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Abstract

Auditory Attention Decoding (AAD) aims to determine the focus of a listener’s
attention in environments with multiple overlapping speakers, a challenging situa-
tion for hearing impaired patients known as the Cocktail Party Problem. This thesis
investigates AAD using Whisper, a transformer-based Automatic Speech Recogni-
tion (ASR) system that performs a graded transformation from speech to text while
encoding linguistic and semantic information in its latent encoder layers. Two ap-
proaches to AAD are explored: first, a forward pipeline that utilizes Whisper for pre-
processing audio stimuli in conjunction with a Temporal Response Function (TRF)
model for predicting Electroencephalography (EEG) responses. Second, a hybrid
approach aims to enhance the classification performance by applying Canonical
Correlation Analysis (CCA) and its neural network variant, Deep Canonical Corre-
lation Analysis (DCCA), to Whisper’s latent encoder layers and EEG signals. The
performance of these models is compared across fixed decision window lengths,
assessing their attention decoding capabilities when presented with limited infor-
mation, to highlight Whisper’s enhanced performance when combined with CCA.
Additionally, we test Whisper’s AAD performance when only a restricted number
of electrodes limited to the temporal regions is available, as a step towards the de-
velopment of wearable neurosteered hearing aid devices.
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1
Introduction

Hearing aids have long enhanced auditory experiences by filtering and amplifying
speech information. However, challenges remain in multiple-speaker scenarios,
particularly the difficulty of focusing on one speaker in a noisy environment with
multiple conversations happening at once (known as the cocktail party problem
[Cherry, 1953]). This chapter discusses the cocktail party problem and its spe-
cific impact on individuals with hearing loss. We propose a methodology that uses
electroencephalography (EEG) signals and audio inputs based on state-of-the-art
auditory attention decoding (AAD) algorithms, which has the potential to partially
solve auditory attention challenges. This novel machine learning architecture, lever-
aging automatic speech recognition (ASR) systems, could significantly improve the
listening experiences of individuals with hearing difficulties.

This section outlines the basis and importance of AAD. It also explains the role
of ASR systems in these algorithms, and describes the thesis’s two primary goals,
providing the reader with a comprehensive overview of the subsequent chapters.

1.1 The Cocktail Party Problem

Imagine entering a crowded room where multiple conversations occur simultane-
ously. You recognize someone and approach him, joining the conversation. Despite
the background noise from other speakers, your brain filters out the unwanted
sounds, allowing you to focus on the desired audio source. This phenomenon,
known as the cocktail party problem [Cherry, 1953], is an inherent brain capability
that enables selective auditory attention, as illustrated in Figure 1.1.

Unfortunately, auditory selective attention tasks are challenging for individuals
with hearing impairment. Previous research indicates that current hearing aids
and cochlear implants do not fully address cocktail party situations. According to
[Salorio-Corbetto and Moore, 2023], while hearing aids compensate for threshold
elevation and loudness recruitment, they do not mitigate other perceptual effects of

1



Chapter 1. Introduction

hearing loss. Additionally, [Marrone et al., 2008] studied the effects of hearing aids
in multi-talker environments with reverberation, concluding that hearing-impaired
listeners showed less spatial release from the masker compared to those with normal
hearing.

Figure 1.1 The cocktail party problem illustrates the human brain’s ability to un-
derstand a speaker in a crowded place by filtering out undesired sounds (e.g., back-
ground noise, other speakers)

Moreover, hearing aids are currently not a feasible solution when the attended
speaker is unknown. Various techniques have been proposed using EEG for speaker
separation into target and masker sources, known as AAD algorithms [Alickovic
et al., 2019; Geirnaert et al., 2021].

1.2 Automatic Speech Recognition (ASR) Systems

Automatic Speech Recognition (ASR) systems are computational technologies that
convert spoken language into text. These systems have advanced significantly and
are now integral to applications such as voice-activated assistants and transcription
services, with their functionality largely based on Deep Neural Networks (DNNs)
[Yu and Deng, 2016]. This work aims to integrate speech-to-text processing into
AAD algorithm architectures, not merely as a translator, but to harness the potential
of DNNs. We are particularly interested in the linguistic encoding power of the ASR
system Whisper, a transformer deep learning architecture composed of an encoder
and decoder.

Why Whisper? Several ASR transformers have been used in AAD architectures,
such as Hubert and Wav2vec. These transformers employ self-supervised training
approaches, pre-trained with unclassified audio data, learning to infer artificially
masked speech sounds. This results in discrepancies in how these models represent
speech and language across their layers, with inner encoder layers showing lexi-
cal and semantic comprehension, and later layers decoding back to speech. Whis-
per distinguishes itself through its training approach; it is trained in a weakly su-
pervised manner on speech-to-language tasks, improving semantics and linguistics

2



1.3 Scope

with layer depth [Anderson et al., 2023]. Additionally, Whisper is trained for speech
recognition, translation, and language identification, capable of transcribing 99 lan-
guages. This makes the model inherently suited for transcribing Danish audio into
text [Radford et al., 2022].

1.3 Scope

The scope of this thesis encompasses two primary goals involving Whisper’s im-
plementation. First, for TRF generation to test the model’s capabilities for EEG
prediction in an attention-selective scheme (target and masker). Second, as an en-
hancement to an existing AAD architecture. The general details of each proposal
are described below:

Whisper for TRF Generation: An AAD pipeline is developed using Whisper’s
encoder as an audio feature extractor, replacing traditional models (e.g., envelopes,
onsets, or surprisal). The objective is to replicate findings in [Anderson et al., 2023]
to demonstrate Whisper’s capacity to infer the target of attention with audio and
EEG data. As illustrated in Figure 1.2, the pipeline can be followed in steps:

1. Feature Extraction: Whisper’s audio inputs are processed in a sliding win-
dow approach in 1/8 s steps. The Whisper base model encoder produces 512
features per sample. The window size ranges from 0.5 s to 30 s (fixed for each
experiment, e.g., 10 s). For each window step of 1/8 s, the last six outputs of
the encoder are saved, producing a [512× 6] matrix for each window step,
and the data is up-sampled to 48 Hz.

2. EEG Generation: A [512×6] matrix makes the computation of the experi-
ments not possible due to its size. Using PCA, matrices are reduced to [10×6]
each step and down-sampled to 32 Hz to match the EEG. The TRF receives
the data to predict the brain stimuli response of 64 electrodes.

3. Correlation Analysis: Predicted and real EEG signals are compared using
Pearson Correlation, producing a correlation coefficient as output. This is
done twice for target and masker labeled audios; the one with the highest
correlation with EEG is classified as the attended speaker (target).

Figure 1.2 Simplified overview of the forward AAD pipeline for EEG prediction
using Whisper, inspired by [Anderson et al., 2023]

3



Chapter 1. Introduction

Whisper + CCA - Hybrid AAD Architecture: Various AAD architectures exist; a
forward architecture uses audio features to predict EEG, while a backward architec-
ture uses EEG to reconstruct audio signals. Hybrid architectures utilize both signals
to compute a score value. The key difference is that neither EEG nor audio are in-
ferred by the model (e.g., removing the TRF), resulting in faster responses. The aim
is to test how Whisper combined with CCA can more accurately predict the target
of attention with a smaller window time, as shown in Figure 1.3 [Alickovic et al.,
2019; Geirnaert et al., 2021].

Figure 1.3 Hybrid architecture for AAD. In our experiments, the denoise and
speaker separation blocks are discarded, and original audio files are fed to the CCA
algorithm without noise. Inspired by [Geirnaert et al., 2021]

Typically, an AAD architecture includes a denoiser and speaker separation block
at the beginning; however, this block is excluded from the scope of this thesis for
simplification purposes. It is assumed that target and masker audios have already
been split and processed.

1.4 Related Work

Our study relies on the results of many previous research projects, both inside and
outside the field of cognitive neurosciences. While each of these contributions is
fundamental to the existence of this project, some papers have been of particular
inspiration to both our research question and methodology:

• Context and Attention Shape Electrophysiological Correlates of Speech-
to-Language Transformation [Anderson et al., 2023]

The authors of this paper are the first to attempt forward modeling and
EEG prediction using the hidden states of Whisper’s encoder. Some of the
hyper-parameters used in our models, as well as the method used to extract
information from Whisper’s encoder, directly stem from this research.
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1.4 Related Work

• A Tutorial on Auditory Attention Identification Methods [Alickovic et al.,
2019]

This paper helped us formulate our research question. It also introduced us
to hybrid modeling and CCA, together with the benefits that their applica-
tion to complex predictors. The authors touch upon important topics, such
as different methods to train CCA models based on multiple trials and the
performance benefit of patient-specific models.

• Electroencephalography-Based Auditory Attention Decoding: Toward
Neurosteered Hearing Devices [Geirnaert et al., 2021]

This work gave us an invaluable overview of the field, helping us understand
where research efforts have been focused in the past and where we could
attempt improvements. It also introduced us to the usage of Minimal Expected
Switch Duration (MESD) as a unified performance metric for AAD tasks.
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2
Background

2.1 Cortical Responses

Humans are endowed with unique capabilities to perceive the world, constantly en-
coding and inferring sensory inputs to understand their causes, a process known as
perceptual inference. Learning new causes of these inputs is referred to as percep-
tual learning. Cortical responses represent the brain’s encoding of the most likely
cause of stimuli [Friston, 2005; Mesgarani and Chang, 2012]. This section provides
the foundational understanding necessary for brain activity modeling, beginning
with the theory behind stimuli reconstruction, measurement, and modeling as TRFs.

2.1.1 Event-Related Potentials and Evoked Potentials
Event-Related Potentials (ERPs) are transient neural responses characterized by
small voltage fluctuations in response to specific events triggered by motor, sen-
sory, or cognitive activities. ERPs are derived from time-aligned EEG signals
averaged over multiple trials of the same stimuli, such as a specific sound repeated
numerous times. Evoked Potentials (EPs) are a subclass of ERPs, associated with
rapid responses under 100 milliseconds, and are typically linked to external stim-
uli. In contrast, ERPs encompass higher-order mental activities such as language,
attention, and memory [Zani, 2013; Sur and Sinha, 2009].

Despite advancements in neuro-imaging techniques, ERPs remain a vital method
for studying and replicating cortical response information. ERPs offer a temporal
resolution of 1 millisecond, which is crucial for tracking attention and percep-
tion activities occurring at a slower pace (around 10 milliseconds). Additionally,
potential measurements are obtained directly from scalp-positioned electrodes,
eliminating delays associated with the brain’s electrical nature [Woodman, 2010].

ERPs are classified by latency and amplitude into various waveforms. The most
relevant peaks for attention and perception tasks, known as endogenous responses,
typically begin around 300 milliseconds of latency. Key ERPs related to these tasks
include [Sur and Sinha, 2009]:
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• P300: Latency 250 ms to 400 ms. Shorter latencies indicate better cognitive
performance, and amplitude levels reflect attention effort.

• N400: Latency 300 ms to 600 ms. Negative waveform with an amplitude in-
versely related to the likelihood of words and sentences.

• P600: Occurs following N400, often related to semantic and syntactic errors
in the stimulus, individual preferences, or complexity.

2.1.2 Electroencephalography
EEG measures brain activity from the scalp resulting from stimuli responses of
millions of cortical neurons, creating an electrical field in the cerebral cortex, which
comprises over 10 billion neurons. The cerebral cortex is divided into two hemi-
spheres, each consisting of four lobes based on neuronal functionality: the frontal,
temporal, parietal, and occipital lobes.

The cerebral cortex exhibits characteristic rhythmic electrical activity at specific fre-
quencies based on an individual’s state, with slower activity during sleep or calm-
ness. Frequency changes correlate with the amplitude of EEG waveforms; calm
states produce high-amplitude signals, while alertness results in high-frequency,
low-amplitude waveforms. This variation arises from the number of activated neu-
rons in a particular zone at low frequencies versus the chaotic neural information
exchange in an alert state.

EEG signals typically range from 0.5 Hz to 40 Hz in frequency and from a few µV
to 10 µV in amplitude. A suitable sampling frequency is at least 200 Hz, though
higher frequencies are needed for ERP analysis due to their low amplitude (0.1 µV
to 10 µV).

Electrode placement follows the International 10-20 system, which assigns letters
based on electrode location on the scalp and numbers based on the hemisphere.
Electrodes in the central lobe start with C, parietal with P, temporal with T, frontal
with F, occipital with O, and auricular with A. Numbers denote the hemisphere,
with even numbers on the right, odd numbers on the left, and zero (Z) at the cen-
tral fissure. Figure 2.1 illustrates this placement. Choosing the appropriate number
of electrodes is crucial to avoid spatial aliasing, especially for mapping purposes
where 64-electrode configurations are recommended [Sörnmo and Laguna, 2006].
In this thesis, the dataset was recorded using a BioSemi ActiveTwo amplifier with
64 electrodes following the 10-20 system1.

2.1.3 Temporal Response Functions
TRFs are a valuable tool in signal processing and neuroscience, modeling how sys-
tems respond over time to external stimuli. TRFs have been shown to correspond

1 Refer to Chapter 3 for more details on EEG placement and sampling frequencies.
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Figure 2.1 BioSemi cap with 64 electrodes placement. The labels are named ac-
cording to the cortex location and enumerated with even or odd numbers according
to their hemisphere. The central fissures are enumerated with Z (zero). Picture gen-
erated in Eelbrain [Brodbeck et al., 2023]

to ERPs, serving as impulse response models of the sensory system. System iden-
tification creates a mathematical model of how stimuli map to neural responses,
typically treating the brain as a linear time-invariant (LTI) system, despite its inher-
ent nonlinearity and time-variance.

There are two primary methods for response mapping: forward and backward. For-
ward approaches estimate neural responses from the stimuli, providing insights
into neural-information encoding, while backward methods focus on reconstructing
stimuli features from EEG. This work focuses on forward approaches, demonstrat-
ing Whisper’s ability to support brain response prediction2 [Crosse et al., 2016].

Linear Regression A forward LTI TRF response can be modeled as a convolution
(2.1), where n represents the channel number (e.g., electrode), y(t,n) is the predicted
neural activity over time, and h(τ,n) is a filter representing the coefficients, weight-
ing the influence of features over the time window t − τ . In what follows x(t − τ)
is the time-lagged input stimulus, ε(t,n) is the error term, and τ is the time lag,
indicating how past values influence the present.

2 Whisper’s encoder extracts audio features in its latent layers.
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Symbol Definition

n Channel number (electrode) n = 0,1,2, . . . ,N
N Number of EEG channels
t Current sample t = 0,1,2, . . . ,Ttime
Ttime Length of the time vector
y(t,n) Predicted neural activity over time for channel n
h(τ,n) Filter representing the coefficients
x(t − τ) Time-lagged input stimulus
ε(t,n) Channel error term
τ Time lag, τ = τmin, . . . ,τmax
τmin Minimum time lag
τmax Maximum time lag
τwindow Lags window length, defined as τmax − τmin
H ∈ Rτwindow×N Matrix of filter coefficients
X ∈ RTtime×τwindow Stimuli matrix
Y ∈ RTtime×N Neural response matrix

Table 2.1 Mathematical definitions used in Section 2.1.3.

y(t,n) =
τmax

∑
τ=τmin

h(τ,n)x(t − τ)+ ε(t,n) (2.1)

To estimate an optimal h(τ,n), the error between measured and predicted EEG sig-
nals ε(t,n) must be minimized, as shown in (2.2), which is solved by (2.3)

minimize ε(t,n) =
T

∑
t
[y(t,n)− ŷ(t,n)]2 (2.2)

H = [XTX]−1XTY. (2.3)

Computing neural responses as a product Y = XH, (2.6) becomes Ttime × τwindow,
with Ttime the time vector length, and the lags window τwindow = τmax − τmin the
time interval of TRF prediction. The matrix defined in (2.5), contains τwindow ×N
weights, with N representing the number of EEG channels. Finally, the predictions
defined in (2.4), have dimensions Ttime ×N [Crosse et al., 2016]. In experiments,
the TRF stimuli window interval is defined between −100 ms and 700 ms because
the goal is to predict semantic and linguistic information, targeting ERPs such as
the P300 and N4003.

3 Refer to Chapter 4 for more details on the TRF implementation.
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The matrix Y represents the neural response matrix and is defined as follows:

Y =


y(1,1) y(1,2) · · · y(1,N)
y(2,1) y(2,2) · · · y(2,N)

...
... · · ·

...
y(Ttime,1) y(Ttime,2) · · · y(Ttime,N)

 (2.4)

where each element y(t,n) represents the neural activity at time t for channel n.
The rows correspond to different time points t, while the columns correspond to
different EEG channels n.

The matrix H represents the filter coefficients and is defined as follows:

H =


h(τmin,1) h(τmin,2) · · · h(τmin,N)

h(τmin +1,1) h(τmin +1,2) · · · h(τmin +1,N)
...

... · · ·
...

h(τmax,1) h(τmax,2) · · · h(τmax,N)

 (2.5)

where each column hn is a vector of coefficients for the n-th EEG channel, and each
row corresponds to a specific time lag τ .

X =



x(1− τmin) x(−τmin) · · · x(1) 0 · · · 0
...

... · · ·
... x(1) · · ·

...
...

... · · ·
...

... · · · 0
...

... · · ·
...

... · · · x(1)

x(Ttime)
... · · ·

...
... · · ·

...

0 x(Ttime) · · ·
...

... · · ·
...

... 0 · · ·
...

... · · ·
...

...
... · · ·

...
... · · ·

...
0 0 · · · x(Ttime) x(Ttime −1) · · · x(Ttime − τmax)



(2.6)

The matrix X defined in (2.6) represents a lagged time series of the input stimuli.
In this matrix, the rows correspond to time samples, while the columns contain the
lagged values of the stimuli, effectively shifting the lags over the time dimension.
In this configuration, samples to the left represent future predictions, and those to
the right represent past information.

To illustrate, consider the first row, where the sample x(1) is positioned. To preserve
causality, a series of zeros is padded to the right of the current sample, effectively
padding the negative indices. As the window moves further from the edges of the

10
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signal, the padding on the right gradually diminishes. Conversely, as the window
approaches the end of the sequence and data availability decreases, the padding
reappears from the left, maintaining the structural integrity of the lagged series
throughout the entire duration of the analysis [Crosse et al., 2016].

Regularization A sufficiently large lag window does not guarantee optimal signal
reconstruction; the TRF estimation can become numerically unstable when dealing
with large time intervals [Alickovic et al., 2023]. Additionally, EEG data can be
particularly noisy, introducing small random patterns in the training data. This noise
complicates the estimation of coefficients and the prediction of a generalized brain
response from stimuli input. When a model erroneously learns these noise patterns
(variance), it results in overfitting. The solution is to have a better noise model or
introduce a penalty in the Least Squares formulation (2.3), known as regularization.

Regularization helps ensure that coefficients have similar neighboring weights
(Ridge Regression) or pushes them toward zero for sparse estimation (LASSO),
aiding in feature selection. This penalty, represented by λ , increases the degree of
regularization applied to the model. The value of λ must be carefully selected, as
excessive regularization can hinder the model’s ability to generalize effectively [Al-
ickovic et al., 2019; Crosse et al., 2016; Alickovic et al., 2023].

2.2 Models of Auditory Attention Decoding

As discussed in Chapter 1, AAD addresses the cocktail party problem by aiming to
extract the source of attention directly from the brain. There are three primary archi-
tectures, each employing a different prediction methodology but sharing common
reconstruction algorithm principles to some extent:

• Forward Modeling (Encoding): These models predict EEG signals using
stimuli input (e.g., envelopes, onsets, word surprisals). They are termed for-
ward because they preserve causality, predicting EEG based on prior data.

• Backward Modeling (Decoding): These models utilize future EEG informa-
tion to reconstruct the previous input stimuli.

• Bidirectional Modeling (Hybrid): These models use both EEG and sound
stimuli to generate a score similarity value between the sources, combining
forward and backward architectures, e.g. CCA.

Figure 2.2 presents an overview of the AAD algorithms in a two-part illustration.
Part 1 (upper) outlines the general architecture of AAD algorithms, beginning with
the denoising and reconstruction of split speaker audio sources. The AAD block can
employ any forward, backward, or hybrid algorithm, with the classifier ranging from
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Figure 2.2 AAD explained in a two-part figure. Part 1 (upper) illustrates the gen-
eral architecture of AAD algorithms. Part 2 (lower) compares the differences be-
tween forward and backward architectures.

a simple maximization procedure to a more complex machine learning task. Part
2 (lower) highlights the differences between forward and backward architectures.
The backward architecture suggests the model’s output is the reconstructed audio
input, though it could represent any of its features, such as the envelope or onsets
[Alickovic et al., 2019; Geirnaert et al., 2021]. 4

2.2.1 Minimal Expected Switch Duration (MESD)
Typically, AAD algorithms are compared using a correlation performance curve,
which visualizes accuracy over different audio time spans for the auditory selec-
tive task through various decision window lengths. This provides insight into the
time required for a real-time algorithm to switch to the newest source of attention.
However, there is a trade-off in finding an optimal point on the curve, as accuracy
improves at the cost of a longer decision window, see Figure 2.3.

The MESD was proposed to address this trade-off by formulating an optimization
problem that seeks the shortest switching duration within a predefined stable work-
ing region. Essentially, it identifies the optimal point on the curve and returns a
metric that quantifies the performance of the AAD algorithm. A lower value indi-
cates better performance. However, as noted in [Geirnaert et al., 2021], MESD is a
theoretical metric for comparative purposes and does not necessarily reflect actual
switching operation time [Geirnaert et al., 2020; Alickovic et al., 2019].

MESD Estimation The MESD can be estimated following the approach de-
scribed in [Geirnaert et al., 2020] by modeling an adaptive gain control system as a

4 The design of the denoiser and speaker separation block is beyond the scope of this thesis.
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Markov chain with N states. These states correspond to different levels of gain ap-
plied to the target of attention relative to the background. Each state has a transition
probability p towards the next higher amplification level equal to the algorithm’s
accuracy for a given decision window length τ , while the complementary probabil-
ity q = 1− p results in a transition to a lower state.

In this framework, the operation of an intelligent hearing aid is modeled as a ran-
dom walk on this Markov chain, where each step takes τ seconds. The number of
states is optimized to meet specific user-oriented operational parameters, namely
the comfort level c and the confidence level P0. The comfort level c specifies the
minimum amplification level necessary for comfortable hearing in a cocktail party
environment, and the confidence level P0 denotes the desired probability that the
hearing aid remains within the comfort region [c,1] at any given time [Geirnaert
et al., 2020].

Once the optimal number of states is determined5, the Expected Switch Duration
(ESD) can be calculated as the expected hitting time for the first state corresponding
to a gain level kc ≥ c starting from a state i < kc, where each step takes τ seconds
to complete. This process is repeated for each recorded (p,τ) pair to derive the
Minimal Expected Switch Duration or MESD.

Figure 2.3 Example of correlation performance curve between two AAD algo-
rithms: accuracy improves at the cost of the longest decision window length. This
figure is only for illustrative purposes and does not correspond to the thesis results.

5 The number of states N is typically lower-bounded by a chosen minimal number of states Nmin to
ensure sufficiently smooth gain transitions [Geirnaert et al., 2020].
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2.3 Machine Learning

Machine Learning can be described as statistical methods that enable the learning
of patterns without explicit instructions, thereby creating algorithms capable of gen-
eralizing information from data. This section is dedicated to machine learning tech-
niques of significant importance to the methodologies discussed. It covers Neural
Networks (NN)s initially described for the MCCA algorithm, as well as PCA and
Support Vector Machines (SVM) used as tools for achieving the primary objectives
of this work.

2.3.1 Neural Networks
NNs are a class of machine learning algorithms composed of interconnected neu-
rons that emulate the behavior of the human brain. The Perceptron is the most basic
building block, consisting of weighted inputs that are summed and passed through
an activation function. Perceptrons can be combined into multiple layers, creating
a NN model known as a Multilayer Perceptron (MLP), which typically comprises
three layers: an input layer to receive data, hidden layers for computation and feature
extraction, and an output layer for producing classification probabilities or regres-
sion values. Figure 2.4 illustrates a typical Multilayer Perceptron NN. Other archi-
tectures include Convolutional Neural Networks (CNNs) and autoencoders, which
are used in image recognition and data compression, respectively.

Training Before performing inference, a neural network must be trained to
achieve the desired objective. This is an iterative procedure that can be summarized
in five steps:

1. Data Preprocessing: This step involves scaling the data to normalize the
input features, resulting in faster convergence. During this step, the dataset is
also split into validation, training, and testing subsets to evaluate the model’s
performance.

2. Forward Propagation: The data is passed through the NN in the forward
direction from input to output.

3. Loss Calculation: This metric compares the performance of the network’s
output against the true target. Common loss functions include Mean Squared
Error (MSE) for regression tasks and Cross-Entropy Loss for classification
tasks.

4. Backpropagation: The loss is propagated backward through the network
from the output to the input. Optimizers, such as Stochastic Gradient Descent
(SGD), are employed to achieve faster convergence.

5. Weight Updates: The network’s weights are updated based on the current
loss to improve performance in the next iteration.
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Hyperparameters Hyperparameters are configurations established prior to train-
ing that should not be confused with the NNs parameters learned from the data,
such as weights. Hyperparameters can encompass the size of the neural network
and training conditions. The most common hyperparameters include:

• Learning Rate: This defines the rate at which the NN weights are adjusted
towards minimizing the loss function with each iteration.

• Number of Epochs: This indicates the number of times the NN passes
through the entire dataset.

• Batch Size: This refers to the number of training samples processed in one
iteration. Smaller batch sizes help avoid overfitting but may prolong the train-
ing process.

• Number of Hidden Layers: This pertains to the NN architecture and its
complexity. Larger models may perform better on complex tasks but also
increase the risk of overfitting.

• Activation Functions: These introduce nonlinearities into the model, en-
hancing the NN ability to learn from the dataset. Common activation func-
tions include sigmoid, tanh, and ReLU.

• Regularization: These are techniques to prevent overfitting, such as early
stopping, dropout, or L2-regularization.

Effective Deep Neural Network (DNN) implementation involves careful considera-
tion of hyperparameters in accordance with the problem requirements and managing
performance metrics such as confusion matrices and loss curves [Goodfellow et al.,
2016; LeCun et al., 2015].

Figure 2.4 Multilayer Perceptron (MLP) architecture, consisting of an input layer
for receiving data, hidden layers for computations and feature extraction, and an
output layer for classification probabilities or regression values.

15



Chapter 2. Background

2.3.2 Transformers
Transformers are a type of DNN architecture comprising an encoder and a de-
coder, providing a novel approach to solving sequence prediction and transduc-
tion tasks. Historically, these tasks were exclusively addressed by Recurrent Neural
Network (RNNs), which incurred long computational times due to their sequen-
tial processing nature. RNNs inherently preclude parallelism as perceptrons are se-
quentially connected in the hidden layer, requiring the synchronized processing of
temporal data. Transformers address this issue by introducing the concept of atten-
tion, which allows the model to focus on different parts of the same sequence and
compute multiple features simultaneously [Vaswani et al., 2017].

2.3.3 Whisper
Whisper [Radford et al., 2022] is a transformer-based encoder-decoder ASR sys-
tem. The encoder transforms the input speech into a latent representation, referred
to as linguistic embedding, while the decoder converts this series of feature vectors
into a word sequence. This process is based in part on the selected (or inferred)
audio language and task (transcription or translation). Whisper’s encoder is of
particular interest for this research, specifically the hidden states of the attention
layers it comprises. Given that Whisper is capable of identifying, understanding,
and transcribing 99 languages, as well as translating them into English, it is rea-
sonable to infer that the encoder’s representation of speech generalizes effectively
across languages. Additionally, due to the robustness of the model and its weakly-
supervised and translation-focused training, it is likely that it also generalizes well
across accents, conditions, and noise levels [Anderson et al., 2023].

The model is available in several variants, ranging from whisper-tiny with 39M
parameters to whisper-large-v3 with 1550M parameters. Whisper distinguishes
itself from previous ASR systems not only by its capability to operate across a
variety of languages but also by its notable accuracy and robustness, which ap-
proach human levels [Radford et al., 2022]. This high level of performance has
been achieved through weakly-supervised training, a method that contrasts with
traditional techniques used to train advanced ASR models. On one hand, models
like Wav2Vec [Baevski et al., 2020] exploit unsupervised pre-training followed by
supervised fine-tuning, allowing training on enormous amounts of unvetted data.
This results in a strong encoder at the expense of a weaker decoder which is more
challenging to fine-tune. On the other hand, models trained entirely in a supervised
fashion on curated, yet small, datasets achieve a symmetrical tradeoff [Radford et
al., 2022]. Whisper, however, employs weak supervision, which involves using large
amounts of unvetted data with automatically generated, best-effort labels, with only
a subset of the dataset being manually labeled. This approach strikes a balance be-
tween quality and quantity, enabling the model to learn from a large amount of
noisier data [Radford et al., 2022]. This methodology has resulted in a model that
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is both robust and capable, while minimizing the effort required in the creation of
suitable training data.

2.3.4 Principal Component Analysis
PCA is a statistical linear dimensionality reduction technique that transforms data
into a new coordinate space that maximizes the preserved variance. The principal
components are a set of eigenvectors that provide the transformation coordinates,
which are uncorrelated with each other and ordered in descending order based on
their corresponding eigenvalues, with the first eigenvectors explaining the most vari-
ance [Shlens, 2014].

2.3.5 Support Vector Machines
SVM is a supervised machine learning algorithm that determines the optimal hy-
perplane to separate different classes in the feature space, maximizing the margin
between the closest points of the classes. These points are known as support vec-
tors. The mathematical foundations of SVMs are based on linear classifiers, where
the hyperplane can be defined by a simple linear equation, with weights to be
determined. However, linear formulations are not always feasible, and nonlinear
transformations, known as kernel tricks, are applied to map the data into a higher-
dimensional space where the classes become linearly separable [Hastie et al., 2009].
For the scope of this thesis, we will focus on linear SVMs used as classifiers at the
end of the pipelines for the target of attention.

2.3.6 Cross-validation
K-fold cross-validation is a method used to estimate model generalization by ran-
domly splitting the dataset into K parts of equal size, using one part for validation
and the remaining parts for training. This procedure is repeated K times, with the
validation results averaged. This method is useful for generating confident general-
izations from insufficient data, though it is time-consuming as the model is repet-
itively trained over the folds. Figure 2.5 illustrates the data partitions in a K-fold
cross-validation implementation [Hastie et al., 2009].

Figure 2.5 Example of K-fold cross-validation. Data is randomly split into K parts
of equal size.
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2.4 Canonical Correlation Analysis

CCA is a statistical method designed to identify correlations between two multivari-
ate datasets. Although it is often regarded as a dimensionality reduction technique,
in the context of AAD, it is employed as a forward and backward approach (hybrid),
obviating the need for a predictive model such as the TRF. The fundamental prin-
ciple of CCA is to find linear combinations that maximize the correlation between
the two datasets.

Symbol Definition

i Sample i = 0,1,2, . . . ,N
N Number of samples
p Number of features in dataset X
q Number of features in dataset Y
X ∈ RN×p Multivariate dataset of N samples and p features
Y ∈ RN×q Multivariate dataset of N samples and q features
xi ∈ Rp Sample vector from dataset X at time instance i
yi ∈ Rq Sample vector from dataset Y at time instance i
x̄ ∈ Rp Mean vector from dataset X, x = 1

N ∑
N
i=1 Xi·

ȳ ∈ Rq Mean vector from dataset Y, y = 1
N ∑

N
i=1 Yi·

wx ∈ Rp Linear combination weights vector for dataset X
wy ∈ Rq Linear combination weights vector for dataset Y
Wx ∈ Rp×K Matrix of linear combination vectors for dataset X
Wy ∈ Rq×K Matrix of linear combination vectors for dataset Y
k Current linear combination vector k = 0,1,2, . . . ,min(p,q)
K Number of linear combinations min(p,q)
Rxx ∈ Rp×p Covariance matrix within dataset X
Ryy ∈ Rq×q Covariance matrix within dataset Y
Rxy ∈ Rp×q Covariance matrix between datasets X and Y
X ∈ RN×p Mean matrix of dataset X, where X = X−1NxT

Y ∈ RN×q Mean matrix of dataset Y, where Y = Y−1NyT

Table 2.2 Mathematical definitions for CCA, Section 2.4.

In CCA, the two multivariate datasets are represented as matrices X ∈ RN×p and
Y ∈ RN×q, defined in (2.7) and (2.8), where N denotes the number of samples, and
p and q denote the number of features in each dataset, respectively.

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xN1 xN2 · · · xN p

 (2.7) Y =


y11 y12 · · · y1q
y21 y22 · · · y2q

...
...

. . .
...

yN1 yN2 · · · yNq

 (2.8)
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The linear combination weights are denoted wx ∈Rp and wy ∈Rq, and are extended
into the weight matrices Wx ∈ Rp×K and Wy ∈ Rq×K , defined in (2.9) and (2.10),
where K is the number of linear combinations, equal to the minimum of p and q.

Wx =


w11 w12 · · · w1K
w21 w22 · · · w2K

...
...

. . .
...

wp1 wp2 · · · wpK

 (2.9) Wy =


w11 w12 · · · w1K
w21 w22 · · · w2K

...
...

. . .
...

wq1 wq2 · · · wqK

 (2.10)

The definition of Pearson correlation (2.11) provides the foundation for CCA, where
xi, yi are vectors at a particular time instance i = 0,1,2, . . . ,N and x̄, ȳ are mean
vectors for (2.7) and (2.8) respectively.

r =
∑

N
i=1(xi − x̄)(yi − ȳ)√

∑
N
i=1(xi − x̄)2

√
∑

N
i=1(yi − ȳ)2

(2.11)

To compute the correlation between the datasets, we first calculate the covariance
matrices. (2.12) represents the covariances within (2.7), (2.13) represents the covari-
ances within (2.8), and (2.14) represents the covariances between (2.7) and (2.8).

Rxx =
1

N −1
(X−X)T(X−X) (2.12)

Ryy =
1

N −1
(Y−Y)T(Y−Y) (2.13)

Rxy =
1

N −1
(X−X)T(Y−Y) (2.14)

The goal of CCA is to maximize the correlation between the datasets, formulated
as an optimization problem (2.15)

wx,wy = argmax
wx,wy

wT
x Rxywy√

wT
x Rxxwx

√
wT

y Ryywy

. (2.15)

This optimization problem is solved through eigenvalue decomposition. Each eigen-
vector corresponds to a new linear combination, extending the weights as (2.9) and
(2.10). The eigenvectors are mutually orthogonal within each weight matrix, and the
pairs (Xw(k)

x ,Yw(k)
y ) are maximally correlated and organized in descending order,

with the first pair of canonical variates (k = 1) best explaining the multivariate sets
with the highest possible correlation [Gundersen, 2018; Geirnaert et al., 2021].

Application in Auditory Attention Decoding As discussed in Section 2.1.3, fea-
ture vectors can significantly increase in dimensionality when time lags (t − τ) are
included. For CCA, this introduces a trade-off between flexibility and overfitting;
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more features enhance the possibility of data fitting but also increase the risk of
misleading results. Moreover, differences in temporal alignment between EEG and
audio features present another challenge as auditory latencies between EEG and
audio are not precisely known, and computational delays inherent to CCA must be
managed. To mitigate this, a series of time shifts is introduced in conjunction with
the time lags, selecting the shift that maximizes the correlation, which then becomes
a hyper-parameter to be iteratively tested [Cheveigné et al., 2018].

2.4.1 Multiway Canonical Correlation Analysis
Developing a generalized model for multiple datasets is often challenging in the
context of AAD. Specifically, constraints exist within CCA as it is traditionally
limited to computing correlations between two datasets. MCCA extends CCA by
allowing multiple data matrices to be concatenated, thereby maximizing the cor-
relation across multidimensional datasets. Various formulations for MCCA exist;
herein, a simplified approach is presented.

Symbol Definition

N Total number of samples
M Total number of datasets
p j Total number of features in a dataset X j
P Total number of features, P = ∑

M
j=1 p j

j Index for the particular dataset, j = 1,2, . . . ,M
X j ∈ RN×p j Individual dataset j with N samples and p j features
X ∈ RN×P Superset matrix combining all individual datasets X j

X̂ j ∈ RN×p j Whitened matrix of X j with normalized Principal Components
Z ∈ RN×P Second PCA matrix with N samples and P Summary Components

Table 2.3 Mathematical definitions for MCCA, Section 2.4.1

An individual dataset X j is defined in (2.16), and by combining all individual
datasets, (2.17) is defined as a superset.

X j =


x j

11 x j
12 · · · x j

1p j

x j
21 x j

22 · · · x j
2p j

...
...

. . .
...

x j
N1 x j

N2 · · · x j
N p j

 (2.16) X=
[
X1 X2 · · · XM

]
(2.17)

The whitened matrix X̂ j with horizontally stacked normalized Principal Compo-
nents (PCs) P̂C1, P̂C2, . . . (each with norm 1) is defined in (2.18) and the Second
PCA matrix Z ∈ RN×P as (2.19) where SC1,SC2, . . . ,SCP are the column vectors
representing the Summary Components (SCs).
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X̂ j =

 | | |
P̂C1 P̂C2 · · · P̂Cp j

| | |

 (2.18) Z =

 | | |
SC1 SC2 · · · SCP
| | |

 (2.19)

Following the notations in Table 2.3, Figure 2.6 formulates MCCA as a two steps
PCA algorithm:

1. First PCA: After defining (2.17), PCA is applied on each (2.16). This yields
a new transformation matrix where columns are PCs that contain specific
variance information and are uncorrelated to each other within (2.16). How-
ever, as the purpose of MCCA is to explain relationships between datasets, a
final step is to standardize the individual dataset by scaling the PCs to the unit
norm. This overall process is known as Whitening Transformation, resulting
in (2.18).

2. Second PCA: The set of (2.18) is concatenated and a final PCA is applied, to
yield (2.19) where columns are SCs.

Figure 2.6 Block diagram of MCCA architecture, explaining the two PCA pro-
cesses. Figure courtesy of [Cheveigné et al., 2019].

This MCCA approach is motivated by several factors. First, individual data matrices
are spatially whitened, transforming their covariance to the identity matrix, which
results in uncorrelated vectors that may have a denoising effect. Second, by applying
PCA on the concatenated whitened data, SCs are obtained. The variance of each
column signifies the presence of a specific component in the superset, organized in
descending order, indicating that the most shared temporal patterns are found in the
first columns [Cheveigné et al., 2019; Parra, 2018].
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Chapter 2. Background

2.4.2 Deep Canonical Correlation Analysis
Deep Canonical Correlation Analysis (DCCA) is a nonlinear variant of CCA that
employs two NNs, one for each dataset, with the goal of maximizing the correlation
between their outputs. NNs are a robust parametric method for learning nonlinear
representations, offering flexibility to control model capabilities. DCCA particu-
larly allows the definition of each NN characteristics independently, tailoring the
architecture and activation functions to the needs of each dataset.

(θ ∗
1 ,θ

∗
2 ) = argmax

(θ∗
1 ,θ

∗
2 )

corr( f1(X,θ1), f2(Y,θ2)) (2.20)

(2.20) formulates the optimization problem behind DCCA where the parameters θ ∗
1

and θ ∗
2 are the weights and biases for the respective NNs, to be determined by means

of algorithms such as gradient descent that follow the gradient of the correlation
objective [Andrew et al., 2013]. Matrices X,Y are the datasets defined in (2.7) and
(2.8) respectively.
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3
Dataset

The dataset used in this study is presented in [Alickovic et al., 2023], which was col-
lected at Oticon A/S. The study was conducted in accordance with the Declaration
of Helsinki and approved by Ethics committee for the capital region of Denmark
(reference number H-21065001). All participants provided informed consent prior
to their participation [Alickovic et al., 2023].

3.1 Experimental Design

The dataset comprises recordings from 25 normal-hearing (20 dB HL threshold) na-
tive Danish speakers aged 18−40 years (mean age 29±6 years) who self-reported
as free from any neurological diseases [Alickovic et al., 2023]. Due to issues with
the measurements encountered during the acquisition process, performed in prepa-
ration of [Alickovic et al., 2023], data from 8 patients has been discarded, leaving
only 17 out of the 25 subjects to take part in this experiment. Each participant en-
gaged in 32 listening trials, approximately of one minute in length. During these
trials, they were exposed to two concurrent auditory stimuli delivered by speakers
positioned directly in front of them and at 30◦ to the left and right. Participants were
instructed to focus on one specific audio stream (the target of attention or target)
while ignoring the other (the masker). The concurrent stimuli consisted of excerpts
from two audiobooks: a biography of Simon Spies narrated by a male speaker, and a
story about traveling in the Himalayas narrated by a female speaker. Each trial con-
tained segments from both audiobooks. To ensure a balanced dataset, the gender
and spatial location of the target were systematically varied to form four balanced
classes, each of 8 trials [Alickovic et al., 2023]:

• Male target from the left

• Male target from the right

• Female target from the left

• Female target from the right
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For each trial, both the EEG data and the acoustic envelope of the auditory stimuli
were recorded at a sampling frequency of 8 kHz and 44.1 kHz respectively, and
later downsampled to 100 Hz during post-processing. The audio stimuli were de-
livered at 70 dB Sound Pressure Level (SPL) while the participants were seated in
the center of a sound studio in the absence of meaningful background noise [Alick-
ovic et al., 2023]. Following each trial, participants answered two yes/no questions
related to the content of the attended speech to assess their comprehension during
the task.

The dataset includes 330 audio segments, 66 of which have been used during trials
and are associated with EEG recordings from one or more patients. The remaining
264 segments have instead been used to separately estimate the principal compo-
nents of Whisper’s hidden states in order to avoid introducing bias.

3.2 Data Preprocessing

As detailed in [Alickovic et al., 2023], the EEG data were collected using a BioSemi
ActiveTwo amplification system equipped with a standard 64-electrode cap config-
ured according to the international 10-20 system. Gel was applied to achieve low
impedance and maintain each electrode’s offset within ±50 mV. The 64 EEG chan-
nels were re-referenced to the average of two additional channels placed on the
mastoids. The recorded data were digitally band-pass filtered within the 1 Hz to
10 Hz range, resampled to 50 Hz, and synchronized with the envelope data. The
final data segments used for analysis were trimmed to 59 s in length.
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4
Methodology

This chapter details the methodologies we used to design novel solutions to AAD.
We focused on forward modeling using TRFs and hybrid modeling with CCA-based
methods to model EEG responses to speech stimuli, assessing their ability to distin-
guish the target of attention in a cocktail party scenario. Our methodological choices
stem primarily from the findings in [Geirnaert et al., 2021; Anderson et al., 2023]
and our own intuition on the potential benefits of integrating Whisper’s promising
capabilities with state-of-the-art AAD techniques such as CCA.

4.1 Feature Extraction

Forward and hybrid modeling approaches depend on the correlation of measured
EEG data with representations derived from a set of reference (or input) signals. In
this study, we explore three approaches to extract relevant information from input
speech stimuli and their impact on the discriminatory power of existing modeling
techniques (such as TRF and CCA):

• Acoustic Features (See Section 4.1.1)

• Lexical Surprisal (See Section 4.1.2)

• Linguistic Embeddings (See Section 4.1.3)

However, while acoustic features are already in a form suitable for direct use in
TRF and CCA models, the same does not apply to linguistic embeddings and lexical
surprisal (the latter of which even lacks a temporal dimension). Therefore, this data
must be manipulated into appropriate time-resolved signals before it can be used to
model brain responses.

Experiments Our research necessitates comparing the results of identical (or sim-
ilar) procedures applied to different combinations of features and sources. Each
such instance is considered an experiment, organized hierarchically according to
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features such as the combination of stimuli used or the specific Whisper layer used
to generate the embeddings (if applicable). A particularly significant distinction
arises from the source of the data, indicating which speech stream generated it.
Throughout this work, we investigate three possible cases:

• Target: features from the attended speaker

• Masker: features from the ignored speaker

• Foreground: features from both the attended and ignored speakers

Note that in the foreground case, features from the attended and ignored speakers
are both available and separately accessible.

4.1.1 Acoustic Features
Acoustic features have been extensively used in prior research on this and related
topics. Their ease of acquisition and processing, computational efficiency, evident
correlation with neurological markers of speech processing, and their longstanding
availability have established them as a baseline for neurologically aware hearing
applications. To evaluate Whisper’s contribution to AAD, we employed two types
of acoustic features: envelope and onsets.

Acoustic Envelope The acoustic envelope represents the variation in amplitude of
an audio signal over time, providing a measure of loudness and its temporal changes.
It is computed by dividing the audio into windows of te seconds and calculating the
root mean square of the signal within each window. This process results in a new
signal with a frequency of fe = 1/te, which can optionally be down-sampled for
smoother representation and to avoid issues when computing the acoustic onsets.
Typically, the computed envelope is then compressed by raising it to a power p ≤ 1
to better model human loudness perception [Alickovic et al., 2023]. In this work,
we used p = 1 (no compression).

Acoustic Onsets The acoustic onsets are obtained through half-wave rectification
of the first derivative of the acoustic envelope. Mathematically, this is expressed as:

o(n) = max
{

0,
(

d
dt

e(t)
)
(n)

}
, where

{
o(n) is the n-th onset sample
e(n) is the n-th envelope sample

4.1.2 Lexical Surprisals
Surprisals at various levels of speech — ranging from phonetic surprisals to lex-
ical and semantic surprisals [Heilbron et al., 2022] — have been demonstrated
to enhance accuracy of many AAD algorithms [Heilbron et al., 2022; Anderson
et al., 2023]. Particularly pertinent to our research are the findings of [Anderson
et al., 2023], which reveal a complementary relationship between GPT-2 based
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surprisals and earlier layers of Whisper, with the influence of the former on the
overall prediction diminishing when paired with deeper layers of the ASR model.
Due to the absence of pre-computed accurate transcriptions, combined with our
aim to test solutions applicable to real-world implementations, we evaluated Whis-
per’s capability to automatically extract word alignment information from the au-
dio stream to dynamically generate a lexical surprisal signal. For this purpose, we
employed Whisper Timestamped [Louradour, 2023], which applies Dynamic Time-
Warping (DTW) [Giorgino, 2009] to the base Whisper model to produce word-
level timestamps and confidence scores over the model’s predictions. While the
base Whisper model provided by OpenAI is capable of offering time-alignment in-
formation, the special tokens are injected into the output stream at unpredictable
intervals that do not necessarily match word or period boundaries. To achieve re-
liable transcriptions, we used the large variant of the model, which has a size of
1.55B parameters and requires powerful hardware and significant computational
time to process. Although this setup is not practical for use in hearing aid devices,
exploring the potential benefits of including surprisal information can guide future
research efforts towards developing miniaturized models capable of reliable, time-
resolved generation of surprisals. The lack of suitable models for the automatic
generation of period-based surprisals and the focus of this study on the benefits of
high-order linguistic information for AAD led us to not implement semantic [Heil-
bron et al., 2022] and phonetic surprisals respectively. Following the methodology
in [Anderson et al., 2023; Heilbron et al., 2022], we used a GPT-2 model fine-tuned
on Danish material using CLP-Transfer [Ostendorff and Rehm, 2023] to generate
surprisal values.

Definition of Surprisal Surprisal measures how unexpected the presence of an
element in a sequence is, given the context provided by its preceding members. In
the case of lexical surprisal, we model a sentence — or more generally a text — as a
sequence W = [w1,w2, . . . ,wn] of words, with the surprisal associated with the n-th
word wn being its probability p(wn|w1,w2, . . . ,wn−1) conditioned on the previously
encountered words. To automatically and systematically produce surprisal features,
we leverage the output of a Large Language Model (LLM) like GPT-2 which, after
the necessary post-processing on the tokens produced by the transformer, yields an
array representing the likelihood of each word in the model’s dictionary to be the
next in the sequence. Similarly to [Anderson et al., 2023; Heilbron et al., 2022;
Tezcan et al., 2023; Zhang et al., 2023], we use the negative-log likelihood as a
measure of lexical surprisal s(w):

s(wn) =− log(p(wn|w1,w2, . . . ,wn−1))

Figure 4.1 illustrates the functional relationship between s(w) and p(w). As shown,
the surprisal value reaches 0 when the conditional probability of the word ap-
proaches 1, indicating certainty about w being the next word. Conversely, it ap-
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proaches infinity as the probability approaches 0, indicating certainty about w not
being the next word. To avoid numerical and computational issues, we cap the sur-
prisal value at 100.

Composite Words LLMs do not directly predict a sequence of words but rather
a sequence of tokens, which are then converted into words using a dictionary [Rad-
ford et al., 2019] during the output processing step. As a result, infrequent com-
posite words tend to be split into multiple tokens. For example, the word læsevane
(translating roughly to reading habit) is tokenized into læse (read) and vane (habit).
In these cases, we consider the conditional probability of the composite word to be
the probability of all its components appearing at their respective positions in the
sequence. For a composite word wn = [wn,1,wn,2, . . . ,wn,m], our calculations are as
follows:

s(wn) =− log(p(wn)) =− log(p(wn,1)p(wn,2) . . . p(wn,m))

=− [log(p(wn,1))+ log(p(wn,2))+ · · ·+ log(p(wn,m))]

= s(wn,1)+ s(wn,2)+ · · ·+ s(wn,m)

Therefore, for composite words, we sum the surprisals of their components to obtain
a single value for our signal.

Signal Processing We generate a train of Dirac’s deltas, each positioned at a
word’s onset and proportional to its surprisal, following a methodology similar to
[Anderson et al., 2023; Heilbron et al., 2022; Tezcan et al., 2023]. This signal is
then processed through the same pipeline used for other signals (see Section 4.2),
converting the abrupt surprisal spikes into smooth responses. This process ensures
effective correlation with other signals and aligns the signal more closely with the
expected shape of the surprisal-related EEG response.

4.1.3 Linguistic Embeddings
Whisper performs a graded transformation of speech into language across its layers,
with the resulting hidden states becoming increasingly contextualized and linguis-
tic as depth increases [Anderson et al., 2023]. This characteristic has the potential
to be highly advantageous for AAD applications, as it is generally accepted that
speech processing in the brain occurs at a more superficial level for unattended
speech, which should manifest as a growing disparity between the EEG-predictive
power of Whisper for attended and ignored speech in progressively deeper layers. In
line with [Anderson et al., 2023] and considering Whisper’s training objectives, we
hypothesize that the encoder produces a linguistic embedding, which the decoder
subsequently transforms into words. Given that Whisper can translate 99 languages
into English as well as transcribing them [Radford et al., 2022], these embeddings
must, according to [Anderson et al., 2023], suppress within and between speaker
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Figure 4.1 Plot illustrating the relationship between the conditional probability
p(w) and the surprisal s(w) of a word.

variation in intonation, accents, volume, and intonation to encode word identity in
a language-invariant and possibly semantic format. Due to our focus on language
processing, this study concentrates on Whisper’s encoder and omits its decoder.

Structure of Whisper As per [Radford et al., 2022], Whisper employs a multi-
layer encoder-decoder transformer architecture that operates on 30 s long 16000 Hz
audio segments. The model’s input pre-processor computes an 80-channel log-
magnitude Mel spectrogram (using 25 ms windows and 10 ms stride) of the audio,
which is then further processed by a small Convolutional Neural Network (CNN)
before being fed to the transformer. The output of each encoder layer, including the
pre-processor, consists of a 1500-element long time series of 512-dimensional em-
beddings. Given the length of the input signal, these can be interpreted as a family
of 30 s long, 50 Hz, 512-dimensional continuous1 linguistic embeddings. Consis-
tent with the notation used in [Anderson et al., 2023], we refer to these signals as
Layer 0 through Layer 6 (or L0 through L6 for short), where Layer 0 is the out-
put of the pre-processor (after the convolution), and the rest are the outputs of the
corresponding transformer-encoder layers.

1 The continuous nature of the signal is to be interpreted as the fact that these embeddings occur
independently of word or phonetic cadence, are not event-driven, and represent the sampling of a
continuous linguistic signal.
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Sliding Window Approach Transformer architectures are popular for their com-
putational efficiency, achieved by processing input data in parallel and using at-
tention [Vaswani et al., 2017] to model the relationships between elements of a
sequence. However, this parallelism poses a problem when modeling causal pro-
cesses, as the transformer has access to future information. When the transformer
computes the output corresponding to t = 0 s, it has access to information up to
t = 30 s, which is unrealistic in a causal setting such as speech and natural language
processing in the brain. To address this issue, we adopt the sliding window approach
used in [Anderson et al., 2023], wherein Whisper’s input window is moved forward
through the audio in small increments of ns samples. At each iteration, only the last
ns samples of the output are retained and appended to data from previous iterations,
and this process is repeated until the entire waveform has been processed. Initially,
only the last ns samples contain data (the rest of the input is filled with zeros), and
this portion expands by ns samples at each iteration until it reaches a maximum size
of ws ≤ 30 s. This ensures that at any point, the maximum foresight of the model is
limited to (ns −1)/ fs seconds, where fs = 16 kHz is the audio sampling frequency.
Setting ns = 1 would make the model perfectly causal, but the computational cost
would be prohibitive. Inspired by [Anderson et al., 2023], we used ns = 2000 during
our experiments, corresponding to a maximum of 0.125 s of foresight. The context
window W (n) available to Whisper when calculating the output for the n-th sample
is represented mathematically as:

W (n) = [max{0,we −ws} ,we] where we = ⌈n/ns⌉

Based on [Anderson et al., 2023], we initially set our maximum window size ws to
10 s but also experimented with ws = 20 s and ws = 30 s. Figure 4.2 illustrates the
complete audio feeding process end-to-end.

Dimensionality Reduction The linguistic embeddings are 512-dimensional,
making computations based on Whisper’s hidden states prohibitively expensive.
Therefore, we implemented PCA to reduce the dimensionality of Whisper-based
feature vectors while preserving as much information on the original data as possi-
ble. PCA identifies the principal components — that is, the directions in the original
vector space along which the most variance is observed — and projects the data
along those new axes (See Section 2.3.4).

To avoid introducing bias in our results, we performed principal component analysis
on Whisper data generated from the 264 audio segments present in our dataset but
not used in the available set of trials. Based on the results of [Anderson et al., 2023],
we opted for a dimensionality reduction to 10 components. We also experimented
with 64 components to match the number of available EEG channels and not limit
the number of canonical correlates during the latter part of the experiment. However,
preliminary results combined with the extreme computational requirements of 64-
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Figure 4.2 Illustration of the sliding window approach used to feed an unlimited
length of data to Whisper while maintaining a reasonable level of causality in the
predicted token sequence. At each step, the audio is slid in Whisper’s context win-
dow (artificially limited to the desired length) in strides of fixed length, and a time-
equivalent number of samples is selected at the end of Whisper’s output. These out-
put samples are then concatenated to form a continuous linguistic embedding.

dimensional stimuli led us to abandon the analysis of higher-dimensional linguistic
embeddings. PCA was not performed on EEG data in order to preserve spatial infor-
mation - and the often significant correlation between close EEG channels - as well
as to avoid accidental degradation of the signal, as the typically high noise level of
EEG recordings is responsible for a significant amount of the signal variance that
PCA seeks to maximize, leading to the accidental amplification and extraction of
noise and non-brain artifacts such as eye blinks [Artoni et al., 2018].

4.2 Processing Pipeline

All the aforementioned signals are collected and time-aligned among themselves
and with the EEG channels. The signals are then resampled to 32 Hz (the highest
power-of-two frequency2 below the lowest sample rate of our data, which is 50 Hz
for the linguistic embeddings), and a high-pass filter of 1 Hz is applied to remove
any static components and slow drifts. The signals are then trimmed to the most
conservative time range to ensure that we have valid data from all channels at any
point during the experiment. Our processing is minimal as our work is based on
the same data used in [Alickovic et al., 2023], which already performed part of this
preprocessing: "The available EEG data has already been digitally re-referenced to
the average of the mastoid electrodes, digitally band-pass filtered between 0.1 Hz
and 10 Hz, re-sampled to 100 Hz, and artifacts were removed based on an indepen-

2 Working with powers of two in the frequency domain is desirable as it simplifies FFT and the other
arithmetical computations that depend on it.
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dent component analysis. Not all data from all subjects was used in this work since
some subjects and trials had to be excluded due to bad signal quality or incomplete
processing. [...] For our analysis, the EEG signal per trial and channel was digitally
filtered between 1 Hz and 10 Hz, re-sampled to 50 Hz, and normalized to zero mean
and unit variance."

4.3 TRF Generation

To generate a TRF from a set of source signals, we utilized the MNE software
[Gramfort et al., 2014], specifically its ReceptiveField framework, which enables
the fitting of encoding (source to brain) or decoding (brain to source) models using
time-lagged input features. The TRF is calculated based on time delays sampled
at a frequency of 32 Hz in the −100 ms to 750 ms range and fitted using delay-
aware ridge regression. Regularization is incorporated into the model as an explicit
L2 regularization factor α , optimally chosen from powers of ten in the 104 to 1010

range.

4.3.1 Performance Metric
Our primary performance metric for TRF fitness throughout the experiment is the
Pearson correlation coefficient between the recorded EEG data and its reconstruc-
tion computed from a set of source signals (linguistic embeddings, semantic sur-
prisal, acoustic features, etc.). This coefficient is computed for each experiment (i.e.,
combination of source signals) and for each of the 64 EEG channels. To gain in-
sight into the individual contributions of different source signals to the prediction
accuracy, multiple experiments have been conducted with different sets of sources
to allow for comparative studies.

4.3.2 Model Tuning and Evaluation
The TRFs have been fitted within a nested k-fold cross-validation scheme. The inner
loop (k = 4) provides validation scores used to select the optimal L2 regularization
factor α on a per-patient, per-experiment basis. The outer loop (k = 8) calculates
a test score on left-out data using the optimal value of α found in the inner loop,
providing a more rigorous performance evaluation. A final model is then trained
on the whole data (once again per-patient and per-experiment) using the value of
α most frequently selected as ideal. This training procedure has been devised to
leverage the entire dataset for training, while preventing test scores and data from
influencing hyperparameter selection and thereby avoiding data overfitting issues,
resulting in strongly validated results for our forward models. To perform AAD, in-
stead, we directly used the final models, as opposed to training and cross-validating
new ones. This constitutes a compromise we had to accept due to time constraints,
which prevented us from repeating the time consuming TRF training cycle.
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4.4 Canonical Correlation Analysis and Classification

The classifier for the analysis has been independently trained for each patient within
a 32-fold cross-validation framework, while the CCA transformation matrices Wx
and Wy - defined in (2.9) and (2.10) respectively - have been estimated on the
whole data of each patient to keep the training procedures of TRF and CCA mod-
els aligned. In each fold, one of the 32 trials was left out for validation, while the
remaining 31 were used for training. This patient-specific training approach is jus-
tified by the statistically significant inter-individual variability in EEG responses,
which leads to a decline in performance when using universal decoders compared
to subject-specific decoders [Geirnaert et al., 2021; O’Sullivan et al., 2014]. Vari-
ous sets of time delays were tested, characterized by different start,step,stop triplets
governing the minimum and maximum time delays as well as the intervals be-
tween them. Additionally, an overall delay L was incorporated to model the average
stimuli-to-EEG latency, allowing the bank of delays to be centered on the most ac-
tive time region of the model, a technique also used in previous studies [Cheveigné
et al., 2018]. The model’s performance was evaluated based on the mean classifica-
tion accuracy for different numbers of canonical correlates across all 17 patients in
the dataset. Drawing inspiration from the discussion in [Alickovic et al., 2019], two
methods for handling multiple trials were compared:

• Multi-View CCA (MCCA): CCA filters are independently estimated for
each of the 32 trials and then averaged to obtain a single estimator.

• Trial Concatenation (CCA): Trials are concatenated along the time axis,
with optional post-processing at the junctions to mitigate edge effects.

Unlike with TRF, we did not train the CCA models on masker or foreground
(masker + target) data. This is because CCA, as a correlation-maximizing optimizer,
would just amplify noise and spurious correlations when presented with ignored or
partially ignored speech.

MCCA The first approach, MCCA, was selected based on the hypothesis that in-
dependently estimating filters would be beneficial given the varied stimuli across
trials, and that averaging the filters would aid in regularization. This method was
implemented and evaluated using Matlab and the NoiseTools toolbox [Cheveigné
et al., 2018], and the results were compared to those obtained using trial concatena-
tion. The rationale for employing MCCA for AAD is supported by discussions in
[Cheveigné et al., 2019; Cheveigné et al., 2018].

Deep CCA Although we planned to include Deep CCA [Andrew et al., 2013] in
our analysis since the inception of this study, its role was revised following pre-
liminary results from AAD based on standard linear CCA. The decision was made
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to use this advanced correlation technique to improve the generalization of CCA-
based AAD implementations by training a generic algorithm to work effectively
across patients. The Matlab implementation of Deep CCA provided by [Wang et
al., 2016] was used to generalize the aforementioned experiments to a cross-patient
model that does not require individual fine-tuning.

4.4.1 Classification and Parameter Selection
To classify audio segments as attended or not, we adopted a match-mismatch clas-
sification scheme similar to previous work in the field [Cheveigné et al., 2018; Al-
ickovic et al., 2019]. The classifier is simultaneously presented with information
from both audio streams and must determine which one is the target of attention.
Classification is based on the Pearson correlation coefficients between the corre-
sponding canonical correlates of each stimulus and the EEG data. Two methods for
constructing the feature vector used for classification were tested:

• Classification of the Union: Features from both audio streams are presented
side-by-side to the classifier.

• Classification of the Difference: The element-wise difference between the
features of the two audio streams is presented to the classifier.

The first method results in 2n classification features, while the second uses n-
dimensional vectors, where n is the selected number of canonical correlates. Al-
though the CCA is trained on entire 59 s data segments, the correlation features
presented to the classifier are computed over smaller windows of length w, a design
parameter that affects the MESD of the solution. Various values of w were tested to
compare against results in [Alickovic et al., 2019]. The classifier was chosen to be
a SVM, based on results from [Alickovic et al., 2019], preliminary findings of our
study, and the project’s aim to optimize the reliability and notably the efficiency of
AAD algorithms within real-world constraints.

Parameter Search To identify the optimal set of parameters for each task, a man-
ual optimization process was conducted based on the model’s validation scores
across all available target data from all patients. Parameters were selected separately
for different scenarios (acoustic features vs. Whisper, 64 electrodes vs. 6 electrodes,
etc.), but the same parameters were used across all Whisper layers within each sce-
nario for consistency.

4.5 Statistical Validation

To ensure the statistical significance of the performance figures obtained through
experimentation, a range of tests were conducted. For validating the correlation
figures derived from the fitted TRFs, Wilcoxon’s signed-rank test [Wilcoxon, 1945]
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was employed. This choice was influenced by the unsuitability of Student’s t-test
[Student, 1908] due to the non-normal distribution of our correlation metrics (see
Figure 4.3) and unequal variances across the classes considered (both of which are
prerequisites for the t-test), as well as the desire to compare our results with those
of [Anderson et al., 2023].

Figure 4.3 Example of the distribution of correlation metrics across the three ex-
perimental classes (target, masker, foreground) across all patients for a Whisper-only
TRF predictor. Note how the values deviate from the normal distribution correspond-
ing to the mean and variance of the data.
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5
Results and Discussion

After generating linguistic embeddings and surprisal signals for all the 66 unique
acoustic segments used in the experiment, we conducted an analysis to evaluate
different combinations of stimuli. This analysis aimed to determine the ability of
language-infused predictors to predict and match the measured EEG signals, un-
derstand each stimulus’s individual contribution to AAD and how they complement
each other - if at all - with a focus on low MESD and electrode count. Consequently,
our analysis was divided into two main approaches:

• Forward Modeling, where we attempt to directly reconstruct the individual
EEG channels using TRFs.

• Hybrid Modeling, where we utilize CCA to perform a more opaque classifi-
cation based on a learned transformation of the original data.

Forward modeling was primarily conducted to validate our results against [Ander-
son et al., 2023] and to ensure our model adequately captures language processing
in the brain. Conversely, the hybrid approach aims to use the potential MESD ad-
vantage of CCA, as discussed in [Geirnaert et al., 2021]. To assess the contribution
of individual stimuli and compare performance against appropriate baselines, we
trained several ensembles containing multiple predictors. The performance of these
ensembles was then compared with the scores of the individual members to reveal
any performance delta, similarly to [Anderson et al., 2023].

5.1 EEG Prediction

In the initial phase of our work, we used the MNE library [Gramfort et al., 2014]
to train TRF-based EEG prediction model using Time-Delayed Ridge Regression
on a per-subject basis. The rationale behind training individual (subject-specific)
classifiers is the significant variability in EEG responses to stimuli across subjects
[Geirnaert et al., 2021; O’Sullivan et al., 2014], resulting in more accurate predic-
tions when the TRF is trained on data from a single individual as opposed to the
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usage of a generalized (subject-independent) model. Our study presents results de-
rived from approximately 32 minutes of data per subject, which we consider both
reasonable and practical for customizing a hearing aid solution to individual needs
and, therefore, suitable for real-world scenarios.

5.1.1 Hyper-parameter Tuning
As detailed in Chapter 4, a nested cross-
validation scheme was used to automati-
cally fine-tune hyperparameters to meet the
individual needs of each subject, while also
allowing for the collection of unbiased per-
formance metrics without necessitating a
rigid data split into training and test sub-
sets. This setup was used to determine the
optimal value of α - the regularization pa-
rameter of the underlying ridge regression
used by the MNE library — for each patient
and each combination of inputs and types
of stimuli (target, masker, or foreground).
A predefined range of α values was tested
for each experimental run, with all powers
of ten within that range being used for the parameter search. Preliminary experi-
mentation suggested that the 104-107 range offered an ideal compromise between
coverage and computational complexity, which we consequently adopted for all ex-
periments to ensure consistency. As illustrated in the figure above (demonstrating a
TRF fitted with a 10 sec context window with 10 principal components and trained
on all data), our window was slightly skewed towards higher regularization param-
eters, given that overfitting problems were found to be more common and impactful
than underfitting issues. For a detailed breakdown of the α distribution, refer to
Figure A.1.

5.1.2 Whisper and Acoustic Features
In Figure 5.1, we present the layer-wise breakdown of the Pearson correlation be-
tween the TRF-predicted EEG signals and actual measured EEG signals, averaged
across the 64 electrodes, trials, and subjects. The correlation between predicted and
actual measured EEG for the target speech is significantly higher than for the masker
speech, and this gap widens as we move to deeper layers of the model. This gen-
eral trend aligns with the findings reported in [Anderson et al., 2023]. However, our
results exhibit one key difference: while [Anderson et al., 2023] observed roughly
equal performance across all layers of Whisper for the ignored speech predictor and
a significant increase in performance for the attended speech predictor with deeper
layers, our results show a shallow upward slope in predictive power for the target

37



Chapter 5. Results and Discussion

and a noticeable decrease in correlation for the masker. Various factors could ac-
count for this discrepancy, including differences in datasets and our increased focus
on AAD relative to [Anderson et al., 2023]. Nonetheless, the overall performance
pattern and relative performance of target and masker correlators align between our
study and [Anderson et al., 2023]. Another interesting observation is the relatively
small performance gap between target and foreground predictors compared to the
larger gap between target and masker, suggesting that the majority of recorded brain
activity is explained by the target predictor.

Figure 5.1 Layer-wise scalp-average correlation of the recorded EEG data with
predictions computed by various TRF models (10 s context window, 10 principal
components, trained on all data), averaged across patients and trials. Top Left: Per-
formance using Whisper only. Top Right: Performance using an ensemble of Whis-
per, Acoustic Envelope, and Onsets. Bottom Left: Comparison of target-based cor-
relation of the ensemble and its components. Bottom Right: Comparison of masker-
based correlation of the ensemble and its components.

In the lower half of Figure 5.1, we compare the performance of the ensemble (Whis-
per combined with the acoustic envelope and onsets) with its individual compo-
nents. For the target-based predictor, we observe a positive correlation trend as we
move through the deeper layers of the network, with the ensemble slightly outper-
forming the Whisper-only model in deeper layers. This observation aligns with the
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reflections in [Anderson et al., 2023] regarding Whisper performing a graded trans-
formation of speech into language, wherein deeper layers encode higher-level lin-
guistic information and thus are better complemented by low-level acoustic features,
while earlier layers, involved in lower-level processing, do not benefit from the ad-
dition of explicit acoustic information as much. For the masker-based predictors, no
significant difference is noted between the ensemble’s performance and that of the
Whisper-only predictor. Additionally, the performance gap between Whisper-based
and purely acoustic reconstructions diminishes further along the network, consis-
tent with the conclusions in [Anderson et al., 2023] about the absence or reduction
of linguistic processing for ignored speech. The higher performance of Whisper’s
earlier layers compared to the acoustic predictor suggests that the model manages
to capture the brain’s lower-level transformations of received acoustic signals.

5.1.3 Influence of Whisper’s context Window
We tried three different values for the length of Whisper’s context window: 30 s
(the maximum allowed by the model itself), 20 s, and 10 s. These are some of the
values tested in [Anderson et al., 2023], and based on its results, we expected to see
a drop of about 20% in predictive performance for a 30 s window compared to a
10 s window. However, we were unable to reproduce such results, and as shown in
Figure 5.2, the layer-wise correlation figures of the trained and cross-validated mod-
els were virtually identical for all three context windows. We did not test window
lengths shorter than 10 s. Given the equivalence of the three window sizes, we opted
to use a window length of 10 s for further discussion to keep maximal compatibility
with [Anderson et al., 2023].

Figure 5.2 Comparison of the layer-wise scalp-average correlation of the recorded
EEG data with predictions computed via TRF modeling (10 principal components,
trained on all data) for different length of Whisper’s context window for target (left)
and masker (right) stimuli. The performance is virtually identical for all three tested
window lengths.
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5.1.4 Influence of Automatically Generated Surprisals
To assess the potential contribution of Whisper-generated syntactic surprisal sig-
nals, we compared the performance of a Whisper-only predictor and an ensemble
of Whisper and acoustic features, with and without the addition of surprisals. The
results are depicted in Figure 5.3. Unfortunately, the surprisal-only predictor signals
did not show any meaningful correlation with the recorded EEG data, thus failing
to enhance the performance of the Whisper-based predictors (further analysis based
on the Whisper and acoustics ensemble can be found in the Appendix). A deeper
analysis of the training logs for the surprisal-enabled models revealed that in many
instances, surprisal-infused regressors achieved a high correlation with the training
signals; in other cases, however, the correlation was either null or even strongly
negative. This inconsistency suggested closer analysis of the logs that revealed the
Whisper-enabled generation of surprisals using the Whisper Timestamped model
[Louradour, 2023] and the current implementation to be too unreliable - both in tim-
ing and transcription accuracy - to serve as a robust EEG estimator for AAD. Our
dataset lacked a properly formatted authoritative transcription, preventing further
analysis using verified timing and surprisal information. A specific challenge en-
countered was the frequent incorrect grouping (or lack thereof) of composite words,
a known issue with tokenized architectures like Whisper [Radford et al., 2022], as
complex words often do not map one-to-one with tokens.

Figure 5.3 Layer-wise scalp-average correlation of the recorded EEG data with
predictions computed via TRF modeling (10 s context window, 10 principal com-
ponents, trained on all data) using Whisper and automatically generated syntactic
surprisals. The generated surprisals did not provide any discriminatory power and
did not contribute to the accuracy of the model.

5.1.5 Electrode-wise Correlation Analysis
The Topomaps in Figure 5.4, all plotted on the same value scale, illustrate a clear
distinction between the target (top row) and masker (bottom row) correlations. Most
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of the correlation is observed in the frontal and parietal regions, with reduced but
still significant correlation in the temporal regions, and substantially lower scores
in the occipital regions. These results align with the findings of [Anderson et al.,
2023], including the slightly better correlation scores in the right temporal region
compared to the left temporal one. These encouraging results suggest a significant
difference in correlation between target and masker, even in the temporal regions,
which is crucial for the integration of AAD technology in wearable devices.

Figure 5.4 Topomaps of the Pearson correlation between the TRF-reconstructed
and recorded EEG channels using Whisper with Acoustic Envelope and Onsets (10s
context window, 10 principal components, trained on all data). From left to right:
Whisper layers 0 through 6. Top: target prediction. Bottom: masker prediction.
Whisper mainly predicts activity in the central-parietal region and the two tempo-
ral regions. We can also see a stark difference in correlation between the target and
masker audio.

5.1.6 Statistical Analysis
In this section, we analyze the statistical properties of our model’s performance
across individual patients. Figure 5.1 shows the aggregated behavior of the model,
which aligns with our expectations. However, individual datapoints for each pa-
tient, represented by faint lines in the background, do not always follow this trend.
We observe several instances where the performance of the foreground and target
predictors drops drastically across layers, and the expected downward trend for the
masker predictor is sometimes absent. To determine whether these exceptions con-
stitute outliers or indicate high instability in our predictions, we studied the correla-
tion between the performance of the regressor (defined as the scalp-average Pearson
correlation for each patient and stimulus type - target, masker or foreground - ag-
gregated across the seven Whisper layers through either a minimum, mean or max-
imum map) and the slope of the first-order least-square estimator of the layer-wise
progression of the scalp-average Pearson correlation on a patient-by-patient basis.
Additionally, we employed Wilcoxon’s signed-ranks test to evaluate the hypothesis
that the target correlation distribution is significantly higher than the masker corre-
lation distribution. The results of this analysis are presented in Figure 5.5. There is a
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correlation between slope and performance, indicating a statistically significant dif-
ference between the predictive power of the target and masker EEG estimators. As
shown, the variance of the three stimuli classes is significantly different, justifying
the use of the signed-ranks test. Overall, the model’s most accurate layer (Whisper
Layer 6) shows scalp-average Pearson correlations of 0.060± 0.005 for the target
and 0.025±0.003 for the masker (Mean ± Standard Error of the Mean (SEM)).

Figure 5.5 Correlation between performance (measured as the per-layer scalp-
average between the recorded EEG data and matching TRF reconstruction using 10 s
context windows and 10 principal components) and the slope of the first-order poly-
nomial fitted to the layer-wise progression of the scalp-average Pearson correlation
for each patient. Performance for each point (corresponding to a patient and stimu-
lus type - target, masker or foreground) is calculated as the aggregated scalp-average
Pearson correlation across Whisper’s layers, through either a minimum, mean, or
maximum map. The Z and p scores are the result of a Wilcoxon’s signed-ranks test,
where the alternative hypothesis is that the performance figures of the target pre-
dictor are significantly higher than those of the masker predictor. The legend boxes
include the correlation r between slope and performance for each stimulus type and
the variance σp of the performance within the type.

Furthermore, we analyzed the relevance of Whisper’s contribution by performing
layer-wise statistical tests on the performance difference between Whisper-based
target predictions and Whisper-based masker predictions, as well as baseline acous-
tics. Figure 5.6 illustrates the results of this analysis before and after FDR correc-
tion. Both the acoustic and Whisper-based predictors show a significant difference
in performance between the target and masker stimuli. The Whisper-only predic-
tor shows a significant difference with respect to the acoustic predictor only in the
first two layers when regressing masker stimuli, supporting the hypothesis that later
layers of Whisper do not provide a predictive advantage over purely acoustic re-
gression. Additionally, the Whisper with Acoustics ensemble shows a significant
performance difference compared to the baseline acoustic predictor up to Whisper
Layer 5. This indicates that the acoustic features complement the deeper layers of
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Whisper and uniquely contribute to EEG estimation, as discussed in [Anderson et
al., 2023].

Figure 5.6 p-values of a series of signed-ranks tests performed to verify the sig-
nificance of the contributions of each element of the Whisper + Acoustics ensemble.
Dashed lines represent the raw p-values, whereas the solid lines represent the same
values after FDR correction.

5.2 Auditory Attention Decoding

Having validated Whisper’s contribution to EEG prediction, we now explore its
potential application in near real-time Auditory Attention Decoding (AAD). At its
core, AAD is a classification task that aims to determine which among a set of n
audio streams is the current target of attention. For practical use, an AAD algo-
rithm must be both accurate and fast. High classification accuracy is futile if paired
with long response times, as potential users cannot wait extensively for the sys-
tem to adjust. Conversely, a fast but inaccurate algorithm could be disruptive, as it
might consistently amplify undesired sounds while muffling the target of attention.
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Therefore, besides classification accuracy, the main performance metric for an AAD
algorithm is the MESD, influenced by factors generally categorized into:

• Operational Delays, such as processing time for auditory stimuli or general
computations.

• Intrinsic Delays, which are inherent delays caused by the amount of past
data required by the algorithm to predict the target of attention.

5.2.1 TRF-Based Attention Decoding
Initially, we attempted attention decoding through a forward-modeling approach us-
ing the models obtained during the training phase. To evaluate the model’s perfor-
mance in AAD, we segmented the available data for each patient into small chunks
of fixed length, corresponding to the classifier’s decision window — the length of
data on which the target detection is based. For each context window, we computed
the EEG-TRF scalp-average correlation of both stimuli using both the target and
masker classifiers, resulting in a total of four features. These features were used as
input to a SVM classifier tasked with identifying whether the first or second stim-
ulus is the target of attention. The classification dataset was carefully constructed
to ensure an equal number of cases where the target of attention is the first or sec-
ond stimulus, and 8-fold cross-validation was employed to ensure the validity of the
results, as shown in the left side of Figure 5.7 and Table A.1.

Figure 5.7 Classification accuracy for AAD based on TRF using 64 (left) or 6
(right) EEG channels.

The classifier demonstrates reasonable accuracy even at relatively short context
lengths. However, Figure 5.7 shows that Whisper does not significantly enhance
performance compared to plain acoustic features when used for attention decoding
through TRF reconstruction, despite showing substantial improvements in corre-
lation when fitted to the recorded EEG data using the same method. Furthermore,
we notice very small changes in accuracy figures across the Whisper layers for
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any given decision window length, perhaps with the exception of the longest 30 s
window, seemingly contradicting the previously verified notion that the increased
linguistic content of deep Whisper layers provides a significant performance in-
crease over both earlier layers of the ASR model itself as well as acoustic-based
predictors. This discrepancy from the favorable results presented in Section 5.1.2
may be attributed to the reduction in context length used to compute the correlation
coefficients from the entire 59 seconds of audio previously used down to 30 or
even 5 seconds. Whisper’s increased language awareness makes its predictions rely
on a longer context window compared to plain acoustic features, which primarily
correlate with lower levels of acoustic processing requiring less context. This longer
information period might make Whisper’s internal state more stable and accurate
over extended periods but less locally correlated to the EEG, causing the correlation
coefficient to drop for short decision windows. This is reflected in Table A.1, where
the gap between acoustic and Whisper-based predictors grows with the decision
window length.

There are other possible explanations for the unexpected performance. TRF-based
predictions use the scalp-average correlation of both audios, which compresses the
information embedded in the correlation patterns across the scalp into a single num-
ber. However, using the entire set of electrodes for classification would drastically
increase the dimensionality of the classification vector, challenging the capabilities
of a relatively simple classifier like SVM. Additionally, during the linguistic em-
bedding pipeline, Whisper’s 512-dimensional hidden states were reduced down to
10 dimensions using PCA. PCA maximizes cross-component variance instead of
explanatory power, which is usually but not always a good proxy. This is the reason
why caution should be used when applying PCA to EEG data, and similar issues
might arise when applying it to Whisper’s latent space, likely subject to noise (pat-
terns uncorrelated with EEG signals). In general, the relatively high-dimensional
data we are working with (both on Whisper’s and the EEG side) is subject to the
curse of dimensionality, which complicates working with high-dimensional data in
Machine Learning settings.

5.2.2 CCA-Based Attention Decoding
Previous research has highlighted the significant impact that CCA can have on the
performance of AAD classifiers [Alickovic et al., 2019; Geirnaert et al., 2021]. In-
deed, projecting the data into a latent space that maximizes the correlation between
two sets of data is both an intuitive and powerful extension of a correlation-based
classification task. In this study, we decoded the target of attention using subject-
specific predictors based on three variants of CCA:

• Multi-View CCA (MCCA): Trials are individually fitted and the filters are
then combined together to obtain a single predictor.
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• Single-View CCA: The 32 trials for each patient are concatenated along the
time dimension, treating them as a single, long signal.

• Deep CCA: Similar to Single-View CCA but backed by Deep Neural Net-
works.

The results of the CCA-based attention decoding are presented in Figure 5.8 and
Table A.2. The application of CCA not only enhances the overall accuracy of every
tested model but also significantly increases the performance gap between tradi-
tional acoustic-powered predictors and Whisper for Auditory Attention Decoding.
Whisper demonstrates impressive performance, even when paired with relatively
simple classifiers using short decision windows. This attention decoding pipeline
underscores Whisper’s potential and highlights its advantage over acoustics-based
AAD algorithms.

Figure 5.8 Classification accuracy for AAD based on CCA (left) and MCCA
(right) using 64 EEG channels. The two approaches produce very similar results,
within 0.2% of each other for any decision window length.

Although the performance improvement between classifications using acoustic data
and Whisper data is notable, the difference between the different Whisper layers is
less pronounced than expected based on the results discussed in Section 5.1. This
is particularly true for longer context windows, where performance does not even
follow a clear gradient across layers. This could suggest that the hybrid model’s
performance is being limited in some way, however, the excellent prediction ac-
curacies imply that while increased linguistic content does contribute to prediction
accuracy (as seen with shorter decision windows like 5 s, where the layer gradient
is more noticeable), there are other intrinsic qualities of the linguistic embeddings
driving the substantial performance difference between TRF-based and EEG-based
AAD. These qualities remain to be fully explored. Another interesting aspect of
these results is the increase in variance as the decision window lengthens, which
is counterintuitive. This can be explained by the fact that a longer context window
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means fewer windows fit within the same audio segment, leading to more diverse
data compared to scenarios with more decisions made on the same file. Note that the
results presented were obtained by presenting the classifier with separate features
for the two audio streams, as opposed to only their difference (see Section 4.4.1).
This classification vector style proved to be significantly more effective than its
counterpart.

5.2.3 Reduced Electrode Analysis
In our investigation of the applicability of Whisper-based AAD techniques, we also
examined the impact on classification performance when only a few electrodes in
the two temporal regions are available. This scenario simulates the limited scalp
coverage that a pair of smart glasses with embedded EEG probes might realisti-
cally achieve. We selected the electrode set FT7, T7, TP7 and FT8, T8, TP8 (see
Figure 2.1). The methods for reducing the data differ between the TRF-based and
CCA-based classifiers:

• For TRF-based AAD: We used the pre-trained 64-electrode model to com-
pute the correlation coefficients of the reconstructed and recorded EEG sig-
nals for each channel. We then selected the coefficients corresponding to the
channels of interest and used only those to compute the scalp-average corre-
lation.

• For CCA-based AAD: We trained an entirely new model using only the 6
channels of interest on the EEG side.

Our rationale for reusing the more comprehensive TRF models for reduced-
electrode analysis was that training would likely occur in a lab with a full elec-
trode cap available. Therefore, it makes sense to train a more complex model using
a comprehensive setup to enhance its understanding of the relationship between
Whisper and the subset of channels available at runtime. For CCA, it is impossible
to "cut out" the unavailable channels from a trained model, as it just specifies a
linear combination of EEG channels to complete the transformation into latent
space for each canonical correlate. While it is possible to zero out the lost channels
or remove the corresponding columns from the EEG-side filters, this approach has
experimentally proven to drastically reduce the performance of CCA-based classi-
fiers. This is unsurprising, as the correlation-maximizing computations performed
by CCA assume full access to the EEG data and may not transfer well to a reduced
set of channels. Thus, for CCA, we opted to train the models from scratch. The re-
sults are presented in Figure 5.9 (for CCA and MCCA), the right side of Figure 5.7,
and the second halves of Tables A.1 and A.2.

An interesting observation is that the TRF-based classifier does not suffer any
noticeable performance hit from the reduction in electrode availability, while the
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CCA-based classifier’s predictive power drops significantly. This suggests that us-
ing the 64-electrode TRF for the 6-electrode classification task helps mitigate the
performance penalty inflicted by the substantial reduction in available data. How-
ever, it also indicates that the TRF-based classifier (but not the TRF model itself)
struggles to extract information from the available Whisper data, as looking at Fig-
ure 5.4 we can notice how most of the correlation from the TRF model originates
from the central-parietal region, and losing access to that region and more than 90%
of the available channels should impose a significant penalty on the results. Despite
the reduced accuracy, CCA and Whisper-based AAD still maintain a significant
performance gain over the acoustic predictor, indicating that even in constrained
environments, Whisper can provide an advantage for AAD algorithms. As we will
discuss later, this advantage becomes even greater in terms of MESD when faced
with a reduced dataset.

Figure 5.9 Classification accuracy for AAD based on CCA (left) and MCCA
(right) using 6 EEG channels. While CCA and MCCA still produce quite similar
results, the difference between the two approaches increases when only considering
6 electrodes.

It is important to note that limited electrode count is not the only challenge for AAD-
capable wearable technology. Limited computational power, energy availability, and
the use of dry electrodes all impact classifier performance, all factors the effect of
which cannot be easily predicted without building a prototype and using it to acquire
comparable data.

Parameter Selection A comprehensive manual parameter search was conducted
to identify the optimal number of canonical correlates, the appropriate set of lags,
and the ideal overall time shift L. All models discussed in this work favored the
maximum available number of canonical correlates: specifically, 2 correlates for
the classifier based on the acoustic envelope and onsets, and 12 correlates for the
classifier based on the acoustic envelope, onsets, and Whisper. Interestingly, the
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models also preferred an empty set of lags, resulting in a sample-by-sample cor-
relation analysis between EEG and the input stimuli. The only adjustment made to
the temporal relationship between the two data streams was through the overall time
shift, which varied between −90 ms and −140 ms depending on the specific case.
This finding was unexpected, given that previous work on CCA had relied on ma-
nipulating acoustic data through a filter bank or set of delays to achieve the reported
performance levels [Alickovic et al., 2019; Geirnaert et al., 2021].

5.2.4 Deep CCA
Given the strong performance demonstrated by classical CCA algorithms, for our
analysis of the contributions of Deep CCA (DCCA) when paired with Whisper for
Auditory Attention Decoding (AAD) we decided to focus on the development of a
classifier capable of generalizing well across different subjects. To this end, the 32
trials of all 17 subjects (for a total of 544 instances) were concatenated along the
time dimension into a single, long of signal. The signal was then partitioned along
the time dimension into 8 equally long contiguous segments, which were then used
to perform cross-validation to produce validated performance figures without the
necessity for a separate held-out data set.

As a consequence of this cross-validation scheme, each validation set contained data
from 4 different trials, guaranteeing the presence in each of significantly different
stimuli and, therefore, the correct representation of the expected performance of the
model. The results, based on an ensemble of acoustic features and Whisper’s Layer
6, are displayed in Table 5.1, while the parameters used for model training are listed
in Table A.3. Due to time constraints, an extensive evaluation and tuning of the DNN
architecture was not feasible. Consequently, the results presented here are intended
to represent the potential contribution of DCCA to AAD when paired with Whis-
per, and to serve as a guide for further, more rigorous research. The collected data
reveals that the deep classification pipeline performs reasonably well but still falls
short compared to individual implementations - especially in terms of responsive-
ness - for the 64-electrode AAD. The performance penalty, however, becomes much
less significant when considering the 6-electrode scenario. This suggests that the in-
creased modeling capabilities of DCCA over classical CCA algorithms can provide
a performance edge, potentially allowing for effective generalization of these clas-
sifiers when paired with a more thoroughly optimized architecture. Nevertheless,
the inherent complexity of DCCA poses challenges for integration with compact,
power-efficient, and resource-constrained devices, given the already substantial per-
formance and training requirements of the relatively simple DCCA networks tested
in this study.
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Accuracy %
Mean±SD

Decision Window Length (s)
5 10 15 20 30

64 Electrodes 67.9±0.02 73.4±0.02 77.9±0.02 81.3±0.02 85.7±0.03
6 Electrodes 61.6±0.01 66.7±0.02 69.2±0.03 72.4±0.02 75.6±0.03

Table 5.1 DCCA accuracy for cross-patient AAD with 64 and 6 electrodes.

5.3 MESD Performance

After gathering accuracy performance data at various time windows using different
methods, we calculated the MESD for the tested approaches. The results, generated
using a confidence level P0 = 0.8, a confidence interval lower bound c = 0.65, a
minimal number of states N = 5, a particle count K = 1000 (see Section 2.2.1),
and the Matlab MESD Toolbox [Geirnaert et al., 2019a; Geirnaert et al., 2019b;
Geirnaert et al., 2020], are reported in Table 5.2. Whisper-based predictions do not
provide significant advantages over acoustic features when using TRF reconstruc-
tion. In fact, earlier layers produce significantly slower switch times than just using
envelope and onsets. However, the combination of Whisper with CCA lowers the
MESD by up to 4.5 seconds or 18.5% when using 64 electrodes, whereas the usage
of MCCA does not seem to yield any further performance advantage. Deep CCA
combined with the deepest Whisper layer successfully generalizes across the entire
population of 17 test subjects, achieving a reduction of 3.1 seconds or 12.7% over
the best result achieved with acoustic features while being 7.7 seconds or 38.9%
slower than a patient-specific AAD pipeline relying on the same Whisper layer and
classical CCA. The performance gains of Whisper over envelope and onsets become
more apparent when lowering the electrode count from 64 to 6, yielding a reduc-
tion of up to 77.3 seconds or 64.9% when using MCCA. In this instance, a larger
performance gap between CCA and MCCA is observed, as well as a clearer per-
formance gradient across layers when using CCA-based methods. The generalized
DCCA predictor also gains significance with this lower-dimensional EEG represen-
tation, with a MESD increase of "just" 8.9 seconds or 21.4% over the per-patient
standard CCA equivalent. These results with reduced electrode count, however, are
overshadowed by the results obtained with TRF modeling:the TRF approach is able
to work with 6 electrodes causing only a marginal increase in MESD, although
it exhibits the same issues previously described regarding a lack of performance
difference with respect to purely acoustic features. Notably, the Whisper-based en-
semble performs similarly, and in many cases worse, than the purely acoustic TRF
with both electrode counts.
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Stimuli
Generators

64-Electrode MESD (s) 6-Electrode MESD (s)
TRF CCA MCCA DCCA TRF CCA MCCA DCCA

Env + Ons 36.1 24.3 24.1 - 38.3 132.8 119.2 -
Whisper with Acoustic Envelope and Onsets

Layer 0 42.2 20.9 20.9 - 42.2 50.0 44.8 -
Layer 1 41.5 20.6 20.7 - 39.6 51.8 50.5 -
Layer 2 39.2 20.5 20.6 - 42.5 54.3 44.9 -
Layer 3 39.4 20.2 20.0 - 40.1 50.2 50.9 -
Layer 4 37.3 20.4 20.2 - 36.2 45.1 46.2 -
Layer 5 35.8 20.2 20.2 - 36.4 44.8 44.5 -
Layer 6 37.3 19.8 20.0 27.5 39.6 41.6 41.9 50.5

Table 5.2 MESD figures for the different AAD pipelines tested in this study. These
figures have been generated using the method described in Section 2.2.1, averaging
the ESD over 1000 particles
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Conclusion

In this thesis, we successfully replicated the findings presented in [Anderson et al.,
2023], demonstrating a significant increase in correlation between EEG data and
forward TRF reconstructions based on Whisper’s hidden states. This was compared
to predictions obtained through classical sound-based features such as Acoustic
Envelope and Acoustic Onsets, using a Danish dataset and achieving results similar
to the original paper. This confirms that Whisper-based predictions generalize well
across languages, making Whisper an invaluable tool for language-agnostic analy-
sis of EEG data.

Furthermore, we demonstrated that these advantages translate into tangible im-
provements in Auditory Attention Decoding tasks, with Whisper showing potential
for lower MESD when coupled with Canonical Correlation Analysis to enhance
the extraction of the underlying correlations between the ASR model and recorded
brain data. While developing our AAD pipeline, we discovered that TRF-based
attention decoders, unlike CCA-based ones, are unable to effectively capture the
linguistic content embedded in Whisper’s hidden states. However, they are signifi-
cantly more resilient to a post-training reduction in electrode data availability than
our CCA-based AAD implementation.

Aside from the expected drop in performance when switching from a full-scalp
electrode cap to a smaller subset in the temporal regions, CCA failed to fully cap-
ture - or at least convert into a tangible accuracy increase - the enhanced linguistic
content found in deeper, more linguistic Whisper layers. Indeed, the deep Whisper
layers, while performing very well in AAD, showed no significant difference com-
pared to all the layers before them. This may be due to the curse of dimensionality,
affecting the tractability of our fairly high-dimensional data, especially for simpler
mathematical models such as CCA and MCCA. This hypothesis is supported by
the fact that Whisper-backed, TRF-based AAD did not significantly improve over
acoustic predictors, even with the full 64 electrodes available (Table A.1), which
definitely defies our initial expectations when taking on this project. To explore
the potential future developments of Whisper and CCA combinations for attention
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decoding, we conducted preliminary tests of a Deep CCA architecture. Even with a
brief parameter search, our DCCA models achieved competitive performance with
acoustic-based classifiers while generalizing across the entire population of 17 test
subjects, suggesting potential for further rigorous analysis and not falling much
behind other CCA variants in performance over 6-electrode data.

We also experimented with Whisper-generated syntactic surprisal signals [Heilbron
et al., 2022] in our predictors, but this approach did not produce a meaningful cor-
relation with EEG data. However, some results discussed in Chapter 5 pertaining
to the generation of surprisal-backed TRFs suggest the potential of integrating such
information in forward modeling approaches, and possibly hybrid and backward
modeling, provided the availability of more reliable surprisal information.

6.1 Future Ramifications of This Work

Future research in Machine Learning-based AAD should further explore the appli-
cation of Whisper-based forward modeling to AAD, aiming to translate the signif-
icant increase in correlation demonstrated in this work and [Anderson et al., 2023]
into tangible performance improvements in attention decoding tasks. Tackling the
performance of CCA-based AAD with lower electrode counts should also be con-
sidered a good candidate for future work on the subject, and further exploration of
DCCA-based solutions could prove to be an effective fix for such shortcomings.
Rigorous analysis of the contribution of surprisal to attention decoding through
manually generated and aligned transcripts is crucial to better understand the poten-
tial further contributions of Machine Learning in this field, with the hope of future
availability of robust, near-real-time transcription models. AAD has applications
across various fields, but one of its most promising developments is in intelligent,
neuro-steered hearing aids, which could significantly improve the lives of hearing-
impaired patients. It is important to note that our dataset comprises normally hearing
subjects, not the intended users of such technology. Research with hearing-impaired
subjects has shown drastically reduced correlation, higher variability, and degraded
improvements with advanced models, underscoring the need for detailed studies to
assess this technology’s impact on its intended audience.

6.2 Applicability in Real-World Scenarios

A key concern for implementing this technology is the performance requirements of
a large model like Whisper. Wearable devices face constraints in processing power,
memory availability, heat generation, volume, power consumption, and energy stor-
age, which are challenging to meet with the high-performance computer compo-
nents needed to run Whisper today. Although a far cry from the sort of hardware
we expect to find in such embedded applications, we did manage audio to linguistic
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embedding transformation in less than real-time on a laptop computer (Acer Ni-
tro AN515-57, Intel Core i7-11800H 2.30 GHz, 16 GB DDR4 RAM, RTX 3070
with 8GB of video memory). Future development in hardware technology could
also help accelerate the path forward to the integration of these advanced models in
implants.
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Accuracy %
Mean±SD

Decision Window Length (s)
5 10 15 20 30

Env + Ons 66.0±0.6 71.7±0.9 76.4±0.9 77.0±1.2 80.5±1.4
Whisper with Acoustic Envelopes and Onsets

Layer 0 64.3±8.2 68.7±10.5 73.0±11.7 75.8±15.2 79.8±16.3
Layer 1 64.8±8.2 69.7±10.5 74.7±11.7 77.4±14.0 81.3±15.2
Layer 2 63.5±8.2 72.8±12.8 75.2±14.0 75.2±14.0 78.6±16.3
Layer 3 65.2±8.2 71.1±10.5 74.4±11.7 77.5±14.0 79.7±16.3
Layer 4 65.7±7.0 71.5±10.5 75.0±11.7 78.1±14.0 81.5±15.2
Layer 5 66.0±8.2 71.9±10.5 76.0±11.7 78.6±14.0 82.2±16.3
Layer 6 65.7±7.0 71.5±10.5 76.8±11.7 78.7±15.2 82.4±15.2
Accuracy %
Mean±SD

Decision Window Length (s)
5 10 15 20 30

Env + Ons 65.8±8.2 70.9±10.5 76.1±11.7 77.4±12.8 82.7±14.0
Whisper with Acoustic Envelopes and Onsets

Layer 0 64.3±8.2 69.6±10.5 73.8±11.7 76.1±14.0 79.2±16.3
Layer 1 65.6±7.0 70.6±10.5 75.2±11.7 78.2±12.8 80.1±15.2
Layer 2 64.0±8.2 68.9±10.5 73.1±11.7 76.1±14.0 77.5±16.3
Layer 3 65.1±8.2 70.3±9.3 74.1±12.8 77.1±14.0 80.2±16.3
Layer 4 65.4±8.2 70.6±11.7 74.5±11.7 78.3±14.0 80.5±15.2
Layer 5 65.9±8.2 71.8±10.5 76.1±11.7 78.7±14.0 82.4±15.2
Layer 6 66.0±8.2 71.6±10.5 75.6±11.7 79.5±12.8 83.9±14.0

Table A.1 Classification accuracy across all patients for TRF-based AAD (10s
Whisper context length, 10 principal components, trained on all data) for different
combinations of input stimuli and correlation window lengths. Top: full electrode
coverage. Bottom: reduced electrode count.

55



Appendix A. Additional Data

Accuracy %
Mean±SD

Decision Window Length (s)
5 10 15 20 30

Env
Ons

MCCA 71.6±7.0 78.4±9.3 82.0±11.7 84.7±14.0 89.3±15.2
CCA 71.3±7.0 78.4±9.3 80.8±11.7 85.1±14.0 88.2±15.2

Whisper with Acoustic Envelops and Onsets

L0
MCCA 78.7±5.8 87.7±8.2 92.2±8.2 94.8±8.2 97.4±8.2
CCA 78.8±7.0 88.1±7.0 92.2±7.0 94.5±8.2 96.5±8.2

L1
MCCA 79.3±7.0 86.6±8.2 92.1±8.2 92.2±9.3 96.0±9.3
CCA 79.5±7.0 87.4±7.0 91.7±8.2 92.9±9.3 96.9±9.3

L2
MCCA 79.6±5.8 87.8±8.2 91.7±8.2 93.8±8.2 96.9±8.2
CCA 79.7±7.0 87.7±8.2 92.2±8.2 93.8±8.2 97.6±7.0

L3
MCCA 81.1±7.0 88.3±7.0 92.6±8.2 94.0±8.2 97.4±8.2
CCA 80.7±7.0 88.8±7.0 92.5±8.2 94.5±9.3 97.2±8.2

L4
MCCA 80.5±7.0 88.1±8.2 92.5±7.0 93.9±8.2 95.8±10.5
CCA 80.1±7.0 88.4±7.0 92.5±8.2 94.3±8.2 96.1±10.5

L5
MCCA 80.5±5.8 88.6±7.0 92.7±8.2 95.1±8.2 96.0±10.5
CCA 80.6±7.0 88.3±7.0 92.3±8.2 95.3±8.2 96.3±9.3

L6
MCCA 81.2±7.0 89.6±7.0 93.0±8.2 95.8±8.2 98.4±5.8
CCA 81.8±7.0 89.2±7.0 93.0±9.3 96.1±8.2 96.7±9.3

Accuracy %
Mean±SD

Decision Window Length (s)
5 10 15 20 30

Env
Ons

MCCA 57.8±8.3 60.4±13.2 63.2±15.2 65.7±17.2 66.2±22.9
CCA 57.9±8.1 60.4±11.6 62.3±17.4 64.3±16.4 66.7±25.6

Whisper with Acoustic Envelops and Onsets

L0
MCCA 62.4±7.9 65.7±12.1 66.7±14.9 67.6±17.4 72.1±24.2
CCA 61.9±8.0 64.7±12.6 68.5±15.8 68.8±17.2 72.1±23.6

L1
MCCA 61.8±7.9 65.2±11.6 69.4±14.4 69.6±19.7 73.7±22.4
CCA 61.6±7.8 65.7±11.9 69.7±14.4 71.7±19.4 73.7±24.2

L2
MCCA 62.3±8.6 67.0±12.2 69.9±14.4 71.5±18.3 73.3±23.6
CCA 61.1±8.7 66.5±13.2 69.6±14.6 70.7±18.0 74.3±22.1

L3
MCCA 61.4±8.5 67.6±12.0 69.0±15.1 72.2±17.1 74.6±22.1
CCA 61.6±8.9 67.0±11.9 67.5±15.7 71.5±17.5 77.2±19.6

L4
MCCA 62.1±8.3 66.7±12.4 69.1±16.1 71.9±17.7 74.3±23.4
CCA 62.2±9.0 66.9±12.6 69.1±15.2 71.1±18.0 72.6±24.1

L5
MCCA 62.6±8.4 67.3±12.0 69.7±15.8 71.5±16.0 75.2±22.7
CCA 62.4±7.8 67.8±12.1 70.1±15.2 70.8±17.7 75.0±22.8

L6
MCCA 64.5±8.1 70.1±12.0 73.9±14.3 75.9±16.9 77.6±21.6
CCA 64.7±8.5 70.0±11.5 74.6±14.2 76.9±16.7 78.5±22.0

Table A.2 Classification accuracy across all patients for CCA-based AAD (10s
Whisper context length, 10 principal components, trained on all data) for different
combinations of input stimuli, correlation window lengths, and CCA methods. Top:
full electrode coverage. Bottom: reduced electrode count.
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Parameter Value
64 Electrodes 6 Electrodes

Stimuli DNN Architecture [128, 128, 128, 10] [10, 10]
EEG DNN Architecture [128, 128, 128, 10] [64, 10]
Regularization Coefficient 10−4

Weight Decay 10−4

Batch Size 1000
Initial Learning Rate 0.01
Learning Rate Decay No Decay
Momentum 0.99
Maximum number of epochs 25

Table A.3 Parameters used to train the DCCA models. Despite the relatively low
maximum epoch we haven’t observed instances where that turned out to be the lim-
iting factor to learning. Separate architectures have been used to train full-scalp and
temporal-only deep correlators. The DNN architectures are represented here as a list
of layer widths, excluding the input layers, ordered by increasing depth.

Layer Scalp-Average Pearson Correlation (Mean±SD)
Masker Target Foreground

Acoustic Envelope
- 0.0214±0.0100 0.0411±0.0165 0.0467±0.0148

Acoustic Envelope and Acoustic Onsets
- 0.0229±0.0102 0.0435±0.0164 0.0490±0.0156

Whisper
Layer 0 0.0300±0.0161 0.0543±0.0208 0.0620±0.0229
Layer 1 0.0311±0.0171 0.0571±0.0205 0.0648±0.0235
Layer 2 0.0288±0.0165 0.0563±0.0204 0.0630±0.0229
Layer 3 0.0277±0.0149 0.0558±0.0207 0.0625±0.0219
Layer 4 0.0260±0.0134 0.0546±0.0220 0.0609±0.0218
Layer 5 0.0251±0.0110 0.0555±0.0215 0.0610±0.0210
Layer 6 0.0227±0.0104 0.0577±0.0221 0.0616±0.0215

Whisper with Envelope and Onsets
Layer 0 0.0306±0.0158 0.0551±0.0203 0.0633±0.0223
Layer 1 0.0317±0.0165 0.0576±0.0199 0.0657±0.0228
Layer 2 0.0301±0.0162 0.0579±0.0201 0.0653±0.0226
Layer 3 0.0294±0.0150 0.0583±0.0202 0.0651±0.0217
Layer 4 0.0282±0.0136 0.0576±0.0212 0.0642±0.0215
Layer 5 0.0270±0.0116 0.0585±0.0211 0.0646±0.0208
Layer 6 0.0251±0.0116 0.0605±0.0219 0.0653±0.0216

Table A.4 Scalp-average Pearson correlation with the recorded EEG data of TRF-
based predictors fed with different sets of input stimuli.
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Figure A.1 Distribution of ideal values of α during TRF fitting (context window of
10s, 10 principal components, all data included). This range of values has been ex-
perimentally chosen as a compromise of good coverage and computational intensity
as we were building our TRF pipeline. Ideal α values have been individually chosen
for each patient, set of stimuli (and Whisper layer when it was involved), and type of
stimuli (target, masker or foreground).
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