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Abstract
Virtual 3D reconstructions of live sport events are on the horizon and to produce
a high quality experience for viewers it is important that the movements of the 3D
models look natural. Today, state of the art pose estimators produces data that con-
tains noisy data, resulting in jittery animations with pose errors. The goals for this
thesis is to evaluate the performance on an LSTM and classical filters in their ability
to reduce such noise, and if they can be used to improve the viewer experience. This
was done by comparing the Mean Per Joint Positional Error (MPJPE) and Absolute
Accerational Error (AAE) for artificially added noise to motion capture data and
comparing the results. A qualitative survey was also constructed to evaluate how
the different methods affected the human perception of the animations when focus-
ing on different aspects. We concluded that our methods were (to varying degrees)
able to reduce the amount of noise introduced to the motion data. The qualitative
study also indicated that the Savitzky-Golay smoothing algorithm improved the par-
ticipants perception of the animations.
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1 Introduction
With an increased interest across many industries for VR and AR applications, the
subject of 3D animation is getting more relevant. When animating a character there
are lots of things that can go wrong in the pursuit of making the characters move-
ments feel natural and realistic. This is especially true in the case of 3D sports
streaming, where athletes movements are critical to the experience. When creating
a 3D representation of a sports experience such as soccer, the poses of the players
need to be continually estimated and updated. These estimations are then used for
representing the animated movements of the 3D representations of the players.

Often these estimations of human poses contain noise, either in the form of
small inaccuracies that result in jittering character models, or errors in the estimation
which lead to limbs of the player models being represented poorly. The latter can
cause phenomena which make the experience feel unrealistic, such as feet sliding
on the floor or arms clipping through the body in unnatural ways.

The focus of this work will be to use different techniques to mitigate the effects
of this noise.

1.1 Problem formulation
This thesis will compare and evaluate the performance of different methods to pro-
cess noisy animation data for human characters. Both classical filtering methods
and neural network models will be applied and evaluated. To evaluate the results a
combination of quantitative and qualitative metrics will be used.

1.2 Research Questions
Going forward with the method and design choices of this thesis, finding answers
to the following questions will be considered:

• How does an LSTM Neural Network compare to classical filters in perfor-
mance when reducing jitter and pose errors in 3D pose estimation data?

• Can these methods be used to improve the user experience?
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Chapter 1. Introduction

1.3 Related Work
In [Shao et al., 2023], some neural network models for predicting and smooth-
ing human motion data are constructed and evaluated using metrics similar to the
ones used in this thesis. In [Graßhof et al., 2023], a Neural network based solution
for smoothing estimated noisy human motion data is presented, along with a noise
model that emulates pose estimation data. In [Memar Ardestani and Yan, 2022]
B-Spline filtering is used to reduce noise in motion capture data.

1.4 Scientific Contribution
This thesis proposes and evaluates the performance of different filtering approaches
along with a LSTM neural network solution for smoothing noisy human motion
data. A model for emulating noise that is associated with existing pose estimation
solution is proposed and used as a baseline for the tested smoothing methods. A
qualitative study is conducted to measure human perception of motion data with
different properties.

1.5 Work Distribution

Author August (%) Oliver (%)

Report Writing 50 50
3D environment 20 80
Noise modelling 100 0

Neural Networks models 95 5
Filters 10 90

Qualitative study 50 50
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2 Theory

2.1 3D character animation

In most cases when animating a character in a 3D environment an underlying struc-
ture of joints are used for morphing the character model. This results in being able
to pose the parts of the 3D model in different ways, without the need for generating
an entirely new 3D model. [Song et al., 2015]

These structures of joints, usually called skeletons are represented as nodes
mapped to joint positions of the 3D model, with a hierarchy to represent how some
joints are connected. For a 3D character this could be exemplified by a node repre-
senting the elbow having a parent node that represents the shoulder.

Each node contains data that represents its position relative its parent joint,
through positional or rotational coordinate systems. To achieve motion, a time series
of coordinates mapped to each node is applied to the skeleton. Each set of coordi-
nates in the time series represents the pose of the character at one time instant. These
sets, henceforth referred to as frames, are iterated through to animate the skeleton,
which in turn makes the 3D model move.

When a translation or rotation is applied to a joint the children of the correspond-
ing node will inherit this attribute and apply its own local translation or rotation to
calculate the global position and direction. These global coordinates can then be
used to draw the model in context to the rest of the scene.

2.1.1 The SMPL model
SMPL is a model proposed by [Loper et al., 2015] consisting of a parametrisation
of the human body. It contains parameters for body shapes and poses to accurately
represent human motion in a 3D space. For this thesis, the most interesting aspect of
the SMPL model is the parameters representing the pose, since it is the estimation
of the pose that we aim to improve.
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Chapter 2. Theory
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Figure 2.1 The joint hierarchy of the SMPL model. Note: right_hand and left_hand
are missing from this graph, since we ended up not using those in our work. This leaves 22
joints.

Skeleton structure

To represent a pose using the SMPL model, 24 nodes are used, the hierarchy of
which can be seen in 2.1. To represent movement, new coordinates representing
rotations and translations are applied at each frame. The translation component of
pelvis is used as the global translation of the skeleton. This means that if the
animation includes a movement where the entire 3D model needs to move (e.g.
walking forwards) only the translation component of pelvis needs to be updated
to translate the entire model in a certain direction, since the positions of all other
joints inherit their global translation from this one.

The animation data consists of multiple frames containing local rotations for
each of the joints, along with the global translation of pelvis.
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2.2. Rotational representations

2.2 Rotational representations
Rotations in three dimensions can be described in multiple ways. Three degrees of
freedom are required to fully describe an orientation in space, though, in the world
of animation this may result in complications that will be described below.

2.2.1 Rodrigues’ formulation
Axis-Angle Representations is a way to describe a rotation using a unit vector, êee,
which describes the axis of rotation and an angle, θ , which denotes the magnitude
of the rotation [Curtright et al., 2014]. The rotation, rrr, can then be described with

rrr = θ êee (2.1)

The Rodrigues vector is encoded with a different scale on the rotation angle,
based on the tangent function. Here, the rotation is calculated by

ggg = tan
θ
2

êee (2.2)

Using Rodrigues parameters introduces new characteristics, for example, g is
now a discontinuous function as a result of using tangent. The dataset used in this
thesis have rotations described with Rodrigues formulations.

2.2.2 Quaternions
Another method for encoding Axis-Angle rotations is with quaternions. Quater-
nions are 4-dimensional vectors which describes rotations in three dimensions, in-
troducing to some distinctive characteristics. Notably, quaternions enables the abil-
ity to describe the same rotation in multiple ways. The quaternion q is the same
rotation as −q [Dam et al., 1998]. This property, coupled with a concept called
unrolling, can effectively mitigate the discontinuities inherent in using Rodrigues
formula.

2.2.3 Unrolling
For quaternioins the issue of discontinuity can still be present if not properly pre-
processed, this is because of the ability to describe the same rotation with either ±q.
The process of unrolling involves examining and ’correcting’ the data by adjusting
the polarity of the quaternion q to ensure it remains on the hemisphere closest to the
preceding rotation, thus maintaining continuity and coherence in the rotational data
[Holding, 2024].
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Chapter 2. Theory

2.3 Classical filters
2.3.1 B-splines
A spline is a mathematical definition of a group of functions. These functions are
piecewise polynomials built up of several smaller intervals which are based on con-
trol points or knots. Depending on the type of spline the segments have a varying
degree of continuity. Since one of the goals of this project is to reduce noise and
jitter and introduce a smooth and lifelike feeling to animation data, at least a second
degree of continuity is needed, meaning that the second derivative is continuous for
all points on the curve [Ibrahim et al., 2017]. For these applications there is a sub-
group of splines called basis splines, often known as B-Splines. These have char-
acteristics that make them viable for data smoothing and noise reduction. One of
these features is the ability to have local control, improving results if there are seg-
ments more susceptible to noise than others by allowing varying smoothing rates.
Which degree of continuity is also adjustable, further improving noise reduction
capabilities when it is correctly adjusted by application purpose. [De Boor, 1976]

2.3.2 Savitzky-Golay filter
Another, more simple filtering method is the Savitzky-Golay filter, also known as a
Savgol filter. The concept of the algorithm is using the least squares method to find
a curve of a specified degree based on a predetermined number of points [Liu et al.,
2016]. Consider a choice of b points, creating a window between x0, ..,xb. The algo-
rithm fits a polynomial to these b data points. To choose the value of this window for
the smoothed result, Ft , at time t = b

2 . The next estimation is then based on the same
principles but for the window of input data x1, ..,xb+1. Looping though these steps
until estimations are calculated for all data points results in a smoothed estimation
of the original data [Mishra et al., 2019]. Careful consideration of the window size
and polynomial degree is essential to prevent overfitting and excessive smoothing
that might obscure relevant details amidst the noise. This filter was chosen as it is a
frequently used algorithm for detecting and improving data with noise.

2.3.3 Double Exponential Smoothing
A popular technique, used in time series analysis, financial forecasting and noise re-
duction etc. called Double Exponential Smoothing (DES) is valued for it’s efficiency
and real-time attributes when compared to other methods and algorithms used for
similar purposes [Chung and Kim, 2013]. This algorithm has two components, a
level and trend at time/frame t, denoted at and bt respectively. These are calculated
with

at = αxt +(1−α)(at−1 +bt−1)

bt = β (at −at−1)+(1−β )bt−1
(2.3)

where α is the smoothing constant for level and β for trend. Using the above
equations to construct the formula responsible for estimating the values on frames
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2.4. Machine Learning

t +h as follows;

Ft+h = at +hbt (2.4)

where h is amount of frames ahead. This algorithm is included in the thesis
because of the potential smoothing properties as well as the option to use it as a
position forecaster potentially allowing increased real-time applications.

2.4 Machine Learning
One area of research that has gotten a massive amount of attention in the last few
years is machine learning. Machine learning is a part of the realm of Artificial Intel-
ligence where machines learn from data, with the ultimate goal of finding patterns
to generalize and make reasonable assumptions about previously unseen data.

In general a machine learning model tries to approximate a function based on
some inputs and outputs. One example could be a classifier where the inputs are
images and the outputs are the types of objects in the images. In cases where the
corresponding true output values are known these are referred to as ground truth.

2.4.1 Loss function
When training a machine learning model, a loss function is used to evaluate the
performance of the current model. The model and its parameters are then improved
upon with respect to the loss function to hopefully approximate the ground truth
data in its output more accurately.

The objective function is formulated using a way to quantify the error of each
input-output pair in a model. It could be the mean squared error distance between
the output and the ground truth, or a more complicated relationship between them.

2.4.2 Artificial Neural Networks
Artificial Neural Networks are models inspired by biological neural networks such
as the human brain. One basic and common type of Neural Network, the feedfor-
ward neural network, consists of a number of layers of connected Artificial neurons.
Information flows from the input layer through all other layers up until the output
layer, which will approximate some function of the inputs, or features. In each layer
are units, often called neurons, representing an activation function of the inputs from
the preceding layer and outputting the function value to the next layer. At each step
the output of each node is weighted, biased, and then fed into the activation function
of the next layer in the network. The weights and biases of each connection are the
parameters that are optimised when training a neural network. [Goodfellow et al.,
2016]

15



Chapter 2. Theory

Training

When training a neural network, the weights and biases of the network are updated
according to the examples of input-output pairs of the model according to the ob-
jective function and some optimiser. The process most commonly used is called
stochastic gradient descent. The procedure can loosely be described as follows:
[Goodfellow et al., 2016]

1. Pick a small number of examples(feature - ground truth pairs) from the train-
ing set

2. Estimate the gradient of the objective function based on those examples, with
respect to the model parameters(the weights and biases)

3. Update the model parameters in the "direction" of the steepest descent ac-
cording to the estimated gradient, using some step size, often referred to as
learning rate

4. repeat until a local minimum of the objective function is reached

Recurrent Neural Networks

In contrast to feedforward neural networks, recurrent neural networks(RNNs) allow
for feedback connections between the layers of the network. This is useful in time
series predictions, as it allows for neural networks that can process input sequences
of arbitrary length in the time dimension, as each layer can apply the same function
to each time step and propagate the result forward.

It does however present one problem, namely that of the exploding/vanishing
gradient problem. This refers to a problem that can occur when calculating the gra-
dients for optimising on a RNN, where the propagation of a gradient over the many
stages has a tendency to disappear or explode. This is because of the exponential
nature of applying the same function to each input step and propagating forward.
The results of this problem can either be an "explosion" of the gradient where the
values propagated through the time stages get larger with each iteration, or more
commonly the values get exponentially smaller with each iteration and the informa-
tion from time steps further back are rendered insignificant compared to the values
of recent inputs. [Goodfellow et al., 2016]
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2.4. Machine Learning

Figure 2.2 The structure of a basic LSTM cell. σ refers to the activation function of the
layer being a sigmoid function. c and h are the inputs/outputs from the previous/to the next
layer, and x refers to the input for the current time step. Image taken from [Chevalier, 2021]

2.4.3 Long Short-Term Memory networks
One solution that has been proposed that addresses the vanishing gradient problem
comes in the form of Long Short-Term Memory networks (LSTMs). The model was
first proposed in [Hochreiter and Schmidhuber, 1997]. The most commonly used
LSTM models use a gated architecture and a memory cell, as is shown in fig. 2.2.
The model builds on the same principle as a RNN, with a distinction being that every
cell has the ability to store information in a separate channel, the cell state. The cell
state (ct in the figure) is modified through gates consisting of sigmoid layers, which
give as output a number between 0 and 1, which is to be interpreted as the fraction
of information to keep for the output to the next cell and time step. These gates are
used for conditioning both the cell input (both from the previous cell and the current
time step) and the output. Because of this, the exponential behaviour usually seen
in RNNs is no longer present. [Lipton et al., 2015]
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Chapter 2. Theory

2.4.4 ML in practice
In designing a machine learning model the variables defining the general training
behaviour or configuration of the model are called hyperparameters. These hy-
perparameters can be tuned to make the model learn from the data as effectively
as possible. Finding the best set of hyperparameters for a particular problem is
called hyperparameter optimisation, and is commonly used when defining ML mod-
els.[Feurer and Hutter, 2019]

Data partitioning is a fundamental concept in machine learning. It involves di-
viding a dataset into distinct subsets to create different stages of model development
and evaluation. The primary objective is to ensure integrity of model evaluations.
By separating into train, validation and test sets the performance of models can be
assessed in a systematic way to increase integrity and reduce the risk of not detect-
ing overfitting.

Overfitting can occur when a model memorizes the input instead of learning its
patters. Instead, the training set is used to train the parameters of the models, where
it learns the underlying patters of the data. The validation set, kept separate from the
data that the model accesses during training, is then used to assess how well these
parameters perform. The validation performance can then be used as insight into
how well the model performs on unseen data, which is important for not overfitting
the training data, as well as optimising the hyperparameters.

Finally, the test set serves as an unbiased assessment of the model’s performance
on completely unseen data, to provide insights into its real-world applicability. This
test set result can not be used to change the model, as the model then becomes
biased and the test set can no longer be counted as unseen. [Muraina, 2022]
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2.5. Metrics

2.5 Metrics
There needs to be a way of evaluating how the methods described in the sections
above perform. Two common methods are Mean Per Joint Position Error (MPJPE)
and Absolute Acceleration Error [Wang et al., 2021][Shao et al., 2023].

2.5.1 Mean Per Joint Position Error
This metric quantifies the Euclidean distance between the ground truth position of
joints and their predicted coordinates. Since the dataset for this thesis is from motion
capture, the recorded data can be assumed to be ground truth. For each 3D node,
the difference in position between the estimations and ground truth for each frame
gets accumulated. This value is then divided by the total amount of joints to get the
MPJPE. The lower value the better.

2.5.2 Absolute Acceleration Error
Absolute acceleration error, AAE, is defined in a similar way to MPJPE, using the
estimated and ground truth 3D node positions. To estimate the acceleration a of a
node, its position pt along with the previous position, pt−1 and the next position
pt+1 in time are needed. Since acceleration is the change of velocity, we can esti-
mate it with the velocity going to the next position minus the velocity in coming
from the previous one:

a =
pt+1 − pt

∆t
− pt − pt−1

∆t
) =

pt+1 −2∗ pt + pt−1

∆t
(2.5)

Where ∆t is the time passed between frames(here assumed to be constant). AAE is
then calculated as the distance between the acceleration a for the estimated and the
ground truth nodes.
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3 Method
3.1 Setup
3.1.1 Bevy
In this project we used an open source game engine called BEVY. This was done
as in addition of being open source, the engine offers beneficial features in terms
of efficiency. One of these features is that the engine is fully modular and plugin
based allowing the user to specify which parts of the engine to compile and run.
This allowed us to create two versions of our main program. One to visualize the
results and the other to run calculations where we could exclude the part of the en-
gine responsible for showing graphics and audio. This also gave the opportunity to
use user created plugins, which could automatically introduce lights and movement
controls in the environment saving us energy and time. Another feature, and the
driving factor for this choice of engine is the fact that BEVY is Entity Component
based.

Entity Component Systems (ECS) is the backbone of BEVY and as stated above
one of the main reason for Spiideos interest in the engine. This pattern is based
on creating entities that contain components. instead of typical object oriented pro-
gramming. For this project each player is an entity consisting of the 3D model as
well as a player pose component containing information about that specific players
rotation. Moving the characters is then as simple as creating a query requesting ev-
ery entity with this component. By iterating though this query the positions can be
updated for every individual player.

It is worth noting that using BEVY is a choice that will result in a lot of chal-
lenges, especially if there is no previous experience with ECS or rust. BEVY is still
in development and changes a lot between different versions. A lot of the informa-
tion online was outdated. How BEVY effected this project will be further evaluated
in the discussion.
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3.2. Noise modelling

3.1.2 Datasets
The experiments conducted during this thesis were done and evaluated on the BED-
LAM dataset, presented in [Black et al., 2023]. This dataset contains, among other
data, animation files for over 10000 human motion sequences. Each animation con-
sists of around five seconds of motion recorded at 30 fps.

Each animation is stored inside a numpy-array file(.npz), consisting of frame-
wise translation and joint rotation data in Rodrigues formulation as described in
section 2.1. The animations all contain rotational data for all joints in the slightly
expanded SMPL-X model, which contains separate nodes for facial features and in-
dividual fingers(totaling 55 joints). These extra joints were deemed uninteresting
for the purposes of this thesis and were therefore cut from the testing to reduce the
scope of our models, and so the final model used 22 joints (as shown in 2.1).

3.2 Noise modelling
Because the BEDLAM dataset consists of motion capture data, the errors and noise
present in 3D pose estimation are insignificant. This means that the dataset could
be used as ground truth, however it also presented the need for a way to realistically
simulate these artefacts and apply them to the dataset to find an estimation for our
input data.

Two models for noise were developed for this thesis. The first model was heavily
inspired by the noise presented in [Graßhof et al., 2023], while the second model
expanded on some features to further similarities to real world 3D pose estimation
data. The models are explained in detail below.

3.2.1 Initial noise model
This model is based on two parts, imprecision noise (jitter), and corrupted frames.
The noise N is added to the rotational data r of each joint in every frame, creating
the noisy data r′. This process is described below:

r′i, j,k = ri, j,k +Ni, j,k (3.1)

Where i is the frame, j is the joint and k is the coordinate of the rotational data. The
noise function N is sampled at each coordinate k as described below:

Ni, j,k ∼ N(0, θ̃i)+B(pi, j) ·N(0, θ̂i) (3.2)

Where N and B denote a Gaussian distribution and a Bernoulli distribution, respec-
tively. pi, j is the probability for the current frame being corrupt. θ̃i and θ̂i are each
sampled once every animation, which means they are dependent on frame i. They
are sampled from distributions shown below, where µB,µL are the mean values of
the distributions and θB,θL are their standard deviations.

θ̃i ∼ N(µB,θB) (3.3)

θ̂i ∼ N(µL,θL) (3.4)
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Chapter 3. Method

We observed in some applications, such as [Bridgeman, 2019], that missing frames
for pose estimation often occurred in a series close to each other. This property was
simulated by varying the parameter the probability of a frame being corrupt. A base
probability was assigned to it, with a large increase if the previous frame was also
corrupt. This made longer sequences of corrupt frames more probable than single
outliers, leading to the desired behaviour.

3.2.2 Final noise model
The previous model was iterated upon and improved to more accurately depict the
artifacts described in 1.1. The focus was shifted from missing and corrupted frames
toward estimation errors where the limbs of the model do not match those of the
real pose. The approach to simulate these erroneous predictions was to exaggerate
or dampen the motions in the animations randomly. This lead to body parts clipping
into one another and other impossible human poses being added to the noisy input
data. The process of adding the noise this time around is described in 3.5

r′i, j,k = αi, j ∗βi, j ∗ ri, j,k +(1−αi, j)∗ ri, j,k +Ni, j,k (3.5)

In this case, α controls whether a faulty joint estimation is occurring, in which
case an exaggeration or dampening is sampled from β , which skews the rotational
coordinates and creates distorted movements. N represents the jitter as described
before. N is sampled for every joint coordinate, α for each frame and β for every
joint from the distributions described in 3.8.

Ni, j,k ∼ N(0, θ̃i) (3.6)
βi, j ∼ N(1,θO) (3.7)

αi, j ∼ B(pi, j) (3.8)

θ̃i sampled each animation sequence as described in eq. 3.3. The parameter
pi, j is modelled to reflect the serial nature of estimation errors, meaning that an
erroneous limb was often followed up with a series of frames where that same limb
had its coordinates distorted by the same amount, β . This process was simulated in
the same way as the corrupted frames were implemented for the initial noise model.
A mechanism was also put in place to make sure that β is only sampled once for
each sequence of simulated estimation errors. The reason is that the entire sequence
would thus be distorted in the same way, resulting in a fluid but incorrect movement.
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3.3. Filter Implementation

3.2.3 Parameter choices
The effects of the parameter values µB,µL,θB,θL,θO, p for the distributions were
visually inspected when applied to an animation and tweaked until a reasonable
amount of noise was achieved, and the animations looked roughly like the animated
pose estimations described in 1.1. These choices were:

µB 0.01
µL 1
θL 0.002
θB 0.01
θO 0.3

The probability for a frame being corrupted in the first noise model was cho-
sen to be 0.02 in the baseline case, increasing to 0.75 if the previous frame was
corrupted.

In the final noise model the baseline probability for estimation error was 0.03,
increasing to 0.96 if the limb had been distorted in the previous frame.

3.3 Filter Implementation

As mentioned in the theory, describing rotations for three dimensions can result in
discontinuities in the data. By transposing these 3D vectors to quaternions and un-
rolling them we can prevent this causing issues during filtration. This can be seen in
fig. 3.1, where (a) shows in red how the data is smoothed before quaternion trans-
formation and unrolling, compared to (b) where this is implemented. The filtration
algorithms used in this thesis are all one dimensional. This means that to use these
methods, the data must undergo parsing from quaternion containing x, y, z and w
rotations to one-dimensional scalars representing rotations within a single channel.
This was done by iterating though the data, identifying the different channel ro-
tations for each joint and saving them their own array. This transition enables the
description of body part movements from multi-dimensional vectors for each frame
to a unified channel.
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Chapter 3. Method

(a) Rotation in z channel without any prepro-
cessing. Red dots shows the smoothing pre-
dictions on the blue input data.

(b) Rotation in z channel after the data has
been transformed to quaternions, unrolled,
smoothed and transformed back to Rodrigues
form. Red dots show the smoothing predic-
tions on the blue input data

Figure 3.1

B-Spline

As this is a well established method in the world of computer science the algorithm
is available in the python library called Scipy [Virtanen et al., 2020]. This algorithm
has three required inputs; t,c and k where t is the array of knots based on the data
points, c the spline coefficients, and the B-spline degree k. Using another Scipy
function, splrep, these parameters can be calculated from the data points. Besides
the inputs x and y, which denote the frames and node rotations within a single chan-
nel respectively there is a set of non-required parameters that can be adjusted for
specific purposes. In this thesis we use the standard values for all but one of these
parameters, namely; the smoothing condition s. As the name implies this adjusts the
amount of smoothness, with higher s resulting in a higher degree of smoothing. This
parameter will be chosen based on the results from the parameter analysis described
in section below.

Savgol filter

Just as the method above, Savgol filters have been around for a long time and the
algorithm is already implemented in a multitude of different libraries. In our case, a
version is imported from Scipy. It has eight different parameters, with three of them
being non-optional. These three are; the data for one channel, x, the window length,
wl, and the order of the polynomial used, po. The default values will be used for the
other parameters. Both window length and polynomial order will be based on the
parameter analysis.
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3.3. Filter Implementation

Double Exponential Smoothing

A version of this method can be found in smaller and less popular libraries but as
it is a simple algorithm we decided to be sure it worked for our purpose and imple-
mented it. Creating our python function with parameters for the one dimensional
channel as well as an α and β for the level and trend. The functions calculating the
smoothed data follows the equations 2.4 and 2.3. Since this is a forecasting method
that takes previous values into account the first value cannot be calculated, instead
this is chosen to be the same as the first value of the input data. With this information
it was a simple path to implement a working version.

3.3.1 Parameter Analysis
Since the chosen algorithms above all possess adjustable parameters that impact
how they work and calculate their results is is essential to have an appropriate way
to evaluate which values these parameters should take. By analysing these values
rather than relying it on intuition, the validity of the results increase. Therefore, a
parameter analysis was conducted.

Initial Parameters

How the initial parameters are selected can have an impact on the results of the
analysis. This can be especially important if the outcomes of the filters has local
minimums that differ from the global. To mitigate this risk, for all individual pa-
rameters, the starting value was chosen to be lower than the reasonable interval. If
this value performed even marginally well, it was lowered until the result of the fil-
tering yielded an objectively poor result. Then, increasing the input until receiving
the same poor results. To further eliminate the risk of this being a local minimum,
testing past this high value is done to evaluate if the results improve. If the results
do not improve, a reasonable span of initial parameters have been found.

Evaluations

In this thesis, the performance evaluation is based on MPJPE and AAE. How
these errors should be weighted has an impact on the best performing parameter.
By introducing the weight w, the total error can be adjusted with eerror_valuation =
weerror_mp jpe +(1−w)eerror_aae, enabling prioritisation of one of the errors.
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Strategy 1: Grid Search

With the aid of the initial parameter search, a wide interval of test parameter span-
ning over the tested area was chosen. A subset of animations from the training set
is chosen and for each of these animations noise is added, and then the calculations
begin. Using the same noise, the filters iterate through all chosen parameters com-
puting both MPJPE and AAE. Based on the error values calculated and the weight
w, the best parameter of each filter for this animation is recorded together with the
noise and outcome it produced. Once all animations in the training batch have been
used, an average of the best performing parameter is calculated. For each batch,
the values for; frame averaged MPJPE and AAE, using the best parameter, can be
compared between filters giving a picture of which filter performs the best.

Strategy 2: Adaptive Grid Search

Similar to how Strategy 1 operates, this approach begins with the same initial pa-
rameters. However, the difference is now that at the end of the calculations for an
animation, before the next, the interval for the grid search is adjusted. The updated
values are determined based on the average values of the best performing parameters
during the last five animations. This gives the opportunity to test smaller intervals
obtaining more precise parameter values, with the aim of focusing on parameters
close to the values that consistently perform the best.

3.4 LSTM implementation
The dataset being in the form of a time series of rotational coordinates for each
joint and coordinate, combined with the promised performance that LSTM models
for these types of data(as described in section 2.4.3), led to the decision to try and
train one for our purposes.

3.4.1 PyTorch
The implementation was done using PyTorch, which is a widely used open source
machine learning library. PyTorch allows for easily defining and training neural
network models. PyTorch has a ready implemented LSTM module, that can be used
when constructing a neural network. To use it, a couple of parameters need to be
defined:

• input_size: The number of inputs that each time step would consist of

• hidden_size: The dimension of the hidden state between LSTM cells(ht in
fig. 2.2)

• num_layers: Number of LSTM cell layers
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3.4. LSTM implementation

The output from this LSTM module will be of size hidden_size for each time
step. This dimension would not necessarily coincide with input_size which is
the shape we want our prediction to be. We also want to map the outputs from the
output space onto the target output space of the rotational coordinates. These issues
are both solved by adding a layer of nodes with linear activation functions after the
LSTM layers. This was implemented with a module from PyTorch, where the input
size was set to the same as hidden_size, and output size was set to the dimension
of the desired output.

3.4.2 Model design
The first decision that needed to be taken was to define what behaviour was wanted
from the model. The general idea was to feed the model a number of subsequent
(noisy) frames, and have the model predict what the true rotations for the last frame
in the sequence would be.

Each frame of the input data contained rotational data for 22 joints in 3 dimen-
sions. input_size was therefore set to 66, to capture the behaviour of the entire
model at each time step. To try and find more complex patterns, hidden_size and
num_layers can be set to a larger value, with an increased requirement for compu-
tational power during training and prediction. The parameters were tweaked by hand
until a model could be trained within a reasonable amount of time(roughly 2 hours
on a 2017 MacBook Pro), while still keeping the model as complex as possible. The
final choices for these parameters were hidden_size = 330 and num_layers = 2.
These were kept constant during subsequent experiments.

The model would output a sequence of frames of the same length as the one pro-
vided to it, where the last frame of the sequence would be considered the predicted
frame, and compared to the ground truth when training and evaluating the model.
PyTorch was used to split the dataset into batches containing sequences of frames.
Since LSTM models can handle sequences of arbitrary length, the sequence length
could be varied without changing the model.

3.4.3 Training and Loss
To train the model, the data set was split into a training set and an evaluation set. The
evaluation set was used to evaluate the model over several training epochs. During
each epoch the batches of the training set were each used to optimise the model one
step, as described in 2.4.2. To calculate the gradients, the commonly used ADAM
optimiser was used, and training was stopped when there had been no improvement
for 3 epochs.

To evaluate and optimise the model, the loss function had to be defined. In
early stages mean-squared-error between the rotational coordinates of the predicted
frame and its ground truth counterpart was used as the loss function.

It was noted that the model did not perform too well on the "jitter" part of the
noise, causing very shaky predictions. An attempt to mitigate this was made by alter-
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Chapter 3. Method

ing the loss function to penalise the acceleration error of a prediction. This was done
similarly to how AAE is described in section 2.5.2, where the last three predicted
points of each rotational coordinate was used to calculate the equivalent accelera-
tion value. Important to note here is that this does not automatically correspond to
the acceleration error described in 2.5.2, since that refers to the acceleration of 3D
points in space, and the model predicted coordinates correspond to rotations in 3D
space as described in section 2.2.

The final loss function was a mix between the mean squared error loss of the
predicted/ground truth coordinates and the mean squared error of the acceleration
for the three last predicted/ground truth coordinates belonging to each joint.

3.4.4 Hyperparameter optimisation
The sequence length of each input and how much of the loss function consisted of
acceleration error were two hyperparameters that were varied across each training
run. The models were used to predict an external evaluation set(which had been
kept separated from any of the data used during the training epochs). This set was
then fed into BEVY, where 3D positional coordinates where recorded corresponding
to the predicted frames. These coordinates were then used to evaluate the set of
hyperparameters, using the metrics defined in section 2.5.

The sets which performed best using both of these metrics were both saved to
be used as our final model to be compared to the other filtering methods.

3.5 Qualitative Study
Since our thesis is heavily related to the entertainment industry it is important that
there is an evaluation of how the different methods are perceived, to see if these
results differ from that of metric calculations. To do this a survey was created and
handed out to subjects.

3.5.1 Survey Structure
The structure of the survey is important to obtaining results that can complement the
objective data, strengthening or undermining the data enhancement techniques. The
objective metrics are, as mentioned before, MPJPE and AAE, and how important
they are to the outcome of the subjective study. To get a fair comparison the survey
was divided into two segments; one where participants focused on jitter and noise
and secondly one where they focused on how natural the animation and movements
felt.

Each segment is comprised of four sets animations, consistent across both sec-
tions. Within each set, six characters are shown doing the same animation, see fig.
3.2, but their data pre-processed in different ways; one for each filtering method,
one for the Neural Network, one for just the noise and finally one for ground truth.
The inclusion of ground truth/noise is to evaluate if there are techniques that are pre-
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ferred over the data used as the "correct value" as well as to see if there are methods
that are experienced as worse than just noise without improvements.

Figure 3.2 An example view of how the characters were displayed in the survey

Half of the sets were created with filter parameters and loss functions aimed
at prioritizing MPJPE improvement, whilst the remaining two emphasized AAE. If
the animation had MPJPE prioritization on one section it has AAE on the other, that
way data is collected with both focuses for each animation.

To get an understanding of which processing method the participant preferred,
two options were considered. The first option is to give the choice of rating how
good they perceived the methods to be. The second option is to rank them in order
of preference. Since people have different scales of how they give ratings, some
may rate a characters movements as a four, but another person a 3, even though
their perception of the movements are the same. To mitigate this, option two was
chosen, but at the expense of not knowing if all animations perceived as terrible or
good, just their ranking against each other. The order of improvement techniques
used was also randomized for each set to mitigate the risk of bias resulting from
repeated exposure to the animations.

3.5.2 Animation Selection
The selection of animations is also of great importance to getting results that yield
meaningful conclusions. Within the BEDLAM dataset, a few animations contained
noise in the ground truth data. From these, two animations with such errors were
chosen. This selection aimed to assess whether our methods could improve real
noise from real systems and not just noise created by our noise model. The other
two animations were with normal ground truth data without any noticeable artifacts.
Since one goal was to evaluate how important MPJPE and AAE are, two animations
were deliberately chosen to have clear limb distortion compared to ground truth.
An example can be seen in the image below, the green character displays the true
position whilst the red, transparent character displays how the noise has effected the
rotations. This was done to give clear examples of animations being unnatural. The
other two animations chosen to have the character move around, with the intention
to show true motion that has resemblance to sport movements.
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4 Results
In this chapter, we present the findings of both our quantitative and qualitative stud-
ies. Beginning with the results from our parameter analysis, leading to how they are
used to get the final outcomes of the filter implementations. Thereafter the results
from our Neural Network will be presented, showing results from how the different
weights on loss functions affected the test scores. Following this is a concise sum-
mation of all objective results. Finally, we present the findings from our qualitative
study.
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4.1 Filters

4.1.1 Parameter analysis
In both the standard and adaptive Grid Search the starting grid for the different
methods are defined in table 4.1. Values above and below these intervals increased
the error, resulting in these arrays of values being considered.

Table 4.1 Grid Search Parameters

B-Spline Values

s [0.0019, 0.0030, 0.0050, 0.012, 0.019]

Savgol

Window Lengths [10, 17, 23, 30, 39]
Poly Orders [1, 3, 5, 7, 9]

Double Exponential

Alpha [0.1, 0.3, 0.5, 0.7, 0.9]
Beta [0.04, 0.09, 0.14, 0.3, 0.4]

Standard Grid Search

The below table showcases the best parameters for different weights, where the dis-
played value is the sum of which parameter performed the best for each animation
divided by the total number of animations, resulting in the average of the best per-
forming parameters for the training set. The weight works as described in 3.3.1,
where a higher w increases focus on reducing MPJPE errors, vice versa for a lower
w and AAE.

Table 4.2 Each row represents one grid search, based on different weights. For each specific
weight, the average of which parameter in 4.1 performed best is displayed

Weight Best s Best wl & po Best α & β
0.75 0.0049 20 & 4 0.70 & 0.05
0.50 0.0056 20 & 4 0.62 & 0.06
0.25 0.0068 21 & 4 0.53 & 0.07

Where s is the parameter for B-Spline, wl and po is the window length and
polynomial order for Savgol with α and β describing Double Exponential.
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Adaptive Grid Search

As mentioned before, the starting grid is described in table 4.1. The showcased
value is calculated just as previously as described for table 4.2. After running the
training set, these were the best parameters:

Table 4.3 Each row represents one grid search, based on different weights. For each specific
weight, the average of which parameter in 4.1 performed best is displayed

Weight Best s Best wl & po Best α & β
0.75 0.0041 12 & 2 0.66 & 0.07
0.50 0.0044 14 & 2 0.59 & 0.08
0.25 0.0049 21 & 3 0.51 & 0.09

4.1.2 Filters
B-Spline

Using the s calculated by both the standard and adaptive grid search these are the
filtration results on the validation set. The first half showcases the standard version
of our grid search, the second the adaptive. The first row in each sections describe
the average amount of noise per frame added to ground truth. The columns % of
Noise indicates how much noise there is left after filtration using the specified s

Table 4.4 B-Spline validation results for standard using parameters from table 4.2 and
for adaptive using parameters from table 4.3. Green cells indicates the highest performing
parameters for MPJPE and AAE. Lower is better.

Standard MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4413 100 0.2263 100

s = 0.0049 0.4005 90.76 0.1739 76.83

s = 0.0056 0.4028 91.28 0.1750 76.27

s = 0.0068 0.4085 92.56 0.1739 75.57
Adaptive MPJPE/Frame % of Noise AAE/Frame % of Noise
Noise 0.4413 100 0.2263 100

s = 0.0041 0.3994 90.50 0.1758 77.66

s = 0.0044 0.3996 90.55 0.1750 77.30

s = 0.0049 0.4005 90.76 0.1739 76.83
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Savgol

With the window length and polynomial orders from 4.1 these are the results from
the validation set. The structure of the table is the same as described for B-Splines.

Table 4.5 Savgol validation results for standard using parameters from table 4.2 and for
adaptive using parameters from table 4.3.Green cells indicates the highest performing pa-
rameters for MPJPE and AAE. Lower is better.

Standard MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4413 100 0.2263 100

wl = 20
po = 4 0.4072 92.26 0.1611 71.19

wl = 20
po = 4 0.4072 92.26 0.1611 71.19

wl = 21
po = 4 0.3881 87.95 0.1609 71.08

Adaptive MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4413 100 0.2263 100

wl = 12
po = 2 0.4061 92.01 0.1619 71.53

wl = 14
po = 2 0.4056 91.90 0.1612 71.21

wl = 21
po = 3 0.3991 90.44 0.1600 70.70
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Double Exponential

These are the results from our last filter, Double Exponential. Once again going
through table 4.1 to select parameters and displaying the results using the same
table structure.

Table 4.6 Double Exponential validation results for standard using parameters from table
4.2 and for adaptive using parameters from table 4.3. Green cells indicates the highest per-
forming parameters for MPJPE and AAE. Lower is better.

Standard MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4398 100 0.2975 100

α = 0.70
β = 0.05 0.4640 105.14 0.1931 85.31

α = 0.62
β = 0.06 0.4710 106.72 0.1861 82.25

α = 0.53
β = 0.07 0.4860 110.02 0.1793 79.23

Adaptive MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4413 100 0.2263 100

α = 0.66
β = 0.07 0.4685 106.17 0.1901 84.00

α = 0.59
β = 0.08 0.4762 107.91 0.1843 81.43

α = 0.51
β = 0.09 0.4908 111.20 0.1784 78.82
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4.2 LSTM models
4.2.1 Hyperparameter Optimisation

(a) MPJPE results (b) AAE results

Figure 4.1 Results gathered from the grid search over the different choices of hyperparam-
eters on the external validation dataset. MPJPE metrics are shown in 4.1a, and AAE metrics
in 4.1b. Lower is better.

When optimising the model hyperparameters, the results in fig. 4.1 were acquired
for the different parameter choices and metrics. In fig. 4.1a the models were eval-
uated using MPJPE, and the best scoring model used a sequence length of 5 and
an acceleration weight of 0.25. For the AAE metric, as seen in fig. 4.1b, the best
scoring model used a sequence length of 5 and an acceleration weight of 0.75.
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4.2.2 Training loss

Figure 4.2 History of the loss for the training and validation sets during the training of the
model that favored lower MPJPE. Lower is better.

Figure 4.3 History of the loss for the training and validation sets during the training of the
model that favored lower AAE. Lower is better.

The loss for the training set and the internal validation set was recorded throughout
training the two models. The history for the model favoring MPJPE can be seen in
fig. 4.2, and the history for the model favouring AAE in fig. 4.3.
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4.3 Combined results
This section will be divided into two parts, one describing the results from the best
MPJPE models and one for AAE.

MPJPE

Using the tables 4.4 - 4.6, along with fig. 4.1, the best parameters in reducing MPJPE
for each method are extracted:

Table 4.7

Method Standard/Adaptive Parameter

B-Spline Adaptive s val = 0.0041
Savgol Standard wl = 21 & po = 4

DE Standard α = 0.70 & β = 0.05
LSTM - seq. len. = 5 & acc. weight = 0.25

Where DE stands for Double Exponential. Results when evaluating the models
with these on the test set can be seen below in table 4.8. The structure of the table is
similar to before, with B-Spline having the best performance, indicated with green
cells.

Table 4.8 Using the highest performing parameters for MPJPE, shown in 4.7, these results
were gathered. Lower is better.

Method MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4245 100 0.4432 100

B-Spline 0.3942 92.85 0.4033 91.00

Savgol 0.4001 94.25 0.3882 87.59

DE 0.4581 107.90 0.4145 93.54

LSTM 0.4169 98.21 0.4006 90.40
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AAE

For AAE, the best parameters for each method are shown below;

Table 4.9

Method Standard/Adaptive Parameter

B-Spline Standard s val = 0.0068
Savgol Adaptive wl = 21 & po = 3

DE Adaptive α = 0.51 & β = 0.09
LSTM - seq. len. = 5 & acc. weight = 0.75

Table 4.10 Using the highest performing parameters for AAE, shown in 4.9, these results
were gathered. Lower is better.

Method MPJPE/Frame % of Noise AAE/Frame % of Noise

Noise 0.4245 100 0.4432 100

B-Spline 0.4048 95.35 0.3997 90.20

Savgol 0.4175 98.34 0.3875 87.44

DE 0.4951 116.62 0.4026 90.76

LSTM 0.4304 101.38 0.3977 89.73

From this, we see that the best performing model is Savgol, with 12.66% of the
AAE removed.
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4.4 Qualitative study
The results from our quantitative study are shown in fig. 4.4. They are presented in
box diagrams marking the median rank with a red line for each smoothing model,
with boxes and "whiskers" indicating the distribution of rankings.

(a) Result for rankings by jitter, using models
favoring MPJPE

(b) Result for rankings by jitter, using mod-
els favoring AAE

(c) Result for rankings by natural movement,
using models favoring MPJPE

(d) Result for rankings by natural movement,
using models favoring AAE

Figure 4.4 Results gathered in the study, visualized in box plots. Lower is better
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5 Discussion
5.1 Findings
In this section the findings presented in the previous chapter will be interpreted and
discussed in relation to the research questions posed in 1.2.

5.1.1 Quantitative study
From section 4.3 it can be seen that for MPJPE the B-Spline had the highest perfor-
mance, reducing the largest fraction of noise in the test set. One theory for this is
B-Splines ability of local control. This method has the ability to adjust how much
smoothing there is in different sections based on how the control points are calcu-
lated and placed based on the data. This might give it an edge over other methods
where the smoothing rate stays consistent and does not adapt to varying levels of
noise in the sequence, such as Savgol.

This theory also explains our AAE results. Since the B-Spline function adapts to
local patterns of the data there is a risk that the algorithm mistakenly underestimates
the impact of noisier sequences and therefore not smoothing as much as necessary.
In contrast, Savgol, the best performing method for reducing AAE, does not take
this into account when smoothing. This results in a high degree of smoothing across
the entire sequence, with the consequence of an increase in MPJPE, to achieve
higher performance in AAE.

Information availability

Both double exponential smoothing and the LSTM models scored poorly using
MPJPE, as seen in 4.8. One possible reason for this is that these models had ac-
cess to less information regarding the surrounding points. These methods perform
their smoothing using only past frames, meaning the methods are well suited for
prediction purposes. This aspect is useful in real-time applications where latency
is critical, as it allows for processing frames as they arrive rather than waiting for
an entire sequence to process. However, having access to information about future
points gives information that could be crucial to making a good estimate for de-
noising, which would explain why the other methods outperformed these ones in
the MPJPE metric.
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5.1.2 Qualitative study
With a small sample size of only 9 responses to the survey, one should be careful
when interpreting the data from the qualitative study, shown in 4.4. The methods
that scored best overall across all tests were the Savgol filter models. These models
were also the ones to most efficiently reduce AAE in the quantitative study. This
could suggest that eliminating AAE might be more important in making human
motion perceived as smooth and natural, despite risking lower positional precision.

Interestingly the ground truth animation performed worse in all cases, possibly
due to the jitter present in the raw motion capture data retrieved from the BEDLAM
dataset in a few of the chosen animation clips. This indicates that our methods could
be used for broader problems than the simulated noise described in section 3.2.

5.2 Method Analysis
In this section the design choices used during this thesis will be discussed and cri-
tiqued.

5.2.1 Dataset
The dataset used had a vast amount of animations to evaluate and train our models
upon. As described in the Method chapter, each animation would be processed to
add noise and the unprocessed raw animation data would be used as the baseline to
compare against after having processed the noisy data. One aspect that was noted
when working with this dataset was that the raw animation data was sometimes
noisy to begin with. This noise would be used in training our models, which means
the metrics used for evaluating results would indicate that the best method would be
the one that preserves this noise. This could have unintended consequences, espe-
cially for the LSTM models, which could identify this noise as the true output, and
therefore try and emulate it on input signals not containing these faults. The deci-
sion was made to ignore this issue, since only a small part of the dataset seemed to
be affected.
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Test set

In the test set, which was hand picked from the training set and separated from
the rest of the data, this noisy raw motion capture data is heavily over-represented,
being present in a third of the set. The choice to include this data in the test set
was deliberate, with the intention of measuring the potential our models had at
improving the noisy motion capture data. It is however possible that it skewed the
results of the smoothing methods, since the test set did not match the challenges
they had been trained to overcome. This is made believable when comparing the
results from the LSTM in the hyperparameter optimisation validation runs, where
it scored significantly better at all times compared to the test sets, even though both
the external validation set and the test set had been unseen during the training of the
models. This suggests that a larger test set should have been used, to more accurately
represent the data of the complete set.

5.2.2 Filters
With the result in hand, there are a few points worth bringing to light about issues
with the process of creating and evaluating the filtration methods. Starting off with
the parameter analysis.

Initial Grid

The starting grid in table 4.1 was chosen suboptimally, based on only two anima-
tions and human intuition about which errors produced reasonable errors. Addition-
ally, the parameters were selected assuming equal weight, w, for MPJPE and AAE,
but an increase in reliability would come from using unique starting parameters for
each weight. The tested parameter values and their corresponding error should have
been saved and presented in the result to back up our claims of which starting grid
to use.

Parameter Evaluations

There are also changes that can be made to improve the way the best parameter
is calculated from the training set. As written in the discussion, currently, for each
animation, only the parameter that performed the best in noted. After all animations
in the training is completed, these values are summed then divided by the total
number of animations. Instead, it would have been more coherent with the method
comparison approach to save the error values for each parameter. This way the frame
averaged MPJPE and AAE could have been used as weights to determine the best
parameter, not only increasing coherency but also reducing the effect of issues that
have been found to exist in a few of the animations.
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Adaptive vs Standard Grid Search

If we compare the results between the standard and adaptive grid search a common
trend can be seen, the parameters calculated from the standard grid search often
had higher values. This is because of the functionality of our adaptive search. As
previously described the parameter interval is reduced and continuously adapted
following the best results over the last five animations. Since our results often show
that the best parameter is closer to the lower end of our initial array of values, this
adapted array will start to focus in on this area, leaving out the higher values that
were tested at the start. Every now and then there comes an animation with rotational
data that would benefit from having higher parameters, this is still an option for our
standard method, but not the adaptive. Accumulate this rare instance over a large
amount of animations and there will be a trend that the standard method produces a
higher valued result. A unique behaviour can also be seen in the table 4.5. Here there
is a large disparity between the standard and the adaptive parameters with weights
focused on MPJPE. Our theory for this is that even though we created the adaptive
method to reduce the risk of fixating on a local minimum, it instead resulted in an
increase. Since we only used a few animations to determine the starting grid we
hoped that the adaptive strategy could change the scope to move outside the one in
table 4.1. What we instead think happened was that the first animations were similar,
requiring a lower window length around a local minimum that the algorithm could
not move from, resulting in worse performance.

5.2.3 LSTM
This section will discuss the design and results gathered from the LSTM models.

Rotational Acceleration Loss

One thing that behaved as expected during evaluation of the models was the effect
of increasing the acceleration weight of the loss function, which in most cases lead
to favoring better results for the AAE metric than for MPJPE. This effect was seen
both on the external validation set and for the final models in the test set. It might
seem surprising to see such a strong correlation between AAE and the loss function
based on rotational acceleration given that the loss functions are based on axis-angle
representations of limb rotations, while the evaluation metrics are based on 3D limb
positions. However it is also reasonable to assume that jittery rotations will result
in a jittery positions, even though they might be close to the correct rotation and
position. This would explain why penalising the model for rotational acceleration
loss would also improve the AAE of the frame.
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Chapter 5. Discussion

Model size

Perhaps the most limiting factor of the model was its small size. As discussed in
previous chapters, a larger size(more hidden layers and a larger hidden dimension)
would probably have been able to generalize and find more complex patterns in the
data that could further remove the noise and increase the quality of predictions. The
small model size is also a possible reason for the model not performing better for
bigger sequence lengths, which in theory would provide it with more information
to make a prediction. The reason it performs worse could be that the model cannot
"store" and interpret the input data for more than a couple of iterations in the rollout
of the LSTM layers because of its small size. It is possible that this aspect could
be improved by employing a strategy involving an autoencoder layout somewhere
in the neural network architecture. This could reduce the amount of unimportant
information flowing through the layers, making it easier for the LSTM layers to
react and memorize longer sequences of frames.

Loss History

As seen in fig. 4.2 & 4.3, the validation loss decreases somewhat consistently with
increasing epochs until plateauing. This indicates that the model cannot improve
unless introduced to new training data or increasing model size, which is also why
the training of each model was terminated after the validation loss had not improved
for 3 epochs.

5.2.4 Qualitative study
We have a lot of afterthoughts about the survey structure. Even though a lot of
planning went in to choosing animations, choosing how they would be presented,
how they would be compared and rated, what should be displayed etc. it feels like
if we had done it again it would look very different.

For our animations we selected two with noise in their ground truth motion
capture data and two without. We later realised that even though this gave an in-
teresting perspective on whether we could improve real world noise issues, it does
not accurately reflect the dataset We also gathered some feedback from participants
regarding their thoughts about the survey. There was a common trend in the sur-
vey being straining and difficult to finish for a couple of reasons. Many animations
looked similar, making them hard to rank. the jitter interfered with the section on
natural movements causing a bias towards those who remove jitter effectively. Fi-
nally, the white characters in an endless void (see fig. 3.2) made all movements feel
unnatural and robotic.

Another point worth discussing further is that the animation representing ground
truth performed worse than expected, especially on the section regarding natural
movements without ground truth noise. Our theory is that since four of the six an-
imations all displayed the same pose errors, the participants were skewed to think
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5.2. Method Analysis

this error was natural due to the majority of characters performing the same (erro-
neous) movements. One animation specifically had a large pose error included in the
animation. Even though this error makes a person move their leg through the floor
this did not feel unnatural according to the surveyed, since the floor was invisible.

5.2.5 Bevy
The usage of BEVY resulted in an increased amount of work. Although this engine
is fun to work with and has a high potential, using BEVY whilst being new to
RUST proved to be a challenge in many occasions. Thankfully, our supervisor Erik
was very knowledgeable and could help us when we found no solution available. It
would have been wise to use another engine for this thesis simply because of the
time constrains, but the functions we needed were available so the project could be
completed. The most common issue though, was that information about solutions
to relevant issues had outdated answers. This is a side effect of the engine still being
new and under development, so this downside will eventually not be as relevant
but resulted in some hindrance for us. We mainly used BEVY for visualization
purposes, but it was also used to gather the 3D positional data from rotations. This
caused confusion when results for the quantitative study were gathered, since with
the same rotational inputs, the output in 3D coordinate data had slight variations
depending on which of our computer ran the simulation.

5.2.6 Future Work
Filters

When writing, we have seen potential future developments that would be of interest
to study and investigate. Currently, we focus just on removing noise from the ro-
tation vector inputs. An interesting aspect would be if there are any improvements
that can be made by filtering the positional coordinates instead. As mentioned pre-
viously in the discussion, an improvement to both the initial parameters and the
adaptive grid search algorithm can be considered. When done right out theory is
that this should not only increase reliability that the chosen interval contain the
global maximum, but the adaptive search should consistently perform better than
just the standard.
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Chapter 5. Discussion

Neural Network

As explained before, one bottleneck for the LSTM models was the model size,
which was capped due to long training times. This would be a smaller issue with
more computational power, which could decrease the time required dramatically.
Exploring solutions involving cloud computing could be beneficial in this aspect,
perhaps allowing for bigger models and larger datasets. Another path to explore
would be performing more data preparation, for example normalisation along the
input sequences or using dropout during training to hide certain connections be-
tween layers in the network to improve the generalisation of the model.

General Areas of Interest

The LSTM predictions generally did a better job filtering out pose errors created by
our noise model, but worse in filtering out the high frequency noise like jitter. The
classic filters on the other hand, were much better at reducing these errors whilst
ignoring the pose errors. It would be of interest to combine the methods used in the
thesis, to see if there is a way to create a combined solution that the effective at
solving both types of issues.

The noise modeling is another field where more work can be done to more accu-
rately represent the problems present in 3D pose estimation. The issues emulated in
the current model are present in actual pose estimation data, but one aspect that was
largely ignored is lost frames where the estimator loses track of the subject being
tracked. This problem is particularly common when more subjects are present in the
same scene, and partially occlude one another. This type of data could be emulated
by removing frames at certain times. The models would then have to work with
these new type of errors, and try to predict the actual pose for the missing frames
based on the remainder of the sequence.
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6 Conclusion
One of the questions we set out to answer in this thesis was whether it is possible to
remove noise from 3D human pose estimators in such a way that it improves the user
experience. Looking at our results, we find that for both our quantitative metrics, we
were able to reduce the errors created by unwanted noise with 7.15% and 12.66%
for MPJPE and AAE respectively. The qualitative study gave a clear indication that
all methods we tested consistently ranked higher than the noisy animation on both
the amount of jitter and the natural movement criteria. One of the methods, Savgol,
outperformed even ground truth in many scenarios, although this comparison to
ground truth should be interpreted with caution because of the reasons mentioned
in the discussion. Compared to our simulations of how real pose estimation data
would look, our conclusion is that our methods improve the user experience.

Another aim was to investigate and compare an LSTM network with the classic
filters to see if there is any benefit to selecting either of these methods. The results
in all of our studies point to the LSTM models performing worse in solving the
proposed problems. The reasons for this could be that the LSTM is solving a slightly
different problem than the top performing filters, namely prediction based on past
input, whereas the filters use information from future and past points in time to
smooth out the input signal. Another explanation could be that the LSTM models
were poorly designed or simply too small to capture the patterns present in the
dataset.
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