

Department of Automatic Control

Development and Evaluation
of a Machine-Learning Based Fall Detection System

for Prosthetic Knees

Heiðrún Dís Magnúsdóttir

MSc Thesis
TFRT-6236
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 Heiðrún Dís Magnúsdóttir. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2024

Abstract

This thesis explores the feasibility of integrating a fall detection system into
microprocessor-controlled prosthetic knees using onboard sensors, with a focus
on optimizing machine learning models for real-time operational efficiency within
the limited computational capacities of such devices. Initial investigations utilized
the public UMAFall dataset to gain insights into fall detection methodologies and
preprocessing techniques. This study also examined the potential for combining
the UMAFall dataset with device-specific data to enhance model robustness and
performance.

Several machine learning models, including Support Vector Machines (SVM), Lo-
gistic Regression (LR), and Random Forests (RF), were evaluated for their ability
to accurately detect falls and for their suitability in terms of computational foot-
print when deployed in a prosthetic device environment. The models were initially
trained with 42 features, which increased to 56 after incorporating pitch and roll
estimations into the device-specific dataset. This study further experimented with
reducing the feature set to 10 core features to examine the impact on model size
and efficiency.

Results indicate that feature reduction significantly decreases model size while
maintaining high accuracy, with SVM and LR models showing the most substan-
tial reduction in size, making them ideal candidates for on-device implementation.
The Random Forest model, although effective in fall detection, demonstrated a less
significant reduction in size, posing challenges for its practical deployment in pros-
thetic knees with strict hardware limitations.

3

Acknowledgements

I want to thank my supervisor at Össur, Stefán Páll Sigurþórsson, who provided
me with this project along with guidance and encouragement to implement my own
strategies. I also want to thank Bo Bernhardsson at LTH for his supervision, feed-
back, and valuable insights. I am grateful for the opportunity to conduct my thesis at
Össur hf, appreciating both the welcoming community I encountered and the facil-
ities provided. Lastly, my thanks go to my family and friends for their unwavering
support.

5

Contents

1. Introduction 9
1.1 Motivation . 9
1.2 Related work . 10
1.3 Research goals/questions . 11
1.4 Ethical Considerations . 11
1.5 Report structure . 11

2. Background 12
2.1 Microprocessor-controlled knees 12
2.2 Inertial measurement unit . 13
2.3 UMAFall dataset . 13
2.4 Feature Extraction and Selection 14
2.5 Kalman Filter . 14
2.6 Machine Learning methods . 15
2.7 Performance evaluation . 18

3. Methodology 20
3.1 Data collection . 20
3.2 Preprocessing . 23
3.3 Feature engineering . 26
3.4 Model training and evaluation 28

4. Results 32
4.1 UMAFall dataset . 32
4.2 Mixed datasets . 33
4.3 Device data . 35

5. Discussion 39
5.1 Model Evaluation . 39
5.2 Limitations . 41
5.3 Future Work . 42
5.4 Conclusion . 43

Bibliography 44

7

1
Introduction

1.1 Motivation

Fall detection has become a feature of many smart devices in recent years to in-
crease the safety and well-being of individuals, with a particular emphasis on the
older population, as falls can have a significant impact on their health. These smart
devices, equipped with fall detection technology, have been used to provide quick
assistance and response to fall incidents, thereby mitigating the severity of injuries.

Despite advancements in fall detection technology, there remains a lack of solu-
tions tailored for amputees. This project aims to address this gap by focusing on fall
detection for individuals with lower limb prosthetic devices. By integrating AI into
prosthetics, the aim is to adapt fall detection to the specific needs and challenges
faced by prosthetic users.

Causes for amputation include traumatic injuries, infections, diabetes, cancer, and
other diseases. Referring to data from [Ziegler-Graham et al., 2008] from 2005,
there are approximately 500 amputations carried out every day in the United States
alone. The leading causes of lower limb amputations are vascular diseases, account-
ing for 54% of cases. Trauma follows closely with 45% and cancer accounts for
under 2% of cases.

The consequences of an amputation are substantial. Physical challenges of lower
limb amputation include mobility issues, phantom pain, soreness, muscular imbal-
ance, and more. The psychological implications are equally significant. Amputees
often find themselves grieving the lost limb, they feel anxiety, depression, and other
difficult emotions following amputation.

The integration of fall detection in microprocessor-controlled prosthetics not only
aims to enhance safety by reducing the risk of falls but also adds functional value.
An internal trigger that stores data upon a fall event allows for a deeper analysis of
factors leading to falls. Moreover, it could enable the prosthetic to actively respond

9

Chapter 1. Introduction

to fall incidents by triggering an alarm or alerting emergency services, providing im-
mediate response and support to the user. The ultimate goal is to enhance the safety
and well-being of amputees, improving their quality of life and their relationship
with their prosthetic devices.

1.2 Related work

According to state of the art in fall detection technologies there are three categories
of devices used: wearable devices, camera-based devices, and ambiance devices
[Tanwar et al., 2022]. Wearable devices refer to sensors that individuals carry
which can detect abrupt changes in motion or orientation indicating a fall. Camera-
based devices utilize video surveillance or motion-sensing cameras to observe and
analyze movements and determine if a fall has occurred. Ambiance devices equip
environmental sensors such as infra-red sensing, vibration sensors, or lasers to
monitor changes that may signify a fall.

Each detection approach has its pros and cons and there are a lot of options for fall
detection but it depends on the requirements of each specific use case which device
type should be used. For this research, the state-of-the-art sensor device approach
was explored since the application will be on microprocessor-controlled prosthetics
which include sensors such as IMUs, load cells, and angle sensors.

To name a few studies done in the past, Shawen et al. [Shawen et al., 2017] aimed
to use data from mobile phones to detect falls. They developed a classifier using
data from both able-bodied individuals and amputees and found that it could effec-
tively distinguish between falls and daily activities in individuals with transfemoral
amputations (TFA). This research is significant as it suggests that data from non-
amputees can be used to detect falls in amputees. While this study utilized mobile
phone data for fall detection, this research focuses on using onboard sensor data
from prosthetic devices. This approach takes advantage of the unique positioning
and capabilities of these sensors, potentially providing a more accurate and person-
alized fall detection system.

In a 2021 review paper by Usmani, Saboor, Haris, Khan, and Park [Usmani et al.,
2021], the authors explored advancements in both fall detection and fall prevention
systems, particularly for the older population, leveraging Machine Learning (ML)
algorithms. They noted that while a majority of studies focus on fall detection, a
smaller portion addresses fall prevention. The researchers highlighted the frequent
use of Support Vector Machines (SVMs) due to their ability to effectively manage
high-dimensional data and their memory efficiency. However, they also pointed out
limitations, such as the real-life applicability of these systems and the tendency to
collect data from younger age groups, despite the primary goal being the detection

10

1.3 Research goals/questions

and prevention of falls in the older population.

Different methods for fall detection include combining different measurement meth-
ods such as mobile phone + IMU sensors [Casilari and A.Santoyo-Ramón, 2018],
heart rate + IMU sensor [Nho et al., 2020], eyewear that contains IMU sensors [Lin
et al., 2020], and optimal sensor locations have been researched by [Tang et al., n.d.]

1.3 Research goals/questions

This study was guided by several key questions, which aimed to explore the feasi-
bility of using onboard sensory systems in prosthetic knees for fall detection.

• Is it feasible to utilize the onboard sensory system of prosthetic knees for fall
detection based on publicly available data?

• Would relying solely on lower limb sensors negatively impact detection re-
sults compared to using full body sensor data?

• Could the integration of additional sensory signals from onboard sensors in
prosthetic devices potentially enhance fall detection algorithms?

• How feasible is it to deploy optimized machine learning models directly onto
the limited computational environments of prosthetic devices?

1.4 Ethical Considerations

In developing machine learning models for fall detection within prosthetic devices,
several ethical considerations must be addressed to ensure the responsible use of
technology. Ensuring the privacy of user data should always be a top priority. It is
important to clearly communicate the purpose of data gathering, how the data will
be used, and the participants’ rights regarding data privacy.

Moreover, it is important to be clear about how the fall detection system works and
how data is used. This helps ensure that users understand what the technology does
and how their information is handled.

1.5 Report structure

Chapter 2 explains methods and processes used in the thesis. Chapter 3 explains
how data was collected and processed to create machine learning models equipped
for fall detection. Results of the machine learning models trained are introduced in
Chapter 4 and a discussion on the results is in Chapter 5.

11

2
Background

This chapter provides context and foundation knowledge for the topics covered in
this study. The chapter begins with an explanation of microprocessor-controlled
knees and then introduces the inertial measurement unit. The UMAFall dataset is
then introduced, leading to a discussion on feature extraction and selection. The
Kalman filter is addressed next, followed by an overview of the Machine Learning
methods used, specifically Support Vector Machines, Logistic Regression, and Ran-
dom Forests. The chapter concludes by introducing performance evaluation metrics
including Cross-validation, Precision, Recall, and F1-score.

2.1 Microprocessor-controlled knees

Microprocessor-controlled knees (MPKs) are what the name suggests, prosthetic
knees controlled with a microprocessor. These cutting-edge devices offer improved
control through embedded electronic systems and allow for improved stability and
more natural movement for amputees. The microprocessor receives signals from
sensors located throughout the prosthetic, and this can allow for real-time event
detection and adaptive control.

Microprocessor knees (MPK’s) can have either passive or active actuation. These
two types of MPKs differ in how they control the movement of the artificial knee
joint.

Passive MPKs, such as Össur’s Rheo Knee® [Össur: Rheo Knee®], primarily pro-
vide resistance to movement. They restore eccentric muscle activity through joint
resistance, providing support during stance and breaking during the swing phase of
the gait cycle.

Active MPKs, like Össur’s Power Knee™ [Össur: Power Knee™], provide active
torque as well as resistance. This way they restore both eccentric and concentric
activity around the knee [Creylman et al., 2016].

12

2.2 Inertial measurement unit

2.2 Inertial measurement unit

An inertial measurement unit (IMU) is an electronic device that can measure move-
ment and orientation properties, which have proven efficient in classifying different
human activity patterns [Jantawong et al., 2021]. An IMU typically contains a gyro-
scope, accelerometer, and sometimes magnetometer. The gyroscope reports angular
rates, the accelerometer measures acceleration, and the magnetometer measures
changes in the magnetic field.

The accelerometer within an IMU does not measure acceleration directly; instead,
it measures "specific force" which is the apparent force that an observer would
measure in a non-inertial (accelerating) frame of reference. This force can be
described as f̄ = ā − ḡ, where ā is the measured acceleration and ḡ represents
the acceleration due to gravity. Here, f̄ represents a vector directed upwards with
a magnitude of 1g when the accelerometer is at rest in the Earth’s gravitational field.

While IMUs often include a magnetometer to measure changes in the magnetic
field, these measurements can be heavily influenced by a range of sources such as
soft or hard iron distortions, sensor nonorthogonality, and bias. These disturbances
can cause the magnetometer readings to vary significantly across different environ-
ments, necessitating frequent recalibration [Tahir et al., 2019]. Due to these poten-
tial disturbances and the complexity of ensuring accurate magnetometer readings,
they are often excluded from IMU-based studies, including this one.

2.3 UMAFall dataset

The dataset utilized in the initial stages of this research was derived from an exper-
imental testbed initially developed by Jose Antonio Santoyo-Román for his MSc
thesis at the University of Malaga [Casilari and A.Santoyo-Ramón, 2018]. The
testbed comprised an Android smartphone and four wireless nodes or SensorTags
worn by the subjects. The smartphone was kept in a trouser pocket, while the Sen-
sorTags were attached to the ankle, wrist, chest, and waist. During each experiment,
the subject performed various movements and activities, with the five sensors cap-
turing data such as accelerometer, gyroscope, and magnetometer readings.

Each recorded movement was stored in a CSV file, with the file name indicating
the ID of the subject, type of movement, subtype of movement, trial number, and
the date and time of the experiment. The dataset includes 746 files, capturing 12
different Activities of Daily Living (ADLs) and 3 different types of falls, all carried
out in a domestic environment. The ADLs range from regular activities like walking
and jogging to specific hand activities like clapping, raising hands, making a phone
call, and opening a door. The falls were simulated on a mattress and categorized

13

Chapter 2. Background

into lateral, frontal, and backward falls.

2.4 Feature Extraction and Selection

Feature extraction is a way to preserve characteristics while reducing the dimen-
sionality of the data. This is a fundamental process in supervised machine learning
which not only simplifies the data collection process by identifying and excluding
irrelevant variables but also acts as a form of regularization, potentially mitigating
overfitting and boosting model performance.

Time series data from sensors presents unique challenges due to its temporal de-
pendencies and potential noise. This makes feature extraction crucial for isolating
meaningful patterns from raw sensor data [Agrawal and Sharma, 2022].

Feature selection is essential in supervised machine learning because not all input
variables or features may contribute positively to performance. This process can
act as a form of regularisation, potentially reducing overfitting and enhancing the
model’s performance. Additionally, if certain variables are found to be irrelevant,
the data collection process can be simplified as these variables won’t need to be
collected [Lindholm et al., 2022].

2.5 Kalman Filter

Rudolf E. Kálmán introduced a new approach to linear filtering and prediction
problems in 1960 [Kalman, 1960], which has since been widely used in applica-
tions requiring the estimation of unknown variables. This approach is now known
as the Kalman filter. The Kalman filter is a recursive mathematical technique to es-
timate the state of a dynamic system from noisy measurements. The filter leverages
information about a system’s dynamics and the associated measurements, making
it particularly useful in scenarios where data is subject to noise, which is common
with sensor data. The filter operates by continuously predicting the system’s cur-
rent state and updating the prediction as new measurements are collected, thereby
enhancing the accuracy of state estimates [Li et al., 2015].

The Kalman Filter operates through a prediction and an update state. Initially, the
filter predicts the next state of the system and its uncertainty [Geng, 2023]:

xt = At−1xt−1 +qt−1 (2.1)

P−
t = At−1Pt−1AT

t−1 +Qt−1 (2.2)

14

2.6 Machine Learning methods

where xt is the predicted state vector, P−
t is the predicted state error covariance,

A is the state transition matrix, q is the process noise (assumed zero-mean white
Gaussian) and Qt−1 is the process noise covariance.

During the update phase, the filter adjusts its estimates based on new measurements:

St = HP−
t HT + Σ̂ea +Σna (2.3)

Kt = P−
t HT S−1

t (2.4)

xt = x−t +Kt(zt −Hx−t) (2.5)

Pt = (I−KtH)P−
t (2.6)

Here, St is the innovation covariance, incorporating the predicted error covariance
(P−

t), the measurement matrix (H), and the covariances of the process (Σ̂ea) and
measurement noise (Σna). These covariances help quantify the expected errors in
the process and measurements, ensuring that the filter’s updates are appropriately
scaled to the level of uncertainty. zt is the measurement vector, Kt is the optimal
Kalman gain, and then the state estimate and the state estimate covariance are up-
dated in equations (2.5) and (2.6).

After discussing the general mechanics of the Kalman Filter, it is important to spec-
ify its application in the context of this thesis. The Kalman filter used in this project
was specifically designed by another researcher at Össur hf as part of a previous
master’s thesis [Geng, 2023]. This filter has been adapted to work with the pros-
thetic devices developed by Össur, utilizing sensor data from these devices to es-
timate the pitch and roll movements of the lower limb prosthetics. The adaptation
involved adjusting the filter to take dataframes directly from these devices as input
and returning real-time estimations of pitch and roll. This implementation is crucial
as it provides the machine-learning models with dynamic features that are predictive
of fall events, enhancing the models’ accuracy and reliability in detecting falls.

2.6 Machine Learning methods

Machine Learning is at the heart of many modern technologies and could be de-
scribed as the latest attempt to distill human knowledge and reasoning into a form
suitable for constructing machines and engineering automated systems. Machine
learning is focused on designing algorithms that automatically extract valuable in-
formation from data. The core concepts are data, a model, and learning [Peter et al.,
2020].

This section will explain the different machine learning methods that were tried for
detecting falls from labeled sensor data.

15

Chapter 2. Background

Support Vector Machines
The support vector machine is a supervised learning method introduced by [Cortes
et al., 1995] in 1995. SVMs implement the following idea: The input is mapped to
an n-dimensional space Z (n is the number of features we have and each feature is
the value of a particular coordinate). A SVM then finds a linear decision surface
that separates the coordinate points into different classes.

The support vectors are the points nearest to the optimal hyperplane. The SVM
strives for a good separation between classes and a good separation is achieved
when the hyperplane has the greatest distance from the closest training data points
across all classes. Generally, a larger margin correlates with a lower generalization
error, hence improving the classifier’s performance.

Figure 2.1 An example of a 2-dimensional space. The support vectors are marked with
grey squares [Cortes et al., 1995]

Logistic regression
Logistic regression was initially utilized in biomedical studies, but its use has
expanded over the past 20 years to social science research, marketing, business
applications, and even genetics [Agresti, 2002].

Logistic regression uses the sigmoid function to estimate probabilities that an in-
stance belongs to a class. The output from a logistic regression model is the logistic
of a weighted sum of the input features (plus a bias term) [Geron, 2019].

The logistic is a sigmoid function that converts real-valued numbers to a value be-

16

2.6 Machine Learning methods

Decision node (root)

Decision node

Leaf node Leaf node

Decision node

Leaf node Decision node

Leaf node Leaf node

Sub-tree

Figure 2.2 An example of a decision tree, showing the root decision node, intermediate
decision nodes, and leaf nodes.

tween 0 and 1:

σ(t) =
1

1+ exp(−t)
(2.7)

The logistic regression model outputs a function which represents the probability of
a particular event occurring

p̂ = σ(xT
θ) (2.8)

where x is the feature vector and θ is the model parameter vector.

Random Forests
Before introducing Random Forests, it’s important to understand tree-structured
classifiers, or more precisely, binary tree-structured classifiers which are often
called decision trees. These classifiers are constructed by repeatedly splitting sub-
sets of the feature space into two descendant subsets, starting with the entire feature
space itself. Figure 2.2 provides a visual representation of a decision tree structure.

The process of predicting a class for a measurement vector in a tree-structured
classifier involves traversing the tree from the root node (the entire feature space) to
a terminal node (a subset of the feature space). The predicted class is given by the
class label attached to that terminal node [Breiman et al., n.d.]

A Random Forest is an ensemble of Decision Trees that introduces increased ran-
domness into the model. The classifier tries to find the best feature among a random
subset of features when splitting a node in a tree, instead of searching for the best
feature like decision trees do [Geron, 2019].

17

Chapter 2. Background

Since each decision tree is built from a random subset of the training dataset, some
observations may be included multiple times in the sample, while others may not
appear at all. But as every tree in the forest contributes to the final ensemble model,
Random Forest models are known to result in a less biased model [Williams, 2011].

A drawback of random forests is that they can be computationally expensive, par-
ticularly when dealing with large datasets or a large number of trees.

2.7 Performance evaluation

Cross-validation
Cross-validation is a widely used method to assess the predictive performance of
models and prevent overfitting. The most common type of cross-validation is k-fold
cross-validation. The k-fold cross-validation process involves splitting the available
data into k groups or "folds". The process then involves using k-1 of these groups
to train the model. The model is then tested and evaluated on the remaining group.
This procedure is repeated for all k possible choices for the evaluation group, each
time holding out a different subset of the data [Bishop, 2006].

In situations where the data is imbalanced, meaning there is an imbalance of
instances between the classes, standard k-fold cross-validation can provide mis-
leading results because the test data may not reflect the distribution of the training
data. To address this issue, a variant of k-fold cross-validation known as Stratified
Cross-Validation (SCV) can be employed. In SCV, the data is not split randomly
but instead, each fold is made by preserving the percentage of samples for each
class. This ensures that each fold is a good representative of the overall sample
distribution [Szeghalmy and Fazekas, 2023].

k-fold cross-validation results in k different performance scores, one for each iter-
ation of training and testing. The final score is derived by averaging the k scores,
providing a robust measure of model performance.

Precision
Precision, also known as Confidence in the field of data mining, evaluates the per-
formance of predictive models by focusing on the positive predictions made by a
model. Mathematically, precision is the ratio of true positive (TP) predictions to the
total number of predicted positives (PP) [Powers and Ailab, n.d.] It can be presented
as follows:

Precision (confidence) =
True Positives

True positives+False positives
(2.9)

18

2.7 Performance evaluation

Recall
Another vital evaluation measure is Recall, also known as Sensitivity. Mathemati-
cally, Recall is the ratio of true positives (TP) to the total number of actual positives
(RP), which includes both true positives and false negatives [Powers and Ailab, n.d.]
It can be presented as follows:

Recall (sensitivity) =
True Positives

True positives+False negatives
(2.10)

F1-score
The F1-score is an important evaluation metric that combines both Precision and
Recall to provide a more holistic view of the model’s performance. Mathematically,
the F1-score is defined as the harmonic mean of Precision and Recall. It can be
formulated as follows:

F1 =
2 ·Precision ·Recall
Precision+Recall

(2.11)

F1-score is particularly useful for handling imbalanced datasets, which are preva-
lent in many real-world classification problems. By taking both Precision and Recall
into account, the F1-score balances the trade-off between making correct positive
predictions (Precision) and correctly identifying actual positive instances (Recall).
As a result, a higher F1-score indicates not only that the positive predictions are
reliable (high precision), but also that a high proportion of actual positive instances
have been correctly identified (high recall) [Lindholm et al., 2022].

In the context of this project, the "positive" case can be defined in different ways
depending on the focus of the analysis. For instance, in a fall detection system, one
might consider a "fall" as the positive case in one scenario and a "non-fall" as the
positive in another. This flexibility allows us to tailor the evaluation to reflect differ-
ent priorities, such as minimizing false negatives in fall detection to ensure safety.
Accordingly, F1-scores will be computed for both "fall" and "non-fall" as separate
positive cases to provide a comprehensive evaluation of the model’s performance
across different types of classification outcomes.

19

3
Methodology

The purpose of the research is to determine the potential of machine learning mod-
els in accurately detecting falls based on data derived from lower leg sensors. This
chapter outlines the systematic approach and steps implemented to achieve these
results. Firstly, the data collection from the device is introduced. Secondly, the pre-
processing steps are outlined for both UMAFall data and device data, this includes
several steps such as manual labeling, adjustments to datasets, estimating pitch &
roll angles, and the application of a sliding window approach.

3.1 Data collection

All simulated sensor data for indoor falls was collected inside Össur’s MotionLab
and the participant of the data collection process is a transfermoral (above the knee)
amputee using a passive microprocessor-controlled Knee, working in Össur as a
product tester.

During the data collection process, a range of movement sequences was performed,
incorporating everyday activities and a couple of different falling scenarios. Every-
day activities included level ground walking, uphill and downhill incline walking,
ascending and descending stairs, as well as the process of sitting down on a chair
and standing back up. The falling sequences also varied, with some involving the
user taking a few steps forward before kneeling, others where the user turned before
kneeling, and some instances where the user fell without taking any preceding steps.
While the falling sequences did vary, all falls executed were forward falls. Sideways
falling or backwards falling were not incorporated in these sequences. Sideways
and backwards falling is deemed not to be caused by the prosthetic device, nor can
the device do anything to prevent such a fall. Figure 3.1 displays a typical ’falling’
sequence where the user takes a few steps before kneeling on the ground.

Throughout the test, data is collected with Össur’s toolbox that connects via Blue-
tooth directly to the prosthetic’s sensors and allows for real-time monitoring and

20

3.1 Data collection

Figure 3.1 Data collection setup

data collection. The data consists of output signals from the IMU and force sensor,
as well as gait phase information. The sampling rate of all measurements was 1000
Hz, corresponding to a sampling interval of 1 ms.

Össur’s microprocessor knees contain IMUs as well as other sensors such as angle
sensors and load cells. The IMU data as well as signals from the additional sen-
sors hold the potential for effective fall detection. The IMU in the device used in
this study is the Bosch BNO055 model [BOSCH, 2023]. This sophisticated unit
combines a 3-axis accelerometer, gyroscope, and magnetometer along with orien-
tation software and sensor fusion. It provides high-precision data in real time. The
BNO055 is commonly recommended for personal health and fitness applications,
indoor navigation, and other contexts requiring precise motion tracking and context
awareness. Figure 3.2 illustrates the orientation of the three-dimensional axes with
respect to the knee, providing a visual reference for how the IMU is positioned
within the prosthetic device.

Figure 3.3 displays the raw signals collected from the IMU during level ground
walking. The signals during walking exhibit consistent oscillations as normal gait
is rhythmic and repetitive. After around 6 seconds in Figure 3.3, the user made a
U-turn and continued walking. A slight change in the signal pattern can be observed
during the U-turn, followed by the return of the consistent oscillations of normal
walking. This highlights the predictability and uniformity of IMU signals during
everyday movements such as walking.

Figure 3.4 then displays the raw signals collected for a falling event followed by
recovery. In this sequence, the user takes two steps before kneeling forward onto
his knee. The fall happens after about three seconds and is followed by a recovering

21

Chapter 3. Methodology

Figure 3.2 Rheo Knee 3 - The figure showcases the orientation of the three-dimensional
axis with respect to the knee.

Figure 3.3 IMU signals during walking. 3-axis accelerometer (top) and 3-axis gyroscope
(bottom).

22

3.2 Preprocessing

Figure 3.4 IMU signals while the user takes two steps, kneels, and stands up again. The
kneeling happens after roughly 3 seconds.

phase while the user stands up again. The falling and recovery phase is characterized
by abrupt changes in signal intensity and the sequence underscores the complexity
and unpredictability of IMU signals during abnormal movements.

3.2 Preprocessing

Manual Labeling
The process of manual labeling was undertaken to precisely identify and categorize
the fall and non-fall events in the datasets. For the UMAFall dataset, the indication
of whether a file included a fall event was embedded within the filename itself.
However, to ensure accuracy and to facilitate the windowing technique deployed
in this research (discussed in detail later in this chapter), each file categorized as
a ’fall’ was visually inspected. This allowed for the identification of the specific
sample number associated with the fall event.

In contrast, the device dataset required a different approach for manual labeling.
Documentation was maintained during the data collection, noting the specific move-
ments encapsulated in each data sequence. This, combined with video recordings
taken during the tests, provided a comprehensive reference for accurately labeling
the data. By carefully tracking each movement in the sequences, it was possible to
label the data accurately, which is crucial for the reliability of analysis later on.

23

Chapter 3. Methodology

UMAFall data
From the UMAFall dataset, only ankle, wrist, and chest data was used. This means
excluding waist data which was collected on mobile phones. The dataset was sam-
pled at a rate of 20 Hz, and movements were monitored for 15 seconds. The orien-
tation of the axes from the UMAFall sensors is different from the device sensors.
Upon inspection of the UMAFall dataset, it was found that data from certain sub-
jects was unreliable and showed more outliers in the data than in other parts of
the data. This could be due to factors such as sensor errors or unusual movements.
After eliminating sequences showing substantial faults, what is left is a dataset that
includes data from sensors located on the ankle, wrist, and chest. The UMAFall
set contains 465 sequences of Activities of Daily Living (ADL), and 157 fall-event
sequences.

Null and NaN values were encountered in the dataset. To deal with these, they were
replaced with the mean value of the respective column. Given that these values
constituted approximately 1% of the data, their replacement would not significantly
impact the results and this approach allowed maintaining the size of the dataset.

Combining UMAFall & Device data
Obtaining consistency and uniformity in the data when combining data sources is
crucial to simplify the training process, making it more efficient and easier to man-
age. To establish this consistency in the data before the training process, several
steps were taken.

Axis aligmnent. Firstly, the Y- and Z-axis of the UMAFall data were switched to
match the orientation of the device data. This ensures that the measurements from
different sources are directly comparable.

Units verification. Secondly, the units of measurement were verified to match
across the data sources. Specifically, it was ensured that acceleration measure-
ments from both sources were in meters/s2 and that angular velocity measurements
from gyroscopes were in degrees per second (deg/s) rather than radians per second
(rad/s).

Windowing. Following these preprocessing steps, each time series data frame is
trimmed to a 5-second window. For sequences containing a fall, the window is cen-
tered around the fall, and for non-fall sequences, the window is centered around the
absolute peak acceleration point. Centering around the peak acceleration attempts
to capture the most impactful segment of the data clip, which is anticipated to con-
tain key features essential for the model’s performance. The selection of a precise
5-second window is strategic in capturing data associated with a fall, without in-
corporating excessive, potentially irrelevant information. This is because a fall is
typically estimated to occur within 1-4 seconds.

24

3.2 Preprocessing

Data Downsampling. When combined with the UMAFall data for training, the
device data, originally sampled at a rate of 1000Hz, was downsampled to 20Hz
to match the UMAFall data. This downsampling was achieved by selecting every
50th sample from the original data. The downsampling process was applied after
extracting the 5-second windows centered around the fall events or peak accelera-
tions. This sequencing ensures that key moments, particularly those containing fall
events, are preserved even though some data granularity is lost. This preprocessing
step was crucial to ensure compatibility between the different data sources.

Windowing for Device Data. Similar to the procedure used with the UMAFall
data, the device data was also divided into 5-second windows. If a window contained
a fall event, it was arranged to center around the fall. For non-fall windows, the
focus was the point of peak acceleration. After splitting the device data into 5-
second windows, the dataset comprised 20 windows. Of these, 9 contained a fall
event and 11 featured non-fall activities. To assess the feasibility of integrating data
from multiple sources, a subset of the device data was set aside for testing, with the
remainder merged with the UMAFall data to form the training set.

Sliding windows
The ultimate goal in this part of the project is to process the data in a way that allows
for effectively capturing the fall event. Given that a fall typically lasts between 1 to
4 seconds, the primary objective is to accurately record not only the fall itself but
also the preceding moments. This information could enable the development of a
trigger mechanism that can allow for the storage of critical data from the moments
before a fall.

After the manual labeling process, each sequence that contained a fall had one sam-
ple identified as a fall event. Given the sampling rate of the device data, this would
suggest that the fall event happens within a millisecond, which is not accurate. The
goal is to pinpoint where the fall initially happens and to provide a broader context
for each fall event, which is why the sliding window approach was implemented.

The use of overlapping sliding time windows was key in increasing the number of
fall events in the dataset collected from the device. As the window moves across
the sequence, overlapping segments are created, each containing a portion of the
fall event. This method effectively augments data, resulting in more instances of
fall events for the model to learn from.

In this setup, a fall event label is applied to a window, not just a single sample in a
sequence. However, a window is only labeled as a fall if the fall sample is within a
specific range from the window’s border.

25

Chapter 3. Methodology

Figure 3.5 Visualization of a time window on accelerometer and gyroscope data. The win-
dow spans 1.5 seconds which is 1500 data points, with borders highlighted at 300 data points
(0.3 seconds) on either side. This window is labeled as a fall window as it captures the fall
event within its borders.

The sliding window technique comes with adjustable parameters, such as the win-
dow length, the step size of the window, and the required distance of a fall sample
from the border for the window to be labeled as a fall event. In this step these
parameters were tuned to optimize the accuracy of the fall detection algorithm.

An example of how these sliding time windows are applied can be seen in Figure
3.5, where both accelerometer and gyroscope data are displayed. The window spans
1.5 seconds or 1500 data points with a margin of 300 data points (0.3 seconds) on
each side.

3.3 Feature engineering

In the process of preparing the data for the ML models, feature engineering played
a critical role. Seven features on each axis (X, Y, Z) were computed for both ac-
celerometer and gyroscope signals. These features were selected based on their
potential to provide meaningful insight into the characteristics of fall events:

• Maximum

26

3.3 Feature engineering

• Minimum

• Median

• Variance

• Absolute energy

• Absolute maximum

• Root mean square

Pitch & roll estimations as features
When working with device data, additional features were added to the machine-
learning models in the form of pitch and roll estimations. These estimations were
obtained using a part of a Kalman filter algorithm, which was previously developed
by another student at Össur hf as part of his master’s thesis project [Geng, 2023].
This sophisticated algorithm uses sensor fusion to estimate the attitude, velocity,
and position of the lower limb prosthesis based on the data from the embedded IMU.

For this project, the Kalman filter was adapted to take a dataframe as input and
return the pitch and roll estimations for a measurement sequence. This adaption
made it possible to extract the pitch and roll estimations directly from the sensor
data, providing valuable additional features for the machine-learning models.

The Kalman Filter algorithm and its parameters, adapted from our proprietary
configurations, are crucial for accurate attitude estimation in gait analysis. Algo-
rithm 1 details the step-by-step estimation process, utilizing the constants specified
in Table 3.1. This setup ensures precise computation of pitch and roll necessary for
assessing prosthetic gait dynamics.

Table 3.1 Constants and Parameters Used in the Kalman Filter Algorithm

Symbol Description Value
∆t Sampling interval (s) 0.001
X0 Initial state vector [0,0,1]T

P0 Initial covariance matrix 2.0×10−8I3
Q Process noise covariance matrix 2.0×10−6I3
R Measurement noise covariance matrix 2.0×10−1I3
L Leg length (m) 0.4
g Gravitational acceleration (m/s2) 9.8

27

Chapter 3. Methodology

Algorithm 1 Kalman Filter for Gait-based Attitude Estimation
1: Input: DataFrame with IMU data {ygyro,yacc}
2: Output: Arrays of pitch (β) and roll (γ) estimations
3: Initialize constants: ∆t, buffer size, L, g
4: Initialize state and covariance: x0, P0
5: Define noise covariances: Q, R
6: for each measurement in DataFrame do
7: if stationary condition then
8: Estimate state with no external acceleration
9: Update step using H and stationary assumptions

10: else if stance phase then
11: Calculate external accelerations based on leg dynamics
12: Update step considering stance phase dynamics
13: else
14: General update step during swing phase
15: end if
16: Normalize x to prevent drift
17: Calculate β and γ using x
18: end for
19: return Arrays of β and γ

3.4 Model training and evaluation

Data Splitting
The initial phase of model training involves splitting the datasets into training and
testing sets. This step is crucial to ensure that the models are trained on one subset
of the data and validated on an independent subset, which helps in evaluating their
generalization capabilities.

To address the issue of class imbalance, which is particularly significant in fall
detection due to the rarity of fall events compared to non-fall events, stratified sam-
pling was employed. Stratified sampling ensures that both the training and testing
sets have a proportionate representation of each class.

The data splitting was implemented using the train_test_split function from
Scikit-Learn [scikit-learn: Machine Learning in Python], configured as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y)

The parameters used in the train_test_split function are:

28

3.4 Model training and evaluation

• test_size=0.3: This parameter specifies that 30% of the data is reserved for
the test set, ensuring that the majority of the data is available for training the
models.

• random_state=42: This parameter ensures reproducibility in the results. By
fixing the random state, we ensure that the same data split is achieved ev-
ery time the code is run, which is important for reproducibility of the model
performance metrics.

• stratify=y: This ensures that the train and test sets have approximately the
same percentage of samples of each class. This is crucial in a scenario like
fall detection where the class distribution is imbalanced, as it ensures that
both sets are representative of the overall dataset.

Model Selection
The choice of ML models is a crucial step in achieving accurate and efficient fall de-
tection. The models selected for this study were Support Vector Machines (SVM),
Logistic Regression, and Random Forest, all of which were previously discussed in
detail in Chapter 2.

By training and evaluating three different models, it was feasible to compare their
performances and select the best model.

Hyperparameter Selection
In this study, the models were utilized with their default hyperparameters as pro-
vided by the Scikit-Learn library [scikit-learn: Machine Learning in Python]. The
decision to use default settings was driven by the following considerations:

1. Baseline Performance Assessment: Using default parameters allowed for
an initial assessment of each model’s performance without the complexity of
tuning.

2. Project Scope and Constraints: Given the projects focus on data collection
and analysis rather than optimizing model performance, extensive hyperpa-
rameter tuning was not deemed a critical component. The primary objective
was to evaluate the feasibility of different models for fall detection using basic
configurations.

Support Vector Machines
The first model explored was the Support Vector Machine (SVM), which is known
for its effectiveness in high-dimensional spaces and its flexibility in modeling dif-
ferent forms of data [Geron, 2019].

29

Chapter 3. Methodology

The SVM model was created using a linear kernel. Before model training, the input
data was standardized using the StandardScaler function from the preprocessing
module in Sklearn. The model was trained on the training data and evaluated using
5-fold cross-validation.

The trained SVM model was then used to predict the labels for the test data, which
provided a final evaluation of the model’s performance.

Logistic Regression
The second model utilized was Logistic Regression which is widely used for binary
classification problems.

Similar to the SVM model, the input data for the Logistic Regression model was
standardized before training, and 5-fold cross-validation was utilized for training,
and the trained model was then used to predict labels for the test data.

Random Forest
The third model employed was the Random Forest, an ensemble learning method
that operates by constructing multiple decision trees.

The Random Forest model was trained in a similar way to the previous models. The
input data was standardized, and the model was trained with 5-fold cross-validation
on the training dataset. Again, the trained model was then used to predict the labels
for the test data.

Feature Importance
In the initial stages of model training, feature filtering was carried out using the
tsfresh library [Christ et al., 2018]. This helped in excluding features that did not
contribute significantly to the model’s detection abilities.

However, when working with device data alone, a more focused approach was taken
in extracting only a small set of features that contribute significantly to the perfor-
mance of the models. After the initial training of the models, the 10 most contribut-
ing features were identified by extracting the feature importance from the models.
Once the most important features were identified, new models were trained and
evaluated using this refined feature set.

Pitch and Roll Estimation
In the final stages of model training and evaluation for the device data, pitch and
roll angles were estimated using a Kalman filter, chosen for its efficacy in han-
dling noisy sensor data and providing accurate real-time estimations. This approach

30

3.4 Model training and evaluation

allowed for the dynamic adjustment of pitch and roll estimations based on the
evolving sensor readings, thus reflecting more realistic movement patterns of the
device users.

The pitch and roll estimations were obtained in the form of time-series vectors,
aligning with the existing sensor data collected from the device. This way, the pitch
and roll estimations could be seamlessly appended to the dataframe, enhancing the
dataset with additional features that improve the model’s context awareness and
predictive capabilities.

The integration process involved adding these estimations before the feature extrac-
tion phase, ensuring that all subsequent analyses could use the enriched data effec-
tively. The increase in dataset features from 42 to 56 allowed for a more detailed
analysis and improved the depth of the model’s input, helping in a more detailed
understanding and detection of fall instances.

Performance Evaluation
To evaluate the performance of all three models, the cross-validation scores as well
as the classification reports and confusion matrices were observed. Cross-validation
was crucial as it helped to determine whether the models were at risk of overfit-
ting, providing a robust measure of model reliability across different subsets of the
dataset.

The classification report provides important metrics such as precision, recall, and
F1-score for each class. Evaluating both F1-scores with ’Fall’ and ’Not Fall’ as
positive outcomes was effective in revealing how the models performed accross the
different classes. Given the known imbalance in the dataset, this was an invaluable
performance metric. Comparing the two scores provided deeper insight into the
model’s effectiveness in accurately predicting both fall and non-fall events.

Confusion matrices further supplemented evaluation by visualizing the model’s
performance on the test data. These matrices detailed the number of true positives,
true negatives, false positives, and false negatives. This visualization helped to pin-
point the models’ strengths and weaknesses in classifying each type of event.

While striving for high accuracy is typical in model development, for the purposes
of this project, achieving 100% accuracy is not critical. The primary goal here is to
facilitate data collection to enhance prosthetic functionality, rather than immediate
response to fall events. This perspective aligns with the project’s focus on using the
model primarily for gathering insights to improve device performance over time,
rather than for triggering real-time alarms.

31

4
Results

In this chapter, the results obtained from various model evaluations are presented.
Cross-validation (CV) scores are used to estimate the models’ performance and
robustness during the training phase, utilizing the training dataset. These scores help
to determine the generalizability of the models under different data conditions. In
contrast, F1-scores and confusion matrices, derived from the testing dataset, show
the actual performance of the models on unseen data.

4.1 UMAFall dataset

Table 4.1 shows cross-validation scores comparing the performance of models
trained and tested with full-body sensor sets versus ankle-only sensor data from
the UMAFall dataset. Note: CV scores are derived during the training phase.

Table 4.1 5-fold cross-validation scores for different classification models using measure-
ments from UMAFall’s full body sensor sets compared to their ankle sensor only.

SVM Logistic Regression Random Forest
Full-body dataset 100% 100% 99%

Ankle only dataset 97% 97% 96%

32

4.2 Mixed datasets

Figure 4.1 Confusion matrices for models trained on full-body data from the UMAFall
dataset when tested on a separate test set from the same dataset. From left to right: Support
Vector Machine (SVM), Logistic Regression, and Random Forest. Note: Reflects model per-
formance on the testing dataset.

It can be noted from Figures 4.1 and 4.2 is the difference in the incorrect classi-
fications. For the full-body test set, the algorithms keep misclassifying a ’not fall’
sequence as ’fall’ but for the ankle-only results, all algorithms misclassify a ’fall’
event as ’not fall’.

Figure 4.2 Confusion matrices for models trained on ankle-only data from the UMAFall
dataset when tested on an unseen set also from the UMAFall project. From left to right:
Support Vector Machine (SVM), Logistic Regression, and Random Forest.

4.2 Mixed datasets

In this part of the chapter, the results from combining the two data sources are
presented. These results are summarized in Table 4.2, and visualized through con-
fusion matrices, which provide a detailed view of the model’s performance on the
test sets. The first set of results corresponds to training and testing using only the
ankle sensor data from the UMAFall dataset, providing a baseline for comparison.

The subsequent rows in the table illustrate the performance of the models when ex-
posed to device data. These models were initially trained on the UMAFall dataset,
which comprises 623 files, specifically utilizing the ankle sensor data. They were

33

Chapter 4. Results

then tested on 20 files from the device data. The device data was preprocessed to
match the UMAFall data in terms of sampling rate and was segmented into 5-second
windows that were centered around each detected fall event, but not overlapping.

The final row in the table represents a mixed training approach, combining the
UMAFall (ankle sensors) and device datasets, and testing on the device data. The
F1-scores in this scenario provide an understanding of how well the model general-
izes across different data sources.

All preprocessing steps, including adjustments to window length, sampling rate,
and the detailed methodology behind the alignment of data from both sources, are
discussed in Chapter 3.

Table 4.2 Cross-validation (CV) scores and F1-scores for ’Not Fall’ and ’Fall’ classes when
models were trained on different datasets. The UMAFall/UMAFall tests use ankle sensor data
only, UMAFall/Device tests train on UMAFall ankle sensor data and test on device data, and
Mixed/Device tests combine UMAFall and device data for training, tested on device data.
F1-score measures model accuracy for each class, indicating the balance of precision and
recall.

F1-Score
Train/Test Dataset Model CV Score Not Fall Fall

SVM 97% 96% 89%
UMAFall/UMAFall Logistic Regression 97% 97% 92%

Random Forest 97% 98% 95%
SVM 97% 92% 88%

UMAFall/Device Logistic Regression 97% 92% 88%
Random Forest 96% 85% 71%

SVM 97% 100% 100%
Mixed/Device Logistic Regression 97% 100% 100%

Random Forest 96% 89% 67%

The confusion matrices shown in Figure 4.3 correspond to the results of the models
trained on UMAFall ankle sensor data and tested on device data, as presented in
the second case of Table 4.2. This test set included 11 non-fall instances and 9 fall
instances, providing a balanced representation of both event types.

34

4.3 Device data

Figure 4.3 Confusion matrices for models trained on UMAFall ankle data when tested on
device data. From left to right: Support Vector Machine (SVM), Logistic Regression, and
Random Forest.

The confusion matrices in Figure 4.4 illustrate the results of training the models
on a mix of UMAFall and device data. The test set for this scenario was smaller,
comprising only 4 non-fall and 2 fall events.

Figure 4.4 Confusion matrices for models trained with data from mixed sources when
tested on device data. From left to right: Support Vector Machine (SVM), Logistic Regres-
sion, and Random Forest.

4.3 Device data

This section presents the outcomes of models trained and tested using only device
data. Training models with device data alone involved the use of the sliding window
method introduced in previous chapters, with specific parameters of a window size
of 1500, step size of 250, and border size of 300. The application of these parame-
ters along with stratified sampling during the division into training and testing sets
resulted in a training set comprising 288 non-fall events and 22 fall events. The
testing set consisted of 124 non-fall events and 9 fall events.

Table 4.3 and the confusion matrices in Figure 4.5 present the result of the cross-
validation scores and F1-scores for the baseline models trained on 42 features ex-
tracted from the data windows.

35

Chapter 4. Results

Table 4.3 CV scores and F1-scores for the baseline models trained and tested on the device
data with 42 features.

F1-Score
Model CV Score Not Fall Fall
SVM 94% 98% 78%

Logistic Regression 95% 100% 95%
Random Forest 97% 99% 84%

Figure 4.5 Confusion matrices for the baseline models trained and tested on the device
data. From left to right: Support Vector Machine (SVM), Logistic Regression, and Random
Forest.

The top 10 features from the baseline models were identified and new models were
created using only the top 10 features, a process often referred to as feature se-
lection. The following table, 4.4 and confusion matrices in Figure 4.6 present the
results of this round of model creation and evaluation.

Table 4.4 CV scores and F1-scores for the models trained with the top 10 features on the
device data.

F1-Score
Model CV Score Not Fall Fall
SVM 97% 99% 84%

Logistic Regression 96% 98% 75%
Random Forest 98% 98% 74%

36

4.3 Device data

Figure 4.6 Confusion matrices for the models trained with the top 10 features on the device
data. From left to right: Support Vector Machine (SVM), Logistic Regression, and Random
Forest.

As a final step of model training and evaluation, pitch and roll estimations from a
Kalman filter were added to the dataset, increasing the number of features from 42
to 56.

New models were trained with this expanded feature set, and the results are pre-
sented in Table 4.5 and Figure 4.7. Finally, feature selection was applied to this
56-feature set to identify the top 10 features. Again, new models were trained with
this optimized feature set and results are displayed in Table 4.6 and Figure 4.8

Table 4.5 CV scores and F1-scores for the models trained on the 56-feature set.

F1-Score
Model CV Score Not Fall Fall
SVM 96% 99% 89%

Logistic Regression 97% 100% 95%
Random Forest 97% 100% 100%

Already, an improvement can be observed in the F1-scores for the ’Fall’ category,
as compared to earlier results where models were trained without the addition of
pitch and roll estimations.

Figure 4.7 Confusion matrices for the models trained on the 56-feature set. From left to
right: Support Vector Machine (SVM), Logistic Regression, and Random Forest.

37

Chapter 4. Results

Table 4.6 CV scores and F1-scores for the models trained on the top 10 features from the
56-feature set.

F1-Score
Model CV Score Not Fall Fall
SVM 97% 99% 89%

Logistic Regression 98% 100% 94%
Random Forest 97% 99% 89%

Figure 4.8 Confusion matrices for the models trained on the top 10 features from the 56-
feature set. From left to right: Support Vector Machine (SVM), Logistic Regression, and
Random Forest.

In choosing a model for deployment in devices with limited memory capacities, the
model sizes have to be evaluated as well as the performance. Table 4.7 presents the
sizes of each model when trained with 56 features compared to 10 features.

Table 4.7 Model sizes with different numbers of features

Model 56 Features [KB] 10 Features [KB]
SVM 15 4
LR 5 2
RF 158 150

38

5
Discussion

In this chapter, the results presented in Chapter 4 will be discussed and examined in
relation to the goals and methods of this study. The discussion starts with an evalu-
ation of the performance of the machine learning models across different datasets:
UMAFall data, mixed data, and device data.

Following model evaluation, the limitations of this study are explored, and then
a discussion on further research that could build upon the findings of this study.
Finally, a conclusion of this study is presented.

5.1 Model Evaluation

The performance of the models varied depending on the dataset used for training
and the features included in the model. Given that the primary use case for this
project is to facilitate data collection aimed at future analysis and enhancements of
the prosthetic device, achieving perfect accuracy is not paramount. This approach
contrasts with applications where fall detection models trigger immediate alarms or
emergency responses, where higher accuracy would be imperative.

UMAFall Data
Initially, models trained solely on the UMAFall dataset, without the inclusion of
device data, achieved high accuracy with minimal adjustments. Several factors
could explain this but this dataset was collected with fall detection in mind, making
it quite optimal for this purpose.

When comparing results from models trained on the full-body sensor set to those
trained on data from ankle sensors only, a slight decrease in cross-validation (CV)
accuracy is observed. This could be explained by the reduced size of the training
set as there are significantly fewer features to train, and less diverse information
available in the ankle-only training set.

39

Chapter 5. Discussion

However, when the models trained on UMAFall data were tested on the device data,
the accuracy dropped considerably, particularly, the F1-scores suggest a drop in the
detection of fall events. This suggests that the models struggled to generalize from
the UMAFall data to the device data, despite the application of downsampling the
device data, along with other preprocessing steps to make the device data more
compatible with the UMAFall data. This drop in accuracy highlights the challenges
of applying models trained on one type of data to a different type of data, even after
substantial preprocessing.

Mixed Data
Interestingly, when the models were trained on a mixed dataset of UMAFall and
device data, the performance seemed to improve, with F1-scores racing up to 100%
for both fall and non-fall events. This indicates that the models were able to learn
useful patterns from the combination of the two datasets, and suggests that combin-
ing data from different sources could be a promising approach for improving fall
detection in prosthetic devices.

However, it’s important to consider the context of these results. The test set used
in this particular round of evaluation was relatively small, including only 4 non-fall
and 2 fall events. The small size of this test set most likely contributed to the high
accuracy scores, as it may not fully represent the complexity and variability of real-
world data. Therefore, while the results are promising, further validation with larger
and more diverse test sets would be beneficial.

Device Data
For the device data, a sliding window technique was employed to create the training
and testing sets. While this method allowed for an increase in both fall and non-fall
sequences, the datasets remained notably unbalanced. The training set consisted
of 288 non-fall sequences and 22 fall sequences, while the test set comprised 124
non-fall sequences and 9 fall sequences.

The class imbalance is manifested in the consistently lower F1-scores for fall
events compared to non-fall events. Addressing this imbalance, possibly through
techniques such as oversampling the minority class or undersampling the majority
class, could enhance the model’s predictive performance, particularly in accurately
detecting fall events.

Pitch & Roll Estimations
After adding pitch and roll estimations to the dataset, the F1-scores for fall instances
finally increased, particularly when using the full set of 56 features. The signifi-
cance of features extracted from pitch and roll estimations became evident through

40

5.2 Limitations

subsequent analyses. During feature performance evaluation, pitch and roll esti-
mations consistently ranked among the top-performing features. This observation
underscores their relevance and impact in enhancing the model’s ability to detect
falls effectively.

Incorporating these estimations not only expanded the dataset’s feature set but also
improved the predictive power of the machine learning models. By providing addi-
tional kinematic context, these features offer a richer, more detailed representation
of user movements, which is crucial for accurate fall detection.

Model Sizes
The comparison of model sizes, as detailed in Table 4.7, reveals significant reduc-
tions in memory usage when the number of features is reduced. As microprocessor
devices typically have limited computational resources and storage capacities, this
is a critical factor to keep in mind. The Random Forest model, for instance, shows
a minimal reduction in size, which suggests that while effective, it may not be the
best choice for on-device deployment due to its relatively large size. In contrast,
the SVM and Logistic Regression models demonstrate substantial size reductions
with feature filtering, highlighting their potential suitability for embedded systems
in medical devices where space and processing power are at a premium. These in-
sights will guide the selection of the most appropriate models for deployment in
prosthetic knees, ensuring that the device can operate reliably in real-world condi-
tions without exceeding its hardware limitations.

5.2 Limitations

Data collection
A significant limitation of this study stems from the possibilities for data collection.
The data used in this research is derived from simulated falls that often resemble
kneeling more than actual falls. These simulations may not fully capture the diver-
sity and unpredictability of real-world fall events. This could potentially impact the
generalizability of the models trained on this data set. Real-world falls can be influ-
enced by a variety of factors not present in the simulated fall events in this round
of data collection. Factors that can influence real-falls include environmental con-
ditions, the health of individuals, unexpected circumstances, and the surface of the
ground.

Participant Diversity
The study might have been constrained by the limited availability of participants for
data collection. Specifically, there was only one prosthetic knee user available for
testing. This lack of diversity in the participant pool might limit the model’s ability

41

Chapter 5. Discussion

to generalize to a broader population of prosthetic knee users. Each individual has a
unique gait pattern and movement characteristics, as well as reactions to a potential
fall event.

Sensor Accuracy
A potential limitation lies in the accuracy of the sensor measurements. While the
sensors used in this study provided valuable data for detecting falls, they are sub-
ject to potential inaccuracies and drift over time, as any sensor does. These factors
could introduce noisy data, which could impact the performance of the fall detec-
tion models, especially if the model is to be continuously monitoring sensor signals
in real-time fall detection.

5.3 Future Work

The research presented in this thesis sets the stage for several future improvements
and deeper investigation. The current fall detection system using IMU sensor data
from prosthetic knees shows potential but also faces real-world application chal-
lenges. To enhance the robustness and applicability of the findings, the key areas
identified for future work have been listed:

Obtaining Real-Life Fall Data
For a diverse dataset, the goal is to move beyond simulated data and incorporate
data from real-life fall events. This could involve employing a fall detection model
to monitor raw signals continuously in a user’s everyday life. The model would then
activate a data collection trigger if a fall is detected, ensuring that the sensor data
leading up to the fall is stored. Confirming these events with the user ensures that
the data represents true fall scenarios, which will provide valuable data to refine the
detection algorithms.

Expanding User Diversity
To improve the generalizability of the fall detection system, future work will aim
to include more users. By integrating the triggers system for data collection, it be-
comes feasible to gather data from real-world falls of a diverse group of users.
Starting with the initial participant and gradually expanding to more users will help
in developing a more robust model that can accommodate the variability in fall pat-
terns.

Addressing Sensor Drift and Noise
Drift and noise are known problems of IMU sensors. Future research involves fo-
cusing on methods to reduce noise and compensate for the drift of sensor signals.

42

5.4 Conclusion

This could include improvements on both hardware and software, but better sen-
sor data quality will improve the reliability and performance of the fall detection
algorithms, especially for continuous long-term monitoring.

5.4 Conclusion

The exploration of machine learning for fall detection using IMU sensor data from
prosthetic knees gives several critical insights and potential advancements in the
field of prosthetic technology. This study has demonstrated the feasibility and ef-
fectiveness of Support Vector Machines, Logistic Regression, and Random Forests
in distinguishing between fall and non-fall events with a high degree of accuracy.

An important objective was to create an efficient, real-time applicable solution tai-
lored specifically for individuals using prosthetic devices. By focusing on simple,
directly computable features extracted directly from raw IMU data, a system was
developed that aligns closely with the real-time computational capabilities of pros-
thetic technology.

Through rigorous testing and validation, it was demonstrated that careful selection
of features improved the accuracy and efficiency of the fall detection model. The
process of selecting highly contributing features allowed the system to focus on
computational resources, reducing processing power.

Ultimately, this research contributes to the ongoing efforts to enhance the safety
and autonomy of prosthetic users, promising not just to improve their quality of
life but also to provide a foundation for further innovation in integrated healthcare
solutions.

43

Bibliography

Agrawal, S. and D. K. Sharma (2022). “Feature extraction and selection techniques
for time series data classification: a comparative analysis”. In: 2022 9th Interna-
tional Conference on Computing for Sustainable Global Development (INDIA-
Com). GLA University, Mathura, India.

Agresti, A. (2002). Categorical Data Analysis. Wiley, pp. 165–211. ISBN: 0-471-
36093-7.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer.

BOSCH (2023). Smart sensor: bno055. URL: https://www.bosch-sensortec.
com/products/smart-sensors/bno055/.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (n.d.). Classification and
regression trees.

Casilari, E. and J. A.Santoyo-Ramón (2018). “UMAFall: Fall Detection Dataset
(Universidad de Malaga)”. DOI: 10.6084/m9.figshare.4214283.v7. URL:
https://figshare.com/articles/dataset/UMA_ADL_FALL_Dataset_
zip/4214283.

Christ, M., N. Braun, J. Neuffer, and A. W. Kempa-Liehr (2018). “Time series fea-
ture extraction on basis of scalable hypothesis tests (tsfresh – a python package)”.
Neurocomputing 307, pp. 72–77. URL: https://www.sciencedirect.com/
science/article/pii/S0925231218304843.

Cortes, C., V. Vapnik, and L. Saitta (1995). Support-vector networks.
Creylman, V., I. Knippels, P. Janssen, E. Biesbrouck, K. Lechler, and L. Peeraer

(2016). “Assessment of transfemoral amputees using a passive microprocessor-
controlled knee versus an active powered microprocessor-controlled knee for
level walking”. BioMedical Engineering Online 15. ISSN: 1475925X. DOI: 10.
1186/s12938-016-0287-6.

Geng, H. (2023). Optimization of Sensor Data Processing Methods for Gait Track-
ing. MA thesis. Aalto University.

44

https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://doi.org/10.6084/m9.figshare.4214283.v7
https://figshare.com/articles/dataset/UMA_ADL_FALL_Dataset_zip/4214283
https://figshare.com/articles/dataset/UMA_ADL_FALL_Dataset_zip/4214283
https://www.sciencedirect.com/science/article/pii/S0925231218304843
https://www.sciencedirect.com/science/article/pii/S0925231218304843
https://doi.org/10.1186/s12938-016-0287-6
https://doi.org/10.1186/s12938-016-0287-6

Bibliography

Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd.
O’Reilly Media, Inc. ISBN: 1492032646.

Jantawong, P., N. Hnoohom, A. Jitpattanakul, and S. Mekruksavanich (2021). “A
lightweight deep learning network for sensor-based human activity recognition
using imu sensors of a low-power wearable device”. In: Institute of Electrical
and Electronics Engineers Inc., pp. 459–463. ISBN: 9781665411974. DOI: 10.
1109/ICSEC53205.2021.9684631.

Kalman, R. E. (1960). “A new approach to linear filtering and prediction problems”.
Journal of Basic Engineering.

Li, Q., R. Li, K. Ji, and W. Dai (2015). “Kalman filter and its application”. In:
2015 8th International Conference on Intelligent Networks and Intelligent Sys-
tems (ICINIS), pp. 74–77. DOI: 10.1109/ICINIS.2015.35.

Lin, C. L., W. C. Chiu, F. H. Chen, Y. H. Ho, T. C. Chu, and P. H. Hsieh (2020). “Fall
monitoring for the elderly using wearable inertial measurement sensors on eye-
glasses”. IEEE Sensors Letters 4 (6). ISSN: 24751472. DOI: 10.1109/LSENS.
2020.2996746.

Lindholm, A., N. Wahlström, F. Lindsten, and T. B. Schön (2022). Machine Learn-
ing - A First Course for Engineers and Scientists. Cambridge University Press.
URL: https://smlbook.org.

Nho, Y. H., J. G. Lim, and D. S. Kwon (2020). “Cluster-analysis-based user-
adaptive fall detection using fusion of heart rate sensor and accelerometer in
a wearable device”. IEEE Access 8, pp. 40389–40401. ISSN: 21693536. DOI:
10.1109/ACCESS.2020.2969453.

Össur: Power Knee™. URL: https://www.ossur.com/en-us/prosthetics/
knees/power-knee.

Össur: Rheo Knee®. URL: https://www.ossur.com/en-us/prosthetics/
knees/rheo-knee.

Peter, M., D. A. Aldo, F. Cheng, and S. Ong (2020). Mathematics for machine
learning. URL: https://mml-book.com..

Powers, D. M. W. and Ailab (n.d.). Evaluation: from precision, recall and f-measure
to roc, informedness, markedness correlation. URL: https://doi.org/10.
48550/arXiv.2010.16061.

scikit-learn: Machine Learning in Python. URL: http://scikit-learn.org/.
Shawen, N., L. Lonini, C. K. Mummidisetty, M. V. Albert, K. Kording, and A.

Jayaraman (2017). “Fall detection in individuals with lower limb amputations
using mobile phones: machine learning enhances robustness for real-world ap-
plications”. JMIR mHealth and uHealth 5 (10). ISSN: 22915222. DOI: 10.2196/
mhealth.8201.

45

https://doi.org/10.1109/ICSEC53205.2021.9684631
https://doi.org/10.1109/ICSEC53205.2021.9684631
https://doi.org/10.1109/ICINIS.2015.35
https://doi.org/10.1109/LSENS.2020.2996746
https://doi.org/10.1109/LSENS.2020.2996746
https://smlbook.org
https://doi.org/10.1109/ACCESS.2020.2969453
https://www.ossur.com/en-us/prosthetics/knees/power-knee
https://www.ossur.com/en-us/prosthetics/knees/power-knee
https://www.ossur.com/en-us/prosthetics/knees/rheo-knee
https://www.ossur.com/en-us/prosthetics/knees/rheo-knee
https://mml-book.com.
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.48550/arXiv.2010.16061
http://scikit-learn.org/
https://doi.org/10.2196/mhealth.8201
https://doi.org/10.2196/mhealth.8201

Bibliography

Szeghalmy, S. and A. Fazekas (2023). “A comparative study of the use of strat-
ified cross-validation and distribution-balanced stratified cross-validation in im-
balanced learning”. Sensors 23 (4). ISSN: 14248220. DOI: 10.3390/s23042333.

Tahir, M., A. Moazzam, and K. Ali (2019). “A stochastic optimization approach
to magnetometer calibration with gradient estimates using simultaneous per-
turbations”. IEEE Transactions on Instrumentation and Measurement 68 (10),
pp. 4152–4161. ISSN: 15579662. DOI: 10.1109/TIM.2018.2885624.

Tang, J., J. Xu, T. Tan, Z. Wang, Y. Zhou, and S. Jiang (n.d.). Synthetic imu datasets
and protocols can simplify fall detection experiments and optimize sensor config-
uration. URL: http://ieeexplore.ieee.org.

Tanwar, R., N. Nandal, M. Zamani, and A. A. Manaf (2022). Pathway of trends
and technologies in fall detection: a systematic review. DOI: 10 . 3390 /
healthcare10010172.

Usmani, S., A. Saboor, M. Haris, M. A. Khan, and H. Park (2021). “Latest research
trends in fall detection and prevention using machine learning: a systematic re-
view”. Sensors 21:15. DOI: 10.3390/s21155134. URL: https://www.mdpi.
com/1424-8220/21/15/5134.

Williams, G. (2011). Data Mining with Rattle and R. Springer New York. DOI:
10.1007/978-1-4419-9890-3.

Ziegler-Graham, K., E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and R. Brook-
meyer (2008). “Estimating the prevalence of limb loss in the united states: 2005
to 2050”. Archives of Physical Medicine and Rehabilitation 89 (3), pp. 422–429.
ISSN: 00039993. DOI: 10.1016/j.apmr.2007.11.005.

46

https://doi.org/10.3390/s23042333
https://doi.org/10.1109/TIM.2018.2885624
http://ieeexplore.ieee.org
https://doi.org/10.3390/healthcare10010172
https://doi.org/10.3390/healthcare10010172
https://doi.org/10.3390/s21155134
https://www.mdpi.com/1424-8220/21/15/5134
https://www.mdpi.com/1424-8220/21/15/5134
https://doi.org/10.1007/978-1-4419-9890-3
https://doi.org/10.1016/j.apmr.2007.11.005

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
May 2024
Document Number
TFRT-6236

Author(s)

Heiðrún Dís Magnúsdóttir

Supervisor
Stefán Páll Sigurþórsson, Össur, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden
Kristian Soltesz, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Development and Evaluation of a Machine-Learning Based Fall Detection System
for Prosthetic Knees
Abstract

This thesis explores the feasibility of integrating a fall detection system into microprocessor-
controlled prosthetic knees using onboard sensors, with a focus on optimizing machine learning
models for real-time operational efficiency within the limited computational capacities of such
devices. Initial investigations utilized the public UMAFall dataset to gain insights into fall detection
methodologies and preprocessing techniques. This study also examined the potential for combining
the UMAFall dataset with device-specific data to enhance model robustness and performance.

Several machine learning models, including Support Vector Machines (SVM), Logistic Regression
(LR), and Random Forests (RF), were evaluated for their ability to accurately detect falls and for their
suitability in terms of computational footprint when deployed in a prosthetic device environment. The
models were initially trained with 42 features, which increased to 56 after incorporating pitch and roll
estimations into the device-specific dataset. This study further experimented with reducing the feature
set to 10 core features to examine the impact on model size and efficiency.

Results indicate that feature reduction significantly decreases model size while maintaining high
accuracy, with SVM and LR models showing the most substantial reduction in size, making them
ideal candidates for on-device implementation. The Random Forest model, although effective in fall
detection, demonstrated a less significant reduction in size, posing challenges for its practical
deployment in prosthetic knees with strict hardware limitations.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-46

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Introduction
	Motivation
	Related work
	Research goals/questions
	Ethical Considerations
	Report structure

	Background
	Microprocessor-controlled knees
	Inertial measurement unit
	UMAFall dataset
	Feature Extraction and Selection
	Kalman Filter
	Machine Learning methods
	Performance evaluation

	Methodology
	Data collection
	Preprocessing
	Feature engineering
	Model training and evaluation

	Results
	UMAFall dataset
	Mixed datasets
	Device data

	Discussion
	Model Evaluation
	Limitations
	Future Work
	Conclusion

	Bibliography

