
MASTER’S THESIS 2024

Pipelined Context Switching
for Deep Learning Models
Fredrik Horn Dannert

ISSN 1650-2884
LU-CS-EX: 2024-53

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-53

Pipelined Context Switching for Deep
Learning Models

Pipelined Context Switching för Djupa
Inlärningsmodeller

Fredrik Horn Dannert

Pipelined Context Switching for Deep
Learning Models

Fredrik Horn Dannert
fredrik.dannert@gmail.com

August 23, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Jonas Skeppstedt, jonas.skeppsted@cs.lth.se

Examiner: Michael Doggett, michael.doggett@cs.lth.se

mailto:fredrik.dannert@gmail.com
mailto:jonas.skeppsted@cs.lth.se
mailto:michael.doggett@cs.lth.se

Abstract

This thesis investigates the efficiency of pipelined context switching for deep
learning models, specifically within single GPU environments. The motivation
stems from the increasing computational demands of training and deploying
deep learning models, necessitating optimized resource utilization to reduce costs
and improve performance. The thesis evaluates an existing pipelined context
switching system, originally implemented in Pytorch-1.3.0, and ports it to Pytorch-
2.1.0. An evaluation is conducted on three different Nvidia GPUs: T4, A30, and
A40, using models such as Bert_Base, Inception_V3, and Resnet152.

The work presented highlights the benefits of pipelined context switching in
meeting service level objectives (SLOs) for models sharing limited single GPU
resources, and pipelined context switching can reduce the incurred overhead by
up to 10x from transmitting model parameters over PCIe to the device, showing
promise for future work.

Keywords: Deep Learning, Pipelined Execution, DNN Context Switching

2

Acknowledgements

I want to thank my supervisor Jonas Skeppstedt for his feedback and help on my thesis. I
would also like to thank my colleagues at Huawei, Gingfung Matthews for tremendous sup-
port in problem solving and bouncing ideas. Amardeep Mehta for helping me with test cases,
feedback and supervising my time at Huawei. Adam Barker for giving me the opportunity
to write my thesis with the Systems team.

3

4

Contents

1 Introduction 7
1.1 Problem Statement . 8
1.2 Research Questions . 8
1.3 Contribution . 8
1.4 Background . 8

1.4.1 Deep Learning Models . 8
1.4.2 Execution of Deep Neural Network Models 11
1.4.3 NVIDIA GPUs . 14
1.4.4 Pytorch . 15
1.4.5 Inter Process Communication . 16

1.5 Related Work . 17
1.5.1 Layer Aware Pipelining . 17
1.5.2 Batch Parallelism and Pipelining 17
1.5.3 Microsecond Inference Preemption 18
1.5.4 Resource Estimation and Scheduling, Grouping Algorithm 18

2 Approach 19
2.1 Method . 19

2.1.1 Architecture Overview . 20
2.1.2 Replication of Experiments . 21

2.2 Implementation . 21
2.2.1 Port to Pytorch 2.1 . 21
2.2.2 CUDACachingAllocator in Pytorch 1.3 and 2.1 21
2.2.3 Binding to Python . 27
2.2.4 Workers and Scheduler Memory Sharing 27
2.2.5 Pipelined Execution . 28

3 Evaluation 31
3.1 Experimental Setup . 31
3.2 T4 Comparison Results . 33

5

CONTENTS

3.2.1 1.3.0 and 2.1.0 Comparisons . 33
3.3 T4, A30 and A40 Results for Pytorch 2.1.0 37

4 Discussion and Conclusion 41
4.1 Evaluation of Results . 41

4.1.1 Pytorch 1.3.0 and 2.1.0 implementations 41
4.1.2 Pipelined Context Switching and Linear Transmission 42
4.1.3 Pipelined Execution to Meet SLO Requirements 42

4.2 Problem Summary . 42
4.2.1 Research Question One . 43
4.2.2 Research Question Two . 43

4.3 Contribution . 43
4.4 Future Work . 44

4.4.1 Preempting Training Jobs . 44
4.4.2 Framework Agnostic Implementation 44

Bibliography 45

6

Chapter 1

Introduction

The adoption of Deep Learning (DL) models has been steadily increasing, fueled by the ever-
growing capabilities of artificial intelligence (AI) and machine learning technologies. These
models are integral to a wide array of applications ranging from natural language process-
ing and computer vision to autonomous systems and predictive analytics. Companies across
various industries harness the power of deep learning to extract meaningful insights from
their vast datasets, enabling the creation of innovative products and services that were pre-
viously unattainable. This explosive growth in AI is exemplified by leading organizations
such as OpenAI with ChatGPT, Anthropic with Claude, and Google DeepMind, among oth-
ers. These companies have revolutionized the accessibility of advanced AI models, making
sophisticated Generative Pre-trained Transformer (GPT) models that can understand and
communicate text in a way that closely resembles human interaction[17]. These models are
also provided for free or on a subscription basis.

OpenAI’s ChatGPT, for instance, has become a cornerstone in the AI landscape, achiev-
ing over 200 million active monthly users as of June 2023[16]. This widespread adoption high-
lights the significant demand for AI-driven services, which are expected to deliver seamless
and efficient user experiences. The challenge for these companies lies not only in meeting the
high user expectations but also in managing the substantial computational resources required
to train and deploy these models. Training state-of-the-art deep learning models involves ex-
tensive use of GPU clusters, which are both expensive and resource-intensive. Consequently,
optimizing GPU resource utilization becomes paramount to reducing operational costs and
improving efficiency. This optimization ensures that companies can continue to innovate
and provide high-quality AI services without incurring prohibitive costs.

In this context, our research seeks to evaluate an existing system for pipelined context
switching aimed at enhancing the efficiency of single GPU utilization in deep learning frame-
works. The system should seek to enable the simultaneous sharing of GPU resources among
multiple models that may not fit in memory concurrently while minimizing the overhead as-
sociated with model switching to meet client service level objectives (SLO). Service level objec-
tives refer to the maximum delay an inference request is allowed to have, and staying within

7

1. Introduction

those bounds is paramount to certain services that are stronly affected by delay in response
time.

1.1 Problem Statement
We seek to find a system that performs a layer-aware execution strategy for a single GPU.
This system has to be able to integrate with modern Deep Learning System frameworks like
Pytorch or Tensorflow. The system at hand needs to be able to share single GPU resources
between multiple models that might not fit in memory simultaneously. The caused overhead
from switching models in and out of memory needs to be minimized as we aim to meet all
service level objectives of our inference requests.

1.2 Research Questions
With a look into an existing solution of pipelined context switching, we want to explore the
following:

1. Can pipelined execution of Deep Neural Networks still be viable for more recent (Am-
pere) Nvidia GPUs with regards to existing implementations? Moreover, do we see any
improvements in GPU utilization for these devices?

2. Is pipelined context switching an execution strategy that can help minimize trans-
mission overheads of model parameters to the GPU while still meeting service level
objectives.

We will evaluate multiple GPU accelerators using our own implementation and see how
they fare comparatively to the older implementation.

1.3 Contribution
The contribution will be a better understanding of how a system, that utilizes pipelined
context switching to swap models in and out of memory, performs on newer generations of
Nvidia GPUs and how it can be implemented. After this project, a reader should have a better
understanding of how pipelined execution and transmission can be used to reduce swapping
overhead while simultaneously addressing SLO requirements.

1.4 Background
1.4.1 Deep Learning Models
Deep learning, a subset of machine learning, is distinguished by its use of artificial neural
networks (ANNs) with multiple layers, or "deep" architectures, to model complex patterns in
data. This section outlines the fundamental components and processes that constitute deep

8

1.4 Background

learning, offering insights into capabilities for inference and learning from vast amounts of
data.

A Deep Neural Network (DNN) is a computational model with multiple layers, with capa-
bilities for pattern recognition in data with many layers of abstraction[11]. Generally, a deep
neural network comprises 3 types of layers; the input layer, the number of hidden layers, and
the output layer. Figure 1.1

Figure 1.1: DNN with 4 layers. 1 input layer, 2 hidden layers, and 1
output layer.

Forward Propagation or forward pass, is the process in which a neural network makes a
prediction given input data. In the forward pass, the data flow passes from the input layer,
L1 to the output layer LN , where for each layer a prediction on the data is performed by using
current weights and biases.

The Loss Function measures the difference between the network’s prediction and the ac-
tual target values.

Backward Propagation allows the neural network to correct for its misprediction and is the
core of where the learning is happening. The gradient of the loss function is calculated with
respect to each weight in the network. The gradient is calculated starting from layer LN and
propagating to layer L1. Lastly, the weights are updated and a step is taken in the opposite
direction of the gradient. Put together, forward propagation, calculating the loss function,
backward propagation, and stepping the optimizer is what is called an epoch or iteration of
the DNN.

DNN Architecture
Definition 1 (Topological Ordering). A topological ordering of a directed graph G(V, E) is
a linear ordering of its vertices V such that for every directed edge (u, v) ∈ E from u to v, u
will come before v in the ordering.

DNN architectures have a property of its layers being topologically ordered. This implies
the layers L1, L2 · · · Li , · · · LN−1, LN all have an ordering of computation and subsequently

9

1. Introduction

a dependency relation to respect. Topological ordering in DNNs states that a layer Li will
perform computation before subsequent layers L j , L j+1, · · · . The output of layer Li will then
be passed on to subsequent layers. The forward and backward pass (forward and backward
propagation) can thus be computed independently layer by layer, respecting the dependency
relation between the layers [11].

Figure 1.2: Hypothetical DNN example displaying the possible topo-
logical orderings. Letters A-E represent layers in a DNN.

In figure 1.2 we can see a hypothetical model and its possible compute orderings (or topo-
logical orderings). Layer A has to be first in all orderings. Layers B and D depend on A, and C
depends on B. Layer E depends on the output of layers C and D. Note that a layer constitutes
a collection of multiple different kernels, also in a topologically sorted order. It follows that
the graph representation in the figure can be expressed in more detail.

10

1.4 Background

Figure 1.3: VGG16 Architecture with a total of 21 layers, displaying
the inherent topological ordering

A good DNN architecture example where this property is portrayed is VGG16, seen in
figure 1.3, which consists of 13 Convolutional layers, five Max Pool layers and three Dense lay-
ers[15]. Naturally, models can be far more complex, containing up to hundreds of layers and
constructing a computational graph that spans thousands of kernels.

1.4.2 Execution of Deep Neural Network Models
When, say a forward pass, of a DNN, takes place, in a framework like pytorch, there are gener-
ally two stages in the execution: transmission of the model from physical memory to the device
over PCI, denoted Tt, and execution of the model with respective input, Te[4]. For each layer
Li , the transmission and execution is defined as Tti and Tei , and total execution time is the
sum of transmission and execution time.

Ttot =

N∑
i=1

Tti + Tei (1.1)

Note, equation 1.1 assumes there is already memory allocated on the device for the model,
which would otherwise cause extra overhead.

11

1. Introduction

Pipelined Execution

Pipelining execution is a fundamental technique used in computing to enhance performance
by parallelizing the processing of instructions. At its core, pipelining divides the execution
process into several sequential stages, each capable of operating concurrently. As a result,
while one instruction is being executed in one stage of the pipeline, another can be processed
in a different stage. This approach significantly increases throughput and maximizes the
utilization of computational resources.

Figure 1.4: Illustration of pipelined execution. Case I shows the
sequential execution of an instruction, while case II illustrates the
achieved parallelism and speedup achieved by performing the exe-
cution process with pipelining.

In figure 1.4, a five-stage pipeline typically found in many processors is illustrated. Stages
such as instruction fetch (IF), decode (ID), execute (EXEC), memory access (MEM), and regis-
ter write-back (WB) can operate simultaneously for different instructions, leading to a more
efficient processing system where multiple instructions are handled at various stages of com-
pletion, thus accelerating overall execution times.

Deep Neural Network Pipelining

Execution of a DNN can be divided into two stages. The transmission of the model parameters
over PCIe to the device, and exection of the model using some input. In figure 1.5 we can see
two cases of execution; linear and pipelined execution.

12

1.4 Background

Figure 1.5: Illustration of pipelined execution. Case I shows the
sequential execution of an instruction, while case II illustrates the
achieved parallelism and speedup achieved by performing the exe-
cution process with pipelining.

By pipelining transmission and execution, the end-to-end request latency can be reduced
significantly. Grouping strategies can be applied to find a proper batching technique of lay-
ers, as shown in related work. This implies that the choice of several layers transmitted at
one time might affect overall execution time and might differ between models. The concept
of pipelining execution of deep learning models works in the same way as described for in-
struction pipelining. The process of executing an inference request for a deep learning model
entails (1) transmitting the model parameters to the device, (2) performing the forward pass,
acquiring a result, and (3) copying the output tensor from the device to physical memory.
Since computation is offloaded to the GPU, it requires the model parameters and data to
be transferred over the PCIe to device memory. This operation, if done frequently and with
large tensors, can become a costly operation. The pipelined execution of the model aims to
hide the inflicted latency of transmission and execution by allowing the execution and trans-
mission of the model to take place concurrently. The idea behind the technique is thus to
effectively hide execution time inside of transmission time.

One case has been left out, and that is the case of having a model readily available on the
device for a request. This case only requires the model parameters to be transferred once and
can be executed efficiently thereafter. This case is illustrated in figure 1.6.

13

1. Introduction

Figure 1.6: Illustration of execution with the model ready in device
memory.

The pipelined execution is performed in the same manner for both implementations that
we will be evaluating, with only small differences in how the device pointers are acquired.

1.4.3 NVIDIA GPUs
NIVIDA GPUs are complex accelerators which introduce new concepts for a developer to
understand when following the programming model provided in the CUDA Toolkit.

CUDA Toolkit
The NVIDIA CUDA toolkit provides a development environment for GPU accelerated ap-
plications. With it, a developer has access to a range of GPU accelerated libraries for linear
algebra (cuBLAS), deep neural networks (cuDNN), data processing (RAPIDS cuDF) and par-
allel algorithm standard library (Thrust)[13]. Moreover, the toolkit gives developers access to
the GPU APIs in two different forms of granularity. A runtime- and Driver API. First we
introduce the terminology of entities in the CUDA programming model.

Host and Device memory refer to the system memory (RAM) and the memory that resides
on the GPU, respectively.

Kernels are the fundamental unit of execution in CUDA. The kernel is a function imple-
mented by the developer, which is executed on the device. A kernel is an inherently parallel
unit of execution, where the developer can specify the level of parallelism of the kernel. For
instance, executing a function N times in parallel by N different threads.

Contexts in CUDA encompass state management, kernel execution, memory management
and error handling necessary for a running application.

Modules are dynamically loadable packages of of device code and data. The module con-
tains all symbols, functions, global variables and more at module scope. This allows multiple
modules to coexist within a single context.

14

1.4 Background

Streams represent a sequence of concurrent operations issued by applications which exe-
cute in order. The streams guarantee that commands issued to the stream may execute when
all the dependencies of the command are met.

Events are useful synchronization primitives which, put together with streams, provide
guarantees that all units of work that were submitted to a stream prior the event have finished
executing.

CUDA Runtime API is a high level API which performs implicit context, module and ini-
tialization management, leading to simpler code. It allows for virtual memory management
between host and device, synchronization of computation and more abstracted operations on
the GPU. The runtime API is an abstraction that builds on low-level driver API.

CUDA Driver API is the low level library, equipped with fine-grained control mechanisms
for context, module, stream and virtual memory management and more. The library is a super
set of the runtime API and assumes the same capabilities, however, more complex to manage.

Nvidia Multi-Process Service is a tool developed by Nvidia, allowing users to use either
spatial or temporal sharing of a single GPU between multiple processes.

Compute Capabilities
CUDA compute capabilities classify NVIDIA GPUs based on their features and performance
for parallel computing. Each version of compute capability, such as 7.0, 8.0, and 9.0, corre-
sponds to specific hardware features and performance levels. These capabilities are directly
related to different versions of the CUDA toolkit and cuDNN, as each toolkit version sup-
ports certain compute capabilities, ensuring compatibility and optimized performance. For
instance, newer versions of the CUDA toolkit and cuDNN often introduce features that
leverage the advanced capabilities of the latest GPUs, providing better performance and ef-
ficiency for complex computational tasks[13]

1.4.4 Pytorch
Fundamental concepts from pytorch

A Tensor in PyTorch is a multi-dimensional array with capabilities optimized for use on
varying accelerators, enabling accelerated computing. Tensors are used to encode the inputs
and outputs of a model, as well as the model’s parameters. They are fundamental to operations
in neural networks, facilitating efficient mathematical computations.

PyTorch Modules are the base class for all neural network modules which includes layers,
and often encapsulates parameters, helper methods, and more. Custom networks are defined
by subclassing torch.nn.Module and defining forward methods, which take inputs, compute
operations, and return outputs.

Hooks are functions that can be registered on a Module or Tensor. They are useful for
debugging or understanding the model by allowing for the inspection and modification of
outputs and gradients at different points in the network.

The Device is where Tensor computations are performed, for instance, CPU or GPU.
Dispatcher in PyTorch refers to the mechanism that enables dynamic selection of imple-

mentations based on properties of input arguments such as data types and device types. The
dispatcher is what allows us to switch between GPU, CPU and others as our choice of accel-
erator for our tensors.

15

1. Introduction

pybind is a header only library which exposes C++ types in python and vice versa[9]. Used
to create python bindings to C++ code.

Pytorch Process Creation
When working with multiple processes in pytorch, you can specify how the created processes
will be created and it is then important to know the distinction between the different meth-
ods.

The fork() call creates a new process by duplicating the calling process and works as spec-
ified by the equivalent system call. The new process, known as the child process, is an exact
copy of the parent process, including the execution state. The parent and child will only
duplicate memory when a write is performed to shared memory. This is called copy-on-write.
This implies, as long as memory is not mutated, duplication will not occur [2].

The exec() call is used to replace the current process image to instead use some other
binary. This allows a calling process to essentially to replace itself with another program [1].

Spawn or posix_spawn as it is known according to the POSIX standard, is a private system
call which aims to combine the fork and exec system call into one well defined step of how a
process can be created[3] In pytorch, this will entails replacing the process image with a new
one, reinitalizing modules and more.

1.4.5 Inter Process Communication
Inter-Process Communication (IPC) is a set of programming interfaces that allow coor-
dination among different program processes which execute concurrently in an operating
system[14]. This enables data sharing and task synchronization, despite being separate units
of execution.

IPC Mechanisms
Unix systems provide a set of IPC mechanisms that for coordination between multiple related
and unrelated processes.

Pipes and Named pipes allow for communication between processes. A pipe is a communi-
cation channel between two processes that share a common ancestor. Named pipes are similar
to pipes but are not limited to parent-child processes. They have a name within the file
system and can be accessed by unrelated processes.

Message Queues allow processes to share data in the form of messages. Messages take the
form of arbitrarily sized blocks. Message queues are provided in System V and POSIX ver-
sions.

Shared Memory allows multiple processes to access the same portion of physical memory.
It is a fast and efficient form of IPC avoiding the overhead of data copying, allowing direct
read and write operations.

Semaphores provide a simple synchronization primitive for processes when performing
reads/writes on shared memory. Semaphores come in different implementations on Unix
systems, namely System V and POSIX.

Signals are used by the operating system to inform a process of events. Signals are not
entirely an IPC mechanism but they can be used to send signals between processes.

16

1.5 Related Work

1.5 Related Work

1.5.1 Layer Aware Pipelining
In a paper from 2019 introducing GPipe, which is a novel batch-splitting pipeline parallelism
algorithm to efficiently train large-scale neural networks by partitioning them across mul-
tiple GPUs[8]. The GPipe approach divides a mini-batch of training examples into smaller
micro-batches, which are then pipelined through several GPUs, allowing different acceler-
ators to process different micro-batches simultaneously. This design achieves nearly linear
speedup with the number of GPUs used, as demonstrated by the significant performance
gains in training large models like AmoebaNet and Transformers. However, this design is
inherently reliant on multiple GPUs because the partitioning and pipelining strategies are
designed to distribute the computational load and memory requirements across several de-
vices. For single GPU scenarios, the benefits of GPipe’s parallelism are moot, as the single
device must handle the entire model and data processing sequentially, negating the efficiency
gains derived from parallel execution and inter-device communication optimizations.

In a paper from 2020[4], an approach to pipelined context switching is introduced, where
training and inference applications can share a GPU with millisecond overhead. By produc-
ing metrics of transmission time (Ti), execution time (Ei) and overall delay (Di) when executing a
given layer Li , they introduce a novel algorithm for layer grouping, which minimizes the total
execution time of a model M . The algorithm achieves optimal grouping given a list of lay-
ers for linear and non-linear models, assuming the layered list produced from the non-linear
model is topologically sorted. By extending PyTorch, and utilizing its memory management
component, they introduce a shared cache which multiple Pytorch processes, managed by a
server, can access through IPC calls. In conclusion, the provided solution is capable of meet-
ing service-level requirements while increasing GPU utilization for a single GPU workload.

1.5.2 Batch Parallelism and Pipelining

PipeDream [12], presented in a paper from 2019, introduced inter-batch pipelining to intra-
batch parallelism of training workloads of deep learning models. Intra-batch parallelism for
model training implies splitting an iteration of training between multiple workers, leverag-
ing data-parallelism and reducing intermediate state results by frequent communication and
transmission of data between workers. With Intra-batch parallelism, PipeDream parallelized
the forward and backward propagation, which is an integral part of DNN training. This
was accomplished by performing groupings of model layers into mini-batches, which then
are partitioned into m micro-batches. This allowed for efficient pipelining of training work-
loads, pipeline flushing, and, compared to its predecessor GPipe[8], automatic model partition-
ing. PipeDream leverages Pytorch, but is extensible to other frameworks, such as TensorFlow,
MXnet[5] and Caffe[10] and runs on Nvidia GPUs utilizing CUDA[13].

The work with PipeDream is, as an extension of GPipe, intended to improve model par-
titioning over multiple GPUs and not single GPUs. This is outside the scope of the system
we seek to evaluate for this thesis.

17

1. Introduction

1.5.3 Microsecond Inference Preemption
Reef [7], presented in a paper from 2022, introduced a strategy for inference applications that
can perform microsecond preemption of inference kernels, also known as real-time kernels.
Reef performs kernel fusion, to group high-priority kernels with best-effort kernels to maxi-
mize throughput and GPU utilization. Reef incurs an overall latency of 2.2%, but increases
throughput by about 7x for specific workloads. A con with using Reef is that both the models
consisting of best-effort and real-time kernels have to be in memory simultaneously for it to
work. There is no mechanism in place that allows for switching models in and out efficiently.
A positive for Reef is that the system is framework agnostic and does not rely on any Deep
Learning System like Pytorch or Tensorflow and can simply execute out of the box if the Deep
Learning Libraries have access to the created library which intercepts kernel scheduling calls.

1.5.4 Resource Estimation and Scheduling, Grouping
Algorithm

Liquid[6], presented in a paper from 2022, introduces a Grouping Genetic Algorithm (GGA) for
batch job scheduling in a cluster. Similarly to the grouping strategy performed by PipeSwitch[4],
Liquid finds an optimal batch grouping strategy from this GGA. The key thing to note is that
the GGA is not used for fine-grained GPU scheduling but for assignment in a cluster based
on available resources.

18

Chapter 2

Approach

This chapter will highlight the process of implementing pipelined context switching for Pytorch-
2.1.0 and some design choices we made compared to that of Pytorch-1.3.0.

2.1 Method

Our strategy of implementing a solution that can perform context switching of DL models
on newer generation GPUs was to look at previous related work. A design we settled on
evaluating was the one presented through PipeSwitch. We decided on choosing PipeSwitch
because of it’s intended use case for single GPU execution, and promising performance char-
acteristics as explained in the paper, where transmission overhead was reduced by factors of
up to 40x when comparing against Nvidia MPS.

We will be porting PipeSwitch, which is implemented for Pytorch-1.3.0, to Pytorch-2.1.0.
To ensure that our implementation is correct, we will be evaluating our implementation
using simple image recognition test samples in batches of 8 for three DNN models. For each
run we will ensure that our solution does not produce an unexpected result and compare its
prediction with that of a model running an unmodified Pytorch 2.1.0. With verification from
an unmodified Pytorch library, we can more confidently trust our results and experiments.

When we arrive at an implementation which can perform pipelined context switching, we
can then perform our experiments and analyze if the transmission overhead of model param-
eters is decreased or not, as well as how well it performs on newer generations of GPUs. In
context, when we have clients that demand that inference requests should take no longer than
100ms to perform, we can then compare our results and see if pipelined context switching
can help us remain below that bound.

19

2. Approach

2.1.1 Architecture Overview
In the existing system we settled with, four main components deal with incoming connections,
workload assignment, execution, and memory management respectively. The pipelined con-
text switching system will at any time consist of three processes: a server and two workers,
which are child processes of the server. The server is responsible for allocating the shared de-
vice memory, spawning worker processes, and exposing the device pointer by transferring it
over TCP/IP to the workers. The server will also collect the list of DNN models it will be
serving for training and inference requests. Moreover, the server spawns a controller which
manages the workers, model list, and parameter allocation on the GPU. After all initializa-
tion, the server will take care of incoming client connections over TCP/IP and transfer them
to the controller, which in turn deals with the request. A simplified illustration of the system
can be seen in figure 2.1

Figure 2.1: Simplified architecture overview. Note that there are a
total of 3 separate processes, two workers and a server.

Pytorch has a memory management component that allocates memory for an accelerator,
called a caching allocator. There is an implementation of a caching allocator, in some form,
for each accelerator that Pytorch has chosen to support. In the case of GPUs, Pytorch lever-
ages the CUDACachingAllocator, for CPUs the CPUCachingAllocator, and more. The allocator
is a complex entity that performs allocation, deallocation, event tracing, and graph recording

20

2.2 Implementation

and can be extended to support more. The caching allocator is not implemented in python
but instead leverages C++ for performance reasons. The allocator is accessed through a foreign
function interface (FFI). The CUDACachingAllocator has been extended, adding five opera-
tions to support context switching to the Pytorch API. More on the implementation details
in section 2.2.2.

The implemented operations are allocation-, sending- and receiving-, insertion- and clearing
a shared cache. As previously mentioned, the server allocates the device memory and sends
the device pointer to the workers. The workers in turn await the device pointer and later
insert the model parameters into their own shared cache once the pointer is received.

There are two modes of communication that the server uses, TCP/IP when clients are
connecting with a request and sending inference data, and IPC when data is passed from
the controller to the active worker. The controller leverages pipes when activating a worker,
interrupting an active worker, and for data transmission.

2.1.2 Replication of Experiments
To evaluate that our context-switching architecture works as intended, we want to confirm
that the experiments used to evaluate it in the first place can be replicated. The experiments
presented are for three separate scenarios explained below. What we wish to measure is the
end-to-end latency of an inference request performed by a client. The experiments, as pre-
sented in the results chapter, are what we are using to evaluate the system and confirm that
it is performing as we expected.

2.2 Implementation

2.2.1 Port to Pytorch 2.1
As a preface to the implementation details of the port, most of the changes that we have had
to introduce in the port have resided in the low-level components of the architecture. We will
thus first have to walk through some of the details of the different versions, more specifically,
the CUDACachingAllocator.

2.2.2 CUDACachingAllocator in Pytorch 1.3 and 2.1
In Pytorch 2.1, most of the introduced changes do not reside on the python side of the Pytorch
module, torch, but rather on the C++ side. The CUDACachingAllocator has, between 1.3 and
2.1, seen a lot of rework. The source code of the allocator has gone from around 780 LoC to
3500+ LoC. We will first go over how memory allocation and deallocation are performed to
get a better understanding of both Pytorch versions. This will make things easier explaining
how Pytorch was extended in both versions. Note that the introduced changes described
span more than just the .cpp files, but also header files.

In figure 2.2 we have a simple overview of the 1.3 CUDACachingAllocator. The Caching
Allocator from 1.3. was designed to manage multiple devices, but in a different manner than

21

2. Approach

that of newer versions. This device allocator was called THCCachingAllocator. The THC-
CachingAllocator is a component inside of the CUDACachingAllocator with the responsi-
bility of managing the memory allocations of all devices.

22

2.2 Implementation

Figure 2.2: Simplified overview of the CUDACachingAllocator
from 1.3

Figure 2.3: Overview of the CUDACachingAllocator from Pytorch
2.1. This is a simplified version, omitting components for initializa-
tion.

23

2. Approach

In figure 2.3 we are presented with an overview of the CUDACachingAllocator in ver-
sion 2.1. The first thing you can tell from the figure is that there is a proxy module, the
NativeCachingAllocator, which forwards incoming calls to, now called, DeviceCachingAllocator,
presented in figure 2.4. The DeviceCachingAllocator is not exposed to outside callers, and
if an application interacts with the CUDACachingAllocator, everything is done through the
NativeCachingAllocator.

Figure 2.4: The NativeCachingAllocator and DeviceCachingAlloca-
tor from pytorch 2.1. Note that this is a simplified illustration.

Memory Allocation and Deallocation
In 1.3, allocations are grouped into two possible sizes. small- and large allocations. A small
allocation is an allocation that is smaller than 1MB and a large one is an allocation that is
greater or equal to 1MB. Given which group an allocation belongs to, it will reside in either
the small or large BlockPool. A BlockPool is an Balanced Binary Search Tree (AVL Tree), known
as a set in C++, containing all allocated blocks on the device that are either in use or available
to be reused. The CUDACachingAllocator also resolves which stream that is currently in use
by the calling thread. This information is later passed to the THCCachingAllocator. As men-
tioned earlier, the THCCachingAllocator is responsible for keeping track of all allocations
for multiple devices. This can lead to high lock contention and overall performance degra-
dation. Deallocation is performed in the same vein as the allocation. The call is forwarded
to the THCCachingAllocator, which finds the block of memory a pointer is referencing and
deallocates it.

2.1 saw a slight change in this structure. The grouping of allocations is still performed
in the same way, however, the BlockPool is now divided into two distinct AVL trees; blocks
and unmapped. "Blocks" contains all the active allocations, while "unmapped" contains blocks
of memory that can be reused.

When allocating memory, the NativeCachingAllocator forwards the malloc call by check-
ing the current target device of the calling thread and selecting the correct DeviceCachingAl-

24

2.2 Implementation

locator to forward the call to. The DeviceCachingAllocator will fetch the current stream the
calling thread is using. Based on the stream and allocation size, it will select a block that
is already allocated on the GPU or allocate a new block. A big change with the Device-
CachingAllocator, compared to that of the THCCachingAllocator, is that it is responsible
for allocations on one device, and not multiple. Instead, multiple instances of DeviceCachin-
gAllocators exist and can communicate and synchronize on events that might span multiple
devices. As illustrated in figure 2.4, the NativeCachingAllocator is responsible for managing
all the instances of DeviceCachingAllocators.

Upon a call to deallocate memory, the NativeCachingAllocator and DeviceCachingAllo-
cator process the request in the same vein as an allocation by checking the device and stream
of a request. The memory of the device pointer can be released and reinserted into the cache,
signaling that it can be reused or freed by making a call to the device to free up the memory.

Extension in 1.3
We briefly mentioned that the extension would be introducing new functions that could
manage and access the shared cache, used between processes. They are the following:

• allocate_shared_cache() 1
• send_shared_cache() 2
• recv_shared_cache() 3
• insert_shared_cache_for_parameter() 4
• insert_shared_cache_for_computation() 5
• clear_shared_cache() 6

(1) allocates a fixed size block of memory on the device, which is stored in a pointer,
called shared_cache_pointer, inside each DeviceCachingAllocator. (2) is used to first create a
cudaIpcMemHandle, which takes the allocated device pointer and makes it accessible between
multiple processes, and sends it to a specified port which another process will read from
using (3). Upon receiving the memory handle, a process will unpack the memory handle and
assign the shared_cache_pointer to its contents. The two functions (4) and (5) insert a block
each, of a fixed size, into the large BlockPool, mapping each block to an address range of the
shared_cache_pointer. The parameter and computation call will allocate a block of size SP and
SC respectively, where the total cache size Stotal is equivalent to Stotal = SP+SC . Lastly, we have
the function (6), which removes all the associated blocks from the large BlockPool, but ensures
that the device pointer itself is not touched. Important to note that the implementation for
this was already in place and the baseline of the 2.1 port.

Extension in 2.1
The API introduced above remains the same, with the same function signatures being present.
However, we decided to introduce some changes to how the allocated device pointer, ob-
tained when allocating through (1), would be accessed by child processes. What we noticed
from 1.3 was a context-switching system that couldn’t start up a new process easily if one were
to crash due to unexpected failure. We decided that if we replace the communication medium
used to transfer the memory handle, we could simplify some things. The server would not
have to sequentially initialize the child processes, which was done in 1.3, and we could also

25

2. Approach

Figure 2.5: (1) is the BlockPool structure for the extension in 1.3 and
(2) is for 2.1. All BlockPools are contained inside the DeviceCachin-
gAllocator.

get rid of some poor design choices left on the Python side of the project which struggled
with synchronization.

What we instead decided to do was to write the cudaIpcMemHandle to a shared memory
region, which all processes could access on startup. The server would only have to call (1) to
allocate, (2) to create a shared memory segment containing information about the memory
handle the children need to access. Execution could then be performed more isolated between
the parent and child processes. We could then rest assured that the child processes, once they
had started up, would be initialized correctly with minimal interaction.

The biggest difference inside of the CUDACachingAllocator, was to introduce a new
type of BlockPool inside the DeviceCachingAllocator, called a shared pool (see figure 2.5).
Previously, to be able to use the shared memory region inside the worker process, an allocation
had to be greater than 1MB and the correct stream had to be allocated correctly. This implies,

26

2.2 Implementation

that if you are performing allocations that are sub 1MB in size while using the stream, you
would allocate more memory inside the small block pool, which is undesirable behavior. To
combat this, in 2.1, we introduce a new pool that ensures that all allocations performed, while
using a stream associated with the shared pointer, end up in the same place.

As mentioned earlier, clearing the cache using (6) becomes trivial, as we only need to
delete all the blocks contained in the shared pool.

2.2.3 Binding to Python
Lastly, to use our introduced changes, we will have to bind our C++ implementation using
pybind, which is internally used within Pytorch. In figure 2.6, we can see the modified files
that constitute the entire patch. As mentioned earlier, the CUDACachingAllocator and
related header file are there, however, there is also a file called Module.cpp. This file declares
all the C/C++ bindings we can access from our Python code. We simply extend this file with
our aforementioned functions and ensure we follow pybind documentation.

Figure 2.6: All modified files on the Python and C++ side. Pybind is
used to bind to the Module on the C++ side.

The .py files in figure 2.6, except test_cuda.py, are where we declare our Python functions
and ensure that they call our C++ bindings. test_cuda.py is only used to ensure that we don’t
break Pytorch itself with our patch.

2.2.4 Workers and Scheduler Memory Sharing
We now have an idea of how the allocation is performed inside the CUDACachingAllocator
and how the memory on the device is exposed to all processes that will be executing work-
loads. However, there is an allocation detail regarding the minimization of transferred data
and message passing between processes that is important to understand. When the server ini-
tializes all models, the allocation of model parameters is done in a 1GB memory region. The
workers will themselves be allocating all the model parameters with that very same offset,
resulting in an equivalent mapping for the server to a worker respectively. To demonstrate
what we mean by this statement, see figure 2.7

27

2. Approach

Figure 2.7: View of the memory as seen by workers 1 and 2.

Worker one will be allocating the model parameters of Inference_v3 while worker two will
take care of requests for Resnet152. Since the server is the one responsible for dealing with
transmitting the model parameters to the device, the workers will be unaware of the changes
to the state of the device memory. This implies, that for the worker to perform training or
respond to an inference request, the server has to only ensure that the right synchronization
is taken care of beforehand. Moreover, since the computational graph of the DNN is topo-
logically ordered, the server transmits it in the order in which the worker will be executing
it.

2.2.5 Pipelined Execution
Now that we understand how the memory views for both workers and server work respec-
tively as well as how pipelined transmission and execution of deep learning models can be

28

2.2 Implementation

performed, we need to mention how the execution is performed in practice. Pytorch allows
for registration of events on model layers, called hooks when a forward pass or backward pass
is performed. These events are registrations of functions that will be executed either before
or after a forward pass is performed. This behaviour can be specified by the developer.

By inserting forward and backward hooks, workers can synchronize on model transmis-
sion with directives from the server using pipes. The server can thus ensure that model param-
eters have been transmitted before any execution takes place, dividing responsibility between
server and worker for a forward pass to take place.

29

2. Approach

30

Chapter 3

Evaluation

3.1 Experimental Setup
We will be evaluating the aforementioned 1.3 implementation of context switching to that
of our ported 2.1 version. In this section, we will describe the setup, workloads used, the
metrics we use to evaluate the two implementations and showcase some results on different
accelerators.

For the experiments, we have access to three machines, referred to as Machine 1, 2 and
3. Machine 1 is running Ubuntu 22.04.3 LTS x86_64, kernel 5.15.0-91-generic with an In-
tel Xeon Platinum 8260 (96 cores @ 3.9GHz) CPU. Machine 1 also has two NVIDIA A30
GPUs with 24GB High Bandwidth Memory (HBM) 2 and 933 GB/s of GPU memory band-
width, connected with 8x PCIe Gen4. Machine 2 is running Ubuntu 18.04.3 LTS x86_64,
kernel 5.15.0-1707-generic, with an Intel Xeon Platinum 8260 (96 cores @ 3.900GHz). Ma-
chine 2 is equipped with 3 NVIDIA T4 GPUs with 16GB of memory and 320 GB/s mem-
ory bandwidth, connected with 8x PCIe Gen3. Machine 3 is running Ubuntu 22.04.03 LTS
x86_64, kernel 5.15.05-generic with an Intel Xeon Gold 6354 (72 cores @ 3.600GHz). Ma-
chine two has two NVIDIA A40 GPUs with a memory bandwidth of 696 GB/s, PCIe Gen4
interconnect, 48GB GDDR6 GPU memory. The software used is mentioned per approach.
The Pytorch 1.3 implementation uses PyTorch 1.3, torchvision 0.4.2, scipy 1.3.2 and CUDA
10.1. The 2.1 implementation uses PyTorch 2.1, torchvision 0.16.0, scipy 1.11.4 and CUDA
12.7. We can ensure that all the software is consistent over all machines since we are execut-
ing our tests in a dockerized environment.

For all our experiments, we have an inference server a client connects to and commu-
nicates with using TCP/IP. We want to measure the overall latency of an inference request
performed using four different strategies, three different workloads, on a T4, A30 and A40
GPU and with two separate PyTorch implementations. The different workloads we will be
using are Bert_Base, Inception_V3 and Resnet152, which are common benchmark models for DL
systems. When executing a workload, we will have one worker executing the model in eval-

31

3. Evaluation

uation mode, while another is on standby ready for an inference request. When executing
our workloads, we are always using a fixed batch size of 8 for our inference requests. Each
workload will be executed 100 times, where the first 10 runs will be discarded, as we only
want to measure the latency when it has stabilized.

The four different strategies we will use are called:

• Ready model: This is the baseline and best achievable time we can achieve with this
experimental setup. The baseline is equivalent to having the model ready to execute
server side such that when a client performs an inference request a response can be
sent minimizing latency.

• Kill and Restart: This is the worst outcome we can get for an inference request with
our setup. Here, the server will preempt a worker process which is training a model
and start another tasked to perform an inference request. This implies that the process
will have to load the model into host memory, transmit to the GPU and then execute
and respond with a result.

• Pipelined Switch: Implies using pipelined execution, pipelining transmission with exe-
cution to hide the transmission latency of a model.

• Linear Transmission and Execution: This test case will evaluate the inference latency
given that the worker process is not preempted but also does not have the model ready
in device memory but has to transmit it from physical memory first without using
pipelined execution. This is a good reference point to pipelined context switching.

These strategies are referred to as Ready Model, Kill and Restart, Pipelined and Linear in the
figures presented in the results section.

32

3.2 T4 Comparison Results

3.2 T4 Comparison Results
Before we delve into the acquired results for the two implementations, we have to acknowl-
edge that we lack results for the 1.3 implementation of pipelined execution on the A30 and
A40 accelerators. This is one, caused by the CUDA toolkit version we have used for the Py-
torch 1.3.0 implementation being incompatible with newer accelerators. Secondly, an error
caused by how the header files of cuDNN are structured when building Pytorch 1.3.0 from
source. Git submodules of Pytorch depend on these header files being ordered in a particu-
lar manner for version control. This ordering was changed moving from cuDNN 7.x to 8.x,
introducing hard to find bugs when building the project. Since Pytorch 1.3.0 is unsupported
as the development has moved on to Pytorch 2.x.x, this remains unfixed. We will thus only
compare 1.3.0 and 2.1.0 on the T4 GPU, for which we have data.

3.2.1 1.3.0 and 2.1.0 Comparisons
The relative speedup of the Pytorch 2.1.0 implementation compared to the 1.3.0 implemen-
tation, as shown in Table 3.3, provides a clear insight into the performance differences. For
Bert_Base under the kill and restart strategy, the speedup is significant at 2.21x, indicating a
more than two-fold increase in efficiency.

In contrast, the Linear and Pipelined strategies for Bert_Base show relative speedups of
0.90x and 0.96x, respectively, suggesting slight regressions. However, the Ready Model strat-
egy for Bert_Base remains almost on par, with a 0.97x speedup. For Inception_v3, the kill restart
strategy also demonstrates a notable speedup of 2.27x. Both Linear and Pipelined strategies ex-
hibit modest improvements with speedups of 1.04x and 1.12x, respectively. The Ready Model
strategy shows a consistent speedup of 1.12x. Lastly, ResNet152 shows a 1.52x speedup for the
kill restart strategy. The Linear, Pipelined, and Ready Model strategies all show slight improve-
ments with speedups of around 1.03x to 1.04x.

Overall, the relative speedup analysis underscores the significant advancements in Py-
torch 2.1.0 for certain strategies and models but not the pipelined context switching end to
end latency which we seek to evaluate.

We can also deduce the produced overhead comparing pipelined context switching and
the linear execution to ready model, as seen in table 3.4. Here we can determine that pipelined
execution outperforms linear model execution for each test case. For the ResNet152 test case
on Pytorch 2.1.0, the overhead is an order of magnitude lower for pipelined execution than
that of linear.

Lastly, as seen in figure 3.1 and 3.2, we can see histograms of the execution times, where
it is also clear how pipelined execution tends to outperform linear execution.

33

3. Evaluation

Figure 3.1: Pytorch 1.3.0 implementation executed on a NVIDIA T4
GPU

Figure 3.2: Pytorch 2.1.0 implementation executed on a NVIDIA T4
GPU

34

3.2 T4 Comparison Results

Table 3.1: Model Performance by Strategy Across All GPU Acceler-
ators for Pytorch 2.1.0

Model Strategy Nvidia T4 Nvidia A30 Nvidia A40

Value Unit Value Unit Value Unit

Bert_Base

Kill Restart 3151.40 ms 3810.79 ms 5901.02 ms
Linear 226.22 ms 177.64 ms 80.80 ms
Pipelined 145.65 ms 96.54 ms 73.80 ms
Ready Model 118.18 ms 62.11 ms 57.06 ms

Inception_v3

Kill Restart 2529.56 ms 2768.57 ms 5098.06 ms
Linear 95.53 ms 90.53 ms 54.53 ms
Pipelined 55.47 ms 52.23 ms 41.87 ms
Ready Model 48.30 ms 35.56 ms 35.12 ms

ResNet152

Kill Restart 3252.21 ms 3812.01 ms 7170.18 ms
Linear 165.04 ms 77.04 ms 65.77 ms
Pipelined 79.53 ms 46.21 ms 58.40 ms
Ready Model 70.63 ms 29.75 ms 37.48 ms

Table 3.2: Model Performance by Strategy Across All GPU Acceler-
ators for Pytorch 1.3

Model Strategy Nvidia T4 Nvidia A30 Nvidia A40

Value Unit Value Unit Value Unit

Bert_Base

Kill Restart 6965.47 ms - - - -
Linear 251.04 ms - - - -
Pipelined 140.08 ms - - - -
Ready Model 115.64 ms - - - -

Inception_v3

Kill Restart 5736.87 ms - - - -
Linear 100.20 ms - - - -
Pipelined 62.01 ms - - - -
Ready Model 53.92 ms - - - -

ResNet152

Kill Restart 4932.86 ms - - - -
Linear 170.21 ms - - - -
Pipelined 82.43 ms - - - -
Ready Model 73.23 ms - - - -

35

3. Evaluation

Table 3.3: Relative Speedup of 2.1.0 implementation comparing to
1.3.0 implementation on the T4 accelerator.

Model Strategy Relative Speedup

Bert_Base
Kill Restart 2.21x
Linear 0.90x
Pipelined 0.96
Ready Model 0.97x

Inception_v3
Kill Restart 2.27x -
Linear 1.04x
Pipelined 1.12x
Ready Model 1.12x

ResNet152
Kill Restart 1.52x
Linear 1.03x
Pipelined 1.04x
Ready Model 1.04x

Table 3.4: Overhead in milliseconds of Linear and Pipelined Execu-
tion Compared to Ready Model for Pytorch 1.3.0 and 2.1.0 on the
T4 Accelearator

Model Strategy Overhead (ms)

Linear Pipelined

Pytorch 1.3.0

Bert_Base 135.40 24.44

Inception_v3 46.28 8.09

ResNet152 96.98 9.2

Pytorch 2.1.0

Bert_Base 108.04 27.47

Inception_v3 47.23 7.17

ResNet152 96.98 9.2

36

3.3 T4, A30 and A40 Results for Pytorch 2.1.0

3.3 T4, A30 and A40 Results for Pytorch
2.1.0

We are going to extrapolate on the data as seen in Table 3.1 and focus on the columns spec-
ifying the execution times on A30 and A40. Moreover, a histogram for the A30 and A40 is
presented in figures 3.3 and 3.4.

Table 3.5 provides the overhead values for pipelined execution compared to the ready
model across the different GPU accelerators. For the Bert_Base model, the overhead for
linear execution on the Nvidia T4 is 108.04 ms, on the Nvidia A30 is 115.53 ms, and on the
Nvidia A40 is 23.74 ms. For pipelined execution of the Bert_Base model, the overhead on the
Nvidia T4 is 27.47 ms, on the Nvidia A30 is 34.43 ms, and on the Nvidia A40 is 16.74 ms.
The Inception_v3 model shows an overhead for linear execution of 47.23 ms on the Nvidia
T4, 54.97 ms on the Nvidia A30, and 19.41 ms on the Nvidia A40. For pipelined execution
of the Inception_v3 model, the overhead is 7.17 ms on the Nvidia T4, 16.67 ms on the Nvidia
A30, and 6.75 ms on the Nvidia A40. The ResNet152 model exhibits an overhead for linear
execution of 94.41 ms on the Nvidia T4, 136.44 ms on the Nvidia A30, and 28.29 ms on the
Nvidia A40. For the pipelined execution of the ResNet152 model, the overhead on the Nvidia
T4 is 8.90 ms, on the Nvidia A30 is 16.46 ms, and on the Nvidia A40 is 20.92 ms.

37

3. Evaluation

Figure 3.3: Pytorch 2.1 implementation executed on a NVIDIA A30
GPU

Figure 3.4: Pytorch 2.1 implementation executed on a NVIDIA A40
GPU

38

3.3 T4, A30 and A40 Results for Pytorch 2.1.0

Table 3.5: Overhead of Pipelined Context Switch and Linear Execu-
tion Compared to Ready Model for Pytorch 2.1.0

Model Strategy Nvidia T4 (ms) Nvidia A30 (ms) Nvidia A40 (ms)

Bert_Base Linear 108.04 115.53 23.74
Pipelined 27.47 34.43 16.74

Inception_v3 Linear 47.23 54.97 19.41
Pipelined 7.17 16.67 6.75

ResNet152 Linear 94.41 47.29 27.92
Pipelined 8.90 16.46 20.92

Table 3.6: Table Derived from Table 3.5, Showcasing the Overhead
Reduction from Pipelined Execution.

Model Nvidia T4 Nvidia A30 Nvidia A40

Bert_Base ≈ 3.93x ≈ 3.36x ≈ 1.42x
Inception_v3 ≈ 6.59x ≈ 3.30x ≈ 2.88x
ResNet152 ≈ 10.61x ≈ 2.87x ≈ 1.35x

39

3. Evaluation

40

Chapter 4

Discussion and Conclusion

This chapter will analyze and reflect on the achieved results from the previous chapter. We
will discuss the evaluation of the two implementations on the T4 accelerator as well as evalu-
ate the overhead reduction from the pipelined and linear case. We will then consider restate
the problem, the novel contribution from this thesis and how it can be extended in future
work.

4.1 Evaluation of Results

4.1.1 Pytorch 1.3.0 and 2.1.0 implementations
As shown in the previous section in table 3.3, derived from table 3.1 and 3.1, there were but
slight differences in performance. Most notably, we can see that there has been significant
improvement for the kill and restart scenario between 1.3.0 and 2.1.0, with an improvement
of up to 2.27x. However, it becomes non-essential to the reader as it is not a strategy we are
trying to evaluate, but use as an upper bound for our experiments. For the other strategies,
linear and pipelined we see but slight improvements or regressions.

The largest regression we saw was 0.90x relative speedup of 2.1.0 using the bert base model.
It is hard to know exactly why we are seeing this decrease in performance since it can have
anything to do with a different model implementation that is intended for newer accelerators
or changes in the Pytorch architecture that is slowing down execution. We can argue the same
way about the seen improvements as the same parameters can account for an improvement
in execution time as well.

Looking at table 3.4, we can see the overheads produced by the two different approaches
and how much the overhead can be reduced given pipelined context switching. The biggest
improvement is, as mentioned earlier, an improvement on the Resnet152 test case, were both
implementations sport a near 10x reduction in overhead compared to ready model.

41

4. Discussion and Conclusion

4.1.2 Pipelined Context Switching and Linear Trans-
mission

Overall, we are seeing a trend of pipelined context switching outperforming linear execu-
tion. In table 3.6, each cell is equivalent to the fraction of Linear Overhead

Pipelined Overhead , which gives us an
approximation of how much lower the overhead is comparatively. We can see the same thing
here, as mentioned earlier, that for ResNet152 we have an order of magnitude improvement,
and still over 8x improvement in overhead reduction for the A30. The A40 is where we see
the smallest average reduction in overhead.

The numbers displayed for the 2.1.0 implementation in Tables 3.5 and 3.6 underscore a
transitive effect that warrants further analysis. As outlined in the introduction, our primary
objective was to identify a system capable of enhancing single GPU utilization. The data pre-
sented here suggests that our system demonstrates a marked increase in the time allocated to
executing inference requests as opposed to transmitting model parameters. This observation
indicates a higher degree of GPU utilization, which is critical for optimizing computational
efficiency.

By extrapolating the current findings to a scenario where the number of requests is orders
of magnitude higher than those documented in our experiment, it becomes evident that the
throughput of pipelined inference requests would substantially exceed that of the linear model
swapping approach. This increased throughput is attributed to the reduction in overhead
associated with model parameter transmission, allowing the GPU to devote more resources
to execution of workloads instead of remaining idle. Consequently, the pipeline method not
only enhances performance but also ensures a more efficient utilization of GPU resources,
aligning with our initial hypothesis and objectives. This underscores the potential of the
pipelined context switching implementation to improve the GPU utilization when models
are frequently swapped in and out of memory.

4.1.3 Pipelined Execution to Meet SLO Requirements
Observing the overhead results, as mentioned in the previous section in table 3.5, a system
that needs to swap models in and out of device memory frequently due to resource limitations
or otherwise, can benefit greatly in reducing the overall incurred overhead from performing
linear transmission. With an order of magnitude reduction, pipelined context switching can
greatly benefit clients who suffer from under utilized GPUs. We have seen similar needs in
customers of Huawei who provide cloud services with inference as a service which has strict
requirements on overall inference request delay.

4.2 Problem Summary
The work presented in this thesis addresses the challenge of optimizing GPU resource utiliza-
tion for deep learning models. As the adoption of deep learning models increases across vari-
ous industries, the demand for efficient computational resource management grows. Training
state-of-the-art models on GPU clusters is expensive and resource-intensive. This thesis aims
to evaluate an existing system for pipelined context switching, which is designed to enhance

42

4.3 Contribution

the efficiency of single GPU utilization. The goal is to enable multiple models that may not
fit in memory concurrently to share GPU resources while minimizing the overhead associ-
ated with model switching. The system must meet service level objectives (SLOs) for client
inference requests while optimizing resource utilization.

4.2.1 Research Question One
Can pipelined execution of Deep Neural Networks still be viable for more recent (Ampere)
Nvidia GPUs with regards to existing implementations? Moreover, do we see any improve-
ments in GPU utilization for these devices? For the A30 and A40 accelerators we find that
pipelined context switching is viable with significant improvements to the delay caused by
model transmission in the non-pipelined case. As discussed in section 4.1.2, we also note
that the throughput of inference requests must have increased, and thus the time spend ex-
ecuting requests must have increased as well. This transitive effect supports similar results
as expressed in previous work done in PipeSwitch[4], where they found that single GPU uti-
lization was increased by the use of pipelined context switching.

4.2.2 Research Question Two
Can pipelined context switching be used to help solutions reach service level objectives? We
strongly believe clients who have a platform in which models are frequently being swapped
in and out of memory or want to share the same resources used for training with inference,
then pipelined context switching can be of great value to meet service level objectives. We
think that the aforementioned results speak for great performance improvements compared
to transmission of model parameters in a non-pipelined fashion.

4.3 Contribution
The primary contribution of this research is an in-depth analysis of how a pipelined context
switching system performs on newer generations of Nvidia GPUs, specifically focusing on
Pytorch implementations. The study involves porting the existing pipelined context switch-
ing system from Pytorch 1.3.0 to Pytorch 2.1.0 and evaluating its performance across different
GPU models, including Nvidia T4, A30, and A40. The analysis provides insights into the ef-
fectiveness of pipelined execution in reducing model swapping overhead while meeting the
service level objectivces. By the end of this project, readers will gain a comprehensive under-
standing of how pipelined context switching can be utilized to optimize GPU resource usage
for deep learning models on modern hardware.

The numbers presented in the aforementioned tables 3.5 and 3.6 affirm that a system per-
forming pipelined context switching decrease switching overhead which can benefit a general
system that adheres to strict SLO requirements and wants to allow for multiple models to
share a single GPU.

43

4. Discussion and Conclusion

4.4 Future Work
In this section we will discuss aspects that we deem valuable to explore in further work on
pipelined context switching and challenges to consider for future implementations.

4.4.1 Preempting Training Jobs
The question for pipelined context switching is how it deals with state management. As of
now, we haven’t put in the necessary steps to save the state of a model that is being trained
properly. As that is a hard engineering challenge already, the question is what benefit would
one get from transmitting model parameters for a training job that will be preempted within
a short time span. Is it maybe better to keep said model on a different device with sufficient
resources or not? Or maybe the incoming inference requests are sparse and thus capturing
parameter state might not have to be done as frequently. This is up to others to investi-
gate, but could be of value when implementing more sophisticated solutions that incorporate
pipelined context switching.

4.4.2 Framework Agnostic Implementation
An interesting extension to the work presented in this thesis should entail framework agnos-
tic pipelined execution, in other words an implementation unaware of Pytorch or Tensorflow
specific details. There is a trade off to consider with new complexities going outside of an
established framework, but, if done successfully, could prove to be valuable. This is already
done in different manners, for instance as presented in Reef where they perform framework
agnostic kernel throttling[7].

44

Bibliography

[1] exec(3) Linux Programmer’s Manual, August 2019.

[2] fork(2) Linux Programmer’s Manual, June 2020.

[3] posix_spawn(3) Linux Programmer’s Manual, June 2023.

[4] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. PipeSwitch: Fast pipelined context
switching for deep learning applications. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 499–514. USENIX Association, November
2020.

[5] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

[6] Rong Gu, Yuquan Chen, Shuai Liu, Haipeng Dai, Guihai Chen, Kai Zhang, Yang
Che, and Yihua Huang. Liquid: Intelligent resource estimation and network-efficient
scheduling for deep learning jobs on distributed gpu clusters. IEEE Transactions on Par-
allel and Distributed Systems, 33(11):2808–2820, 2022.

[7] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale pre-
emption for concurrent GPU-accelerated DNN inferences. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 539–558, Carlsbad, CA,
July 2022. USENIX Association.

[8] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen.
GPipe: efficient training of giant neural networks using pipeline parallelism. Curran Associates
Inc., Red Hook, NY, USA, 2019.

[9] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 — seamless operability
between c++11 and python, 2017. https://github.com/pybind/pybind11.

45

BIBLIOGRAPHY

[10] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[12] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur,
Gregory Ganger, Phillip Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. pages 1–15, 10 2019.

[13] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020.

[14] David L Presotto and Dennis M Ritchie. Interprocess communication in the ninth edi-
tion Unix system. Software: Practice and Experience, 20(S1):S3–S17, 1990.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] Backlinko Team. ChatGPT / OpenAI Statistics: How Many People Use ChatGPT?

[17] Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gautam Srivastava,
Praveen Kumar Reddy Maddikunta, Deepti Raj G, Rutvij H Jhaveri, Prabadevi B,
Weizheng Wang, Athanasios V. Vasilakos, and Thippa Reddy Gadekallu. Generative
pre-trained transformer: A comprehensive review on enabling technologies, potential
applications, emerging challenges, and future directions, 2023.

46

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-06-21

EXAMENSARBETE Pipelined Context Switching for Deep Learning Models
STUDENT Fredrik Horn af Åminne Dannert
HANDLEDARE Jonas Skeppstedt
EXAMINATOR Michael Doggett

Pipelining av Djupinlärningsmodeller på
Grafikprocessorer

POPULÄRVETENSKAPLIG SAMMANFATTNING Fredrik Horn af Åminne Dannert

Pipelining är en metod för att parallelisera delmoment av en process. Detta arbete
undersöker hur pipelining kan underlätta att dela på senare generationens grafikpro-
cessorer (GPU:er) mellan många modeller och samtidigt möta satta prestandakrav.

I det många idag kallar för en AI-revolution
har de acceleratorerna som bygger upp den nöd-
vändiga infrastrukturen för träning och körning
av sofistikerade maskininlärningsmodeller blivit
väldigt eftertraktad. När infrastrukturen, som i
stor bredd består av grafikprocessorer, är kostsam
gäller det att kunna utnyttja dem effektivt när
modeller tränas eller används som service, även
kallat inferens.

Först och främst, varför vill man använda
GPU:er för maskininlärningsmodeller? Det
GPU:er först var speciellt framtagna för var
grafikrendrering, bestående av en många oper-
ationer som involverar matrisberäkningar. Då
maskininlärning byggs upp av samma operationer
så är GPU:er optimala, och mycket effektivare än
en CPU, att träna dessa modeller på.

I mitt examensarbete har jag utforskat hur en
metod, kallad pipelining, används för att minska
tiden som krävs innan en modell är redo att brukas
på en GPU, för antingen träning eller inferens. Då
den tagna tiden minskar för att ladda in modellen i
GPU:ers minne, så kan allt fler modeller dela på en
GPU samtidigt som de möter satta prestandakrav.
Prestandakraven är vanligen en maximal tolerans
för responstiden för en service. Exempelvis tiden
tagen för en modell som gör bildigenkänning eller
en Large Language Model (LLM) som svarar på en
förfrågan åt en användare.

Pipelining innebär att man skapar överlapp

mellan överföring och exekvering av en modell. I
figur 1 kan vi se hur de lager som bygger upp en
modell skickas i grupperingar och exekveras med
överlapp. På så vis kan man gömma en del av ex-
ekveringstiden i överföringen och skicka ett svar
snabbare till användaren.

Figure 1: Överföring gjort på vanligt sätt och med
pipelining.

Resultaten vi hittade för Tesla och Ampere gen-
erationen av Nvidia GPU:er, visar att pipelin-
ing kan hjälpa till att minimera överföringskost-
naden och göra det möjligt att enklare möte pre-
standakrav. Som konsekvens kan flera modeller
enklare dela på samma GPU resurs så att den kan
utnyttjas mer effektivt.

	Introduction
	Problem Statement
	Research Questions
	Contribution
	Background
	Deep Learning Models
	Execution of Deep Neural Network Models
	NVIDIA GPUs
	Pytorch
	Inter Process Communication

	Related Work
	Layer Aware Pipelining
	Batch Parallelism and Pipelining
	Microsecond Inference Preemption
	Resource Estimation and Scheduling, Grouping Algorithm

	Approach
	Method
	Architecture Overview
	Replication of Experiments

	Implementation
	Port to Pytorch 2.1
	CUDACachingAllocator in Pytorch 1.3 and 2.1
	Binding to Python
	Workers and Scheduler Memory Sharing
	Pipelined Execution

	Evaluation
	Experimental Setup
	T4 Comparison Results
	1.3.0 and 2.1.0 Comparisons

	T4, A30 and A40 Results for Pytorch 2.1.0

	Discussion and Conclusion
	Evaluation of Results
	Pytorch 1.3.0 and 2.1.0 implementations
	Pipelined Context Switching and Linear Transmission
	Pipelined Execution to Meet SLO Requirements

	Problem Summary
	Research Question One
	Research Question Two

	Contribution
	Future Work
	Preempting Training Jobs
	Framework Agnostic Implementation

	Bibliography
	Tom sida

