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Abstract

The fishing industry is vital for global food security, providing nutrient-rich food, sup-
porting livelihoods and contributing to economic growth. As the global population continues
to grow, it is essential to approach fishing in a sustainable way and preserve marine ecosys-
tems. The United Nations has recognized overfishing as a significant issue and for 2017 it
was estimated that about 34% of fish stock was overfished worldwide. However, overfishing
isn’t the only threat to our oceans. Illegal, unreported, and unregulated (IUU) fishing also
poses a major global challenge. While overfishing depletes fish populations through unsus-
tainable practices, IUU fishing further exacerbates the problem by undermining regulations
and conservation efforts. One way to help solve these problems is with effective monitoring
of fishing efforts. The two main ways to do so are via cooperative methods, where fishing
vessels are responsible for broadcasting their own data, and non-cooperative methods, which
use remote sensing technology to monitor vessels without any involvement from the vessels
themselves. This project investigates whether fishing operations in the southern Baltic Sea
can be effectively monitored using publicly available data. More specifically, it utilizes the
Automatic Identification System (AIS) which is a cooperative method where ships broad-
cast information on their location and movements via radio signals and Synthetic Aperture
Radar (SAR) images, an active remote sensing technique used in non-cooperative monitoring
to detect ships from satellites. This project utilized historical AIS data for the year of 2018
to demonstrate the effectiveness of AIS in monitoring fishing activities on a small scale. A
machine learning model was used to predict fishing events from individual ship paths. On a
larger scale, spatiotemporal analyses were performed which gave insight into fishing trends
and patterns throughout the year. Additionally, a deep learning model was employed to
detect ships on SAR images which in turn was used to get a sense of the level of AIS uptake
among the fishing fleet in the Southern Baltic Sea. The results demonstrate that both AIS
and SAR data can be effectively used in the context of monitoring fishing activities. The
combined use of these methods revealed that the vast majority of boats do in fact transmit
their AIS data in compliance with European regulations.

Keywords: Fishing, Monitoring, Remote sensing, Machine Learning, Deep Learning,
Synthetic Aperture Radar, Automatic Identification System
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1. Introduction

The fishing industry plays a crucial role in ensuring food security worldwide. It provides peo-
ple with nutrient rich food, supports livelihoods and sustains the economy of many countries.
With this in mind and considering that over three billion individuals rely on the ocean for
their livelihoods (Hendriks, 2022) as well as the fact that the world population continues to
grow, it is of utmost importance that we approach this vital resource in a sustainable way.

In the last half-century, we have seen the global population double while the fish and
seafood production has had a fourfold increase (Ritchie & Roser, 2021). This indicates that
the average consumption of fish per person has also risen alongside the global population
which further underscores the need for sustainable fishing practices to ensure the long-term
health of marine ecosystems and secure food sources for future generations. The increasing
adoption of aquaculture in recent years has helped fill the global demand for seafood and
helped alleviate pressure on wild fish stocks. However, aquaculture is not a perfect alterna-
tive and we still rely heavily on wild fish populations and therefore practising sustainable
fishing is needed. In this context, sustainable fishing refers to catching the optimal amount
of fish to prevent stock depletion while maximizing food resources and income. Maintaining
this balance can be challenging. Capturing too many fish from a particular stock leads to
overfishing, which is a significant global issue and one that needs to be eradicate. For 2017 it
was estimated that about 34% of fish stock was overfished worldwide (Ritchie & Roser, 2021).
The United Nations (UN) has recognized overfishing as a worldwide issue that diminishes
food production, impairs ecosystem functions and decreases biodiversity (Snapir, Waine, &
Biermann, 2019).

Another issue facing the fishing industry is illegal, unreported, and unregulated fishing
(IUU) that contributes significantly to overfishing. IUU is a term defined by the Food and
Agriculture Organization (FAO) of the United Nations and it encompasses a range of ac-
tivities violating national and international fishing laws such as fishing without permission,
misreporting catches, operating in protected areas and more (Food & of the United Nations,
2024). This in turn undermines efforts to manage and conserve fish stocks making it harder
to tackle. The economic motivations behind IUU are easy to see, indicating that such prac-
tices will not cease by themselves and some framework must be established to counter illegal
fishing. One study that investigated the relationship between local situational factors and
the prevalence of illegal fishing across territorial waters of 53 countries concluded that the ca-
pacity for monitoring, control, and surveillanc (MCS) was the most effective predictor which
underscore the necessity of enhancing MCS frameworks to counter illegal fishing (Petrossian,
2015). Here, monitoring refers to closely observing fishing activities using remote sensing
technology such as satellite systems or onboard trackers that transmit the vessels location
frequently. Control refers to implementing rules and regulations to ensure lawful fishing.
This can include setting fishing boundaries and quotas for instance. And lastly, surveillance
ensures compliance with fishing regulations with violations leading to penalties like fines or
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license revocation (Cochrane, 2002). All of these components work together to support sus-
tainable fishing practices. However, for the purposes of this work, focus was directed solely
towards the monitoring aspect.

The EU is actively combating IUU in several ways. The cornerstone of the EU’s efforts
against IUU fishing is the IUU Regulation which has been in effect since 2010. This reg-
ulation establishes strict controls on the seafood entering the EU market by requiring that
all imports are certified as legally caught (European Commission, 2021). Countries failing
to cooperate with the EU will be issued a warning which can escalate to a ban where the
country in question is not allowed to export it’s fisheries products to the EU mark. Re-
garding fishing in EU waters, vessels longer than 12m are required to be equipped with a
Vessel Monitoring System (VMS) (Thoya, Maina, Möllmann, & Schiele, 2021). This system
was specifically designed to oversee fishing operations by requiring ships to broadcast their
location continuously. This transmission is encrypted and only delivered to the relevant gov-
ernment agencies meaning public access is very limited (Thoya et al., 2021). This ensure
privacy and security but hinders open research on the data and minimizes transparency for
the public. An alternative to VMS is the Automatic identification system (AIS), this system
was originally introduced by the International Maritime Organization (IMO) and was meant
to enhance nautical safety (Thoya et al., 2021). Similar to VMS, AIS operates by requiring
vessels to continually broadcast their locations and these signals are receivable by neigh-
boring vessels, ground-based receivers and satellites. This increases navigational awareness
and helps ships avoid collisions with each other. The EU mandates that all fishing vessels
exceeding 15 in length shall be equipped with the AIS system (Bunwaree, 2023). AIS data
is openly accessible to anyone and features high temporal resolution where ships frequently
send out signals. This has meant that its application has broadened significantly beyond
merely enhancing safety and made it increasingly popular for monitoring fishing activity and
tracking movements across the oceans in general (Bunwaree, 2023).

Both AIS and VMS operate on a cooperative basis where the ships are in charge of broad-
casting their data. This approach presents a vulnerability as ships with malicious intent can
take action to prevent their location being recorded. Fortunately, the advent of satellite
technology offers an alternative way to monitor non-cooperative ships. Both satellite that
are equipped with optical sensors and those that carry active remote sensing instruments are
important tools for the comprehensive monitoring of the world’s oceans. Synthetic Aperture
Radar (SAR) is a type of active remote sensing technique that has been particularly useful
in this field because it can penetrate cloud cover and operate independent of the day-night
cycle (Yasir et al., 2023). This makes SAR data very constant and reliable. By combining
both cooperative (AIS,VMS) and non-cooperative (SAR) methods, it becomes possible to
get comprehensive overview of fishing efforts.
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1.1 Aim

Although AIS has proven to be a valuable tool when it comes to monitoring fishing activities,
it is important to reiterate that this was not its original intended purpose and there are some
complications to address. The aim of this project is to answer the following question: Can
fishing operations in the southern Baltic Sea be effectively monitored using publicly available
data? This project will aim to do so both with cooperative (AIS) and non-cooperative (SAR)
methods. Specifically, historical AIS data spanning the year of 2018 will be used to analyze
the trajectory of fishing boats. A logistic regression machine learning model will then be im-
plemented to predict periods of fishing along a ship’s path. For non-cooperative analysis, a
deep learning object detection model will be developed to automatically locate ships in SAR
images. This model will be applied to 10 SAR images from January 2018, and the resulting
detections will be matched with the aforementioned AIS data. Doing so will give an insight
into the level of AIS uptake among the fishing fleet operating in the southern Baltic Sea.
Unmatched vessels are of particular interest as they indicate a lack of AIS transmission and
possible illegal operation. A machine learning model is then utilized to classify all unmatched
boats into fishing and non-fishing since the focus of this project is centered around fishing
efforts.

The novelty of this master thesis lies in the integration of both cooperative (AIS) and
non-cooperative (SAR) methods to monitor fishing activities. While AIS is commonly used
for vessel tracking, applying it specifically to fishing operations in the southern Baltic Sea
alongside SAR detection is novel. This dual-method approach offers a comprehensive view
of fishing activities and goes beyond studies that typically rely on a single data source.
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2. Background

2.1 Cooperative vessel tracking

As mentioned in the introduction, cooperative vessel tracking refers to when boats are re-
sponsible for reporting their own data to some overseeing entity or in compliance with a
broader legal framework. This data is an important tool for authorities to managing mar-
itime activities like fishing and to ensure safety out at sea. When it comes to fishing there
are 2 main cooperative boat tracking systems relevant: VMS and AIS (Thoya et al., 2021).
This section will provide an overview of these essential systems.

2.1.1 Vessel Monitoring System

Vessel Monitoring System (VMS) is a satellite-based monitoring system primarily used for
tracking the location and movement of fishing vessels. VMS is designed to provide regulatory
bodies and fisheries with data such as location, course and velocity for the vessels that adhere
to them. This helps oversee fishing activities and ensures compliance with regulations which
in turn protects resources and fights against IUU. In 1998, the European Commission enacted
a legislation to utilize the VMS system to monitor European fishing and in 2004 it became
compulsory for all fishing boats exceeding 15 meters in length to carry a VMS transmitter
on board (Mills, Townsend, Jennings, Eastwood, & Houghton, 2006). Vessels equipped with
VMS send out their data at equal intervals making the data very continuous and therefore
beneficial for a variety of spatial temporal analysis. It is evident that VMS is an invaluable
tool for monitoring fishing activity and to this day it continues to be used extensively around
the world. However it does have some drawbacks, VMS signals are encrypted to ensure
that only the relevant government agencies receive the data which means uninvolved 3rd
parties can not follow fishing efforts (Thoya et al., 2021). Furthermore, the frequency of sig-
nals is comparatively low meaning that analysis requiring high temporal resolution becomes
challenging (Thoya et al., 2021).

2.1.2 Automatic Identification System

An alternative to VMS is the Automatic Identification System (AIS). First introduced by
the IMO to improve navigation and to enhance the safety of vessels out at sea by aiding in
collision avoidance (Natale, Gibin, Alessandrini, Vespe, & Paulrud, 2015). Similarly to VMS,
AIS is a broadcasting device installed onboard ships that transmit information relevant to
a ship’s voyage. VMS however is built around a point-to-point communication whereas AIS
sends out the signal in all directions enabling any nearby ship, ground-based receiver, or
satellite to receive the message (Natale et al., 2015). AIS signals operate primarily within
a line-of-sight owing to the nature of the signal. This means that depending on the eleva-
tion of both the receiver and transmitter, AIS typically has a range of just a few nautical
miles up to approximately 100 natutical miles (Natale et al., 2015). This means that AIS
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can have significant blind spots in the ocean where there are no AIS receivers to log a ship
movement making the data not as reliable and predictable as VMS. Additionally, AIS devices
are vulnerable to being altered or even switched off if a vessel decides to partake in illegal
activities like unauthorized fishing (Mazzarella, Vespe, & Santamaria, 2015). This weakness
is less prevalent for the VMS. One important advantage of AIS over VMS lies in its temporal
resolution. While VMS transmits a signal every 2 hours AIS does so every few seconds up
to a few minutes. This renders AIS much more suitable for accurate spatiotemporal analysis
(Natale et al., 2015). But the most impactful advantages that AIS possesses and the reason
why it has the potential to become the key source of data for mapping fishing activity glob-
ally is its low operational costs and accessibility (Thoya et al., 2021).

The IMO has been the main driving force behind mandating the usage of AIS data and
as mentioned in the introduction, carrying AIS has become compulsory within Europe for
fishing vessels exceeding 15 meters in length since May 2014. A study published a year later
revealed that 75% of fishing vessels complied with this regulation (Natale et al., 2015). An-
other more recent study which cross-referenced AIS data with SAR data over a span of 4
years found that 61% of industrial fishing vessels are publicly tracked in Europe (Paolo et al.,
2024). This indicates a lack of compliance. Although some of the mismatch can be explained
by expected limitations in the study, it is nevertheless apparent that the level of AIS uptake
in Europe is not meeting expectations. A big reason for this is minimal enforcement and
while some EU member states implement annual inspections to ensure that ships have AIS
onboard, there is no comprehensive system in place to verify that these ships are actively
using it (Natale et al., 2015).

Given that AIS data is inherently public and open-access in nature, numerous websites
have sprung up that provide access to this information to anyone interested and several com-
mercial services offering historical AIS data have gained prominence. This development has
been a cause for concern to some as it raises some questions regarding the potential mis-
use and privacy law violations. In 2012 the European Data Protection Supervisor (EDPS)
stated that tracking ships with AIS data becomes problematic if it can be connected to spe-
cific individuals (Natale et al., 2015). The IMO has strongly discouraged using AIS data for
commercial purposes in light of potential risks to the safety and security of ships (Natale et
al., 2015). Furthermore, simply equipping ships with AIS transmitters can compromise their
safety. Pirates or other hostile groups can locate and target ships with the help of AIS data.
IMO recognizes this threat and allows ships to switch off their AIS broadcasting in case the
ship’s safety and security is not guaranteed even though the ship is required to carry AIS
under the International Convention for the Safety of Life at Sea (SOLAS). This exception has
been exercised recently where vessels sailing in the Red Sea opt to go dark to evade potential
attacks (Bartlett, 2024).

As mentioned, AIS was initially created for improving navigation safety. However, as
its adoption has grown over the years, more and more data is being generated. This has
made it increasingly popular for other kinds of use cases and academic researchers continue
to find new ways of using it. For example, AIS has proven useful in assessing trade flows
and analyzing economic trends by tracking international commercial vessels. It has helped in
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environmental studies by monitoring the effects of shipping on nature (D. Yang, Wu, Wang,
Jia, & Li, 2019) . By combining AIS data with information from shipping agencies and port
authorities it is possible to enhance the management of ships in ports. This helps in schedul-
ing their arrival times and reducing how long they stay docked (D. Yang et al., 2019). While
there are numerous other examples to consider, focusing specifically on monitoring fishing
efforts, the use of AIS data has made a significant impact. Global Fishing Watch (GFW) is
a non-profit and independent organization. Their mission is to promote ocean sustainabil-
ity and ensure responsible fishing practices worldwide (Taconet, Kroodsma, & Fernandes,
2019). GFW receives more than 50 million AIS messages every day from a constellation
of satellites and a network of ground based AIS receivers. In one year, signals from about
300,000 vessels are processed. These boats represent a variety of vessel types, with a spe-
cific focus on identifying and monitoring fishing activities. GFW uses 2 core models. One
to distinguish between fishing and non-fishing vessels as well as a gear type prediction and
another to determine when a fishing boat is likely engaging in fishing (Taconet et al., 2019).
For the latter, GFW developed a sophisticated convolutional neural networks (CNN) model
that considers multiple types of gears for optimal performance. These models allow GFW to
obtain a comprehensive global overview of fishing activities in a transparent way. On their
website they give free access to an interactive global map that shows fishing activity derived
from different sources.

Some limitations need to be addressed when discussing the usage of AIS data to identify
fishing activity. Poor AIS reception is one issue that has already been touched on above. Due
to limited cover by land based receivers and satellites, blind spots in the ocean exist where
ships go undetected. Noise can cause further difficulties because of poor error checking in
AIS transmission protocols and data loss during transmission. This sometimes leads to ships
having unrealistic movement but it can be countered by algorithms that filter out nonsensical
data (Taconet et al., 2019). Additionally, issues with segmenting and spoofing arise when the
same unique vessel identifier number (MMSI) is used by multiple vessels. This as well can
often be tackled by specialized algorithms and is most commonly observed in the Chinese
fishing fleet (Taconet et al., 2019). Lastly, offsetting refers to ships that broadcast their
location far from their actual positions. This error can be identified when ships broadcast
their location to a receiver that is beyond its range (Taconet et al., 2019). In some cases this
offsetting can be unintentional but in other cases vessels falsify their AIS message on purpose.
For instance to avoid sanctions and monitoring by international authorities (Bergman, 2023).
Overall these challenges highlight the complications in accurately tracking fishing activity.

2.2 Non-cooperative vessel tracking

Although cooperative vessel tracking is extremely useful for monitoring fishing activity it
has the inherent weakness of being managed by the vessels themselves. In many cases this
does not pose a problem but occasionally, if a vessel is engaged in illegal activities it could
potentially switch off or alter their tracking data (Paolo et al., 2024). To address this issue,
non-cooperative vessel tracking methods can be used and they do not depend on vessels to
transmit their own data. Instead, they utilize some form of remote sensing technology to
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detect vessels from a distance. Satellites in particular with their global coverage are well
suited for this task and especially SAR satellites (Paolo et al., 2024).

Unlike the more widely recognized optical imagery, Synthetic Aperture Radar (SAR)
uses active remote sensing which means it does not depend on external light sources such as
the sun for illumination. Instead, SAR systems actively emit their own energy towards the
Earth’s surface and measure the energy that is reflected back (Earthdata, N/A). The wave-
length of the signals emitted by satellites plays a huge role in determining their interaction
with the Earth’s surface. For example, shorter wavelength (around 1cm) experience lim-
ited penetration through vegetation and mostly capturing surface-level details. In contrast,
signals with longer wavelengths (around 30cm) can penetrate deeper into vegetative layers
allowing for the collection of data from beneath the canopy. By picking the right wavelength
scientists can better target the specific environmental features related to their investigations
making SAR a very powerful tool within remote sensing (Earthdata, N/A). Another aspect
of SAR is its capability to operate with signals in different polarizations. SAR satellites are
equipped to both emit and capture signals in either horizontal (H) or vertical (V) orienta-
tions allowing for 4 possible combination HH, HV, VV and VH where the first letter denotes
the orientation of the transmitted signal and the second one denotes the orientation of the
received signal. Different polarizations lead to distinct scattering behaviors from objects on
the ground which enhance its usability and gives scientists even more tools to tailor their
analyses (Earthdata, N/A). In the context of ship detection, the choice of polarization im-
pacts the detection performance. It has been found that the HH channel provides the highest
detection probability for single polarization but utilizing dual polarization proved to be the
most successful (Mahgoun, Chaffa, Ouarzeddine, & Souissi, 2020).

2.2.1 Ship detection with SAR

SAR has proven to be a highly effective method for monitoring maritime activities owing to
the fact that SAR images can be taken regardless of weather conditions and the day-night
cycle making them highly consistent (Yasir et al., 2023). Furthermore, SAR images maintain
consistent resolution regardless of the distance from the targets being observed (Wang, Wang,
Zhang, Dong, & Wei, 2019). This makes SAR images well suited for ship detection and with
and with the recent surge in the availability of free high-resolution SAR data, development
in this field has grown fast. Ships at sea are easily identifiable as they reflect satellite signals
far more strongly than the surrounding ocean causing them to prominently stand out in SAR
imagery. This is because of ships being solid metal objects with completely different scatter
properties than water. Figure 2.1 illustrates the appearance of ships on a standard SAR
image. It can clearly be seen that ships appear bright compared to the surrounding water,
making them easy to find.

Ever since the United States deployed the first SAR satellite in 1978, numerous methods
for detecting ships have been introduced (Zhang et al., 2021). One might assume that sys-
tematically detecting ships out at sea from SAR images would be a straightforward process
given their distinct appearance against the oceanic background but in fact it presents quite
a challenge. In figure 2.2 an overview of common methods is presented.

7



Figure 2.1: An example of how ships appear on SAR images with six vessels visible on the
left and landmass situated on the right. The image was taken on April 2024 and it was

sourced from a Sentinel-1 (IW swath, Level 1 GRD processed image)

Traditional techniques for separating ship targets from the background relied on artifi-
cially creating features (Yasir et al., 2023). These features are crafted based on the charac-
teristics of ships compared to the sea surface. In other words, how ships reflect the signal of
the SAR satellite compared to the ocean. Constant false alarm rate (CFAR) is an algorithm
that has frequently been used for this task and it simply classifies pixels into two categories:
ships or non-ships. It does this by statistically modeling the noise in the image and then
it establishes a threshold value, pixels above that threshold will be classified as ships while
those below are identified as non-ships. The final step involves amalgamating the pixels
that together represent the same ship (Li, Xu, Su, Gao, & Wang, 2022). Variety of other
algorithms with the same objective have been developed over the years. These include the
Generalized-Likelihood Ratio Test (GLRT) detector, the Spatially Enhanced Pixel Descriptor
(SEPD) and more (Yasir et al., 2023). These traditional methods identify ships by employ-
ing some statistical model or pre-picked features that are designed to be adaptable across
a broad range of images and in scenarios with straightforward scenes they often preform
well. However, adaptability over different environments is limited and difficulties associated
with accurately modeling noise limit their performance. This often results in missing targets
especially in complex scenes (Yasir et al., 2023).

Ever since deep learning (DL) was introduced around 2012 it has increasingly been
adopted in the field of ship detection from SAR imagery with significant success (Li et
al., 2022). In fact, DL outperforms the traditional methods in both speed and accuracy (Li
et al., 2022). In recent years DL in ship detection has been gaining traction and it continues
to be a popular topic for researchers. One study that was comparing the performance of
the conventional CFAR method with DL models discovered that the traditional approach
achieved an average precision of 27.1%, while DL models had around 80% precision (Sun et
al., 2019).
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Figure 2.2: Well known methods for detecting ships out at sea from SAR (Li et al., 2022;
Yasir et al., 2023; Zhang et al., 2021)

Object detection leveraging deep learning can be broadly divided into two main categories:
Two-stage detectors and one-stage detectors (Yasir et al., 2023). The former is designed to
prioritize speed and efficiency while sacrificing accuracy to some degree. They rely entirely
on convolutional layers to classify and regress anchor boxes in a single step to obtain de-
tection results which are a set of bounding boxes outlining the object within a given image
(Yasir et al., 2023). Popular one-stage detectors include: You Only Look Once (YOLO),
Single Shot MultiBox Detector (SSD). Two-stage detectors on the other hand begin by using
convolutional neural networks (CNN) to identify regions of interest within a given image.
Then the same logic from the one-stage detectors (classify and regress anchor boxes to get
object detection) is applied to all the previously designated areas of interest. This approach
yields higher accuracy but is slower and more computationally heavy (Yasir et al., 2023).
Region-based Convolutional Neural Networks (R-CNN) and Fast R-CNN are well known ex-
amples of Two-Stage Detectors. It works by generating region proposals and then classifying
each region using a CNN. Fast R-CNN is an improved version that speeds up the process by
sharing computation for overlapping regions.

In recent years transformers have become very prominent deep learning models and
shown incredible performance in large language models (LLM). Transformers have also shown
promising results in the world of object detection. In recent years, the research team at Meta
published the DEtection TRansformer (DETR) model, a relatively simple architecture com-
pared to many other models that uses the transformer encoder-decoder architecture after
an initial CNN backbone (Carion et al., 2020). This model showed promising results when
compared to other classical object detection models like Faster R-CNN. Specifically for boat
detection on SAR images, one study demonstrated that their transformer-based method out-
performed traditional CNN-based methods on 2 SAR ship datasets (Shi, Chai, Wang, &
Chen, 2022).
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However, there exists another type of single-stage detectors known as anchor-free de-
tectors. Unlike other methods, these detectors do not depend on predefined anchor boxes
to determine object locations but instead identify objects as a collection of key points (Li
et al., 2022). This method simplifies the detection pipeline and reduces the computational
complexity. Anchor-free detectors are well suited to address several crucial challenges that
other DL models struggle with such as detecting small size objects and sparse distribution
of objects (Li et al., 2022). Boats frequently appear small on SAR images since the spatial
resolution typically spans tens of meters meaning that ships are present in only a handful of
pixels and smaller vessels may not be detected at all. Additionally, given the vastness of the
ocean, boats often appear far apart. This makes anchor-free DL models prove particularly
effective. In fact, it was an anchor-free DL model that won the xView3 competition (model
is available here). The aim of this competition was to create a tool to efficiently detect IUU
on SAR images and it was organized by the Defense Innovation Unit and Global Fishing
Watch with support from some agencies including the U.S. Coast Guard and NOAA (xView3
Competition on Detecting Dark Vessels to Combat Illegal Fishing , 2023).

Despite the success of DL models in distinguishing ships from SAR images there is still
room for improvement and complications to overcome. Distinguishing ships from other sea-
based objects like icebergs and windmills has proven difficult because of similar scattering
properties these objects share with ships (Li et al., 2022). Another significant challenge to
resolve is the lack of large SAR datasets for training DL models and this scarcity makes it
hard to build a model from the ground up (H. Yang, Kang, Liu, Liu, & Huang, 2023). In
the field of object detection, it is common practice to leverage the power of transfer learning
and especially when training data is in short supply. Transfer learning refers to the process
of taking a pre-trained model that has been trained on a large, diverse dataset and tailoring
it to a more specific task. This pre-trained model has learned basic pattern recognition
and feature extraction that can be repurposed in a quick way. The problem is that these
pre-trained models are trained on optical images which are inherently different from SAR
images and this difference has resulted in limited success when fine-tuning with SAR datasets
(H. Yang et al., 2023). Making the SAR images look more like standard optical images would
help bridge this gap and potentially achieve a better result when using transfer learning. One
way is to generate some kind of a pseudo-color image where the SAR data is assigned to the
conventional RGB channels found in standard optical images. For example, the different
polarization states of a SAR data can be mapped to RGB channels as follows:

Red = V V Green = V V/V H Blue = V H

With appropriate normalization a colored image can be obtained. Admittedly, this is a simple
example and would not significantly alter the overall appearance of the image. Other more
sophisticated techniques to make SAR images appear more life like exist but they are often
computationally heavy and generally not used in the context of object detection to the to
the authors knowledge.
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2.2.2 Matching SAR with AIS for monitoring fishing

Monitoring fishing activity with just SAR data is challenging because of the large temporal
resolution of satellite systems. Instead of tracking a boat’s path, SAR only provides a single
snapshot of the sea. This as well as the limited number of features extractable from a ship
in a SAR image complicates its standalone use for monitoring fishing activity. However,
integrating SAR data with AIS data has proven to be useful and is currently a key focus
for many researchers. One study (Kurekin et al., 2019) focusing on combating IUU along
with its associated environmental and economic impacts found that this integration was very
advantageous. This study used the Search for Unidentified Maritime Objects (SUMO) tool
which is an open source project developed by the European Commission’s Joint Research
Centre (JRC) that uses CFAR to identify ships in SAR images (Kurekin et al., 2019). Then
to match the detections with corresponding AIS data, the authors implemented a technique
called Munkres assignment algorithm that interpolates AIS data based on historical patterns
found in AIS to enhance its alignment with the SAR data (Kurekin et al., 2019). Finally,
the authors designed the workflow to be automatic and continuously monitoring Ghana’s
oceanic regions. Suspicious vessels get flagged and relevant stakeholders informed by the
system. Preliminary results indicate that over 75% of detected boats got classified as non-
cooperative which highlights the scale of the issue (Kurekin et al., 2019). Another study
(Galdelli, Mancini, Ferrà, & Tassetti, 2021) investigating the matching of SAR-AIS data
for the purposes of maritime montering specifically within the Adriatic Sea found that AIS-
SAR matching could effectively be used to spot suspicious behaviors around protected areas.
The researchers also utilized the SUMO software to handle the ship detections and then
matched them with AIS data either with a straightforward point-to-point match or a more
sophisticated point to line association which was designed to track vessels that might not be
broadcasting their AIS data intentionally or unintentionally (Galdelli et al., 2021). This is
particularly valuable for investigating suspicious or non-compliant activities close to regulated
marine areas. Furthermore, the study utilized a Fast Fourier Transform (FFT) to analyze the
position and course data which in turn significantly improved the feature extraction process
from a SAR image. These extracted features were then put into a machine-learning model
designed to classify various types of vessel trips (Galdelli et al., 2021).

One study (Snapir et al., 2019) employed SAR data from the North Sea alongside AIS
data to monitor fishing activity. Firstly, the researchers used the AIS data to train a random
forest (RF) model to classify ships identified on SAR images as either fishing or non-fishing
vessels. The features used for the RF model were the ship’s coordinates, its length, distance
to shore and time of day. With an overall classification accuracy of 91% the authors showed
that a RF can offer an effective way to distinguish between fishing and non-fishing vessels
(Snapir et al., 2019). The study then goes on to use SUMO to detect ships across a vast
number of SAR images which in turn allowed for comprehensive spatial and temporal analysis
of fishing activities across the North Sea. Even though this study did not directly match SAR
and AIS data, it showed that with a pre-trained machine learning model it is quite doable
to assess fishing efforts solely with SAR data.
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3. Data and methodology

3.1 Study area and data

The study area for this project is depicted in figure 3.1 which covers a sizeable part of the
southern Baltic Sea. This location was chosen because of data availability and proximity to
Sweden. Additionally, this region is of interest for a plethora of reasons. Firstly, it hosts a
diverse range of marine species making it a prime location for fishing activities (Ojaveer et
al., 2010). It includes vital reproduction zones for cod, a highly sought-after fish known for
its commercial value. Vessels from multiple nations operate in these waters adding a complex
layer of regulatory and economic interactions (Ojaveer et al., 2010). Furthermore, the study
area receives intensive amounts of traffic from boats that are simply traversing the area,
sailing between the inner Baltic Sea and the North Sea. This traffic may cause ecological
disturbances and limit fishing opportunities.

Figure 3.1: A map of the study area

This project leveraged two main types of data: SAR and AIS. More information regarding
the data will be provided in the bullet points below. Additionally, two other data sources
were utilized in this project. The first is a detailed polygon representation of the ocean,
obtained from OpenStreetMap (OSM), which was used to define the study area. The second
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is a dataset for training and evaluating the deep learning model which will be discussed in
detail in section 3.4.

➢ SAR data was obtained via the Copernicus Browser which is part of the Copernicus
program that aims to provide continuous, independent, and reliable access to earth
observation data. This initiative is led by the European Commission in partnership
with the European Space Agency (ESA) and they provide their data entirely free of
charge allowing anyone access for analysis and visualization (Copernicus Programme,
2024). There are many satellite constellations under the Copernicus umbrella but the
Sentinel-1 mission is the one producing SAR data and therefore the most relevant for
this work. Sentinel-1 currently had 2 operational satellites: Sentinel-1A and Sentinel-
1B. They work together in tandem to provide a comprehensive coverage of the Earth’s
surface and continuously produce about 6 TB of data every day (Snapir et al., 2019).
Table 3.1 in conjunction with figure 3.2 provides a list of all the SAR images downloaded
from the Copernicus Browser. One thing worth mentioning is that all the SAR images
downloaded are classified as Single Look Complex (SLC) which indicates they are not
raw satellite data but instead have bee processed to account for sensor geometry and
earth curvature. Importantly, unlike other common processing levels, SLC retains both
amplitude and phase information of the signal which allows for a better pseudo-color
image to be generated (Hu, Li, & Pan, 2021).

➢ AIS AIS data was sourced through the Danish Maritime Authority. They oversee
maritime activities in Denmark and provide a plethora of useful information on naviga-
tion, safety regulations, and environmental protection. They also manage and provide
access to a comprehensive and continuously updated repository of AIS data that goes
as far back as 2006. This data is raw/large and covers all Danish territorial waters and
more. For the purposes of this project, AIS data spanning the entire year of 2018 was
downloaded.

Table 3.1: SAR images processed and used
for this project. All images have VV+VH

polarisation, IW acquisition mode, and SLC
is the product type

Area Sensing Time
1 B 2018-01-04 16:43:39
2 A 2018-01-04 16:44:04
3 B 2018-01-10 16:44:21
4 A 2018-01-10 16:44:46
5 B 2018-01-16 16:43:39
6 A 2018-01-16 16:44:04
7 B 2018-01-22 16:44:21
8 A 2018-01-22 16:44:45
9 B 2018-01-28 16:43:38
10 A 2018-01-28 16:44:03

Figure 3.2: Coverage of the SAR images
processed (see table 3.1)
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3.2 Filter data by study area

Filtering data by the study area was handled with a function called: IsWithinOcean. This
function plays a pivotal role in both AIS and SAR analyses. Written in Python, it takes in
a point (latitude, longitude) and outputs whether or not it falls within the project’s study
area. It works by loading in a vector file that delineates the study area and then by using
inbuilt functionality from the Shapely library it can return whether or not a given point is
contained within the ocean polygon. This ocean polygon was obtained from OpenStreetMap
here. To prepare the data for this project’s analytical needs, QGIS was utilized and the
processing steps taken there are shown in figure 3.3. The Ocean vector data cover the whole
earth so the initial step is to clip the data to the confines of the study area. Secondly, the
data is shrunken by 200 meters with the buffer tool since the focus is exclusively on ships
out at sea. This allows for distinguishing between docked ships and ships sailing in the study
area, a useful feature as will become apparent in later sections. The final step is to subdivide
the polygon into multiple discrete cells. This IsWithinOcean function needs to be called
extremely often (order of millions) so optimizing it for speed becomes very beneficial. One
way to do so is by constructing these cells, the algorithm can than swiftly identify which
cell a point is contained in and then run the Shapely toolbox on that targeted cell. This
is much quicker then passing the entire polygon through Shapely every time the function is
called since the speed of a point-in-polygon is linearly related to the number of vertices in a
polygon. The final polygon representing the ocean study area is shown in figure 3.1.

Figure 3.3: The processing steps taken in QGIS to filter data for the study area

3.3 Vessel trajectory from AIS

This section explores the capabilities of AIS data for monitoring fishing activities. In par-
ticular it discusses a script written in Python that takes in a ship’s MMSI number (ID)
as input and outputs all the found trajectories transmitted by the vessel within a specified
time window. It does this by connecting individual AIS messages together based on a time
threshold and then extracting useful information from that path. This section will also ex-
plore techniques for determining periods of fishing activity along these paths which in turn
allows for the creation of heat maps that provide a clear visualization of the primary fishing
grounds.

3.3.1 AIS data pre-processing

The AIS dataset provided by the Danish Maritime Authority consists of multiple large CSV
files. Each row in this file stores an unique AIS transmission which has a plethora of data
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Table 3.2: An overview of the key Information contained in an AIS Signal

Attribute Description
Timestamp The exact date and time the AIS message was

recorded.
MMSI A unique identifier assigned to each AIS-

transmitting vessel.
Latitude Coordinate of the ship

Longitude Coordinate of the ship

Navigational status The operational condition of the vessel, such as
’Engaged in fishing’ or ’Under way using engine’.

COG The direction in which the vessel is currently mov-
ing relative to the ground, measured in degrees.

SOG The vessel’s speed relative to the ground, typically
measured in knots.

Ship type The classification of the vessel according to its AIS
signal, such as ’Fishing’

Length The overall length of the vessel.

associated with it and the key ones (the ones used in this project) are highlighted in Table 3.2.
This dataset encompasses all Danish territorial waters which means it needs to be filtered for
only the study area. For that the IsWithinOcean function (detailed in section 3.2) was utilized
which also has the added benefit of removing signals from vessels docked at port and only
focusing on those ones that are actively navigating the ocean. B-class AIS signals were also
filtered out because they originate from boats not required to carry AIS transmitters and are
less reliable. The CSV file is ordered chronologically which is suitable for some applications
but less so when extracting specific data like a specific boat by MMSI number. In those cases
one would always have to increment through the whole file to extract the needed data. A
more efficient solution would be to store the data in a database which enables quicker data
retrieval through writing queries. This solution would also significantly decrease the storage
space needed by eliminating redundancies. An attempt was made to create a relational
database in SQLite which included a table for static boat data (e.g., name and length) and
a dynamic table for navigational updates. Ultimately, transferring the millions of lines of
data from the CSV file to the SQLite database proved too time-consuming so the idea was
abandoned. Although reading the CSV files was somewhat slow, it was sufficiently efficient
for the purposes of this project.

3.3.2 AIS data analysis

This section provides a more detailed information of the vessel trajectory analysis script in-
troduced in the beginning of section 3.3. Given some arbitrary segment of AIS data, the

15



scripts connects individual ship transmissions together and if no new messages are received
from a ship over a period of 6 hours the trajectory is considered to be finished. Once a ship’s
trajectory is fully established the script calculates the distance to land from both the starting
and ending points with the help of the shapely library in python. This is done because one
would expect all vessel routes to begin and conclude at ports but in practice that is not
the case. Ship trajectories often start far from any land and computing these metrics helps
understanding how frequent it is for ships not to broadcast their whole journey. Occasionally
it was noticed that information on ship speed and course contained within a AIS message
was missing so the script manually calculates that from the coordinates of the boat. That
also enables a comparison between the transmitted and calculated values for speed and course.

Information on when along its path a boat is engaged in fishing, is a key element in
monitoring. Knowledge about where and for how long a vessel is fishing can help regulators
ensure sustainable fishing practices. AIS systems include navigational status in the signal sent
out so vessels can disclose whether they are actively fishing or not. However, some exploring
of the data revealed that most ships do not update their navigational status frequently enough
or effectively use this feature. So in order to get a better picture of when a ship is fishing
another method is needed. One common approach is to simply filter out all ships traveling
faster than 4 knots. Including this threshold removes all the boats that are merely transiting
from point A to point B and keeping those that are fishing since boats tend to go slower when
fishing. Another more sophisticated approach that was be used in this project is to train a
machine learning model to predict when along its trajectory a boat is fishing. The Global
Fishing Watch (GFW) has published several such models on GitHub (Möller & Hochberg,
2020). The features used by those models to run predictions is average speed and deviation
in both speed and course over a time window. The models were trained on a hand-labeled
dataset containing 29 unique boats equipped with four distinct types of gear. The particular
model used in this project is the generic logistic regression model, which has a 12-hour time
window to calculate these features. This model can handle non-linear relationships well
(Möller & Hochberg, 2020). The model was evaluated with a few different gear types and
it arguably did the best with trawlers where it had a precision of 93% and a recall of 91%
(Möller & Hochberg, 2020). The final output of the script once it has fully processed a single
ship trajectory are the following 6 files:

➢ A GEOJSON file that contains the trajectory of the ship, including computed metrics
such as journey duration and distance from land.

➢ A map highlighting the trajectory with marked starting and ending points of the path.

➢ A figure that shows the speed of the vessel as a function of time. Both the speed
contained in the AIS message and the calculated speed. The background in the figure
shows the navigational status.

➢ A figure that shows the course of the vessel as a function of time. Both the course
contained in the AIS message and the calculated course.

➢ A figure that displays the output of the logistic model, depicting the predicted fishing
score as a function of time.
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➢ A map of the logistic model displaying the fishing probability along the ship’s route.

The vessel trajectory script focuses solely on the paths taken by individual fishing boats.
While that provides a very detailed view of fishing activities it was decided to also capture
a broader perspective by conducting both spatial and temporal analysis for the entire study
area. This will involve creating heatmaps and visualizing the temporal distribution of fishing
activity throughout the year 2018.

3.4 SAR ship detection tool

This section outlines the inner-functionality of a Python-based script that was created for
the purposes of this project. It takes in a processed SAR image and outputs a list of de-
tected ships. This script utilizes a state of the art deep learning object detection model.
More specifically, it uses a CenterNet architecture with a ResNet-50 backbone. Details on
how this model was trained and tailored to SAR images will be presented as well as general
information regarding other steps involved in the detection process.

As was discussed in section 2.2.1 the availability of datasets with a large number of
annotated ships in SAR imagery is limited but some do exist. One noteworthy dataset
is called DSSDD which was created by Yuxin Hu, Yini Li, and Zongxu Pan (Hu et al.,
2021) and it will be used for this project. DSSDD contains in total 50 dual-polarimetric
Sentinel-1 SLC images which have undergone particular processing. This processing results
in the dataset being deviated into a total of 1236 distinct images each with dimensions of
256x256 pixels and they are provided as 16-bit TIFF files that contain the covariance matrix
of the signal (Hu et al., 2021). Utilizing the covariance matrix enables the full exploitation
of dual-polarimetric SAR data and offers a convenient way to merge complex data into a
more manageable format making visualization of the data more easy. The covariance matrix
equation can be seen below (SV V and SV H denote the complex scattering coefficients for VV
and VH polarizations, respectively) (Hu et al., 2021).

C2 =

[
⟨|SV V |2⟩ ⟨SV V S

∗
V H⟩

⟨SV HS
∗
V V ⟩ ⟨|SV H |2⟩

]
=

[
C11 C12

C21 C22

]

Table 3.3: The equations used to convert the 16-bit covariance matrix values to 8-bit RGB
channels

Red: C11 ·
256

0.4

Green: |C12| ·
256

0.1

Blue: C22 ·
256

0.04
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In this equation, C11 and C22 denote the energy amounts in the 2 polarizations while C12

and C21 are in fact conjugated complex numbers which means they will always possess equal
magnitudes. Consequently, the covariance matrix offers 3 unique values that conveniently
can be assigned to the 3 RGB channels for a pseudo-color image (Hu et al., 2021). For
that there are numerous approaches possible and the author explored several options but
ultimately, a simple linear scaling of C11, C22 and C12 was employed. The exact equations
are visible in table 3.3 and they show how the 16-bit values are scaled to the more standard
8-bit range for each color channel. The somewhat arbitrary constants in the equations are
obtained after extensive testing and it was concluded by the author that these constants
yield the most visually pleasing images. Although that is somewhat subjective the goal was
to have a pseudo-color image that highlighted well the boats in the ocean and made sure
the background noise did not overwhelm. After converting all the provided 256x256 TIFF
images containing the covariance matrix to the 8-bit RGB format, the dataset was primed
for training the deep learning model. It is worth pointing out that this conversion to 8-
bit pseudo-color is necessary to utilize the power of transfer learning. The deep learning
model deployed in this project was pre-trained on an extensive dataset of optical images and
matching the SAR images to that format is crucial. A handful of converted SAR images
from the DSSDD dataset are shown in figure 3.5. For comparison, an unprocessed SAR
image is presented in figure 3.4. It is important to note, however, that it is impossible to
fully display such an image because it contains both phase and amplitude data for each
polarization totaling four channels that cannot be visualized all togather. Instead, figure 3.4
shows the amplitude for the VV polarization in grayscale. Possessing a deep learning model
trained on the DSSDD dataset is one thing but the objective here lies in creating a versatile
tool capable of processing new data. That means creating a streamlined process that can
seamlessly intake any given SAR data (conforming to the same format as specified in Table
3.1) and output a processed 8-bit pseudo-color image. It is thus crucial to follow the same
processing steps outlined in the DSSDD documentation (Hu et al., 2021) and then further
performing the same pseudo-color conversion as talked about above. This ensures consistency
in the appearance of new SAR images compared with those the model was trained on and
that is a critical factor for achieving optimal performance out of the deep learning network.
To clearly state the steps needed to use this ship detection tool the following bullet points
are given:

1. Download a SAR image from the Copernicus Browser (ensuring it matches the types
specified in Table 3.1)

2. Utilize SNAP software to convert the SAR image into an RGB pseudo-color TIFF file
(section 3.4.1).

3. Run the ship detection script using the processed TIFF file (section 3.4.3).
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Figure 3.4: A small segment of an unprocessed SAR image

Figure 3.5: An example of how images from DSSDD appear when converted into 8-bit
pseudo-color images (ships are labeled in red)

3.4.1 SAR image processing

The Sentinel Application Platform (SNAP) software will be used to preform all the process-
ing steps in a streamlined workflow. SNAP is an open-source platform developed by the
European Space Agency (ESA) to analyze, process and visualize remote sensing data. It is
especially well equipped to handle data from ESA’s Sentinel missions such as the Sentinel-1
mission.

As stated in section 3.1 the SAR images downloaded have undergone initial processing
but they need further processing to ensure usability with the ship detection tool. SLC images
are generally considered to be in a raw format as they have complex cell values, substantial
file sizes and large amount of noise. Therefore it is important to implement extra processing
steps. Figure 3.6 shows a flowchart illustrating the processing sequence needed where the
input is a SAR image and the output is an RGB pseudo-color image exported as a TIFF file
which is ready for subsequent analysis using the object detection tool. The remaining text in
the section will proved a short description about each processing step shown in figure 3.6 (all
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the information will be taken from the software documentation and it can also be accessed
here). Lastly, a fully processed image has the dimensions of approximately 35933 pixels in
width by 16283 pixels in height and a spatial resolution of about 10x10 meters. An example
is shown in figure 3.7.

Figure 3.6: Flowchart of the SAR processing steps. (screenshot from SNAP)

➢ Calibration: This step ensures that the pixel values in a SAR image are comparable
across different SAR images. It converts the raw data into meaningful quantities by
analyzing the radar backscattering and performing corrections.

➢ TOPSAR-Deburst: Here the SAR image is simplified and combined into a unified
images. The 3 SAR bursts are added together to ensure seamless coverage of the whole
area both in the range and azimuth directions.

➢ Multilook: To minimize this speckled effect found in SAR images, the Multilook
process averages multiple looks (independent observations) of the same scene. This
process reduces the spatial resolution but simultaneously it enhances the clarity of the
image.

➢ Polarimetric-Matrices: This step calculates the covariance matrix of each pixel using
the equation shown in section 3.4.

➢ Ellipsoid-Correction-GG: Here the image is georeferenced by using an ellipsoidal
model of the Earth.

➢ BandMaths: The aim of this step is to scale the 16-bit pixel values to a more man-
ageable 8-bit range. The equations from table 3.3 are used to normalize the values so
they can be better assigned to the RGB color channels.

➢ BandMerge: This step is simply merging the 3 color bands (red, grenn and blue)
togather to a single raster.

➢ Convert-Datatype: The last step is to actually transform the raster data type from
16-bit to 8-bit. The 8-bit values have already been calculated in a previous step.
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Figure 3.7: Fully processed SAR image of Sjaelland, Denmark, and Skane, Sweden
(centered at approximately 55.98°N, 12.37°E)

3.4.2 Ship detection model training

For training and working with deep learning model TensorFlow will be used. TensorFlow
is an open-source machine learning (ML) environment developed by Google that allows its
users to create deep learning algorithms. It offers extensive libraries and tools for tasks such
as classification, regression, prediction, language models, image recognition to name a few.
In the context of this project, object detection is the most relevant and TensorFlow is well
equipped for such tasks. The TensorFlow Object Detection API is an excellent framework
built on top of TensorFlow specifically designed to create, develop, train, and use object
detection models. It contains a plethora of pre-trained models that can be used for a wide
range of applications. The API facilitates ease of use and simplifies the steps involved in
fine tuning a model making it more accessible to researchers. Pre-trained models provided
by the API can be found at TensorFlow’s official GitHub page under the name TensorFlow
2 Detection Model Zoo. A handful of optimized models can be found here all striking some
balance between speed and accuracy. All models have in common being pre-trained on the
COCO 2017 dataset which is a database containing about 330 thousand optical images with
80 objects types.

From the previously mentioned TensorFlow 2 Detection Model Zoo, the decision was
made to fine-tune the CenterNet Resnet50 V2 512x512 model. This models is classified as
an anchor-free model and as was discussed in section 2.2.1 they are particularly effective when
it come to ship detection in SAR images. ResNet50, a variant of the Residual Network archi-
tecture has the capability to train an extremely deep neural network. Those networks often
suffer from either gradient vanishing or gradient explosion which refers to the weights of the
network fluctuating or failing to converge in the training process (Wang, Zhao, He, Zhu, &
Wei, 2021). ResNet circumvents this by implementing skip connections which allow gradients
to jump between layers of the network. This helps minimize the negative effects seen in deep
neural networks and allows ResNet to maintain a high level of accuracy making it an excel-
lent backbone for object detection models that need to handle complex feature extraction in
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images (Wang et al., 2021). These feature extractions are then fed into CenterNet which in
turn is responsible for the actual predictions. Unlike other object detection, CenterNet does
not represent objects as bounding boxes but rather it uses keypoints (Wang et al., 2021).
This approach simplifies the detection process and gets rid of post-processing steps making
it faster than many other models. Lastly, to predict object dimensions, CenterNet employs a
straightforward regression (Wang et al., 2021). Ultimately, CenterNet Resnet50 V2 512x512
is an object detection model that balances a slight preference for speed over accuracy making
it ideal for ship detection. Speed is important due to the vastness of the ocean where large
areas are devoid of ships which in turn means more data needs to be processed.

When fine-tuning the CenterNet Resnet50 V2 512x512 model, configuring the training
process is a crucial first step. The batch size was set to 16 and the number of training steps
was set to 2000. Since the model is exclusively detecting ships the number of classes was re-
duced to 1. The Adam optimizer was used and appropriate loss functions where assigned. To
compensate for the limited training data, various data augmentation techniques were imple-
mented like random cropping, padding and flipping allowing the model to better generalize
with the data it has. Color based augmentation was avoided since objects on SAR images
have relatively predictable appearance unlike optical images where things such as lighting
can greatly alter the appearance of a given object in an image. As outlined earlier, the
DSSDD dataset was utilized to fine-tune the model. About 70% of it was used for training
while 30% was for testing. A python script was written to transform the .png image files to a
tfrecord format. A common practice when training with TensorFlow that coverts the images
to a binary form which increases the efficiency of data processing. An important thing to
point out here is that the model requires an input size of 512x512 pixels while the images in
DSSDD have a resolution of 256x256 pixels. This discrepancy calls for upscaling and since
the DSSDD images are exactly half the required dimensions a rapid upscaling algorithm
that simply duplicates the pixels in the horizontal and vertical directions can be used. This
has the added benefit of enlarging the appearance of ships which is advantageous because it
addresses the issue discussed in section 2.2.1. Some ships span only a few pixels in a SAR
image making it hard for object detection models to spot them.

The training process itself took about24 hours on an older laptop model with an Intel Core
i5-7200U CPU (2.50GHz) and 8GB of RAM. Figure 3.8 shows the total loss as a function of
training steps. Total loss is the summation of 3 separate loss indicators which are loss for box
offset (how well the model predicts the position of the bounding box), loss for box scale (how
well the model predicts the size of bounding boxes) and loss for object center (how well the
model predicts the central point of bounding boxes). Combined they give a comprehensive
indication to the models performance. By revisiting Figure 3.8, it can be seen that there is
a sharp decrease in total loss during the initial few hundred training steps but then it seems
to stabilize and fluctuates around a value of 0.9. This suggests that the model is learning
fast in the beginning but at a certain point it gets stuck and further training would most
centrally be in vain. The training process could have been halted after approximately 400
steps but the model was allowed to complete the full 2000 steps as originally planned. A
value of 0.9 is alarmingly large and means that the fine-tuning process did not yield the
anticipated success. The reason for this suboptimal performance is not clear to the author
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Figure 3.8: Total loss from the fine tuning process of the deep learning model as a function
of training steps

and experiments with other models as well as different training configuration did not result
in a significantly different outcome. For the purposes of this project it was decided to move
forward with this model even though it is imperfect.

3.4.3 Output from the Ship Detection Tool

The deep learning model was designed to only handle images with the size of 256x256 pixels.
However, the SAR images are significantly larger (around 36,000x17,000 pixels). To handle
this mismatch a Python script was written that fully loads the SAR image with the cv2
library and methodically loops across it in a grid pattern predicting a window of 256x256 as
it goes. To go between local pixel coordinates and the actual geographical coordinates, the
rasterio library is used to load in the georeferenced SAR file and then extract the inherent
affine transformation which in turn can be applied to any point. One challenge that was
encountered is that a ship has the chance of being divided between two adjacent windows
and that causes the model to miss the ship detection. To mitigate this, the script jumps
by 246 pixels instead of the full 256 pixels and thus introduces a 10 pixel overlap between
windows to ensure no ship is missed. Looping over every possible 256x256 window is time
consuming and unnecessary since most of the SAR image extends beyond the study area.
The IsWithinOcean function (described in section 3.2) was used to exclude all windows that
do not fall within the study area which significantly enhances the script’s efficiency.

The tool’s output is a comprehensive CSV file listing all detected ships along with the
models prediction confidence, estimated ship size and coordinates. An optional feature of
the script is to save all windows containing a ship as PNG files which is helpful for visually
examining the detected ships. As an example, figure 3.9 zooms in on the ocean between the
Danish island of Bornholm and mainland Sweden and it shows detected ships by the model.
Although the model is quite proficient in detecting ships it is not flawless and it may not
spot every single one. Such is the case on figure 3.9 where the arrow is pointing to a ship
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Figure 3.9: Predicted ships on a fully processed SAR image. The labels indicate predicted
confidence by the model and the arrow points to a missed detection

that the model overlooked. The ship is difficult to detect due to its small size relative to the
vast expanse of the ocean. However, upon zooming in, the details become clear allowing the
author to identify this particular ship.

3.5 Random forest classifier for unmatched vessels

Ships detected in SAR images have limited distinguishable features which makes it impos-
sible to identify if there is no corresponding AIS signal. However, If linking the boat with
an AIS signal is successful all needed information about the vessel, such as whether it is a
fishing boat or not becomes readily available. For the purposes of this study it would be
very meaningful to determine if a boat detected on a SAR image is a fishing boat especially
if it can not be linked with AIS data as those boats could potentially be engaged in illegal
fishing. In an attempt to tackle this issue, a random forest (RF) machine learning model
will be created to classify detected boats as either fishing vessels or other types of ships.
The approach here will be implemented similarly to the method used by Snapir, Waine, and
Biermann (Snapir et al., 2019), who predicted a vessel type from only 3 features; latitude,
longitude and length of a detected ship.

Creating the dataset is the initial step for making the RF model. This process involved
iterating through all the AIS data within the study area and randomly selecting 1,000 boats.
To ensure the model did not become biased, an equal number of fishing and non-fishing boats
were included (with 500 of each type). For each selected boat, both its location and length
were expected and stored in a dedicated file alongside whether or not it was a fishing boat or
not. Although more boats could have been used for the RF model training the author found
that 1000 boats had a good balance between workability and model generalization. Once
the data was ready it was split into 80% training and 20% testing. The scikit-learn library

24



in Python was utilized to both train and evaluate the Random Forest model. All default
hyperparameters were maintained except for the number of trees which was adjusted to 100.
This decision was based on experimental results. Despite the potential for a more thorough
exploration the model performed well meaning that further optimization was unnecessary.

3.6 SAR and AIS data matching

As discussed in the previous section the output of the SAR ship detection tool consists of
a list that holds all identified ships within a given SAR image. To correlate them with the
AIS data, it is necessary to develop a script that selects all AIS transmissions within exactly
the same timeframe as the SAR image. Since ships transmit their data semi-irregularly
it is important to interpolate between the 2 nearest transmissions to accurately align ship
locations to the right spot. After executing this script a list is generated that holds all ships
that transmitted AIS data close to a particular moment in time. Armed with this list and
the one generated by the detection operation it becomes possible to initiate the matching
process. Theoretically points in both list should line up flawlessly but in practice that is not
the case. Instead the points are close to each other but do not align perfectly. This is caused
by inherent inaccuracies in both lists but fortunately this difference is small and can easily
be accounted for. The last step involves developing a script that compares all the points in
both lists. If any pair of points falls within a threshold of 800 meters they are deemed a
match. This threshold was picked after considerable manual examination of pairs of lists.
Figure 3.10 shows an overview of the key steps involved in matching AIS and SAR data to
determine the number of fishing boats broadcasting their AIS data.

Figure 3.10: Flowchart illustrating the key steps in matching AIS and SAR data

3.7 Evaluating performance of the models

To evaluate the performance of both the random forest model and the deep learning model, it
is important to use some metrics that give insights into how well the models are performing.
One common practice is to construct a confusion matrix from the test data, which serves
as the foundation for calculating several key performance metrics. Precision, recall, F1
score, and accuracy. A confusion matrix is a table used to describe the performance of a
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classification model on a set of test data where the true values are known. The matrix shows
the counts of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions. While the confusion matrix is valuable on its own, further analysis can
yield more concrete performance metrics. These values can be calculated with the following
equations:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 Score = 2·(Precision·Recall)
Precision+Recall

Accuracy = TP+TN
TP+TN+FP+FN
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4. Results

4.1 Metrics for the ship detection tool

To get a better understanding of how the CenterNet Resnet50 V2 512x512 model is per-
forming it is necessary to conduct a thorough evaluation. This entails passing the 30% test
dataset through the detection model and comparing its predictions against the actual data.
This information is then showcased in a confusion matrix which can be further used to extract
metrics providing a good indication of the model’s effectiveness. The comparison between
predicted and actual bounding boxes is not a straightforward process when it comes to object
detection. It requires some logic that attempts to align the predicted bounding box with an
actual one. There are then 3 distinct outcomes: a match is found (TP), the model predicted
a ship that was not present (FP) or the model failed to detect a ship that was present (FN).
These 3 values make up the confusion matrix and from it precision, recall and F1 can be
derived. Intersection over Union (IoU) is the key component of the matching process. IoU
calculates how much a predicted bounding box area overlaps with the actual bounding box
area, compared to the total area both cover. Boxes that overlap each other completely have
an IoU of 1 while completely separate boxes have an IoU of 0. For this evaluation an IoU
threshold of 0.5 and a prediction confidence threshold of 0.275 which resulted in the con-
fusion matrix seen in table 4.1 and table 4.2 shows the metrics derived from it. From the
tables it becomes evident that the fine-tuning effort had a massive impact and the model is
performing adequately. With a precision, recall and F1 score all about 0.9 the model is able
to confidently identify the majority of ships.

Table 4.1: The confusion matrix (Left: before fine tuning) (Right: after fine tuning)

Predicted
Positive

Predicted
Negative

Actual
Positive

31 (TP) 38 (FP)

Actual
Negative

1172 (FN)

Predicted
Positive

Predicted
Negative

Actual
Positive

1088 (TP) 112 (FP)

Actual
Negative

115 (FN)

Table 4.2: Metrics derived from the confusion matrix

Precision Recall F1
Before fine tuning 0.449 0.026 0.049
After fine tuning 0.907 0.904 0.906
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4.2 Metrics for the vessel classification model

Training the random forest model to classify boats
in SAR images as either fishing or non-fishing was
a quick process. Using primarily the default hyper-
parameters the model performed remarkably well.
The performance metrics are shown in Table 4.3
and they suggest that the model is quite capable of
accurately distinguishing between fishing and non-
fishing boats. Recall has the highest score and that
indicates that the model correctly identifies 98% of
all actual fishing boats. That is particularly advan-
tageous since in the actual data fishing boats rep-
resent a small part of the whole data so not missing
any is key. Overall, all metrics are large so it is fair
to say the model is a success.

Table 4.3: Performance of the
random forest model

Precision 95.8%

Recall 98.0%

F1-score 96.9%

Accuracy 96.9%

4.3 AIS-SAR matching

After matching the 10 SAR images with the corresponding AIS data a better picture of the
level of AIS uptake among boats can be gotten. Table 4.4 presents the results and in total
643 boats were detected but only 395 successfully matched with AIS data. Initially, this mis-
match might appear alarming since it suggests that a great deal of ships in the South Baltic
Sea do not broadcast their AIS data. However, by visually inspecting the spatial distribution
of the matches it becomes somewhat clear what happened. A great deal of unmatched boats
tend to cluster around particular areas. Specifically, the coastline near Germany and Poland
as well as the area east of the 16 degrees longitude line had significantly fewer matches
compared to areas near Bornholm. This is clearly visible on figure 4.2 which shows both
the matched and unmatched boats across the 10 SAR images. With this in mind, a more
plausible explanation for the high number of unmatched boats is that while the majority of
boats in fact are broadcasting AIS data they are not being logged since the network of AIS
receivers simply has a poor reception in those areas. In regions where AIS reception appears
to be robust, nearly all boats matched successfully, with only a handful of exceptions. So
instead of looking at the numbers seen in table 4.4 it would be more reasonable to exclude
the areas with poor reception and recount the matches but that is not so straightforward
since there are no clear boundaries to divide the study area up.

Two columns in table 4.4 shows how many of the matched or unmatched boats are fishing
vessels. For the matched boats counting how many of them are fishing boats is easy since
the information is readily available in the data. For unmatched boats it is difficult however
but that is where the random forest model described in section 4.2 comes in. Among other
information the detection tool outputs an estimated height and width of each detected boat
in pixels. A simple Pythagoras operation can convert those numbers into length and lastly
that number is multiplied with the spatial resolution of the raster which is just about 10x10
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meters. This will not result in a precise length of the boat but it gives an estimation for the
random forest model. All unmatched detections are run through the model and 12 out of
the 248 boats were predicted as being fishing. That is a fairly similar ratio to the matched
boats or about 4% which is reasonable. This ratio of about 4% is consistent with the one
observed for the matched boats which suggests that the model’s estimates are reasonable.
Verifying these values is not viable but keeping in mind the model’s evaluation metrics gives
some reassurance of accuracy.

Figure 4.1: Findings from a single SAR Image in Table 3.1, showing the vessels that could
be successfully linked between SAR and AIS datasets, as well as those that could not be

matched

Table 4.4: The outcomes of the AIS-SAR matching process for each SAR image

SAR
image

Area
Matched Unmatched

Other Fishing Other Fishing
1 B 46 5 21 2
2 A 41 0 23 2
3 B 28 0 26 0
4 A 45 3 19 1
5 B 35 2 32 1
6 A 49 1 17 0
7 B 31 0 29 1
8 A 34 1 11 3
9 B 26 1 31 0
10 A 44 3 27 2

Total 379 16 236 12
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Figure 4.1 shows the matching results for a segment of a single SAR image. Ideally, one
would like to see all boats get matched between the datasets but that is not always the case.
The yellow points on figure 4.1 represent boats that did not get detected on the SAR image
of which there are quite a few. At first this may seem like the detection tool performed
very poorly at identifying boats but a closer inspection reveals that smaller boats are almost
indistinguishable from background noise in the SAR image. The spatial resolution of the
SAR image is approximately 10x10 meters so some boats may only occupy a pixel or two
making them very hard to spot. It should be noted however that this is not always the case
and occasionally the tool simply fails to detect boats due to its limitations. Figure 4.2 shows
the same thing as 4.1 but instead of just showing the results from a single SAR image is
shows results from all SAR images on a single map. Unmatched boats from AIS data are
not shown on figure 4.2 due to constraints on the map. As discussed before in this section
unmatched ships are predominantly located near the shorelines of Germany and Poland and
that is visible on figure 4.2.

Figure 4.2: Matching results from all SAR images in Table 3.1, showing the vessels that
could be successfully linked between SAR and AIS datasets, as well as those that could not

be matched
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4.4 Vessel trajectory analyses

The script described in section 3.3.2 was used with data encompassing the entire year of
2018. It generated detailed outputs for each route sailed by a fishing vessel during this pe-
riod. Figure 4.3 shows a specific output from this script, representing a single journey by
a single boat that lasted approximately 47 hours. This ship started its journey near Karl-
skrona, Sweden but the recorded path is incomplete since it does not show the vessel’s return
to port. Although not ideal for monitoring, the majority of the path is believed to be there.
The lower three plots in figure 4.3 detail the vessel’s speed, course, and the results from the
GFW logistic regression model over time. The background color in these plots indicates the
navigational status of the vessel where light purple indicates active fishing, light red indicates
transit without fishing activity and white represents periods where no navigational status is
recorded. By examining the plots, it can be seen that when the ship moves slowly, it typically
indicates that it is fishing and that is also in line with what the GFW model predicts. As the
vessel decelerates, it switches its navigational status to active fishing and when it accelerates
again it switches back again. There is an instance along the ship’s path where no naviga-
tional status is transmitted which could simply be due to human error or some technical
issue. But by looking at the speed patterns of the boat one could assume ongoing fishing
activity during this period. A noticeable uptick in the GFW model prediction can be seen in
that time period indicating that there is indeed a high probability of fishing at that moment
as well. The connection between the ship’s course and fishing activity is less clear. Extensive
review of other outputs from the script suggests that speed is a more reliable indicator of
fishing efforts. It was also observed that many ships do not update their navigational status
consistently making those ships that do more valuable to compare with the GFW model
predictions. On figure 4.3 it can also be seen that there is a strong correlation between both
the calculated and broadcasted speeds and courses, and that holds true even when exploring
many other examples from the script despite occasional anomalies. The uppermost plots on
figure 4.3 show the actual path taken by the vessel. The left plot shows its location within
the study area while the right plot focuses on the GFW model predictions along the path
instead of as a function of time.

After analyzing a full year’s worth of AIS data there were 5304 individual fishing boat
journeys recorded taken by 284 fishing boats. Given the extensive volume of the data it is
impractical to show it all in this document but figure 4.3 displays a single example. However,
by examining all 5304 trajectories together additional insights can be had. To get a sense of
how many of the fishing boat paths are incomplete, the proximity of each journey’s start and
end points to the nearest land was looked at. A fully connected path both begins and ends
next to land one can assume. For the purposes of this project, the boundary of the study
area was considered as land since paths passing through the study area boundaries can not
be classified as incomplete. The results can be seen on the three bar graphs of figure 4.4.
A 500-meter threshold to classify the proximity of journey endpoints to land was used. If a
journey’s end point is within this distance it is marked as ”yes”, otherwise as ”no”. It can
be seen that for both the starting and final points, less than half are within this established
threshold, with only about 21% of journeys having both endpoints within this 500-meter
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range. The choice of the 500-meter threshold is somewhat arbitrary but it was picked after
a thorough review of the data. Adjusting the threshold would have slightly changed the
number of ships classified as having an incomplete path, but 500 meters was an optimal
choice. Another insightful metric to analyze is the duration of each journey undertaken by
fishing boats. Figure 4.5 presents a histogram showing these durations and revealing that
the majority of fishing boats are typically tracked for around 19 hours while the longest
continuously recorded journey of a fishing vessel spanned a total of 188 hours.

Figure 4.3: Analysis of a Single Fishing Boat’s Trajectory (from AIS data): (a) Trajectory
mapped, (b) Fishing activity predictions along the path, (c) Model predictions over time,

(d) Course over time, (e) Speed over time
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Figure 4.4: Distances from both the start and end points of all recorded fishing routes in
2018 to the nearest land (from AIS data)

Figure 4.5: Histogram of fishing boat path durations (from AIS data)

4.5 Spatiotemporal analysis of fishing activity

After a comprehensive analysis of AIS data from 2018 several noteworthy findings surfaced.
Firstly, figure 4.6 shows the spatial distribution of fishing activity by month. It’s important
to clarify that in this context fishing is defined as a fishing boat going slower than 4 knots.
A more sophisticated approach would be to use the prediction model from GFW but the
analyses in section 4.4 revealed that just using speed to predict fishing effort yields suffi-
ciently accurate results. Although the GFW model might give better results, using speed
to filter data is considerably more efficient for processing large amounts of data. Figure 4.6
shows that the area southeast of Bornholm is among the most significant fishing grounds in
the study area. Although not a precise point, this general region consistently exhibits high
activity throughout most of the year. In general however, the clustering of fishing activ-
ities shifts significantly over the course of the year. For example, the fishing hot-spots in
November differ quite a bit from those in March. This seasonal variation in fishing hot-spots
is primarily caused by targeted fishing practices where fishermen pursue a certain type of
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fish species based on their availability at a given time and that leads to dynamic changes in
fishing hot-spots.

Figure 4.6: A heatmap of fishing activity by month in 2018 (from AIS data)

The temporal analysis from the same data is shown in figure 4.7 and there the y-axis
represents the frequency of AIS signals reporting speeds below 4 knots within the study
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area. It is clear from the figure that fishing efforts reached their peak in March, followed
by a gradual decline to the annual minimum in August. The following months see a slight
increase but it still remains significantly lower than the March levels. A more detailed figure
showing temporal distribution within each month can be viewed in appendix A. The analysis
indicates that fishing activities increase during the colder months due to favorable conditions
for certain species. For instance cod fishing peaks during these months. Moreover, quota
limitations significantly impact fishing activities. Quotas can cause fluctuations in fishing
intensity as fishermen strive to maximize their catches within the permitted limits. This
often leads to a surge in activity at the beginning of the year when new quotas are released.
In appendix B fishing effort by country can be seen.

Figure 4.7: The number of AIS transitions during fishing by month in 2018 (from AIS data)
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5. Discussion

5.1 Fishing boat analysis from AIS

This project involved several analyses that exclusively used AIS data. Specifically, the vessel
trajectory script examined individual voyages, while both the spatial and temporal analyses
focused on broader aspects of fishing activity within the study area. This section will provide
discussion on these topics.

5.1.1 Possible improvements to the vessel trajectory analyses

Numerous improvements could be made to the AIS trajectory analysis script. Given that
the data was stored in a CSV file and not a database, directly querying for a specific boat
was not feasible and instead the script had to iterate over each line in all CSV files to locate
all instances of the desired ship. A better approach would have been to conduct trajec-
tory analyses for all boats simultaneously, thus requiring only a single pass through all the
data. While this modification would have significantly sped up the process, its implemen-
tation is not straightforward since loading all the data into memory would have too much.
Nevertheless, alternative approaches that bypass these limitations do exist. There are also
undoubtedly other ways to optimize the script but for the purposes of this project it was
sufficient. In the script a time threshold of 6 hours was set to determine when a ship’s path
had concluded. If no new AIS data was received within a window of 6 hours the path was
deemed finished but otherwise the AIS message was considered to be a part of the ongoing
path (even though 5 hours had passed for example). This threshold of 6 hours is somewhat
arbitrary but it was selected after careful inspection of the data which showed that fishing
boats sometimes disappear from AIS tracking for a few hours before reappearing. It was
also noted however that occasionally boats are docked for a handful of hours and then start
another voyage but the script treated these instances as one continuous journey even though
these are two distinct paths. A more sophisticated approach to segmenting fishing boat jour-
neys could be for example to define an “in port” status for ships and utilizing this status to
segment paths. This could help differentiate between separate trips and enhance the analysis
of fishing activities.

5.1.2 Limitations of the AIS data

A crucial question when it comes to the effectiveness of using AIS for monitoring fishing
activities concerns the system’s reliability. As discussed in section 2.1.2, AIS was originally
designed for increasing maritime safety although in practice it has proven to be very useful for
monitoring purposes. However, its effectiveness for monitoring is not flawless since there are
instances where ships lawfully broadcasting their AIS data are not consistently tracked. The
primary reason for this is that the ship’s AIS signal may not be captured by any receivers.
This is particularly relevant in the context of this study which uses AIS data provided by the

36



Figure 5.1: Map showing the network of land-based AIS receivers in use by the Danish
Maritime Authority. Permission to use this map was granted by the authority. Note: The

map is not updated and should be used solely for illustrative purposes

Danish Maritime Authority, whose network of AIS receivers is intended solely for covering
Danish waters. Although it often captures signals from vessels that are far outside this area
that is much less reliable data. Figure 5.1 shows the network of AIS receivers and the coverage
they provide. This goes far in explaining the prevalence of incomplete paths as shown in figure
4.4. This alone however does not fully account for the incomplete paths observed because
some paths were seen starting or ending within well covered areas. An obvious conclusion
in those cases would be that those particular boats are actively disabling their AIS data for
whatever reason but that is not a guarantee. Given that AIS signals are inherently radio-
based (Taconet et al., 2019), many other factors play a role in determining whether a not a
signal gets picked up by a receiver such as the height and power of the transmitter onboard the
ship, atmospheric conditions, terrain, radio interference and more. These elements contribute
to the observed dynamic range of the AIS receivers and occasionally allow for the detection
of distant boats. This also has an impact on the findings in section 4.5 since areas close to
the island of Bornholm get a better representation. Given these considerations it would have
been more reasonable to limit the study area to regions with more reliable AIS data coverage
from the beginning.

5.1.3 Further research

The research done in this project could be taken further in several ways. Expanding a longer
time frame could reveal how fishing trends evolve over the years and provide valuable insights
into the fishing industry. Additionally, increasing the size of the study area would also be
an option although this would require an alternative source of data. In this project, a single
logistic regression model from Global Fishing Watch (GFW) was used to monitor fishing
activity on a small-scale and detect when fishing occurs along a vessel’s path. It would have
been beneficial to test and compare this model with other models. One way to approach this
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could involve creating a custom machine learning model tailored to the project’s study area
which would potentially provide a more accurate prediction. Obtaining the data needed for
such an improvement however could prove to be difficult but one way around this could be to
use the navigational status from AIS data. Although one of the findings in this project was
indeed that many fishing boats do not consistently update their navigational status message
while operating, but some do, and a few handpicked vessels with reliable navigational status
messages could possibly provide quality training data for a machine learning model specifi-
cally tailored to the study area.

A more sophisticated approach to predict when along its path a boat is engaged in fishing
would be to do so by gear type. Different fishing activities employ various types of gear and
creating a machine learning model for each gear type could improve accuracy. As it turns
out, GFW offers a dataset specifically for this purpose which can be accessed here. This
data provides extensive training data for gear types such as drifting longlines, fixed gear and
trawlers to name a few. Developing a model that predicts fishing activity based on gear type
could yield a detailed view of fishing practices and provide an effective tool to monitor fishing
activity. An important consideration here is that this approach assumes prior knowledge of
a vessel’s gear type, which is not always available. When a gear type of a tracked ship is
unknown one would need some way of classifying it based on its movement in the ocean and
make sure it is even a fishing vessel to begin with. Fortunately, machine learning solutions
are available to address this challenge.

The study area experienced a significant decline in fishing activities following the 2019
ban on cod fishing and the reduction of quotas for herring and other species (The Fisheries
Secretariat, 2019). However, the data used in this project is all from 2018, when there
was a significant amount of fishing activity compared to the following years. Exploring this
slowdown by analyzing more years would have been interesting but that falls out of the scope
of this project.

5.2 Fishing boat analysis from SAR

The heart of all the SAR analyses done in this project is undoubtedly the deep learning
model itself. The CenterNet Resnet50 V2 512x512 to be specific and there is certainly room
for improvement. As became apparent in section 4.1 the model’s performance fell short of
expectations and how it can be improved is a bit of a complex issue. There are a lot of
nuances and many factors that play into the performance of this deep learning model. This
section will highlight some key talking points and mention possible improvements as well as
provide insight into the decision making process.

5.2.1 Pre-processing and training

One major topic of discussion is the choice of training data. The dataset used in this project
(DSSDD) was limited and required extensive pre-processing to be used. The training images
from DSSDD were derived from the SLC level of processing which is quite a raw format and
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requires significant processing to work with. The fact that the covariance matrix is computed
for each pixel further adds to the processing requirements. The most time-consuming part of
the SAR image pre-processing however was the georeferencing step. This step is essential to
get coordinates from detected ships but proved to be a major bottleneck. A lot of effort was
spent trying to circumvent this step by looking into alternative tools and trying to simply
use the rudimentary georeferencing that was stored within the SCL images. Ultimately this
effort was in vain and the georeferencing step remained in the workflow. As a result, pro-
cessing a single SAR image took approximately 90 minutes on a reasonably fast computer
which severely limited the number of images that could be processed for this project. Using
an already georeferenced image would have been a good option but it required designing a
completely new workflow. A new dataset and retraining of the deep learning model would
have been needed which would be too time-consuming.

The DSSDD training data was specifically chosen to leverage the power of transfer learn-
ing by fine-tuning a pre-existing model and those models are typically trained on a large set
of common RGB images. The DSSDD provides two alternative formats for the images, 16-bit
files containing 4 bands for each cell in the covariance matrix and a more conventional 8-bit
RGB file. It would have been ideal to use the latter but the exact approach used to obtain
the RGB files was not clearly documented. This knowledge is crucial since the final deep
learning model must receive data consistent with its training input. Because the author was
unable to recreate the RGB files provided it was decided to use the 16-bit files and perform
a custom scaling instead to have reproducible 8-bit RGB files. The author experimented
with several methods to achieve this and ultimately used the equations shown in Table 3.3.
The chosen approach for this scaling significantly impacts the model’s performance and the
objective should be to make the RGB images resemble real-life scenes as closely as possible
to effectively utilize transfer learning. This is because transfer learning relies on pre-trained
models that have learned features from real-world images, so having similar data ensures
these features remain useful for the new SAR images. A simple linear scaling method was
used in this project, although there are many alternatives, such as logarithmic scaling. How-
ever, increasing the complexity of the conversion process also increases the processing time.
Additionally, experimenting with different scaling methods can be very time-consuming since
training a deep learning model is a very lengthy process. The equations in table 3.3 were
found to assign colors well since the resulting images were not completely dominated by one
color and boats at sea were easily distinguishable from the ocean background to the naked eye.

The training process of the deep learning model could benefit from some hyperparameter
tuning. Trying different loss functions, optimizers and data augmentation would have been
interesting to explore but since it takes such a long time to train a single model a thorough
hyperparameter tuning was not feasible. In total the author ran the training process 4
times with. Twice with the CenterNet Resnet50 V2 512x512, one time with another similar
CenterNet based model and one time with an SSD. The limited testing conducted did not
yield significant improvements and more extensive testing is necessary to develop a model
that substantially outperforms the one used in this project.
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5.2.2 Challenges in utilizing the deep learning model

Once the deep learning model was fully trained, it underwent testing with processed SAR
images specifically acquired for this project. During this phase a few unexpected obstacles
emerged that needed attention. One such issue was the model’s tendency to misclassify
windmills as boats which is perhaps not all too surprising given their similar appearances
in SAR imagery. To address this the author drew polygons around the 2 windmill farms
that were in the study area and updated the IsWithinOcean function accordingly. That
ment that all predictions made by the model within those areas get filtered out. Another
problem that became apparent when testing was a peculiar anomaly seen only on some SAR
images. A thick horizontal band made up of numerous vertical lines. This artifact varied in
transparency and sometimes it completely obstructed anything under it but other times it
was semi-transparent. An example of this can be seen just under the 56th latitude line on
figure 4.2. This issue is likely related to the satellite itself and does not significantly impact
the overall image. Fortunately the deep learning model did not get misled these anomalies
so it was not of high importance to fix.

The performance of the deep learning model observed in practice aligns closely with the
metrics presented in table 4.2. Although the model successfully detects the majority of boats
it sometimes overlooks very obvious instances of boats without any apparent reason. It was
also noted that the model occasionally might incorrectly detect a single boat as multiple ones.
Instead of outlining a single boat with one bounding box the model divides it into multiple
sections. To address this a minimum threshold was established where detections within 100
meters of each other get reduced to a single detection. This is not a perfect solution however
since the bounding box that is left does not cover the boat fully which results in an incorrect
estimation of a boat’s length. This has no effect on the AIS-SAR matching process but it
does impact the random forest classifier. Improving this aspect would require creating a new
deep learning model as was just discussed, that is neither quick nor straightforward.

5.2.3 The random forest classifier

The random forest classifier was trained to categorize unmatched boats from SAR as either
fishing vessels or other types. The model was trained using only three features: latitude,
longitude, and estimated length but despite its simplicity, the model performed well as can
be seen in table 4.3. Adding more features, such as the distance to land and time of day
could have made the model even better. Hyperparameter tuning was also a potential area for
improvement but it was decided to prioritize other tasks. The model’s strong performance
can be understood to some degree by looking at the characteristics of the study area. Most
boats in the region are simply navigating between the inner Baltic Sea and the North Sea,
passing through Denmark. These transit boats follow a clear path through the study area.
Additionally, fishing vessels are generally smaller than other types and these factors make it
easier for the random forest model to classify the boats accurately.
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5.2.4 The AIS-SAR matching

Matching boats between data sources was achieved using a proximity threshold which worked
well. However, the threshold had to be set to 800 meters which is a relatively large distance.
This was needed because the boats often did not perfectly align between the 2 data sources.
It was initially thought that a small time shift in the AIS data could improve alignment
but some testing showed this was not helpful. Poor georeferencing or slight errors in the
AIS messages could contribute to this mismatch but further investigation would be needed.
Fortunately, because of the vastness of the ocean, the risk of misidentification due to the
large threshold was low. Boats rarely come so close to one another out at sea. Extensive
analysis of the matching results confirmed that this slight offset had no significant impact on
the outcomes.

By examining the spatial distribution of the unmatched boats in figure 4.2, it is clear
that the majority of these boats cluster in specific areas. This behavior is primarily due to
poor AIS reception in certain regions which figure 5.1 highlights. To address this issue, one
could either utilize an alternative AIS data source or limit the study area to regions with
consistently reliable AIS reception. Disregarding AIS coverage compromises the reliability of
the matching process results. The purpose of matching AIS data to SAR data is to estimate
the number of ships actively using the AIS system which means adequate AIS coverage is
needed for meaningful analysis. With that in mind, on figure 4.2, focusing solely on areas
with good AIS coverage results in nearly all boats being matched.

5.2.5 Further research

There are several ways to build upon the work done in this project. As was the case in
section 5.1.3, a logical next step would be to process more SAR images over an extended
time period to gain a deeper understanding of fishing activity and trends. Analyzing only
10 images from a single month provided limited data making it challenging to draw reliable
conclusions. Furthermore, it is essential for future research to take into account AIS coverage
to ensure reliable findings. Although the deep learning model used in this project performed
reasonably well, further research might explore alternative approaches for detecting ships at
sea. The SUMO software, a simpler yet well-established tool often used by researchers could
be considered. However, using deep learning models has been the trend in recent years and if
that approach is preferred an alternative training data source could be explored. Given the
niche nature of ship detection from SAR images there are few alternatives available but some
do exist and examples can be found here. Most training sets use Ground Range Detected
(GRD) images instead of SLC since GRD is a more processed and standardized product with
smaller file sizes making it easier to work with. In particular, the xView3-SAR dataset, which
contains a larger volume of GRD data could be a suitable alternative to the DSSDD dataset.
This extensive data could be used to train a deep learning model from scratch and avoid
the need to fine-tune pre-trained models that have been trained on different image types
(common RGB images instead of SAR). When it comes to the deep learning model itself,
one could explore further the usage of different models like You Only Look Once (YOLO) or
transformers which have proven useful.
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6. Conclusion

This project set out to determine whether fishing operations in the southern Baltic Sea could
be effectively monitored using publicly available data, specifically through cooperative (AIS)
and non-cooperative (SAR) methods. The results conclusively show that both AIS and SAR
data can be effectively utilized to monitor fishing activity in this region.

The analysis of historical AIS data for the year of 2018 provided a comprehensive overview
of fishing patterns and trends across the study area. Both temporal and spatial distributions
were explored in great detail, offering valuable insights into the behaviors of fishing vessels
over the whole year. On a smaller scale, the trajectory of individual fishing boats was an-
alyzed, demonstrating that AIS data can effectively monitor the activity of a single vessel
and potentially identify suspicious activity. This project shows that even though many ships
do not disclose periods of active fishing in their AIS signals, a machine learning model can
predict when a boat is fishing based on its trajectory. However, this analysis is limited to
vessels that actively broadcast their AIS data and in fact not all boats do so. In some cases
it is unintentional but other times boats intentionally turn off their AIS data indicating they
might be engaged in illegal fishing. These non-broadcasting vessels can still be detected us-
ing satellite imagery. In particular this project used SAR images which proved effective in
identifying boats that were not transmitting AIS data. The deep learning model fine-tuned
for this project was a useful tool in this regard. By matching SAR data to AIS data, the level
of AIS uptake among fishing vessels was assessed which revealed that most ships in the study
area do indeed transmit their AIS signals with only a handful of exceptions. However, the
few boats detected in areas with good AIS reception but without corresponding AIS signals
are of particular interest because they might be engaged in illegal activities. Distinguishing
between fishing boats and other types of ships is necessary to determine the amount of fishing
boats not transmitting their AIS signal. For that, a random forest model was trained. This
model showed promising results but due to the limited dataset (only 10 SAR images from
one month) it generated limited results. Processing more SAR images over a larger area and
a longer timeframe would have been ideal.

In conclusion, the integration of AIS and SAR methods offers a viable and effective solu-
tion for monitoring fishing activities in the southern Baltic Sea. As remote sensing technology
continues to advance, the combined use of cooperative and non-cooperative monitoring tools
will play an increasingly important role in sustainable fishing practices and the enforcement
of maritime regulations.
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Appendix A: Temporal fishing patterns

This appendix is an extension to figure 4.7. Instead of showing a single number for each
month, this appendix will show a detailed monthly temporal distribution for the year 2018,
derived from AIS data.

Figure A.1: Amount of fishing effort in January from the AIS data

Figure A.2: Amount of fishing effort in February from the AIS data

Figure A.3: Amount of fishing effort in March from the AIS data
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Figure A.4: Amount of fishing effort in April from the AIS data

Figure A.5: Amount of fishing effort in May from the AIS data

Figure A.6: Amount of fishing effort in June from the AIS data

Figure A.7: Amount of fishing effort in July from the AIS data
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Figure A.8: Amount of fishing effort in August from the AIS data

Figure A.9: Amount of fishing effort in September from the AIS data

Figure A.10: Amount of fishing effort in October from the AIS data

Figure A.11: Amount of fishing effort in November from the AIS data
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Figure A.12: Amount of fishing effort in December from the AIS data
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Appendix B: Fishing effort by country

Among the 5,304 individual fishing boat trajectories identified from AIS data in 2018, the
majority were taken by vessels sailing under a Polish flag as is shown in the figure below.
To obtain this information, MMSI numbers from the AIS messages were matched with MID
table from International Telecommunication Union (ITU).

Figure B.1: Fishing effort by country from the AIS data
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