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Abstract

Auditory attention detection is crucial for understanding speech in noisy environ-
ments, a challenge known as the "cocktail party problem." This project investigates
the use of electroencephalography (EEG) to identify which speaker a listener at-
tends to. EEG’s portability and real-time recording capabilities make it a promising
tool for practical applications.

We propose a novel neural network model for auditory attention detection using
EEG data. The model reconstructs the attended speech envelope while simultane-
ously classifying attended vs. unattended speech. It incorporates a contrastive learn-
ing loss function (SigLIP), which, to our knowledge, has not been previously ap-
plied to EEG-based auditory attention detection. The model architecture combines
convolutional, fully connected, and attention layers.

Evaluated on an EEG dataset with 31 subjects, the model achieves a mean accuracy
of 68% and a mean correlation of 0.105 between the reconstructed and attended en-
velopes. This surpasses the baseline performance of linear methods (63% accuracy,
0.084 correlation). These results suggest the potential of contrastive learning for
improving auditory attention detection accuracy, warranting further investigation.
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1
Introduction

1.1 The Problem with Auditory Attention

We often find ourselves listening to one person while there is background sound,
this being music, ambient noises or even the conversations of others. For humans,
effortlessly focusing on the desired speaker is a natural ability. However, for com-
puters, this "cocktail party problem" poses a significant challenge. This project in-
vestigates this problem, with a simple example presented in Figure 1.1. Solving
it could have immense benefits in many areas, especially in development of hear-
ing. Current hearing aids struggle to identify and isolate the relevant sound for the
hearing aid user in noisy environments, leading to listening discomfort and social
withdrawal [Marrone et al., 2008].

This project focuses on identifying the attended speaker by analyzing the brain sig-
nals of the listener through EEG. Research in this area has grown significantly in
recent years, employing both linear and non-linear methods (as outlined in the fol-
lowing sections). EEG’s portability and ease of use, requiring a few strategically

Figure 1.1 Cocktail party problem
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Chapter 1. Introduction

placed sensors - such as those placed along the ear area of the user - make it a
viable option for real-world, live attention tracking.

1.2 Objectives

The proposed objectives for this project are:

• Apply contrastive learning to the cocktail party problem.

• Analyze whether contrastive learning presents an advantage in this context.

• Obtain an accuracy higher than the chosen baseline method.

• Aim to improve accuracy further than existing attention decoding models.

• Obtain a high correlation between original and reconstructed stimuli.

10



2
Background

2.1 Approaches to the problem

There are multiple ways to approach the cocktail party problem. One method that
has gained popularity with the advent of deep learning is to classify the locus of
attention as a binary classification task. Another approach is to reconstruct the stim-
ulus from the EEG recordings, which can be done with both linear and non-linear
models. Once the stimulus is reconstructed, the correlation with the stimuli is calcu-
lated and the one which scores higher is defined as the attended one. This is referred
to as the backwards approach, where the EEG is used to reconstruct the speech
stimulus. The opposite process, known as the forward approach, entails recon-
structing the EEG signal from the speech stimuli. In this project, we employ the
backward approach.

Linear methods
The linear methods that are capable of transforming an EEG recording into a sound
envelope used in this project are described in [Alickovic et al., 2019]. These meth-
ods rely on Finite Impulse Response (FIR) models to estimate a Temporal Response
Function (TRF) [which essentially captures how the speech signal influences the
EEG signal at different time lags]. Given an EEG signal Xi ∈ RC×T (where C is the
number of channels, T is the number of samples, and i is the corresponding segment
index), we can reconstruct an estimate of the attended speech envelope si(t) as,

ŝi(t,θ) = ∑
c

∑
l

Xi(t + l,c)θ(l,c).

Here, θ represents the estimated TRF, which acts as a linear mapping from the EEG
onto the speech stimulus. The TRF θ is estimated by minimizing the Mean Squared
Error (MSE) between the actual speech envelope and the reconstructed envelope. In
this project, the backward model was implemented using the mTRF toolbox [Crosse
et al., 2016a] which tries to minimize the MSE between the estimated envelope and
the attended speech envelope. It uses ridge regression, which adds a regularisation
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Chapter 2. Background

term λ , as trying to only minimise the MSE would cause the model to overfit on the
training data. The formula for ridge regression is

θ̂ = argmin
θ

(
∥ŝi(t,θ)− si(t)∥2

2 +λ∥θ∥2
2
)
.

There are multiple ways to extract the envelope of a speech signal, as outlined in
[Biesmans et al., 2017]. This project utilizes the simple yet effective method of
calculating the absolute value of the Hilbert transform of the speech signal, as done
in [Alickovic et al., 2019]

Non-Linear Methods
Neural networks offer an alternative approach to solving the same problems using
non-linear models. These models are typically larger and more complex compared
to linear methods.

Two popular neural networks are the Fully Connected Neural Network (FCNN) and
the Convolutional Neural Network (CNN). The fully connected layer is simpler,
where every node in the layer connects to all nodes in the previous layer, justifying
its name. This is mathematically described by the equation:

y(x) = f (Wx+b).

Here, x is the input vector, W represent the weights, b is the bias and f is the non-
linear activation function (e.g., Sigmoid, Rectified Linear Unit (ReLU), Hyperbolic
Tangent Function). A visualization is provided in Figure 2.1a.

(a) Fully Connected
Layer

(b) Convolutional Layer

Figure 2.1 Popular Neural Network Layers

A convolutional layer is more commonly used for image data, but it can be applied
to other types of inputs like EEG signals. In this case, the kernel ’slides’ through
the input, extracting features relevant to the task. A visualization of these layers is
shown in Figure 2.1b.
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2.2 Previous methods

Large neural networks typically combine different layers depending on the type
of input data and the desired result. Once the architecture is defined, the network
undergoes training. This involves adjusting the weights of the network to obtain
the optimal results (e.g., classification, reconstruction). Training relies on a loss
function (measurement of how close the current network is to the desired function)
and an optimizer (updating the weights based on the selected loss).

These models can be used for two main purposes: predicting the envelope or simply
classifying audio inputs as attended or unattended. In the first option the model
predicts clear and defined speech features (this is envelope, spectrogram etc.), while
in the second option the features are implicitly chosen and analyzed by the network.
While the latter approach avoids explicit feature selection, it can be susceptible
to overfitting. Deep neural networks may exploit patterns in the data that are not
relevant to the task, as shown in [Puffay et al., 2023]. For example, the network
might overfit to trial-specific details or even people’s eye gaze patterns during the
recordings. In contrast, estimating the stimulus directly from the EEG data avoids
these potential pitfalls.

2.2 Previous methods

There are two main approaches for using neural networks to understand auditory
attention with EEG:

• Stimulus reconstruction (SR): This approach aims to reconstruct the envelope
of the attended speech from EEG.

• Locus of Attention (LoA): This approach directly classifies which sound
source the listener is attending to from EEG.

Both methods have been investigated in recent years. A study by [Thornton et al.,
2022] compared two approaches: one using solely Feed-Forward Fully Connected
Layers and another using CNNs. Both networks took the EEG signal as input and
output the value of a sample of the envelope at a given time. The final result was
then correlated with the original attended envelope. The fully connected network
comprised multiple fully connected layers with the hyperbolic tangent as activa-
tion function and dropout for regularization. The CNN utilized convolutional layers,
batch normalization layers, average pooling, dropout and again hyperbolic tangent
as activation function. The loss was calculated as the negative correlation coeffi-
cient between the reconstructed and the real envelope, and Adam was used as an
optimizer. Thornton’s study achieved a mean reconstruction score (Pearson correla-
tion) of around 0.14 for the fully connected network and 0.16 for the convolutional
network, using a 3-second window and subject-specific models on a 13-participant
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Chapter 2. Background

dataset. Attention decoding with this model yielded the accuracies of ∼ 65% (2-
second window) and 72% (5-second window). Subject-independent models (one
subject left out for testing) resulted in a mean score of approximately 0.11.

In [Vandecappelle et al., 2021], a CNN was used to decode the LoA. The CNN takes
the EEG signal as input and outputs two values, indicating whether the listener
was attending the sound on the left or right. The network architecture consists of
convolutional layers with ReLU as activation function, an average pooling layer,
and a final fully connected layer for classification. The loss function used to train
the network is the cross-entropy loss between the predicted and real labels, and the
chosen optimization is mini-batch stochastic gradient descent. The study achieved
a median accuracy of 85.1% for a 10-second window and 80.8% for a window of
1-second window on a dataset of 16 normal-hearing subjects using subject-specific
training. However, the accuracy dropped to 69.3% for a 1-second window using for
subject-independent training where (one subject left out).

As seen in the previous examples, there are two main approaches to analyzing
model results based on how subject data is handled: subject-specific and subject-
independent results.

• Subject-specific model: In this approach the model is trained, validated and
tested with data of the same subject. This is valuable as it can provide infor-
mation on how good the model performs by analyzing the brain information
of one specific person. As brain waves are specific to each person, the same
hyperparameters and weights could be beneficial to one subject and damag-
ing to another, so a greater accuracy can be achieved in this manner. It can
also be trained and tested on multiple subjects to take a wider selection of
readings.

• Subject-independent model: Here, the model is trained on data from a group
of subjects and then tested on unseen data from different subjects. This ap-
proach is more practical for real-world applications, as training on every in-
dividual user wouldn’t be feasible. As mentioned before, the EEG readings
can be very different from subject to subject, which means that this result will
probably be considerably lower.

2.3 Convolutional Neural Networks

CNNs have been shown to yield noticeably better results for various tasks compared
to simple FCNNs. Here, 2D CNNs are used mainly for image data. To address this,
several methods have been developed to convert EEG data into an image represen-
tation that can be fed to the neural network. For example, in [Lawhern et al., 2016]
and [Thornton et al., 2022], the authors use 2D convolutions by transforming the
EEG data into an image (with spatial and temporal features), which are then passed
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2.4 Attention

through convolutional layers. While 2D Convolutions can handle both spatial and
temporal features, we opted to implement a 1D CNN that focused solely on tempo-
ral features.

2.4 Attention

In 2017, [Vaswani et al., 2017] introduced the transformer model and the multi-head
self-attention mechanism. This machine learning architecture was initially proposed
for Natural Language Processing applications and works in a sequence-to-sequence
manner, meaning it transforms one sequence into another.

Attention is a way to calculate weights that reflect the importance of each datapoint
both individually and as part of a sequence. In the context of language processing,
this means that relevant words in a sentence received higher attention values, incor-
porating context into the model. The attention mechanism proposed in the paper is
called Scaled Dot Product Attention and is obtained by calculating three matrices
known as Queries, Keys and Values, which are then combined as follows:

Attention = softmax(
QKT
√

dk
)V

with dk being the dimension of the keys. This method is expanded into Multi-Head
Attention, where the attention is calculated in parallel by multiple heads and then
concatenated. This is shown in Figure 2.2.

Figure 2.2 Attention Mechanism and Multi-Head Attention (Image inspired from [Vaswani
et al., 2017])
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Chapter 2. Background

2.5 Contrastive Learning

Overview on Contrastive Learning
Contrastive learning is a machine learning technique for training models in which
the inputs are transformed into a representation vector and then compared with other
representations in order to classify similar inputs together. It is said to be contrastive,
as the training is done in a way that minimizes the distance between similar inputs
and maximizes the distance with the rest. It can be applied in both supervised and
unsupervised scenarios. It is one of the most popular methods in unsupervised set-
tings, as it can achieve good results without requiring large amounts of labeled data.
We chose to use contrastive learning as it seemed intuitive. The model requires us
to "ignore" the masked speech and "focus" on the attended speech. Thus there is
a clear positive and negative sample, and the model can now learn to predict the
attended speech features.

CLIP and its variants
The Contrastive Language-Image Pretraining model (CLIP) [Radford et al., 2021]
by OpenAI is a notable example of contrastive learning applied to image classifica-
tion. CLIP learns by attempting to predict the textual description that best matches
the image. One key aspect of CLIP is its loss function, which applies contrastive
learning techniques. The CLIP loss works by projecting multimodal inputs onto
similar representations while ensuring dissimilar representations are farther apart.
Figure 2.3, adopted from the original paper, illustrates this process. In this figure, a
batch of training data is chosen, and the representation of each element is obtained.
The inner product between the representation of each image and each label is cal-
culated, resulting in a matrix. The loss function is designed to maximize the dot
product between the projections of similar views of data and minimize the projec-
tion of dissimilar views. It does so by using a softmax loss and setting the labels as
the diagonals of the resultant matrix.
One benefit of CLIP is that it avoids the need for explicitly creating negative in-
stances during training, unlike some other contrastive methods. Instead, it efficiently
compares a view in a minibatch with all the other views in the minibatch. This
makes the batch size a highly important hyperparameter.

For this project, a variant of CLIP known as SigLIP [Zhai et al., 2023] is used. It
replaces the softmax loss in CLIP with a sigmoid loss instead. Due to CLIPs softmax
loss, the loss of a positive pair depends on all the negative pairs in the data (a positive
pair refers to a pair of datapoints that belong together, e.g. image with correct label,
a negative pair would be an image with the wrong label). However, for SigLIP, the
loss (both for negative and positive pairs) are independent of other examples in the
minibatch. This essentially transforms the problem from a multiclass classification,
to a binary classification problem. SigLIP has also shown to outperform CLIP on
smaller batch sizes. An algorithm for SigLIP is shown in Algorithm 1.
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2.5 Contrastive Learning

Figure 2.3 CLIP Loss (Image inspired from [Radford et al., 2021])

Algorithm 1: SigLIP loss
# eeg = EEG embedding (batch size,num_channels,length)
# aud = Audio embedding (batch size,num_channels,length)
# b = bias
# t’ = temperature
n = eeg.shape[0]
t = exp(t’)
eeg = normalize(eeg)
aud = normalize(aud)
logits = einsum(’btc’,’rtc’->’br’,eeg,aud)*t + b
labels = 2*eye(n) - ones(n)
loss = -sum(logsigmoid(logits*labels))/n
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3
Dataset

The dataset [Alickovic et al., 2021] used in this project was provided by Eriksholm
Research Centre. The dataset consists of EEG data measured from human partici-
pants along with the corresponding speech stimuli they listened to during the exper-
iment. The following sections provide a detailed description of the dataset.

3.1 EEG and Audio

Electroencephalography (EEG) is a method for recording electrical activity gener-
ated by the brain. It involves placing sensors at a specific scalp location to cap-
ture this activity. The number of sensors used may vary depending on the desired
information. EEG is a valuable tool in various fields, including neuroscience and
cognitive research. An example of an EEG measuring is shown in Figure 3.1.

(a) Sketch of
sensor cap used
to measure EEG

(b) Example of an EEG
reading

Figure 3.1 EEG measuring (5 channels of 64 shown)

The audio is obtained as a common sound recording and the different speech fea-
tures such as envelope, spectrogram, phonemes etc. can be calculated as in Fig-
ure 3.2.

18



3.2 Experimental Design

(a) Audio recording (b) Envelope of recording

Figure 3.2 Audio data

3.2 Experimental Design

The dataset consisted of 34 native danish speakers as participants, with ages ranging
from 21 to 84 (mean 64.2 and std 13.6). All participants had mild to moderately
severe symmetrical sensorineural hearing loss and were experienced hearing aid
users. Additionally, they reported no history of neurological disorders, dyslexia or
diabetes mellitus.

3.3 Setup

The experiment involved recording EEG data from participants while they listened
to two competing talkers. Participants were instructed to attend only one of these
talkers and completely ignore the other one. A simple diagram of this setup is shown
in Figure 3.3.

EEG data were recorded using a BioSemi ActiveTwo recording system (Amster-
dam, Netherlands). with a sampling frequency of 1024Hz. The system used 66
electrodes, with 2 reference electrodes placed on the mastoids. The experiment
took place in a soundproof room where participants sat facing speakers positioned
at ±30◦, ±112.5◦,±157.5◦ azimuth relative to them. The two front loudspeakers
(±30◦) were used for the attended and the ignored speech, while the four speakers
behind the participants (±112.5◦ and ±157.5◦) played babble noise to increase lis-
tening difficulty. The speech stimuli consisted of news clips of neutral content to
minimize any emotional responsea. All silences longer than 200ms were trimmed,
so as to not exceed 200ms. A 3dB Sound Pressure Level (SPL) between the at-
tended speech and the babble was maintained. Each trial started with 5 seconds of
background noise followed by 33 seconds of speech stimuli. After 38 seconds, the
participants were asked a question about the content of the attended speech. The
experiment consisted of 80 trials in total, presented in 4 blocks of 20 trials each.
Each block used a different hearing aid noise reduction setting.
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Chapter 3. Dataset

Figure 3.3 Experiment setup and obtained data

3.4 Initial Preprocessing

The data provided had already been pre-processed to remove noise and other arte-
facts such as eye-blinks, muscle movement, heartbeats, powerline noise etc. The
preprocessing steps were as follows

1. Bandpass filtering between 0.5Hz and 70Hz using a zero-phase Hamming
window FIR.

2. Narrow band Notch filter (49Hz-51Hz) to remove line noise.

3. Downsampling to 256Hz.

4. Removing contaminated EEG channels manually, and replacing them with
data interpolated from surrounding clean EEG channels.

5. Further removing residual artifacts such as eye movements, eye blinks, mus-
cle activity, heart beats and single channel noise using ICA.

After performing the above pre-processing, only 31 out of the inital 34 speakers
were retained. This was due to there being persistent artefacts in the EEG data, along
with other issues. For subjects 21-24, a corrupted block of trials was also removed.

3.5 Pre-Processing

The models were implemented using PyTorch [Ansel et al., 2024] as the base, with
PyTorch Lightning [Falcon and The PyTorch Lightning team, 2019] to make the

20



3.6 Dataset Split

training easier to debug and visualize. Each trial was converted from its original
format (.mat) into a more Python-friendly format (.npz) for easier access and anal-
ysis. First, the EEG data was bandpass filtered between 1Hz and 16Hz using a 3rd
order Butterworth filter. It was then downsampled to 64Hz. The audio data for the
attended and the masker speech is preprocessed in 2 ways. One method involved
calculating the envelope of the speech signal. To calculate the envelope, the audio
data is downsampled to 16kHz and then the absolute value of the Hilbert trans-
form is computed. This is then downsampled to 64Hz. The other method involved
creating a melspectrogram, a representation that captures both frequency and time
information of the audio. Here, the number of mels was set to 32, the number of
ffts was set to 512, and the hop length was 250 samples. This resulted in a 64Hz
melspectrogram. Finally, the melspectrogram and the envelope were concatenated
together. This resulted in the final shape of the audio data of (33,2112). The shape
for the EEG data is (64,2112). The audio preprocessing was done using the python
package Librosa [McFee et al., 2024].

3.6 Dataset Split

Splitting the data into training, validation, and test set needed to be handled very
carefully, as leakage of training data into validation or test set would contaminate the
results giving inflated performance [Puffay et al., 2023; Tanveer et al., 2024]. One
common method was to split every trial, ensuring that the windows in the training
set were not close to those in the validation or test sets. However, this approach
was deemed suboptimal, as the model might learn interconnections within trials
rather than connections between EEG and stimulus. Therefore, we decided to split
the data into non-overlapping trials, ensuring each set (training, test, validation) had
a different trial to prevent data leakage. The dataset also had to be split evenly,
as there are 4 different blocks of trials, with each having their own hearing aid
noise reduction setting. Initial tests with the data revealed that the blocks with noise
reduction turned ’on’ were generally easier for the model to work with. Therefore,
we grouped the blocks based on noise reduction status (’on’ or ’off’). Within each
group, we further split the data into train, validation and test sets, ensuring that the
trials were randomized but also ensuring each had an equal amount of trials with
noise reduction ’on’ and ’off’. This ensures the model is not biased towards either
noise reduction setting.
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4
Methodology

4.1 Baseline

A common approach to assess model performance is to compare it to a simpler
baseline model. In this project, we use a backward linear model similar to the one
described in [Alickovic et al., 2019] (i.e. one with EEG as input and audio envelope
as output). To implement this baseline model, we used the mTRF-Toolbox for Mat-
lab presented in [Crosse et al., 2016b]. We set the minimum and maximum time lags
to −100ms and 400ms from “onset”, respectively. The time lag allows for the pos-
sibility that the EEG and audio signals are not aligned in time, a diagram is shown
in Figure 4.1. A regularization value of λ = 105 was used. The reconstructed en-
velope was then correlated with both the attended and masked envelope to assess
classification accuracy.

Figure 4.1 An example of the time lag option

The model was trained and tested in a subject-wise manner. The model was trained
with the training portion of a subject and tested with the remaining trials.

4.2 Proposed Architecture

The objective of the proposed model is mainly to achieve a high accuracy when
classifying speech signals as attended or unattended. As a secondary objective, the
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4.2 Proposed Architecture

goal is to also obtain a high correlation between the original attended envelope and
the reconstruction obtained from the EEG. Relevent code for the architecture as
well as the loss implementation can be found on this projects Github [Boselli and
Sridhar, n.d.] The proposed architecture was kept simple, as the project mainly fo-
cused on exploring how contrastive learning affects the model. While transformers
were initially implemented, the architecture proved to be too complex and the model
would almost certainly overfit. Therefore, the architecture was simplified to a base
state. We proposed a simple convolutional model along with attention layers and
skip connections

The proposed model is composed of three main submodels as shown in Figure 4.2.
The EEG, the attended audio and the ignored audio are encoded into a desired ma-
trix of embedding size in two separate encoders. The EEG enters the encoder with
the shape (B,EC,W) where B is the batch size which is a hyperparameter, EC the
number of channels, in this case 64 and W the size of the window which can be
calculated as W = fs ×WindowSize. For example, with a sampling of 64Hz and a
Window Size of 3, W = 192 samples. The audio signals enter the encoder with a
shape of (B,AC,W) with AC being the number of speech features, in this case 33
(32 corresponding to the spectrogram and 1 to the envelope).

Figure 4.2 Diagram of model. B = Batch Size, EC = Number of EEG Channels, W =
Window Length, AC = Number of Audio Channels, E = Size of Embedding

Both encoders result in an embedding of size (B,E,W) with E being the chosen
embedding size which is also a hyperparameter. The EEG embedding is then fed
into another block which reconstructs the envelope of the attended signal.

EEG Encoder
The EEG Encoder is shown in Figure 4.3. The EEG is first passed through a subject
layer. This is a layer that takes into account the subject being analyzed in order to
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Chapter 4. Methodology

obtain better results for each specific subject, this means it gathers specific weights
for each subject and trains on them. As each subject can present different patterns
in their EEG, this layer is created as an attempt to adapt the model for each subject
independently. An example of its usage can be found on Figure 4.4.

The result from this subject layer is summed to the original EEG, this is then passed
through a ECxE convolutional layer, kernel size 3, which takes the 64 channels
and transforms them into the selected embedding size. This is then passed multiple
times through a module that contains a ExE convolutional layer, a multi head atten-
tion layer of 3 heads, a dropout layer and a layer normalization layer. The K times
this is done, the dropout value and the sizes of the convolutional kernel are passed to
the network as hyperparameters. Finally, this is passed to a final ExE convolutional
layer of kernel size 1 and the embedded EEG is obtained. The convolutional layers
are chosen because of their ability to find useful features as well as to change the
size of the input into the desired embedding size, dropout and normalization layers
help to avoid overfitting. The attention layer is added in an attempt to capture in-
formation along the spatial aspect of the EEG and to provide an indication of if or
what channels are more relevant when classifying and reconstructing the audio.

Figure 4.3 Diagram of the EEG Encoder

Figure 4.4 Subject Layer example, in this case the layer is given the EEG of subject K.

Audio Encoder
The audio encoder has a similar structure to the EEG encoder as shown in Fig-
ure 4.5. The audio is passed through a ReLU activation layer and a ACxE convolu-
tional layer, kernel size 3. As before, this layer transforms the audio from its initial
33 channels into the desired embedded dimension. This is then passed multiple
times through the ExE convolution-3 headed attention-dropout-layer normalization
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4.2 Proposed Architecture

combination. The final layer is a ExE convolutional layer of kernel size 1 from
which the embedded audio is obtained.

Figure 4.5 Diagram of the Audio Encoder

Speech Reconstruction
The speech reconstruction model is shown in Figure 4.6. This takes the embedded
EEG obtained from the EEG encoder as input. The embedding is passed through a
ExAC convolutional layer in order to obtain a result with the shape of the original
audio data. This is introduced into the previously described combined block K times
and passed through a ACxAC convolutional layer and a GeLU activation layer. This
model returns a signal that should be the reconstruction of the attended speech.

Figure 4.6 Diagram of the Audio Reconstructor

Training
The first step in training is to obtain the three embeddings, EEG, attended audio
and masked audio by passing them through their respective encoders. The EEG
embedding is then passed through the Reconstruction model and a reconstructed
envelope is obtained.

The loss is calculated as:

L = Lcontrastive(eeg_emb,att_emb)−LPearson(pred_env,att_env),

where eeg_emb is the EEG embedding obtained by passing the EEG data through
the EEG encoder, and att_emb is the embedding obtained by passing the attended
speech features through the Audio Encoder.

Lcontrastive is the SigLIP loss described before. An important aspect of the contrastive
loss considered is the similarity metric used. The metric needs to be close to 1
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for similar embeddings, and close to 0 for dissimilar ones, the metric also needs
to be able to be calculated fairly quickly. Three different similarity metrics were
considered, namely:

• An extension of the distance metric used in the SigLIP paper (dot product)
for 2D embeddings

• Gaussian Kernel Distance implemented for 2D embeddings

• Pearson Correlation (rescaled to be between 0-1)

Dot Product. We extend the dot product to be able to take 2D inputs. This is
essentially the summation of a hadamard product, however we require that the result
be the function to be applied to every other example in the batch, and return a result
in the form of a square matrix. We use the einsum function for this.

Gaussian Kernel Distance. The gaussian kernel distance can be used as a sim-
ilarity metric, with the distance between two different embeddings being defined
as

K(x,y) = exp
(
−∥x−y∥2

2σ2

)
.

Here, the model had to optimize the parameter σ , which determines the width of the
Gaussian kernel. This was implemented in the manner required for SigLIP (every
embedding in the batch is compared with every other embedding).

Pearson Correlation. Pearson Correlation as a similarity metric between two em-
beddings was also considered. To compute the Pearson correlation between 2D in-
puts, we found the mean of the correlations along the channel axis between 2 ex-
amples. This was then re-scaled between 0-1.

While the Gaussian Kernel Distance converged faster, it was finally decided to use
the dot product similarity measure, as it converged to the best validation correlation
and accuracy.

During SigLIP loss the embeddings of every element in the batch are compared and
contrasted. The same audio files were used for various subjects and trials which
means that two elements in the batch could potentially have the same audio file as
attended signal. This causes problems in the loss as the model will try to maximize
the value with its own signal and minimize the value at the same time with the
other. In order to avoid this a function was created that checks that no audio files
are repeated in a batch, if this happens the datapoint is discarded from the batch and
replaced randomly, this is done until the new datapoint is not already in the batch.

LPearson(pred_env,att_env) is simply the Pearson correlation between the predicted
envelope and the envelope of the original attended audio. This value should be as
high as possible in order to obtain a good reconstruction.
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4.3 Statistical Testing

Various metrics and combinations of them were tried as the loss but the one pre-
sented above was the one which yielded the best results. The optimizer used is
Adamax with the learning rate and weight decay as hyperparameters. Early stop-
ping on the validation loss is also implemented to avoid overfitting.

4.3 Statistical Testing

The statistical tests were performed in python using the library scipy [Virtanen et
al., 2020]. In order to estimate the null set, the method outlined by [Crosse et al.,
2021] was followed. The predicted envelopes were randomly cyclically shifted and
then correlated with a random permutation of the true data. This procedure was
performed 100 times in order to establish the null set. The significance level α was
set to 0.05. Normality was checked, and a one-tailed unpaired Welch’s t-test was
used in order to calculate the significance of the obtained results. The results were
first calculated over a population level and over each individual subject.
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Results

All the results are shown with subject 14 left blank. This is because subject 14 was
removed during the initial pre-processing. The final results were ran with 2 nodes
with 8 Nvidia T4 GPUs each, the model was trained 4 times and averaged, this took
approximately 3 hours.

5.1 Baseline

The linear model used as baseline was run for 3-second windows on data from 31
subjects. The results of attention classification accuracy per subject are shown in
Figure 5.1. Overall, the model achieved a mean classification accuracy of 62.6%
across all subjects. In terms of the Pearson correlations of reconstructed speech
envelope with the envelopes of attended and ignored speech, the model achieved
the mean Pearson correlations of 0.084 and 0.007 respectively. The results for each
subject are presented in Figure 5.2. A comparison of both these correlations is also
presented in Figure 5.3.

5.2 Proposed Architecture

Hyperparamter Tuning
The tool Ray presented in [Liaw et al., 2018] was used to carry out the hyperpa-
rameter search. The library takes the model, the parameters to tune and the possible
values for each of them, then it runs the model multiple times with different combi-
nations of the parameters and returns the option with the best results. The considered
parameters and the final values are shown in Table 5.1.

Proposed Model Results
The model was trained and tested in windows of 3 seconds. On the test set a mean
accuracy of 68% was obtained. Figure 5.4 outlines the accuracy obtained for each
subject.
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5.2 Proposed Architecture

Figure 5.1 Mean classification accuracy per subject in baseline model. Subject number 14
is shown to be blank as the subject was removed during pre-processing.

Hyperparameter Final Value

Data Overlap 0.7
Batch Size 128

Architecture

Kernels [30,20,40]
Temperature 10

Bias 10
Embedding 8

Reconstruction Embedding 32

Regularization & others

Learning Rate 6e-4
EEG Dropout 0.2

Audio Dropout 0.4

Table 5.1 Final choice of hyperparameters. The hyperparameters were tuned with the
Python Library Ray.Tune with which a grid search is conducted to obtain the best combi-
nation of parameters.

The mean correlation with the attended speaker is calculated as 0.105 while the
mean correlation with the masked speaker is 0.017. The results per subject are
shown in Figure 5.5. The differences between these two correlations was also cal-
culated and plotted and can be seen in Figure 5.6.
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(a) Attended speech correlation per subject (mean 0.084)

(b) Ignored speech correlation per subject (mean 0.007)

Figure 5.2 Boxplot of Pearson Correlations per subject in baseline model for attended and
ignored speech. Outliers are represented by a cross outside the confidence intervals
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5.3 Statistical Tests

Figure 5.3 Comparison between attended and masked correlation in baseline model. The
blue bars represent the correlation between reconstructed speech and the attended speech,
while the red bars represent the correlation between reconstructed speech and the ignored
speech.

5.3 Statistical Tests

We considered the null hypothesis to be that the Pearson Correlation obtained from
the envelope reconstructed from the EEG is not significantly higher than the null
set, which was designed by pairing cyclically shifted reconstructions with random
true speech envelopes.The population level results, that is taking the entire dataset
together in order to see if the model performs better on average, had the p-value
≪ 0.05. When evaluated per subject in order to see if there is any significant im-
provement within the subject level, only subject number 21 and 26 had p-values
greater than 0.05 (0.09 and 0.23 respectively), showing that the model is a perform-
ing significantly better than the null hypothesis.
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Chapter 5. Results

Figure 5.4 Accuracy per subject obtained using the model described in section 4.2 with
parameters in table 5.1. As we can see, for most of the subjects the model performs better
than random guessing, reaching 90% accuracy for a few cases as well. Subject number 14
was left blank as the subject was removed due to persistent artifacts.
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5.3 Statistical Tests

(a) Boxplot of the Attended Correlation per subject (dotted line indicates the
median of the null set)

(b) Boxplot of the Masked Correlation per subject (dotted line indicates the
median of the null set)

Figure 5.5 Correlation per subject on the test set, with a window size of 3 seconds. Outliers
are represented as circles outside the confidence interval. The dotted line represents the me-
dian correlation of the null distribution, helping to highlight the model’s ability to accurately
reconstruct the attended speech envelope compared to chance. The mean correlation for the
attended speech across subjects is significantly higher than that for the masked speech, indi-
cating that the model can more accurately reconstruct the attended speech envelope
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Chapter 5. Results

(a) Comparison of masked and attended correlation results on the test set, with a
window size of 3 seconds. Each bar represents one subject, with subject 14 left
blank. Attended Correlation is in Blue, and the Masker correlation is in orange

(b) Difference in correlation between masked and attended envelopes. Each bar
represents one subject. The plot shows that as a whole, the reconstruction

correlates much higher with the attended than the masker

Figure 5.6 Bar Plots to compare the pearson correlation of the reconstruction with At-
tended vs Masked.
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Discussion

Progression of Loss and Accuracy during training
The accuracy across epochs is plotted in Figure 6.1. The model stops training due
to early stopping, usually between 60 and 80 epochs, in this specific case after 72.
While observing the validation loss and accuracy per epoch, it can be seen how the
validation accuracy reaches its peak before the validation loss starts rising which
causes the accuracy to decrease during a few epochs while the loss is still decreas-
ing. This may be caused by the fact that the correlation with the attended audio keeps
improving, but the correlation with the masked audio could be improving as well
causing it to make wrong classifications thus decreasing the accuracy. The model
could be optimized to prioritize only one of these metrics (correlation or accuracy)
and this problem could potentially be avoided.

Figure 6.1 Accuracy variation per epoch

Although some subjects perform better than others it can be noted that the model
always achieves accuracies above 50%.

Proposed Model vs Baseline
Our proposed model outperforms the baseline model in two key metrics:
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Chapter 6. Discussion

• Classification Accuracy: The new architecture achieves an accuracy ap-
proximately 6% higher than the baseline. A comparison of the accuracy per
subject between the proposed model and the baseline is shown in Figure 6.2.

• Attended speech envelope reconstruction: The model exhibits a stronger
correlation (0.02 improvement) with the attended speech envelope compared
to the baseline. The correlation obtained was around 0.1 which makes the
0.02 an improvement of 20%.

Figure 6.2 Comparison between accuracy per subject of proposed model and baseline.
We can see that while the baseline performs better for some subjects, overall the model
outperforms the baseline by a significant amount.

The ignored speech correlation is lower on the baseline which could imply that both
correlations are more distinct (the correlations with the attended and unattended
envelopes are further apart) in the baseline than on the proposed model which could
impact the classification, but it does not seem to be a big issue as the accuracy is
also improved.

It’s important to note that while the average accuracy and correlation improve with
our model, there might be individual subjects where the baseline performs better.
This highlights the variability in EEG data and the need for further investigation.

Hyperparameter search
As previously mentioned, the hyperparameter search was conducted using Ray
Tune, a tool that runs a specified number of trials by selecting different values from
defined options and intervals. Due to constraints on time and resources, a complete
grid search was not performed, which might have produced a better combination of
parameters for the current architecture. The hyperparameters observed to be more
influential to the final accuracy are overlap, batch size, embedding and kernels. The
options and intervals of hyperparameters were chosen from sensible options, but in
the case of the kernels the possible options can vary a lot, from the amount of ker-
nels to the different sizes. A variety of kernels was added to the possible options and
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Chapter 6. Discussion

these were changed according to the results obtained, but a lot of options remained
to be analyzed.

Another possible issue is that the decrease in accuracy after a certain number of
epochs (even as the validation loss keeps decreasing) could influence the search on
choosing a combination that ended with a higher accuracy but had a lower peak.

Quality of dataset
It can be noted how the accuracy varies from one subject to another, as the success
of the model is also very dependent on the quality of the data. For subjects where
the attended correlation is very similar to the masked correlation, such as subjects
5 and 26, there exists the possibility that they were not fully attending the correct
speaker during the experiment, which damages the accuracy results. It is also true
that the brain signals captured by the EEG are very dependent on the subject, and
that some subject-brains provide more information than others.

Advantage of Contrastive Loss
The accuracy is not only improved by maximizing the correlation with the attended
audio but also by minimizing the correlation with the masked audio, this is achieved
with the contrastive loss and it was noted that the accuracy decreased significantly
if the SigLIP loss was not considered: when the model was run only considering
the Pearson correlation as loss, this gave a mean accuracy of 62.8%, a mean at-
tended correlation of 0.087 and a mean masked correlation of 0.013. The accuracy
per subject is shown in Figure 6.3 and the correlation information is presented in
Figures 6.4 and 6.5. The fact that the correlation is high is the result of using the
Pearson correlation as loss, as the models sole objective will be to increase this
correlation disregarding the accuracy. By adding the contrastive loss the model is
forced to differentiate the attended correlation with the non-attended improving the
accuracy.

Overfitting
As mentioned before the amount of data available is low compared to the optimal
size of the datasets suitable for these kinds of models. The training data is even
smaller as a part of the data being separated in validation and testing sets, this means
that the training will suffer and the model easily overfits.

The model is simple in regard to the present architectures and depth, more complex
structures were considered, but this caused the model to overfit faster which is why
the current structure was maintained.

Other models
A comparison between the model presented in this project and other existing meth-
ods is difficult, as the results can be very different depending on the quality of the
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Figure 6.3 Mean Accuracy per subject when using only Pearson Correlation as loss. The
accuracy per subject is lower than if we used contrastive loss, and we can see that the max-
imum accuracy any subject reaches is around 72%, which is much lower than if we imple-
mented contrastive loss.

data. One key limitation is the privacy concerns associated with sharing the EEG
dataset used in this project. This prevents from directly benchmarking models devel-
oped in previous studies on the same data. Another factor to consider is the specific
population studied. Since our participants had hearing impairments, their EEG sig-
nals might exhibit different characteristics compared to datasets involving individ-
uals with normal hearing. However, this also presents an opportunity to investigate
how our model generalizes to a population with specific hearing difficulties.

In order to have a comparison with another available EEG network our dataset was
used to run the Very Large Augmented Auditory Inference (VLAAI) network, avail-
able in [Accou et al., 2023]. The network predicts an audio envelope from an EEG
and calculates the correlation, which makes it a good option to compare the corre-
lation results. The code is also publicly published in GitHub. This network is based
on fully connected and convolutional layers.

The attended correlation results using the same dataset as in this project in the
VLAAI pretrained model is 0.0165. After training it further with the new data the
new correlation result is 0.068, The model trained from scratch also obtained sim-
ilar results. This means that the proposed model outperforms the VLAAI network
in this aspect. The better results are also obtained with a considerably smaller net-
work as the VLAAI network is composed of over 1.7 million parameters while the
proposed model contains only around 257 thousand parameters.
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(a) Mean Attended Correlation per subject. We can see that the
mean correlations, while above the null set, are not larger than

the model trained with contrastive loss. Subject 14 was
removed due to persistent artifacts.

(b) Mean Masked Correlation per subject

Figure 6.4 Correlation mean per subject when training only on Pearson loss.
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(a) Comparison of masked and attended correlation
results. We can see that the average values of the

correlations are much lower than if we used contrastive
loss, and the maximum values are significantly reduced

as well. The proposed model outperforms the model
trained with only Pearson correlation as loss. Subject 14

was removed due to persistent artifacts.

(b) Difference between correlation of masked and
attended envelopes with the predicted envelope.

Figure 6.5 Correlation comparisons Attended vs Masked when training only on Pearson
loss.
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7
Conclusion

In line with the proposed objectives, it was possible to incorporate contrastive learn-
ing into the context of auditory attention. The findings suggest that using contrastive
learning can be advantageous for classifying auditory attention, with the potential
to surpass existing models. It was proven that the model performs better in terms of
accuracy when contrastive loss was applied as opposed to working with the Pear-
son correlation alone. Specifically, an accuracy of 68% and an attended correla-
tion of 0.105 were obtained beating the proposed baseline.It is believed that further
improvements in accuracy and correlation could be achieved through a more ex-
tensive hyperparameter search (which should include a large number of possible
kernels as these were observed to be the most influential). Additionally, incorporat-
ing new layers with different connections could enhance the model’s performance.
The model presented here is relatively simple indicating significant potential for
structural modifications and increased complexity. It is believed that a good recon-
struction was obtained in terms of correlation.

Further Work
This is a good introduction to constrastive learning in the field of auditory attention
but the authors of this project believe there is still space for improvement and further
research. Some suggestions of possible tasks are as follows.

The model presented here uses only a limited variety of layers combined in a simple
way. As mentioned, this is partly because of the shortage of data which makes it easy
for a complex model to overfit. Nevertheless, further work should include a more
thorough investigation on different layers, specifically what this new layers could
bring to the model and how would this benefit the type of data being used. We also
believe that there exist a different combination of either the current network or a
more complex one that can boost the accuracy even more. Apart from this, a more
expansive hyperparameter search could also yield better accuracy results.

During the project a very important decision for the model was the similarity metric.
This metric is what indicates to the model how the training is going which means
that if there was a similarity metric more suited to this type of data the model would
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Chapter 7. Conclusion

naturally achieve better results. This is why it is proposed to further investigate
different similarity metrics in order to achieve a better loss function. This means
not only to investigate and try different metrics but also combine them in such a
way that better describes the necessity of the network.

The difference between subject independent and subject specific was explained ear-
lier in the document, the results later presented were all obtained subject specific. It
is proposed to test the model on subject independent scenarios. This includes testing
the current model and modifying it, for example, the subject layer should be mod-
ified in order to accept unknown subjects and respond accordingly. This possible
future work should also attempt to provide improvements to obtain better results in
regards to the current model and to other existing subject independent models.
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8
Appendix

8.1 Detailed Results

The results for each individual subject for both baseline and the proposed model
can be found on Table 8.1.

Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17

Baseline

Accuracy 0.663 0.738 0.503 0.540 0.535 0.647 0.663 0.647 0.690 0.631 0.567 0.583 0.658 0.610 0.610 0.674

Attended Correlation 0.079 0.124 0.027 0.067 0.045 0.107 0.114 0.077 0.123 0.099 0.056 0.031 0.065 0.058 0.041 0.115

Masked Correlation -0.008 -0.001 0.021 0.042 0.042 0.016 0.010 -0.030 -0.005 0.014 0.033 -0.009 -0.020 -0.009 -0.008 0.012

Model

Accuracy 0.573 0.646 0.635 0.552 0.562 0.698 0.760 0.667 0.844 0.760 0.625 0.656 0.719 0.594 0.521 0.708

Attended Correlation 0.053 0.117 0.068 0.081 0.031 0.123 0.145 0.078 0.179 0.098 0.059 0.067 0.073 0.047 0.042 0.124

Masked Correlation -0.004 0.004 -0.018 0.041 -0.000 0.000 0.012 0.002 0.030 0.031 0.014 -0.024 0.008 0.027 0.001 0.010

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Mean

Baseline

Accuracy 0.529 0.647 0.668 0.573 0.552 0.608 0.706 0.620 0.551 0.759 0.588 0.674 0.717 0.668 0.604 0.626

Attended Correlation 0.048 0.091 0.108 0.042 0.100 0.079 0.162 0.083 0.054 0.128 0.067 0.153 0.123 0.086 0.062 0.084

Masked Correlation 0.022 -0.012 0.007 -0.005 0.053 0.015 0.003 0.023 0.038 -0.007 0.002 0.022 -0.006 -0.029 0.000 0.007

Model

Accuracy 0.490 0.750 0.740 0.583 0.496 0.920 0.854 0.635 0.469 0.833 0.635 0.885 0.875 0.927 0.656 0.686

Attended Correlation 0.041 0.124 0.126 0.042 0.084 0.183 0.173 0.106 0.027 0.194 0.075 0.258 0.172 0.186 0.095 0.105

Masked Correlation 0.035 0.035 0.047 -0.009 0.049 -0.002 0.002 0.05 0.038 0.018 -0.018 0.002 0.035 -0.019 -0.014 0.017

Table 8.2 Complete results for each subject
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