
MASTER’S THESIS 2024

Evaluating synthetic data for
enhancement of object
detection models
Carl Wikström, ca3157wi-s@student.lu.se

ISSN 1650-2884
LU-CS-EX: 2024-54

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-54

Evaluating synthetic data for enhancement
of object detection models

Carl Wikström, ca3157wi-s@student.lu.se

Evaluating synthetic data for enhancement
of object detection models

Carl Wikström ca3157wi-s@student.lu.se

August 30, 2024

Master’s thesis work carried out at Verisure Innovation.

Supervisors: Patric Fröjd, patrik.frojd@verisure.com
Volker Krueger, volker.krueger@cs.lth.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:
mailto:
mailto:patrik.frojd@verisure.com
mailto:volker.krueger@cs.lth.se
mailto:jacek.malec@cs.lth.se

Abstract

This thesis investigates the potential of using synthetic data to enhance object
detection models in security surveillance contexts. Synthetic data was gener-
ated with the Unity Perception package and evaluated using real-world security
footage. The study compared these results with those from a model trained on
an equivalent number of COCO dataset images. Findings indicate that while
synthetic data alone did not match the performance of real data, fine-tuning
the model with a small target domain dataset allowed synthetic data to perform
equivalently. The research highlights the benefits of synthetic data, especially
when real data is scarce, and shows promise for detecting specific behaviors,
such as crawling versus standing individuals. This study contributes to the on-
going discussion about the practicality of synthetic data in surveillance applica-
tions, underscoring both the challenges and opportunities of leveraging synthetic
datasets for enhancing object detection models in diverse security scenarios.

Keywords: Object detection, Synthetic Data, Unity Perception, YOLOv9-c, Security
Surveillance

2

Acknowledgements

I would like to extend my sincere thanks to my supervisor at Verisure, Patric Fröjd, for his
guidance, dedicated time, and constant availability throughout this project. His mentorship
has been instrumental in the continuous development and experimentation during the thesis.

I would also like to thank my supervisor at the Faculty of Engineering at Lund University,
Volker Krueger, for his help and assistance during the thesis. His expertise and support have
been crucial in guiding me through this thesis.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Research questions & limitations . 9
1.3 Previous work . 9

1.3.1 Generating synthetic data using 3-d models 10
1.3.2 Domain adaptation . 10

2 Theory 13
2.1 Neural networks & Deep learning . 13
2.2 Deep learning . 14
2.3 Convolutional neural networks . 15
2.4 Object detection models . 16

2.4.1 Two-stage detectors . 17
2.4.2 One-stage detectors . 17
2.4.3 YOLOv9 . 17
2.4.4 Transfer learning . 18

2.5 Evaluation metrics . 18
2.5.1 IoU . 19
2.5.2 Precision & Recall . 19
2.5.3 Mean average precision . 20

2.6 Synthetic training data generation . 20
2.6.1 Unity Perception . 22

2.7 Domain adaptation . 23
2.7.1 The domain gap . 23

3 Method 25
3.1 Object detection model & training strategies 25
3.2 Data selection . 25

3.2.1 MS-COCO . 26
3.2.2 Synthetic datasets . 26

5

CONTENTS

3.2.3 Verisure datasets . 26
3.2.4 Roboflow cctv dataset . 27
3.2.5 Data splits . 28

3.3 Synthetic data generation using Unity perception 29

4 Experiments & Results 31
4.1 Generating synthetic data . 31
4.2 Comparing synthetic and real data . 34
4.3 Improving Crawling Person Detection with Synthetic Data 36
4.4 Freezing the backbone . 39

5 Discussion 41
5.1 Interpretations of results . 41
5.2 Methodology . 42
5.3 Future research . 42

6 Conclusions 43

Appendix A Hyperparameters 47

References 49

6

Chapter 1

Introduction

This chapter serves as a brief introduction to the thesis and the central problem that will
be investigated. It highlights the problem that companies like Verisure are facing with con-
straints posed by data sparsity and privacy regulations. The central questions that the thesis
aims to address are introduced along with previous research within the topic.

1.1 Background
Verisure is one of Sweden’s largest security companies providing services to companies and
private residents alike. Their services include complete home alarm systems that entail smart
cameras, sensors and smoke detectors that are interconnected to give a complete security so-
lution. Previously, 1 dimensional infra red signals have been part of the solution that triggers
their alarms. These solutions sometimes faced challenges in distinguishing between the mo-
tion of, for example, a dog and a crawling person, which has driven the development of more
advanced detection methods. Today a more sophisticated approach, namely object detection
models, are investigated for use in their motion detection systems deployed in their security
cameras.

Object detection, a critical task in computer vision, has evolved significantly with the ad-
vent of deep learning, offering impressive capabilities in recognizing and localizing objects
within images[15]. These models are today used in numerous areas, such as medical technol-
ogy, autonomous driving and security [23][19]. The performance of these models is however
heavily influenced by the quality and diversity of the training datasets, with biases and skew-
ness often resulting in challenges when it comes to generalization across varied real-world
scenarios [34]. One such situation is within security where many specific scenarios are cru-
cial to identify, but where the sparsity of data is a constraining factor. Because of privacy
regulations such as GDPR, real world data gathering is very restricted. Large scale public
datasets can be used to train a general object detection model that performs adequately on

7

1. Introduction

general tasks but when faced with a difficult task that has limited training data it often does
not perform as well. Verisure is continuously working to overcome the challenges posed by
data sparsity. Collecting real-world data can be both expensive and time-consuming, mak-
ing it challenging to gather sufficient data for training robust object detection models for
various security scenarios. One particular scenario of interest is the detection of crawling
people. This scenario is critical for security surveillance, yet it is difficult to capture enough
real-world instances to train an effective model. Figure 1.1 illustrates a typical Verisure use
case where a state-of-the-art public model like YOLOv9-e mistakes a human for a dog.

Figure 1.1: The public YOLOv9-e models prediction of staged
Verisure use case image

In this context, synthetic data can offer a promising solution. By generating synthetic
images, it is possible to create a diverse and extensive dataset that can help train object de-
tection models to recognize and accurately identify objects in situations where real data is
scarce or difficult to obtain. This thesis aims to evaluate the effectiveness of synthetic data
in training object detection models for security surveillance applications.

In response to the challenges faced in traditional data collection, generative AI has emerged
as a possible alternative. Generative Adversarial Networks (GANs) are a collection of AI al-
gorithms frequently explored within this domain. Introduced by Goodfellow et al. in 2014
[10], GANs consist of two neural networks: the generator and the discriminator, which com-
pete against each other. The generator aims to create data that statistically mimics the train-
ing dataset, while the discriminator endeavors to distinguish between generated and real im-
ages. This adversarial approach enables GANs to produce highly realistic images resembling
real-world data. However, while GANs have demonstrated success in various applications,
they are not always effective. One scenario where generative models often struggle is in gener-
ating entire human bodies [16]. Such models may produce images with inaccuracies in human
anatomy, resulting in non-realistic outputs that may not generalize well to real-world data.

Another popular alternative to generative AI is the use of game engines to generate large
sets of labeled data [5] [26] [31]. This approach has evolved to an impressive level in recent
years, and in 2021, Unity released their perception package that offers a highly customizable

8

1.2 Research questions & limitations

toolkit and a high degree of randomization [1]. Advantages of using a game engine in gener-
ating synthetic data include the level of control over the generated data and the fact that the
data is perfectly labeled upon creation.

However, a potential challenge when using this synthetic data is the so-called domain gap,
which can result in poor model performance [30]. The domain gap refers to the discrepancy
between the distributions of synthetic data and real-world data. This gap can arise from
various factors in the data and can lead to models trained on synthetic data underperforming
when applied to real-world tasks. While numerous ways of bridging this domain gap exist,
they are not without challenges and will not be explored in this thesis.

In this thesis, the focus will be on evaluating the effectiveness of synthetic data generated
through game engines for training object detection models in security surveillance footage.
By exploring state-of-the-art models and methodologies, the aim is to provide a proof of con-
cept for the use of synthetic data to enhance Verisure’s object detection capabilities. Shedding
light on the opportunities and challenges in utilizing synthetic data for security applications.

1.2 Research questions & limitations
The thesis aims to answer the following questions:

• How does synthetic data compare to real data when training an object detection model?

• To what extent can synthetic data enhance the performance of an object detection
model in specific security surveillance scenarios?

• How does the performance of an object detection model vary with different types of
synthetic data generated for security surveillance scenarios?

The study is limited to examining human detection using the YOLOv9c model. The chosen
model and results achieved are specific to this research and do not represent or reflect the
models or outcomes used by Verisure. The objective isn’t to optimize for the best model
performance possible due to computational limitations imposed by dataset sizes and model
complexity. Instead, the focus lies on assessing synthetic data, examining its performance
relative to real data, and determining its viability in place of real data and in scenarios with
limited access to real data.

1.3 Previous work
The subject of generating synthetic data for machine learning models is capturing widespread
interest right now. There exist many studies that look at different aspects and explore dif-
ferent methods. This thesis will explore two main areas within computer vision and object
detection, namely, generating synthetic data and domain adaptation.

9

1. Introduction

1.3.1 Generating synthetic data using 3-d models
Generating synthetic data using 3-d models such as a game engine is not a new concept and
similar applications to our proposed usage have been investigated. Neuhausen et al. explored
using synthetic data as a substitute for real data in human recognition tasks on construction
sites and found that the synthetic data only slightly decreased performance [28]. Similarly,
Lee et al. used a game engine to generate synthetic data to extend the training dataset and
found that it substantially enhanced the performance of small object detection in computer
vision tasks [20]. These papers illustrate the applicability of synthetic data by generating data
that mimics the key features of the real data. The workers are clearly distinguishable by their
outfits and the small objects remain consistent in appearance regardless of the environment.
Ebadi et al. illustrated a more general approach to the human detection problem using syn-
thetic data [8]. They showed that a Unity perception model can be used to improve the results
of a general human detection model when testing on the COCO-2017 test set. However, it’s
important to note that while this result is interesting for the general human detection prob-
lem, it does not guarantee its effectiveness for a more specific target domain. This limitation
is highlighted by Madan et al., who argue that training on a diverse set of images may improve
out-of-distribution (OOD) testing but can potentially degrade in-distribution performance
[24].

1.3.2 Domain adaptation
With the use of synthetic data in training object detection models, the need for sufficient
domain adaptation has become clear. Different approaches address this problem, with a dis-
tinction between synthetic-to-real refinement and model-based domain adaptation being
necessary [29]. Synthetic-to-real adaptation modifies the synthetic data to better align with
real-world data. For example, Menke et al. used a GAN-focused approach, while Zhang et
al. used a feature adaptation model to reduce data distribution mismatch [25][41]. Although
GAN-focused approaches show promise, they are computationally intensive and will not be
explored in this thesis. The goal of synthetic-to-real transformation is to bridge the domain
gap by making synthetic data mimic the target domain. Enhancing the realism of synthetic
images during generation helps ensure they closely replicate the visual properties of the target
domain, such as lighting, texture, and noise patterns found in real-world surveillance footage.
This preemptive adaptation during image generation has the potential to significantly im-
prove the model’s performance when tested on real data. Model-based domain adaptation
instead focuses on the training of the model. While ensuring the characteristics and quality of
synthetic data is important, the manner in which it is utilized can be equally critical. In this
approach, the synthetic data is not altered but the focus is instead placed on the training pro-
cess and the model structure to ensure adaptation to the target domain [29]. Hinterstoisser
et al. claim that state-of-the-art architectures usually consist of pre-trained feature extractor
layers followed by task-specific layers [13]. They propose freezing the weights of these fea-
ture extractors when training on synthetic data, arguing that they are already sufficient for
visual tasks and may be affected poorly by domain shifts. Their approach leads to improved
object detection performance compared to full retraining, nearly matching models trained
on real data. These findings are, however, countered by numerous other studies that show
comparable or even worse results using the technique [38] [37]. Thus, the effectiveness of this

10

1.3 Previous work

approach may vary depending on the dataset used.

11

1. Introduction

12

Chapter 2

Theory

In this thesis, our primary objective is to assess the efficacy of synthetic data in improving
object detection models, particularly within security surveillance scenarios in computer vi-
sion. To achieve this, we have selected the YOLOv9 detector as our model of choice for
experimentation and validation. YOLOv9 is chosen due to its state-of-the-art performance
on benchmark tests, excelling in both speed and accuracy, particularly for real-time applica-
tions. The following chapter provides a theoretical foundation essential for understanding
the underlying principles and techniques used in object detection models. Starting with
neural networks and deep learning, it explores their role in computer vision tasks. Convolu-
tional neural networks (CNNs) are introduced, emphasizing their importance in capturing
complex patterns in images. The chapter then delves into object detection, outlining its goals
and introducing two-stage and one-stage detector architectures. Evaluation metrics for ob-
ject detection models are also introduced. Finally, it discusses synthetic data generation and
domain adaptation.

2.1 Neural networks & Deep learning
Neural networks have been a key part in the recent advances within machine learning. They
are used within various areas such as large language models, computer vision tasks, time-series
analysis and many more. When training a neural network an important distinction is made
between supervised learning and unsupervised learning. Unsupervised learning is used when
there is no clear distinction between input and output in the data. This approach is utilized
within a variety of problems areas, such as clustering, dimensional reduction and anomaly
detection. In supervised learning the target class y is known and the model can be trained
using this relationship between input x and output y.
The building blocks of a neural networks consists of neurons. A neuron takes an input x∗
and transforms it into an output y∗ through:

y∗ = g(wT x∗ + b) (2.1)

13

2. Theory

Here w are the weights and b is a bias term for the neuron and the function g is what is called
the activation function. The objective of a neural network when using supervised learning
is to learn a mapping from an input x to an output y. This is done by learning the optimal
value for θ in the function approximation f (x; θ). Neural networks of this sort are usually
represented by composing together many different functions f ∗. The resulting chain-like
structure of functions is what composes a network that has one layer for each function f ∗ in
the chain. The final layer in the network is called the output layer. The desired end result
of the network is as previously stated to produce a approximation of the mapping from the
input x to output y. In training of the network it is only specified that this mapping from
input x to output f (x) from the output layer is to be approximated. Nothing in the training
of the network specifies what the output from the layers in the middle should be, because of
this these layers are refereed to as hidden layers.
One common type of layer in neural networks is the fully connected layer. In a fully con-
nected layer, each neuron is connected to every neuron in the previous layer. This means that
each neuron in a fully connected layer receives an input that is the weighted sum of all the
outputs from the previous layer, followed by the application of the activation function. Fully
connected layers are often used towards the end of neural networks, especially for classifica-
tion tasks, as they help in converting the learned features into a final decision.
The effectiveness of neural networks ultimately depend on the training process. The neurons
in each layer of the network are connected by adjustable weights and each layer has an acti-
vation function. The objective of the training process is to minimize the loss for all training
samples:

L(θ) =
1
N

N∑
i=0

l(yi, f (xi, θ)) (2.2)

The weights in the network are updated through a process called backpropagation. The
backpropagation is used to minimize this loss function by adjusting the network’s parame-
ters. The process involves calculating the gradients of the loss function with respect to the
weights and biases in the network. These gradients indicate the direction and magnitude of
the adjustments needed to minimize the loss. The parameters are then adjusted for each iter-
ation based on the gradient of the loss function and another parameter called learning rate.
The learning rate is multiplied by the gradient of the loss to decide how much the parameters
are changed each iteration.

2.2 Deep learning
Deep learning refers to the use of neural networks with many hidden layers in order to find
complex relationships and patterns in data. With the growth of big data, deep learning has
become increasingly important in order to fully utilize the value that can be found in the
data [27]. The term deep stems from the depth of the network, indicating the number of
hidden layers in the network. This depth is what allows deep neural networks to achieve suc-
cess within many different areas such as image processing, speech synthesis, natural language
processing and sound generation [18]. While deep neural networks often show impressive
results, the training of the networks can be quite complicated. During the backpropagation

14

2.3 Convolutional neural networks

vanishing or exploding gradient problems can arise and lead to models that perform very
poorly. These problems occur because the gradients become successively very large or small
as they propagate back in the network. To tackle this problem techniques such as batch nor-
malization have been suggested. Batch normalization was introduced by Ioffe et al. in 2015
and is designed to improve training stability and convergence of the network during training
[17]. It does so by normalizing the inputs of a layer by adjusting and scaling them for each
batch. This ensures that inputs to each layer are more consistent across batches which im-
proves stability during training.
Another common problem when training deep neural networks is overfitting to the training
data. This occurs when the model learns noise and random fluctuations in the training data
which leads to poor generalization to new data. One technique used to reduce overfitting
is L2 regularization. This technique simply adds a penalty term to the total loss that is pro-
portional to the weights. This term includes a constant λ that controls the magnitude of the
penalty added according to:

L(θ) = L(θ) + λ||w||2 (2.3)

2.3 Convolutional neural networks
Convolutional neural networks, or CNNs, are a type of deep learning models that have shown
impressive results within computer vision especially. First introduced by Lecun et al. CNNs
utilize the mathematical convolution operation in order to capture spatial hierarchies and
intricate patterns. A convolution consists of a convolutional kernel that is slid across the
input feature map. The kernel is moved across the input feature map with a step size that is
refereed to as stride. This operation is illustrated in Figure 2.1 where a 3x3 kernel is used.

Figure 2.1: (No padding, unit strides) Convolving a 3 × 3 kernel over
a 4 × 4 input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).
(Credits : Dumoulin & Visin [7]).

Another important building block in CNNs is the pooling operation. The pooling op-
eration is used in order to reduce the size of the feature map. Much like the convolution
operation, a function window is moved across the feature map. This is done to summarize
subregions of the input, often using an average or a max value operation. A 3x3 average
pooling operation performed on a 5x5 grid can be seen in Figure 2.2.

CNNs are extensively used in computer vision because of their performance within image
processing tasks [36][2][12]. The reason they are so efficient to use in image processing is

15

2. Theory

Figure 2.2: Computing the output values of a 3 × 3 average pooling
operation on a 5 × 5 input using 1 × 1 strides. (Credits : Dumoulin &
Visin [7]).

their ability to learn hierarchical representations of features. This is achieved using a deep
network but also by using filters. The resulting specific feature map comes from applying
a convolution using a specified kernel on the input data. These kernels can detect different
features in the images, resulting in a model that, with enough depth, can identify complex
patterns and features. An illustration of how filters process images is showed in Figure 2.3.

2.4 Object detection models

Object detection is a critical task within computer vision that, with the development of deep
CNNs, has seen significant advances recently. The objective of an object detection model is
twofold, firstly it has to locate relevant objects in the image, secondly it then has to correctly
classify the object. The localization task consists of identifying and delimiting an area of
the image that contains a relevant object. This is done by encapsulating the object inside a
rectangular bounding box. The bounding box is often described by a 4-tuple [x1, y1, x2, y2]
where the values describe the position and size of the box. The classification task consists
of determining which category a given bounding box, also called region of interest (ROI),
belongs to. The ROI is put through a deep CNN that captures patterns, textures and spa-
tial information that is relevant to the object within the ROI. The last part of the model is
a classification layer, this is often a fully connected layer and its task is to map the found
features to class probabilities. The output layer often utilizes a softmax activation function
that normalizes the outputs to a probability distribution among the classes.

16

2.4 Object detection models

Figure 2.3: Input, feature, and output arrays of a convolution net-
work applied to detecting road markers. (Credits : Browne &
Ghidary[2]).

2.4.1 Two-stage detectors
When talking about state-of-the-art object detection models there are mainly two types of
architectures being used. Firstly we have two-stage detectors like Faster R-CNN and Mask
R-CNN that as the name suggests divide the problem into two parts [33][11]. The first part
consists of a Regional Proposal Network (RPN) that identifies regions of interest and sends
these down the pipeline. The second part of the model handles the actual object classification
and bounding box regression. These models typically achieve higher accuracy results than
one-stage detectors but are also typically slower [4][35].

2.4.2 One-stage detectors
The second architecture is the one-stage object detection model. One-stage models such as
YOLO (You Only Look Once) and SSD (Single Shot MultiBox Detector) treat the problem as
a single regression task instead, directly predicting bounding box coordinates and class prob-
abilities in one pass through the network [32][22]. These models are typically significantly
faster than two-stage detectors, with the trade-off being that they often are not as accurate.

2.4.3 YOLOv9
As speed is an essential part of real time object detection, the YOLO model will be the ar-
chitecture that is utilized in this thesis. The first YOLO model was published by Redmon et
al. (2015) and since then continuous improvements have been made [32]. The most recent

17

2. Theory

published model is the YOLOv9 that set new benchmarks on the MS COCO data set [40].
The model uses two new concepts called Programmable Gradient Information (PGI) and the
Generalized Efficient Layer Aggregation Network (GELAN) and aims to tackle the problem
of information loss in deep networks.
The information bottleneck principal illustrates the problem of information loss in deep net-
works. This phenomenon can be illustrated mathematically through equation 2.4, where I
denotes mutual information, f and g are transformation functions with the parameters θ
and ϕ.

I(X, X) >= I(X, fθ(X)) >= I(X, gϕ(fθ(X)))) (2.4)

In a deep neural network gϕ and fθ represent two consecutive layers. We can then see that
the risk of information loss grows with the depth of the network. To handle this problem
a new technique called Programmable Gradient Information (PGI) is utilized. PGI uses a
component called Auxiliary Reversible Branch to help generate reliable gradients and up-
date network parameters. The branch can achieve this because of its reversible architecture.
If the functions g and f in equation 2.4 are reversible then no information loss occurs be-
tween layers. PGI also utilizes a Multi-level Auxiliary Information component that integrates
networks between feature pyramid hierarchy layers. Essentially this component provides the
main branch with information from different levels of the feature hierarchy as deep fea-
ture pyramids can risk losing important information otherwise. Another important compo-
nent to tackle the information loss problem is the Generalized Efficient Layer Aggregation
Network (GELAN). While Multi-Level Auxiliary Information component adds extra mech-
anisms to to provide the main branch with aggregated gradient information from different
levels of the feature hierarchy, GELAN integrates different layers of the model to gather a
complete picture of the data’s details.

2.4.4 Transfer learning
Training a deep learning network can be extremely computationally demanding, especially
when using large datasets. Luckily one does not always need to train a model from scratch
when testing on new data. Instead a technique called transfer learning can be utilized where
weights from a previously trained network can be re-used for a new task. The network is
then fine-tuned on the new target dataset, often with the backbone weights of the network
frozen. This allows the new model to utilize the feature extraction that has been learned by
a previous model and the resources required for training is greatly decreased.

2.5 Evaluation metrics
In order to compare the performance of the models we need to define a couple of quantita-
tive metrics that are commonly used when comparing object detection models. These met-
rics provide insights into the accuracy and robustness of the models in detecting the objects
within images.

18

2.5 Evaluation metrics

2.5.1 IoU
The first metric is the Intersect over Union (IoU) that measures how well the model can
distinguish the located object from its background. It is defined as the overlap between
the ground truth bounding box and the predicted bounding box and can mathematically be
formulated as:

IoU =
A ∩ B
A ∪ B

(2.5)

The IoU metric is always between 0 and 1 where a value closer to 1 is better as the model can
more accurately distinguish the exact outline of the object. IoU helps set a threshold value
where we say that we need at least an IoU value of, for example, 0.5 to say that the object is
correctly classified. In Figure 2.4 we can see an example of an IoU value in the range of 0.5,
this is often the lowest value to look at as a lower value means the predicted bounding box is
quite far of.

Figure 2.4: Example of an IoU value in the range of 0.5

2.5.2 Precision & Recall
Two other metrics that are important when evaluating the models are precision och recall.
In order to define these metrics we first have to define the four cases when predicting objects:

• True Positive (TP) Correctly located object.

• False Positive (FP) Falsely located an object that is not there.

• True Negative (TN) Correctly does not locate anything in the backgound, typically
not used in object detection.

19

2. Theory

• False Negative (FN) Failed to locate the object that is there.

Given these cases we can now define the precision and recall metrics for out situation when
we are locating humans in images. Precision is the amount of positive predictions, located
humans, that are correctly predicted. It is defined by the following formula:

Precision =
TP

TP + FP
(2.6)

The recall metric is similar to the precision metric but instead gives us how many of the
positives, humans in the image, were located. The recall metric is defined by the following
formula:

Recall =
TP

TP + FN
(2.7)

Recall and precision are complementary metrics that together can give a good estimation of
the model performance.

2.5.3 Mean average precision
Average precision (AP) and Mean average precision (mAP) are very important metrics when
evaluating the performance of an object detection model. The AP delves into the trade-off
between precision and recall. It does this by calculating the area under curve (AUC) for the
precision-recall curve. The precision-recall curve is simply the precision and recall values
calculated at different threshold values. The curve illustrated the trade-off that one makes
between precision and recall, the optimal value is not always clear but usually it is the point
that gives the largest AUC. A precision-recall curve is illustrated in the Figure 2.5.
The Mean average precision (mAP) is an average of the AP values for many or all different
classes and gives a comprehensive performance measure for the model. This value is often
calculated at different IoU thresholds, illustrated by the @x in mAP@x. This value can be
set as in mAP@0.5 in Figure 2.5 or we can calculate the average value for many different IoU
thresholds in a given range, mAP@0.5:0.95.

2.6 Synthetic training data generation
Synthetic data refers to artificially generated data that simulates real-world scenarios, pro-
viding an alternative to real data for training machine learning models. Various techniques
are available for generating synthetic data, with game engines and generative models such
as GANs being two popular options. Each method has its advantages and disadvantages,
making them suitable for different situations.

Game engines, such as Unity1 and Unreal2, offer significant benefits, particularly the
ability to include ground truth annotations during data generation. This capability is essen-
tial for supervised learning, as it provides precise labels for training models. Furthermore,
game engines provide extensive control over the environment, enabling precise adjustments

1https://unity.com
2https://www.unrealengine.com

20

https://unity.com
https://www.unrealengine.com

2.6 Synthetic training data generation

Figure 2.5: Example of a precision-recall curve for a one class object
detection problem

in parameters like position, rotation, texture, and lighting. This flexibility facilitates domain
randomization, enhancing the robustness and generalization capabilities of models trained
on synthetic data. However, a notable disadvantage of game engines is the domain gap, which
refers to the visual differences between synthetic and real-world data. Variations in appear-
ance, texture, lighting conditions, and other environmental factors can challenge the gener-
alization of models to real-world scenarios.

Generative Adversarial Networks (GANs), on the other hand, excel in generating highly
realistic images that are often close to indistinguishable from real-world data. This realism
can potentially reduce the domain gap and aid in better generalization to real-world data.
Despite this advantage, GANs have significant drawbacks, including the lack of inherent
ground truth annotations, which complicates the generation of labeled datasets. Addition-
ally, training GANs is computationally intensive and requires substantial expertise to achieve
optimal results.

Given these considerations, Unity was chosen for this thesis due to its practical ad-
vantages and comprehensive capabilities. Unity’s extensive control over data generation
and built-in support for annotations make it a superior choice for creating robust synthetic
datasets. Additionally, considering that GANs have already been extensively studied and
may not offer novel insights for our thesis, and due to their complexity and computational
intensity, they are less suitable for our thesis needs. Therefore, Unity presents a more prac-
tical and efficient solution for synthetic data generation in this context. Furthermore, Unity
Perception was chosen over other game engines because of its user-friendly interface, ver-
satility, and integration with the broader Unity ecosystem, which enhances the accessibility
and usability of the platform for our thesis purposes.

21

2. Theory

2.6.1 Unity Perception
The Unity Perception package is an extension of the Unity editor, specifically designed for
generating synthetic datasets including ground truth annotations [39]. Its versatility and
capabilities cater to a wide range of computer vision tasks, including 2D/3D object detection,
semantic segmentation, and instance segmentation. One of its key strengths lies in its support
for domain randomization, which allows for the creation of diverse and realistic synthetic
datasets by manipulating various environmental factors.

When utilizing the Unity Perception package to create synthetic datasets, one has full
control over the data generation process. Through the Unity editor interface, users can posi-
tion a camera and manipulate objects within the scene with precision. These objects can be
randomly generated in terms of position, rotation, texture, lighting, and other parameters,
enabling the creation of highly diverse and customizable datasets.

An exemplary scene generated using the Unity Perception package can be seen in Figure
2.6, illustrating the placement of random objects in front of a canvas. This image is extracted
from the PeopleSansPeople package, which not only generates humans in various poses but
also incorporates random objects against an image background sourced from the COCO
dataset [9].

Figure 2.6: Example image taken from the editor of the PeopleSans-
People Unity Perception package.

Unity Perception has been demonstrated to be useful in enhancing model performance,
particularly when compared to training solely on real-world data. Studies by Borkman et
al.[1] and Ebadi et al.[8] have provided empirical evidence of its efficacy in augmenting model
training and improving model robustness.

Unity Perception stands out as a practical and efficient tool for generating synthetic data
in computer vision. Its user-friendly interface, comprehensive control over data creation, and
seamless integration with Unity make it a valuable asset. These features make it accessible
and suitable for various research goals, including our focus on improving object detection
models using synthetic data.

22

2.7 Domain adaptation

2.7 Domain adaptation
When developing deep learning models for computer vision tasks, synthetic data offers sig-
nificant advantages. Yet when it comes to certain tasks, networks trained on synthetic data
often experience a significant decline in performance when tested with real-world data. This
discrepancy arises from the inherent difference in the data, also known as the domain gap.
To address this challenge, several new techniques for adapting the synthetic data to the tar-
get domain have been developed. In this thesis, the primary focus will be on adapting the
synthetic data to the target domains. Furthermore, various training strategies for the object
detection models will be explored to examine their efficacy in bridging the domain gap.

2.7.1 The domain gap
The domain gap stems from differences in the distribution of the source and target images.
This discrepancy can be attributed to any number of factors such as differences in lighting,
pixel-level details, background, or object appearance. Even shifts that appear mild to a human
observer can have a surprisingly large effect on the model performance [14]. Consequently,
when models trained on synthetic data are applied to real-world scenarios, they often struggle
to generalize due to the disparity in source and target domains.

The concept of the domain gap also encompasses the notions of in-distribution and out-
of-distribution data. In-distribution data comprises samples that closely resemble the train-
ing data, exhibiting similar visual characteristics, contextual cues, and environmental con-
ditions. These samples are representative of the scenarios encountered during the model
training process, contributing to a well-defined training distribution.

Conversely, out-of-distribution data refers to samples that diverge significantly from the
training distribution. These samples may exhibit unexpected variations in appearance, con-
text, or environmental factors, which were not adequately represented during model train-
ing. As a result, models trained solely on synthetic data may struggle to generalize to out-of-
distribution samples encountered in real-world scenarios. These unforeseen variations pose
challenges to model robustness and performance, highlighting the importance of address-
ing the domain gap comprehensively. The distinctions between in-distribution and out-of-
distribution data can provide a better understanding of the limitations of models trained on
synthetic data and highlight the importance of strategies to mitigate their impact.

23

2. Theory

24

Chapter 3

Method

This chapter outlines the methodology and choices made in order to investigate how the use
of synthetic data influences the performance of an object detection model. Model selection,
data selection/splits and synthetic data generation will be discussed.

3.1 Object detection model & training strate-
gies

The object detection model utilized to test our data is the YOLOv9-c model from Ultralytics
1. The YOLOv9-c model, with 25.3 million parameters, is the second largest in the YOLOv9
family. This model was chosen due to its balance between performance and computational
efficiency, which has been demonstrated in various object detection tasks [40]. The hyperpa-
rameters used in training and testing the YOLOv9-c model are primarily the default values
provided by Ultralytics. The only parameter that is altered between experiments and datasets
is the number of epochs. All hyperparameters, including the number of epochs, remain con-
sistent within each experiment to ensure that the models being compared are evaluated under
the same conditions. A complete list of hyperparameters used can be found in appendix A.

3.2 Data selection
In this section relevant data is presented, including how train-test splits are made and selec-
tions of classes for the models. The real data used in the thesis will come from three sources,
the MS-COCO dataset[21], a cctv dataset from Roboflow[6] and Verisure’s dataset. The MS-
COCO dataset is utilized mainly as a training dataset for the pre-training of YOLOv9 models
and the other datasets are used for fine-tuning and testing.

1https://docs.ultralytics.com/models/yolov9/

25

3. Method

3.2.1 MS-COCO
The MS-COCO (Microsoft Common Objects in Context) dataset is a large public dataset
intended for several different computer vision tasks. It contains more than 200,000 images
that are annotated with object labels and it is widely used for benchmarking deep learning
models. The pre-trained YOLOv9 model that is utilized in the experiments is trained using
the MS-COCO dataset. Because of the computational resources required to train an object
detection model with large datasets, limitations in the size of the datasets have been made
when comparing models trained from scratch. The dataset that will be used to compare to
our synthetic model trained from scratch consists of 10000 images from the COCO dataset
that all contain at least one human in them. Figure 3.1 shows some sample images from the
COCO dataset used.

Figure 3.1: COCO dataset images

3.2.2 Synthetic datasets
We have generated and tested several synthetic datasets, incorporating mainly variations in
backgrounds, human placement, and the number of humans per image. These variations are
designed to evaluate the impact of different synthetic data characteristics on the performance
of the object detection model. The datasets generated were all 10000 images large large, this
limitation was chosen both in order to make a fair comparison to the real data and because of
the computational requirements. Section 3.3 describes details of the data generation frame-
work with example synthetic images.

3.2.3 Verisure datasets
Two different Verisure datasets were utilized in the experiments. Both datasets were collected
by Verisure using testing units and staged environments for the purpose of data collection

26

3.2 Data selection

and testing. The first dataset is purely a test set consisting of 65 images of crawling people.
This test set is used in experiment 4.3 and is composed of Verisure images taken in and around
two different houses. The humans to detect are exclusively people crawling on all fours or
on their stomach. Secondly a standing dataset that consists of 450 images, divided between
two houses, with 250 images from one house and 200 from another. The images are taken
from elevated positions both inside and outside the houses, ensuring a consistent visual per-
spective. Each image contains at least one human subject. The Verisure dataset, combined
with the Roboflow CCTV dataset, provide a comprehensive foundation for evaluating the
generalization capability of synthetic data to real-world scenarios. By testing the models on
both datasets, we can effectively measure how well the synthetic data training translates to
different real-world environments. Figure 3.2 illustrates example images from both of the
Verisure datasets.

Figure 3.2: Verisure standing(left) and Verisure crawling(right)
dataset images

3.2.4 Roboflow cctv dataset
This Roboflow dataset was selected due to its high variability in human placement, back-
ground, lighting, and other factors. Simultaneously the data has a consistent source – pri-
marily security camera footage. The majority of images are captured from elevated positions,
sharing a similar visual appearance to the Verisure dataset. This combination renders it a
suitable test dataset for our objectives. Unlike larger datasets like MS-COCO, which exhibit
a higher degree of randomization, our synthetic data aims to emulate scenarios more closely
aligned with the characteristics of this dataset. The dataset consist of 700 images in total,
Figure 3.3 illustrates random images taken from the dataset.

27

3. Method

Figure 3.3: Roboflow dataset images

3.2.5 Data splits

It is standard practice when training machine learning models to split the data into three
distinct subsets: the training set, the validation set, and the test set. The training set is used
to train the model, the validation set is used to assess the trained model and fine-tune pa-
rameters to optimize performance, and the test set is the final set used for evaluation once
model development is complete.

In this thesis, data splits were made in various ways due to the different use cases for the
different datasets. For the COCO dataset and all synthetic datasets, a split of 9000 training
images and 1000 validation images was used. No test set was employed as no fine-tuning of
the model hyperparameters was conducted, making the validation set sufficient for evalua-
tion.

The target CCTV and Verisure standing datasets were split using a 45/10/45 train/validation/test
split, resulting in 315/70/315 images for the CCTV dataset and 200/45/200 images for the
Verisure dataset. This split was chosen to ensure a sufficiently large test set, providing reliable
test results, especially in scenarios where real data accessibility is limited. For the Verisure
standing dataset, all images from one house were used for training and validation, while all
images from the other house were used as the test set.

28

3.3 Synthetic data generation using Unity perception

3.3 Synthetic data generation using Unity
perception

The synthetic data is generated using the Unity Perception framework, enabling the creation
of highly randomized datasets. This process simulates the diverse and complex nature of real-
world data, capturing a wide range of variations in human appearance, poses, and environ-
mental settings. A key component of our synthetic data generation process is the Synthetic
Humans package in Unity [3]. This package allows for the creation of randomized human
figures, each with unique characteristics such as age, height, gender, clothing, and skin color.
The package also supports the randomization of human poses by sampling from a collection
of animations. Custom animations can be integrated to further expand the range of possible
postures and movements, enhancing the realism of the dataset. Figure 3.4 illustrates random
humans generated using the Synthetic Humans package.

Figure 3.4: Synthetic Humans example

In addition to human Figures, the environmental context is crucial for creating realis-
tic synthetic images. For this purpose we incorporated 730 different HDRI skyboxes from
PolyHaven, which provide high-quality backgrounds for the scenes. These skyboxes include
both indoor and outdoor environments which adds contextual variety to the dataset. By ran-
domizing the selection of skyboxes for each image, the generated dataset encompasses a wide
range of settings. This variability in backgrounds helps in training models that are robust
to different environmental background conditions and therefore generalize better to unseen
data. Example backgrounds are illustrated in Figure 3.5.

29

3. Method

Figure 3.5: Example HDRI backgrounds taken from PolyHaven

To further enhance the robustness of our synthetic dataset, we implemented several strate-
gies for additional randomization. We varied lighting conditions and sun angles in each image
to ensure a broad spectrum of illumination scenarios. Furthermore, small objects with ran-
dom textures were added to the scenes to introduce additional elements of complexity and
variability. These objects are ensured to not be placed to close to the camera and are quite
small as to ensure that they do not completely obscure any humans. This combination of
varied lighting and additional randomized objects creates a more detailed and varied envi-
ronment, ultimately improving the performance and reliability of the trained models. Figure
3.6 illustrates all components combined.

Figure 3.6: Examples of synthetic images generated

30

Chapter 4

Experiments & Results

In this chapter, the experiments conducted and the results obtained are presented to address
the research questions posed in the thesis. The primary metric of interest is the mean Av-
erage Precision at an Intersection over Union threshold of 0.5 (mAP@0.5), with additional
attention given to the mean Average Precision across a range of IoU thresholds from 0.5 to
0.95 (mAP@0.5-0.95).

4.1 Generating synthetic data
The primary objective of the synthetic data is to provide the object detection model with a
diverse set of human subjects against varied backgrounds, enabling the model to effectively
detect humans in real-world footage. Additionally, the goal is to make these images emulate
properties commonly found in security surveillance footage to closely mimic the target do-
main, as training on images from a different domain will negatively impact in-domain testing
performance [24].To determine the optimal composition of synthetic images for this purpose
and to evaluate its performance relative to the target data, four distinct synthetic datasets,
consisting of 10000 images each, were generated and tested.
The first dataset, denoted as Version 1, is designed to more closely emulate lifelike scenarios.
Human subjects are strategically placed within the images at consistent depths, with min-
imal randomization in size and depth. This approach aims to mimic real-world scenes by
placing a single human at what is most often a plausible position in the image, potentially
facilitating better alignment with the target data and enhancing the model’s adaptability to
realistic environments. Only using a single human in each image also ensures that the model
can fully capture the features of the humans which could allow the model to learn human
features more accurately.

31

4. Experiments & Results

Figure 4.1: Version 1 example images

The second dataset, Version 2, introduces increased randomness in the positioning, depth
and number of human subjects. This results in images that appear less realistic but feature a
higher density of human subjects with some degree of overlap.

Figure 4.2: Version 2 example images

The third dataset, Version 3, introduces an even larger degree of randomization, incorpo-
rating up to 15 human subjects per image with a high degree of randomness in their placement
and depth. This level of variation aims to give the object detection model humans in a large
variation of scenarios and often partly blocked by other humans.

Figure 4.3: Version 3 example images

32

4.1 Generating synthetic data

Finally, Version 4 has the same settings as Version 3 with the exception that animations
of crawling humans have been added to the animation sampling pool.

Figure 4.4: Version 4 example images

The datasets were used to train an YOLOv9-c model from scratch for 50 epochs and
then evaluated on two distinct test sets. These test sets are the CCTV and Verisure Standing
datasets. Results from the training processes on the validation can be seen in Figure 4.5 and
the resulting test values can be seen in Figure 4.1.

(a) V1 (b) V2

(c) V3 (d) V4

Figure 4.5: Validation results for training of YOLOv9-c models from
scratch for 50 epochs

33

4. Experiments & Results

CCTV test data Verisure standing test data
Synthetic data mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95
Version 1 0.318 0.0959 0.35 0.16
Version 2 0.4 0.0922 0.522 0.241
Version 3 0.408 0.0989 0.598 0.317
Version 4 0.437 0.107 0.629 0.313

Table 4.1: Results synthetic data

The validation curves for mAP@0.5, shown in Figure 4.5, have all leveled out, indicating
that 50 epochs were sufficient for the model to learn from the training data. As shown in
Table 4.1, Version 4 has the best performance for 3 out of 4 metrics. A higher degree of ran-
domization in the placement and poses of the humans improves the model’s generalization.
Notably, including crawling animations in the animation pool enhanced the model’s over-
all performance on both standing test sets. This highlights the importance of exposing the
model to a range of human poses, including partially occluded individuals.
These results will be used in the following experiments, with Version 4 being used to compare
synthetic data to real data in 4.2.

4.2 Comparing synthetic and real data
To understand the effectiveness of synthetic and real data, we began with comparing mod-
els trained on both types of data without fine-tuning. We evaluated the top-performing
synthetic data model against a model trained on an equivalent number of images from the
COCO dataset, trained for the same number of epochs. This comparison is conducted on
the CCTV and Verisure standing datasets, allowing us to compare their performance on the
target datasets. Figure 4.2 presents the comparison results, these results illustrate how effec-
tively the model learns human features across different scenarios without specific adaptation
to the target domain.

CCTV test data Verisure test data
Model mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95
COCO 0.474 0.238 0.871 0.475
Synt-v4 0.362 0.196 0.629 0.313

Table 4.2: Results on the target datasets

As illustrated in the Table above, synthetic data does not generalize to our test sets as
well as a diverse real dataset like the COCO dataset. The performance drop-off when using
only synthetic data compared to real data is substantial. There could be several reasons for
this drop-off, but the simplest explanation is that the domain gap between the synthetic and
test sets is larger than that between the COCO and test sets. Synthetic data fails to capture
all the characteristics of real data or simply lacks sufficient variability.

34

4.2 Comparing synthetic and real data

Our next comparison involves assessing the same models after fine-tuning them on the
target datasets. To achieve this, the models were first fine-tuned using the CCTV dataset for
300 epochs. The validation curves of the training are depicted in Figure 4.6. Additionally,
we utilized the same CCTV train/val images to train a new model from scratch in order to
benchmark how well a model can perform using only these images. The performance of the
models on the CCTV test set is illustrated in table 4.3.

Model mAP@0.5 mAP@0.5:0.95
COCO-FT 0.847 0.536
Syntv4-FT 0.850 0.532
CCTV-train 0.756 0.413

Table 4.3: Fine-tuned models comparison on CCTV dataset

(a) COCO (b) Synt-v4

Figure 4.6: Validation results from fine-tuning of model using target
dataset CCTV

The second target dataset to fine-tune our models on is the Verisure standing dataset.
Similarly the two original models were fine-tuned for 300 epochs on this dataset, with the
validation curves illustrated in Figure 4.7. A benchmark model trained from scratch using
the Verisure standing data was also used. The results on the Verisure standing test set are
illustrated in table 4.4.

Model mAP@0.5 mAP@0.5:0.95
COCO-FT 0.866 0.547
Syntv4-FT 0.857 0.554
Verisure-train 0.521 0.231

Table 4.4: Validation results from fine-tuning of model using
Verisure standing dataset

35

4. Experiments & Results

(a) COCO (b) Synt-v4

Figure 4.7: Validation results from fine-tuning of model using target
dataset Verisure standing

When models trained on synthetic data were fine-tuned on the target datasets, notable
performance improvements were observed. For both the CCTV and Verisure standing datasets,
the models initially trained on synthetic data performed comparably to those pretrained on
the COCO dataset. Both models outperformed models trained only on the target datasets,
highlighting the benefits of pretraining models on a large and diverse dataset.
Notably, the validation curves for the CCTV and Verisure models differ somewhat during
the training process when compared to the testing scores, likely due to the characteristics of
the datasets. The CCTV test set shares the same distribution as the training and validation
sets, while the Verisure test set comes from a slightly different distribution, with all test im-
ages originating from a different house than the training and validation images. The Verisure
models appear to overfit the training set, which is likely why the model trained solely on the
Verisure training data performs rather poorly as well (see Figure 4.4).

4.3 Improving Crawling Person Detection with
Synthetic Data

The pre-trained YOLOv9-c model, which performs well on the Verisure standing dataset,
shows a notable drop in accuracy when tested on the Verisure crawling dataset, as illustrated
in Table 4.5. This is likely due to a lack of scenarios of crawling humans in the training
data. Verisure emphasizes the challenge of finding reliable training data for certain scenarios,
noting that if not properly addressed, this can impact the general performance of an object
detection model. The scarcity of reliable training data can pose a significant challenge for
improving model performance in detecting crawling individuals. In this section, we aim
to enhance the detection of crawling individuals using synthetic data. We hypothesize that
synthetic data could potentially bridge this gap and improve detection capabilities.

36

4.3 Improving Crawling Person Detection with Synthetic Data

Test set Precision Recall mAP@0.5 mAP@0.5:0.95
Verisure standing 0.972 0.87 0.956 0.567
Verisure crawl 0.753 0.548 0.675 0.41

Table 4.5: Pretrained YOLOv9-c model tested on Verisure standing
and crawling data

Four different synthetic datasets were generated with the intent of enhancing the model
in these scenarios. The first set consists of 100% crawling humans(crawl100), the second
set 75% crawling(crawl75) and 25% standing, the third set 50% crawling(crawl50) and 50%
standing, and the fourth set 25% crawling(crawl25) and 75% standing. Example images from
all sets can be seen in Figure 4.8. The synthetic datasets were generated using mostly the
same settings as version 4 from section 4.1, with the exception being the proportion of crawl-
ing/standing humans generated in each set.

Figure 4.8: Examples from the synthetic crawling datasets:
crawl100(top left), crawl75(top right), crawl50(bottom left) &
crawl25(bottom right)

The testing data for these experiments are the two Verisure datasets: crawling and stand-

37

4. Experiments & Results

ing. The standing dataset is utilized in combination with the crawling dataset to examine any
potential performance loss on this set as the model is trained on generated crawling humans.

We will evaluate the PT YOLOv9-c model under four different experiment-sets to un-
derstand the impact of synthetic data on crawling person detection:

1. Baseline Performance: Testing the PT YOLOv9-c model in its original state on the
Verisure crawling test set.

2. Fine-Tuning with Verisure standing Data: Fine-tuning the model using the Verisure
standing dataset.

3. Fine-Tuning with Synthetic Data: Fine-tuning the model using synthetic data designed
to include crawling scenarios.

4. Fine-Tuning with Synthetic Data and Verisure standing Data: Fine-tuning the model
first with synthetic data and then with Verisure standing data.

The performance comparison aims to demonstrate the potential benefits of incorporat-
ing synthetic data for improving detection capabilities. The results of experiments using
experiment-set 3 are summarized in Table 4.6 and experiment-set 4 in Table 4.7.

Crawling test data Standing test data
Model mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95
PT 0.675 0.41 0.956 0.567
PT-ft Verisure standing 0.372 0.126 0.719 0.387
PT-ft crawl100 0.684 0.401 0.647 0.337
PT-ft crawl75 0.633 0.389 0.647 0.357
PT-ft crawl50 0.618 0.374 0.689 0.375
PT-ft crawl25 0.520 0.301 0.673 0.376

Table 4.6: Results from experiment-set 3 including benchmark
experiment-set 1(PT) & 2(PT-ft Verisure)

Crawling test data Standing test data
Model mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95
PT 0.675 0.41 0.956 0.567
PT-ft Verisure standing 0.372 0.126 0.719 0.387
PT-ft crawl100 & Verisure standing 0.635 0.375 0.833 0.515
PT-ft crawl75 & Verisure standing 0.707 0.401 0.878 0.548
PT-ft crawl50 & Verisure standing 0.622 0.38 0.852 0.546
PT-ft crawl25 & Verisure standing 0.556 0.298 0.844 0.528

Table 4.7: Results from condition 4 including benchmark conditions
1(PT) & 2(PT-ft Verisure)

From table 4.7 we can see that the best performance on the crawling dataset was achieved
using a synthetic dataset consisting of 75% crawling and 25% standing humans, which was

38

4.4 Freezing the backbone

then fine-tuned on the Verisure standing dataset. This model outperformed the pretrained
YOLOv9-c model on the crawling test set which illustrates the applicability of synthetic data.
This rather smal performance increase for the mAP@0.5 did however also result in a drop-
off in performance when it came to the standing test set. This drop-off was expected as the
model is retrained using synthetic data and adjust the weights so that it performs better on
a set from a different domain. If the ultimate goal of the model is to perform well on both
test sets, we would argue that the pretrained model still outperforms all other models.

4.4 Freezing the backbone
Continuing from our previous experiment, where we retrained the model with synthetic and
Verisure datasets, this section explores freezing the backbone of the pretrained model. This
approach, highlighted by Hinterstoisser et al.[13] can be an effective method for leveraging
pretrained features while focusing the training on the task-specific layers. This technique
helps maintain the robust feature extraction capabilities of the pretrained network, poten-
tially improving detection accuracy for our specific application.

In Section 4.3, we utilized the pretrained YOLOv9-c model and fine-tuned it. In this
experiment, we employed the best-performing synthetic dataset, crawl75, while keeping the
backbone of the YOLOv9-c model frozen throughout the training. We applied the same
procedure to the benchmark model, which involved fine-tuning the YOLOv9-c model on
the Verisure target dataset. The results of these experiments are presented in Figure 4.8.

Crawling test data Standing test data
Model mAP@0.5 mAP@0.5:0.95 mAP@0.5 mAP@0.5:0.95
PT 0.675 0.41 0.956 0.567
PT-ft Verisure standing 0.704 0.341 0.883 0.543
PT-ft crawl75 0.629 0.368 0.803 0.453
PT-ft crawl75 & Verisure standing 0.794 0.493 0.919 0.596

Table 4.8: Pretrained YOLOv9-c model fine-tuned with frozen
backbone, tested on normal and crawling data

The results presented in Table 4.8 demonstrate a notable performance increase when this
approach is applied. The model fine-tuned on the crawl75 and Verisure standing datasets
now outperforms the pretrained model by a notable amount in crawling detection. Impor-
tantly, this improvement is achieved with a much smaller decrease in standing performance
compared to the PT model, indicating that freezing the backbone helps maintain a balance
between detecting both standing and crawling individuals.

39

4. Experiments & Results

40

Chapter 5

Discussion

This discussion chapter synthesizes the key findings from our experiments to analyze the
strengths and weaknesses of synthetic data in enhancing person detection capabilities. We
critically assess the methodologies employed, acknowledging their strengths and limitations.
Additionally, we explore potential avenues for future research aimed at optimizing the use of
synthetic data to improve model robustness and generalizability across diverse surveillance
environments. By proposing these directions, we contribute to ongoing efforts in leveraging
synthetic data for training object detection models.

5.1 Interpretations of results
In section 4.1 and 4.3 different synthetic datasets are generated and tested. The results from
the different models in both of these sections are highly varied depending on synthetic dataset
used. This suggests that the quality and characteristics of the synthetic data plays a crucial
role in training outcomes. Small changes in placements, poses, or the number of humans
generated are shown to affect the results of the models significantly.
The results from section 4.2 show that models trained on synthetic data, when fine-tuned on
the target datasets, performed comparably to those pre-trained on the COCO dataset and
outperformed models trained solely on target datasets. This indicates that synthetic data can
be an effective alternative to real data for initial model training. However, as indicated in
Table 4.2, the model trained exclusively on synthetic data does not generalize to real-world
test sets as effectively as a model trained on real data. These results highlight the domain gap
between synthetic and real data and demonstrate that fine-tuning with even a small portion
of the target dataset shows potential to effectively bridge this gap.
Finally, in section 4.3 and 4.4 the results showcase the potential use of synthetic data to en-
hance the performance of a model in an out-of-distribution scenario. The results from section
4.4 illustrates that with a good synthetic dataset and good choice of training parameters, the
performance on out-of-distribution scenarios can be significantly enhanced without a large

41

5. Discussion

impact on in-distribution scenario performance.

5.2 Methodology
The methodology employed in this study ensures that the differences in model performance
are solely attributable to the data used. By using the YOLOv9-c model with consistent hy-
perparameters across all experiments, we eliminate variability due to training configurations.
However, this approach does not account for the possibility that different datasets might have
different optimal hyperparameters, which could yield better results if adjusted individually.

As stated in section 5.1, the synthetic datasets generated using the Unity perception
framework showed significant variability in model performance. The potential exists for
an optimal synthetic dataset to substantially improve model performance, yet identifying
and creating this ideal dataset remains challenging.

A notable advantage of synthetic data, which this study did not fully exploit, is the ability
to generate virtually unlimited amounts of data. This contrasts with the constraints of real
data collection, where dataset size is often limited. This ability could greatly enhance model
robustness and generalizability if leveraged properly.

5.3 Future research
In this thesis, we have examined the use of synthetic data and found it to be close to on par
with real data only if we have a target dataset to fine-tune the model on. Closing this domain
gap is currently a hot topic, and the benefits of achieving this could enable the use of syn-
thetic data completely instead of real data. This would have significant implications for fields
that rely heavily on large datasets for training, as synthetic data can be generated in a con-
trolled and scalable manner, unlike real-world data which can be limited and costly to obtain.

Future research should particularly focus on transforming synthetic humans to look more
like real humans, potentially using GANs (Generative Adversarial Networks) to transform
the images into the real domain. GANs have shown great promise in generating highly realis-
tic images, and their application in enhancing the realism of synthetic data could help bridge
the gap between synthetic and real data domains. This transformation process could involve
refining textures, pixel consistency, and ensuring the anatomical accuracy of synthetic hu-
mans.

Moreover, further research into training techniques is essential to fully unlock the po-
tential of synthetic data. The effects of freezing the backbone in my experiments were sig-
nificant, indicating that the training technique used plays a crucial role in the results. In-
vestigating other advanced training methodologies, could provide additional insights into
optimizing the use of synthetic data.

42

Chapter 6

Conclusions

This thesis set out to investigate the efficacy of synthetic data in enhancing person detection
in surveillance scenarios, particularly where real-world data is scarce or difficult to acquire.
By comparing models trained on synthetic data against those trained on real-world data from
the COCO dataset, the study aimed to evaluate their effectiveness across different surveil-
lance datasets, such as CCTV and Verisure’s standing and crawling datasets.

We found that a higher degree of randomization produced favorable results compared to
focusing on making the image look more realistic for our purpose. The results showed that
our generated synthetic data did not perform on par with real data without fine-tuning the
model to the target domain. However, when fine-tuning the model with a very small dataset
from the target domain, we found that the synthetic data performed equivalently to the real
data. These results show that synthetic data could potentially be used to enhance the per-
formance of object detection models, as synthetic data is much easier to generate in large
quantities.

We also found that synthetic data shows a lot of promise in specific situations where
access to real data is very sparse. Our best model trained to detect crawling people only
exhibited a small drop-off when detecting standing people, illustrating the potential of uti-
lizing synthetic data.

Finally, the results of this study are limited to the test sets used, which impacts the gen-
eralizability of the findings. Broader testing across diverse scenarios would be necessary to
draw more comprehensive conclusions about the effectiveness of synthetic data in object de-
tection tasks.

43

6. Conclusions

44

Appendices

45

Appendix A

Hyperparameters

Hyperparameters used for training of models using datasets of size 9000 training images:

• learning_rate: 0.002

• Optimizer: AdamW

• batch_size: 16

• momentum: 0.9

• weight_decay: 0.0005

• epochs: 50

• image size: 640x640

Hyperparameters used for fine-tuning of models to target datasets:

• learning_rate: 0.002

• Optimizer: AdamW

• batch_size: 16

• momentum: 0.9

• weight_decay: 0.0005

• epochs: 300

• image size: 640x640

47

A. Hyperparameters

48

References

[1] S. Borkman, A. Crespi, S. Dhakad, Sujoy Ganguly, Jonathan Hogins, Y. Jhang, Mohsen
Kamalzadeh, Bowen Li, Steven Leal, Pete Parisi, Cesar Romero, Wesley Smith, Alex
Thaman, Samuel Warren, and Nupur Yadav. Unity perception: Generate synthetic data
for computer vision. ArXiv, abs/2107.04259, 2021.

[2] Matthew Browne and Saeed Shiry Ghidary. Convolutional neural networks for image
processing: An application in robot vision. In Australian Conference on Artificial Intelli-
gence, 2003.

[3] Jon Hogins Cameron Sun, Salehe Erfanian Ebadi. Synthetic humans pack-
age in unity. https://github.com/Unity-Technologies/com.unity.cv.
synthetichumans, 2022. Accessed: 2024-04-15.

[4] Manuel Carranza-García, Jesús Torres-Mateo, Pedro Lara-Benítez, and Jorge García-
Gutiérrez. On the performance of one-stage and two-stage object detectors in au-
tonomous vehicles using camera data. Remote Sensing, 13(1), 2021.

[5] Alexandru Damian, Claudiu Filip, A. Nistor, Irina Petrariu, Cătălin Mariuc, and
Valentin Stratan. Experimental results on synthetic data generation in unreal engine
5 for real-world object detection. 2023 17th International Conference on Engineering of
Modern Electric Systems (EMES), pages 1–4, 2023.

[6] dataset. cctv dataset. https://universe.roboflow.com/dataset-uutxr/
cctv-naxyo, dec 2023. visited on 2024-04-18.

[7] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv e-prints, page arXiv:1603.07285, March 2016.

[8] Salehe Erfanian Ebadi, Saurav Dhakad, Sanjay Vishwakarma, Chunpu Wang, You-
Cyuan Jhang, Maciek Chociej, Adam Crespi, Alex Thaman, and Sujoy Ganguly. Psp-
hdri+: A synthetic dataset generator for pre-training of human-centric computer vision
models, 2022.

49

https://github.com/Unity-Technologies/com.unity.cv.synthetichumans
https://github.com/Unity-Technologies/com.unity.cv.synthetichumans
 https://universe.roboflow.com/dataset-uutxr/cctv-naxyo
 https://universe.roboflow.com/dataset-uutxr/cctv-naxyo

REFERENCES

[9] Salehe Erfanian Ebadi, You-Cyuan Jhang, Alex Zook, Saurav Dhakad, Adam Crespi,
Pete Parisi, Steve Borkman, Jonathan Hogins, and Sujoy Ganguly. Peoplesanspeople: A
synthetic data generator for human-centric computer vision. 2021.

[10] I. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. Com-
munications of the ACM, 63:139 – 144, 2014.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[13] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt Konolige. On pre-
trained image features and synthetic images for deep learning. CoRR, abs/1710.10710,
2017.

[14] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-level
adversarial and constraint-based adaptation. CoRR, abs/1612.02649, 2016.

[15] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, and K. Murphy. Speed/accuracy trade-offs for modern convolu-
tional object detectors. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3296–3297. IEEE, 2017.

[16] Håkon Hukkelås, Morten Smebye, Rudolf Mester, and Frank Lindseth. Realistic full-
body anonymization with surface-guided gans. CoRR, abs/2201.02193, 2022.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15, page
448–456. JMLR.org, 2015.

[18] J. Jabez, Maria Anu, and Dr Jabez. The power of deep learning models: Applications.
International Journal of Recent Technology and Engineering, 8, 11 2019.

[19] L. Jiao et al. A survey of deep learning-based object detection. IEEE Access, 7:128837–
128868, 2019.

[20] Heejae Lee, Jongmoo Jeon, Doyeop Lee, Chansik Park, Jinwoo Kim, and Dongmin Lee.
Game engine-driven synthetic data generation for computer vision-based safety moni-
toring of construction workers. Automation in Construction, 155:105060, 2023.

[21] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Mi-
crosoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector. Lecture Notes in
Computer Science, page 21–37. Springer International Publishing, 2016.

50

REFERENCES

[23] Mohamed Loey, Gunasekaran Manogaran, Mohamed Hamed N. Taha, and Nour El-
deen M. Khalifa. Fighting against covid-19: A novel deep learning model based on
yolo-v2 with resnet-50 for medical face mask detection. Sustainable Cities and Society,
65:102600, 2021.

[24] Spandan Madan, Timothy Henry, Jamell Dozier, Helen Ho, Nishchal Bhandari, To-
motake Sasaki, Frédo Durand, Hanspeter Pfister, and Xavier Boix. On the capabil-
ity of neural networks to generalize to unseen category-pose combinations. CoRR,
abs/2007.08032, 2020.

[25] Maximilian Menke, Thomas Wenzel, and Andreas Schwung. Improving gan-based do-
main adaptation for object detection. In 2022 IEEE 25th International Conference on Intel-
ligent Transportation Systems (ITSC), pages 3880–3885, 2022.

[26] Jouveer Naidoo, Nicholas Bates, Trevor Gee, and Mahla Nejati. Pallet detection from
synthetic data using game engines. ArXiv, abs/2304.03602, 2023.

[27] Villanustre Flavio Khoshgoftaar Taghi M Seliya Naeem Wald Randall
Muharemagic Edin Najafabadi, Maryam M. Deep learning applications and chal-
lenges in big data analytic. Journal of Big Data, abs/2196-1115, 2015.

[28] Marcel Neuhausen, Patrick Herbers, and Markus König. Synthetic Data for Evaluating the
Visual Tracking of Construction Workers, pages 354–361. Construction Research Congress
2020.

[29] Sergey I. Nikolenko. Synthetic-to-Real Domain Adaptation and Refinement, pages 235–268.
Springer International Publishing, Synthetic Data for Deep Learning, 2021.

[30] Daniel Pototzky, Azhar Sultan, and Lars Schmidt-Thieme. Parting with illusions about
synthetic data. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing
Workshop (IVMSP), pages 1–4, 2022.

[31] Ingeborg Rasmussen, Sigurd Kvalsvik, Per-Arne Andersen, T. N. Aune, and Daniel Ha-
gen. Development of a novel object detection system based on synthetic data generated
from unreal game engine. Applied Sciences, 2022.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-
time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 779–788, Los Alamitos, CA, USA, jun 2016. IEEE Computer Society.

[33] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. CoRR, abs/1506.01497, 2015.

[34] S. Shen, Z. Liu, B. Zhao, L. Chen, and C. Zhang. Improving real-world object detec-
tion using balanced loss. In 2020 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), pages 1–5. IEEE, 2020.

[35] Petru Soviany and Radu Tudor Ionescu. Optimizing the trade-off between single-stage
and two-stage object detectors using image difficulty prediction. CoRR, abs/1803.08707,
2018.

51

REFERENCES

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014.

[37] N. Tilkin. Is the use of synthetic datasets a solution to improve object detection models
on real data? Master’s thesis, Faculté des Sciences appliquées, 2023.

[38] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem
Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by domain randomization. CoRR,
abs/1804.06516, 2018.

[39] Unity Technologies. Unity Perception package. https://github.com/
Unity-Technologies/com.unity.perception, 2020.

[40] Chien-Yao Wang, I-Hau Yeh, and Hongpeng Liao. Yolov9: Learning what you want to
learn using programmable gradient information. ArXiv, abs/2402.13616, 2024.

[41] Hui Zhang, Yonglin Tian, Kunfeng Wang, Haibo He, and Fei-Yue Wang. Synthetic-
to-real domain adaptation for object instance segmentation. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–7, 2019.

52

https://github.com/Unity-Technologies/com.unity.perception
https://github.com/Unity-Technologies/com.unity.perception

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-08-21

EXAMENSARBETE Evaluating synthetic data for enhancement of object detection models
STUDENT Carl Wikström
HANDLEDARE Volker Krueger (LTH), Patric Fröjd (Verisure Innovation)
EXAMINATOR Jacek Malec (LTH)

Exploring the Power of Synthetic Data in
Detecting Humans

POPULÄRVETENSKAPLIG SAMMANFATTNING Carl Wikström

Synthetic data is being explored as a powerful tool to enhance object detection models,
offering a promising alternative to traditional real-world datasets. But how powerful
is synthetic data when training an object detection model for more specific tasks?

To delve deeper into the capabilities of synthetic
data in object detection, we decided to examine its
impact on the YOLOv9c model, a widely-used tool
known for its efficiency in detecting objects within
images. We began by training the model on syn-
thetic data, which allowed us to generate extensive
and diverse training scenarios not readily available
in real-world datasets. Following this, we fine-
tuned the model on specific real-world datasets to
evaluate how well it could adapt and perform in
practical situations. This two-step process aimed
to explore the potential of synthetic data to im-
prove detection accuracy and robustness in real-
world applications.

Figure 1: Synthetic data images

Our study specifically targeted human detection
in security surveillance contexts, a domain where

real-world data can be both limited and challeng-
ing to acquire. By introducing variations in the
synthetic data—such as changes in human place-
ments, poses, and quantities—we sought to de-
termine how these factors influence model perfor-
mance. This approach provided insights into how
well synthetic data can prepare a model for the
complexities of real-world scenarios and enhance
its overall effectiveness.

In our evaluation, we compared the performance
of models trained solely on synthetic data with
those trained exclusively on real data. The goal
was to understand the benefits of using synthetic
data as a preliminary training resource and its im-
pact on model accuracy when subsequently fine-
tuned with real-world data.

Our results revealed that the performance of
synthetic data varies significantly depending on
its composition, highlighting the importance of se-
lecting the right data mix. Notably, synthetic data
can match real data performance when the model
is fine-tuned with a small portion of the target
dataset. Additionally, synthetic data proved valu-
able in improving detection capabilities for pre-
viously unseen scenarios, such as crawling people,
demonstrating its ability to enhance model robust-
ness in diverse situations.

	Introduction
	Background
	Research questions & limitations
	Previous work
	Generating synthetic data using 3-d models
	Domain adaptation

	Theory
	Neural networks & Deep learning
	Deep learning
	Convolutional neural networks
	Object detection models
	Two-stage detectors
	One-stage detectors
	YOLOv9
	Transfer learning

	Evaluation metrics
	IoU
	Precision & Recall
	Mean average precision

	Synthetic training data generation
	Unity Perception

	Domain adaptation
	The domain gap

	Method
	Object detection model & training strategies
	Data selection
	MS-COCO
	Synthetic datasets
	Verisure datasets
	Roboflow cctv dataset
	Data splits

	Synthetic data generation using Unity perception

	Experiments & Results
	Generating synthetic data
	Comparing synthetic and real data
	Improving Crawling Person Detection with Synthetic Data
	Freezing the backbone

	Discussion
	Interpretations of results
	Methodology
	Future research

	Conclusions
	Appendix Hyperparameters
	References

