alice would like to send Bob a message using RSA she must use Bob’s public key
for encryption and Bob uses his private key for decryption. It begins with Bob choosing
two secret primes p and q, the exponent e and its inverse d (mod (p−1)(q−1)). Bob’s
public values becomeN = pq and e. Alice can now take her messagem and with Bob’s
public keys compute the ciphertext c ≡ me (mod N) and send c to Bob. To decipher
the message Bob computes:

cd ≡ med ≡ m1+k(p−1)(q−1) ≡ m1m(p−1)(q−1)k (mod N)

And utilizing a property of Euler’s phi function we finally see that this equals the mes-
sagem [31, 37]:

m1m(p−1)(q−1)k ≡ m11k ≡ m (mod N)

2.3 Identity-based encryption

In 1984 Shamir introduced a new cryptographic scheme that enables two persons to
both communicate securely and to verify the other person’s signature without storing
a list of public keys or exchanging keys. The scheme has a key generation center that
gives every new person in the network information on how to sign, verify, encrypt and
decrypt messages irrespective of the identity of the other party. This scheme is similar
to a public key cryptosystem but the main difference is that instead of generating a pair
of public/secret keys the user can have an email address or a phone number as the public
key, as long as it is unique to that user. This means that a certificate manager would
no longer be needed since the public key is directly tied to some form of identity of the
receiver. To send a message from Alice to Bob, Alice can encrypt it by using Bob’s
public key, based on for instance his email address, that Alice already knows. Bob can
then decrypt themessagewith the private key he got when he joined the network [35,38].

The first thing that must happen is that a key generation center must generate a master
secret key and a master public key. The key generation center shown in fig 2.4 not
only sends its users their secret keys but also a master public key needed for encryption
and this key is the same key for all users. Every user’s public key is a combination
of the master public key and the user’s ID and therefore the master public key must
be generated initially. The master secret key must also be generated in the beginning
because that key is used to generate the secret decryption keys for the users. The next
step comes when users want to join the network, then the generator must create personal
secret keys, using the master secret key, for each user [11].

8

Each user in the network has the master public key, their own secret key and they also
know the identities of the others in the network. To send an encrypted message to an-
other user the only things needed are the receiver’s ID, the master public key and the
message, this is shown as point four in figure 2.4. Compared with public key infrastruc-
ture were the sender must either ask or search for the public key of the receiver, here
the sender uses the receiver’s ID combined with the master public key. Points five and
six in figure 2.4 illustrate the decryption of a ciphertext. The decryption uses the user’s
personal secret key to generate the original message [35].

Figure 2.3: Model of an identity-based signature scheme. Alice signs the message with
her ID combined with a signature key so Bob can verify the sender of the message.

To sign a message in an IBE scheme another key must be created by the key gener-
ation center, a signature creation key. This key is often bound to an identity and it is
used for signatures [27]. Like signatures in a PKI, there must also exist some form of
algorithm for verifying the signature and also an algorithm for signing. In figure 2.3
Alice sends a signed message to Bob. She signs the message with her signature cre-
ation key based on her ID. Bob receives the message and verifies it with an algorithm
that takes Alice’s ID and the message as input and checks if the signature is valid [35].

9

Figure 2.4: Model of an identity-based cryptosystem showing the steps needed for Alice
to send an encrypted message to Bob. A signature is also necessary for Bob to be able
to confirm the source of the encrypted message.

2.3.1 Key revocation

The key revocation is a bit different because Bob should not have to create a new email
address every time his key expires. This can be solved by letting Alice use Bob’s email
address in combination with the current day, month or year to force Bob to obtain a new
private key in order to have regular private key updates. The only thing Alice needs
to keep track of with this system is the date. An interesting thing with this scheme is
that Alice can send Bob messages into the future because Bob can only decrypt them
once he gets the proper private key for that date. When Bob should no longer be able
to decrypt his messages the company/network stops issuing new keys for Bob [8].

2.4 Post-quantum cryptology & quantum computers

RSA and the Diffie Hellman key exchange method are based on the mathematical prob-
lems of large integer factorization and discrete logarithms. The security in these crypto-

10

graphic methods depend on the fact that these mathematical problems are hard to solve.
There exist algorithms that simplify the problems, such as Quadratic Sieve for integer
factorization, but even these algorithms depend on a lot of trial and error in order to reach
an answer, so much so that given a large enough solution space it is computationally in-
feasible with classical computers. There exists algorithms for quantum computers that
can take huge shortcuts and make these mathematical problems much easier to solve.
Therefore there is a need for cryptosystems that are secure not only today but in the
future as well and that means that they need to be quantum secure [36, 37, 41].

2.4.1 How quantum computers breaks cryptography

To understand how quantum computers can break current cryptography we need to start
off with taking a look into the difference between bits used in classical computers and
bits used in quantum computers called qubits. An ordinary bit takes one of two states;
inactive and active or more commonly recognised as 0 and 1. This means that N bits
can represent one of 2N states (00, 01, 10 or 11 for N = 2) and the same goes for
calculations that use bits, one input state and one output state at a time. This is in line
with our natural way of thinking of calculations, however qubits are different. A qubit
can also be used to represent two states 0 and 1 but unlike ordinary bits it also exists
in a quantum state where we view it as existing in the two states at the same time. An
advantage of quantum computers is therefore that they do not run calculations for one
input and one output at a time but calculations for all inputs and all outputs at the same
time by fixing the input qubits and output qubits in a specific quantum entanglement.
A quantum computer with N output qubits can thereby calculate all possible 2N solu-
tions simultaneously. This quantum solution state is however not very practical since
the information about all except one random state disappears if we try to observe it di-
rectly [34]. It is however possible to extract the necessary information needed to solve
the mathematical problems of RSA and the Diffie Hellman key exchange [36].

Now we are ready to break cryptography and we begin with breaking RSA using a
classical computer and we start off with a factoring algorithm similar to the Quadratic
Sieve algorithm.

Given an integer N = pq where p and q are primes our initial goal is to find a pair
(g, r) such that the following is true for g, r ∈ ZN :

gr ≡ 1 (mod N)

11

We do this by fixing g to a random integer > 1 and iteratively increase r. Once we
find a pair (g, r) that fulfills the condition we say that the period given g is r since:

gi+kr ≡ zi (mod N) (2.1)

for all k and some fixed g, r, i, zi ∈ ZN .
If r is odd we need to pick a new g and find a new pair (g, r) where r is even. But

when r is even we have:
gr = 1 + tN ⇔

gr − 1 = tN ⇔

(g
r
2 + 1)(g

r
2 − 1) = t1t2t3...pq

where t is an integer with prime factors t1, t2, t3.... From this we can see that p and q

must be prime factors of either p′ = (g
r
2 + 1), q′ = (g

r
2 − 1) or both and to check we

compute gcd(p′, N) which equals either 1, N or p. If we get p we can easily calculate
N
p
= q, otherwise we try the same with q′ and if that fails we start over with a new pair

of (g, r), until finally we end up with the secret primes p and q [36].

This algorithm is the basis of what is known as Shor’s algorithm, a promising algo-
rithm that can run on quantum computers and break both RSA and the Diffie Hellman
key exchange. The next part of the algorithm is the quantum algorithm and is more
complicated than the first part but the general idea is the following:

Given N = pq, use n qubits to represent the input quantum state X , then pick an inte-
ger g and fix the output quantum state to be the remainder Y such that gX = tN + Y

for some integer t. Now X and Y exist in quantum entanglement, X will represent all
possible exponents x and Y will represent all associated remainders y, we also see that
the pair (x, y) is equivalent to (i + kr, zi) in equation 2.1. From this we can conclude
that given g, the input state X is periodic with period r and so is Y where the number
of possible states in Y is equivalent to r. With the help of this observation, more math
and the Quantum Fourier Transform we can retrieve 1

r
, directly get p′, q′ and continue

from there to get p and q [36].

Now the only reason this algorithm has not broken our current cryptosystems yet is
because of inaccuracies in today’s quantum computers. X and Y are hard to represent
perfectly and they introduces a lot of errors to the result. To get rid of these errors either
higher quality qubits or a larger amount of qubits is required and the gap between the

12

available and required qubits shrink every year. It might only be a matter of time until
quantum computers are powerful enough to break standard cryptography.

2.4.2 Hybrid schemes

With the threat of quantum computers breaking the cryptography used today the idea
of combining today’s cryptography with post-quantum cryptography has emerged. This
idea upholds regular security while alsomitigating the risk of quantum attacks [7]. Since
classic cryptography has been around for a long time there exists secure schemes but
with quantum cryptography it is harder to say because those schemes have not been
around as long and have not been tested and analyzed as thoroughly. This is a reason
why the Federal Office for Information Security in Germany currently recommends not
fully switching to new quantum secure schemes but using post-quantum cryptography
in combination with established algorithms instead [2, 30].

Another reason hybrid schemes could be worth implementing is because of the SNDL
(Store Now Decrypt Later) attacks. The attack idea is to capture valuable information
that is encrypted with today’s cryptographic methods and decrypt them once powerful
enough quantum computers are available. SNDL is an attack that can be initiated im-
mediately, requiring only storage to initiate. For most data this is not a major problem
but some data could be sensitive even if it is decrypted far into the future, for example
state secrets and medical records. This attack is therefore another reason to transition
into post-quantum cryptographic schemes and not hold off until the last minute [17].

2.5 Lattices

A lattice, in general, is a subgroup of the Euclidean space Rm generated by a matrix
A = (a1, a2, ..., an) ∈ Rm×n. The dimension of the lattice is defined by n and any lat-
ticewith a dimension≥ 2 has infinitelymany bases. Figure 2.5 shows a two dimensional
lattice grid with two different bases drawn as arrows. Different linear combinations of
the vectors a1 and a2 would generate all lattice points shown, as would b1 and b2 or any
other two different vectors from the grid [43].

A difficult and importantmathematical lattice problem is the SVP (Shortest Vector Prob-
lem). The problem definition is: given a lattice basis A, find the shortest non-zero vec-
tor or in other words find the intersection point closest to the origin in the grid [26,43].
SVP is NP-hard under certain conditions and in general it is said to be an extremely

13

hard problem to solve for regular computers and also most importantly, there exist no
quantum scheme that can be used either [4, 37].

Figure 2.5: A 2-dimensional lattice (dots) with one good vector basis (black) and one
bad vector basis (grey).

2.6 NTRU

In 1998 Hoffstein, Pipher and Silverman introduced NTRU as a new cryptosystem. The
encryption is based on polynomial algebra and modular reduction while the decryption
is based on a procedure for unmixing the steps done in the encryption. The security
relies on the polynomial mixing combined with double modular reduction. NTRU is
closely related to lattices since key recovery can be framed as a shortest vector problem
for a certain lattice. The security of the scheme can therefore be considered as secure
as it is hard to find very short vectors (SVP) [16, 37].

The NTRU cryptosystem has four public integer parameters (N, p, q, d) decided by a
trusted third party and two private polynomials of degree N − 1: f and g. In order for
the system to work the parameters need to be chosen according to some rules:

1. gcd(N, q) = gcd(p, q) = 1

2. q > (6d+ 1)p

14

3. f needs to contain (d+ 1) coefficients of value 1 and d coefficients of value −1
with the rest equal to 0.

4. g needs to contain both d coefficients of value 1 and d coefficients of value −1
with the rest equal to 0.

The system works in a polynomial ring R = Z[x]
xN−1

, where an element F ∈ R is a
polynomial in the form [20]:

F =
N−1∑
i=0

Fix
i = {a0 + a1x+ ...+ aN−1x

N−1}

Multiplication in the ring takes the form of a cyclic convolution product and is rep-
resented as

a(x) ∗ b(x) = c(x) = {c0 + c1x+ ...+ cN−1x
N−1}

where
ck =

∑
i+j≡k(modN)

= aibk−i

for 0 ≤ i, j ≤ N − 1 and a(x), b(x), c(x) ∈ R. To perform multiplication modulo p

simply reduce the coefficient, ck (mod p) [16, 37].

2.6.1 Key creation

For Alice to create an NTRU key she must first generate the two polynomials f and g,
then compute the inverses f−1

p and f−1
q defined as:

f ∗ f−1
p ≡ 1 (mod p), f ∗ f−1

q ≡ 1 (mod q)

If the inverses do not exist a new f needs to be generated. Alice can then generate the
public key:

h ≡ f−1
q ∗ g (mod q)

The recommended key sizes giving the highest security is 1595-bits for the private key
and 4024-bits for the public key. For moderate security, that can be used for television
or cellphone transmissions, the private key size is 340-bits and for the public key it is
642-bits [16].

15

2.6.2 Encryption and decryption

When Bob wants to send a message to Alice he chooses a polynomial ϕ on the same
principle as g (rule 4) and encrypts his messagem ∈ Rp by computing

c ≡ pϕ ∗ h+m (mod q).

Bob can now send the encrypted message c to Alice for her to decrypt. When Alice
receives the message c from Bob she computes

a ≡ f ∗ c ≡ f ∗ pϕ ∗ h+ f ∗m (mod q) = pϕ ∗ g + f ∗m (mod q)

and then center-lifts a so that the coefficients of the polynomial a ends up between−q/2
and q/2. This makes it such that

a = pϕ ∗ g + f ∗m ∈ R. (2.2)

Finally to recover the message Alice uses the inverse f−1
p to do one last calculation and

recoverm:
m ≡ f−1

p ∗ a (mod p).

Notice how a in equation 2.2 is not only congruent to an expression that is similar to
Bob’s encryption process, but is actually equal to the expression. This is because of rule
2 in the rule list which bounds the constants in the polynomial a and is what enables the
equality. This in turn makes it possible for Alice to extract the exact value ofm [16,37].

2.6.3 Signing

The NTRU cryptographic system can also modified and be used as a signing algorithm.
If we again take a look at the cipher text equation:

c ≡ pϕ ∗ h+m (mod q).

We canmodify this a bit and use it as a signature on a document ρ. If we set t = H(ρ||r),
where H is a public hashing function converting a digital document into a polynomial
in a ring, r is a random string making the polynomial valid and ’||’ is concatenation. We

16

can then re-write the equation as the following:

t ≡ s ∗ h+ v (mod q).

The signature then becomes (s, r) since computing s is hard unless you have access to
the secret NTRU polynomials f and g. The signature is also easily verifiable for anyone
by doing the comparison:

||(s, s ∗ h−H(ρ||r)|| < B

where B is some public security threshold ensuring that both s and v are small [15].

2.6.4 NTRU lattice

The NTRU key recovery can, for a special sort of lattice, be mapped to the shortest
vector problem [37]. The public key

h(x) = h0 + h1x+ h2x
2 + ...+ hN−1x

N−1

has an NTRU 2N-dimensional lattice associated to it generated by the rows of the matrix

Mh =
(
I h0 qI

)
=

1 0 . . . 0 h0 h1 . . . hN−1

0 1 . . . 0 hN−1 h0 . . . hN−1

...
...

...
...

0 0 . . . 1 h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0

0 0 . . . 0 0 q . . . 0
...

...
...

...
0 0 . . . 0 0 0 . . . q

where the upper right quarter consists of cyclical permutations of the coefficients from
h(x).

As mentioned earlier the security of NTRU depends on the SVP in the lattice gener-
ated byMh. If Eve somehow can solve the SVP for the lattice within a small factor the
vector might work as a decryption key [37]. The LLL (Lenstra, Lenstra and Lovász)
algorithm is a lattice basis reduction algorithm that helps solve the SVP to some factor
in polynomial time [22]. The LLL algorithm reduces the basis of a lattice and the short-
est vector can sometimes be taken from said basis. If N is large (in high dimensions)

17

the LLL algorithm does not find small vectors in the NTRU lattice, so with well cho-
sen parameters the NTRU cryptosystem stays secure [37]. Recent work in this area has
shown that the LLL algorithm can be improved to become faster and also work in larger
dimensions. In 2023 Ryan and Heninger introduced a new improved version of the LLL
algorithm. It is more efficient than the previous best adaption of the LLL, however it
does not affect the security of today’s lattice based cryptosystems [32].

2.7 Learning with errors

Learning with errors is a problem that was introduced by Oded Regev which can also
be reduced to a lattice problem. The learning with errors problem is a hard problem
to solve and in short is the problem of solving s for As = b − e given A and b + e

where s, b, e ∈ Zn
q and A ∈ Zm×n

q . The problem also states that the elements of A
are uniformly random but the elements of e are small with a high probability, such as
drawn from a Discrete Gaussian distribution [23, 24]. The problem can be used as an
encryption scheme to encrypt a single bit x.

If (A, b + e) is public then someone can select k row vectors ai ∈ A and the corre-
sponding elements bei ∈ (b+ e) to send [

∑
k ai, x ·

q
2
+
∑

k bei] = [a′, b′] ∈ Z2
q . Anyone

with the secret key s can then with a very high probability decrypt the bit accurately by
checking whether b′ − a′s is closer to q

2
(x = 1) or 0 (x = 0). This idea has then fur-

ther been expanded to use elements of polynomial rings instead of Zq and is called the
Ring learning with errors key exchange mechanism. As the name implies, Ring learn-
ing with errors key exchange mechanism is a scheme made to transfer keys similarly
to the Diffie-Hellman key exchange but this key exchange is, unlike Diffie-Hellman,
fortunately quantum secure [10].

2.8 IBE NTRU

This identity-based scheme is based on NTRU and learning with errors and was created
by Ducas, Lyubashevsky and Prest to create a practical lattice cryptosystem that has rea-
sonable key sizes. Like NTRU this system works in the ringRq = Z[x]/(xN − 1).The
system also uses the GPV trapdoor sampling algorithm introduced by Gentry, Peik-
ert and Vaikuntanathan in 2008. The GPV algorithm can generate short lattice vectors
while not revealing any information about the trapdoor [11, 13].

18

2.8.1 IBE key generation

In IBE-schemes a master key is needed to generate secret keys for the users and this
scheme is no different. The Master secret key is a matrix B ∈ Z2N×2N where N is a
chosen parameter that is a power of two. B is a short basis for the lattice Λ utilizing the
GPV algorithm to generate short vectors without leaking information, here the basis B
becomes the trap-door. B is generated by the two random NTRU polynomials f and g
with a fixed square norm.

With F,G ∈ Rq satisfying

g ∗G− g ∗ F = q and h = g ∗ f−1 mod q

the two matrices B and A can be created. Where

B =

(
A(g) −A(f)
A(G) −A(F)

)
and A =

(
−A INqIN 0N

)
generate the same lattice and the anticirculant matrix of f is

A(f) =

f0 f1 . . . fN−1

−fN−1 f0 . . . fN−2

...
...

−f1 −f2 . . . f0

Since everyone has access to the public key h they can generate the matrix A. The
problem is that even though it generates the same lattice as B it does not give a good
basis for solving lattice problems because if h is uniformly distributed inRq, the matrix
A has a large orthogonal defect [11].

Users in this scheme must have their own secret key to be able to decrypt messages
sent to them. The secret key extraction first checks if the user’s secret key is in the stor-
age and if it is then it simply outputs the secret key. Otherwise the secret key is created
by a combination of the hashed user ID (t) and the short elements (s1, s2) sampled from
the short basis B such that s1 + s2 ∗ h = t. This is done by comparing t to the lattice
Λ and setting one of the closest lattice points to be s2 ∗ h through Gaussian sampling.
The secret key s2 is then sent to the user and also stored [11].

19

2.8.2 Encryption and decryption

Ring LWE is used for the encryption scheme. The encryption of a messagem to a user
with a certain ID is done by first choosing three elements {r, e1, e2} ∈ {1, 0,−1}N and
a k ∈ {0, 1}N that is uniformly distributed and serves as a key. Encryption also uses the
two hash functionsH andH ′.The output of the encryption is the triple (u, v,m⊕H ′(k))
where ,

u = r ∗ h+ e1 and v = r ∗ t+ e2 + ⌊q/2⌋ · k where u, v ∈ Rq and t = H(id)

and the least significant bits of v are dropped [11, 23].

For the decryption the receiver can calculate k by computing

k = ⌊v − u ∗ s2
q/2

⌉

and then taking the third element from the encryption output (m⊕H ′(k)) and performing
XOR with H ′(k) to get the message,

m = m⊕H ′(k)⊕H ′(k).

For a correct decryption the coefficients of r ∗ s1 + e2− e1 ∗ s2 must have a magnitude
less than q/4 [11, 23].

2.8.3 IBE threat model

CIA triad

The ”CIA triad”, where CIA stands for Confidentiality, Integrity and Availability, is a
model often used when looking for vulnerabilities in a system. Confidentiality is about
making sure the information is only accessible to authorized users. Integrity is about
ensuring authenticity of the information and also protection against any form of modifi-
cation to said information. Lastly Availability means that the information should always
be accessible in a reliable and timely manner. These are the three cornerstones of infor-
mation security [1].

To maintain confidentiality in an identity-based encryption scheme, the private keys

20

Figure 2.6: Threat model for an IBE system. It shows two users requesting to join but
only Alice has the right. The model also shows that both server and users need a secure
storage to store the keys in.

must be generated and managed securely because only the intended recipient should be
able to decrypt the encrypted information. The master secret key must also be stored
securely because with access to it, all encryption can be decrypted. Since only the gen-
erator has this key, and it does not need to be transferred, it is the keeping of the master
secret key that must be secure, as can be seen in figure 2.6 [35].

There are more aspects to integrity, namely authenticity, freshness and non-repudiation.
Authenticity means that the information is original and its source is validated. Non-
repudiation proves the validity of the information by having indisputable proof of au-
thenticity and validity, thusmaking sure the sender cannot deny their involvement. Non-
repudiation guarantees authenticity but authenticity does not guarantee non-repudiation
[33]. Freshness is a descriptor of how old the data is and in an encryption system this
is relevant to prevent replay attacks, i.e. when the same message is sent multiple times.
Time stamps are used to measure the freshness of data and they can be used in mes-
sages [6, 29]. Regarding the authenticity and non-repudiation of an IBE-scheme the
sender must be able to prove its identity and a way to do this is with digital signatures.
Then the receiver can prove that the alleged sender actually is the one who sent the
message [18].

Lastly to consider is the availability of an IBE-scheme and this comes down to making
sure all parties have the keys needed to perform encryption and decryption. A scenario

21

that could damage the availability of the encryption scheme is if a private key is leaked,
then the system must have a strategy for key revocation. This strategy must cover who
can revoke a key, how to inform all users of the revocation and lastly how to handle all
messages sent encrypted with the leaked key [39].

Another important aspect is the transferring of the secret key and the master public
key from the key generation center to the user. This must be done over a secure chan-
nel which means the user and key generation center must somehow set one up. If this
channel is not secure then the confidentiality and the authenticity of the secret key is
not protected [27].

Message recovery attack

A strategy for attacking the encryption scheme is to try to recover the errors e1 and e2,
to recover the message. With the ciphertext (u,v) one can formulate the equation

(t ∗ h−1) ∗ e1 − e2 = (t ∗ h−1) ∗ u− v mod q.

That equation can be converted to finding the vector (e1, e2, 1) in a 2N +1 dimensional
lattice. However, with proper parameters for the scheme this method is not practical
[11].

Side channel attacks

Instead of trying to break the crypto one could resort to side channel attacks. Side
channel attacks are based on indirect information from the crypto scheme. Examples
of this kind of information are cache accesses, power consumption and how much time
different computations take. Even though a crypto scheme is mathematically secure
it could be insecure as an implementation. One way to counter side channel attacks
is by masking and the foundation of masking is secret sharing which splits a secret
value into multiple shares. A function is also needed to recover the secret from some
or all the shares. Older versions of NTRU are vulnerable to side channel attacks and in
article [42] the secret decryption key is recovered with high probability. There exists
newer versions of NTRU that are fully masked and because of that secure against side
channel attacks but these versions have a much higher computational time [21, 42].

22

2.9 Parallelization technologies

2.9.1 CUDA

CUDA is a GPU (Graphics Processing Unit) programming language created by Nvidia
to make it easier for software developers to utilize the performance of GPUs in regu-
lar tasks. The CUDA programming language uses both the CPU (Central Processing
Unit) and GPU for computational tasks in something known as heterogeneous comput-
ing where sequential tasks are handled by the CPU and tasks that can be performed in
parallel is offloaded to the GPU. Therefore the performance boost gained from CUDA
is dependent on the tasks themselves [9].

A CPU is designed to compute a few potentially hard tasks while the GPU is designed
to run a lot of simple tasks. The CPU is suited to run operating systems and programs
with a lot of different tasks that can be done in any order while the GPU can take care
of tasks that can be divided into smaller subtasks that can be worked on individually.
Initially, the GPU’s main purpose was to speed up graphics rendering and geometry
transformations but since it can process data simultaneously it is also used in areas like
artificial intelligence, machine learning and other compute-intensive tasks. The reason
a GPU can perform parallel processing is because it can run thousands of threads simul-
taneously [9, 28].

CUDA keeps track and controls all threads with something known as a grid. The grid
contains blocks where each block contains warps that are a collection of 32 threads.
Each block contain multiple warps resulting in hundreds or thousands of threads per
block, depending on the used GPU architecture. The best situation for CUDA is in
so called embarrassingly parallel problems. These problems should have almost no
inter-block communication meaning that a block can perform computations without de-
pending on the results or data from other blocks. If all the blocks can compute on their
own the performance will be the highest because the blocks will not have to wait for
each other to finish [9].

2.9.2 SIMD

SIMD (Single Instruction, Multiple Data) is a method to get increased performance
when computing on CPUs. By using SIMD, parallel processing of data sets is possi-
ble even on single cores [40]. Usually a CPU runs its instructions on single words (64
bit data) or less but Single Instruction Multiple Data allows the CPU to run the same

23

instruction on entire data sets at the same time. When a SIMD instruction is fetched
by the CPU, the ALU (Arithmetic Logic Unit) takes two vectors instead of two values
as input. Then the ALU performs the fetched instruction and returns a new vector as
can be seen in figure 2.7. The ALU both stores its output and fetches its input from
registers, therefore with larger registers more data can be handled at the same time and
using more registers reduces data movement to and from the cache memory which is
another time consuming component [5, 12].

SIMD is not a single instruction set but consists of multiple different ones for different
CPU architectures. SSE (Streaming SIMD Extensions), AVX (Advanced Vector Exten-
sions) and their extended versions are common instruction sets for the x86 architecture
used by both Intel and AMD. AVX2 for example uses 16 registers to enable single in-
structions on 256 bits of data, this means that eight 32 bit values or four 64 bit values
can be processed at the same time. The further extension AVX-512 can handle 512 bits
of data by doubling the number of available registers and in turn double the data sets
that can be processed at once [5].

There are two distinct SIMD instruction sets for ARM processors called Neon and
SVE. Neon is the standard and although having similar instruction support as those of
the x86 architecture the maximum number of bits that can be operated on is only 128.
The performance boost should therefore theoretically be half of AVX2 but since the
two architectures are fundamentally different such a claim is hard to back up and would
differ on a case to case basis. SVE supports operations on larger bit-ranges, namely
multiples of 128 bits up to 2048 bits but is only supported by some ARM processors.

24

Figure 2.7: ALU using SIMD.

25

Chapter 3

Methodology

3.1 Client server setup for ID-based NTRU in C++

From [11] there is a repository link to Prest’s GitHub, containing a proof of concept
of an identity-based encryption scheme over NTRU lattices. Although written by the
three researchers Ducas, Lyubashevsky and Prest we will for the sake of simplicity, in
short refer to the code as Prest’s code since it is hosted on his GitHub. The implemen-
tation was written in C++ and is measuring the time for creating keys and performing
encryption and decryption, however Prest mentions that their code is meant as a proof
of concept and should not be used in real world implementations.

Their code was created using the NTLlib library for dealing with polynomials which
were used to represent keys and IDs. The algebraic functions and different Fourier trans-
forms were added by Prest and could be found in the files FFT.cc and Algebra.cc located
in the same repository. These functions were used in the file Scheme.cc which contains
the functions needed for an encryption scheme, like the key generation functions, en-
cryption and decryption. The file also contained a few functions used for benchmarking
performance. The recommended compiler for the code was the g++ compiler together
with the ”-0fast” flag for optimization.

To get a more practical ”test case” the changes made on the original code was to turn
it from a test case environment into a client/server structure. Two classes were added
for the new structures, a client class and a server class. The server class was imple-
mented with the purpose of managing master keys and extracting keys for the clients
based on their IDs. The client class was made to represent a user of the system, the
client has access to a server and its own keys which grants it the ability to encrypt and

26

decrypt messages. We reused and refactored code from the Scheme.cc file in the new
classes when creating keys, encrypting and decrypting messages. The classes can be
seen in figure 3.1 and the type MSK_Data used by MSKD is a simple C++ structure
containing the NTRU secret polynoms f and g as well as the values F and G where
f ∗G−g ∗F = q, as explained in [15]. MSK_Data also contains the NTRU lattice cre-
ated by the secret polynoms, their FFT-transform and the Grahm-Schmidt values used
by the GPV during key extraction. The other data type MPK_Data is only a structure
containing the NTRU public polynom h and its FFT-transform.

Figure 3.1: UML diagram of the Client and Server classes.

To find out which methods that were taking the most time and would require most of
our focus, Google Performance Tools (gperftools) was used, the result can be found in
Appendix A. It showed where in the code the computer spent most time and thus show-
ing the bottlenecks in the code that could perhaps be parallelised or at least made more
efficient. It became clear that a lot of time was spent computing the dot product when
running the code. This was because the function was used heavily during key genera-
tion, both for the master key and during user key extraction. Since encryption and de-
cryption are the most performed actions in the cryptosystem they are also the most time
critical parts of the system and the speed of the encryption/decryption process reflect
the speed of the over all system. Using gperftools to look at the encryption/decryption
process we saw that the most concerned methods were the Fourier transform and the
reverse Fourier transform used for polynomial convolution.

27

Encryption/decryption operation is used most often, then user key generation. Mas-
ter key generation is not as common, and occurs least often. Generating master keys is
only done when setting up a trusted server or in order to perform key revocation in the
form of regular updates or key leakage. When a master key has been generated a new
user key has to be extracted for all users in the IBE system, this could amount to hun-
dreds or many thousands of users that need new keys. This was taken into consideration
when updating the functions in Prest’s code as well as the fact that the original code was
written for 128 bit floating point accuracy while our optimization methods are restricted
to support at most 64 bit floating point numbers. This loss in accuracy produces round-
ing errors which impacts the results of some of the operations in the code which we
needed to be aware of when implementing our changes to the code. Taking these factor
into consideration we decided to not update the code for master key generation since it
is not used very often and errors produced in the master key could produce errors in the
rest of the system.

3.2 Hardware

When gathering our results we wanted to test our implementation on diverse platforms
to gain an understanding of what type of hardware is required to get good enough per-
formance as well as how big of an impact hardware had on performance. We therefore
decided to run our code on 3 different platforms with different hardware and limita-
tions. The platforms we used and their hardware specifications can be summarized in
table 3.1.

Name RAM CPU GPU SIMD
ARM64 8 2.4GHz ARM Cortex-A76 - Neon (128 bit)
x86-1 16 4.4GHz Intel i7 4790k NVIDIA RTX3080 AVX2 (256 bit)
x86-2 - 2.2GHz Intel Xeon NVIDIA L-4 AVX2 (256 bit)

Table 3.1: The different platforms that were used to perform measurements on.

3.3 Software

Both the original and our implementation used a few non-standard C++ libraries to per-
form operations and they are worth mentioning here. The first two used in the original

28

implementation are NTL and GMP. NTL is an open source C++ library made for num-
ber theory and operates on on arbitrary length integers in values, vectors, matrices and
polynomials. GMP on the other hand is an open source C++ library with support for
arbitrary length integers, rational and floating point numbers. In Prest’s revised ver-
sions there are mentions of the NFLlib library which is an extension of the open source
XPIR library [3]. NFLlib is a library using Number Theoretic Transform (NTT) and the
Chinese Remainder Theorem (CRT) to optimize operations in polynomial rings, which
makes it ideal for use in lattice based cryptography. NFLlib is dependent on another
library, the GMP extension MPFR, which is also required for NFLlib to run. Finally
in our implementation we use SHA-512 hashing of string identities, which we gained
access to by using the popular openssl library.

29

Chapter 4

Implementation and Pseudocode

In this chapter we show the implementations made by us in pseudo code. Most imple-
mentations are similar to Prest’s original code but with a few variations while others
differ more significantly. All implementations of encryption and decryption share the
same set of variables and have the same purpose in each implementation. What the
variables mean and represent has previously been presented in section 2.8.2. However
just like Prest’s original code we let k equal m and avoid the hash and XOR process
for the encryption. We did this since it is separate from the rest of the process and can
be done anywhere, whenever needed and is a fast operation even for large N . For a
key and message length of N = 2048 the hash and XOR function only took a single
microsecond using SHA-512 and concatenation which is the size of the impact on our
results.

4.1 CUDA implementation

Writing code using CUDA requires writing separate code for the CPU and GPU. The
code running on the CPU is ordinary C++ code known as host code and the code run-
ning on the GPU is known as kernels or device code and is also C++ code but with a few
caveats. Kernels are run fully in parallel with multiple threads running the same block
of code which means that if not careful, race conditions will occur. Because it is the
same code running on all threads, a thread needs to be able to be uniquely distinguished
and this is done through the dimension, block and index attributes available in code.
From these unique attributes you can conclude how and which operations should be run
by each thread. In our pseudo code these are represented by ”ID”.

The host code is responsible for memorymanagement in the sense that it allocates mem-

30

ory on both the CPU and the GPU as well as transferring data between CPU memory
and GPU memory. Host code also decides how threads should be ordered before trig-
gering kernel calls. As mentioned previously, the optimum number of threads largely
depend on the GPU architecture. Both the NVIDIA RTX 3080 and L-4 support 1024
threads per block so in our host code we only used multiple blocks when the number of
parallel operations were greater than 1024.

When it comes to the dot-product implementation (Algorithm 1) it needs to be noted
that it has the same drawback as the SIMD implementations: the maximum floating
point precision is 64 bit which is lower than the 128 bit precision of the original. This
could theoretically introduce rounding errors and affect the end result but this did not
show in the way it is used within the code. We tried two different versions of DotProd-
uct in CUDA, one where summation was done in host code and one where it was done
in device code (Algorithm 1), surprisingly there was little to no difference in the two
implementations.

The implementations for encryption and decryption in CUDA (Algorithms 2, 3, 4, 5)
are quite different to the original implementations, this is because these do not use FFT
for the convolution operation. Instead we use the more primitive but easier to turn par-
allel vector-matrix multiplication. In order to perform convolution in the cyclic group
using the two polynomials P1 = a0 + a1x

1 + · · · + aN−1x
N−1 and P2 = b0 + b1x

1 +

· · ·+ bN−1x
N−1 we let the P1 be represented by the vector,

v = [a0, a1, ..., aN−1]

and P2 be transformed into the circular matrix,

B =

b0 −bN−1 . . . −b1
b1 b0 . . . −b2
...

...
...

bN−2 bN−3 . . . −b1
bN−1 bN−2 . . . b0

the convolution P1 ∗ P2 can then be performed through vB (mod q) ∈ Z[x]

xN−1
. This is

what we implemented for our GPU kernels instead of using FFT.

31

Algorithm 1 DotProductKernel(sum, x1, x2)
1: productsSHARED[ID]← x1[ID] · x2[ID]
2: if IDTHREADS = 0 then
3: sumLOCAL ← 0

4: for i ∈ {0, 1, 2, ..., THREADS
BLOCKS

− 1} do
5: sumLOCAL ← sumLOCAL + productsSHARED[i]

6: end for
7: sum← sum+ sumLOCAL

8: end if

Algorithm 2 EncryptionKernel(u, v, x, m, t, h, r)
1: u0 ← 0

2: v0 ← 0

3: e1 ←random {−1, 0, 1}
4: e2 ←random {−1, 0, 1}
5: for i ∈ {0, 1, 2, ..., N − 1} do
6: if i ≤ ID then
7: u0 ← u0 + h[ID− i] · r[i] mod q

8: v0 ← v0 + t[ID− i] · r[i] mod q

9: else
10: u0 ← u0 − h[ID− i] · r[i] mod q

11: v0 ← v0 − t[ID− i] · r[i] mod q

12: end if
13: end for
14: u[ID]← u0 + e1 mod q

15: v[ID]← v0 + e2 + q
2
m[ID] mod q

32

Algorithm 3 DecryptionKernel(m, u, v, s)
1: m0 ← 0

2: for i ∈ {0, 1, 2, ..., N − 1} do
3: if i ≤ ID then
4: m0 ← m0 + u[ID− i] · s[i] mod q

5: else
6: m0 ← m0 − u[ID− i] · s[i] mod q

7: end if
8: end for
9: m0 ← v[ID]−m0 mod q

10: if m0 <
q
4
or 3q

4
< m0 then

11: m[ID]← 0

12: else
13: m[ID]← 1

14: end if

Algorithm 4 GPUEncryption(m, t, h)
1: uCUDA, vCUDA

2: mCUDA ← m
3: tCUDA ← t
4: hCUDA ← h
5: rCUDA ←random {−1, 0, 1}N

6: EncryptionKernel(uCUDA, vCUDA, mCUDA, tCUDA, hCUDA, rCUDA)
7: u← uCUDA

8: v← vCUDA

9: return [u,v]

Algorithm 5 GPUDecryption(u, v, s)
1: mCUDA

2: uCUDA ← u
3: vCUDA ← v
4: sCUDA ← s
5: DecryptionKernel(mCUDA, uCUDA, vCUDA, sCUDA)
6: m← mCUDA

7: return m

33

4.2 SIMD implementations

For the SIMD implementation the code for the Fourier transform (Algorithms 8, 10),
reverse Fourier transform (Algorithms 9, 11), the dot product (Algorithms 6, 7) and the
supporting code for these (Algorithms 12, 13, 14, 15) was changed. Although we had
two different SIMD implementations, one for ARM and one for x86, the general ideas
are the same and that is why the pseudo code is so similar. A C++ library containing the
Neon extension was used for the ARM chip and a library containing the AVX2 intrinsics
was used for the x86 chips. The 128 bit floating point precision used by the original
code was not compatible with our SIMD instructions since the maximum support is 64
bit floating point. For this reason we had to downgrade the precision which enabled us
to perform operations on two 64 bit elements using Neon or four 64 bit elements using
AVX2 at the same time. This downgrade in precision had the same results as it had for
our GPU implementation: no affect on the outcome in all tests.

DotProduct was implemented first and the basic idea was pretty straightforward; to
reduce the number of multiplications and additions needed. This was done by moving
the maximum number of elements into SIMD vectors and performing the same opera-
tion on multiple elements at the same time. Effectively speeding up the algorithm by a
factor close to the vector sizes.

Implementing the Fast Fourier Transform algorithms with SIMD was less straightfor-
ward. To be able to implement the FFT algorithms using SIMD a complex data type
compatible with SIMD was needed. This was done by storing the real and imaginary
parts of complex numbers in different SIMD vectors and overriding each mathematical
operation with their complex counterpart using SIMD instructions. The rest followed
similarly to the idea of the DotProduct implementation: reduce the number of math-
ematical operations in each step and adapt the code to use SIMD instructions instead
of ordinary C++ statements such as EveryOther in algorithms 8, 10 and ReverseEv-
eryOther in algorithms 9, 11. ω was not converted into the complex SIMD type since
doing so did not increase performance but reduce accuracy because of the many recur-
sive multiplications and small differences between two ωs.

34

Algorithm 6 DotProduct(x1, x2)
1: sumSIMD256← 0
2: for i ∈ {0, 4, 8, 12, ...} do
3: reg1SIMD256← x1[i, ..., i+ 3]
4: reg2SIMD256← x2[i, ..., i+ 3]
5: sumSIMD256← sumSIMD256 + (reg1SIMD256 · reg2SIMD256)
6: end for
7: sum64 ← Reduce(sumSIMD256)
8: return sum64

Algorithm 7 DotProduct(x1, x2)
1: sumSIMD128← 0
2: for i ∈ {0, 2, 4, 6, ...} do
3: reg1SIMD128← x1[i, i+ 1]
4: reg2SIMD128← x2[i, i+ 1]
5: sumSIMD128← sumSIMD128 + (reg1SIMD128 · reg2SIMD128)
6: end for
7: sum64 ← Reduce(sumSIMD128)
8: return sum64

35

Algorithm 8 FFTStep(fSIMD256, n, ω)
1: if n = 4 then
2: f4×64 ← fSIMD256[0]

3: fft4×64[0]← f4×64[0] + f4×64[2]i+
1√
2
(f4×64[1] + f4×64[3]) · (1, i)

4: fft4×64[1]← f4×64[0]− f4×64[2]i+
1√
2
(f4×64[1]− f4×64[3]) · (−1, i)

5: fft4×64[2]← f4×64[0] + f4×64[2]i+
1√
2
(f4×64[1] + f4×64[3]) · (−1,−i)

6: fft4×64[3]← f4×64[0]− f4×64[2]i+
1√
2
(f4×64[1]− f4×64[3]) · (1,−i)

7: fftSIMD256[0]← fft4×64

8: else
9: feven ← EveryOther(fSIMD256, 0)
10: fodd ← EveryOther(fSIMD256, 1)
11: ffteven ← FFTStep(feven, n

2
, ω2)

12: fftodd ← FFTStep(fodd, n
2
, ω2)

13: ωk
SIMD256 ← [ω, ω3, ω5, ω7]

14: for k ∈ {0, 1, 2, ..., n
4
− 1} do

15: fftSIMD256[k]← ffteven[k mod n
8
] + ωk

SIMD256 · fftodd[k mod n
8
]

16: ωk
SIMD256 ← ω8 · ωk

SIMD256

17: end for
18: end if
19: return fftSIMD256

36

Algorithm 9 ReverseFFTStep(fftSIMD256, n, ω)
1: if n = 4 then
2: fft4×64 ← fftSIMD256[0]

3: f4×64[0]← fft4×64[0] + fft4×64[2] + fft4×64[1] + fft4×64[3]

4: f4×64[1]← (fft4×64[0]− fft4×64[2]) · (1,−i)+ (fft4×64[1]− fft4×64[3]) · (−1,−i)
5: f4×64[2]← fft4×64[0] + fft4×64[2]− (fft4×64[1] + fft4×64[3])

6: f4×64[3]← (fft4×64[0]− fft4×64[2]) · (1,−i)− (fft4×64[1]− fft4×64[3]) · (−1,−i)
7: fSIMD256[0]← [1

4
, 1
4
√
2
,− i

4
,− i

4
√
2
] · f4×64

8: else
9: ωk

SIMD256 ← [ω, ω3, ω5, ω7]

10: for k ∈ {0, 1, 2, ..., n
8
− 1} do

11: ffteven[k]← 1
2
(fftSIMD256[k] + fftSIMD256[k + n

8
])

12: fftodd[k]← 1
2
ωk
SIMD256 · (fftSIMD256[k]− fftSIMD256[k + n

8
])

13: ωk
SIMD256 ← ω8 · ωk

SIMD256

14: end for
15: feven ← ReverseFFTStep(ffteven, n

2
, ω2)

16: fodd ← ReverseFFTStep(fftodd, n
2
, ω2)

17: fSIMD256 ← ReverseEveryOther(feven, fodd)
18: end if
19: return fSIMD256

37

Algorithm 10 FFTStep(fSIMD128, n, ω)
1: if n = 2 then
2: f2×64 ← fSIMD128[0]

3: fft2×64[0]← f2×64[0] + f2×64[1]i

4: fft2×64[1]← f2×64[0]− f4×64[2]i

5: fftSIMD128[0]← fft2×64

6: else
7: feven ← EveryOther(fSIMD128, 0)
8: fodd ← EveryOther(fSIMD128, 1)
9: ffteven ← FFTStep(feven, n

2
, ω2)

10: fftodd ← FFTStep(fodd, n
2
, ω2)

11: ωk
SIMD128 ← [ω, ω3]

12: for k ∈ {0, 1, 2, ..., n
2
− 1} do

13: fftSIMD128[k]← ffteven[k mod n
4
] + ωk

SIMD128 · fftodd[k mod n
4
]

14: ωk
SIMD128 ← ω4 · ωk

SIMD128

15: end for
16: end if
17: return fftSIMD128

38

Algorithm 11 ReverseFFTStep(fftSIMD128, n, ω)
1: if n = 2 then
2: fft2×64 ← fftSIMD128[0]

3: f2×64[0]← fft2×64[0] + fft2×64[1]

4: f2×64[1]← (fft2×64[0]− fft2×64[1]) · (0,−i)
5: fSIMD128[0]← 1

2
f2×64

6: else
7: ωk

SIMD128 ← [ω, ω3]

8: for k ∈ {0, 1, 2, ..., n
4
− 1} do

9: ffteven[k]← 1
2
(fftSIMD128[k] + fftSIMD128[k + n

4
])

10: fftodd[k]← 1
2
ωk
SIMD128 · (fftSIMD128[k]− fftSIMD128[k + n

4
])

11: ωk
SIMD128 ← ω4 · ωk

SIMD128

12: end for
13: feven ← ReverseFFTStep(ffteven, n

2
, ω2)

14: fodd ← ReverseFFTStep(fftodd, n
2
, ω2)

15: fSIMD128 ← ReverseEveryOther(feven, fodd)
16: end if
17: return fSIMD128

Algorithm 12 XFFT(fX)
1: fSIMD ← Convert(fX)
2: fftSIMD ← FFTStep(fSIMD, N, e

iπ
N)

3: fftimag ← Convert(fftSIMD)
4: return fftimag

Algorithm 13 XReverseFFT(fftimag)
1: fftSIMD ← Convert(fftimag)
2: fSIMD ← ReverseFFTStep(fftSIMD, N, e−

iπ
N)

3: fX ← Convert(fSIMD)
4: return fX

39

Algorithm 14 SIMDEncryption(m, t, h)
1: u0, v0
2: r←random {−1, 0, 1}N

3: fftr ← XFFT(r)
4: fftt ← XFFT(t)
5: ffth ← XFFT(h)
6: for i ∈ {0, 1, 2, ..., N − 1} do
7: u0[i]← fftr[i] · ffth[i]
8: v0[i]← fftr[i] · fftt[i]
9: end for
10: u← XReverseFFT(u0)
11: v← XReverseFFT(v0)
12: for i ∈ {0, 1, 2, ..., N − 1} do
13: e1 ←random {−1, 0, 1}
14: e2 ←random {−1, 0, 1}
15: u[i]← u[i] + e1 mod q

16: v[i]← v[i] + e2 + q
2
m[i] mod q

17: end for
18: return [u,v]

40

Algorithm 15 SIMDDecryption(u, v, s)
1: m0

2: fftu ← XFFT(u)
3: ffts ← XFFT(s)
4: for i ∈ {0, 1, 2, ..., N − 1} do
5: m0[i]← fftu[i] · ffts[i]
6: end for
7: m← XReverseFFT(m0)
8: for i ∈ {0, 1, 2, ..., N − 1} do
9: x← v[i]−m[i] mod q

10: if x < q
4
or 3q

4
< x then

11: m[i]← 0

12: else
13: m[i]← 1

14: end if
15: end for
16: return m

4.3 NFL implementation

Although not mentioned in the original paper by Ducas et al. [11], in later revised ver-
sions and presentations the NFLlib library is mentioned and referred to as the preferred
encryption method. However no available code implementing it existed and the docu-
mentation for the library is limited. Looking at code of the files included in the library
we were able to find available functions and all pre-computed values used in the library.
From this it was possible to conclude what functions produced our targeted operation:
convolution on polynomials in a cyclic group.

The problem is that the main modulus q1q2q3... = Q used in CRT is based on the pre-
computed values and is therefore static which is not ideal for us. So in order to get
results in our cyclic group we had to set Q to be larger than a certain threshold based
on our q and N . Calculating this threshold is done by looking at the polynomials used
in encryption/decryption, these polynomials have max degree N − 1 and maximum
constant value q − 1. Now looking at the discrete convolution function,

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m]

41

and fitting this to our encryption/decryption polynomials we get:

max((f ∗ g)[n]) =
N∑

m=0

(q − 1)(q − 1) = N(q2 − 2q + 1) ≤ Nq2 + 1

This is the maximum value gained before modular reduction that needs to be supported.
ForN = 2048 = 211 and q ≈ 227 we get the threshold 265 < Q. We could now perform
accurate convolution but we still needed to manage large values which are handled as
negative values by the NFLlib library. Therefore an extra check was needed after con-
volution which reinterpreted negative (large) values by converting x = −a + Q to
y = −a + q. We now had a working convolution in our intended cyclic group and the
rest of the encryption/decryption code could be implemented as normal (Algorithms 16,
17).

About 30% of the NFLlib library is written in assembly without support for ARM, for
this reason it was not possible to run the NFL tests directly on the ARM64 hardware.

Algorithm 16 NFLEncryption(m, t, h)
1: rGMP ←random {−1, 0, 1}N

2: tGMP ← t
3: hGMP ← h
4: rNFL ← rGMP

5: tNFL ← tGMP

6: hNFL ← hGMP

7: uNFL ← rNFL ∗ hNFL

8: vNFL ← rNFL ∗ tNFL

9: uGMP ← uNFL

10: vGMP ← vNFL

11: for i ∈ {0, 1, 2, ..., N − 1} do
12: e1 ←random {−1, 0, 1}
13: e2 ←random {−1, 0, 1}
14: uGMP [i]← uGMP [i] mod q

15: vGMP [i]← vGMP [i] mod q

16: u[i]← uGMP [i] + e1 mod q

17: v[i]← vGMP [i] + e2 + q
2
m[i] mod q

18: end for
19: return [u,v]

42

Algorithm 17 NFLDecryption(u, v, s)
1: m
2: uGMP ← u
3: vGMP ← t
4: sGMP ← h
5: uNFL ← uGMP

6: sNFL ← sGMP

7: mNFL ← uNFL ∗ sNFL

8: mGMP ← mNFL

9: for i ∈ {0, 1, 2, ..., N − 1} do
10: mGMP [i]← mGMP [i] mod q

11: x← vGMP [i]−mGMP [i] mod q

12: if x < q
4
or 3q

4
< x then

13: m[i]← 0

14: else
15: m[i]← 1

16: end if
17: end for
18: return m

43

Chapter 5

Results

After each method had been implemented and thoroughly tested the code was run on
each platform and benchmarks were performed for different values of N. The values
512, 1024 and 2048 were selected as appropriate values as this spans the security range
from acceptable to very high and a random prime on the order of 227 was used as q (as
was the case for the original report by Ducas et al. [11]). In this chapter we present the
results from these benchmarks in appropriate tables and graphs.

5.1 Master key creation

Table 5.1 shows the time it took to generate the master secret key for various sizes of
N on different hardware. When N is increased so is the time it takes to create the key.
The same standard code was used on all three platforms for this measurement and as
can be seen by the results the ARM64 processor was slowest while the x86 platforms
performed quite similar to each other. The table is plotted in figure 5.1 which shows the
non-linearity of the procedure.

44

Platform N Time
ARM64 512 4.36
ARM64 1024 22.85
ARM64 2048 152.23
x86-1 512 1.79
x86-1 1024 8.91
x86-1 2048 46.57
x86-2 512 2.44
x86-2 1024 11.89
x86-2 2048 58.78

Table 5.1: Times in s for Master Key generation on the different platforms.

Figure 5.1: Median master key generation time plotted for all platforms.

5.2 User key generation, encryption and decryption

5.2.1 x86

Table 5.2 contains the times it took on the desktop computer (x86-1) for generating user
keys, encrypt and decrypt. The standard implementation is faster than all optimized
implementations when it comes to generating user keys as seen in figure 5.2a. The
standard and the AVX2 implementation performs similarly but the CUDA implemen-
tation is far worse. However the encryption and decryption is faster on the optimized
versions and in table 5.3 we can see how many times faster the different algorithms

45

were compared to the standard implementation. On all optimization variants the speed
up increased when N increased for decryption and encryption, this can be seen in figure
5.3a and 5.4a.

The results from the virtual machine (x86-2) are shown in table 5.4 and the speedups
are shown in table 5.5. Like the desktop computer the standard implementation had the
fastest user key generation but the SIMD optimization is very close because the speedup
is close to one, this can also be seen in 5.2b where Standard and SIMD are plotted very
close together. Encryption and decryption are faster on all three of the optimizations.
The largest speedup is the same for the virtual machine and the desktop computer and
it is the SIMD optimization for N = 2048. Looking at figure 5.3b and 5.4b we can see
that the speedup increases as N increases.

Type N SK Gen Encryption Decryption
Standard 512 7.29 0.57 0.27
Standard 1024 24.90 2.23 1.06
Standard 2048 93.10 8.22 3.99
SIMD 512 7.34 0.14 0.04
SIMD 1024 26.12 0.29 0.09
SIMD 2048 106.47 0.62 0.19
GPU 512 497.54 0.92 0.49
GPU 1024 1035.29 1.18 0.57
GPU 2048 2015.83 1.92 0.88
NFL 512 - 0.40 0.19
NFL 1024 - 0.80 0.40
NFL 2048 - 1.65 0.84

Table 5.2: Times in ms for different implementations on x86-1.

46

Type N SK Gen Encryption Decryption
Standard 512 1 1 1
Standard 1024 1 1 1
Standard 2048 1 1 1
SIMD 512 0.99 4.15 6.61
SIMD 1024 0.95 7.70 11.90
SIMD 2048 0.87 13.24 21.00
GPU 512 0.02 0.63 0.55
GPU 1024 0.02 1.90 1.87
GPU 2048 0.05 4.28 4.51
NFL 512 - 1.44 1.43
NFL 1024 - 2.81 2.68
NFL 2048 - 5.00 4.74

Table 5.3: Speedup relative to the standard run with the same N (standard time/new
time) on x86-1.

Type N SK Gen Encryption Decryption
Standard 512 10.14 0.67 0.28
Standard 1024 38.04 2.93 1.20
Standard 2048 140.02 12.18 5.85
SIMD 512 11.22 0.22 0.06
SIMD 1024 39.96 0.45 0.13
SIMD 2048 145.31 0.94 0.28
GPU 512 171.70 0.49 0.24
GPU 1024 371.34 1.02 0.45
GPU 2048 864.02 1.86 0.75
NFL 512 - 0.57 0.28
NFL 1024 - 1.16 0.57
NFL 2048 - 2.42 1.19

Table 5.4: Times in ms for different implementations on x86-2.

47

Type N SK Gen Encryption Decryption
Standard 512 1 1 1
Standard 1024 1 1 1
Standard 2048 1 1 1
SIMD 512 0.90 3.09 4.73
SIMD 1024 0.95 6.51 9.28
SIMD 2048 0.96 12.95 21.27
GPU 512 0.06 1.37 1.20
GPU 1024 0.10 2.88 2.68
GPU 2048 0.16 6.57 7.79
NFL 512 - 1.17 1.022
NFL 1024 - 2.53 2.09
NFL 2048 - 5.04 4.93

Table 5.5: Speedup relative to the standard run with the same N (standard time/new
time) on x86-2.

(a) x86-1 (b) x86-2

Figure 5.2: Median user key generation time on the x86-1 and x86-2 platforms for the
standard, CUDA and SIMD (AVX2) implementations.

48

(a) x86-1 (b) x86-2

Figure 5.3: Median encryption time on the x86-1 and x86-2 platforms for the standard,
CUDA, NFLlib and SIMD (AVX2) implementations.

(a) x86-1 (b) x86-2

Figure 5.4: Median decryption time on the x86-1 and x86-2 platforms for the standard,
CUDA, NFLlib and SIMD (AVX2) implementations.

5.2.2 ARM

On the ARM64, the only available optimization was using Neon SIMD instructions and
our results show that user key generation, encryption and decryption all became faster,

49

as shown in tables 5.6 and 5.7. The speedup is also dependent on N which can be seen
in figures 5.5, 5.6 and 5.7. The speedup with these SIMD instructions are almost the
same regardless of the value of N for all three algorithms, with the user key generation
speedup at 1.5, the encryption speedup at 2.1 and the decryption speedup at 2.2.

Type N SK Gen Encryption Decryption
Standard 512 149.24 7.51 3.79
Standard 1024 559.20 17.44 8.82
Standard 2048 2134.56 42.40 21.26
SIMD 512 97.46 3.59 1.74
SIMD 1024 365.58 8.19 3.95
SIMD 2048 1363.90 17.71 8.58

Table 5.6: Times in ms for different implementations run on ARM64.

Type N SK Gen Encryption Decryption
Standard 512 1 1 1
Standard 1024 1 1 1
Standard 2048 1 1 1
SIMD 512 1.53 2.09 2.18
SIMD 1024 1.53 2.13 2.24
SIMD 2048 1.57 2.40 2.48

Table 5.7: Speedup relative to the standard run with the same N (standard time/new
time) on ARM64.

50

Figure 5.5: Median user key generation time using the standard and SIMD (Neon) im-
plementations on the ARM64 platform.

Figure 5.6: Median encryption time using the standard and SIMD (Neon) implementa-
tions on the ARM64 platform.

51

Figure 5.7: Median decryption time using the standard and SIMD (Neon) implementa-
tions on the ARM64 platform.

5.3 Distributions

Our previous results use the median value obtained from the benchmarks but in order
to gain a deeper understanding of how the implementations perform we also present the
distribution of these values. Since the implementations on the two x86 platforms are the
same, only distribution figures from the x86-2 runs are presented here and for similar
reasons only runs for N=1024 are filtered.

Looking at all encryption and decryption graphs one important note needs to be con-
sidered. All implementations had a number of outliers outside of the graph area, some
even as high as 10 times the value of their median. Including these in the plot made
the graphs unreadable and for this reason the graphs were trimmed around the median
results.

5.3.1 x86

Figure 5.8a shows the distribution of the times it took to generate the master secret key
on the x86-2 platform for N=1024. Most of the generations took about the same time
as the median, 11.9 seconds, but it could be argued that the sample size is too small for
proper interpretation.

Looking instead at user key generation in figures 5.8b, 5.9a, and 5.9b they all have

52

the look of an almost normal distribution. For N=1024 with the standard method on the
x86-2 platform most of the generations were in a 0.4 ms interval between 37.8 ms and
38.2 ms. The AVX2 SIMD optimizations also had most of its generations within the
median±0.2 ms while the GPU optimization had a larger span of about 4 ms with more
outliers, still on the x86-2 with N=1024.

The encryption times on the x86-2 with different methods are shown in figures 5.10a,
5.10b, 5.11a and 5.11b. The three first mentioned distributions are similar and with an
early peak, indicating that most results are close to optimal and slowly decreases after
the peak. Distribution graph 5.11b also has an early peak but is more skewed towards
the center giving more of a normal distribution. All four graphs show a clear peak and
narrow range which is the ideal look for a well performing encryption implementation.

Decryption times for the x86-2 platform are shown in 5.12a, 5.12b, 5.13a and 5.13b.
Decryption is slightly less computational expensive than encryption and all decryptions
showed similar distribution to their encryption counterpart with the same or narrower
spread. The most noteworthy distribution is that of figure 5.12b which has an extreme
peak at the very beginning indicating very good performance.

(a) Distribution of 10 Master Key generations
on platform x86-2 for N=1024.

(b) Distribution of 100 user key generations
on platform x86-2 using Standard method for
N=1024.

Figure 5.8: Master secret key and user key generations.

53

(a) Distribution of 100 user key generations
on platform x86-2 using AVX2 method for
N=1024.

(b) Distribution of 100 user key generations on
platform x86-2 usingGPUmethod for N=1024.

Figure 5.9: User key generations.

(a) Distribution of 10000 encryptions on
platform x86-2 using Standard method for
N=1024.

(b) Distribution of 10000 encryptions on plat-
form x86-2 using AVX2 method for N=1024.

Figure 5.10: Encryptions on platform x86-2 using Standard and AVX2 methods on two
different charts.

54

(a) Distribution of 10000 encryptions on plat-
form x86-2 using GPU method for N=1024.

(b) Distribution of 10000 encryptions on plat-
form x86-2 using NFL method for N=1024.

Figure 5.11: Encryption times on platform x86-2 using GPU and NFL methods on two
different charts.

(a) Distribution of 10000 decryptions on
platform x86-2 using Standard method for
N=1024.

(b) Distribution of 10000 decryptions on plat-
form x86-2 using AVX2 method for N=1024.

Figure 5.12: Decryption times on platform x86-2 using Standard and AVX2 methods
on two different charts.

55

(a) Distribution of 10000 decryptions on plat-
form x86-2 using GPU method for N=1024.

(b) Distribution of 10000 decryptions on plat-
form x86-2 using NFL method for N=1024.

Figure 5.13: Decryption times on platform x86-2 using GPU and NFL methods on two
different charts.

5.3.2 ARM64

Taking a look at master secret key generation on ARM64 shown in figure 5.14 we see
that most of the generations were also close to the median 22.8 seconds but almost as
many were closer to 27 seconds. A better representative value would therefor have been
somewhere in between, around 25 seconds. Again the sample size could be argued to
be too small.

In figures 5.15a and 5.15b the distribution of user key generations is shown and like
on x86-2 they too look normal distributed except for a few outliers. When it comes to
the range of the distributions, most of the generation times lies within 3 ms intervals
and even wider if single values are included.

The distributions in 5.16a and 5.16b are encryption times from the ARM64 with the
standard and Neon SIMDmethods. Most of the times for the standard and SIMDmeth-
ods lies within a 0.15 ms interval but there appears to be a slightly larger spread for
the Neon method even though the rate between fast results and most common results
appear to be similar.

The distribution of decryption for the ARM64 can be seen in 5.17a and 5.17b. For
the Neon method most decryptions where in the extremely narrow range of between
3.94 ms and 3.95 ms. Meanwhile the standard decryption method on the ARM64 had
most of the decryptions in the range between 8.8 ms and 8.7 ms, a slightly larger in-

56

terval. As for the similarities between encryption and decryption shapes, the standard
methods both have close to a normal distribution and so does Neon decryption while
Neon encryption stands out on its own with the least normal looking distribution.

Figure 5.14: Distribution of 10 Master Key generations on platform ARM64 for
N=1024.

(a) Distribution of 100 user key generations on
platform ARM64 using Standard method for
N=1024.

(b) Distribution of 100 user key generations
on platform ARM64 using Neon method for
N=1024.

Figure 5.15: User key generations.

57

(a) Distribution of 1000 encryptions on plat-
form ARM64 using Standard method for
N=1024.

(b) Distribution of 1000 encryptions on plat-
form ARM64 using Neon method for N=1024.

Figure 5.16: Distribution on 1000 encryptions on platform ARM64 using Standard and
Neon methods on two different charts.

(a) Distribution of 1000 decryptions on plat-
form ARM64 using Standard method for
N=1024.

(b) Distribution of 1000 decryptions on plat-
form ARM64 using Neon method for N=1024.

Figure 5.17: Distribution on 1000 decryptions on platform ARM64 using Standard and
Neon methods on two different charts.

58

Chapter 6

Discussion

6.1 Measurements

Results of the previous chapter showed that using CUDA to try and optimize the im-
plementation was not as good as we had initially hoped. Again looking at user key
generation in graphs 5.2a and 5.2b we see how badly the GPU performs on a task that
is only semi-parallel such as dot-product. We suspect that the low efficiency from the
CUDA dot-product implementation stems from all the data copying between CPU and
GPU that is required before and after calling a kernel. The arguments x1 and x2 in al-
gorithm 1 has the length 2N and needs to be filled and fetched between each kernel call
and although the product part of dot-product can be performed in parallel, the summa-
tion needs to be done sequentially which is not optimal for CUDA code. An indication
that this is the case is the linearity in graph 5.2a and 5.2b.

As for the encryption and decryption using CUDA the performance boost is better
and even outperforms the NFL implementation on the x86-2 tests. With more com-
putations performed in parallel during both encryption and decryption it was expected
that the CUDA implementation would perform well, making it possible to convert the
O(N log(N)) runtime of using FFT for convolution into O(N) by using vector-matrix
multiplication in parallel instead. This small difference did not appear to make a big
enough difference to outperform FFT using AVX2. The drawbacks are most likely the
same as for dot-product, copying between memory in algorithms 4 and 5 takes time.
Since the encryption algorithm is less sequentially dependent, it could perhaps be pos-
sible to change more of Prest’s original code to run more on the GPU side, avoid some
data copying and gain slightly better results.

59

Prest’s performance boosts of using the NFLlib library for encryption and decryption
was stated to be up to 10x. Our results did not achieve this and it is unclear how it could
have been achieved as our maximum boost was closer to 5x. However during imple-
mentation, tests were performed using the pre-computed CRT value of q1q2q3 · · · = Q

and not the intended q. Writing the encryption algorithm this way allowed us to ignore
the conversions to mod q discussed in section 4.3 and the difference between standard
and NFL became a factor close to 10. The problem is that the value q becomes static
doing it this way and in order to change it, some or all pre-computed values in the NFL
library needs to be recomputed and set but finding how and which was not possible for
us to find even when looking at the available code for the library. Doing it this way
also removes the customizability implementing in software provides. Even if we did
not gain the 10x performance boost we had hoped for, NFL did perform as well and
even better than our CUDA implementation which requires dedicated GPU hardware.

Another surprising result was the out-performance of the AVX2 dot-product implemen-
tation by the Neon implementation. The performance of standard user key generation
and AVX2 generation were about the same or worse while Neon user key generation
had a boost of around 50%. The expected outcome was that the boost from AVX2
was supposed to be about twice the boost of Neon since AVX2 supports a SIMD vec-
tor size twice the size of that of the Neon vector size. Comparing the AVX2 encryp-
tion/decryption results to the Neon encryption/decryption results are more in line with
our expectations. By comparing the results from tables 5.3, 5.5 and 5.7 we see that there
is no single factor that can be used to show the difference, this is because the difference
is non-linear and most likely dependent on N and the FFT runtime O(N log(N)) be-
coming N

2
log(N

2
) for Neon and N

4
log(N

4
) for AVX2.

Also visible in graphs 5.3a, 5.3b and 5.6 is how dependent the speed-ups are on N.
In short, larger sizes of N benefits more by the optimizations so increasing N even fur-
ther to 4096, 8192, 16384 and so on would benefit more and more. The problem is that
N > 2048 is not necessary for security reasons today and the loss in overall performance
makes it less desirable even if overall security increases with larger N. Another thing
previously not discussed is how the overall data rate is also dependent on N. On ARM64
with N=512 the data rate using standard encryption is

1

7.51 · 10−3
· 512 = 133 · 512 ≈ 68Kbps

60

and
1

42.4 · 10−3
· 2048 = 23.6 · 2048 ≈ 48Kbps

for N=2048. For Neon encryption these rates become

1

3.59 · 10−3
· 512 = 279 · 512 ≈ 143Kbps

and
1

17.71 · 10−3
· 2048 = 56 · 2048 ≈ 116Kbps

respectively. This shows the relative boost in data rates when N increases. In the stan-
dard implementation we have a 29% loss in data rate using N=2048 compared to using
N=512, this same number is only 19% using Neon and although the difference is small
it is still worth noting.

If we compare the results to the most widely used PKI algorithm used today; RSA,
our measured speeds are relatively good. RSA also drastically decreases performance
as key sizes increase, however for RSA performance limitations occurs during the de-
cryption phase. Taking a recommended key size of 4096 bits for RSA, the decryption
time takes hundreds to thousands of milliseconds depending on the hardware. Compar-
ing this to table 5.6 we see that the longer of our two phases, encryption, only takes 29
to 35 milliseconds for the same amount of data on low performance hardware.

Still the overall data rates on ARM64, even with Neon optimization, 143 Kbps is mod-
est for modern applications. For these cases it would be recommended to use this IBE
scheme as the initial procedure of a key exchange before switching over to a faster,
symmetric, post-quantum secure, algorithm such as AES. This is usually already how it
is done with PKI and RSA today. Comparing AES to the IBE scheme is hard because
encrypting 256 bits (largest key size of AES) would take the same amount of time as
the times presented in figure 5.6, since encryption works on entire messages and 256
bits is smaller than a single message in all cases.

6.2 Comparison with PKI setup

6.2.1 Architectural differences

A public key infrastructure often contains a CA, an RA and a certificate storage to han-
dle the certificates needed whilst an identity-based setup handles most of this with the

61

TA (trusted authority). The TA is accountable for creating and handing out all keys and
this can take place immediately when a network is created. This could decrease the load
on the client side because the clients only need to know the master public key, its user
key and the IDs of the other clients. Compared with a PKI where the clients must not
only have its decryption key but also a CA trust store. The trust store is necessary to be
able to check certificates to find out if they should be trusted, meaning it is signed by a
trusted CA, and has not been revoked or expired.

Figure 6.1: Certificate request and management for a user in PKI. The user sends a
certificate signing request to the certificate authority and gets a certificate in return.

An identity-based system needs a trusted third party that generates the keys needed.
In a PKI the users could actually create their own keys but they would still need cer-
tificates and for that a third party is needed, it is often a CA. This means both systems
need some sort of third party but the key generation can be done differently.

Since an identity-based system does not need a certificate storage it can be easier to
scale up. To add new users the TA simply generates a user key, gives it to the user and
then the TA could easily broadcast the ID of the new user in plain-text to the other users
since the ID is not a secret. An identity-based system with many users also avoids the
overhead for managing and storing all the certificates needed, compared to a PKI where
the certificate storage must be able to store all certificates and keep a revocation list
updated. As can be seen in figure 6.2 the TA in the IBE scheme does not need to store

62

Figure 6.2: Identity-based encryption scheme setup. Themodel shows a user requesting
the Key Generation Center / Trusted Authority to join. The figure also shows what both
entities have and the steps being taken during a request to join.

much more than the keys.

6.2.2 Identification

In a public key infrastructure the CA generates certificates and makes sure a certificate
is bound to the correct key. The certificates contain a digital signature of a third party
that has verified the content. If one, verifying the certificate chain, trusts this third party
that has signed it, the public key is clear to use. Meanwhile in an identity-based setup
the key acts as an identifier because it is created with publicly identifiable information
of that user [27]. Instead of searching and checking certificates for a public key that is
valid, the users in an identity-based system encrypts messages with a master public key
combined with the recipient’s ID.

Certificates are used to create trust between users and in systems it is often desired
to have mutual trust, meaning that the sender and receiver can trust each other. In fig-
ure 6.1 it is shown how a user in a PKI sends a CSR (Certificate Signing Request) to the
CA and how the CA verifies the user and later creates and sends a certificate back. A
CSR is how a user applies for a digital certificate from a certificate authority in a public
key infrastructure.

63

6.2.3 Key generation and management

A client can choose to generate their own key pair and let the CA verify it or to let the
CA generate the key pair from scratch in a public key cryptosystem. There are scenarios
where it could be better to create the keys at the client side and some scenarios where
there is an advantage to create the keys at the CA. The ability to recover the encrypted
information is easier if a CA generates the keys because the CA can store a backup. If
the keys are generated by the client it becomes clear that there only exists one such key
pair and this would support non-repudiation and authenticity.

In an identity-based cryptosystem it is a trusted authority that acts as a key genera-
tion center that creates all the keys. Then the users create the public keys by combining
a master public key with the ID of the recipient and in some cases some other informa-
tion, for instance the date. In a PKI one public and one private key is generated for each
user while in an identity-based system everyone gets the same master public key and
one unique secret decryption key, so there are fewer unique keys in an identity-based
cryptosystem. Both in IBE and PKI it is reasonable to use a TPM (Trusted Platform
Module) to safely keep the keys. The TPM is a standard for crypto processors to handle
keys and it provides confidentiality and integrity by not letting anyone unauthorized
access the keys.

Traditional public key infrastructure keeps a certificate revocation list in the certifi-
cate storage to keep up with expired and revoked keys. In some systems a certificate
revocation list could be hard to manage, one solution for this is to implement a short
lifespan for the certificates, meaning that new keys should be created frequently. In an
identity-based solution this would be more efficient because there are no certificates to
create and revoke but also one could use the date as an input with the ID and the mas-
ter public key. This would force all users to fetch a new user key from the generator
every new time period, by doing this the system could have regular key updates. There
are multiple reasons to use more input than just identity for encryption, beyond regular
key updates. If a key should be revoked one cannot simply revoke a person’s identity,
therefore it is a good idea to use something more than just the ID if the ID is very trou-
blesome to change (phone number or email address).

One problem with updating keys is that the new keys must be sent using a secure chan-
nel. For instance if the old keys are leaked the old channel would be unavailable. An-
other reason the previous channel should not be used is if one key is broken, all keys

64

after will also be available. So distributing new keys in a secure way is a problem for
both PKI and identity-based systems.

6.2.4 Differences in maintaining CIA

Since public key infrastructure has been around for a long time there are existing tech-
niques for how the CIA triad is fulfilled, for instance using TPMs and certificates. How-
ever, there are things that need to be addressed in an identity-based encryption scheme
to maintain the CIA triad. Users in an IBE scheme can keep the keys secure in a TPM
like they are in a public key infrastructure. This gives confidentiality and integrity to the
keys because only the TA and the users have access to the keys. An important difference
between IBE and PKI is that the TA in an IBE scheme has access to all keys, because
it has the master secret key, and can therefore decrypt everything sent. A PKI can on
the other hand choose to let the users create the keys and then only let the CA sign the
certificates so no one but the user has access to the keys. This is still not a problem for
the IBE scheme because the security at this TA should be a higher than the security at
the users and therefore it is not easier to access the keys from the TA, the consequences
on the other hand will be a lot greater if the TA is compromised.

Both a PKI and an IBE scheme can use signatures on their messages, it is done differ-
ently but the outcome is the same. The differences are that a public key infrastructure
needs a new key pair for each user and the required certificate for the public key. In an
identity-based encryption scheme the users only need one more key for signing and the
TA must be able to generate this signature creation key that is also identification based.
Signatures gives the receiver the possibility to verify the authenticity of the message
and also to prove that the message came from a known sender.

6.3 IBE in practice

PKI is currently the most used scheme but there are some areas where identity-based
encryption has an edge.

6.3.1 Internal vehicle communication

Inside a vehicle, multiple entities want to communicate with each other encrypted. A
case like this is suitable for identity-based encryption because the entities know each
other and therefore can use IDs instead of keeping track of certificates.

65

The modern cars of today consist of multiple computers or more specifically Electronic
Control Units (ECU) handling different tasks. To handle internal communication be-
tween the ECUs in the vehicle, identity-based encryption could be an option. There is
usually one ECU stronger than the others and that one can act as the TA. Generating
keys will take some time but as our results show it is possible on an ARM64. This would
also enable the possibility to have regular key updates because the TA is in the system
itself. Key updates with traditional PKI would mean that each ECU has to create a new
key pair and send a certificate signing request to a certificate authority. This would also
occur in the production line to get the first key pair and the accompanying certificate.
Changing PKI to IBE would reduce the amount of certificates each ECU would have to
handle and a CA and CSRs would not be necessary.

6.3.2 Email system

An email system using an identity-based encryption and signing scheme would resem-
ble an ordinary mail system. The sender only needs the ID of the recipient to send an
encrypted message. The recipient can verify the signature of the sender with a verifi-
cation algorithm that takes the sender’s ID as input and also decrypts the message with
the user key.

Companies could easily implement such a solution for their employees to handle in-
ternal communication and in this setup the company itself works as the TA. When a
new employee joins the company they get two secret keys based on an id, this ID could
be some combination of name, work title or phone number. The two keys are needed for
encryption and signing. They also need the encryption, decryption, signing and verifi-
cation algorithms but those are handled by the email system. To send a message in this
identity-based system the sender signs the message with its own identity and encrypts
it with the receiver’s identity and then the message is ready to be sent. The receiver’s
job is also easy because the decryption is done with its own identity and to verify the
signature the sender’s identity is used. In a company everyone knows the identity of the
others so there is no extra time spent searching for public keys.

If the company wants to add frequent key updates a solution could be to include the
date in the ID used for encryption and signing. This would force the users to fetch the
new keys every time they get updated. Updating the keys every week would mean that
if someone got hold of the master secret key they could only decrypt the messages from

66

that week and if the security requirements are higher the key updated can be more fre-
quent. The email system must also be able to handle if an employee quits or someone
should not be a part of the system anymore and therefore the TA/company must be able
to revoke keys. If the keys are updated frequently in the system the TA simply stops
issuing new keys to the employee that should have his keys revoked. If the system does
not have frequent key updates then it would be suitable to do a key update and give new
keys to all employees except the one who should not have new keys.

6.3.3 Updating and distributing keys

When the TA generates a new master secret key it must also generate new private secret
keys and a master public key and somehow distribute these to the users in the encryption
scheme. The difficulty of this problem depends on the system the encryption scheme
is used in. For an email system inside a company the distribution could be solved eas-
ily because they share the same network, some secure file transfer protocol would be
enough. If the TA and the users do not share the same network this problem becomes
trickier. Some sort of key exchange is necessary to be able to update keys regularly and
keep the keys secure.

67

Chapter 7

Summary and outlook

7.1 Results

As has previously been discussed, an area that could benefit from IBE is IoT devices
such as those in modern vehicles. It was for this reason important to see how an IBE
implementation would perform on such hardware. Seeing as our tests and optimization
showed promising results on an ARM processor, this should be seen as an optimistic
outcome.

Our results also showed that using SIMD for optimising the scheme proved easy to
implement and surprisingly beneficial. This observation should not limit itself to this
specific scheme but rather all polynomial based encryption schemes as operations on
polynomials can usually be represented as list-wise operations. For this reason we rec-
ommend that SIMD should be considered for all implementations of lattice based en-
cryption schemes. Fully parallel LWE with dedicated hardware is an option to increase
speeds. However, using CUDA to use both the CPU andGPU is not recommended since
expensive, high end GPUs did not outperform the simpler and built-in SIMD hardware.

Our implementations is on par or even outperforms the commonly used RSA algorithm
when it comes to the sum of the encryption and decryption process but has much larger
key sizes (multiple kilobytes). RSA decryption is much slower than encryption which
negatively affects servers in a client-server setup, as it is usually the servers task to de-
crypt and clients task to encrypt. This makes servers susceptible to CPU burn attacks
while encryption and decryption is more similar on this NTRU IBE which makes it less
vulnerable to such attacks.

68

7.2 Future work

It would be interesting to convert and test even more of the original code into SIMD.
Having gone through the entire code there is not much to gain by further trying to op-
timize encryption or decryption with SIMD, but both master secret key generation and
user key generation could be optimized further by updating more than DotProduct. Us-
ing AVX-512 for x86 architecture and SVE for ARM architecture could also be worth
investigating further, as well as updating the NFLlib to use Neon ARM instructions to
see its performance on slower hardware.

7.3 Outlook

Quantum computers are not here yet and it is not certain there ever will exist working
quantum computers capable of breaking today’s cryptographic schemes. However, if
quantum computers ever become an option it would be wise to be prepared and have
post-quantum encryption algorithms ready and preferably in use. Because of the Store
Now, Decrypt Later attacks and the fact that memory is cheap nowadays implement-
ing hybrid schemes is something worth looking into. Hybrid schemes are also recom-
mended by the Bundesamt für Sicherheit in der Informationstechnik (BSI). TheNational
Institute of Standards and Technology (NIST) is also on the way towards quantum se-
cure cryptography with standardized algorithms that can withstand attacks from Shor’s
algorithm implemented on quantum computers.

69

Bibliography

[1] Executive summary—NIST SP 1800-25 documentation. https://www.nccoe.
nist.gov/publication/1800-25/VolA/index.html. Accessed: 2024-4-18.

[2] Quantum-safe cryptography –fundamentals, current developments and recom-
mendations. https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/Brochure/quantum-safe-cryptography.pdf?__blob=
publicationFile&v=6. Accessed: 2024-4-25.

[3] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, andMarc-Olivier Killijian.
Xpir: Private information retrieval for everyone. Cryptology ePrint Archive, Paper
2014/1025, 2014. https://eprint.iacr.org/2014/1025.

[4] Martin R Albrecht, Miloš Prokop, Yixin Shen, and Petros Wallden. Variational
quantum solutions to the shortest vector problem. Quantum, 7:933, 2023.

[5] Hossein Amiri and Asadollah Shahbahrami. Simd programming using intel vector
extensions. Journal of Parallel and Distributed Computing, 135:83–100, 2020.

[6] Ahmed M Bedewy, Yin Sun, and Ness B Shroff. Optimizing data freshness,
throughput, and delay in multi-server information-update systems. In 2016 IEEE
International Symposium on Information Theory (ISIT), pages 2569–2573. IEEE,
2016.

[7] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas
Stebila. Hybrid key encapsulation mechanisms and authenticated key exchange.
In Post-Quantum Cryptography: 10th International Conference, PQCrypto 2019,
Chongqing, China, May 8–10, 2019 Revised Selected Papers 10, pages 206–226.
Springer, 2019.

[8] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Annual international cryptology conference, pages 213–229. Springer, 2001.

70

https://www.nccoe.nist.gov/publication/1800-25/VolA/index.html
https://www.nccoe.nist.gov/publication/1800-25/VolA/index.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf?__blob=publicationFile&v=6
https://eprint.iacr.org/2014/1025

[9] Shane Cook. CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes, 2012.

[10] Jintai Ding, XiangXie, andXiaodong Lin. A simple provably secure key exchange
scheme based on the learning with errors problem. Cryptology ePrint Archive,
Paper 2012/688, 2012. https://eprint.iacr.org/2012/688.

[11] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based en-
cryption over ntru lattices. In Advances in Cryptology–ASIACRYPT 2014: 20th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014, Proceedings,
Part II 20, pages 22–41. Springer, 2014.

[12] Pierre Fortin, Ambroise Fleury, François Lemaire, and Michael Monagan. High-
performance simd modular arithmetic for polynomial evaluation. Concurrency
and Computation: Practice and Experience, 33(16):e6270, 2021.

[13] Craig Gentry, Chris Peikert, andVinodVaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 197–206, 2008.

[14] Martin Hellman and Whitfield Diffie. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[15] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and
William Whyte. Ntrusign: Digital signatures using the ntru lattice. In Marc Joye,
editor, Topics in Cryptology — CT-RSA 2003, pages 122–140, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[16] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In International algorithmic number theory symposium, pages
267–288. Springer, 1998.

[17] David Joseph, Rafael Misoczki, Marc Manzano, Joe Tricot, Fernando Dominguez
Pinuaga, Olivier Lacombe, Stefan Leichenauer, Jack Hidary, Phil Venables, and
Royal Hansen. Transitioning organizations to post-quantum cryptography. Nature,
605(7909):237–243, 2022.

[18] Ravneet Kaur and Amandeep Kaur. Digital signature. In 2012 International Con-
ference on Computing Sciences, pages 295–301. IEEE, 2012.

71

https://eprint.iacr.org/2012/688

[19] Aqeel Sahi Khader and David Lai. Preventing man-in-the-middle attack in
diffie-hellman key exchange protocol. In 2015 22nd international conference on
telecommunications (ICT), pages 204–208. IEEE, 2015.

[20] Dinesh Khattar and Neha Agrawal. Rings, pages 185–190. Springer International
Publishing, Cham, 2023.

[21] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. Effi-
ciently masking polynomial inversion at arbitrary order. In International Confer-
ence on Post-Quantum Cryptography, pages 309–326. Springer, 2022.

[22] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische annalen, 261(ARTICLE):515–
534, 1982.

[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013.

[24] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryp-
tography. In Advances in Cryptology–EUROCRYPT 2013: 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings 32, pages 35–54. Springer, 2013.

[25] RMerkle. Secure communications over an insecure channel. submitted to. Comm.
ACM.

[26] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to
within some constant. SIAM journal on Computing, 30(6):2008–2035, 2001.

[27] Kenneth G Paterson and Geraint Price. A comparison between traditional public
key infrastructures and identity-based cryptography. information security Techni-
cal Report, 8(3):57–72, 2003.

[28] Jon Peddie. The History of the GPU-Steps to Invention. Springer Nature, 2023.

[29] Verónika Peralta. Data freshness and data accuracy: A state of the art. Instituto de
Computacion, Facultad de Ingenieria, Universidad de la Republica2006, 2006.

[30] Sara Ricci, Patrik Dobias, Lukas Malina, Jan Hajny, and Petr Jedlicka. Hybrid
keys in practice: Combining classical, quantum and post-quantum cryptography.
IEEE Access, 2024.

72

[31] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[32] Keegan Ryan and Nadia Heninger. Fast practical lattice reduction through iterated
compression. Cryptology ePrint Archive, 2023.

[33] Spyridon Samonas and David Coss. The cia strikes back: Redefining confidential-
ity, integrity and availability in security. Journal of Information System Security,
10(3), 2014.

[34] Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995.

[35] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology: Proceedings of CRYPTO 84 4, pages 47–53. Springer, 1985.

[36] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[37] Joseph H Silverman, Jill Pipher, and Jeffrey Hoffstein. An introduction to mathe-
matical cryptography. Springer, 2 edition, 2008.

[38] Kuldeep Singh, Manohar Sai Burra, and SoumyadevMaity. Identity based encryp-
tion and broadcast using hybrid cryptographic techniques. In 2022 International
Conference on Recent Trends in Microelectronics, Automation, Computing and
Communications Systems (ICMACC), pages 1–6. IEEE, 2022.

[39] Tage Stabell-Kulø and Simone Lupetti. Public-key cryptography and availabil-
ity. In Computer Safety, Reliability, and Security: 24th International Conference,
SAFECOMP 2005, Fredrikstad, Norway, September 28-30, 2005. Proceedings
24, pages 222–232. Springer, 2005.

[40] Zewen Sun, Zhifang Li, and ChuliangWeng. Co-utilizing simd and scalar to accel-
erate the data analytics workloads. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE), pages 637–649. IEEE, 2023.

[41] Atharva Takalkar and Bahubali Shiragapur. Quantum cryptography: Mathemati-
cal modelling and security analysis. In 2023 3rd Asian Conference on Innovation
in Technology (ASIANCON), pages 01–07. IEEE, 2023.

73

[42] Tristen Teague, Mayeesha Mahzabin, Alexander Nelson, David Andrews, and
Miaoqing Huang. Towards cloud-based infrastructure for post-quantum cryptog-
raphy side-channel attack analysis. In 2023 IEEE Design Methodologies Confer-
ence (DMC), pages 1–6. IEEE, 2023.

[43] Xiaoyun Wang, Guangwu Xu, and Yang Yu. Lattice-based cryptography: A sur-
vey. Chinese Annals of Mathematics, Series B, 44(6):945–960, 2023.

[44] Wikipedia contributors. Merkle’s puzzles — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Merkle%27s_
Puzzles&oldid=1208543827, 2024. [Online; accessed 17-April-2024].

74

https://en.wikipedia.org/w/index.php?title=Merkle%27s_Puzzles&oldid=1208543827
https://en.wikipedia.org/w/index.php?title=Merkle%27s_Puzzles&oldid=1208543827

Appendix A

Figure 7.1: Gperf chart of the original implementation, key generation part.

75

Figure 7.2: Gperf chart of the original implementation, encryption and decrytion part.

76

	Acknowledgement
	Introduction
	Literature review
	Motivation
	Goal
	Contributions
	Overview

	Background
	Key exchange methods
	Public key encryption
	RSA

	Identity-based encryption
	Key revocation

	Post-quantum cryptology & quantum computers
	How quantum computers breaks cryptography
	Hybrid schemes

	Lattices
	NTRU
	Key creation
	Encryption and decryption
	Signing
	NTRU lattice

	Learning with errors
	IBE NTRU
	IBE key generation
	Encryption and decryption
	IBE threat model

	Parallelization technologies
	CUDA
	SIMD

	Methodology
	Client server setup for ID-based NTRU in C++
	Hardware
	Software

	Implementation and Pseudocode
	CUDA implementation
	SIMD implementations
	NFL implementation

	Results
	Master key creation
	User key generation, encryption and decryption
	x86
	ARM

	Distributions
	x86
	ARM64

	Discussion
	Measurements
	Comparison with PKI setup
	Architectural differences
	Identification
	Key generation and management
	Differences in maintaining CIA

	IBE in practice
	Internal vehicle communication
	Email system
	Updating and distributing keys

	Summary and outlook
	Results
	Future work
	Outlook

	Bibliography
	Appendix A

