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Abstract

System uncertainty constitutes a fundamental restriction on control performance.
System models are never perfect and the differences between system and model can
be difficult to contend with. Applying a model based controller to the true system
with uncertain dynamics can yield unpredictable results which led researchers to
produce methods of robust control design. Existing theory on the ν-gap metric pro-
vides control performance guarantees given bounds on the metric. However, it does
not utilize any further information than the bounds, essentially restricting the set of
possible systems into an uncertainty set for which the guarantees apply.

This thesis aims to investigate how additional information about the uncertain sys-
tem can be leveraged to provide sharper results; specifically, by additionally consid-
ering a probability distribution function (PDF) on the uncertainty set. Considering
the uncertain system as a random quantity with a known distribution models it as
more than simply belonging to some uncertainty set. It also incorporates further
knowledge as to where in the set it is more likely to be. As such, this thesis opens
up an entirely new perspective on the field of probabilistic uncertainty in control
systems using the lens of the ν-gap.

Using the additional information, this thesis provides insight into how the differ-
ence between a known model and the uncertain system is characterized as well as
the potential effect on control performance. Two expressions for the cumulative dis-
tribution function (CDF) of one such difference metric called the chordal distance
is derived. With knowledge of this distribution, probabilistic guarantee results of
a performance measure called the point-wise generalized stability margin are also
produced. Some intermediate results which further illuminate the concepts and their
relation to each other are also found. Lastly, a thorough discussion is given on how
this field of research could be explored to expand the work started in this thesis.

Key Words: Control system uncertainty, Probabilistic uncertainty, Probabilistic
control design, Nu-gap, Stereographic Projection.
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1
Research Motivation

One of the main goals of the field of automatic control is to study how to design ro-
bust controllers. A controller is robust if its performance is insensitive to differences
between the model system used for the controller synthesis and the actual system
subject to control. Several approaches for how to accomplish this goal have been
proposed in earlier work including the small gain argument [Desoer and Vidyasagar,
2009], integral quadratic constraints [Megretski and Rantzer, 1997], and H∞ con-
trol theory [Başar and Bernhard, 2008]. All of these design strategies can provide
certain guarantees to the performance of a controller when applied to an uncertain
system given that the uncertainty satisfies a set of criteria. As for when these criteria
are not met, one must consider alternative methods of guaranteeing performance. In
this chapter, this problem will be expanded upon and a practical anchoring to the
problem setting shall be provided for the reader. Questions and problems that re-
main as gaps in the existing theoretical foundation will be discussed. Following this
initial discussion, the next chapter will outline the necessary theory for producing
the results of the subsequent chapter. Lastly a short discussion of their implications
follows. The contents of this thesis has the capacity to open up an entirely new
perspective on the field of research capable of extending the possibilities of robust
control beyond the previously existing methods ([Desoer and Vidyasagar, 2009;
Megretski and Rantzer, 1997; Başar and Bernhard, 2008]) with the referenced the-
oretical voids as motivation for its importance. In this chapter the essence of this
motivation will be explored and lead the reader into an example which puts the
problem into a very tangible context.

1.1 Motivating Problem

In this section a typical problem within automatic control related to system identifi-
cation for control purposes will be laid out. The purpose is to illustrate what issues
and questions arise throughout the controller synthesis process and how the theory
presented in this thesis will be useful in answering many of these questions. The
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Chapter 1. Research Motivation

example will be brought up and tied back to several times throughout this thesis to
further illuminate the results and concepts presented as well as provide an intuitive
anchoring of the theory to a concrete setting.

A very common setting that a control engineer will encounter is when the engi-
neer has a system which he or she wishes to design a controller for with appro-
priate robustness and tracking capabilities. Several methods for linear control de-
sign are known including H∞ Loop-shaping [McFarlane and Glover, 1992] which
can provide robustness guarantees. Other common methods are LQG based de-
sign [Kalman, 1960] and Model Predictive Control (MPC) [Rawlings et al., 2017]
which are often used to manage tracking capabilities. There are also several meth-
ods within stochastic robust control which incorporate stochastic uncertainty in the
control design, such as Stochastic Tube MPC [Cannon et al., 2011] and Probabilistic
Robust LQR [Rohr et al., 2021] with methods to validate models using probabilis-
tic arguments [Halder, 2014]. Common for all mentioned approaches for controller
design is that they are model based and thus require a known model of the system
for controller synthesis. However, it is never possible to model the system with no
error (for instance by restricting the model space to linear models) and herein lies
several major problems. The essence of these problems can be captured nicely by
the following questions:

1. If the model dynamics differs from the true system dynamics, can one guar-
antee that the controller will perform as intended on the true process when it
is designed using the model as a substitute?

2. If it is possible to place such guarantees, how do they depend on the magni-
tude of the differences between the model and the true system?

3. How does one measure the magnitude of such differences when the true sys-
tem is unknown?

Clearly these are fundamental problems at the base of the entire controller design
process which might render the entire process useless if the model of the true sys-
tem turns out to be inadequate. Without any such performance assurances, using
a designed controller directly on the physical system could potentially yield catas-
trophic consequences. As such, answering these questions before implementation is
of very high importance.

The pursuit of the answer to the last two questions has led researchers to come
up with several distance metrics between dynamical systems. Specifically for LTI
systems, the Gap metric [Zames and El-Sakkari, 1980; Georgiou, 1988; Georgiou
and Smith, 1990], and Graph metric [Vidyasagar, 1984] were developed. Building
on top of their works, G. Vinnicombe proposed the ν-Gap metric in [Vinnicombe,
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1.1 Motivating Problem

1992; Vinnicombe, 2000] having sharper quantitative results than the Gap metric
and opening up the door to answering the preceding two questions. Specifically
for the SISO case, the ν-Gap metric offers a striking benefit of a direct frequency
domain interpretation in terms of the chordal distance between the stereographic
projection of the Nyquist plots onto the Riemann sphere which we will explore in
Chapter 2.

Further, while analyzing the robustness of feedback systems in [Vinnicombe, 1992],
Vinnicombe presents an interesting problem namely,

how much do we need to know about a system in order to design a
feedback compensator that leaves the closed loop insensitive to what
we don’t know?

The following robust stability result that answers this question from [Vinnicombe,
1993] using the ν-Gap metric is re-stated here without proof.

PROPOSITION 1
(From [Vinnicombe, 1993]) Given a nominal continuous time LTI system P̄, and
nominal feedback compensator C̄, let

bP̄,C̄ :=

{∥∥H(P̄,C̄)
∥∥−1

∞
, if H(P̄,C̄) is stable

0, otherwise,
(1.1a)

where

H(P̄,C̄) :=
[

P̄
I

]
(I −C̄P̄)−1 [−C̄ I

]
, (1.1b)

and ∥·∥∞ denotes the H∞ norm. Then, any controller C̄ that stabilises P̄ and achieves
bP̄,C̄ > α stabilises the set of systems

{P : δν(P, P̄)≤ α} (1.2)

and

bP,C̄ ≥ bP̄,C̄ −δν(P, P̄), (1.3)

where δν(P, P̄) denotes the ν-gap between P and P̄ and will be defined in Chapter
2.

Here bP̄,C̄ is a generalized stability margin where a larger value implies better stabil-
ity margins. With this the three questions posed above have an answer for applicable
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Chapter 1. Research Motivation

cases, and further still the fourth question posed by Vinnicombe can be partially an-
swered using this. However, the answer is not exhaustive and some problems still
remain. Specifically, calculating the ν-gap in (1.3) to be able to place guarantees on
the performance of the designed controller requires knowledge of the true process,
something we specifically stated is unrealistic. As such the only use we have of
Proposition 1 is to specify a set of systems (1.2) which when controlled by C̄ will
satisfy a performance requirement specified by (1.3). The answer to the question
posed by Vinnicombe about how much is needed to know to design a robust com-
pensator would be that we need to know if the model belongs to the set (1.2) or not.
This binary answer lacks nuance and fails to capture any potential prior knowledge
by specifying where in the set (1.2) it might be by some measure.

One way of respecting the lack of precise knowledge of the true process while also
capturing any prior knowledge the control engineer might have of the process is to
consider the true system as a random quantity. The prior knowledge can then be
expressed in terms of a probability distribution over the set of models. This opens
the possibility to consider the results in Proposition 1 from a new perspective using
more information about the true system and generating sharper results. The follow-
ing section explores a practical problem where such prior knowledge is present and
provides an example where the theory presented in this thesis would be useful.

The example problem
One of many ways of constructing a model for a system is to use system identifi-
cation methods on measured data, a concept detailed well in [Ljung et al., 2021].
Input and output data is collected from measuring the true system. Then the data
can be used to estimate parameters in order to generate a nominal model satisfying
a specific predetermined model structure capturing information such as the model
order and any delay present. The nominal model can then be validated against a
separate data set. Since the data collected is often prone to random variations the
dataset will constitute a random sample of the behavior of the studied system. Con-
sequently, the estimated parameters will have some inherent uncertainty. Generally,
a larger sample size of the system will lead to a decrease in variance of the estima-
tions and subsequently a more accurate model, given an accurate parametrization
of the true system and a bias free sampling. This data collection process can for
certain processes be highly time intensive and costly as it necessitates measuring
the physical process for a large number of iterations or a long time using different
input. For active industrial processes, this entails downtime in production and could
also cause wear and tear on the process, actuators and sensors involved. Thus, the
less data needed to be collected, the better.

Suppose that we from prior experience know that a continuous time LTI model
with no zeros and a triple pole models a process well. Therefore, we say with high
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1.1 Motivating Problem

Figure 1.1 Nyquist plot of the identified system along with uncertainty regions correspond-
ing to 5 standard deviations at every fifth frequency.

certainty that the process is modeled well by a transfer function of the form

P(s) =
K

(1+ τs)3 , (1.4)

where K,τ ∈ R are the parameters that are estimated from data collected as de-
scribed. Since physical system outputs are subject to measurement noise, uncer-
tainty is introduced into the identification process. In Figure 1.1 one such estimation
of the example process Nyquist plot is shown where a random binary sequence was
generated as input to a chosen nominal model P̄(s), obtained using K = 2, τ = 1

10
in (1.4). Gaussian white noise was added to the output representing measurement
noise before estimating the parameters. In the figure we can also see point-wise 5
standard deviation confidence regions on a frequency grid of interval length 5rad/s.

Here, we can see the results of the variability in the parameter estimation mentioned
earlier. For every frequency, a region around the estimated point now corresponds to
a region where the Nyquist plot of the true system at that frequency is very likely to
be given that the model parametrization accurately reflects the true system (in this
case well above 99%). Note that for this example, the gain uncertainty at the phase
crossover frequency suggest that had the system been identified from a different
data sample, a model with a very different gain margin could very well have been
identified. This implies a model with different closed loop behavior and as such
different controller performance.

13



Chapter 1. Research Motivation

What this example illustrates is precisely the implications of the questions posed
earlier. Here, we do not know what the true system is but are fairly certain it belongs
to some set of models in proximity to an estimated nominal model with respect to
their Nyquist plots. Furthermore, we have some estimate of the probability distribu-
tion over that set of models since the set itself was determined using the point-wise
distribution of the model estimation and a threshold to close the set, in this case 5
standard deviations. It is now interesting to consider the following:

If a controller is designed using the identified nominal model, is there
any way of taking the estimated probability distribution into account to
leave the control of the true system invariant to the model estimation
uncertainty?

In essence this would involve answering the following question which is the main
goal of this research direction.

QUESTION 1
Given a nominal model and a probability distribution with support on some set
modeling the true system, what is the probability that a controller designed using the
nominal model will be satisfactory by some performance threshold on a randomly
chosen system in the set?

(a) Realizations of chordal distance to
the nominal model across frequency and
1000 trials.

(b) The histogram of the ν-gap between
the nominal model and 1000 independent
trials.

Figure 1.2 Simulation results of the example problem showing how randomly sampled
true systems yield realizations of the chordal distance over frequency to the left as well as
realizations of the ν-gap to the right, calculated as the maximum chordal distance for each
realization.

The following simulation illustrates how this question could be answered. We sim-
ulated the system identification procedure described earlier for N = 1000 indepen-
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1.2 Summary and Disposition

dent trials (with different randomly generated inputs and measurement noise) to
identify N systems of the form (1.4). The results shown in Figures 1.2a and 1.2b
indicate that the point-wise chordal distance can be formulated as a random quan-
tity with a normalized histogram being an estimate of the distribution of the ν-gap
for this case. With a known distribution of the ν-gap an examination of (1.3) could
yield performance bounds in a probabilistic sense.

With an answer to Question 1 the realm of queries opens up and future work could
focus on answering any of the following questions:

1. Given a tolerable uncertainty set size and requirements on the distribution
restricting a large likelihood to a certain subset, how much data needs to be
collected to achieve that level of certainty?

2. If the distribution and support set are derived from data collection as with the
example problem, how does different identification methods map to different
distributions and sets?

1.2 Summary and Disposition

In this chapter, a context to this thesis has been provided, and the missing pieces
of existing probabilistic control theory have been identified. A thorough motivation
and initial problem exploration have been provided along with a practical example
which illustrates the problem well. Clearly, there are many unanswered questions
and in the pursuit of answering some of them, we need to develop a sturdy theo-
retical foundation. In the following chapter, existing theory and background will be
outlined to provide this foundation for the derivations that will follow in an attempt
to answer some important questions described previously. The following chapter
will also include a description of the limitations of this thesis. It turns out that an-
swering Question 1 is rather difficult in terms of analytically determining the proba-
bility distribution of the ν-gap. This thesis will therefore consider the corresponding
point-wise frequency measure as a precursor to future work. This involves specify-
ing both the mentioned model distribution and support set for every frequency and
analyzing the implications on control performance for a fixed frequency.

Following the chapter discussing background and limitations, a step back will be
taken again to discuss the problem setting more clearly using the information in the
background providing further understanding of its relevance and intricacies. With
the problem formulation and its context to the theoretical background crystallized,
the subsequent chapter will outline all theoretical and numerical results along with
their derivations. Lastly, a chapter regarding conclusions and discussion will delin-
eate the implications of the results and the doors they open up in terms of future
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Chapter 1. Research Motivation

research. All plots can be reproduced using the code publicly available on [Nys-
tröm, 2024].

It should be noted that a subset of the results of this thesis has been submitted
to the 2024 CDC conference in the paper Stereographic Projection of Probabilis-
tic Frequency-Domain Uncertainty by myself Anton Nyström, Venkatraman Ren-
ganathan and Michael Cantoni [Nyström et al., 2024].
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2
Background

In this chapter, all the theoretical foundation relevant for the results produced in this
thesis will be laid out and explained. Throughout the chapter each concept and its
corresponding notation are introduced.

2.1 Notations and Basics

In order to maintain a suitable scope for the included background, the reader is ex-
pected to understand some basics in control theory including Nyquist plots and the
Nyquist stability criterion. Furthermore, the reader is expected to have a basic un-
derstanding about control design methods and concepts regarding stability, robust-
ness and control performance. While perhaps not strictly necessary, such knowledge
will be helpful in fully understanding the content of this thesis along with the im-
plications of the results. Nevertheless, this section will briefly review some of the
basic concepts without extensive detail and introduce some notations which will be
used throughout this thesis.

Notations
The set of real numbers, integers and the natural numbers are denoted by R,Z, and
N respectively. The space of complex numbers is denoted by C and j represents
the imaginary unit. Later we will see that we also use this notation for the extended
complex plane C∪{∞}. The real and imaginary parts of the complex number z ∈
C is denoted by ℜ(z) and ℑ(z) respectively. Given z ∈ C, we denote its complex
conjugate as z⋆ ∈ C and its modulus by |z|. For convenience, we will in certain
instances write parameterized multi-variable functions as follows f (x(t), y(t)) =
f (x,y)(t). Throughout this thesis, variations of P will be used to denote systems
and their transfer functions, with either an implicit dependence on s ∈C for transfer
functions or jω, ω ∈ R for frequency responses. The same variations of P will
also sometimes be used to denote complex numbers. In such cases the reader is
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Chapter 2. Background

encouraged to think of P ∈ C as instances of the transfer function P for a fixed
argument s or ω .

The probability space is defined using a triplet (Ω,F ,P), where Ω,F , and P denote
the sample space, event space and the probability function respectively with P :
Ω → [0,1]. A real random vector x ∈Rn following a probability density function fx
is denoted by x∼ fx and its CDF is denoted by Fx. Let x ∈ Rn be a realization of x.
A complex random variable p on the probability space (Ω,F ,P) can be considered
as a random vector in R2 with real and and imaginary parts in each dimension.

Control Fundamentals
This subsection deals with the fundamental control concepts including spaces of
transfer functions, notions of stability and robustness as well as theory and known
results around these concepts.

Spaces and Norms. In order to properly discuss stability and robustness a thor-
ough restriction of the spaces of the systems and their input and output is required.
In this section, the relevant spaces will be defined and explained.

Let R(s) denote the set of proper rational functions in s ∈ C with real coefficients.
The Hardy space consisting of transfer functions of stable LTI continuous time sys-
tems is denoted by H∞ and is equipped with the norm

∥P∥H∞
= sup

Re(s)≥0
|P(s)|. (2.1)

Also let RH∞ := R(s)∩H∞ to denote the set of proper rational functions whose
poles are in the open left half-plane.

For every p(s) ∈ RH∞, we define its norm as

∥p∥ := sup
ω

|p( jω)|= sup
Re(s)≥0

|p(s)| . (2.2)

Then, a distance between two functions p(s),q(s) ∈ P(s) can be given by ∥p−q∥
which is induced by the norm defined in (2.2).

The Nyqust plot and Nyquist Stability Criterion. In this section, some funda-
mental control theory which will be useful to understand in order to fully grasp the
contents of this thesis will be briefly outlined. This includes well known and widely
used tools and results such as the Nyquist plot, where details can be found in [Häg-
glund, 2021], and the Nyquist Stability Criterion outlined in [Åström and Murray,
2021; Pates, 2021]. As mentioned in the chapter introduction, the reader is expected
to have an earlier understanding of these topics and hence those concepts shall be
restated here with little details.

18



2.1 Notations and Basics

One instance of a Nyquist plot has been shown already in Figure 1.1 and constitutes
a useful tool for analysis of LTI systems. It consists of a curve in the complex plane
of the frequency response of a system parameterized by a complex frequency. As
such, for a SISO system P, its frequency response P( jω) is plotted in the complex
plane for all ω ∈ R. The plot shown in Figure 1.1 only displays one half of the
plot corresponding to positive ω . However, for real rational frequency responses,
the negative half will always be the conjugate of the positive, resulting in a plot
mirrored with respect to the real axis. The Nyquist plot is therefore equivalent to
another common tool for visualization in the Bode magnitude and phase plots since
every point on the curve has a modulus and an argument equal to the magnitude and
phase at that frequency. Thus, using the Nyquist plot, one can investigate a multitude
of important quantities including gain and phase margin, bandwidth and crossover
frequency to get closed-loop inferences using only open-loop characteristics.

One central use of the Nyquist plot uses the Cauchy Argument Principle to draw
conclusions about the system behaviour in closed loop, a result called the Nyquist
Stability Criterion which can be found in [Åström and Murray, 2021; Pates, 2021].
If we let Po be the open loop frequency response and Pcl be the frequency response
of the closed loop system under negative unit feedback, then the Nyquist Stability
Criterion states that

wno(1+Po) = η(Po)−η(Pcl) (2.3)

where wno corresponds to the winding number evaluated along the standard Nyquist
contour and η(·) denotes the number of unstable poles. As such the criterion states
that the difference in the number of open and closed loop unstable poles is equal
to the number of anti-clockwise encirclements of the point −1 by the open loop
Nyquist plot. We shall see that this condition will be an integral part in how the
ν-gap is defined but will not be explored fully in this thesis.

Probability Theory
Since this thesis deals with probabilistic uncertainty, we will require some results
from probability theory. Useful notions and known results from this category will
be stated here and used throughout the remainder of the thesis in derivations of the
main results.

The main result we will find use for regards how mappings between random vari-
ables affect distributions. More specifically we will use the following known re-
sult. Let x,y be random variables belonging to the joint distribution fxy(x,y), and
g1(x,y),g2(x,y) be continuous differentiable functions. Then define two new ran-
dom variables, {

z := g1(x,y),

w := g2(x,y).
(2.4)
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Chapter 2. Background

Then, the joint density fzw(z,w) can be expressed in terms of fxy. That is,

fzw(z,w) = ∑
i

1
|J(xi(z,w),yi(z,w))|

fxy(x(z,w),y(z,w)) (2.5)

where J denotes the Jacobian determinant of the transformation defined by (2.4) and
xi,yi denote solutions to (2.4) for fixed z,w (see chapter 6 in [Papoulis and Pillai,
2002]).

The following is another useful result which will be used in this thesis. Define the
random variable,

Q=
z

w

Then for non-negative random variables z,w with joint density fzw(z,w), the fol-
lowing holds true for the cumulative distribution of Q (see Chapter 5 in [Papoulis
and Pillai, 2002]):

FQ(q) :=
∫

∞

0

∫ wq

0
fzw(z,w)dzdw, q ≥ 0. (2.6)

2.2 Preliminaries

One of the stated questions in the previous chapter regarded how one measures the
magnitude of a difference between two systems. In this section, some useful metrics
on the system spaces defined above will be explored along with related results on
how they can relate to robustness criteria set by the control engineer.

The Stereographic Projection and Chordal Distance
Before properly defining the metric most relevant in this thesis, the definition of the
stereographic projection is necessary. First, consider the Riemannian sphere R⊂R3

as a sphere with unit diameter centered in z = 1
2 and its south pole tangent to the x-y

plane. As such we can characterize the sphere as follows

R=

{
(x,y,z) ∈ R3 : x2 + y2 +

(
z− 1

2

)2

=
1
4

}
. (2.7)

Note that this is a surface in R3 and as such a 2D structure. Therefore we can also
express the set in terms of spherical coordinates using the point (x,y,z) =

(
0,0, 1

2

)
as its origin. The equivalent coordinates would then be

( 1
2 ,θ ,ϕ

)
where θ and ϕ are

the polar and azimuthal angles respectively. Thus, we have the alternative represen-
tation

R=
{
(r,θ ,ϕ) ∈ R3 : r = 1/2, θ ∈ [0,π], ϕ ∈ [0,2π]

}
(2.8)

which will be leveraged later in this thesis.
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2.2 Preliminaries

Figure 2.1 Illustration of the stereographic projection mapping (2.9).

Before defining the stereographic projection, a short discussion of the extended
complex plane C∪{∞} is also required. As we shall see the range of the projection
is the entire complex plane including the point at infinity. However, the usage of the
complex plane in this thesis is always with respect to a system frequency response
function. Furthermore, as we will see later, we have restricted our study to proper
systems in RH ∞. Therefore, we will always have systems of finite open loop gain
and thus never approach infinity. As such we will for the purpose of convenience
and brevity view the complex plane and extended complex plane as interchangeable
and denote them both with C.

We are now ready to define the stereographic projection as a mapping from the
Riemannian sphere onto the extended complex plane C. The mapping originates
from letting the complex plane coincide with the x-y plane, making R rest its south
pole on the origin of the complex plane. Then any point R̄ ∈R maps onto the point
P̄ ∈ C at which a straight line passing through R̄ and the north pole intersects the
complex plane. The point at the north pole maps to infinity [Vinnicombe, 2000].
An illustration of the mapping can be seen in Figure 2.1. Formally, we have the
following definition where R̄= (x,y,z)∈R in accordance with (2.7). We remind the
reader of the notation convention that R̄ does not constitute any complex conjugate,
but simply a known point.
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Chapter 2. Background

φ : R→ C, (2.9)

φ(x,y,z) =
x

1− z
+

y
1− z

j (2.10)

Conversely, we define its inverse φ−1 : C→R as

φ
−1(P) =

(
ℜ(P)

1+ |P|2
,

ℑ(P)
1+ |P|2

,
|P|2

1+ |P|2

)
(2.11)

which we will see more use of later. We shall stay consistent with the notation used
previously where P̄ = φ (R̄).

With these prerequisites, we are now ready to define the last quantity before arriving
at the metrics. We define the point-wise chordal distance κ : C×C → R between
two points P, P̄ ∈ C as follows:

κ(P̄,P) =
|P̄−P|√

1+ |P|2
√

1+ |P̄|2
. (2.12)

This definition coincides with the Euclidean distance between φ−1(P) and φ−1(P̄)
making the naming appropriate. A reminder is in order that this definition of the
chordal distance regards points in C but should be thought of as instances of a
frequency response of a system at a certain frequency. As such, we can see the
chordal distance as a function of frequency since both its arguments can be in-
terpreted as functions of frequency. More rigorously for two SISO systems with
transfer functions P(s) and P̄(s) we find the point-wise chordal distance for each
frequency s = jω according to (2.12) where P = P(ω), P̄ = P̄(ω) [Vinnicombe,
2000].

For reasons that will become apparent, the SISO system specific definition (2.12)
is sufficient for our purposes, but it should be noted that in the referenced literature
[Vinnicombe, 2000] the quantity is defined with respect to MIMO systems. How-
ever, it is shown that (2.12) is the result of that definition applied to SISO systems
which is why it is defined in this way here. When conceptually discussing the re-
sults later in this thesis, the existence of κ with respect to MIMO systems will be
leveraged without stating precisely how it is defined.

Metrics on Spaces of LTI Dynamical Systems
In this section, the ν-gap metric will be defined and discussed. Before arriving at
the main topic, some initial context with respect to other metrics will be outlined.
The ν-gap builds on prior work and work done on other metrics. One branch of
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research focuses on the development of the Graph-metric [Vidyasagar, 1984] and
theory related to it. However, the main prior work leading up to the ν-gap was the
introduction of the Gap-metric [Zames and El-Sakkari, 1980; Georgiou and Smith,
1990; Georgiou, 1988] and surrounding results. The two metrics have led to their
own respective sub branches of research providing a more nuanced picture of other
options of metrics and results derived from them. Exactly what these results are will
not be detailed in this thesis and we will instead delve deeper into the main metric
of interest, the ν-gap[Vinnicombe, 2000; Vinnicombe, 1993; Vinnicombe, 1992].
As will become apparent when discussing the limitations of this paper, the ν-gap
will not be used in the production of theoretical results, where we will instead study
its point-wise in frequency counterpart. Despite this, the definition is still important
to discuss to provide better context to the importance of the results produced and to
the simulation results shown in Figure 1.2.

The ν-gap, denoted by δν is another metric on the space of systems. Again, the
general definition holds for MIMO systems, but with restriction to SISO systems,
we will only consider the following definition of the metric. Consider two systems
with transfer functions P(s), P̄(s). As per the previous section, we can consider the
point-wise chordal distance as a function of frequency,

κ(P( jω), P̄( jω)).

The ν-gap is then defined by the following,

δν(P, P̄) =

{
supω κ(P( jω), P̄( jω)), if wno(1+ P̄⋆P)+η(P)+η(P̄) ̸= 0
1, otherwise

(2.13)
where wno and η(·) again correspond to the winding number and number of unsta-
ble poles respectively. A small remark is in order here as the winding number con-
dition in (2.13) formally is also accompanied by the condition that det(I + P̄∗P) ̸=
0, ∀ω ∈ R in the MIMO case. However, for the SISO case this simply entails that
the Nyquist plot of P∗P̄ is not identically equal to the point −1 on the real axis
for all frequencies. This edge case is wholly uninteresting which is why we have
omitted this condition from (2.13) entirely.

Generalized Stability Margin bP,C and ν-gap Duality
The usefulness of the ν-gap comes from its duality with a generalized stability
margin measure bP,C. Once again, this measure will not be directly used in this
thesis due to the point-wise restriction to a frequency, however it is still useful to
consider and there is similarly a point-wise notion which will be more thoroughly
involved in the thesis.

For any SISO system P and compensator C, using unit feedback we obtain the pair
[P,C]. It is well known that for a standard linear feedback system interconnection
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Chapter 2. Background

with disturbances and measurement noise the Gang of Four matrices [Åström and
Murray, 2021] are the four interesting closed-loop transfer functions to study. To-
gether, they describe the system dynamics from all inputs including reference value,
control signal, noise, and disturbance to the output. We can obtain the four transfer
functions as the elements of the matrix

H(P,C) :=
1

1−PC

[
P
1

][
−C 1

]
=

[ −PC
1−PC

P
1−PC

−C
1−PC

1
1−PC

]
. (2.14)

For a system to be robust, we need all of these to be bounded since if one of them
is unbounded there will exist input signals that cause the system to go unstable.
The concept of the generalized stability margin bP,C, which can be found in [Vinni-
combe, 2000], follows this logic and is defined as follows:

bP,C =

{
∥H(P,C)∥−1

∞
, if [P,C]is stable.

0, otherwise
. (2.15)

Thus a small value for bP,C implies a large norm and as such at least one of the gang
of four being very large which is commensurate with our notion of poor robustness.
The converse is also true.

Some important known properties of this measure is that bP,C ∈ [0, 1] and that lower
bounds on it can be translated into upper bounds on the sensitivity and complemen-
tary sensitivity functions. Thereby, bounds on the measure bP,C provides a connec-
tion to the traditional loop shaping procedure of robust control design referenced
earlier in this thesis. More specifically, if P already has a desirable loop shape, then
bP,C provides a bound on the degradation of that loop shape by C at high and low
gains. If P does not have a desirable loop shape, there are weighting techniques
that can be used to shape the initial loop shape before selecting a compensator C
which can be found in [Vinnicombe, 2000]. In turn, a desirable loop shape is as-
sociated with desirable performance, which is measured using bP,C. Exactly what
these bounds are will not be stated here, but the knowledge of their existence helps
in understanding the implications of the results found in this thesis and how further
study in this field would be useful.

The existence of a useful duality between the ν-gap and bP,C was already stated
in Proposition 1 and Equation (1.3). It is restated here with the preceding context
providing clearer understanding. For two systems P and P̄ and a compensator C̄
which stabilizes P̄ the following two inequalities always hold:

bP,C̄ ≥ bP̄,C̄ −δν(P, P̄), (2.16)

The inequality also implies the following two statements as stated in [Vinnicombe,
2000].
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1. Given a plant and compensator P̄,C̄ ∈ R, and a number β , then:
[P,C̄] is stable for all plants P satisfying δν(P, P̄)≤ β if and only
if bP̄,C̄ > β .

2. Given two plants P̄,P ∈ R, and a number β < supC̄ bP̄,C̄, then:
[P,C̄] is stable for all compensators C̄ satisfying bP̄,C̄ > β if and
only if δν(P, P̄)≤ β .

The two statements provide guarantees with respect to how large an uncertainty
set can be given a performance requirement as well as what performance can be
guaranteed given a size of the uncertainty set. However, as stated these bounds are
not sharp and lack incorporation of further knowledge of the involved systems.

As mentioned above, due to the restrictions on this thesis, we are interested in the
corresponding point-wise version of bP,C. For two points z1,z2 ∈ C we define

ρ(z1,z2) = σ̄
−1
(

1
1− z1z2

[
z1
1

][
−z2 1

])
=

1− z1z2

σ̄

([
−z1z2 z1
−z2 1

]) (2.17)

as the point-wise generalised stability margin [Vinnicombe, 2000]. Here σ̄(·) cor-
responds to the largest singular value. The intended application of this definition is
for when z1 and z2 correspond to the frequency responses P( jω), C( jω) at a certain
fixed frequency. With this perspective it holds that if [P,C] is stable, we find

bP,C = inf
ω

ρ(P( jω),C( jω)).

We also know that the point-wise inequality corresponding to (2.16) also holds for
ρ and κ [Vinnicombe, 2000]. With the notation ρP,C := ρ(P( jω),C( jω)) we have

ρP,C̄ ≥ ρP̄,C̄ −κ(P( jω), P̄( jω)). (2.18)

Once again, both b and ρ are originally defined with respect to MIMO systems in
the referenced material [Vinnicombe, 2000] whereas the definitions given here are
equivalent when considering SISO systems, the reason for which will be apparent
in the following section.

2.3 Limitations

The limitations of this thesis have been mentioned previously. For the sake of clarity
we collect all restrictions made in this thesis here.
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Chapter 2. Background

As stated in the end of the previous chapter, this thesis will be limited to the study
of probability distributions of the point-wise distance between systems since it turns
out that an analytic derivation of the distribution of ν-gap is difficult without a mul-
titude of highly restrictive assumptions and simplifications. Furthermore, this thesis
will be limited to study SISO LTI systems, hence the insistence on SISO definitions
above. More specifically, we will restrict our study to the set of SISO systems with
transfer functions in RH∞, meaning stable and proper rational transfer functions.
However, it is not without consideration of how to conceptually generalize the re-
sults to the MIMO case and unstable systems. Some comments will be made on this
in later parts of the thesis.

2.4 Summary

Throughout this chapter we have seen some necessary basic concepts and nota-
tions introduced along with more advanced preliminaries which are necessary to
understand before embarking on producing the results of this thesis. Furthermore,
a clearly defined limitation boundary has been drawn to crystallize what will and
will not be covered by this thesis. In the following chapter, the problem context will
be brought back into focus and discussed using the theoretical foundation and lim-
itations laid in this chapter. This will lead to a more cohesive problem formulation
which in turn guides us into the results with more clarity.
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3
Further Motivation and
Problem Formulation

Before embarking on the results of this thesis, we shall use our newfound under-
standing of the theory presented in the previous chapter to gain a better understand-
ing of the problem setting. In this section, another simple second motivating exam-
ple which showcases the idea of the problem in its most basic format is presented
and is then followed up by a description of the full general problem setting.

3.1 A Simplified Illustrative Example

Let us consider the simple scalar real case (P ∈ R). Now consider a circle C with
unit diameter tangent with respect to the real number line at its south pole (C is the
analogue of Riemann sphere in the complex setting defined earlier in the thesis). The
line that connects the north pole of the circle, N , and the points on R intersects the
circle precisely at one point and constitutes the Stereographic Projection φ : C →R
as discussed. Now consider the case when the point P ∈ R is random and let S ⊂ R
denote the compact support set of the distribution fP governing the uncertainty in
P. Further, assume that a nominal value denoted by P̄ ∈ S ⊂ R is known apriori.
Note that, P ∼ fP can take any value in S. Then, the distance between the projected
values of nominal value P̄ and any realization P on the circle C becomes random as
well. A simple illustration is shown in Figure 3.1. Note that the angle α :=∡PN P̄
is a random quantity determined as a function of P and P̄ and hence the chordal
distance between R̄ := φ−1(P̄) and R := φ−1(P) given by |sin(α)| turns out to be
random as well. In such a setting, we would want to study the distribution of the
perturbation from P̄ needed to realize any P ∈ S.
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Chapter 3. Further Motivation and Problem Formulation

Figure 3.1 Stereographic projection on R is illustrated here. The uncertainty in point P is
depicted as an orange interval S⊂R. Both the nominal point P̄ and its projection R̄ are shown
in blue color. A realization of the random point P ∈ S and its inverse projection R are shown
in red color. Since P is random, the angle α :=∡PN P̄ and hence the corresponding chordal
distance line in green color are random as well.

3.2 The General Problem Setting

In this section, the setting from Figure 3.1 will be generalized to be commensurate
with Figure 2.1 and will illuminate the conceptual framework which will follow
throughout the rest of the thesis.

Consider the case where we have a known system P̄ and one random system P
such that for every frequency ω , P̄( jω) ∈ C is known and P( jω) ∈ C is a random
variable with known distribution fP( jω) on a compact support set S( jω) which
governs the uncertainty of P. Note that, P( jω) ∼ fP( jω) can take any value in
S( jω). Then, similarly to the previous section, the distance between the projected
values of nominal value P̄( jω) and any realization P( jω) on the Riemann sphere R
becomes random as well. An illustration is shown in Figure 3.2, where the concept
illustrated in Figure 3.1 is incorporated into Figure 2.1. In the figure, the dependence
on jω is omitted for brevity and both the distribution of P( jω) over S( jω) and
of R := φ−1(P) on RS( jω) := φ−1(S( jω)) is exemplified using a red and green
color gradient respectively. A blue Nyquist curve for the nominal model P̄ is also
included to further indicate that the point P̄( jω) is a point on a known Nyquist
curve. Also note the close connection to Figure 1.1 where a single one of the ellipses
along the curve has now been isolated and projected onto the Riemann sphere using
the inverse stereographic projection. Once again we are interested in studying the
distribution of the perturbation from P̄( jω) to realize any P( jω) ∈ S( jω) in terms
of the chordal distance κ . For ease of notation the dependence on jω will be omitted
in the following section. However do note that the frequency dependence remains
and will be revisited in discussion in the subsequent chapter.
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Figure 3.2 A conceptual understanding of how the problem of point-wise random system
perturbation is illustrated here. The blue curve constitutes the Nyquist curve of the known
nominal system P̄ and the set S is the compact support set of distribution fP which is ex-
emplified by the red color gradient. The Riemann sphere with the corresponding inversely
projected point R̄ and support set RS with distribution fR exemplified by the green color gra-
dient is also shown.

3.3 Summary

With an initial problem description in the research motivation chapter, and theoreti-
cal development and a clear limitation in the background chapter we were here able
to connect everything using two more examples into one cohesive understanding of
the problem. We are now fully ready to present the results of this thesis in the fol-
lowing chapter answering Question 1 and finding important results along the way.
The results that are relevant within the set limitations will be presented along with
derivations and proofs. Additionally, two numerical examples will also be provided
to illustrate the findings. In the subsequent chapter, a deeper discussion of the impli-
cations of the results will be presented along with a discussion on several possible
future works and how this new take on the field of probabilistic robust control could
yield fruitful results.
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4
Main Results

This chapter contains the main results of this thesis along with ties back to the moti-
vating problem from Section 1.1 in the form of a numerical example commensurate
with the original problem setting. An initial result characterizing the mapping be-
tween the distribution fP and fR described in the previous section is provided. Sub-
sequently, the main result is given from two perspectives providing two alternate
ways of characterizing the distribution of the point-wise chordal distance between
the known and random system. Additionally, a special case where an analytic solu-
tion can be obtained is presented and analyzed. Lastly, a continuation result utilizing
the main results to provide insight into the potential control performance degrada-
tion is also presented.

4.1 Characterizing the Projected Distribution

From figure 3.2, we brought up the notion of considering the distribution of R ∈R,
fR, with support set RS given a known distribution of P, fP, with support S. In
this section, we will provide a characterization of this transformation of distribution
for completeness of understanding. The later derivations are done completely with
respect to fP but could equivalently be considered with respect to fR illustrated
by the green color gradient in Figure 3.2 and as such an understanding of how to
translate between the two distributions is important.

We shall see that given a fixed frequency ω , a compact set S ⊂ C, a deterministic

nominal model P̄ ∈ S and a random variable P ∈ S such that
(

ℜ(P)
ℑ(P)

)
∼ fP for

some two dimensional probability distribution fP on S, we will be able to uniquely
characterize the distribution fR of R := φ−1(P).

A short elaboration on the insistence of compactness is also in order as compactness
is not needed for the results below to hold true. However, compactness would help
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to simplify future work as a closed region around a nominal Nyquist plot means the
Nyquist plot of 1+PP̄ in the winding number condition of (2.13) will be bounded
for any P in the compact set and thus facilitates the investigation of the now proba-
bilistic winding number condition. The assumption is also reasonable since we have
restricted the study to the set of systems in RH ∞ which are always bounded and is
further commensurate with the discussion on the interchangeability of the complex
and extended complex planes. The above would also hold true simply for bounded
sets, however another opening provided by compactness is the study of worst-case
scenarios by considering the models that are on the boundary of the uncertainty re-
gion. Further discussion on these lines of future work will be discussed in the next
chapter.

Let P = x+ jy and parameterize fP as fxy(x,y) thereby representing the uncertainty
in P ∈C as uncertainty along the real and imaginary axes. We will also leverage the
spherical representation of R from (2.8) to parameterize fR as fzw(z,w). Using this
along with the stereographic projection mapping we consider the mapping{

z := f1(x,y),

w := f2(x,y)

from the real random variables x,y ∈ R to the real random variables z ∈ [0,π],w ∈
(−π,π] corresponding to random polar and azimuthal angles θ and ϕ . The intention

is to use the result (2.5) where the mapping
(

f1
f2

)
constitutes the composition of the

inverse stereographic projection (2.11) and the spherical coordinate transform with
fixed radius 1

2 and center point (0,0, 1
2 ) ∈ R3. With the transformation as described

and the notation r =
√
x2 +y2 we obtain

z= θ
(
φ−1(P)

)
= arccos

(
2 r2

1+r2
−1
)
=: f1(x,y),

w = ϕ
(
φ−1(P)

)
=

{
π, if y = 0, x < 0
sgn(y)arccos x

r =: f2(x,y), otherwise.

(4.1)

Since w should lie in the half-open interval (−π,π] we have to utilize wraparound
to declare that should the mapping result in −π , which happens for realizations
y = 0,x < 0, we will instead map it to π . This mapping is a bijection in every point
except for the realization x = y = 0 for which the corresponding realization w is
undefined, since both the coordinate transformation as well as the stereographic
projection are bijections when not considering the origin. For every realization x
and y this yields the Jacobian matrix(

−2x
(1+r2)r

−2y
(1+r2)r

−y
r2

x
r2

)
(4.2)
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where r =
√

x2 + y2, for when the Jacobian is defined. The Jacobian is undefined
precisely when y = 0, x ≤ 0. This lets us characterize the distribution by the follow-
ing equality, when the Jacobian is defined

fzw(z,w) =
1

|J(x,y)|
fxy(x,y).

Here J(x,y) is the determinant of (4.2) given by

J(x,y) =
−2

r+ r3

and again x(z,w) and y(z,w) are the unique solutions to (4.1) for fixed realizations
z = z,w = w. Again, this holds true for points not on the negative x-axis or the
origin. Thus we finally get, using the absolute value in (2.5)

fzw(z,w) =
r+ r3

2
fxy(x,y). (4.3)

We need to contend with fzw being undefined for z,w such that x = y = 0. This is
only the case for z = π corresponding to the coordinates for the south pole of the
Riemann sphere where w is undefined. As stated previously, y = 0, x < 0 also leads
to fzw being undefined. However, in the z,w space the region where it is undefined
has measure zero and can as such be worked around when integrating regions which
contain it. Further still, when considering the transformation using distribution the-
ory such that the discontinuity results in some terms involving a Kronecker delta
distribution in the partial derivative of ϕ(φ−1(P))) instead of being undefined, all
such terms cancel yielding the same result as in (4.3). Since the support set S is
bounded, the case when r approaches infinity need not be contended with as fxy is
guaranteed 0 for large enough r.

4.2 Finding the Distribution Function of the Chordal
Distance

As per the restrictions of this thesis, we will only consider the SISO and point-
wise case. The ν-gap simplifies to the supremum over frequency of the point-wise
chordal distance κ(P̄(ω), P(ω)) as per (2.13). Thus, we will now investigate how
we can characterize the randomness of the point-wise chordal distance. We shall see
that given the setting of P∼ fP on S and known P̄ from the previous section, we will
be able to find the cumulative distribution function Fκ(d) expressed in terms of fP.
We will again deal with the general case where S at a fixed frequency is an arbitrary
compact set and fP is an arbitrary distribution. In this section, we will present two
separate perspectives on this general characterization along with a special case of
one of them.
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Deriving an explicit CDF
In this section, the main result of this thesis will be derived and stated. For clarity,
in this section, we will let S ⊂ C remain completely arbitrary and only implicitly
affect the results of this section. By considering fP defined on C we can capture
the implication of S by defining it to be non-zero only on some introduced S. This
allows for S = C and the effect of a restriction of S appears through a selection of
fP.

Recall the definition of the point-wise chordal distance (2.12) where the frequency
response P( jω) is a random quantity for every frequency ω . Due to the randomness
of P, the chordal distance becomes a random scalar quantity. We define this random
variable for a fixed ω as

K := κ(P, P̄) =
|P̄−P|√

1+ |P|2
√

1+ |P̄|2
. (4.4)

We are interested in studying its cumulative distribution function

FK(d) := P(K < d). (4.5)

Before stating the main result we will first introduce several notations for the sake
of brevity.

c1(z,w) :=
1
2
− z−w+1

2r2 (4.6a)

c2(z,w) :=
1
2

√
2(z+w−1)

r2 − (z−w+1)2

r4 −1 (4.6b)[
xi(z,w)
yi(z,w)

]
= c1(z,w)

[
a
b

]
+(−1)i−1c2(z,w)

[
−b
a

]
, i = 1,2 (4.6c)

u(d, t) := min{td2(1+ r2),(r+
√

t −1)2} (4.6d)

ℓ(d, t) := min{td2(1+ r2),(r−
√

t −1)2} (4.6e)

We shall also require the following lemma before continuing onwards.

LEMMA 1
Given real random variables x and y, with joint distribution fxy(x,y), and constants
a,b ∈ R, define r :=

√
a2 +b2, and the real random variables

z := g1(x,y) = (x−a)2 +(y−b)2 ≥ 0, (4.7a)

w := g2(x,y) = x2 +y2 +1 ≥ 1. (4.7b)
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Then, the joint distribution of z and w is given by

fzw(z,w) =


f (z,w), |r−

√
w−1|<√

z
undefined, |r−

√
w−1|=√

z
0, otherwise

(4.8)

where

f (z,w) :=
1

4r2c2(z,w)

2

∑
i=1

fxy(xi(z,w),yi(z,w)) (4.9)

Proof. We will use the known result (2.5) where xi,yi are all solutions to the map-
ping (4.7) for the corresponding z,w. Furthermore J(xi, yi) is the Jacobian determi-
nant of the mapping evaluated at the solutions xi, yi and is given by

|J(x,y)|= 4
∣∣∣∣[b −a

][x
y

]∣∣∣∣ . (4.10)

We can interpret (4.7) as circles with radii
√
w−1 and

√
z and centers in the origin

and
[

a
b

]
respectively, illustrated in Figure 4.1.

Figure 4.1 An interpretation of (4.7) in terms of circles.
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Then xi,yi are the points of intersection of the circles given by the following cases
namely:

1. When |r−
√

w−1| <√
z and z > 0, w > 1, we have two intersection points

which are given by (4.6c).

2. When |r−
√

w−1|=√
z and z > 0, w > 1, we get c2(z,w) = 0 and leads to

a unique intersection at
[
x1 y1

]⊤
= c1(z,w)

[
a b

]⊤.

3. For all other cases, there is no intersection.

Inserting these results into (4.10), we obtain the following results for when two
intersections exist.

|J(xi(z,w), yi(z,w))|

= 4
∣∣∣∣c1(z,w)

[
b −a

][a
b

]
± c2(z,w)

[
b −a

][−b
a

]∣∣∣∣
= 4r2c2(z,w).

Inserting this into (2.5) for each case yields (4.8).

We also need to show that the PDF fzw is valid. To do so, we first note that it is easy
to show it is non-negative. We also need to show that the integral of fzw over the
region in the z-w plane defined by the cases in (4.8) converges. Formally, the integral
should also equal 1 when computed on its support. In this proof, this calculation is
omitted since the equality (2.5) guarantees the correct normalization provided the
integral is convergent.

We want to find

FK(1) =
∫

∞

1

∫ (r+
√

t−1)2

(r−
√

t−1)2

1
4r2c2(l, t)

2

∑
i=1

fxy(xi,yi)(l, t)dl dt. (4.11)

Now, utilize the following change of variables

u = c1(l, t) =
(

1
2
− l − t +1

2r2

)
, (4.12a)

v = c2(l, t) =
1
2

√
2(l + t −1)

r2 − (l − t +1)2

r4 −1. (4.12b)

The mapping has the absolute Jacobian determinant

|J(l, t)|= 1
8r4c2(l, t)

. (4.13)
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Figure 4.2 A plot of c2(l, t) for r = 2
√

2 with the region limits given by |r−
√

l|<
√

t −1
marked by blue solid lines and the red solid line constitutes the symmetry line t = l + 1.
The disjoint regions on either side of the symmetry line and limited by the blue solid lines
correspond to the regions which after rotation and translation into the lr, tr plane coincide
with E1 and E2.

We need the Jacobian of the inverse transformation of (4.12) to perform the variable
change which requires the transformation to be invertible. Since c1 is linear in l and
t it is invertible but c2 is not invertible on the entire integration region. However,
the function is invertible on either side of the symmetry line t = l +1 visualized by
Figure 4.2. This fact is verified by the following calculation. Applying the bijective
transformation (lr, tr) = 1√

2
(l − (t − 1), l +(t − 1)) (corresponding to a translation

and rotation) yields

c2(lr, tr) =
1
2

√
2
√

2
r2 tr −

2
r4 l2

r −1

which is symmetric around the tr axis. Furthermore, it is monotone on either side
of the tr axis and increasing for tr > 0 and fixed lr and thus invertible. Transforming
back maintains this property but transforms the symmetry line lr = 0 into t = l+1 as
promised. Dividing the integral (4.11) into the two disjoint regions E1, E2 separated
by this line guarantees (4.12b) is invertible in each region. As such, we can use the
result that the Jacobian of the inverse is the inverse of the Jacobian to transform
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4.2 Finding the Distribution Function of the Chordal Distance

(4.11). Now let D1 and D2 be the mapping of E1 and E2 by (4.12) respectively in
the u− v plane. We also write

h(l, t) :=
2

∑
i=1

fxy(xi(l, t),yi(l, t)). (4.14)

Note that, after the transformation in the following we have l = l(u,v) and t = t(u,v)
to get

FK(1) =
∫ ∫

E1∪E2

h(l, t)
4r2c2(l, t)

dl dt, (4.15)

=
∫ ∫

D1

2r2h(l, t)dudv+
∫ ∫

D2

2r2h(l, t)dudv. (4.16)

Since we know h from (4.14) is a sum of two PDFs, we know it is integrable and
therefore both integrals in the last step are convergent which proves the result. 2

Now we are ready to state the main result.

THEOREM 1
Given d ∈ [0,1], let P( jω) = x+ y j ∈ C for a fixed ω follow the distribution fP
parameterized by fxy(x,y). Further, let P̄( jω) ∈ C denote a nominal model at the
same frequency ω . Then, the CDF of K is given by:

FK(d) =
∫

∞

1

∫ u(d,t)

ℓ(d,t)

1
4r2c2(l, t)

2

∑
i=1

fxy(xi,yi)(l, t)dl dt, (4.17)

where r = |P̄( jω)| and notations follow (4.6).

Proof. Let us parameterize the known nominal model as P̄ = a+ b j and the un-
known random model as P = x+y j at the given frequency. As a consequence x and
y are real random variables with a known density fxy(x,y) derived from fP. Then
we have

K =
1√

1+ r2

√
g1(x,y)

g2(x,y)
= :

1
c

√
Q

where g1,g2 are given by (4.7). Then, for a given d ∈ [0,1], the CDF of K using
Lemma 1 is given by

FK(d) = P
(√

Q
c

< d
)
= P

(
Q < c2d2)= FQ(c2d2),
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where FQ(·) denotes the CDF of Q = z
w and z := g1(x,y), w := g2(x,y). In (2.6), FQ

is stated as

FQ(q) :=
∫

∞

0

∫ tq

0
fzw(l, t)dl dt

since g1 and g2 guarantees non-negative z and w. Here, fzw(l, t) denotes the joint
PDF of z and w obtained using Lemma 1. By realizing that fzw(z,w) is zero outside
the region specified by

∣∣r−√
w−1

∣∣<√
z, we get

FQ(q) =
∫

∞

1

∫ min{tq,(r+
√

t−1)
2}

min{tq,(r−
√

t−1)
2}

f (l, t)dl dt, where

f (l, t) =
1

4r2c2(l, t)

2

∑
i=1

fxy(xi(l, t),yi(l, t)).

Here, xi(l, t),yi(l, t) are given by (4.6c). Setting q = c2d2 = (1+ r2)d2 yields the
final result. 2

A General Perspective
In this section we shall provide another, more general perspective on how to find the
cumulative distribution function (4.5). Investigating the function using sets instead
of directly manipulating (2.12), we arrive at an alternative expression which can be
more easily generalized to MIMO systems since the definition (2.12) only holds for
SISO systems as stated. While the following still will regard the SISO case, we will
treat κ purely as a metric, independent of how we defined it in (2.12). As such, a
corresponding MIMO definition could take its place with only minor changes to the
argument that follows.

Firstly, define the open ball

Bd(P̄) := {P ∈ C : κ(P, P̄)< d}. (4.18)

Using this we can find the following expression for (4.5)

FK(d) = P(κ(P̄,P)< d) = P(P ∈ Bd(P̄)) =
∫

Bd(P̄))
fP dA

where dA is an area element on C. Since the distribution fP is only non-zero on its
support set S we finally find

FK(d) =
∫

Bd(P̄))∩S
fP dA (4.19)

With a given S, fP and d, this integral is well defined, albeit perhaps difficult to
compute for certain regions and distributions.
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4.2 Finding the Distribution Function of the Chordal Distance

Figure 4.3 Illustration of how chordal diameter relates to chordal radius.

Note that the open ball Bd(P̄), when projected onto ∂R constitutes the intersection
between ∂R and an open ball in R3 centered on R̄ := φ−1(P̄) with the R3-Euclidean
radius d. Its boundary is a circle on ∂R with a center point C that lies inside R on
the intersection between the radial line to R̄ and a chordal diameter line. Formally
we have

φ
−1 (Bd(P̄)) = {R ∈ ∂R :

∥∥R−φ
−1(P̄)

∥∥
2 < d}.

A cross-section of this for a vertical plane parallel with the azimuthal angle of P is
shown in the illustration in Figure 4.3.

We also note that given a circle on ∂R with chordal diameter d centered on the
point C inside R on the radial line to R̄ ∈ ∂R. The chordal distance from a point R1

on the the circle to R̄, which we will call the chordal radius, will be d
2

(
cos ∆θ

4

)−1

as shown in Figure 4.3, where sin ∆θ

2 = d. This fact will be used in the following
section in the formulation of an important lemma.
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Uniform Distribution with Elliptic Support
The previous result (4.19), while numerically solvable for known nominal models
P̄, sets S and distributions fP, has no guarantee for an analytic solution and could
present with numerical issues for complicated cases. We will now consider a special
case where the integral can be alternatively expressed in a more easily computable
way.

Consider S to be an ellipse with major and minor semi-axes a,b > 0 and fP to be
a uniform distribution on S. This setting might be suitable when the engineer can
place bounds on the uncertainty in gain and phase and thus bound a point on the
Nyquist plot in the radial and tangential directions, but has no knowledge of the
distribution inside the bounds. A good model to capture this could be to assume
no prior distribution and thus assume every model in the set to be equally likely
leading to a uniform distribution. In this case the integral (4.19) turns into a simple
proportion of area. With

fP =

{
1∫

S dA , on S
0, otherwise

we get

FK(d) =

∫
Bd(P̄))∩S dA∫

S dA
. (4.20)

Before stating the result, we will once again require a lemma. The open ball (4.18)
is defined by a center point and a radius described in terms of the chordal dis-
tance, and thus the distance of points on ∂R to the inverse stereographic projection
R̄ = φ−1(P̄). The following lemma will describe how the ball can be alternatively
expressed using the Euclidean norm on C. We shall also see that the center point of
the resulting disc in C is not necessarily P̄ and in fact depends on d ∈ [0,1].

LEMMA 2
Let R̄= (x,y,z)∈ ∂R be given. Then, given a standard open ball B d

2 (cos ∆θ
4 )

−1
(
R
)
∈

R3 of diameter d ∈ [0,1] in the Euclidean metric that does not include the north pole

of the Riemann sphere (0, 0, 1), the open disc D := φ

(
B d

2 (cos ∆θ
4 )

−1
(
R
)
∩R

)
⊂C

has a diameter d̂ in the Euclidean metric given by

d̂ =

∣∣∣∣ sin(θ +∆θ)

1− cos(θ +∆θ)
− sinθ

1− cosθ

∣∣∣∣ , with (4.21a)

sin
∆θ

2
= d, and θ = θ(R̄) such that cos

(
θ +

∆θ

2

)
= 2z−1. (4.21b)
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4.2 Finding the Distribution Function of the Chordal Distance

The stereographic projection φ is given by

φ : R→ C,

φ(x,y,z) =
x

1− z
+

y
1− z

j.

Furthermore, the center point P̂ ∈ C of the disc D is given by

P̂ =

∣∣∣ sin(θ+∆θ)
1−cos(θ+∆θ)

∣∣∣+ ∣∣ sinθ

1−cosθ

∣∣
2

(cosϕ(R̄)+ sinϕ(R̄) j) , where (4.22a)

ϕ(R̄) : = sign(y)arccos
x√

x2 + y2
(4.22b)

Proof. We know that a circle which does not intersect the north pole on the Rie-
mann sphere maps to another circle on the complex plane through the stereographic
projection [Vinnicombe, 2000]. Furthermore, a meridian on the Riemann sphere
maps to a straight radial line. An illustration in Figure 4.4 showcases the main argu-
ment of the proof. Take some circle on R with chordal diameter d ∈ [0,1] and some
center point R̄ = (x,y,z). Now consider the meridian through R̄ and its intersection
with the circle which yields two points R1 and R2 between which the chordal dis-
tance is d. Figure 4.3 illustrates a cross section of a plane in which such a meridian
lies. Furthermore, P1 : = φ(R1) and P2 : = φ(R2) will lie on the opposite sides of
the projected circle and thus at a distance d̂ equal to the projected diameter. Con-
sider R1 = ( 1

2 ,θ ,ϕ) and R2 = ( 1
2 , θ̂ ,ϕ), with θ̂ = θ +∆θ to be the points described

above given in spherical coordinates with its origin in (x,y,z) = (0,0, 1
2 ). The radial

coordinate is fixed at 1
2 due to the points being on R. They lie on the meridian at

the fixed azimuth angle ϕ and at a chordal distance d from each other such that
sin ∆θ

2 = d. We know ϕ only determines the direction of the projected diameter line
but not its length. As such, d̂ is invariant of ϕ and we set it equal to zero. Now,
equivalently consider the points in Cartesian coordinates to get

R1 =
1
2
(sinθ ,0,1+ cosθ) , R2 =

1
2
(
sin θ̂ ,0,1+ cos θ̂

)
.

Projecting these onto C using (2.9), we get real points

P1 =
sinθ

1− cosθ
, P2 =

sin θ̂

1− cos θ̂
.

We then get

d̂ = |P2 −P1|=
∣∣∣∣ sin(θ +∆θ)

1− cos(θ +∆θ)
− sinθ

1− cosθ

∣∣∣∣
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Figure 4.4 An illustration of the argument used in the proof of Lemma 2.

where

sin
∆θ

2
= d, and θ = θ(R̄) such that cos

(
θ +

∆θ

2

)
= 2z−1.

Furthermore we know the center point is given by P1+P2
2 . Since direction now plays

a part we need to consider the azimuth angle ϕ again, however we note that the
distance from the origin to P1 and P2 respectively is still unaffected. We therefore
find for any ϕ ∈ [0, 2π) that

P1 =
sinθ

1− cosθ
(cosϕ + sinϕ j) , P2 =

sin θ̂

1− cos θ̂
(cosϕ + sinϕ j)
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4.2 Finding the Distribution Function of the Chordal Distance

where ϕ = ϕ(R̄) is described by (4.22b) and the expression for the center point P̂
follows from P̂ = p1+p2

2 yielding the result. 2

While not strictly used in the derivation of the following theorem and only referred
to, this lemma provides a useful bridge between the setting we introduced in the
previous section to arrive at (4.19) and the starting point of the following theorem.
We state the theorem here and comment on the connection to the lemma afterwards.

THEOREM 2
Suppose S ∈ C is an ellipse centered in P̄ ∈ C with minor-axis B > 0, major-axis
A ≥ B and angle between major axis and the real axis ϕe (in positive direction). Let
D ∈C be the open disc with diameter d̂ > 0 and center in P̂ ∈C. Then the following
holds ∫

D∩S dA∫
S dA

=
1

ABπ

∫ min
(

A,cx+
d̂
2

)
max

(
−A,cx− d̂

2

) (U(x)−L(x)) dx (4.23)

where (
cx
cy

)
:= M(−ϕe)

((
Re(P̂)
Im(P̂)

)
−
(

Re(P̄)
Im(P̄)

))
+

(
0
B

)
(4.24a)

Di(x) := (−1)i−1

√
d̂2

4
− (x− cx)2 + cy, i = 1,2 (4.24b)

Ei(x) := (−1)i−1B

√
1−
( x

A

)2
+B, i = 1,2 (4.24c)

U(x) := max(E2(x),min(D1(x),E1(x))) (4.24d)
L(x) := min(E1(x),max(D2(x),E2(x))) (4.24e)

and M(−ϕe) denotes the standard 2×2 rotation matrix of angle −ϕe.

Proof. Since the left hand side of (4.23) is a proportion of areas the expression is
invariant of translation and rotation. As such, we introduce the transformation from

(4.24a) where we interpret
(

cx
cy

)
as real and imaginary parts of cx+cy j respectively.

As such consider it as a mapping T : C→C where (4.24a) showcases T (P̂) = cx +
cy j. It consists of a translation by −P̄ and rotation by −ϕe which centers the ellipsis
and aligns its major axis with the x-axis (real axis). Then a shift of B along the y-axis
(imaginary axis) lifts the ellipse to where it tangents the x-axis at its south pole. The
procedure is shown in Figure 4.5. Applying the transformation yields the right figure
in Figure 4.5. We split the circle D and ellipse E into its upper and lower halves in
order to be able to express each curve segment as functions Di(x), Ei(x), i = 1,2 as
defined in (4.24b) and (4.24c) and illustrated in Figure 4.6. The area of the ellipsis
is ABπ and the area of the intersection can now be calculated as the integral of the

43



Chapter 4. Main Results

Figure 4.5 Visual representation of transformation utilized in the proof for Theorem 2.

Figure 4.6 An example illustration of the Di and Ei notations and the shaded area to be
represented by the integral factor in (4.23).

difference between the upper and lower segments of the intersection boundary as
shown in Figure 4.6. The integral limits are determined by either the ends of the
ellipsis or the circle in the x-direction, whichever is more limiting. The integrand
consists of the difference between the upper and lower sections for all different
cases of cx,cy and d̂ resulting in (4.24d) and (4.24e). The final result then follows.
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Remark: As promised we will discuss the connection between Theorem 2 and
Lemma 2 briefly. We note that if the point P̂ and diameter d̂ in Theorem 2 were
determined by the situation described in Lemma 2 then D would correspond to

B d
2 (cos ∆θ

4 )
−1 (P̄) ∈ C

as defined by (4.18). The integral result (4.23) would then be equal to
FK

(
d
2

(
cos ∆θ

4

)−1
)

providing a way to use this to calculate the CDF. This would

hold for all d ∈ [0,1] such that min(θ(R̄),θ(R̄)+∆θ) > 0 which guarantees that
the inversely projected ball does not intersect or encircle the north pole.

CDF Result Summary
In this chapter we have now provided two different perspectives on the CDF of the
chordal distance along with a numerical example showcasing the first of the two. In
the following section we will provide a result which makes use of the knowledge
of the CDF to place probabilistic guarantees on the point-wise generalized stability
margin ρ for a stabilizing controller with respect to the nominal system P̄. This
provides a point-wise version of the answer to Question 1 and provides a suitable
conclusion to the series of results provided in this thesis before finally showcasing
some numerical examples.

4.3 Potential Performance Degradation and Violation
Probability Duality

With knowledge of FK(d) we are interested in how a random perturbation from P̄ (a
realization of P) impacts performance on a controller C̄ which stabilizes P̄. Recall
(2.18) holds for any P if C̄ stabilizes P̄. We state the following result

THEOREM 3
Let P̄ be a known system for which C̄ is a stabilizing controller. Further let P be a
random system following the distribution fP on some set S, both known for every
frequency ω . If, for some frequency ω the random variable K := κ(P( jω), P̄( jω))
is determined by the known cumulative distribution FK(d), d ∈ [0,1], derived from
fP. Then the following holds:

P
(
ρP,C̄ ≥ ρP̄,C̄ −d

)
≥ FK(d) (4.25)

Proof. The proof follows from direct calculation where the last step uses that the
inequality (2.18) given a stable pair [P̄,C̄] always holds. We have

FK(d) = P(K ≤ d) = P
(
K −ρP̄,C̄ ≤ d −ρP̄,C̄

)
=

= P
(
ρP̄,C̄ −d ≤ ρP̄,C̄ −K

)
≤ P

(
ρP̄,C̄ −d ≤ ρP,C̄

)
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which directly provides the result. 2

The result of Theorem 3 does what we set out to do and provides an answer to
the point-wise version of Question 1. With known [P̄,C̄] we can calculate ρP̄,C̄ and
pick a d ∈ [0,1] such that ρP̄,C̄ −d constitutes the desired performance requirement,
bounded from above by ρP̄,C̄. Then Theorem 3 gives a lower bound on the probabil-
ity that the designed controller C̄ satisfies the performance requirement on a random
plant P in the uncertainty set S.

We can use the following corollary to provide an answer to the question where if
we pick a violation probability, what performance requirement will only be violated
with a probability at most equal to that violation probability?

COROLLARY 1
Given a violation probability ε ∈ [0,1] the following choice of d = F−1

K (1− ε),
whenever it is properly defined will ensure

P
(
ρP,C̄ ≥ ρP̄,C̄ −d

)
≥ 1− ε.

Proof. The proof of the corollary follows directly from Theorem 3 by setting
FK(d) = 1− ε and assuming the inverse to be properly defined at that point. 2

Remark : Since FK is a CDF it is monotone (not strictly), the only case when it
is not invertible in a point 1 − ε is when there exists an interval [d1, d2] where
FK(d) = 1− ε for all d ∈ [d1, d2]. In such a case we can define the inverse to mean
the smallest of such d, namely F−1

K (1− ε) := d1 and maintain the result.

4.4 Numerical Examples

To provide validation and concretize the results produced in this chapter, this section
will provide numerical examples where the results above are put to use. The code
used to produce these results along with the simulation in the motivating example
can be found on the public repository [Nyström, 2024].

Gaussian Distribution with Unbounded Support
With an expression of the CDF from Theorem 1, we will now study a practical
example where it is computed numerically. One such example is the example prob-
lem from Section 1.1 where an estimation of the distribution has been made and
assumed to be Gaussian. This section will deal with the example where fP, parame-
terized as fxy(x,y), is a Gaussian distribution with an unbounded support set S =C.
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4.4 Numerical Examples

Figure 4.7 Numerical results in calculating FK(d) as expressed in (4.17) with a Gaussian
underlying distribution on unbounded support.

Such a case can be considered to be a generalization of the elliptical support set
from Section 1.1 but with a truncation at infinity rather than at 5 standard devia-
tions. This would be a general case of the following. Let fxy have the covariance
matrix Σ and the support set be an ellipse given by kxT Σ−1x ≤ 1 for some scalar k
and where xT = (x,y). This corresponds to the boundary of S being a level set to the
distribution. This is natural since the set in Section 1.1 was determined as the level
set at 5 standard deviations. By setting the level at 0 we include all of C. The numer-
ically computed CDF FK(d), d ∈ [0,1] given by Theorem 1 of such a case can be
seen in Figure 4.7. As seen the resulting interpolated function is a valid CDF with

FK(1) = 1 as expected. Here P̄ = 1+ j along with Σ =

(
1 0
0 1

2

)
were chosen. For

an elliptic restriction on S, the same distribution fxy would apply but be truncated
at some cutoff and re-normalized resulting in a new numerical result.

Uniform Distribution with Elliptic support
To illustrate and validate the result given in Theorem 2 as well as provide a connec-
tion between the result and the calculation of a CDF, we provide another numerical
example where the result is used. Consider a case commensurate with Theorem 2

47



Chapter 4. Main Results

Figure 4.8 An example plot of the numerically calculated CDF of the special case when fP
is uniform with elliptic support. Note that it is expressed in terms of d̂ from Lemma 2 here.

such that P ∼ fP where fP is a uniform distribution with support on the elliptical
S with major-axis A = 4 and minor-axis B = 1. Let the ellipse be centered in the
origin and be rotated to where the angle between major axis and real axis, ϕe =

π

4 .
Furthermore, let P̄ = 1+ j and consider how(4.23) varies when we vary d̂. This
is equivalent to considering its variation with respect to d if one uses the relation
between d and d̂ from Lemma 2. For the sake of simplicity this example does not
consider the relation and instead sweeps across a large enough span of d̂ ∈ R≥0
to cover all d ∈ [0,1] for this specific case. The result of this procedure is the plot
displayed in Figure 4.8 where we once again can see the CDF validity.
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5
Conclusion, Discussion and
Future Outlook

In the previous chapter, all the produced results of this thesis were described and
developed. Out of all of them, the main result and contribution of this thesis is
Theorem 1 which can be used to compute the probability that the point-wise chordal
distance at some frequency ω between a random SISO LTI system P( jω) and a
known nominal model P̄( jω) is smaller than a given d ∈ [0,1] when a distribution
of P( jω) ∈ C, fP with support on a set S ∈ C is given. It is complemented by the
equivalent result (4.19) which is more easily generalized into the MIMO case, and
a specific use case of (4.19) which leads to an explicit expression in Theorem 2.
The two results Theorem 1 and (4.19) yield two alternative ways of expressing the
cumulative distribution function of the point-wise chordal distance. What follows
from a determined CDF is that one can then place probabilistic guarantees on the
point-wise performance measure ρ for a controller designed to stabilize P̄ when
applied to the random system P. These guarantees are specified by Theorem 3 and
Corollary 1.

5.1 Discussion

The guarantees are two-fold and makes it possible to firstly answer the question:
Given a lower bound on the point-wise performance, what is the lower bound on
the probability that it will be achieved? and secondly: Given a violation probability
threshold, what is the largest performance requirement one can set which will be
violated with at most that probability? This provides a clear bridge between the
theory produced in this thesis and practical application as these two questions are
pertinent in a control engineering setting where performance guarantees are not
strict. In some cases, the control of a process must satisfy some requirements at all
points in time, but there are certainly situations where some leeway is acceptable.
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In such a situation a probabilistic requirement is sufficient and can be determined
using the theory in this thesis.

Further still, it is clear that Corollary 1 implies an inverse relationship between the
violation probability and the allowed distance d where a smaller violation threshold
yields a larger d which is associated with a larger uncertainty region and a poorer
performance bound. As such, this theory can be used to determine a one-to-one
correspondence between different levels of performance and a violation probability,
providing a high degree of clarity into the performance-violation probability trade-
off.

This can also be used to determine if the uncertainty set S is small enough to be
useful. We noted earlier that if the uncertainty set stems from data collection, it is
generally the case that more data collection yields a smaller uncertainty set, assum-
ing the data provides new information and is free from bias. After collecting data
and utilizing the theory in this thesis to illuminate the performance degradation-
violation probability duality, it could be the case that the limitation provided by the
duality is too harsh for the application and that required performance with at most a
certain violation probability is impossible to achieve. In that case more data would
be needed in order to reduce the uncertainty enough to guarantee better performance
with the same violation probability. The question of interest is then the following.

Given a violation probability, how much data do I need to collect?

Corollary 1 implies, if we have a violation probability we can investigate what re-
quirements are possible given FK . If better requirements are needed one can find
out how small d = F−1

K (1− ε) has to be and from there find out how much data is
needed to be collected in order to achieve that level of certainty. For a sufficiently
bounded set S, the intersection between S and Bd(P̄) in (4.19) becomes identically
S for some large enough d ∈ [0,1], say d̄. Then FK(d) = 1, ∀d ∈ [d̄,1] which by
the remark related to Corollary 1 guarantees that even for a violation probability of
ε = 0, the lower bound ρP̄,C̄ − d̂ would be guaranteed with probability 1. Further
investigation into exactly what restrictions need to be in place on S would likely not
be trivial and constitutes a potentially fruitful area for future research.

As was shortly discussed previously, compactness of S was not necessary for any
of the above results. However, when taking this research onwards to handle the ν-
gap, the winding number condition needs to be contended with. One initial way
of doing so is to restrict S to never include −1 for any frequency and combine
with sufficient restrictions on the nominal model make the entire set of possible
models satisfy the constraint by imposing compactness on S. This would simplify
the continuation immensely since it would equate to removing the condition in the
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ν-gap definition. The assumption of compactness is not entirely unreasonable either
as has been discussed with respect to truncation of a general uncertainty region
and by utilizing the fact that the Nyquist plot of a proper rational open loop stable
transfer function never will approach infinity. However, the restrictions needed to
exclude −1 are likely too sharp to be realistic. To bring back generality, another
possibility is to continue to consider general S and study the question:

Given a distribution on an arbitrary set of models S and a nominal
model, what is the probability that a random model in the set satisfies
the winding number constraint with respect to the nominal model?

Answering this question could, in conjunction with the study of the supremum of
the chordal distance, provide complete insight into the distribution of the ν-gap
from where results akin to Theorem 3 can easily be posed with respect to bPC. This
would yield even more useful results by dispensing with the frequency dependence
and study the systems directly.

Another use of the compactness constraint which could be interesting to study in the
future is the worst-case analysis it enables, as stated previously. If S is compact there
will be a subset of models in S for which the distance to the nominal model with
respect to the ν-gap or the point-wise chordal distance is maximized. Using this
one can consider this subset to perform a worst-case analysis and thereby producing
similar, but deterministic, results to Theorem 3 and Corollary 1 thus providing sharp
bounds for such cases where performance must be guaranteed.

5.2 Future Outlook

A fresh perspective on probabilistic robust control theory by treating the point-wise
chordal distance metric between LTI dynamical systems as a random quantity was
presented. Knowing the CDF of the plant model at a frequency, the corresponding
CDF of the point-wise chordal distance metric was obtained. The proposed frame-
work presents a fertile research landscape for the future research. A systematic de-
velopment of future research articles is planned in the following sequence to con-
cretize the proposed theory properly involving both SISO and MIMO extensions.

1. Given a frequency ω1 ∈ R≥0 for which the random LTI system P( jω1)
has the known distribution fP( jω1) with compact support S( jω1), what can
you say about fP( jω2) and S( jω2), for some ω2 ∈ R≥0, by utilizing tools
from optimal transport theory such as constraints on the Wasserstein distance
W ( fP( jω1), fP( jω2)) in terms of |ω1 −ω2| or the Wasserstein gradient? Can
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such bounds be used to gain knowledge about the distribution of the supre-
mum of the chordal distance when the point-wise distribution is known?

2. Extend the analysis from point-wise chordal distance setting made in this
thesis to ν-Gap setting. This involves both the study of the winding num-
ber constraint and the distribution of the supremum over frequency of the
chordal distance as discussed above. Handling the dependence between fre-
quencies constitutes the main challenge here since the point-wise result given
here pays no regard to the covariance between the chordal distance at two dif-
ferent frequencies. The previous point might provide some way to estimate
such dependence.

3. Develop probabilistic versions of the robust stability results (see Proposition
1) that is available in [Vinnicombe, 1993]. One such result would be the non-
frequency specific counterpart of Theorem 3 and Corollary 1.

4. Investigate how the results of this thesis and the points above can be utilized
to determine requirements on S given pre-determined violation probabilities
and performance bounds as discussed above. By considering the motivating
example in Section 1.1 this would provide apriori insight into how much data
is needed to be collected in order to guarantee the required performance. The
practical usefulness of this is promising as it has the potential to reduce both
monetary and time costs in data sampling of industrial processes.

5. Generalize the results in this thesis as well as the points above to MIMO LTI
systems.

6. Given two random LTI systems P1,P2 following respective distributions
fP1 , fP2 with compact supports S1,S2 at a frequency ω ∈ R≥0, find the dis-
tribution of the point-wise chordal distance between their projected points
onto the Riemann sphere. This would constitute one of the first attempts at
computing the probabilistic distance between two stochastic dynamical sys-
tems.

7. In MPC [Rawlings et al., 2017], the common way of capturing uncertainty is
to add a term to the state equation of the state space model and characterize as
a stochastic process or using bounds. These in turn provide a field of potential
trajectories from a given initial condition creating a tube around the nominal
trajectory which can be used to find an optimal control law taking the worst
case scenario into account. It would be very interesting to replace this term
with nu-gap constraints or distributions fP on support sets S as in this thesis
to restrict the set of trajectories through a restriction of eligible models. The
restriction of models leads to a family of trajectories similar to the tube which
can be leveraged similarly.
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