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Abstract

In a world where the volume of collected data increases daily, larger and
larger amounts of computations are needed to deliver data to the end-user. This
leads to a need for more efficient data handling as well as identifying opportu-
nities for avoiding unnecessary computation.

This thesis examines a view maintenance architecture, which involves pre-
computing the results of common queries and storing them in a separate data
structure. It will analyse how the structure of a query can influence its execu-
tion time and explore whether computation can be optimised through partial
updates. Two methods have been implemented. The first method updates only
the parts affected by new changes. However, determining whether a query needs
to be executed can sometimes take longer than running the query itself. To ad-
dress this, the second method updates the affected parts and executes groups of
queries with short execution times.

We evaluated these methods through three distinct experiments. The first
two experiments focused on the static analysis of queries, aiming to identify
appropriate operations to classify as complex as well as finding thresholds for
classifying groups of queries based on individual results. The final experiment
addressed the issue of partial updates in the context of view maintenance.

The key findings are that predicting computational complexity is feasible
but heavily dependent on the specifics of the database. Implementing logic for
deciding which queries to run instead of running them all can save significant
time and computations.

Keywords: Partial Updates, View Maintenance, Gremlin, Queries, Optimisation, Clas-
sification
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Chapter 1

Introduction

1.1 Context
The demand for more efficient data handling is essential in a world where the volume of
collected data increases daily. This rising volume necessitates larger and larger amounts of
computations to deliver data to the end-user. On a large scale, data centres storing this
vast amount of data are responsible for a substantial and escalating carbon footprint. Bhat-
tacharya et al. illustrate how these centres contribute to 2% of the world’s carbon emissions,
a figure that is steadily increasing [13]. One strategy to alleviate this impact is by reducing
the volume of computations or enhancing their efficiency.

The thesis is done at a company, hereby referred to as The Case Company. The Case
Company is trying to reduce its volume of computations and enhance its efficiency. They op-
erate in the realm of IT Inventory with their tool, hereby called The IT-Inventory System. The
IT-Inventory System connects to various data sources and then polls them for useful infor-
mation. Due to the wide range of information collected, it uses an in-house graph database,
designed for general data storage. The IT-Inventory System analyses the connections from
their graph database to give valuable insights about the IT environment of the current user.
The tool is run locally by each customer so that no data is needed to be transferred or stored
in any cloud service, as to increase their data security and governance.

The Graph Database in The IT-Inventory System integrates multiple data sources and
offers various user views. As databases are updated, these views must also be refreshed. Cur-
rently, there are two main approaches to achieve this:

• full re-computations

• partial updates

Full re-computations involve re-executing all queries from scratch whenever the underly-
ing data changes, which can be highly resource-intensive. On the other hand, partial updates
aim to update only the parts of the view that are affected by the data changes. While partial
updates can be more efficient in theory, they are not always preferable due to complexities in
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1. Introduction

implementation, maintenance overhead, and sometimes limited performance gains in cer-
tain scenarios. Efficient management strategies are crucial not only for optimising perfor-
mance but also for mitigating the environmental impact of data centres, which contribute
significantly to global carbon emissions. While The Case Company currently employs full
re-computations, this thesis will explore the feasibility of transitioning to partial updates to
mitigate these challenges. This exploration will primarily focus on analysing the trade-off
between performing partial updates and conducting a full re-computation. The analysis will
consider both the time involved and the number of computations required.

1.2 Problem Statement
This research aims to develop a method that minimises re-computations and enhances effi-
ciency. The current framework re-computes all of the queries when the database is updated
and a partial update could therefore be a better option.

This research will include an investigation of the possibility of predicting the execution
time from the structure of a developer-written query. From other programming languages,
for example, Java, we can tell that using a function to sort data will take a longer time to
execute than a simple get function. This structure could be the same or similar in a graph
query language, which is why it will be investigated. From this, it would potentially create the
possibility to tell which query should always be executed, as it would have a low execution
time, and which should only be executed if needed as they have a higher execution time.
This could enable the development of a strategy for which queries to re-run and which not
to. This strategy would eliminate unnecessary processing steps and further optimise The
IT-Inventory System’s performance.

The research will also analyse the potential benefits of doing a partial update by only ex-
ecuting the queries that are affected by the new information from the update of the database.
There are multiple avenues to enhance the updating procedure while ensuring data accuracy.
An effective strategy could be to collect information from the changed data and from that
information run relevant queries. The effectiveness and number of computations could have
a large overhead, meaning it could potentially be better for some database sizes than others.
Therefore, different sizes of databases will be tested.

The research questions are:

RQ1 What can the structure of a query in a graph database tell us about the execution time?

RQ2a What is the trade-off between running all queries versus implementing logic regarding
what query to run?

RQ2b How does the size of the database affect the trade-off?

1.3 Scope
This master thesis with corresponding research questions is limited to a scope which will be
described below:

• Only adding vertices
We will only consider adding a vertex/vertices to the database, meaning deletion or
changes of vertices will not be evaluated.
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1.4 Outline

• Not looking at edges
The tests do not directly address edges in any way. However, when running queries,
branching queries will be involved, indirectly incorporating edges.

• Limited to one query language
In our thesis, there will only be tests regarding one query language, Gremlin. This
means that the scope of RQ1 is only regarding the instance of Gremlin and is not
intended to be generalisable to other languages.

• Limited to in-house database and system
RQ2 depends on the implementation of the in-house database and system that is avail-
able to us. Therefore the results will not be able to provide an answer for the general
case.

1.4 Outline
This report starts with the context and problem statement in Chapter 1 Introduction. It is
followed by Chapter 2 Background that gives the background and necessary theory to under-
stand the rest of the report. The System Architecture, Chapter 3, explains The IT-Inventory
System that is used for this thesis. The experiments needed to evaluate and answer the re-
search questions are explained in Chapter 4, Experiments. The result of the experiments is
explained in Chapter 5, Results. In Chapter 6, Discussion, the result is then discussed and anal-
ysed together with the accompanying research question. Lastly is the Conclusion (Chapter 7)
where the result and discussion are tied to the conclusion regarding each research question.
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Chapter 2

Background

This section provides insights into existing concepts and theories that are relevant to this
thesis.

2.1 The IT-Inventory System
The tool is an IT Inventory management system that is built on top of their in-house devel-
oped graph database. By using a graph database as its storage solution, the tool can take in
any general IT system and represent their data as a graph. The Case Company has developed
a system that automatically takes inventory from customers’ databases and stores everything
strictly on-prem, meaning The IT-Inventory System is installed and run locally, for security
reasons. The company have chosen to develop an in-house database as they can customise
it and add features as they please. A more detailed explanation of The IT-Inventory System
architecture can be found in Section 3.

2.2 Graph DBMS
Relational databases may arguably be the most used type of database, which stores all data in
tables, rows and columns. In a graph database, the data is instead stored in a graph structure,
built by vertices/nodes, edges/relations and properties/attributes. These entities work as
follows:

• Node/Vertex
Vertices represent entities or instances in the databases. The same type of vertex might
be present but represent different entities, such as different persons being represented
by different vertices of the type Person. It can be related to a row in a relational
database or a document in a document-store database.

• Relation/Edge
Edges have no direct representation in relational databases but they connect vertices
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2. Background

through relationships in a graph, the closest representation being that of foreign keys
connecting entries in two tables. Depending on the database management system
(DBMS), these can be direct or indirect. Additionally, some DBMSs allow these to be
labelled, while others do not.

• Properties/Attributes
Attributes are Key-Value pairs that belong to a vertex. For example, if there was a
Person vertex this could be the name or address of that specific person.

Figure 2.1: Visual representation of a graph database by Ole Muss-
mann1.

The edges relate different vertices together, allowing them to represent information and
their relations to each other2. An example of each of the components composed together
into a graph can be seen in Figure 2.1.

2.2.1 Query Language (Gremlin)
To perform queries in a graph database it is convenient to use a query language, similar to
SQL (Structured Query Language) which is used in relational databases. Today SQL is one
of the most used languages for relational databases and it is originally based on the theory
of relational algebra and tuple relational calculus3. Examples of query languages for a graph
database are Cypher, SPARQL, Gremlin, GraphQL and AQL. At The Case Company the
chosen language is Gremlin. Some practitioners consider Gremlin especially language- and

1Ole Mussmann - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=87002327
2Graph database. [Online]. Available: https://en.wikipedia.org/wiki/Graph_database Accessed: 2024-08-20.
3SQL. [Online]. Available: https://en.wikipedia.org/wiki/SQL Accessed: 2024-08-20.
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2.3 View

database-agnostic4. Gremlin is developed by Apache TinkerPop and is a graph traversal lan-
guage. It lets its user express traversals or queries on the underlying property graph. Every
step is an atomic operation on the graph. It can either be map-step (transforming the ob-
jects in the stream), filter-set (removing objects from the stream), branch-step (branching
the stream on a predicate) or sideEffect-stream (computing data about the current stream).
These objects that are used to filter are from the graph such as vertices, relations and prop-
erties. Each step only affects the objects in the stream and not the actual graph. Using these
fundamental principles, the developer can compose several steps to answer questions from
the graph 5.

Gremlin is written as a chain of operations/functions on the incoming stream from the
graph. Each operation receives the data from the output of the previous step and then does
its transformation or filtering then gives the resulting stream to the next step in the chain.

Figure 2.2: Example of a traversal in Gremlin taken from Janus-
Graph6.

Dissecting the query in Figure 2.2, each operation and explaining what it does:

• g→ means that the starting point is graph g

• V( )→ transforms the input into the vertices of the graph

• has(‘name’, ‘hercules’)→ transforms the stream to only include vertices with the prop-
erty name that equals hercules (Filter-step)

• out(‘father’)→ on the incoming stream from the last operation it returns all vertices
that is connected by a relation father (Branch-step)

• out(‘father’)→ does the same again but this time on the fathers (Branch-step)

• values(‘name)→ returns the name property on the current stream of vertices (Map-
step)

In summary, the query in Figure 2.2, gives the name of all persons that are Hercules’s
grandfathers6.

2.3 View
When optimising querying in databases there are different ways to go about it, one being
creating Materialised Views of commonly used data. It is the technique of pre-computing the

4Navigating networks: An introduction to graph query languages. [Online]. Available:
https://linkurious.com/graph-query-languages/ Accessed: 2024-03-26.

5Apache TinkerPop™. [Online]. Available: https://tinkerpop.apache.org/ gremlin.html Accessed: 2024-03-
26.

6Gremlin Query Language. [Online]. Available: https://docs.janusgraph.org/ getting-started/gremlin/ Ac-
cessed: 2024-03-26.
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2. Background

most usual queries and storing the result as a snapshot in another data structure. This is to
lower the response time of a query by already having parts of it done. Views can according
to Currim et al. reduce the time for an analytical process of the data from hours, or in some
cases days, to minutes or seconds [5].

The timing of creating the snapshot depends on the use case for the specific Materialised
View. Some examples can be to update the view when there is bandwidth available for some-
thing more mobile, to push out updates when there has been an update to the database or
to update it when a user requests it manually.

As with most optimisations, some caveats needs to be considered:

1. What data should be stored in a view (View Selection)

2. How to keep it up to date with the underlying database (View Maintenance)

2.3.1 View Selection
Currim et al. try to solve the first problem regarding what views to choose by quantifying
different metrics and then using different methods of minimising the size of the view while
still including enough useful data [5]. Failing to choose the correct data to materialise reduces
the benefits of the optimisation as new data will still be required to load when users request.
For this thesis we consider view selection to be out of scope.

2.3.2 View Maintenance
The issue of keeping the views updated with correct data is directly aligned with the focus
of this thesis, as it represents a specific instance of the view maintenance problem. Since
various types of databases function differently, they require distinct optimisation strategies.
Not updating the data in the view as necessary results in the user not receiving up-to-date
data and could require more time spent on requests to the database.

A lot of research has gone into relational databases and how to keep the views updated.
For example, Qian and Wiederhold, Griffin et al. proposed an algorithm that models updates
as incremental changes to relations in the database. Their algorithm then derives the mini-
mal incremental relational expression that needs to be recomputed through the use of update
propagation [8]. An updated version that tries to fix some apparent errors has been devel-
oped by Trickey et al. in their paper where they explore an evolution of the prior method.
[3].

Another type of database is object-based. Also here has research gone into how to prop-
agate changes into the created views. Alhajj and Polat proposed a solution using classes that
include a modification list and a time span with all changes since the view was created or
updated [1]. The idea of keeping a list of changes could be applied to other types of databases
to create an effective system for view maintenance.

In the case of a more specific use of the View paradigm, there is the problem of using a
remote database for mobile use. As the cost of using the network on a mobile unit is higher
and it is more unreliable a view is often used. The mobile unit creates a view of the most
used data in local storage to resolve these issues. Then the problem of how to update the
view comes into play. K. Lee et al. suggest using a pull-based solution of the client requesting
updates instead of the server pushing out changes to all clients [7].
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2.4 Query Optimisation

2.4 Query Optimisation
Query optimisation is a broad field of research, that can be narrowed down into branches in
different subjects based on information such as database type, type of optimisation and dif-
ferent algorithms. Ionnadis explains the basic components of optimisation in a single select-
project-join query in a centralised relational DBMS[6]. For the thesis, the most important
part of the paper describes the Rewriter. This part of the optimiser applies transformations
to the given query to make it more efficient while still producing the same results. It does
not take into account the query cost, what kind of DBMS or what kind of database, instead
only looking at the static characteristics of the query[6]. Some more modules described by
Ionnadis are

• The Planner
Searches for the best plan of action for the given query by for example creating a search
tree of all paths

• The Algebraic Space
Determines the order of the operations of the queries sent to the Planner.

• The Method-Structure Space
The execution order given by the Algebraic Space determines the implementation
choices to be done.

• The Cost Model
Estimates the cost of the plans made from arithmetic functions the Cost Model con-
tains.

• The Size-Distribution Estimator
Estimates the size of queries and subqueries. Also, the frequency distributions of val-
ues in the results help the Cost Model to estimate the cost.

When evaluating the database’s performance in executing the written query, it is reason-
able to consider the runtime of various queries that incorporate different factors that might
impact execution time. In one such study, presented by Alamsyah et al., the results showed
that a query containing a join, or multiple MATCH statements in Cypher (or general graph
query language), took significantly longer to execute with some being a difference of almost
10x [11].

In a relational database, a SELECT statement could be classified as the baseline simple
query. Then it can be seen that a join increases the processing time by about 6x and a query
that also sorts the data takes about 20x the baseline. The most complex from here was a
query that included some arithmetic, at about 30x the baseline [10].

Hayath et al. explored how rewriting SQL queries could lead to an increase in per-
formance and speed [14]. They mention that the query writer needs to decide what opti-
misations to use depending on the situation at hand. Some things they tried were using
REGEXP_LIKE instead of LIKE, and instead of using a long list of IN using a temporary
table and ordering JOIN from largest table to smallest.

Parallelism is a key aspect of software optimisation, including in databases and queries.
Sadat et al. explored parallel environments in their paper [9]. They discovered that highly
dynamic query scheduling, which adapts based on observed execution times, outperforms
static methods in both complexity and load balancing. However, they noted that the overall
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2. Background

speedup is limited due to several factors, including the overhead of partitioning data and
aggregating results, as well as issues with locking, such as waiting for the final processor to
complete and competition for shared system resources.

In all theoretical ideas and inventions, there is the problem of translating them to prac-
tical use. Stuefer et al. researched how to handle optimism and pessimism when writing
optimisations. They landed on the idea that it is better to build for the robustness of the
execution plans instead of striving for unobtainable optimisations [4].

2.5 Asymptotic Complexity
Another crucial aspect of query optimisation involves analysing the execution time and com-
putational effort required to process a query. This can be effectively assessed through the
concept of asymptotic complexity, which examines the worst-case scenario concerning how
frequently each element of a dataset is accessed. Asymptotic complexity provides a frame-
work for understanding how the resource demands of an algorithm scale with the size of the
input data.

For instance, if the execution time of a query grows disproportionately compared to the
increase in data size, it may indicate inefficiencies in the algorithm’s design. Consider an
algorithm with a time complexity of O(N2); in this case, the effort required to compute
results increases quadratically with the size of the dataset. In contrast, algorithms with more
efficient time complexities, such as O(N) or O(N log N), exhibit a more manageable growth
rate, scaling linearly or logarithmically. As Skeppstedt notes, these differences in asymptotic
complexity can significantly impact the performance and scalability of algorithms [12].
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Chapter 3

System Architecture

This chapter describes and summarises the pipeline of The IT-Inventory System. The pipeline
is created to make the user of the software able to see up-to-date data from multiple sources
in one central hub. The pipeline is divided into three stages; Data Collection, Query Execu-
tion and Indexing.

In the first stage, searchable data is retrieved and updated through a Data Collection (Sec-
tion 3.1). The Data Collection is either started manually from The IT-Inventory System’s
user interface or automatically by the system during the night. The subsequent stage in-
volves running all the queries on the graph for the Data Collection. In the final stage, a
SearchTable (section 3.3) is built from the extracted query data and is used by customers to
perform their searches.

3.1 Stage: Data Collection
A Data Collection is a method to retrieve data from all sources connected to The IT-Inventory
System. The Indexer (Section 3.3) initiates its operation through the Data Collection, and the
indexing process determines which queries to run. Therefore most of the following processes
are run within the Indexer thus the Data Collection.

When The IT-Inventory System wants to consume new information from data sources
a Data Collection is started. From a Data Collection it is possible to get the changes from
the underlying data sources and from that it is possible to retrieve which vertices the change
belongs to. This information is pivotal to the thesis as it makes it possible to only execute
the queries that fill the need of the specific vertex.

3.2 Stage: Query Execution
There is a fixed number of executed queries in the current system as all of the queries are
written by the developers at The Case Company. This means that no customers can con-
trol the data gathered from the database, in the case of writing custom queries. While The
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IT-Inventory System’s queries were originally all in Gremlin code, The Case Company has
manually translated some of them into equivalent Java code as an optimisation. The pro-
grammatic queries are Gremlin queries that the developers have optimised into Java, some-
thing that needs to be done by hand. Therefore not all queries can be or are worth it to
translate to programmatic. During the testing and when gathering all queries around 46.8%
of the queries were programmatic. When running The IT-Inventory System the queries are
all parsed and optimised by the compiler as part of the start-up process. The query execution
is part of the indexing process, but can also be seen as an independent process depending on
the perspective.

A QueryGroup is a partition over the set of all The IT-Inventory System queries. A Query-
Group and a vertex are connected in such a manner that it is possible to identify the specific
QueryGroup to which each vertex belongs. The queries in a QueryGroup are grouped ac-
cording to the resulting name of the data retrieved. For example, multiple queries retrieve
the name from different kinds of vertices and could therefore be under the group with the
name Computer. All of these are run together and are therefore one group of queries. There
are 68 QueryGroups, each with a different amount of queries included. In Figure 3.1 it can
be seen how many queries are in different groups. A lot of the QueryGroups include the
same queries as similar information needs to be retrieved but for different assets, for exam-
ple, name and serial number. Therefore it is seen in the figure that 23 QueryGroups run 82
queries. All of the existing QueryGroups in the current system are used in this thesis.

3.3 Stage: Indexing

The end-user does not perform any direct search queries on the graph but instead on a struc-
ture providing indexing and searching in documents. This structure is hereby referred to as
the SearchTable. This table contains all the information that should be searchable by the cus-
tomer using The IT-Inventory System. For reference, this solution closely resembles the use
of a View, as explained in Section 2.3. The problem of choosing what to have in the View does
not apply to The IT-Inventory System as it is chosen from the business side of the company,
as the customer is shown what they pay for and what the company offers. The larger problem
is how to keep the SearchTable (View) updated to reflect the database.

As mentioned above, The IT-Inventory System relies on a set of predefined queries, hard-
coded into the system. These queries are executed against the data stored in the graph
database. The QueryGroups executes its corresponding queries which then extracts the
data from the graph database. The gathered information is then saved and indexed in the
SearchTable.

The Indexer takes the data from the Data Collection and indexes it. The indexer is auto-
matically run after each Data Collection and it works by iterating through the QueryGroups
(Section 3.2) and retrieving the relevant queries needed to gather data for the SearchTable.
An overview of the dataflow of the system can be seen in Figure 3.2.
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3.4 Integrating Implementation to The IT-Inventory System

Figure 3.1: Overview of how many queries a QueryGroup have in
general.

3.4 Integrating Implementation to The IT-
Inventory System

To answer the research questions a new implementation of indexing was introduced to The
IT-Inventory System. As the queries are executed between the SearchTable and the Query-
Groups, the suggested implementation for handling partial updates would be positioned
between them, see Figure 3.3. This means that the graph itself will not be altered to optimise
the building of the SearchTable. Instead, the focus lies on lowering the amount of queries run
on the graph. In total, there are two different methods to be tested and implemented into
the system. The first only uses the vertex differences to see what QueryGroups are currently
required. The second method is built on top of the first and includes a system of classifying
the queries. These methods are independent of each other regarding how they are integrated
into the source code, therefore no processing is needed to decide between the two methods.
Both of these are described in more detail in Section 3.5.1 respectively Section 3.5.2.

3.5 The Implementation
The logic for determining which query to run is implemented between the SearchTable and
the QueryGroups, see Figure 3.3. In this layer, it is possible to decide which QueryGroups
to execute and it is the QueryGroups that return the result to the SearchTable. The imple-
mentation will be started through the process of a Data Collection, as described in Section
3.1, the component that initiates the indexing job which in turn initiates the execution of
QueryGroups.

Two different approaches are developed for the re-evaluation optimisation layer, the

19



3. System Architecture

Figure 3.2: Overview of the dataflow of the system.

approaches are going to be named Method 1 and Method 2.

3.5.1 Method 1: QueryGroup Filtering
The approach for Method 1 involves identifying which QueryGroups the changes are con-
nected to and then only executing those relevant QueryGroups. Functionality for extracting
the changed vertices already exists in the system but the data needs to be propagated. The
approach relies solely on modified vertices, without considering other elements like edges.

3.5.2 Method 2: Conditional QueryGroup Filtering
The approach for Method 2 is the same as for Method 1 but with the addition of classification.
The justification for this approach is that the overhead to compare the changes might make
it faster to just run the simple ones directly. A classification of all queries is done when
The IT-Inventory System is starting. The classification operates in the following manner:
if a query is slow (the threshold for a slow query will be analysed in Section 5.3) it will
be classified as complex and if not it will be classified as simple. The intuition came from
asymptotic complexity (as explained in Section 2.4), the simple one can be represented by an
asymptotic complexity of O(1), constant, while a complex one is a faster-growing function.
For Method 2 the approach is to run all simple queries but only run the complex queries
if they affect the changed vertices. The classification happens during the start-up of the
Indexer and the queries are therefore classified in time for the comparison. A pseudo-code
of the algorithm for Method 1 and Method 2 can be seen in Listing 3.1.

1 def processQueryGroup (queryGroup , changes ):
2 # Method 2: Added a conditional check for complex queries
3 if isComplex ( queryGroup ):
4 # Method 1 & 2: Checking vertex differences
5 addedVertices = getAddedVertices ( changes )
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3.5 The Implementation

Figure 3.3: Our re-evaluation optimisation layer.

6 if queryGroup belongs to vertex in addedVertices
7 runQueryGroup ( queryGroup )
8 updateSearchTable ()
9

10 # Method 2: Always run the QueryGroup categorised as simple
11 else:
12 runQueryGroup ( queryGroup )
13 updateAffectedPartOfSearchTable ()
14

15 def main( allQueryGroups , changes ):
16 for queryGroup in allQueryGroups :
17 processQueryGroup (queryGroup , changes )

Listing 3.1: Pseudocode for the implementation of Method 1 and
Method 2
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Chapter 4

Experiments

This section will give insight into our approach to the different implementations and tests
that were conducted during this thesis. Below are our research questions and the belonging
experiments for answering the questions.

RQ1 What can the structure of a query in a graph database tell us about the execution time?

(a) Prototyping: Basic Gremlin (Section 4.2.1)

(b) Test: Classification of Queries (Section 4.2.2)

(c) Test: Classification of QueryGroups (Section 4.2.3)

RQ2 What is the trade-off between running all queries versus implementing logic regarding
what query to run? How does the size of the database affect the trade-off?

(a) Test: Comparison of original implementation vs Method 1 and Method 2
(Section 4.3.1)

To answer RQ1 we needed to analyse the structure of a query. In this case, Gremlin
Queries. We did some prototyping to decide what the query structure could tell us and how
to move further with more experiments. Our prototyping revealed that we could identify
queries with shorter and longer execution times. This allowed us to categorise them into
simple and complex queries, with simple queries having shorter execution times. We then
tested the accuracy of our classification on individual queries and conducted another test to
classify QueryGroups.

To answer RQ2a we needed to implement logic regarding which queries to execute in-
stead of executing all of them. For this purpose, we implemented Method 1 and Method 2
described in Section 3.5.1 respectively 3.5.2 above. For the experimental setup, we then com-
pared these methods with the original implementation. The comparison included execution
time and the number of run queries. The execution time was measured from the start of
indexing to its completion, initiated by a pipeline update.

When comparing the original implementation with Method 1 and Method 2 we decided
to conduct the test on databases with different sizes to be able to answer RQ2b.
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4. Experiments

4.1 Test Configurations
Below is the information about the hardware and configurations that were used for the ex-
periments and implementations.

4.1.1 Hardware
All software ran on the same unit, an HP ZBook 15v G5. The computer was using:

• Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz

• 16,0 GB Ram

• 64-bit Windows operating system

• x64-based processor

4.1.2 Run Configurations
The Java Virtual Machine(JVM) version in use is:

• Openjdk version "11.0.22" 2024-01-16

• OpenJDK Runtime Environment Temurin-11.0.22+7 (build 11.0.22+7)

• OpenJDK 64-Bit Server VM Temurin-11.0.22+7 (build 11.0.22+7, mixed mode)

The IT-Inventory System is given 8GB RAM to work with.

4.1.3 JVM Warm-Up Effect
When using the JVM to compile Java code the compiler does optimisations and dynamic
compiling. Blackburn et al. [2] describe the warm-up effect as the phenomenon where the
initial compilation of a Java program requires the most work. As the program is repeatedly
compiled, it eventually reaches a steady state. All of the tests included running a pipeline
update in The IT-Inventory System one after one which could lead to the warm-up effect
affecting the resulting data.

Therefore, before starting the testing, a test to explore the effect of the warm-up was
run. Meaning, that after how many runs the program gets a stable execution time and is
fully optimised. The result shows that there was no significant warm-up effect which can be
seen in the result section in Figure 5.1.

4.1.4 Benchmark Data
For the benchmark data, we used two different sets. One was a cache provided by the com-
pany, the data sources are not relevant for the optimisation but the technical information
can be seen in Table 4.1. This cache contained real data that were used by the developers at
the company, which means it includes vertices, edges and properties. These vertices belong
to different QueryGroups to cover as many as possible of the queries. However, it was not
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4.1 Test Configurations

Dataset 1 Number of Rows
Alpha 751
Beta 2924
Gamma 13998
Delta 20

Table 4.1: Dataset 1: The different real-life test databases and their
sizes.

Dataset 2 Number of Rows
Database 1 100
Database 2 1000
Database 3 10000
Database 4 50000

Table 4.2: Dataset 2: The different test databases and their sizes.

possible to add, remove or change vertices with this cache which is why another set was also
introduced. This dataset was a synthetic one and contained four different databases with
four different sizes, see Table 4.2. For the synthetic dataset, we used MySQL because the
time to setup is very low and data can easily be imported from CSV files. The system can use
a MySQL database as a source of data. With the help of a mockdata generator, the MySQL
instance could be filled with data. By using MySQL it was possible to add, remove or change
vertices, by changing the data in the database and then run a data collection on the source
i.e. the MySQL instance. Modifiable data was needed for the last test when the different
methods were compared.

The mockdata was generated using an online tool1. It was set to generate CSV files
according to the format that The IT-Inventory System accepted. Then MySQL was used to
directly load these files into the different tables in the databases.

In Table 4.3 it is possible to see which dataset and data sources were used for which
test and prototype. Dataset 1 was used for the prototyping of the Basic Gremlin queries
and classifying the queries. Dataset 2 was used for classifying the QueryGroups and the
comparison between the different methods.

1Data Generator. [Online]. Available: https://www.rndgen.com/ data-generator Accessed: June 13, 2024.

RQ Test/Prototype Data
1 Basic Gremlin (4.2.1) Dataset 1: Alpha & Beta
1 Classifying Queries (4.2.2) Dataset 1
1 Classifying QueryGroups (4.2.3) Dataset 2: Database 2
2 Comparison (4.3.1) Dataset 2

Table 4.3: Test/prototype with belonging dataset.
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4. Experiments

Operations
Sorting

Comparison
Branching

Branch Traversing and Merging
Date Parsing

Table 4.4: Identified Slower Operations.

4.2 RQ1: Investigating the Query Structure
To better understand the typical queries and their execution times, several pipeline updates
were conducted on Dataset 1. The code of the query, its execution time, and the number of
vertices it retrieved were extracted. From the extracted information it was possible to analyse
and identify patterns from the query structure which gave a foundation for determining
possible classifications. This structure analysis is done to be able to implement Method 2
which aims to classify queries and execute the relevant ones.

From the literature study, some operations had been shown to increase processing time,
such as sorting data, arithmetic or joining different tables (branches) [10][11]. By finding the
equivalent operations in the in-house database language it would warrant a good pointer on
where to start with the classification. At The Case Company, the graph querying language
of choice was Gremlin. Therefore there was a necessity to gain knowledge regarding how to
transform the queries from the theory to Gremlin.

Based on the literature study, we hypothesised which functions might take longer to
execute. From this, we did an iterative process where we manually examined which functions
appeared in queries with longer execution times but not in those with shorter execution
times. For instance, the function .out() was present in most queries, so it was ruled out
as having a significant impact on execution time. The operations that we identified to take
longer time than average can be seen in Table 4.4.

4.2.1 Prototype: Basic Gremlin
After identifying the operations listed in Table 4.4, which were expected to have longer ex-
ecution times than average, we needed to verify if indeed they took longer than the average
query. Since The IT-Inventory System only includes a predefined set of queries they usually
consist of more than one operation. We therefore needed to create our queries that only
include the identified operations in a constrained test environment where the whole orig-
inal pipeline is not tested. These queries were written to have as small amounts of other
operations as possible that could affect the resulting measurements. These were also chosen
so they gave the same amount of resulting vertices retrieved. If a query impacts more ver-
tices, it could affect execution times. Thus, having the same number of results eliminates
this uncertainty.

To establish a baseline, we created one of the simplest possible Gremlin queries. This
would be a simple GET of a property on a vertex. This function can be seen together with
the created example queries in Table 4.5. The example queries were created from already
existing ones in The IT-Inventory System, they were shortened so that only the relevant
function was tested.
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4.2 RQ1: Investigating the Query Structure

Function Query
Sorting it.out(’parameter’).gather{it.sort()}
Comparison it.both(’parameter’,’parameter’).property

(’parameter’)
Branching it.sideEffect{parameter=it.getProperty

(’parameter’)}.ifThenElse{parameter != null
&&parameter.equals(’parameter’)} {it.getProperty
(’parameter’)}{it.getProperty (’parameter’)}

Branch travers-
ing and merg-
ing

it.copySplit( _().property(’parameter’),
_().out(’parameter’).has(’class_’,
’parameter’).property(’parameter’)).exhaustMerge

Date parsing it.out(’parameter’).property(’parameter’)
.transform{try {dateFormat.parse(it).getTime()}
catch (Exception e) { null }}

Baseline it.property(’name’)

Table 4.5: The created example queries. it is a vertex retrieved from
the iterator over vertices.

The trial queries were run 13 times each against Alpha and Beta from dataset 1, see Table
4.1, and the gathered data was the execution time of each of the queries (the recorded time
only included the query execution) together with the number of found vertices. The amount
of runs was to account for statistical variation in execution time and the datasets were chosen
as it gave a large spread on the amount of queries ran. The different measured times also
stabilised the average execution times of the queries and created a smaller margin of error.
The result of the accuracy of the 13 runs can be found in section 5.2.

A summary of the results that are to be used in other tests is that the chosen operations
(see Figure 4.4) had on average longer execution time, as can be seen in Figure 5.2.

4.2.2 Test: Classification of Queries
To implement the classification some modifications had to be done to The IT-Inventory
System. These changes were only small modifications to an already existing code-base and
will be described. In the class containing all the information related to a query, a new field
named ComplexValue was added. This field is a boolean, defaulting to False, and can be
set to True if the query is complex. Each query starts as a simple one and then is assessed
on the first run of the Indexer. The query assessment is based on the operations obtained
from prototyping the Basic Gremlin, see Figure 4.5. We use string matching on the Gremlin
query for each instance of the Query object to determine if it includes any of the predefined
complex operations. As a precaution against false positives in the string matching the results
all of the queries ran against Dataset 1, Alpha and Beta in Table 4.1, were manually checked
to be correctly matched.

Testing the accuracy, defined here as the number of queries classified as complex in the
top X% of execution time, of these classifications is done by running 12 different pipelines
updates on dataset 1, Table 4.1. We measured the execution time for each query as well as
recorded the classification (ComplexValue) of the query. The result can be seen in section
5.3.
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4.2.3 Test: Classification of QueryGroups
Since query execution cannot be controlled at the granularity of individual queries, it is es-
sential to classify the QueryGroups and not only the individual queries. The filtering for
method 2 can then be applied at a group level. The goal is to determine how many queries
within a group are complex, and based on that, classify the entire group accordingly. This
means that a threshold must be established to optimally evaluate a QueryGroup. The eval-
uated thresholds were fixed numbers and percentages.

The implementation was made so that if there were more complex queries than the
threshold the QueryGroup was evaluated as complex. The test was conducted by doing five
different pipeline updates, using database 2 (Table 4.2), on each threshold. We used the total
indexing time for the database as a measurement. In section 5.4 the result of the test can be
observed.

4.3 RQ2a & RQ2b: Trade-Off from Partial
Updates

For answering RQ2a and RQ2b one test was done. The test involves comparing the original
implementation, which runs all queries, with two alternative methods that selectively exe-
cute queries for partial updates. This comparison is conducted across databases of varying
sizes.

4.3.1 Test: Comparison between original, Method 1
and Method 2

The comparison is between the original implementation vs Method 1 (section 3.5.1) and
Method 2 (section 3.5.2).

After consulting with software engineers and the customer success group at The Case
Company we decided to test 0, 1 and 20 changes. 20 was picked as it is an estimate of the
average amount of added nodes during a nightly pipeline update by customers according to
people at The Case Company. By also running 0, a benchmark, and 1, the smallest possi-
ble change, we covered a lot of possible high-level cases. The test was conducted on each
synthetic database, see Table 4.2, by doing one pipeline update then inserting a new vertex,
redoing the pipeline update removing the newly added vertex and redoing the same thing
for 20 new vertices. For each test, we measured the time for the indexing (which includes
query execution and offloading the data into the searchable document) as well as the amount
of executed queries. The result can be seen in section 5.5.
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Chapter 5

Results

Below are the findings from the experiments explained in Chapter 4. It will introduce the
result and tell about trends and conclusions based on the presented result.

5.1 Warm-up Effect
To see if there were any warm-up effects to the JVM we needed to run some tests. A pipeline
update was run 10 times in a row for each method (original, Method 1 and Method 2) on
database 2. The result can be seen in Figure 5.1. The left y-axis shows the execution time for
the original implementation and Method 2 in ms and the right y-axis shows the execution
time for Method 1 in µs. The execution time includes the time for the program to start and
the Indexer to finish. The results from the experiment show no obvious warm-up effects.

5.2 Basic Gremlin
To test whether the structure of a query affects execution time, a prototype set of example
queries was developed. The execution times for these test queries (see Table 4.5) are displayed
in Figure 5.2. The box plot shows that the example queries take a significantly longer time
to execute then the baseline query property.

5.3 Classification of Queries
From the prototyping, a classification system was made that put the queries in two categories
depending on the operation included in the Gremlin. The purpose of this classification was
to divide queries that would have a longer execution time to complex and the other queries
as simple.

To assess if the classification was successful the queries were ran and then a threshold
for what is a long execution time was set up. The thresholds meant that the top 1-10% of
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Figure 5.1: The JVM warm-up effect for the three methods on
database 2.

queries in execution time were said to be complex. Then it was calculated on what level this
was achieved. The Gremlin operations that were evaluated are the ones derived from the
prototyping, see Table 4.4. The result of the accuracy from this classification of individual
queries with the different thresholds can be seen in Table 5.1. A successful Simple classifica-
tion means that a query in the bottom (100-X)% of execution time were classified as Simple
and a Complex is the opposite, i.e queries in the top X% of execution time were classified as
Complex.

The result shows that accuracy for the simple classification is in the interval of 75% to
77% and for the complex classification it is between 34% to 100%. The classification is more
accurate for simple queries than complex ones, meaning that it is easier to tell when a query
should be evaluated as simple than when it should be evaluated as complex. The accuracy of
the classification seems to be better when the threshold is lower. For the threshold between
1-6% the accuracy for both the simple and the complex classification is above 50%. As a
guideline the 5% threshold had a cut-off of average execution time of 120,9 ms (12 runs in
total) for the queries evaluated as complex.

5.4 Classification of QueryGroups
As an extension of the classification of individual queries, a classification of QueryGroup
had to be made for this system, see Section 3.2. The test for QueryGroups included evalu-
ating the best threshold for a QueryGroup to be said complex, see Section 4.2.3. The tests
were ran with 0 changes on the data to test indexing time for the original time. The evalu-
ated threshold values can be seen in Table 5.2. From the table, it is evident that setting the
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5.4 Classification of QueryGroups

Figure 5.2: A box plot of the execution time [ms] for the gremlin
query test. The x-axis consists of the operations from Table 4.4

threshold to 0 would result in no queries being executed. Additionally, thresholds of 1 and
1% exhibited the fastest execution times and involved the second-fewest queries executed
within a QueryGroup, both running a total of 14 out of the 68 QueryGroups .

The table also provides the 90th percentile confidence intervals for the average times. For
instance, the threshold of 1 has an average time of 876.4 ms with a 90% confidence interval
of ± 23.6 ms, and the threshold of 1% has an average time of 906 ms with a 90% confidence
interval of ± 21.2 ms. These confidence intervals indicate the range within which we can be
90% certain that the true average execution times lie.

The threshold of 1 has a lower average execution time than the threshold of 1%, although
a very small difference. The variation between them on the 90th percentile is so small it can
be negligible. Therefore, the chosen threshold that will be used in the implementation for
Method 2 will be 1.
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5. Results

X [%] Slowest Queries Correct Simple Classification Correct Complex Classification
Mean [%] σ [%] Mean [%] σ [%]

1 75,00 0,37 100 0,00
2 75,75 0,19 85 9,05
3 76,22 0,17 83,33 5,56
4 76,42 0,00 70,00 0,00
5 76,54 0,20 64,58 3,77
6 76,44 0,00 57,14 0,00
7 76,13 0,00 47,06 0,00
8 75,91 0,00 42,11 0,00
9 75,65 0,18 37,12 1,77
10 75,47 0,21 34,38 1,88

Table 5.1: Share of correctly classified queries when the threshold is
for the X% slowest queries.

Threshold Average Time [ms] Number of run QueryGroups [run/total] 90% confidence [ms]
0 10 0/68 ± 2.4
1 876,4 14/68 ± 23,6
2 1488,8 26/68 ± 19,3
5 1884,6 43/68 ± 27,2
1% 906 14/68 ± 21,2
5% 1135,2 17/68 ± 17,7
10% 2022,8 48/68 ± 26,5

Table 5.2: Data from the suggested thresholds on QueryGroups.
The run number tells how many QueryGroups that were evaluated
as complex.

5.5 Comparison between original, Method 1
and Method 2

To evaluate if it is worth implementing partial updates or not a comparison between the
original implementation vs Method 1 and Method 2 was conducted. The result of the time for
the Indexer to start and finish for the different implementations is seen in Figure 5.3, Figure
5.4 and Figure 5.5. The figures show the comparison with 0 changes, 1 change respectively
20 changes.

From Figure 5.3 it can be seen that Method 1 took significantly less time than the other
two implementations with 0 changes. Method 2 took about half of the execution time as
the original method. As Method 1 does not execute any queries if there are no changes, the
execution time that is seen in the figure is the time it takes for the indexing process to start
and finish.

With one insertion (Figure 5.4) the results are similar to the zero insertion case, except
for Method 1 which takes a bit more time in this comparison. For each implementation
method (except database 4) it seems that the execution time is reduced by half, where the
original implementation is the slowest and Method 1 is the fastest.

For 20 insertions (Figure 5.5) it becomes less clear which method is the best. Both the

32



5.5 Comparison between original, Method 1 and Method 2

Figure 5.3: The execution time for running the methods on the four
different databases with 0 changes.

implementation for Method 1 and Method 2 are faster than the original implementation,
but between them, the time difference has been reduced. In the case of database 3, Method 2
has a faster execution time than Method 1.

In Figure 5.6 the number of executed queries for each method can be observed. The
executed queries for each database stayed the same for every pipeline update, it only changed
depending on the number of insertions. From the figure, it is apparent that the original
implementation runs a lot more queries than the other two implementations. The queries
are counted so that for each QueryGroup that is run there is a count for each query in that
QueryGroup. This means that some queries could be part of multiple QueryGroups and are
therefore counted multiple times. Nevertheless, Method 1 runs zero queries when there are
no changes, whereas Method 2 runs 159, meaning there are a total of 159 queries included in
QueryGroups classified as simple (including duplicates).

Method 2 was based on the hypothesis that verifying a query’s connection to new vertices
might be more costly than executing the query. To test this, an experiment was conducted
to compare the program’s execution times (without executing any queries) with and without
the connectivity check. With the check, the average runtime was 3.5 ms, with a standard
deviation of 1.2 ms. Without the check, the average runtime was 3.8 ms, with a standard
deviation of 0.87 ms. The result shows that the check does not increase the execution time
of the program in any significant way and therefore in our system, the approach of Method 2
is not worth it.
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Figure 5.4: The execution time for running the methods on the four
different databases with 1 change.
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5.5 Comparison between original, Method 1 and Method 2

Figure 5.5: The execution times for running the methods on the four
different databases, each with 20 changes, along with their corre-
sponding standard deviations.
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5. Results

Figure 5.6: The total amount of executed queries on each method
for each change.
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Chapter 6

Discussion

This chapter will provide a more in-depth analysis of the results from the chapter above.
The research questions will be answered in order together with the corresponding result,
according to the Scope described in Section 1.3.

6.1 RQ1: Classifying Queries Based on Their
Structure

RQ1

What can the structure of a query in a graph database tell us about the execution time?

The result from the classification test suggests that it is possible to assume what query
will have a longer or shorter execution time compared to other queries based on the func-
tions it contains. It seems possible to classify the queries based on the various characteristics
and patterns observed within the query itself. However, achieving 100% accuracy in this clas-
sification is challenging, almost impossible. It was found that it is easier to identify queries
with shorter execution times than average, classifying them as simple, than to identify those
with longer execution times than average.

Furthermore, the prototyping of which operations have longer execution time, see Fig-
ure 5.2, supports the general observation that operations which typically take a long time in
conventional programming, such as sorting, traversal, and complex arithmetic operations,
also tend to consume significant execution time in query processing. These operations in-
herently involve more computational steps and data manipulation than other operations,
thereby increasing the overall execution time.

The result suggests that queries containing either copySplit, sort, both, ifThenElse
or parse tend to have a longer execution time than queries containing a simple property
get. As the queries belonged to a QueryGroup there was a need to decide a threshold for
how many queries needed to be complex for the entire QueryGroup to be labelled complex.
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6. Discussion

The result from the observation shows that the threshold with the fastest execution time
and the lowest amount of run QueryGroup is either if one query of the entire QueryGroup
is complex or if 1% of the entire QueryGroup is complex.

To determine the appropriate threshold for the implementation of Method 2, it was
necessary to evaluate performance at different levels. A threshold of 0 resulted in no queries
being executed, resulting in Method 2 being almost the same as Method 1. This left thresh-
olds of 1 and 1%, both of which had the second shortest execution times and executed some
queries. The decision was made to use a threshold of 1, as it had the shortest average execu-
tion time between the two options.

6.2 RQ2a: Performance Impact of Database
Modifications on Query Execution Strate-
gies

RQ2a

What is the trade-off between running all queries versus implementing logic regarding
what query to run?

There were three different scenarios in the last experiment with the comparison between
the original implementation vs Method 1 and Method 2, see section 4.3.1:

• There were no changes made in the database.

• There was one vertex added to the database.

• There were 20 vertices added to the database.

The different cases and their result will be discussed and analysed below.

6.2.1 No changes
In the case of no change, it can be seen in Figure 5.3 that there are large differences between
the different configurations of methods. The original implementation that always executes
all of the queries, disregarding whether there is a change or not, had by far the longest exe-
cution time of the Indexer.

In these tests, Method 2 is always faster than the original but lags behind Method 1. The
lag of Method 2 compared to Method 1 is due to Method 2 always running the QueryGroups
classified as simple, whereas Method 1 skips executing all groups not affected by any changes.
In this case, with 0 changes, Method 1 skips all groups. Consequently, the execution time of
Method 1 is nearly zero, as the only recorded time is from running the Indexer itself, without
executing any queries.

6.2.2 One change
The results of running all methods with one change can be seen in Figure 5.4. The results
from these tests are similar to those from the test with 0 changes. The original is always
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slowest while Method 1 is faster than Method 2. A difference is that a change has been
inserted in the database, meaning Method 1 has increased in time compared to no changes.

So far it seems better for the execution time to look at the changes directly and only
execute the necessary queries rather than to classify the queries.

6.2.3 20 changes
For the case of 20 changes in the database, the result for the execution time becomes more
even between Method 1 and Method 2. Figure 5.5 shows the result for running the different
methods with 20 inserted changes. Method 1 and Method 2 still outperform the original
implementation by a large margin but the distance between the methods has shrunk consid-
erably.

One possible explanation for this is that a significant portion of Method 2’s execution
time is spent on the classification step. As the number of changes increases, the time per
vertex decreases for Method 2. Consequently, Method 2 becomes more efficient and gains
time when both methods need to process a higher number of changes.

6.2.4 The Amount of Executed Queries
Another interesting metric to look at is the amount of queries executed for each method. In
Figure 5.6 it can be seen that there is a significant gap between the original method and the
other two methods and then another significant gap between Method 1 and 2. Interestingly,
in the test with 20 changes, the execution times between Method 1 and Method 2 did not
differ significantly, despite the difference in the number of queries executed. An explana-
tion for this could be that the query classification effectively identifies and quickly executes
simple queries, thereby mitigating noticeable increases in overall execution time, even when
complex queries are subsequently processed.

6.2.5 Summary of Discussion for RQ2a
Below is a summary of the discussion for RQ2a, focusing primarily on execution time. These
findings are based on the observed data and should be interpreted with consideration of the
study’s limitations and potential threats to validity.

1. The original implementation exhibits significantly slower execution times compared
to Method 1 and Method 2, regardless of the number of changes inserted into the
database. This suggests that Method 1 and Method 2 are preferable over the original
implementation based on the observed data.

2. Method 2 spends a noticeable amount of time classifying all queries. This becomes
evident as the number of changes and vertices increases, causing Method 1’s execution
time to increase more rapidly than that of Method 2.

3. For fewer insertions, Method 1 appears to be the best option based on our observa-
tions.

4. According to the data, Method 1 and Method 2 show similar performance for larger
insertions and databases.
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5. Method 1 and Method 2 execute significantly fewer queries compared to the original
implementation. Specifically, Method 1 demonstrates a notable reduction in the total
number of queries executed.

These findings suggest certain trends in query execution times and efficiencies, but fur-
ther research and testing would be necessary to generalise these results beyond the specific
conditions observed in this study.

6.3 RQ2b: Impact of Database Size on Query
Execution

RQ2b

How does the size of the database affect the trade-off?

The research indicates that there is no direct correlation between the size of the database
and the trade-off observed. This suggests that regardless of database size, the implemented
logic remains beneficial in terms of time savings and reduction in the number of executed
queries. This can be interpreted as the efficiency gains from the implemented logic being
consistent irrespective of database scale.

Interestingly, the execution time increases less than linearly with the size of the database.
This could imply that while there is an increase in complexity with more vertices (or data),
the efficiency gains from the implemented logic mitigate this increase to some extent. This
non-linear relationship might suggest that the overhead and startup costs are managed ef-
fectively, leading to a less-than-proportional increase in execution time despite a growing
database

The size of the change and database affect the methods in different ways. Method 2
scales better as it always needs to do the classification and therefore performs better for
large databases with lots of changes whereas Method 1 has a more persistent execution time.
So a larger amount of added vertices does not increase the time to classify them and then
Method 2 saves time per added vertices.

A significant portion of the execution time is attributed to overhead and startup costs
rather than being directly proportional to the number of vertices. This observation high-
lights that as the database size grows, these fixed costs become relatively less significant per
vertex or operation. Therefore, the efficiency improvements from the implemented logic
play a crucial role in offsetting the overall execution time increase.

6.4 Limitations and Threats to Validity
This study included several limitations and potential threats to validity, which are outlined
and discussed below.

6.4.1 Hardware and System Constraints
All implementation and testing were conducted on a company-provided laptop, with de-
tailed specifications available in Section 4.1.1. The hardware limitations affected the results,
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as using a dedicated server or better hardware could have reduced processing times and al-
lowed for more extensive testing. Running the tests on specialised hardware, such as ded-
icated GPUs with no interference from other processes, could accelerate specific parts of
the program and potentially skew the results. However, comparisons against experiments
conducted on the same hardware remain valid, but these constraints suggest a direction for
future work.

Additionally, the existing implementation at the company limited the thesis’s scope, con-
straining the extent to which we could conduct tests and integrate our code during the
implementation phase. This is because the implementation was situated deep within the
abstraction layers.

6.4.2 Test and Data Constraints
Due to time constraints, we conducted a limited number of tests, affecting the validity of
our results. For instance, Figure 5.4 shows an unusually high execution time for the original
implementation on database 4 compared to other databases. This anomaly indicates that
more tests would have been beneficial for ensuring accuracy.

In the comparison experiment, we used a synthetic dataset, which posed a threat to valid-
ity since it lacked real data. However, using synthetic data was necessary because we needed
data we could modify. The company recommended this approach, and we followed their
setup for constructing a MySQL data source.

Our testing was confined to evaluating the addition of vertices to the graph, which is the
most commonly used operation. Although testing other operations could provide further
insights, it would have extended the testing duration significantly.

6.4.3 JVM Constraints
As discussed briefly in Section 4.1.3 the JVM could be affected by the warm-up effect, due
to optimisations and memory handling.

By looking at Figure 5.1 it is possible to see that the warm-up effect has not had a sig-
nificant effect on the results. The measured times remain relatively stable throughout the
tests. If a warm-up effect had been present, we would have seen a rapid increase followed by
a sharp decrease in the execution times. Therefore, no warm-up effect was observed.

6.4.4 Generalisability Constraints
The solution is specifically tailored for the company and it is not a plug-and-play option for
other software, as it is deeply ingrained into the company product. However, the result shows
nonetheless that both time and number of computations could be reduced by implementing
logic to decide which queries to run instead of running them all.

6.4.5 Limitations
Time
Due to limitations regarding available time, the amount of tests for each method had to be
reduced. During the testing phase, the time required to complete tests increased significantly

41



6. Discussion

beyond our initial expectations, resulting in fewer tests being conducted than anticipated.

Statistical Variation
Not all of the experiments account for the statistical variation by running the same tests for
multiple iterations. As explained in the section above the time limited us in how much test-
ing could be done. Therefore some of the tests do have a limited scope regarding accounting
for variation in the results.

String Matching
Another limitation is that the classification was done using simple string matching of queries.
This means a query may contain one of the keywords in another capacity than as an oper-
ation. For example, it.property("copySplit"), property is an operation that looks
after the property of "copySplit", would classify the query as complex while in reality being
simple. For this thesis, the results were checked manually to see that there were no false
positives for the string matching, but in a more general case this could be of concern.
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Chapter 7

Conclusion

In conclusion, classifying queries based on execution time is feasible but heavily dependent
on the specifics of the database and query language. Simple queries are generally easier to
classify than complex ones.

Implementing logic to determine which queries to run for partial updates, rather than
performing full re-computations, is beneficial as it can save both time and computational
resources.

However, the effectiveness of this logic can vary depending on the existing implemen-
tation. While the size of the database does not impact the trade-off results, it does increase
execution times due to a larger number of vertices. Additionally, the extent of changes in
the database influences the methods used, with Method 2 incurring higher initial classifi-
cation costs but potentially yielding lower execution times for updates involving numerous
vertices.

7.1 Future Work
A potential area for future research is the classification of queries. These tests have been
run on a particular graph database with a particular setup regarding how the queries were
grouped, what language they were written in and what operations were chosen. Since it is
an in-house database the execution of queries has also been created by the developers at The
Case Company. To continue the exploration of categorising queries by their operations it
would be good to try it on some different databases. It would be particularly interesting
to study the utility of the methods in different application settings with significantly larger
change sets. Additionally, doing more extensive research regarding execution time and re-
source usage could lead to insights into optimisations that could be done before letting the
queries be compiled.
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Minska Omberäkningar med Smart
Strukturanalys och Smidiga
Uppdateringar
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Volymen av insamlad data ökar dagligen vilket ställer krav på effektivare metoder att
förvara och behandla datan. Detta examensarbete undersöker hur logik och analys kan
användas för att förutsäga tidsåtgången för en fråga till databasen samt undersöker
möjligheterna att minska antalet beräkningar som krävs vid tillägg i databasen.

Större mängd data innebär fler och längre
beräkningar för att leverera data till slutanvän-
daren. Därför har det blivit än mer viktigt att
undvika onödiga beräkningar. Detta examensar-
bete undersöker en arkitektur som kallas vyun-
derhåll (view maintenance), som innebär att re-
sultaten av vanliga frågeställningar som hämtar
information i databasen förberäknas och lagras i
en separat datastruktur. Arbetet analyserar om
man utifrån frågeställningens struktur kan förutse
hur lång tid frågan kommer ta att besvaras innan
är utförd. Arbetet utforskar även om underhål-
let av en vy kan effektiviseras genom att endast
räkna om en del av frågeställningarna, specifikt
de delarna som påverkats av uppdatering. Två
metoder för att uppdatera vyn testas, den första
som bara tar i beaktning vad som uppdaterats och
kör frågeställningar utifrån det och den andra som
även tar hänsyn till analysen av frågeställningarna
för att se om det går att optimera ytterligare.

Vi utvärderade dessa två metoder genom tre

olika experiment. De första två experimenten
fokuserade på statisk analys av frågeställningarna.
Målet var att identifiera lämpliga operationer för
att klassificera frågeställningarna som komplexa
eller inte samt applicera detta i en verklig pro-
dukt. Det sista experimentet behandlade frågan
om partiella uppdateringar av en vy i samband
med uppdatering av databasen.

De viktigaste resultaten är att det är möjligt att
förutsäga beräkningskomplexitet i en förfrågan,
men detta är starkt beroende av databasspecifika
detaljer. Det visade även att implementeringen av
logik för att avgöra vilka frågeställningar som ska
köras i stället för att köra alla kan spara betydande
tid och beräkningar.

Framtida forskning kan utveckla resultaten
genom att generalisera dem. I dagsläget är
det väldigt specifika operationer och metoder
som har behandlats. Även tester på flera
olika databastyper samt databasimplementeringar
skulle ge resultaten mer bredd.
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