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Abstract

Large financial institutions are vulnerable to numerous financial risks, necessitating
robust regulatory frameworks to prevent crises such as those experienced in 2008.
The Basel framework, devised by the Basel Committee on Banking Supervision,
incorporates critical measures such as the credit valuation adjustment (CVA) to
mitigate these risks. CVA fluctuates significantly based on market factors and coun-
terparty conditions, these fluctuations need to be handled, and this is done through
hedging. Hedging CVA is challenging due to its sensitivity to dynamic market con-
ditions and the complexity of underlying assets, compounded by factors such as
cross-gamma and wrong-way risk, which add significant complexity to effective
risk management. This study explores the use of deep hedging, employing rein-
forcement learning to devise robust hedging strategies that navigate the complexi-
ties often associated with traditional analytic models. Through experimental simu-
lations, this research compares the efficacy of traditional delta hedging with that of
a reinforcement learning-based strategy, providing insights into their respective per-
formances. The study evaluates two different market models, with the RL strategies
showing promising results, particularly in the less complex model, highlighting the
challenges of addressing high-dimensional problems. The findings establish a foun-
dation for further research and demonstrate the potential of reinforcement learning
in enhancing CVA hedging strategies.
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1
Introduction

1.1 Background and motivation

Banks manage large trading books with exposure to various financial risks. To avoid
scenarios like the 2008 financial crisis, oversight institutions have introduced laws
and regulations to manage these risks. One crucial set of regulations is the Basel
framework, developed by the Basel Committee on Banking Supervision. Ensuring
compliance with banking regulations, including the Basel framework, is a critical
responsibility of financial institutions [Buehler et al., 2015].

Large banks have developed advanced in-house control systems to ensure com-
pliance with regulations. Traditional financial models have been used to generate
various risk exposure measures for risk management. However, recent research in-
dicates significant potential in modern machine learning approaches [Buehler et
al., 2018]. Many traditional methods fail to consider transaction costs and addi-
tional market information [Buehler et al., 2018]. With the technology known as
deep hedging, machines can analyze large amounts of historical data to make more
advantageous hedging decisions. Hedging is reducing financial risk by taking offset-
ting positions in different assets. Machine learning methods are implemented with a
clear objective, meaning they are trained on a specific, explicit reward function. This
is particularly useful for addressing risk management questions where one wants to
explore different risk measures.

This thesis is done in collaboration with Nordea Markets in Copenhagen, part of
Nordea Bank, a Nordic financial services group operating in northern Europe. In
this thesis, we explore hedging in the specific context of a credit value adjustment
(CVA). CVA originates from the third Basel accords [Bank for International Settle-
ments, 2020] and has been a significant component of P&L performance for Nordea
and, more broadly, any large global financial institution offering derivatives. P&L
stands for profit and loss, which measures financial gains and losses over time. The
cross-gamma effect of CVA refers to the nonlinear relationship between different
risk factors, complicating the hedging process. Thus, developing a machine-learning
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Chapter 1. Introduction

approach to address this issue can help banks improve their risk management strate-
gies by providing more accurate and nuanced insights.

1.2 Objectives

The goal of this thesis is to develop strategies to effectively manage the risks associ-
ated with CVA of derivatives using advanced machine learning techniques. Specif-
ically, we explore the use of deep hedging—hedging strategies based on deep re-
inforcement learning (RL)—within simulated market environments. Our research
objectives are

i) the development of deep hedging to manage the risks associated with CVA in
simulated environments,

ii) the evaluation of deep hedging against a baseline method called delta hedging,
and

iii) evaluation of the performance of the methods with respect to trading costs and
underlying correlations in the simulated market environments.

1.3 Significance

This thesis addresses critical financial stability issues that became apparent dur-
ing the 2007-2008 global financial crisis, during which banks incurred substantial
losses due to CVA [Pandit, 2023]. Understanding and effectively managing CVA
is essential because it represents the cost of potential counterparty defaults [Brigo
et al., 2013]. Accurate CVA management is crucial for maintaining the integrity
and stability of financial institutions, especially those dealing with over-the-counter
derivatives.

CVA hedging is vital to modern risk management, offering protection against coun-
terparty risk and helping institutions comply with regulatory requirements. How-
ever, the complexities in accurately quantifying CVA, market dynamics, model risk,
and operational challenges make it difficult. Continuous advancements in risk man-
agement practices and technologies are necessary to address these challenges ef-
fectively [Gregory, 2012]. Additionally, complexities like wrong-way risk (WWR)
and cross-gamma further complicate the development of effective risk management
strategies [Hull and White, 2012; Chicot, 2019].

Research has shown that RL-based hedging strategies can outperform traditional
methods, especially under conditions of transaction costs [Kolm and Ritter, 2019;
Daluiso et al., 2023]. These advanced strategies leverage reinforcement learning to
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1.4 Scope and methodology

adapt to dynamic market conditions, providing a more robust framework for man-
aging financial risks.

This thesis contributes to improving financial risk management practices by de-
veloping and validating RL-based strategies. It supports better preparedness and
resilience against future market disruptions, making it highly relevant for financial
institutions, regulators, and researchers aiming to enhance the stability and robust-
ness of the global financial system.

1.4 Scope and methodology

This thesis focuses on developing and validating RL-based strategies for hedging
CVA in derivative portfolios. The RL algorithms are implemented and tested to
develop robust hedging strategies for CVA. The performance of these RL-based
strategies is compared to traditional hedging methods, with particular attention to
their effectiveness under different correlation conditions for the underlying market
processes and the influence of transaction costs. The research is conducted within
a simulated financial environment to evaluate the efficacy of RL agents in learning
to hedge. This environment incorporates key factors such as WWR, cross-gamma,
transaction costs, and correlations between underlying processes. The RL strategies
are examined under these conditions to evaluate their performance. A limitation is
that they are tested in the same environment, though on different data, as trained.

The methodology of the thesis includes several key steps to achieve these objectives.
First, a comprehensive review of existing literature on traditional hedging methods
and recent advancements in the use of RL for hedging is conducted.

Next, two simulated financial environments are developed to represent market dy-
namics and conditions for CVA. These environments are designed to accurately
reflect the complexities of the financial markets, including WWR, cross-gamma,
transaction costs, and the correlations between underlying processes. The correla-
tions of the underlying assets are assumed to be constant over time, and the trans-
action costs are assumed to be linear. The first of these environments is extremely
simple, with just two underlying assets, built on the assumption that the contract it
is based on has only one payment very far into the future. This environment imple-
ments the simplest model of a CVA that still captures the non-linear complexities.
The second one is based on a CVA for a real interest rate product. The CVA in
this second environment is simulated according to models by [Brigo et al., 2013].
RL algorithms, specifically the proximal policy optimization (PPO) algorithm, are
implemented in these simulated environments. The state spaces, action spaces, and
reward functions are defined to align with the CVA hedging problem.

The RL agents are trained in these simulated environments, allowing them to learn
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Chapter 1. Introduction

optimal hedging strategies through interaction and optimization. It is assumed in
both environments that there are no liquidity constraints and that trading can be
done directly in the underlying assets. The performance of the RL-based strategies
are evaluated by comparing them with the traditional delta hedging method, and
the naive method of not hedging. Performance metrics relating to P&L are defined
and used for these comparisons on numerical simulations. While we check whether
the strategies make net profits or losses, we do not keep track of how much cash
injection they require during the hedging process to take their positions, we focus
instead on the variance and risk metrics. These simulations analyze the performance
of RL-based strategies under various market conditions and correlation scenarios.

The results of the comparative analyses are presented, highlighting the strengths
and weaknesses of RL-based strategies. The findings are discussed regarding their
implications for financial applications and the broader effort to improve financial
risk management practices. The thesis concludes by suggesting areas for further
research, emphasizing the potential of reinforcement learning in developing effec-
tive and robust hedging strategies for CVA. This comprehensive approach aims to
enhance stability and robustness in risk management practices.

1.5 Related work

The benchmark for hedging, when assuming no trading costs and continuous trad-
ing, is established by the minimum variance hedge, as described by Hull and White
[Hull and White, 2017]. Furthermore, [Davis et al., 1993] developed a set of com-
plex nonlinear partial differential equations (PDEs) that provide optimal solutions
for continuous trading with trading costs in Black and Scholes markets. However,
these PDEs become computationally unfeasible in dimensions higher than one.

Recent advancements in financial technology have seen numerous research groups
pivot towards utilizing reinforcement learning (RL) for hedging applications.
[Buehler et al., 2018] demonstrated that optimal hedging strategies applicable to
a wide range of market conditions—including various market frictions like trading
costs, market impact, and liquidity constraints—can theoretically be approximated
well by standard reinforcement learning algorithms. They also provided practical
evidence of their efficacy by successfully hedging call options in a simulated mar-
ket environment.

Moreover, [Kolm and Ritter, 2019] illustrated that RL could effectively learn to
hedge even without complete information, using a log-normal market as a case study
where perfect hedging is unachievable. Following this, [Du et al., 2020] explored
deeper into RL’s capabilities by training models using deep Q-learning, pop-art, and
proximal policy optimization (PPO). Their findings suggested that models utilizing
PPO performed optimally and trained more rapidly than others, achieving superior

12



1.6 Outline

results in hedging call options with discrete trading and associated trading costs.

[Cao et al., 2021] further confirmed RL’s potential in deriving optimal hedging
strategies for call options under trading costs, utilizing a Black and Scholes mar-
ket framework and a stochastic volatility market model. Their approach involved an
innovative Q-learning model that calculates two distinct Q-functions to effectively
manage expected and squared costs.

Building on the work of [Du et al., 2020], our study expands the application of
PPO-based RL models to manage more complex scenarios involving multiple un-
derlying assets and intricate market models, aiming to achieve better performance
over traditional delta hedging techniques. This progression underscores RL’s broad
applicability and robustness in financial hedging, especially for managing CVA, as
preliminarily evidenced by promising results in [Daluiso et al., 2023].

1.6 Outline

In Chapter 2 of this thesis, we introduce the essential financial background needed
to comprehend the subsequent discussions. We explore important elements of fi-
nancial markets with a specific focus on credit risk management, highlighting the
motivation behind the introduction of CVA into contemporary financial practices.
This chapter sets the stage for understanding the complex interactions and depen-
dencies that define the risk landscape in financial systems.

Moving into Chapter 3, we introduce the concept of hedging. We also delve into the
mathematical underpinnings of stochastic control as a way to represent and solve
the dynamic hedging problem. This section is crucial as it lays down the theoretical
framework for our hedging strategies.

Chapter 4 transitions from theory to the practical application of these concepts,
introducing the stochastic models used to simulate the financial markets in which
our agents will operate. We discuss the assumptions, variables, and the construction
of these models to reflect real-world market behaviors as closely as possible.

In Chapter 5, we take a deeper look at the specific contract we are focusing on
— the CVA. This chapter outlines the unique challenges associated with hedging
CVA, including its sensitivity to market factors and its critical role in managing
counterparty risk.

Following that, Chapter 6 details the specific environments where our hedging
strategies will be applied. It outlines the operational settings, the conditions under
which our models will function, and how we will evaluate their performance. This
chapter is designed to bridge the gap between theoretical models and their practical
implementation.

13



Chapter 1. Introduction

Chapter 7 covers the theoretical background on reinforcement learning, the core
algorithm behind our hedging models. We discuss the specific algorithms used, their
suitability for our needs, and how they adapt to the unique challenges of financial
hedging.

Beginning Chapter 8, we describe the setup for our simulations and models, detail-
ing which variables we vary and the values they can take. This chapter then presents
the results of our simulations, providing a critical analysis of the effectiveness of
deep hedging strategies in managing CVA.

In Chapter 9, we discuss the implications of our findings and analyze what the
results suggest about the potential and limitations of using deep learning algorithms
for dynamic hedging.

Finally, Chapter 10 concludes the thesis by summarizing the broader implications
of this work and discussing potential future directions for research in this area.
We reflect on how the findings could influence future developments in financial
modeling, particularly focusing on the integration of machine learning techniques
in risk management strategies.

1.7 Individual Contributions

The authors have jointly contributed to the majority of the project, sharing simi-
lar backgrounds in financial modeling, machine learning, and programming, which
facilitated a collaborative approach to understanding the problem. The writing pro-
cess was iterative, with both authors actively contributing to each chapter, ensuring
a balanced input throughout the development of the thesis.

1.8 Implementation code

For the interested reader, the code used is available at the GitHub repository:
https://github.com/ososib/Deep-Hedging-of-CVA.git. The code con-
tains the market simulators, RL implementation, evaluation scripts, and helper
functions we used in our thesis.
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2
Financial instruments and
implications

There exists a wide array of financial instrument types. We care about some from
a diverse subset of them known as derivatives. In this chapter, we will introduce
financial derivatives and present some use cases and a few examples. We also in-
troduce some framework and regulatory details governing the operation of financial
derivatives. We will also discuss counterparty credit risk and explain briefly how it
is managed.

2.1 Financial derivatives

Derivatives are financial instruments whose value depends on other instruments
called underlying assets. Derivatives have existed and been traded for a very long
time, there is evidence of them being used as far back as the ancient Greeks [Oost-
erlinck, 2017]. Today there is an incredibly massive and diverse derivatives market,
with the notional value of outstanding OTC derivatives in June 2023 being $715
trillion [Bank for International Settlements, 2023]. They are used for various pur-
poses, including hedging risk, speculating on price movements, and gaining access
to otherwise inaccessible assets or markets. The most common types of financial
derivatives are forwards, futures, options, and swaps [Hull, 2018]. In this thesis, we
will focus on swaps and swaptions.

OTC derivatives
Over-the-counter (OTC) derivatives are bespoke financial contracts that are traded
in decentralized markets, allowing for significant customization to meet the specific
needs of the involved parties. These instruments are not traded through formal ex-
changes and thus are not subject to the same standardization as exchange-traded
derivatives [Heckinger et al., 2014]. OTC derivatives encompass a variety of instru-

15



Chapter 2. Financial instruments and implications

ments, each tailored to the risk management, investment, or speculative needs of the
counterparties [Hull, 2018].

While OTC derivatives offer the benefits of customization and potential cost savings
due to the absence of exchange fees, they also introduce risks like counterparty
credit risk, as there is no central clearinghouse to back the performance of these
contracts [Heckinger et al., 2014]. The regulatory landscape for OTC derivatives
has evolved significantly over time, particularly with reforms such as the Dodd-
Frank Act’s Titles VII and VIII, which aim to balance market vibrancy with risk
mitigation [Tarbert, 2020].

Zero-coupon bonds
A fundamental example of an interest rate derivative is the zero-coupon bond
(ZCB). This financial instrument illustrates the concept that future money holds
less value than present money, necessitating a discounting method for projecting
future gains and losses to the present value. The discounting factor used for this
purpose is called the discount factor D(t,T ), which varies depending on the time
points t (current time) and T (future time) as well as the prevailing interest rates.

A ZCB is a financial contract that promises to pay a fixed amount — typically one
unit of currency — at a predetermined future date. The present value of a ZCB at
time t for a payoff at time T (maturity time) is expressed as

P(t,T ) = E[D(t,T )].

Taking the expectation is necessary here because the discount factor is influenced
by the interest rate, which is typically modeled as a stochastic process.

Due to their simplicity, zero-coupon bonds are not traded as standalone entities in
actual markets. Instead, they serve as foundational elements in the development of
pricing models for more complex interest rate-based derivatives [Björk, 2019].

Swaps
Swaps are contractual agreements between two entities to exchange cash flows or
other financial instruments over a designated period. Among the most prevalent
types of swaps are interest rate swaps, currency swaps, and commodity swaps.

Example. Consider two companies: Company A has a loan with a floating interest
rate, and Company B has a loan with a fixed interest rate, both of equivalent notional
value. Through an interest rate swap, Company A agrees to pay fixed interest rates
to Company B, while receiving floating rates in return. This arrangement allows
both companies to tailor their exposure to interest rate fluctuations in alignment
with their financial strategies.

16



2.2 Counterparty credit risk

An important financial instrument for this thesis is the interest rate swap (IRS),
which involves (as described above) the exchange of one type of interest rate pay-
ment for another, typically from fixed to floating or vice versa, between two parties.

Swaptions
A swaption is a derivative that provides the holder with the option to enter into a
given swap agreement at a given future date. It offers flexibility to opt into a swap
when favorable or to decline if the conditions are not advantageous.

Our focus is particularly on interest rate swaptions, which are options on interest
rate swaps. The value of the underlying IRS is determined by the fixed rate K and
the floating rate rt . In contrast, the valuation of a swaption not only depends on
these rates but also on the underlying swap rate, which is the rate that would make
the swap’s expected value zero today.

The fixed rate K should be set so that the expected value of the swap at the time
of issuing the contract is zero, assuming no default risk from the counterparty. This
value can be found by using ZCBs. The formula to calculate K is

K =
P(0,Ta)−P(0,Tb)

∑
b
i=a+1 β̃iP(0,Ti)

,

where P(t,T ) represents the price of the ZCBs at time t with maturity T , Ta is the
start time of the swap, Tb is the end time of the swap, and β̃i are the interval lengths
between consecutive payments, Ti+1 −Ti.

Similarly, the underlying swap rate, necessary for the swaption pricing, is adjusted
continuously and computed to ensure the swaption’s expected value remains neu-
tral. It is calculated as:

Ss,Tb(t) =
P(t,s)−P(t,Tb)

∑
b
i=a+1 β̃iP(t,Ti)

Here, Ss,Tb(t) is the swap rate at time t between the start time s and the end time Tb.
The rate is calculated using the same variables and principles as for K, but evaluated
at different times to reflect changing market conditions.

2.2 Counterparty credit risk

Default is a critical aspect of risk modeling, though defining it precisely is complex.
In 1999, the International Swaps and Derivatives Association (ISDA) identified
six types of credit events that can be considered defaults in the context of finan-
cial derivatives [Brigo et al., 2013]. These credit events represent different ways of
breaking the terms of a debt contract, with most involving a failure to pay.
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For our purposes, we assume that no contract payments occur after default and that
a fixed percentage of the owed amount is recovered. This assumption is common
in practice because debts are often sold to other companies at a fixed percentage of
their value to avoid lengthy court processes.

[Gregory, 2010] explains that counterparty credit risk is the risk associated with
OTC derivative and security financing transactions, where one party may default
before the contract expires. This risk is more significant in derivatives due to the
larger market size and complexity compared to security financing transactions.

Counterparty credit risk presents unique challenges in derivatives transactions. For
instance, exposure in these derivatives is highly volatile, which complicates risk
management [Zhu and Pykhtin, 2007]. Several critical factors are used to evalu-
ate this risk: the present value, which is the expected value of future cash flows
discounted at the risk-free rate, crucial for valuation; exposure, or the maximum
potential loss should the counterparty default, which is the positive present value
of a contract; the probability of default, often derived from market data like credit
ratings and quantified as a cumulative distribution function over time; the recov-
ery rate, which measures the percentage of exposure recoverable in a default; and
the loss-given-default, indicating the proportion of exposure that is lost if a default
occurs [Brigo et al., 2013]. These factors together frame the complex nature of
counterparty credit risk in financial derivatives.

2.3 Managing credit risk

Strategies to control and mitigate credit risk include centralized clearing houses,
netting agreements, and collateralization [Brigo et al., 2013]. This discussion fo-
cuses on active hedging, typically managed by a bank’s valuation adjustments team.

Traditionally, the pricing of derivatives has employed risk-neutral valuation meth-
ods to establish a fair price, often without taking into account the credit quality of
the counterparty [Ahlberg, 2013]. [Gregory, 2010] discusses strategies for manag-
ing counterparty credit risk, such as setting risk limits and conducting transactions
only with parties of sufficient credit quality. However, counterparty risk was sel-
dom included in derivative pricing, leading to the development of credit valuation
adjustments to account for trade riskiness. These adjustments fluctuate in value and
require efficient management and hedging, which we will explore in detail in Sec-
tion 5, including pricing models and hedging strategies.

2.4 Basel III

Basel III is a comprehensive set of reform measures designed to enhance the regu-
lation, supervision, and risk management within the banking sector, with a focus on
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counterparty credit risk. Developed by the Basel Committee on Banking Supervi-
sion, Basel III was established in response to the deficiencies in financial regulation
revealed by the financial crisis of 2007-09. The framework aims to fortify banks by
increasing their ability to absorb shocks arising from financial and economic stress,
whatever the source, thus improving risk management and governance as well as
strengthening banks’ transparency and disclosures [Basel III: International Regula-
tory Framework for Banks 2021]. Importantly for this study, it is the regulation that
stipulates that banks must consider the credit risks associated with their derivatives
in the form of CVA.
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3
Hedging

In this chapter, we introduce the concept of hedging. We also present a formal math-
ematical model for the dynamic hedging problem.

3.1 Hedging

Hedging is a strategy designed to mitigate risk by adopting positions negatively
correlated with current holdings, known as the hedge. The primary objective is to
balance potential losses in one area with gains in another. This approach inherently
involves a risk-reward trade-off: while hedging can limit potential losses, it may
also cap potential gains and incurs costs associated with acquiring the hedging in-
struments.

Example. Company X, based in Sweden, exports machinery parts to the United
States and anticipates receiving a payment of $1 million in six months. This pay-
ment is subject to foreign exchange risk due to potential fluctuations in the exchange
rate between the dollar and the Swedish krona (SEK). To hedge against this risk,
Company X enters into a forward contract with a bank to exchange $1 million for
SEK at a predetermined exchange rate on the payment date.

• If the dollar depreciates against the SEK, Company X will still receive the
fixed amount in SEK as stipulated in the forward contract, thus mitigating
any loss that would have resulted from the exchange rate movement.

• Conversely, if the dollar appreciates against the SEK, Company X will not
benefit from the stronger dollar as they are locked into the agreed rate, missing
out on potential additional earnings.

This forward contract ensures that Company X’s revenue from the export remains
predictable regardless of currency volatility, although it does restrict the company
from benefiting from favorable rate movements.
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3.2 Hedging as a stochastic optimal control problem

3.2 Hedging as a stochastic optimal control problem

The hedging problem can be rephrased as a finite-horizon discrete-time stochastic
optimal control problem. We consider a discrete-time financial market with finite
time horizon T , trading times 0 = t0 < t1 < .. . < tN = T , and stochastic final index
Ñ, such that the final time is min(tN , tÑ), where tN is the default-free final time and tÑ
is the time when default occurs if it occurs. Say there are n hedging instruments and
one liability to hedge. We define p = {pti}N

i=0 as an Rn-valued stochastic process
where [pt j ]i represents the price of asset i ∈ {1, . . . ,n} at time t j, and {lti}N

i=0 be an
R-valued stochastic process where lt j represents the value of the liability at time t j.

To hedge the liability, we may trade in the assets in p. We define the Rn-valued
stochastic process q= {qti}N

i=0 such that [qt j ]i represents the amount of asset i owned
at time t j, and purchased at time t j−1. For each j ∈ {1, . . . ,N}, qt j can only be
constructed using information up until time t j−1. We also say we begin with no
holdings, that is qt0 = 0. Realistically there should be limits to such trading strategies
due to liquidity and trading restrictions, but we will not model those. Our only limit
is that [qt j ]i should be finite for all assets i and times t j. We call the set of such
admissible trading strategies Q.

The goal of the hedge is for changes in the value of the hedge to track changes in
the value of the liability. That is, we want to find strategies that pick qti according
to

minimize
qti

E
[
R
(
(lti − lti−1)− (pti − pti−1)

⊤qti
)∣∣∣∣lti−1 , pti−1

]
, (3.1)

for some risk function R : R→ R with a minimum at 0. Moreover, we would like
to account for transaction costs. In literature, there are three ways this can be done.
There can be a fixed cost associated with making a trade as in [Muhle-Karbe et al.,
2017], a linear cost as in [Davis et al., 1993], and a quadratic cost as in [Moreau et
al., 2017]. We chose the linear proportional model over a fixed charge, as we believe
that trading costs should scale dynamically according to their size, as in the context
of large institutional trading within active OTC derivatives markets, proportional
charges are more realistic than fixed charges. We chose not to use the quadratic
model due to rebalancing very often, meaning that the changes in position are very
small, and thus the quadratic term would be negligible compared to the linear one.
The implementation then gives the cost at time ti as

trading cost(ti) = c|qti −qti−1 |
⊤pti−1 ,

for some constant and deterministic trading cost parameter c ∈ R, where |v| for a
vector v means applying the absolute value to each element of v

Thus we want to find some hedging strategy in the set of admissible hedging strate-
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Chapter 3. Hedging

gies Q that solves the optimization problem

minimize
q∈Q

E
[min(N,Ñ)

∑
i=1

R
(
(lti − lti−1)−(pti − pti−1)

⊤qti
)
−c|qti −qti−1 |

⊤pti−1

]
. (3.2)
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4
Stochastic modeling

This chapter defines the statistical models we will use to build our market simula-
tions. First, we introduce the concepts used in the models, then the specific models
themselves. They are all numerically integrated via the Euler–Maruyama method
except the Cox–Ingersoll–Ross++ jump model, which is integrated with the bal-
anced implicit scheme. These numerical methods are straightforward to implement
and further details about them are omitted as they are not directly relevant to the
thesis but are only used to simulate the chosen stochastic models.

4.1 Wiener process

The Wiener process, also known as Brownian motion, is the core of many financial
models.

Definition. An R-valued stochastic process {Wt}t≥0 is called a Wiener process if
the following hold.

i) W0 = 0.

ii) The process has independent increments, i.e. for all a < b ≤ c < d, the incre-
ments Wa −Wb and Wc −Wd are independent.

iii) For each i < j, the increment Wi −Wj has a normal distribution with mean 0
and variance j− i.

iv) The mapping t →Wt is continuous for all realizations of the process {Wt}t≥0.

It is used extensively in financial modeling because it is a relatively simple contin-
uous stochastic process with independent increments. This aligns with the standard
assumption that past performance gives no information about future movements.
Example realizations of a Wiener process are shown in Figure 4.1.
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Figure 4.1 Three example realizations of Wiener processes.

4.2 Jump process

For several of our models, we want stochastic discontinuities. This is done by adding
a jump process.

Definition. A jump process {Jt}t≥0 is a R-valued stochastic Poisson process de-
fined as

Jt =
Mt

∑
i=0

Yi

with

i) J0 = M0 = Y0 = 0.

ii) Mt a random variable from a time-homogeneous Poisson process with an in-
tensity parameter.

iii) Yi a random variable from some size distribution.

Example realizations of such a process is shown in Figure 4.2.

4.3 Geometric Brownian motion

A geometric Brownian motion, known for its use in the Black–Scholes model, is
an R-valued stochastic process {Gt}t≥0 which satisfies the stochastic differential
equation (SDE)

dGt = µGtdt +σGtdWt ,

with drift µ and volatility σ . An example of such a process is shown in Figure 4.3.
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4.3 Geometric Brownian motion
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Figure 4.2 Three example realizations of jump processes.
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Figure 4.3 Three example realizations of geometric Brownian motions with positive drift.
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Chapter 4. Stochastic modeling

Geometric Brownian motion without drift
In order to analytically calculate swaption prices we use an unrealistic, though not
unused in industry, model for interest rate as a geometric Brownian motion without
drift. It is thus represented as simply a process rt which satisfies

drt = σrtdWt .

An example realization of the interest rate as a geometric Brownian motion is shown
in Figure 11.7 (sub-figure "interest rate").

Using this model, we introduce pricing formula for a payer swaption (pay fixed rate,
receive floating rate). The holder of the swaption has the right to pay a fixed rate K
and receive the floating rate rt on a swap that will last Tb−T1 years starting in T1− t
years, with payments happening at times Ti for 1 ≤ i ≤ b, i.e. annual payments.
These rates are derived in the discussion on Swaptions in Chapter 2. Assuming
continuous compounding of interest, with some scaling factor based on the notional
value L, the pricing formula is:

PS(t,T1,Tb,K,ST1,Tb(t)) = L

(
b

∑
i=1

e−r(Ti−t)

)(
ST1,Tb(t)Φ(d1)−KΦ(d2)

)
where Φ : R → R is the cumulative distribution function of the standard normal
distribution (mean 0 and standard deviation 1),

d1 =
ln(

ST1 ,Tb (t)
K )σ2(T1 − t)
σ
√

T1 − t

and
d2 = d1 −σ

√
T1 − t.

Throughout this thesis we assume L = 1, as we for simplicity reasons want to study
the dynamics of the problem and L is just a scaling factor that does not change
results.

4.4 Hull–White model

In the simpler market environment used in the thesis, where we don’t need to calcu-
late swaption prices, we instead use the Hull–White model. It is a financial model
designed to describe the evolution of interest rates over time. The most important
part of it is that it is mean reverting, which is desired for interest rate models. The
SDE for the short-term interest rate Bt under the Hull–White model is given by:

dBt = (θ̃(t)−aBt)dt +σdWt
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4.5 Merton jump-diffusion model

Where:

• Bt represents the short-term interest rate at time t.

• θ̃(t) is the time-dependent mean reversion level.

• a is the speed of mean reversion, indicating how quickly the interest rate
returns to its mean.

• σ is the volatility of the interest rate process.

• dWt is a Wiener process representing the random shocks to the interest rate.

The Hull–White model allows interest rates to follow a mean-reverting process,
capturing the tendency for interest rates to revert towards a long-term average over
time. The Hull–White model is widely used in financial markets for interest rate
modeling and derivative pricing due to its flexibility and ability to capture mean
reversion dynamics. An example of its behavior is shown in Figure 11.1, where it is
designated Bt .

4.5 Merton jump-diffusion model

Merton jump-diffusion models are financial models that extend the geometric Brow-
nian motion model to account for sudden jumps in asset prices. We consider the
jump-diffusion model described by the following SDE:

dAt = µAtdt +σAtdWt +AtdJt

Where:

• At represents the probability of default at time t.

• µ is the drift coefficient, representing the expected continuous growth rate of
the asset.

• σ is the volatility coefficient, measuring the magnitude of random fluctua-
tions.

• Wt is a standard Wiener process representing continuous random movements.

• dJt represents the jump component, where the intensity parameter for the
jumps is called λJ and the size distribution is a normal distribution with mean
µJ and variance σ2

J .
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Chapter 4. Stochastic modeling

The jump-diffusion model combines continuous stochastic processes (represented
by the drift and diffusion terms) with discontinuous jumps (represented by the jump
component). This model was initially created to model stock prices, but it also
works well for modeling default probabilities; which is what we will use it for. It
builds on the aforementioned geometric Brownian motion, adding jumps to capture
the discontinuous movements that can happen when, for example, some shocking
news is revealed. An example of its behavior is shown in Figure 11.1, where it is
designated At .

4.6 Cox–Ingersoll–Ross++ jump-model

Another model we will use for default probability is the Cox–Ingersoll–Ross++
jump-model. Rather than directly giving the probability of default, we will use this
to model the default intensity, and then calculate the probability from that, which is
a more sophisticated model choice than the Merton jump-diffusion model.

The SDE for the Cox–Ingersoll–Ross++ jump-model is

dyt = κ(µ − yt)dt +ν
√

ytdWt +dJt .

In this model we have for the jump process Jt , that the intensity parameter for Mt is
called λ , and the distribution of Yi is an exponential distribution with mean γ .

To calculate the default probability, we do the following. Begin by denoting the act
of default by τ , our probability measure by Q, and an indicator function for some
event E by 1E . We from this model calculate the probability of not defaulting before
time T , at time t, as

Q(τ > T ) = 1τ>T ᾱ(t,T )exp(−β̄ (t,T )yt).

We have here

ᾱ(t,T ) = A(t,T )

 2hexp
(

h+κ+2γ

2 (T − t)
)

2h+(κ +h+2γ)(exp(h(T − t))−1)


2λγ

ν2−2κγ−2γ2

and
β̄ (t,T ) =B(t,T );

where

A(t,T ) =
(

2hexp((κ +h)(T − t)/2)
2h+(κ +h)(exp((T − t)h)−1)

)2κµ/ν2

,

B(t,T ) =
2(exp((T − t)h)−1)

2h+(κ +h)(exp((T − t)h)−1)
,
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4.6 Cox–Ingersoll–Ross++ jump-model

and
h =

√
κ2 +2ν2

[Brigo et al., 2013]. An example of how this probability behaves is shown in Figure
11.7 (sub-figure "Probability of Default").
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5
Credit risk

This chapter delves into the intricacies of CVA, a pivotal concept in managing the
credit risk inherent in OTC derivatives. We begin by exploring some essential con-
cepts associated with CVA, then introduce the motivation behind CVA and its fun-
damental definition. The discussion then advances to the mathematical models we
use for modeling CVA. We introduce two different models. The first is a simple one
but still captures significant characteristics. The second model is the pricing model
proposed by [Brigo et al., 2013]. It is more complex than the first one and is also
more representative of real CVA derivatives in financial markets.

Cross-gamma
Cross-gamma appears when the process one wants to hedge is non-linear in its
underlying assets. It is a second-order derivative that measures the sensitivity of a
derivative’s price, not to the change of one underlying asset, but to the simultaneous
changes in two different underlying assets. Technically, it is defined as: given a
derivative ϖ defined on some underlying assets S1, ...Sn, the cross-gamma is{

∂ 2ϖ

∂Si∂S j

}
i ̸= j

.

This interaction is critical in the context of hedging because it affects the efficacy
of simple delta hedging strategies. When there is no cross-gamma and no market
frictions, hedging is quite easy, but when it is there, even without other frictions,
it becomes very difficult. Delta-hedging alone (which only considers the first-order
derivatives with respect to changes in underlying assets) might not be sufficient and
could lead to suboptimal hedging outcomes when not rebalancing continously, po-
tentially resulting in losses due to not accounting for interactions between multiple
assets.
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5.1 Credit valuation adjustment

Wrong-way risk
Wrong-way risk (WWR) is the additional risk associated when the portfolio being
hedged and the probability of counterparty default "are ’correlated’ in the worst
possible way" [Brigo et al., 2013]. For example, if the portfolio is a big loan with
a floating interest rate, and the counterpart is doing badly, then interest going up
makes the probability of them defaulting due to not being able to pay go up, while
the value of the contract to you also goes up as they should pay more. In other
words, the potential losses given that they default go up as their probability of de-
faulting rises. There is another closely related term used when the risk goes in the
"opposite" direction, namely right-way risk (RWR). This happens when potential
losses are negatively correlated with default probability. It is worth mentioning that
the correlation of such processes is not necessarily constant over time, however, the
simulations conducted in this thesis are limited to constant correlation. In industry
practices, these risks are categorized as general and specific risks, where general
considers general market risk factors and specific considers individual counterparty
factors. For simplicity, only the general category is considered.

5.1 Credit valuation adjustment

The CVA for a derivative is calculated as the discrepancy between its risk-free value,
assuming there is no counterparty credit risk, and its actual market value:

CVA ≜ PVrisk-free −PV,

where PV is the present value of the considered derivative contract, making the CVA
a market price for the counterparty credit risk [Zhu and Pykhtin, 2007]. The models
used to price these adjustments depend on the considered derivative contract, so
different types of swaps have slightly different pricing models that account for the
specific underlying factors in these trades. The idea is still the same for all though,
namely to fairly account for the counterparty credit risk [Brigo et al., 2013].

We use the risk-neutral pricing methodology as described in [Brigo et al., 2013]. We
will only be interested in a unilateral CVA, which means that the investor (typically
a sell-side Bank) is assumed to be default-free, only the counterparty in the contract
can default. We consider the basic case where the CVA trade is not supported by
any collateral. We also assume that we have only one contract, so our portfolio is
only the contract and our hedge, and there is only one counterparty.

Regulation challenges
Regulators seek to standardize the methodology for assessing CVA risk, but its com-
plexity and reliance on detailed modeling pose challenges for accurate valuation.
The need for multiple simulation levels limits the scenarios that can be feasibly an-
alyzed, and while some methods exist to bypass these limitations, they often require
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Chapter 5. Credit risk

assumptions that may compromise the accuracy of CVA estimates, particularly af-
fecting the assessment of wrong-way risk [Brigo et al., 2013].

Credit default swap
In many ways, the most important tool for dealing with CVA is the credit default
swap (CDS). The most basic form of a CDS is quite simple, it acts like an insur-
ance. There is a buyer and a seller, and the buyer periodically pays the seller for a
predetermined number of years, in exchange for a big payment from the seller if
some reference entity defaults [Bomfim, 2022]. CDS:s are by far the most common
type of credit derivative [Bomfim, 2022]. Specific CDS contracts are still, however,
quite illiquid [Bomfim, 2022]. This poses a large problem for using them as hedging
devices.

They are used in the context of CVA as a way to, by proxy, measure the default
risk. Practically, this is done by calibrating the parameters in the default intensity
model to the CDS prices [Brigo et al., 2013]. Since they are such a good proxy for
the default risk, they are also the primary instrument used to hedge that portion of a
CVA. As a result of this close relationship, we will not be simulating both the default
probability and CDS:s, instead we will assume that the agent can trade directly in
the default probabilities when building its hedge.

5.2 Simple CVA model (market environment 1)

Our initial choice of a model for the CVA is a price process of the form CVAt =
A(t) ·B(t). We choose this as the first model to make as it captures most complexities
of CVA, whilst only containing two underlying assets.

The way to interpret this as a CVA is to think of one of the processes as the default
probability and the other as the expected future losses given default. One can think
of it as a CVA with on a contract with only one payment, very far into the future.
This is quite a big simplification, as it reduces an integral into a single product, how-
ever, it is still surprisingly useful. Most importantly, it captures the cross-gamma and
wrong-way risk effect.The market we will simulate will thus consist of the two un-
derlying stochastic processes A(t) and B(t), which can be correlated. An example
of how this market behaves is shown in Figure 11.1.

A(t) will follow a Merton jump diffusion model, and B(t) will follow a Hull–White
model, models described in Chapter 4. Oftentimes the market is said to also include
a bank, as a risk-free investment. For many derivatives, this is necessary to hedge
fully. For a bank, however, it is oftentimes strongly preferable to not have money
just sitting, and so when possible they wish to hedge without such a process.

The Merton jump-diffusion model was chosen as default probabilities often have
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5.3 IRS CVA model (market environment 2)

jumps, so it is important to include those, and by choosing parameters such that the
net drift of the model is negative we can know that as time passes the default proba-
bility goes to zero, which we want as the probability should be zero at the end of the
contract. The Hull–White model was chosen as, if there is only one payment in the
contract and it is placed at the end, then we expect that the expected losses given de-
fault should remain around the same mean the entire time, and oftentimes these will
depend on interest rate so we should expect this process to behave similarly to the
interest rate; thus it is quite fitting to use a mean-reverting model commonly used
to model interest rates. The specific parameters used for the models are presented
in Table 5.1. We arrived at these values by comparison with real markets and with
guidance from NORDEA, however, they can be made more realistic by properly
calibrating them to market data.

Table 5.1 Market environment 1 parameters.

Parameter Value

Shared parameters

Time step (∆t) 1/252

Hull–White model

Initial rate (rH ) 0.3
Volatility (σH ) 0.03

Jump-diffusion model

Initial probability (S0) 0.4
Volatility (σD) 0.05
Drift (µ) 0.01
Jump intensity (λJ) 0.1
Jump mean (µJ) 0.1
Jump standard deviation (σJ) 0.5

5.3 IRS CVA model (market environment 2)

Here we will present the second CVA model we consider, the fair price model for
a CVA of an interest rate swap (IRS). We consider the payer IRS where we pay a
fixed interest rate and receive a floating interest rate. This model is chosen as it is
much more realistic, and thus also much more complex, than the previous one.

Assume the swap begins at time Ta and ends at time Tb. Then the CVA can be priced
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as

CVAt = LGDEt
[
1{τ≤Tb}D(t,τ)max(PV(τ),0)

]
(5.1)

= LGD

∫ Tb

Ta

PS(t,s,Tb,K,Ss,Tb(t))dsQ{τ ≤ s}

[Brigo et al., 2013]

where:

• CVAt is the credit valuation adjustment at time t.

• LGD is the loss given default, representing the percentage of the exposure that
is lost if a default occurs.

• Et denotes the conditional expectation given the information available at time
t.

• 1{τ≤Tb} is an indicator function that is 1 if the default time τ occurs on or
before the maturity Tb, and 0 otherwise.

• D(t,τ) is the discount factor from time t to the default time τ .

• PV(τ) is the present value of the contract at the default time τ .

• Ta and Tb are the start and end times of the contract.

• PS(t,s,Tb,K,Ss,Tb(t)) is the price of a swaption that allows entering into a
swap at time s that matures at Tb, with a strike rate K and a swap rate Ss,Tb(t).

• Q{τ ≤ s} is the probability of default by time s.

• dsQ{τ ≤ s} indicates integrating over the probability measure Q{τ ≤ s} as s
varies over the time interval from Ta to Tb.

In practice the loss given default, LGD, is often set as a constant 0.6, meaning you
expect to lose 60% of the remaining value if they default. We omit the LGD going
forward as it depends on the specific contract/counterparty and may require knowl-
edge about that specific trade, and is often constant over time.

Since we only get money at discrete time points, we can break this integral up into
a sum. Assuming then that a default in the interval (Ti,Ti+1] means losing out on all
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payments after and including Ti+1, the integral (5.1) becomes:

CVAt =
b

∑
i=a+1

PS(t,Ti,Tb,K,STi,Tb(t))Q{τ ∈ (Ti−1,Ti]}

=
b

∑
i=a+1

PS(t,Ti,Tb,K,STi,Tb(t))(Q{τ > Ti−1}−Q{τ > Ti})

[Brigo et al., 2013].

We specifically model the CVA process for an IRS over 10 years with yearly pay-
ment. We will use the geometric Brownian motion without drift as a model for the
interest rate, and the Cox–Ingersoll–Ross++ jump-model for the default probabil-
ity. For the Cox–Ingersoll–Ross++ jump-model we have 6 parameters we must give
values. Except for λ and γ , they are taken from [Brigo et al., 2013], for good rea-
sons. Those we had to tune ourselves to get reasonable behavior. The values for the
geometric Brownian motion without drift were chosen entirely by us. The model pa-
rameters are shown in Table 5.2. An example of how this market behaves is shown
in Figure 11.7.

Table 5.2 Market environment 2 parameters.

Parameter Value

Shared parameters

Time step (∆t) 1/252
Time interval (β̃ ) 1
Initial time (TA) 0
Final time (TB) 10

Geometric Brownian motion without drift

Initial rate (r) 0.03
Volatility (σ ) 0.1

Cox–Ingersoll–Ross++ jump-model

Initial intensity (y0) 0.035
Volatility (ν) 0.15
Speed of adjustment to mean(κ) 0.35
Mean (µ) 0.045
Jump related intensity (λ ) 0.001
Jump related mean (γ) 0.0005
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6
Hedging CVA

This chapter explores the various metrics used to evaluate profits and losses (P&L),
emphasizing the importance of measuring P&L variance and other risk metrics. We
will define the key variables involved in calculating P&L for a hedged portfolio
and introduce benchmarks and performance metrics that will be used to compare
different hedging strategies.

Additionally, we will delve into our environments to illustrate how these concepts
apply there, explaining how to manage and mitigate financial risks through effective
hedging by allocating in the underlying instruments.

6.1 Profits and losses

In financial mathematics research, P&L is one of the main factors evaluated in hedg-
ing and investment strategies [Esipov and Vaysburd, 1999]. There are several met-
rics that P&L can be evaluated on, we will discuss these metrics in this section,
highlighting the importance of measuring the variance of P&L [Berns, 2014] and
other risk metrics.

P&L is the change in the value of a portfolio over time. It is the main metric for
evaluating a hedge. A theoretically optimal hedge has profits and losses constantly
equal to zero, although in practice the goal is often not to reduce risks to zero but
to lower them to an acceptable margin and in such cases the the P&L will vary over
time.

Let’s define the variables involved in calculating the P&L of a arbitrary portfolio
with a hedge1:

• Pcontract(t): Price of the contract at the time of sale.
1 The P’s and Q’s can also be seen as vectors, with each entry representing one contract/hedging

instrument
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• Phedge(t): Price of the hedge at the time of sale.

• Qcontract(t): Quantity of the contract.

• Qhedge(t): Quantity of the hedge.

• Pcontract(T ): Price of the contract at a later time (e.g., at P&L settlement2).

• Phedge(T ): Price of the hedge at P&L settlement.

The P&L under some time becomes the following:

P&L(T, t)= (Pcontract(T )−Pcontract(t))·Qcontract(t)−(Phedge(T )−Phedge(t))·Qhedge(t)
(6.1)

You can recognize this as exactly the input to our risk measure in (3.1), assuming
no trading cost.

6.2 Benchmarks

To evaluate our models, we will be comparing them against two other strategies.
These will be delta hedging, and doing nothing.

Delta hedging
The "delta", in the context of financial derivatives, is one of the sensitivities of
that derivative. It indicates how the price of a derivative changes in response to an
underlying. Specifically, delta measures the rate at which the price of a derivative
changes for every one unit change in the price of the underlying asset.

Assume we have an arbitrary derivative ϖ(S1(t), ..,Sn(t), t), whose value depends
on some underlying assets {Si(t)}n

i=1. Then the deltas with respect to each underly-
ing asset Si to are ∂ϖ

∂Si
. We then create a hedge out of these deltas, which we call the

delta hedge δϖ (t), by

δϖ (t) =
n

∑
i=1

∂ϖ

∂Si
Si(t).

This can be seen as taking the first order Taylor expansion of the contract, thus
guaranteeing similar behavior locally. Delta hedging is used to offset the delta of a
position in a derivative by taking an opposite position in the underlying asset. The

2 P&L reporting frequency can vary by institution, regulatory requirements, and the specific needs of
the business. In our case, we are interested in daily P&L i.e. (T = t+ ∆̃t), where t has time unit years,
and ∆̃t is one day.
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goal is to achieve a delta-neutral position, meaning the overall delta of the portfolio
is zero. This results in optimal hedging, assuming that the process being hedged is
continuous and that the hedge is being continuously rebalanced. Unfortunately, it
does not take into account trading costs at all, and so it becomes very expensive
when they exist. We use delta hedging as a benchmark because it is very simple
to compute given an equation for the price of the derivative, and it performs very
well. As a result of using constant volatility in our underlying models, the minimum
variance hedge defined in [Hull and White, 2017] is equivalent to delta hedging. We
expect this to perform extremely well with no trading cost, to be slightly worse but
still good with low trading cost, and to be quite bad at high trading cost.

Doing nothing
"Nothing" means exactly to not attempt to hedge. We should always expect that
when the trading costs are low (0 or 5 percent) our models should outperform "noth-
ing". On the other hand, at an unreasonably high trading cost of 100 percent, we
expect "nothing" to do very well. We also expect "nothing" to do comparably well
when the processes are strongly negatively correlated, as in those cases they, to
some extent, hedge themselves.

6.3 Performance metrics

As we rebalance at a rate of once a day, we get a P&L value for every day. We
denote this by P&L(t, t −∆t) = P&Lt . Taking the negative of the P&L to convert it
to losses, we get a series Lt =−P&Lt . The distribution ℓ is taken from the empirical
distribution of the time series L. We do this conversion so that a lower value is better
for all our metrics; as a better hedge should lower risk, thereby lowering losses.

Variance of losses
This is simply the empirical variance of the losses of our strategy. It is very impor-
tant as even if a strategy had mean 0 losses, if the variance is high there can be a
large risk of large losses. Thus one would prefer a strategy with non-zero, though
very small, mean losses but with low variance over one with zero mean but high
variance.

Variance of losses excluding first point
This one is important because when there is trading cost, the initial cost of taking
a hedging position massively increases the empirical variance. Thus this is a more
fair valuation for the variance of the losses throughout the use of the strategy.

Mean square loss
Least squares is the most common metric used for minimizing. In this case it prac-
tically means penalizing losses and profits equally.

38



6.3 Performance metrics

Mean loss
As profits are not necessarily bad, it can be interesting to look at metrics which
reward them. This is one such metric. In this case a negative mean loss means a
mean profit, which is a good thing.

Value at risk
Value at risk (VaR): Given a confidence level α , the Value at risk at α for a loss
distribution ℓ over a time period T is defined as:

VaRα(T ) =− inf{l ∈ R : Fℓ(l)≥ α}

where Fℓ is the cumulative distribution function of losses. See Figure 6.1 for a sim-
ple illustration of this metric.

This metric answers the question: What is the minimum loss over the whole range
of outcomes in the considered tail?

Similarly to the variance, minimizing this is more about minimizing the risk of large
losses, as opposed to average losses.

Expected shortfall
Expected shortfall (ES): For the same setup as the Value at risk (VaR), the Ex-
pected shortfall at confidence level α is the conditional expectation of losses ex-
ceeding the VaR:

ESα(T ) = E[l|l ≤ VaRα(T )]

This metric answers the question: What is the average loss over the whole range of
outcomes in the considered tail?

Minimizing this one again minimizes the risk of large losses.

VaR0.95 = 1.645

µ = 0
Pr(l ≥ 1.645) = 0.05

l

ℓ

Figure 6.1 Illustration of VaRα , for l ∼ ℓ= N(0,1) with α = 0.95.
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Turnover
This is a measure of how much trading is being done. There is no law for if it is good
or bad to have low or high, it depends on what your purpose is. In our scenarios with
trading costs though, it is best kept low, as trading costs make it more expensive to
trade. It is defined as

Turnover = 100
min(total purchases, total sales)

Average port f olio value

Note! We will refer to "Variance of losses" and "Variance of losses excluding the
first point" as the variance metrics, and we will call the "mean squared losses", the
"Value at risk", and "expected shortfall" the risk metrics for convenience.

6.4 P&L in environment 1

For our process Pt = At ·Bt , we consider the hedge Ht = βtAt +αtBt , where we are
allocating βt respective αt in quantity of our underlying processes At respective Bt
at time t −∆t. These quantities should be adjusted as to be able to minimize the risk
through time. For that, it is required to analyze the P&L.

The P&L becomes (as in 6.1):

P&Lt = ∆Pcontract(t)− (∆Phedge(t) ·Qhedge(t))
Environment 1

= (Pt −Pt−∆t)− (βt · (At −At−∆t)+αt · (Bt −Bt−∆t))

simplified notation
= (∆P)− (βt ·∆A+αt ·∆B)

(6.2)

where ∆t = 1
252 as t is in units years, and we want daily P&L.

6.5 P&L in environment 2

The P&L is still defined as in the general case 6.1. However, now we are in another
environment setting. We are no longer hedging in only 2 processes/contracts (i.e. in
Environment 1, the A and B processes). We instead have more standard underlying
products to hedge in, i.e. the underlying default probabilities3 and Swaptions. Con-
sidering a maturity of 10 years for the underlying interest rate swap, with yearly
payments, we have then 2 ·10 = 20 underlying products to hedge under the tenor of
the CVA (see 5.3), i.e.

Ht =
b

∑
i=a+1

(β Ti
t ·Q{τ ∈ (Ti−1,Ti]})+(αTi

t ·PS(t,Ti,Tb,K,STi,Tb(t))),

3 see discussion on CDS in Section 5.1
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6.6 Remark on P&L, hedging, and frictions

where a = 0 and b = 10, and β
Ti
t and α

Ti
t mean the quantity held from time t −∆t

to time t for the underlying assets corresponding to time interval (Ti−1,Ti]. So the
P&L becomes (as in 6.1 and 6.2):

P&Lt = ∆CVA− (∆H ·Qhedge(t)) (6.3)

Qhedget =
[
β

T1
t β

T2
t · · · β

T10
t α

T1
t α

T2
t · · · α

T10
t

]T
(6.4)

v = ∆
[
Q{τ ∈ (T0,T1]} Q{τ ∈ (T1,T2]} · · · Q{τ ∈ (T9,T10]}

]
u = ∆

[
PS(t,T1,T10,K,St,T10(t)) · · · PS(t,T10,T10,K,ST10,T10(t))

]
∆H =

[
v u

]
6.6 Remark on P&L, hedging, and frictions

Mathematically, the goal of a hedge is to minimize the downside of P&L. Returning
to the model from environment 1, and assuming we buy a position of β units of A
and α units of B at time t −dt in order to hedge P, we have

P&Lt = (Pt −Pt−dt)− (βt(At −At−dt)+αt(Bt −Bt−dt)).

Here the time increments dt represent how often we can rebalance the hedge.
We see now that by dividing by dt and allowing dt to go to zero we get
P&L

dt = dP
dt − (βt

dA
dt + αt

dB
dt ), but we know from the definition Pt = At · Bt that

dPt
dt = Bt

dA
dt +At

dB
dt . Thus this is zero only when βt = Bt and αt = At , and we can

recognize this as exactly delta hedging. In general, a similar argument shows that
delta hedging is always optimal in continuous settings.

If we add frictions, however, the ideal hedge is no longer so obvious. Adding just
linear trading costs, with parameter c, assuming we before buying our new position
held βt−dt units of A and αt−dt units of B but once again at time t − dt bought
enough to have βt units of A and αt units of B, we get P&Lt =(Pt −Pt−dt)−(βt(At −
At−dt)+αt(Bt −Bt−dt)−c(|βt −βt−dt |At + |αt −αt−dt |Bt) once again dividing by dt
and letting it go to zero we get P&L/dt = dP

dt −(βt
dA
dt +αt dB

dt )−c( d|βt |
dt At +

d|αt |
dt Bt).

Clearly now delta hedging is not going to be the ideal solution, however finding the
ideal solution analytically is intractable.
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7
Reinforcement learning

This chapter will define everything we need related to reinforcement learning. First,
we explain the setup necessary for reinforcement learning to be applied to a prob-
lem, and then we define the algorithms used to solve the problem. Finally, we
present the reward functions that our reinforcement learning algorithm will learn
from.

7.1 Reinforcement learning

Reinforcement learning (RL) is a subset of machine learning that does not use a data
set as a starting point, instead generating data based on the needs of the optimization
algorithm [Bertsekas, 2023]. It is especially applicable to our problem due to the
problem’s sequential nature.

Markov decision process
The ideal situation to apply reinforcement learning to is a Markov decision process.
This is a process within which the next state depends solely on the current state, and
possibly the current action.

Our situation is exactly a Markov decision process. In fact, the current action doesn’t
even affect the next state. This follows from the definitions of our markets. The
defining SDEs depend only on terms from time t, and the random increments are
independent. This allows us to very naturally define the possible actions we can
make and states we can observe.

Action space
The action space is the space from which the agent can take actions [Bertsekas,
2023]. In order to build a proper hedge, our agent should be able to trade arbitrary
amounts of each underlying asset. Thus the action space should be a space allowing
it to assign a real number for each asset.
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7.1 Reinforcement learning

Observation space
The observation space is the space that the observations the agent gets come from
[Bertsekas, 2023]. As we want our agent to be able to trade in all underlying assets
and take into account trading costs, it needs to see the values of the contract it is
trying to hedge, the values of the underlying assets, and how much of each of those
assets it is currently holding.

Reward
To learn from Markov decision processes, one must have some well-defined notion
of which states one wants to be in or what it means for an action to be good in a given
state. To do this, a reward function is defined. This function can vary significantly in
how it looks. If, for example, one is trying to train an agent to play chess, one might
give no reward until the end of the game, then a positive reward if the agent won and
a negative reward if they lost. This is very risky, though, as there are so many actions
taken between any given action and the reward, and so it is difficult for the agent
to learn which of the moves it made was the bad one if it loses. Thus, if possible,
one wants to give rewards more continuously. In our case, as we want to evaluate
our models based on P&L, and we get a daily value of P&L, by constructing reward
functions based on the P&L, we can give rewards to our agents every time they
make an action. The way the interaction between the environment giving updated
states and rewards to the agent and the agent giving actions to the environment looks
is shown in Figure 7.1.

When evaluating which move to make, one wants to look at the expected rewards
in the future. Because one is less sure about the state and reward reached the further
into one looks, one often has a discount factor that makes more distant expected
rewards worth less.

Agent

Environment

action Atstate St+1 reward Rt+1

Figure 7.1 Diagram of interaction between agent and environment in reinforcement learn-
ing
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Chapter 7. Reinforcement learning

Policy, and value functions
The action to be taken by an agent is defined by the policy function. It is a func-
tion taking in a state and possible action, and returning the probability with which
one should select that action. It is generally denoted as π(a|s) where a is the ac-
tion whose probability one wants to find out and s is the current state. The goal of
training an agent is to find the correct policy function.

In order to find the policy function, it can be useful to know which states are good.
How good a state is, given that you will act according to a given policy, is given
by the value function. With Rt+k+1 as the reward given at time t + k+1 for acting
according to the policy, ω as a discount factor and St = s as the current state, the
value function is defined by

vπ = Eπ

[
∞

∑
k=0

ω
kRt+k+1

∣∣∣∣∣St = s

]
.

Policy gradient methods
Policy gradient methods are a subset of RL methods which optimize directly for
the policy function, as opposed to optimizing it by proxy through finding the cor-
rect value function. This is done through parametrizing the policy function, then
performing gradient ascent [Sutton and Barto, 2018]. That is, with At as the action
taken at time t, St as the state at time t, and policy parameters θ̂t at time t, defining
our policy function as

P(At = a|St = s, θ̂t = θ̂) = π(a|s, θ̂)

the rule for updating the parameters is

θ̂t+1 = θ̂t + α̂∇̂J(θ̂t),

where ∇̂J(θ̂t) is a stochastic approximation of the gradient of a given performance
metric J, and α̂ is a variable controlling how large updates can be made.

Actor-critic methods
The previous section has an issue, which is that the performance metric J is un-
known. Actor critic methods solve this by letting J depend on the value function,
and learning both the policy function and the value function concurrently [Sutton
and Barto, 2018].

The optimization is performed through iteration of the two steps:

• Simulate actions by current actor (policy function), and update the
critic(value function)
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7.1 Reinforcement learning

• Improve current Actor by gradient ascent using the newly updated critic

[Bertsekas, 2019]. In deep reinforcement learning, which is how we implement it,
they are both represented by different neural networks.

Proximal policy optimization
For the reinforcement learning model, we will use the actor-critic model proximal
policy optimization (PPO); as [Du et al., 2020] found that it is at least as good
and faster to train compared to other deep reinforcement learning models such as
DQL. It has also been shown to outperform other policy gradient methods in various
standard benchmark tasks, including simulated robotic locomotion and Atari game
playing. It strikes a favorable balance between sample complexity, simplicity, and
wall-time, making it suitable for this task [Schulman et al., 2017].

Instead of value function we look at what is called the advantage function. It mea-
sures how much better some given set of actions is relative to others on average.
With a trajectory of length T , a discount factor of ω , and some constant ξ , it is
defined as

Ât = δt +(ωξ )δt+1 + · · ·+(ωξ )T−t+1
δT−1 (7.1)

where δt = Rt +ωv(st+1)− v(st), (7.2)

with Rt the reward at time t and v the value function [Schulman et al., 2017]. The
performance metric we try to optimize for is defined as

Jt(θ̂) = Êt
[
LCLIP

t (θ̂)− c1LV F
t (θ̂)+ c2S[π

θ̂
](st)

]
(7.3)

where c1 and c2 are constants, S is an entropy bonus,

LV F
t (θ̂) = (v

θ̂
(st)− vtarg

t )2 (7.4)

is a squared error loss function of the value of the policy against a target value vtarg
t ,

and
LCLIP

t (θ̂) = Êt
[
min(Rt(θ̂)Ât ,clip(Rt(θ̂),1− ε,1+ ε)Ât

]
(7.5)

where the clip function clips the probability ratio, so that there is no value in mov-
ing outside the interval [1− ε,1+ ε] [Schulman et al., 2017]. To train one iterates
running the policy for some number of steps, computes the advantage estimates for
each of those steps, then for each epoch one divides up the actions from the policy
into minibatches and optimizes the performance metric by updating the parameters.
This is shown in pseudo-code in Algorithm 1.

As we are focused on the application of RL to CVA models and not the RL al-
gorithm on their own, we use an open source implementation of PPO from Stable
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Chapter 7. Reinforcement learning

Algorithm 1 PPO Training Algorithm [Schulman et al., 2017]
Require: Number of iterations I, steps T , minibatch size M, epochs K and clipping

size ε

1: for iteration in 1 . . . I do
2: Run policy π

θ̂old
in environment for T steps

3: Compute advantage estimates Â1 . . . ÂT
4: for epoch in 1 . . .K do
5: Optimize J w.r.t. θ̂ with minibatch size M ≤ T
6: end for
7: θ̂old = θ̂

8: end for

Baselines3, which is essentially an improved version of the algorithm presented in
[Schulman et al., 2017] which was developed in OpenAI. The relationship is shown
in Figure 7.2.

Stable Base-
lines3 [Raffin
et al., 2021a]

Stable Baselines
(improved

implementations
[Hill et al., 2018])

OpenAI Baselines
[Dhariwal

et al., 2017]

Figure 7.2 Stable Baselines3 is an updated version of Stable Baselines, which is a set of
improved implementations of OpenAI Baselines

Exploration and Exploitation
A pivotal concept of learning in RL is the exploration/exploitation trade-off. This
trade-off involves managing the balance between exploring the environment and
exploiting existing knowledge about the environment. Exploration involves investi-
gating the environment through random actions to gather more information about it.
Exploitation, on the other hand, focuses on using known information to maximize
rewards [Hugging Face, n.d.]

Different algorithms have different guidelines that dictate the balance between ex-
ploration and exploitation to effectively navigate this trade-off. The success of these
algorithms depends on the environment and problem they are operating on. The
PPO algorithm employs an on-policy method to develop a stochastic policy, ac-
tively engaging in exploration by executing actions determined by the latest update
of its stochastic policy. The degree of randomness in these actions is influenced by
the starting conditions and the training process. As training progresses, the policy
generally becomes more deterministic, driven by an update rule that favors exploit-
ing previously discovered rewards; however, this tendency can lead the policy to
become stuck in a local optimum [Raffin et al., 2021b].
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7.2 Model setup

7.2 Model setup

Environment 1 action space
We have only the two underlying processes, A(t) and B(t). Thus our action space
will be

AEnv 1 = R2.

Environment 1 observation space
In this case, we have only the two underlying processes A(t) and B(t). As A repre-
sents a probability, it must be within the interval [0,1]. The interest rate, CVA, and
how much underlying we can buy are all real numbers. Thus our observation space
will be

OEnv 1 = R4 × [0,1].

Environment 2 action space
Given a swap with n payments, we have 2n underlying assets: n swaptions, and n
default probabilities. Thus our action space will be

AEnv 2 = R2n.

Environment 2 observation space
In this case, given a swap with n payments, we have 2n underlying assets, n swap-
tions and n default probabilities. Once again, all default probabilities lie in [0,1].
Also, once again, how much underlying we can buy are all real numbers. However,
the interest rates and CVA are limited to positive real numbers due to geometric
Brownian noise being positive if the initial value is positive. Thus our observation
space will be

OEnv 2 = R2n ×Rn+1
+ × (0,1)n.

Reward functions
These reward functions are defined to measure the effectiveness of trading decisions
based on P&L calculated for a given state and action. The "Current State" refers to
the current market conditions and portfolio state, while "Current Action" refers to
the trading action being evaluated. The first five metrics use daily observed P&L,
and the last two metrics use a function of a 30-days window of P&L. Definitions
for the functions VaR (value at risk) and ES (expected shortfall) in section 6.3.
Reward Function 1.

R1(st ,at) =−|P&L|

This reward function aims to keep P&L as close to 0 as possible. This is useful
when aiming for as neutral portfolio as possible, i.e. losses should be avoided as
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Chapter 7. Reinforcement learning

much as possible and profits are not considered the main goal. In other words, this
reward function penalizes both profits and losses the same amount, which might
seem controversial, but it might still fulfill the main objective i.e. neutral position.

Reward Function 2. This function rewards profits as much as it penalizes losses.
Thus it, relative to the other rewards here, strongly incentivizes profit-seeking.

R2(st ,at) = P&L

Reward Function 3. This function penalizes losses but ignores profits. Thus it is
encouraging behavior somewhere in-between the previous two rewards, not actively
trying to avoid profiting, but not trying to prifit if it would mean increased risk of
losses.

R3(st ,at) = min(P&L,0)

Reward Function 4. Similarly to Reward function 1, this function penalizes all
non-zero P&L, aiming for the most "neutral" hedging strategy as possible. The main
difference is that this is a differentiable function, whereas reward function 1 is not.

R4(st ,at) =−(P&L)2

Reward Function 5. For this metric, we simulate the price process for N = 104

paths one time-step ahead, and look at the variance of the P&L obtained for these
paths. The agent would act in a way that minimizes the variance, regardless on how
the price process evolves. This is very different to the other reward functions due to
it’s dependence on access to the market model, using it to simulate the paths.

R5(st ,at) =−Var(P&L))

Reward Function 6. This reward function, value at risk, is a standard risk metric
implemented in risk management and risk regulations. What we see below is that
our agent doesn’t get any reward until we obtain 30 days time series of the P&L.
Then we obtain a 30-days window iteratively of P&L, that we use to estimate the
VaR. It gives a measure of the largest losses we could expect at a given probability,
given normal market conditions.

R6(st ,at) =

{
0 if t < 30
VaR99%(monthly P&L) otherwise

Reward Function 7. Similarly to reward 6, this function, expected shortfall, is
also a standard tool in risk management and risk regulations. It is also implemented
very similarly, taking in a 30 day window of P&L values, and returning a measure of
the expected returns in the worst cases at a given percent likelihood. The advantage
to value at risk is that it is more sensitive to the tails of the P&L distribution.

R7(st ,at) =

{
0 if t < 30
ES99%(monthly P&L) otherwise
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8
Numerical simulations and
results

In this chapter we begin by stating the exact setup we use for training our reinforce-
ment learning models. We then present the results of simulations comparing our
trained models to the benchmarks.

8.1 Market parameters

All simulations are done for 10 years or until the probability of default hits 1, with
1 year containing 252 days. The market parameters presented in sections 5.2 and
5.3 for environments 1 and 2 respectively are held constant, though we add that we
vary two parameters: the correlation ρ between the wiener processes in our market
models and the trading cost. This allows us to see if the RL model can adapt its
hedging strategies to trading costs and wrong- and right-way risk.

Correlation
As stated in Section 5, financial processes are often very correlated. WWR is espe-
cially common in CVAs when the default probability process and the interest rate
process are positively correlated.

To examine the impact of this correlation on our agent’s behavior, we train it on
correlations ρ ∈ {−1,−0.5,0,0.5,1}.

Trading cost
As additional market frictions make delta hedging non-optimal, we explore adding
trading cost proportional to the value traded. Depending on the contract that the
CVA comes from and market conditions, this is generally between 0 and 2 percent
of the value of the trade. However, we choose to explore a slightly higher cost at
5% of the trade value and two unrealistic versions at exactly 0% and 100%. This
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Chapter 8. Numerical simulations and results

corresponds to setting c to 0.05, 0, and 1 respectively in (3.2). The values were
selected to test the ability for the reinforcement learning models to adapt to market
frictions.

PPO parameters
Most hyperparameters use the default values from the library StableBaselines3. Ta-
ble 8.1 shows the exact values we used. We try two network architectures for each
environment, which we call the base and the deep models. Their respective sizes
for environment 1 are shown in in Table 8.2. The base architecture is chosen based
on performing well on standard RL test problems, which have a similar number of
inputs and outputs. The deep one is then designed based on that one, such that it
will have a similar number of parameters, as the number of parameters of a fully
connected neural network scales as O(width ∗ depth2), where width is the number
of nodes in a hidden layer and depth is the number of hidden layers. The deeper
architecture was developed to test whether it could capture the non-linearities in
our environment better. Table 8.3 shows the network architectures used for environ-
ment 2. Note that in environment 2, greater width is needed as the problem is of
much higher dimension than in environment 1. Therefore, due to time constraints,
the deep architecture here is much shallower than the deep architecture for environ-
ment 1, and thus also has much fewer parameters than the base for this environment.
For environment 1, the base models are trained for 900 epochs while other models
are trained for 700 epochs. For environment 2, both the base and deep models are
trained for 900 epochs. After having been trained, the model that during training
performed the best is saved and used. When evaluating, deterministic actions were
used, meaning that the action with the highest density in the policy function was the
action taken, instead of picking one according to the probability distribution.

Table 8.1 Hyperparameters for PPO

Parameters Description Value

η Learning rate SGD 3×10−4

nsteps Number of steps per environment per update 2064
M Mini batch size SGD 64
nepochs Number of epochs when optimizing the loss 10
γ Discount factor 0.99
λ GAE trade-off bias vs variance 0.95
ε Clipping parameter, PPO loss clip range 0.2
c1 Value function coefficient for loss calculation 0.5
c2 Entropy coefficient for loss calculation 0.0
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Table 8.2 Neural net architecture for PPO (environment 1) (both actor & critic have the
same architecture)

Name Size(# of neurons per layer
times # of layers)

base [64×2]
deep [16×32]

Table 8.3 Neural net architecture for PPO (environment 2) (both actor & critic have the
same architecture)

Name Size(# of neurons per layer
times # of layers)

base [512×2]
deep [64×8]

Pre-trained models
In environment 1 we also test pre-trained models for the market scenarios with
trading costs. These models use the base neural network architecture and begins
with the parameters from a model trained on no correlation and no trading cost with
reward function 1 to begin their training.

8.2 Results

In this section we present our results, highlighting the most significant ones, and
we will repeatedly refer to their corresponding tables in the appendix, marking the
best-performing strategy with bold style on each metric.

Environment 1
Figure 11.4 shows a prototypical example of the learning curves for our base and
deep models when the correlation and trading costs are both zero. One can see
that they all improve and converge to that improved behavior. One can also see
that reward 2 has a much higher variance than the others. Figure 11.3 is, on the
other hand, an example of how the learning curves look when there is a very strong
correlation, in this case ρ =−1, even with no trading cost. Here, all the models have
higher variance; several do not improve significantly from their initial behaviors.
Figure 11.5 shows that the results are similar when trading costs exist, even when ρ

is zero.
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Base model. One can see in Tables 11.1 – 11.5 that with no trading cost, the delta
hedging performs the best on most metrics and correlation setups. One can also
notice that the RL agents generally perform worse in extreme correlation set-ups in
all metrics; see Tables 11.1 and 11.5. The models trained on Reward 2 and Reward
3 manage to make the most profits in some settings (see Tables 11.1, 11.2, and
11.4). The models trained on Reward 1 and Reward 3 come by far the closest to
delta hedging, seen in Tables 11.2, 11.3, and 11.4. An example of how these good,
trained, agents trade is shown in figure 11.2. One can see there that the jump in the
default process has a significant negative effect.

For 5% trading cost, the delta hedging performs best on most metrics and correlation
setups. But we notice that the RL agents perform worse in all set-ups, in all metrics,
compared to without the trading cost, shown in Tables 11.6 – 11.10. Once again,
some models make the most profits in all the settings. The RL agents trade much
less compared to the no-trading cost setup.

Tables 11.11 – 11.15 show that for 100% trading cost, the strategy of "nothing"
performs the best on most metrics and correlation setups. They also show that the
RL agents learn to do almost no trading compared to before. Here, it is also evident
that Delta becomes costly and drives the losses to higher levels compared to no and
5% trading cost.

Deep model. As with the base model, Tables 11.16 – 11.20 show that with no
trading cost delta hedging is the best. Note however that they are never as close to
delta hedging as the best models with the base architecture.

Tables 11.21 – 11.25 once again show that the reinforcement learning agents learn
to hedge less when trading costs appear. However, they adjust too much, so they are
still significantly worse than delta hedging for all metrics except mean losses.

When trading costs increase to 100%, however, we see new results. Table 11.26
still shows that with strong negative correlation and high trading costs. Looking at
Tables 11.27 – 11.30 one can see though that the models are now often best at most
metrics.

Pre-trained model. The learning curves for the pre-trained model look quite dif-
ferent from the ones for the previous models. An example is shown in Figure 11.6.
The pattern is the same for all combinations of correlation and trading cost; they
slowly worsen in performance. Looking at the results in Tables 11.31 – 11.40, one
can see that there is never any single model which is best on everything, but that
the trained models are consistently better than both delta hedging and the "nothing"
strategy at several of the performance metrics.
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Environment 2
Figure 11.10 shows the learning curves for our base models with reward function
1 when the trading costs are zero. One can see that it seems to converge to some-
where around -0.5 for all the correlations, with all of them except the one with -1
correlation ending with better behavior than they began. One can also see that it is
much slower to converge for correlation 1. Figure 11.11 shows the learning curves
for our base models with reward function 1 with 100% trading costs. Here one can
see that they all converge to values significantly lower than they begin, except for
the one with correlation -0.5, but it also has approximately the same value; so it not
becoming worse simply shows that it began worse than the others.

Base reward 1. In Tables 11.41, 11.42, 11.43, and 11.45, the model is worse than
both delta hedging and "nothing". In Table 11.44, it is better than "nothing" but still
worse than delta hedging. With the low trading costs in Tables 11.48 and 11.50, the
model is worse than both delta hedging and "nothing"; although in the same market
conditions Tables 11.47 and 11.49 show that the model is better than "nothing" but
still worse than delta hedging. Finally, in Table 11.46, it is better than "nothing" and
delta hedging in several of the metrics. In the high trading cost situations shown
in Tables 11.51 – 11.55, the model is always better than delta hedging on almost
all metrics, and sometimes better on all the metrics. In Tables 11.52 – 11.55, it
is also better than "nothing" on some but not all metrics. En example of how the
hedge looks for the model presented in Table 11.52 is shown in Figure 11.8. One
can see that it generally trades quite well, though there us a large loss in value at
the one year mark where it held a lot of the swaption whose value became zero at
that point. Another example of how the hedge looks for the same model is shown in
Figure 11.9. One can see there once again that at the 4 year mark it held too much
of a swaption that became worthless, but also that when a big jump happens in the
default process at year 7, the model has no robustness, completely losing track of
the process.

Deep reward 1. With no trading costs, Tables 11.56 – 11.60 show that the model is
worse than both delta hedging and "nothing". Introducing low trading costs, Tables
11.61 – 11.63 continue to show that the model is worse than both delta hedging and
"nothing". The model is better than "nothing" in Tables 11.64 and 11.65 though. In
Tables 11.66 – 11.70, with high trading costs, the model is once again worse than
both delta hedging and "nothing".

Base reward 7. In Tables 11.71, 11.72, 11.74, and 11.75, the model is worse than
both delta hedging and "nothing" with no trading costs. In Table 11.73, it is better
than "nothing" but still worse than delta hedging. Tables 11.76 – 11.79, all show
that the model is worse than both delta hedging and "nothing" even with low trading
costs. In Table 11.80, it is better than "nothing" but still worse than delta hedging.
With very high trading costs, Tables 11.81, 11.82, 11.85, and 11.84 show the model
performs better than delta on many performance metrics, but "nothing" is doing
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the best. Table 11.85 however shows delta doing better than our model, though the
"nothing" strategy still outperforms delta.

Deep reward 7. One can see in Tables 11.86 – 11.90 that our models are always
worse than both "nothing" and delta hedging with no trading costs. In Tables 11.91,
11.92, 11.93, and 11.95 one can see that our models are generally worse than both
"nothing" and delta hedging even with low trading costs. In Table 11.94 the model
outperforms the "nothing" strategy but is still worse than delta. Tables 11.96 – 11.99,
and 11.100 that our models are once again always worse than both "nothing" and
delta hedging, even with very high trading costs.
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9
Discussion

This chapter will discuss the results from Chapter 8. It will discuss how well the
agents performed compared to the other strategies, the effect of architecture choice,
how pre-training a model improved the performance, different reward functions,
how the correlations affected the performance, how RL agents tackled the non-
linear effect of transaction costs, and learning convergence.

9.1 Overall performance

The observed trading behavior of the RL agent, as depicted in Figure11.2, suggests
that the agent approximates delta hedging strategies under conditions of zero trading
costs and correlation. In such a scenario, a delta hedging strategy would maintain
constant values of one for both curves. However, the RL strategy underperforms
compared to delta hedging in risk metrics due to the statistical improbability of
policy distributions aligning precisely with right hedge values. Conversely, delta
hedging does not account for market frictions like transaction costs, which opens
opportunities for statistical learning approaches. These approaches can identify ap-
propriate hedging strategies that require less frequent rebalancing, aiming for the
right direction to offset P&L, while minimizing losses due to market frictions.

9.2 Environment 1

When trading costs are absent, delta hedging consistently emerges as the superior
strategy. However, the introduction of trading costs yields more nuanced outcomes.
Merely incorporating these costs relying on the base architecture proves ineffec-
tive. Instead, enhancing performance necessitates training more complex models or
utilizing pre-trained models. These approaches can outperform both delta hedging
and a passive strategy. Notably, when underlying processes are negatively corre-
lated, they exhibit self-hedging properties, often resulting in the passive "do noth-
ing" strategy performing surprisingly well.
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9.3 Environment 2

Like in the first environment, delta hedging excels when there is no trading cost, and
the "do nothing" strategy performs well under strong negative correlation. However,
in this more complex environment, our RL models face greater challenges due to
the increased dimension of the problem. Instead of determining two hedge quanti-
ties, agents must now identify twenty. Despite these challenges, it’s noteworthy that
our agents surpass the "do nothing" strategy in scenarios where it’s crucial to act,
particularly when there is a positive correlation. The fact that our models perform
best at trading cost 1, which is wholly unrealistic, is not as useless as it might seem;
as what it shows is that when the problem becomes significantly more non-linear,
the RL models become better, and there are several complicating factors in real mar-
kets that we have not taken into account here. Figures 11.8 and 11.9 show that when
the CVA behaves nicely, the hedge is able to follow it quite well, however when it
jumps the RL models are unable to correctly respond. Also visible in those figures
is how the agents don’t seem to predict that swaptions will be worthless after their
expiry, so one can see that the hedge value takes quite a large dip at the beginning
of several years.

9.4 Neural network architecture

In scenarios without trading costs, delta hedging consistently outperforms other
strategies across various metrics within the default architecture. However, when
trading costs are introduced, their efficacy diminishes; although the variance in
profit and loss P&L remains acceptable, other risk metrics show significant degra-
dation. This performance drop is mainly due to increased losses driven by trading
costs. In environments with trading costs, RL agents modify their approach by re-
ducing trading frequency. Yet, despite these adjustments, the base architecture im-
plementation of these agents does not achieve the same level of performance as
delta hedging in any tested scenario of correlation and trading costs.

Modifying the neural network architecture of the actor and critic to a deeper con-
figuration led to noticeable performance changes under high trading costs. This im-
provement is attributed to the deeper network’s enhanced ability to approximate
more complex, non-linear functions, which become increasingly critical as trading
costs rise. However, in scenarios with no trading costs, delta hedging remains su-
perior. In terms of broader risk metrics, delta hedging consistently outperforms,
closely followed by RL agents, which do better than the "do nothing" strategy.
While other strategies may also generate profits, they generally fall short in terms
of variance and risk metrics.

Increasing the trading cost to 5% does not drastically change these outcomes, yet
RL strategies begin to outperform both delta hedging and the "do nothing" strategy
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on several setups and metrics. When trading costs are raised to 100%, there is a sig-
nificant shift in performance dynamics, RL strategies tend to outperform both delta
hedging and the "do nothing" strategy across most metrics. The notable exception
occurs when the correlation is −1, under which conditions the processes sufficiently
hedge themselves, making the "do nothing" strategy the most effective.

9.5 Pre-trained models

Pre-trained models outperform other evaluated strategies at a 5% trading cost and
align with the best deep models at a 100% trading cost. These models benefit from
starting the learning process with an effective strategy, though this requires roughly
twice the training time. Despite initial improvements, these models do not progress
towards better performance, as evidenced by the instability of the optimum shown
in Figure 11.6. Consequently, it is understandable why no single reward function
stands out; all begin with equivalent behaviors, and any early improvements dur-
ing the training phase are largely attributable to random explorations of network
parameters rather than systematic advancements.

9.6 Reward functions

Rewards 1 and 3 generally perform well, but they encounter challenges in achieving
consistent, positive behaviors under conditions of extreme correlation. Excluding
these extreme cases, Rewards 1 and 3 often appear very similar and tend to outper-
form other rewards, likely because their simplicity facilitates easier learning by the
networks.

Reward 2 occasionally manages to maximize profits, as designed. However, its ef-
fectiveness varies, and it is associated with significantly increased variance. This
aligns with the financial models’ principle that risk-free profits are impossible; thus,
any profitable strategy must inherently assume greater risks, resulting in higher vari-
ance in outcomes.

Reward 5 is notable for its resilience to different levels of correlation, although it
never leads in performance. Its robustness stems from its reward structure, which
relies not only on actual outcomes but also on simulations of multiple potential
scenarios. However, this makes it model-dependent and less ideal for real-world
applications.

Rewards 4, 6, and 7 are commonly employed across diverse applications. Specif-
ically, Reward 4 is a widely recognized mathematical metric, whereas Rewards 6
and 7 are popular risk metrics within the financial sector. These functions are used
to penalize significant losses in the tail end of the distribution. Despite their preva-
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lence, these rewards do not demonstrate superior performance compared to other re-
wards in the evaluations. Generally different reward functions affect learning, con-
vergence, and performance. Suitable reward function engineering helps get better
results in RL tasks.

9.7 Correlation

In environment 1, the extreme correlations of −1 and 1 caused the models to have
difficulty learning. The nothing strategy performs best with negative correlation, as
the processes hedge themselves there. Similarly, all strategies perform worse with
positive correlation, as the opposite effect happens. These effects are most notable
in environment 2, as intra-pair correlations and inter-pair correlations are present,
where CVA is a weighted sum of Swaptions with weights as default probabilities.

9.8 Transaction costs

Across all setups, the introduction of trading costs leads models to reduce their
trading amount, with higher trading costs prompting even greater reductions. This is
the desired behavior, aligning perfectly with our expectations, as larger losses from
costs imply larger penalties. However, without appropriate guidance, the models
may reduce trading excessively, which can negatively impact the effective allocation
of the correct hedge.

Incorporating guidance by initiating training with a pre-trained model addresses
several challenges. This approach not only aids the agents in identifying effective
strategies under low trading costs but also improves behavior under conditions of
extreme correlation. Furthermore, employing a deeper network enables the capture
of increased non-linearities associated with very high transaction costs, enhancing
performance in such scenarios

9.9 Convergence

One of the main issues we observe in the learning of the RL agents is converging
to a bad local optimum, which is seen clearly in Figures 11.5 and 11.11. One of
the contributing factors to this might be the exploration and exploitation relation
in PPO (discussed in 7). A further enhancement could be relaxing the exploitation
nature of the algorithm, and instead encouraging exploration. These can be done
by tuning the hyperparameters for the PPO algorithm in Table 8.1. Furthermore,
the convergence of RL is significantly shaped by its initial conditions and specific
aspects of its training regimen. This sensitivity stems from the ongoing collection
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of online data and the dependence on a singular scalar reward for feedback. Ex-
periencing favorable training scenarios can greatly expedite the enhancement of a
policy compared to others that may not encounter such beneficial conditions.
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10
Conclusions

In this chapter we will discuss the conclusions that can be drawn from our results
and their implications. In addition, we will present possible directions of future
work in the subject.

10.1 Conclusions

Banks manage large trading books with exposure to various financial risks. To avoid
scenarios like the 2008 financial crisis, oversight institutions have introduced laws
and regulations to manage these risks. One such set of regulations is the third Basel
accords, which crucially introduced the CVA [Bank for International Settlements,
2020]. CVA has been a significant component of P&L performance for Nordea and,
more broadly, any large global financial institution offering derivatives. Research
has shown that RL-based hedging strategies can outperform traditional methods
when the contracts being hedged are quite simple, containing only one underlying
asset and following simple market dynamics, even under conditions of transaction
costs [Kolm and Ritter, 2019]. These advanced strategies leverage reinforcement
learning to adapt to dynamic market conditions, providing a more robust framework
for managing financial risks. The goal of this thesis has been to develop strategies to
effectively manage the risks associated with CVA using similar RL-based methods,
with the point being that CVA contains multiple underlying assets interacting in
non-linear ways. Specifically, our research objectives have been

i) the development of deep hedging to manage the risks associated with CVA in
simulated environments,

ii) the evaluation of deep hedging against a baseline method called delta hedging,
and

iii) evaluation of the performance of the methods with respect to trading costs and
underlying correlations in the simulated market environments.
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To achieve these objectives we first implemented two market simulators, simulating
CVA at different levels of complexity. We then trained PPO-based RL models to
trade on the simulations, with varying reward functions, and varying correlations
between the market forces and varying trading costs. To evaluate our models we
implemented delta hedging and a nothing strategy. We then had our models and
these strategies hedge the same realizations of the market simulations and compare
their performance on several performance metrics.

We found that with no transaction costs, delta hedging always outperforms the RL-
based models, although they can get very close. When transaction costs are added,
however, the RL models can beat delta hedging on some metrics. Correlation has
no clear impact on performance given that the models find reasonable behavior,
however, it does have a large impact on the ability of the models to converge to
something reasonable when it is large. This and the fact that the models have a
hard time converging to reasonable behavior when trading costs are added indicates
that optimal behavior is very unstable. It seems that the stochastic nature of these
environments makes it challenging to learn the optimal strategy. Especially as the
dimension of the problem increases.

10.2 Future work

This report explores a group of techniques that could enhance the performance of
risk management proxies. The models showcased in this project are only advanta-
geous with the existence of market frictions, which may indicate better performance
in more realistic settings rather than theoretical frameworks. This showcases the
great advantage of incorporating additional market information. While our findings
provide valuable insights, they are based on simulated data. Conducting empirical
validation with real-world financial data would be a crucial next step to confirm the
applicability and effectiveness of the proposed strategies. We suggest here several
factors to take into account for the models to be more realistic. We present also
some suggestions to improve the performance of RL methods.

Model and environment development
Calibrating the model parameters to market data in both environments would
enhance the simulation’s alignment with real-world conditions. Such calibration
would ensure that the strategies developed within this study are directly applica-
ble to actual market actions, allowing for their evaluation in a more realistic con-
text. This approach not only improves the reliability of the model outputs but also
strengthens the practical relevance of the research findings. Incorporating CDS and
swaps as hedging instruments, as how it is done at a CVA desk, rather than default
probabilities and swaptions, would enhance the alignment of this study with prevail-
ing industry practices, thus moving beyond our initial theoretical simplifications.
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Furthermore, it is critical to consider the liquidity risk associated with these in-
struments, as their liquidity and availability can be sensitive to market fluctuations.
Addressing these aspects will provide a more nuanced and realistic evaluation of
the hedging strategies, thereby improving the model’s applicability and robustness
in practical financial environments.

An essential aspect of managing CVA is addressing both wrong-way and right-way
risks. In this study, we have modeled scenarios where the correlation between ex-
posure and default risk remains constant. However, in more realistic financial set-
tings, these correlations may vary over time, introducing additional complexity to
the problem. Therefore, it is advisable to employ robust, adaptive strategies capa-
ble of recognizing and responding to these dynamic risks effectively. This approach
enhances the model’s applicability and resilience in predicting realistic market be-
haviors.

Extending the development of the models and hedging strategies from individual
contracts to encompass portfolios with netting would considerably enhance the re-
alism and applicability of this study. This expansion would allow for a more so-
phisticated examination of interrelated risks and their mitigations within a portfolio
context, providing insights that are more aligned with practical financial manage-
ment and risk assessment practices

RL performance
In this study, the RL parameters were mostly the default settings provided by Sable-
Baselines3, however it is well known that the selection of hyperparameters in RL
significantly influences the performance outcomes of the agents. Considering hyper-
parameter optimization should improve the performance of RL agents significantly.
As this aspect has been disregarded in this study it leaves a potential for improve-
ment of RL strategies.

We also noted that trying deeper architectures for the agents improved the perfor-
mance in certain situations. Research has shown that deeper architectures are better
at handling non-linearities, and non-linearities are crucial aspects that RL methods
could deliver on compared to other classical methods. Therefore, optimizing these
deep architectures could advance the performance of RL agents. Moreover, pre-
trained models showed better results than trained from-scratch models. It might be
helpful to build upon your best existing model to include additional complexities.
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11
Appendix

11.1 Environment 1 tables

Base model

Table 11.1 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.96·10-4 1.97·10-4 1.97·10-4 -2.07·10-4 2.08·10-4 1.58·10-2 2.25·101

Reward 2 4.31·10-5 4.33·10-5 4.33·10-5 -9.69·10-5 3.64·10-4 7.24·10-3 1.44·102

Reward 3 7.18·10-4 7.23·10-4 7.23·10-4 -4.07·10-4 3.38·10-4 2.96·10-2 5.23·101

Reward 4 4.35·10-5 4.38·10-5 4.38·10-5 -9.55·10-5 4.21·10-4 7.33·10-3 3.81·102

Reward 5 8.01·10-7 8.05·10-7 8.05·10-7 -5.61·10-6 3.56·10-4 9.80·10-4 1.09·103

Reward 6 4.70·10-6 4.73·10-6 4.73·10-6 -2.89·10-5 4.88·10-4 2.31·10-3 4.61·103

Reward 7 2.20·10-5 2.21·10-5 2.21·10-5 -6.56·10-5 4.42·10-4 5.26·10-3 1.64·102

Delta 4.29·10-10 4.31·10-10 4.38·10-10 2.51·10-6 1.78·10-5 3.08·10-5 1.23·103

Nothing 7.24·10-6 7.26·10-6 7.27·10-6 -4.57·10-5 1.38·10-3 3.72·10-3 0.00·100

Table 11.2 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.18·10-9 5.21·10-9 5.21·10-9 2.19·10-6 5.01·10-5 1.03·10-4 1.19·103

Reward 2 6.45·10-5 6.48·10-5 6.48·10-5 -1.65·10-4 2.02·10-3 1.14·10-2 1.13·102

Reward 3 1.00·10-8 1.01·10-8 1.01·10-8 1.87·10-7 3.97·10-5 1.05·10-4 1.18·103

Reward 4 8.16·10-5 8.21·10-5 8.21·10-5 1.78·10-4 2.53·10-3 1.16·10-2 7.63·104

Reward 5 2.91·10-7 2.91·10-7 2.91·10-7 2.24·10-6 6.02·10-4 9.79·10-4 8.25·102

Reward 6 2.06·10-7 2.06·10-7 2.06·10-7 -3.44·10-6 3.17·10-4 6.76·10-4 1.11·103

Reward 7 6.80·10-8 6.82·10-8 6.82·10-8 5.76·10-7 1.31·10-4 3.51·10-4 1.05·103

Delta 7.10·10-10 7.14·10-10 7.16·10-10 1.53·10-6 1.39·10-5 3.21·10-5 1.23·103

Nothing 9.02·10-6 9.05·10-6 9.05·10-6 -6.86·10-5 1.94·10-3 5.08·10-3 0.00·100
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Table 11.3 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.21·10-9 2.21·10-9 2.21·10-9 -2.13·10-7 4.55·10-5 7.85·10-5 1.04·103

Reward 2 2.30·10-6 2.30·10-6 2.30·10-6 -2.93·10-5 1.84·10-3 2.99·10-3 3.22·103

Reward 3 1.19·10-8 1.19·10-8 1.19·10-8 6.85·10-7 7.14·10-5 1.69·10-4 1.00·103

Reward 4 9.01·10-6 9.04·10-6 9.04·10-6 1.89·10-5 2.29·10-3 4.87·10-3 5.04·102

Reward 5 4.59·10-7 4.60·10-7 4.60·10-7 -9.91·10-7 7.91·10-4 1.25·10-3 1.03·103

Reward 6 5.40·10-7 5.41·10-7 5.42·10-7 -1.02·10-5 2.14·10-4 7.86·10-4 1.04·103

Reward 7 1.10·10-7 1.11·10-7 1.11·10-7 3.15·10-6 1.17·10-4 4.20·10-4 9.46·102

Delta 8.15·10-10 8.16·10-10 8.16·10-10 -4.31·10-8 8.71·10-6 3.46·10-5 1.19·103

Nothing 1.30·10-5 1.30·10-5 1.30·10-5 -7.17·10-5 2.32·10-3 5.91·10-3 0.00·100

Table 11.4 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.14·10-8 1.15·10-8 1.15·10-8 -2.49·10-7 6.73·10-5 1.48·10-4 1.19·103

Reward 2 4.30·10-5 4.33·10-5 4.33·10-5 -1.24·10-4 3.25·10-3 9.62·10-3 4.99·102

Reward 3 7.71·10-9 7.71·10-9 7.72·10-9 -1.23·10-6 4.59·10-5 1.25·10-4 1.09·103

Reward 4 1.89·10-4 1.91·10-4 1.91·10-4 2.33·10-4 6.39·10-3 1.91·10-2 5.68·102

Reward 5 2.54·10-7 2.55·10-7 2.55·10-7 -6.96·10-6 2.20·10-4 7.34·10-4 1.07·103

Reward 6 7.15·10-7 7.18·10-7 7.19·10-7 8.28·10-6 3.37·10-4 1.00·10-3 1.05·103

Reward 7 8.84·10-8 8.85·10-8 8.85·10-8 1.08·10-6 1.36·10-4 3.54·10-4 1.08·103

Delta 4.95·10-10 4.99·10-10 5.02·10-10 -1.56·10-6 3.68·10-6 2.89·10-5 1.23·103

Nothing 1.04·10-5 1.05·10-5 1.05·10-5 -6.52·10-5 2.48·10-3 5.49·10-3 0.00·100

Table 11.5 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.38·10-5 1.38·10-5 1.38·10-5 2.81·10-5 1.34·10-4 5.05·10-3 3.31·102

Reward 2 4.38·10-4 4.39·10-4 4.39·10-4 1.65·10-4 6.87·10-4 2.93·10-2 2.81·102

Reward 3 2.51·10-5 2.51·10-5 2.51·10-5 3.84·10-5 1.26·10-4 6.81·10-3 3.11·102

Reward 4 3.39·10-6 3.39·10-6 3.39·10-6 -1.06·10-5 7.10·10-4 2.52·10-3 3.54·102

Reward 5 2.87·10-7 2.87·10-7 2.87·10-7 -6.46·10-6 2.33·10-4 8.93·10-4 1.38·103

Reward 6 7.78·10-6 7.79·10-6 7.79·10-6 1.72·10-5 2.29·10-4 3.88·10-3 4.49·102

Reward 7 2.05·10-6 2.05·10-6 2.05·10-6 6.75·10-6 2.94·10-4 2.06·10-3 3.88·102

Delta 1.18·10-9 1.18·10-9 1.19·10-9 -3.13·10-6 1.35·10-9 3.29·10-5 1.19·103

Nothing 9.89·10-6 9.90·10-6 9.90·10-6 -5.61·10-5 2.99·10-3 5.62·10-3 0.00·100
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Table 11.6 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.14·10-3 1.14·10-3 1.15·10-3 -6.98·10-4 3.89·10-3 3.93·10-2 0.00·100

Reward 2 1.14·10-3 1.14·10-3 1.15·10-3 -6.98·10-4 3.89·10-3 3.93·10-2 0.00·100

Reward 3 1.13·10-3 1.14·10-3 1.14·10-3 -6.66·10-4 2.26·10-3 3.77·10-2 1.40·101

Reward 4 8.20·10-4 8.26·10-4 8.29·10-4 6.90·10-4 1.12·10-2 3.38·10-2 0.00·100

Reward 5 1.14·10-3 1.14·10-3 1.15·10-3 -6.98·10-4 3.89·10-3 3.93·10-2 0.00·100

Reward 6 8.21·10-4 8.26·10-4 8.30·10-4 6.90·10-4 1.13·10-2 3.39·10-2 0.00·100

Reward 7 8.21·10-4 8.26·10-4 8.30·10-4 6.90·10-4 1.13·10-2 3.39·10-2 0.00·100

Delta 5.82·10-8 3.32·10-9 6.22·10-8 5.85·10-5 2.26·10-4 5.84·10-4 1.23·103

Nothing 7.33·10-6 7.38·10-6 7.39·10-6 -6.33·10-5 1.50·10-3 4.07·10-3 0.00·100

Table 11.7 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.32·10-3 1.32·10-3 1.32·10-3 -4.03·10-4 7.11·10-3 3.93·10-2 2.25·101

Reward 2 7.68·10-4 7.71·10-4 7.71·10-4 3.49·10-4 7.51·10-3 3.20·10-2 3.33·101

Reward 3 6.28·10-4 6.30·10-4 6.30·10-4 3.50·10-4 4.84·10-3 2.74·10-2 2.23·101

Reward 4 1.07·10-3 1.07·10-3 1.07·10-3 -3.67·10-4 6.46·10-3 3.54·10-2 1.59·101

Reward 5 8.39·10-4 8.42·10-4 8.41·10-4 -2.97·10-4 7.06·10-3 3.29·10-2 5.13·101

Reward 6 2.25·10-4 2.26·10-4 2.26·10-4 -1.52·10-4 2.78·10-3 1.43·10-2 5.17·102

Reward 7 1.03·10-3 1.04·10-3 1.04·10-3 4.88·10-4 7.60·10-3 3.62·10-2 7.02·100

Delta 4.77·10-8 3.65·10-9 5.09·10-8 5.46·10-5 1.50·10-4 5.64·10-4 1.17·103

Nothing 1.09·10-5 1.10·10-5 1.10·10-5 -5.29·10-5 1.91·10-3 4.67·10-3 0.00·100

Table 11.8 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 6.98·10-3 7.52·10-3 7.61·10-3 2.71·10-3 3.16·10-2 4.99·10-2 2.62·101

Reward 2 1.07·10-2 1.16·10-2 1.16·10-2 -3.21·10-3 9.32·10-3 5.78·10-2 1.53·101

Reward 3 4.72·10-3 5.07·10-3 5.10·10-3 -2.11·10-3 5.91·10-3 4.29·10-2 1.87·101

Reward 4 7.22·10-3 7.77·10-3 7.80·10-3 -2.60·10-3 6.52·10-3 4.97·10-2 2.08·101

Reward 5 1.22·10-2 1.32·10-2 1.32·10-2 -3.37·10-3 7.71·10-3 6.06·10-2 1.80·101

Reward 6 4.68·10-3 5.04·10-3 5.10·10-3 2.23·10-3 2.59·10-2 4.17·10-2 5.50·101

Reward 7 1.03·10-2 1.11·10-2 1.12·10-2 3.34·10-3 3.91·10-2 6.13·10-2 2.98·101

Delta 1.22·10-7 3.20·10-9 1.35·10-7 6.02·10-5 2.34·10-4 5.67·10-4 1.22·103

Nothing 6.91·10-5 7.43·10-5 7.49·10-5 -2.78·10-4 2.24·10-3 6.29·10-3 0.00·100

Table 11.9 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.55·10-4 7.57·10-4 7.57·10-4 3.55·10-4 5.76·10-3 3.47·10-2 3.35·101

Reward 2 7.57·10-4 7.59·10-4 7.59·10-4 -3.23·10-4 8.06·10-3 3.59·10-2 2.73·101

Reward 3 6.45·10-4 6.47·10-4 6.47·10-4 2.80·10-4 5.61·10-3 3.28·10-2 3.14·101

Reward 4 5.87·10-4 5.88·10-4 5.88·10-4 -2.60·10-4 6.78·10-3 3.16·10-2 5.42·101

Reward 5 7.25·10-4 7.27·10-4 7.27·10-4 -3.14·10-4 7.83·10-3 3.54·10-2 3.31·101

Reward 6 2.22·10-4 2.22·10-4 2.22·10-4 2.33·10-4 4.72·10-3 2.01·10-2 5.31·101

Reward 7 4.83·10-4 4.84·10-4 4.84·10-4 -2.87·10-5 5.45·10-3 2.72·10-2 4.63·101

Delta 4.09·10-8 2.98·10-9 4.37·10-8 4.99·10-5 1.45·10-4 5.12·10-4 1.28·103

Nothing 8.70·10-6 8.71·10-6 8.72·10-6 -5.23·10-5 2.55·10-3 5.15·10-3 0.00·100
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Table 11.10 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.15·10-3 1.16·10-3 1.16·10-3 -4.92·10-4 3.43·10-3 3.93·10-2 8.74·101

Reward 2 1.15·10-3 1.16·10-3 1.16·10-3 -4.91·10-4 3.56·10-3 3.91·10-2 8.72·101

Reward 3 1.15·10-3 1.16·10-3 1.16·10-3 -4.91·10-4 3.53·10-3 3.92·10-2 8.73·101

Reward 4 1.15·10-3 1.16·10-3 1.16·10-3 -4.92·10-4 3.32·10-3 3.96·10-2 8.74·101

Reward 5 1.15·10-3 1.16·10-3 1.16·10-3 -4.92·10-4 3.47·10-3 3.92·10-2 8.75·101

Reward 6 1.15·10-3 1.16·10-3 1.16·10-3 -4.92·10-4 3.32·10-3 3.96·10-2 8.74·101

Reward 7 1.16·10-3 1.16·10-3 1.16·10-3 -4.19·10-4 4.13·10-3 4.06·10-2 2.70·102

Delta 5.07·10-8 3.36·10-9 5.36·10-8 5.08·10-5 1.96·10-4 5.57·10-4 1.15·103

Nothing 8.22·10-6 8.27·10-6 8.27·10-6 -6.37·10-5 2.85·10-3 5.31·10-3 0.00·100
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Table 11.11 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 3.20·10-3 1.72·10-3 3.20·10-3 2.04·10-4 1.08·10-2 1.08·10-1 0.00·100

Reward 2 1.88·10-3 1.84·10-3 1.91·10-3 1.75·10-3 2.08·10-2 7.99·10-2 0.00·100

Reward 3 3.20·10-3 1.72·10-3 3.20·10-3 2.04·10-4 1.08·10-2 1.08·10-1 0.00·100

Reward 4 2.67·10-3 1.23·10-3 2.71·10-3 1.75·10-3 2.52·10-2 1.03·10-1 0.00·100

Reward 5 2.43·10-3 1.24·10-3 2.47·10-3 1.75·10-3 2.38·10-2 9.65·10-2 0.00·100

Reward 6 3.21·10-3 1.76·10-3 3.21·10-3 3.74·10-4 2.18·10-2 1.08·10-1 8.85·101

Reward 7 2.60·10-3 1.23·10-3 2.64·10-3 1.75·10-3 2.45·10-2 1.00·10-1 0.00·100

Delta 2.45·10-5 1.35·10-6 2.59·10-5 1.08·10-3 4.14·10-3 1.14·10-2 1.16·103

Nothing 1.14·10-5 1.15·10-5 1.15·10-5 -7.88·10-5 1.43·10-3 5.05·10-3 0.00·100

Table 11.12 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 9.71·10-4 9.71·10-4 9.79·10-4 1.08·10-3 2.03·10-2 5.20·10-2 6.74·100

Reward 2 2.00·10-3 8.47·10-4 2.01·10-3 1.32·10-3 1.53·10-2 9.55·10-2 2.29·10-2

Reward 3 5.16·10-4 5.17·10-4 5.19·10-4 7.91·10-4 1.28·10-2 3.30·10-2 4.41·101

Reward 4 8.14·10-4 8.17·10-4 8.16·10-4 3.93·10-4 1.32·10-2 4.15·10-2 1.67·101

Reward 5 1.26·10-3 1.27·10-3 1.27·10-3 1.95·10-4 1.46·10-2 5.07·10-2 1.15·101

Reward 6 7.81·10-4 7.75·10-4 7.82·10-4 3.39·10-4 1.32·10-2 4.10·10-2 4.99·101

Reward 7 6.82·10-4 6.76·10-4 6.83·10-4 2.29·10-4 1.08·10-2 3.75·10-2 2.54·101

Delta 2.24·10-5 1.10·10-6 2.36·10-5 1.06·10-3 2.93·10-3 1.10·10-2 1.35·103

Nothing 1.36·10-5 1.36·10-5 1.36·10-5 -6.35·10-5 1.91·10-3 5.07·10-3 0.00·100

Table 11.13 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.16·10-4 7.25·10-4 7.52·10-4 1.34·10-3 1.96·10-2 4.35·10-2 1.09·101

Reward 2 2.92·10-5 2.83·10-5 2.93·10-5 2.56·10-4 3.27·10-3 8.19·10-3 8.33·102

Reward 3 2.39·10-3 9.55·10-4 2.39·10-3 4.23·10-4 2.29·10-2 9.41·10-2 0.00·100

Reward 4 6.16·10-4 6.24·10-4 6.49·10-4 1.29·10-3 1.96·10-2 3.87·10-2 1.49·101

Reward 5 4.15·10-4 4.13·10-4 4.37·10-4 1.04·10-3 1.49·10-2 3.30·10-2 1.45·101

Reward 6 4.87·10-4 4.93·10-4 4.88·10-4 2.55·10-4 1.10·10-2 3.11·10-2 1.90·101

Reward 7 6.99·10-4 7.09·10-4 7.38·10-4 1.38·10-3 1.96·10-2 4.25·10-2 5.78·100

Delta 2.51·10-5 1.18·10-6 2.66·10-5 1.06·10-3 4.05·10-3 1.08·10-2 1.19·103

Nothing 8.40·10-6 8.52·10-6 8.52·10-6 -6.65·10-5 2.21·10-3 4.54·10-3 0.00·100

Table 11.14 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.40·10-3 1.48·10-3 1.40·10-3 3.66·10-4 9.14·10-3 3.42·10-2 1.18·102

Reward 2 1.77·10-3 1.87·10-3 1.79·10-3 -1.78·10-4 1.09·10-2 3.85·10-2 1.49·101

Reward 3 1.60·10-3 1.68·10-3 1.96·10-3 2.62·10-3 2.14·10-2 4.41·10-2 4.00·101

Reward 4 6.20·10-3 3.43·10-3 6.21·10-3 2.29·10-4 2.20·10-2 1.04·10-1 3.44·102

Reward 5 1.34·10-3 1.41·10-3 1.65·10-3 2.42·10-3 2.03·10-2 4.09·10-2 1.39·101

Reward 6 1.42·10-3 1.50·10-3 1.76·10-3 2.52·10-3 1.95·10-2 4.28·10-2 3.26·101

Reward 7 2.08·10-4 2.14·10-4 2.09·10-4 2.93·10-4 9.28·10-3 1.79·10-2 1.39·102

Delta 6.18·10-5 1.07·10-6 6.70·10-5 1.19·10-3 5.19·10-3 1.18·10-2 1.26·103

Nothing 3.64·10-5 3.84·10-5 3.88·10-5 -1.97·10-4 2.47·10-3 6.01·10-3 0.00·100
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Table 11.15 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 6.32·10-3 6.51·10-3 6.75·10-3 3.92·10-3 4.38·10-2 8.47·10-2 3.66·101

Reward 2 1.06·10-2 8.12·10-3 1.06·10-2 -5.38·10-4 2.31·10-2 1.28·10-1 6.59·101

Reward 3 8.75·10-3 8.99·10-3 8.83·10-3 -5.40·10-4 1.68·10-2 9.55·10-2 6.60·101

Reward 4 1.10·10-3 1.14·10-3 1.18·10-3 1.71·10-3 1.98·10-2 2.95·10-2 4.32·101

Reward 5 6.38·10-3 6.56·10-3 6.81·10-3 3.92·10-3 4.19·10-2 8.64·10-2 3.83·101

Reward 6 1.05·10-2 8.12·10-3 1.06·10-2 -5.38·10-4 2.31·10-2 1.26·10-1 6.59·101

Reward 7 1.05·10-2 8.12·10-3 1.06·10-2 -5.38·10-4 2.31·10-2 1.28·10-1 6.59·101

Delta 3.31·10-5 1.16·10-6 3.55·10-5 1.12·10-3 5.14·10-3 1.17·10-2 1.21·103

Nothing 3.93·10-5 3.99·10-5 3.99·10-5 -1.68·10-4 2.75·10-3 7.29·10-3 0.00·100
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Deep model

Table 11.16 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.32·10-4 2.33·10-4 2.33·10-4 -2.16·10-4 4.07·10-4 1.53·10-2 3.90·101

Reward 2 1.12·10-4 1.13·10-4 1.13·10-4 -1.79·10-4 7.59·10-3 1.51·10-2 5.61·104

Reward 3 5.23·10-4 5.26·10-4 5.26·10-4 -3.26·10-4 7.88·10-4 2.30·10-2 1.36·101

Reward 4 4.60·10-4 4.63·10-4 4.63·10-4 -3.06·10-4 1.11·10-3 2.16·10-2 7.82·103

Reward 5 7.31·10-7 7.33·10-7 7.34·10-7 1.21·10-6 4.62·10-4 1.21·10-3 8.25·102

Reward 6 1.09·10-3 1.10·10-3 1.10·10-3 -4.77·10-4 1.48·10-3 3.32·10-2 6.69·100

Reward 7 8.07·10-4 8.13·10-4 8.13·10-4 -3.44·10-4 1.38·10-3 2.27·10-2 1.35·105

Delta 4.86·10-9 4.90·10-9 4.91·10-9 2.08·10-6 1.89·10-5 4.54·10-5 1.23·103

Nothing 9.82·10-6 9.88·10-6 9.88·10-6 -4.83·10-5 1.44·10-3 4.00·10-3 0.00·100

Table 11.17 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.51·10-6 1.58·10-6 1.59·10-6 -3.31·10-5 6.42·10-4 1.23·10-3 6.72·102

Reward 2 3.36·10-4 3.55·10-4 3.56·10-4 -6.07·10-4 3.63·10-3 1.19·10-2 5.65·103

Reward 3 6.78·10-6 7.15·10-6 7.18·10-6 7.67·10-5 1.88·10-3 2.07·10-3 1.27·102

Reward 4 2.18·10-6 2.27·10-6 2.28·10-6 -8.26·10-6 8.44·10-4 1.35·10-3 1.20·104

Reward 5 4.52·10-6 4.77·10-6 4.79·10-6 -6.67·10-5 7.30·10-4 1.60·10-3 5.05·102

Reward 6 3.29·10-6 3.46·10-6 3.47·10-6 5.53·10-5 1.52·10-3 1.69·10-3 2.02·102

Reward 7 7.22·10-7 7.43·10-7 7.44·10-7 1.70·10-5 1.03·10-3 1.32·10-3 7.32·101

Delta 7.61·10-9 7.91·10-9 7.93·10-9 1.63·10-6 4.30·10-5 5.56·10-5 1.25·103

Nothing 1.43·10-4 1.52·10-4 1.52·10-4 -3.91·10-4 2.01·10-3 7.44·10-3 0.00·100
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Table 11.18 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 8.71·10-7 8.73·10-7 8.72·10-7 -4.82·10-6 7.07·10-4 1.47·10-3 0.00·100

Reward 2 3.51·10-4 3.51·10-4 3.52·10-4 -2.66·10-4 5.57·10-3 2.45·10-2 3.81·104

Reward 3 8.41·10-7 8.43·10-7 8.42·10-7 6.55·10-6 6.12·10-4 1.35·10-3 8.27·101

Reward 4 6.57·10-7 6.58·10-7 6.58·10-7 2.25·10-6 5.32·10-4 1.21·10-3 4.18·102

Reward 5 7.38·10-7 7.39·10-7 7.39·10-7 -1.28·10-6 7.12·10-4 1.36·10-3 2.54·10-4

Reward 6 8.66·10-7 8.67·10-7 8.67·10-7 -4.34·10-6 6.66·10-4 1.37·10-3 5.22·103

Reward 7 7.37·10-7 7.39·10-7 7.38·10-7 1.26·10-6 6.78·10-4 1.35·10-3 1.13·102

Delta 7.54·10-10 7.55·10-10 7.55·10-10 1.51·10-8 8.78·10-6 3.24·10-5 1.24·103

Nothing 1.09·10-5 1.09·10-5 1.09·10-5 -5.78·10-5 2.29·10-3 5.35·10-3 0.00·100

Table 11.19 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 9.29·10-7 9.34·10-7 9.34·10-7 -1.04·10-6 6.23·10-4 1.27·10-3 1.31·103

Reward 2 7.04·10-4 7.11·10-4 7.11·10-4 5.35·10-5 1.13·10-2 2.85·10-2 2.68·105

Reward 3 1.18·10-6 1.18·10-6 1.18·10-6 7.62·10-6 6.01·10-4 1.22·10-3 1.97·102

Reward 4 1.37·10-6 1.38·10-6 1.38·10-6 1.06·10-5 6.68·10-4 1.33·10-3 4.66·102

Reward 5 9.60·10-7 9.66·10-7 9.66·10-7 -2.02·10-6 7.47·10-4 1.36·10-3 9.17·101

Reward 6 1.44·10-6 1.45·10-6 1.45·10-6 9.86·10-6 7.07·10-4 1.39·10-3 5.56·103

Reward 7 1.09·10-6 1.10·10-6 1.10·10-6 2.67·10-6 7.02·10-4 1.31·10-3 1.04·100

Delta 3.95·10-10 3.98·10-10 4.01·10-10 -1.59·10-6 3.80·10-6 2.33·10-5 1.22·103

Nothing 9.40·10-6 9.47·10-6 9.49·10-6 -6.03·10-5 2.61·10-3 4.85·10-3 0.00·100

Table 11.20 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.84·10-5 4.85·10-5 4.85·10-5 1.26·10-6 1.22·10-3 8.75·10-3 3.92·106

Reward 2 5.65·10-5 5.66·10-5 5.66·10-5 -1.07·10-4 6.65·10-3 1.20·10-2 8.11·104

Reward 3 7.20·10-6 7.22·10-6 7.22·10-6 -3.04·10-5 1.06·10-3 3.45·10-3 1.44·105

Reward 4 2.52·10-5 2.53·10-5 2.53·10-5 -2.61·10-5 2.00·10-3 4.93·10-3 2.14·106

Reward 5 3.14·10-7 3.14·10-7 3.14·10-7 -5.12·10-6 6.85·10-4 1.05·10-3 0.00·100

Reward 6 8.66·10-5 8.68·10-5 8.68·10-5 -5.67·10-5 1.55·10-3 1.22·10-2 1.38·104

Reward 7 7.75·10-7 7.76·10-7 7.76·10-7 -6.22·10-6 5.61·10-4 1.43·10-3 2.92·102

Delta 3.09·10-10 3.09·10-10 3.17·10-10 -2.63·10-6 1.21·10-9 2.08·10-5 1.23·103

Nothing 6.46·10-6 6.47·10-6 6.48·10-6 -4.37·10-5 2.78·10-3 4.84·10-3 0.00·100
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Table 11.21 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.10·10-3 1.13·10-3 1.14·10-3 1.02·10-3 1.13·10-2 3.64·10-2 0.00·100

Reward 2 1.10·10-3 1.13·10-3 1.14·10-3 1.02·10-3 1.13·10-2 3.64·10-2 0.00·100

Reward 3 3.67·10-5 3.73·10-5 6.17·10-5 3.90·10-3 1.63·10-2 1.69·10-2 1.37·105

Reward 4 1.47·10-3 1.49·10-3 1.50·10-3 -9.99·10-4 4.17·10-3 4.11·10-2 0.00·100

Reward 5 5.67·10-7 4.82·10-7 5.83·10-7 3.97·10-5 6.10·10-4 1.26·10-3 4.78·102

Reward 6 6.43·10-5 6.62·10-5 6.68·10-5 2.73·10-4 3.94·10-3 8.10·10-3 2.71·102

Reward 7 5.57·10-6 5.68·10-6 5.80·10-6 6.99·10-5 3.00·10-3 3.78·10-3 3.70·103

Delta 8.49·10-8 4.46·10-9 9.18·10-8 6.12·10-5 2.40·10-4 6.12·10-4 1.18·103

Nothing 7.07·10-6 7.19·10-6 7.20·10-6 -7.70·10-5 1.48·10-3 3.95·10-3 0.00·100

Table 11.22 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.62·10-4 2.64·10-4 2.64·10-4 2.93·10-4 3.02·10-3 1.78·10-2 8.83·101

Reward 2 2.64·10-3 2.65·10-3 2.66·10-3 -7.28·10-4 1.29·10-2 6.11·10-2 6.31·101

Reward 3 9.08·10-4 9.13·10-4 9.13·10-4 -4.64·10-4 4.56·10-3 3.34·10-2 4.36·101

Reward 4 7.47·10-5 7.51·10-5 7.52·10-5 1.58·10-4 2.61·10-3 9.27·10-3 1.41·103

Reward 5 2.05·10-6 2.00·10-6 2.06·10-6 3.03·10-5 7.87·10-4 1.83·10-3 1.61·102

Reward 6 4.74·10-6 4.75·10-6 4.77·10-6 2.29·10-5 1.03·10-3 2.75·10-3 2.49·103

Reward 7 5.11·10-6 5.11·10-6 5.15·10-6 5.00·10-5 2.12·10-3 3.42·10-3 5.13·103

Delta 5.69·10-8 4.91·10-9 6.05·10-8 5.64·10-5 1.70·10-4 5.62·10-4 1.22·103

Nothing 1.59·10-5 1.60·10-5 1.60·10-5 -7.70·10-5 1.98·10-3 5.59·10-3 0.00·100

Table 11.23 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.89·10-4 1.89·10-4 1.89·10-4 -3.51·10-5 4.88·10-3 2.21·10-2 5.08·102

Reward 2 1.27·10-3 1.28·10-3 1.29·10-3 5.47·10-4 2.34·10-2 4.46·10-2 1.35·102

Reward 3 1.95·10-4 1.97·10-4 1.98·10-4 9.29·10-5 7.27·10-3 1.91·10-2 1.08·102

Reward 4 1.26·10-4 1.28·10-4 1.29·10-4 2.01·10-4 5.94·10-3 8.36·10-3 1.05·103

Reward 5 6.54·10-7 6.37·10-7 6.56·10-7 -1.64·10-6 1.06·10-3 1.60·10-3 6.38·102

Reward 6 6.55·10-5 6.63·10-5 6.65·10-5 1.42·10-4 5.04·10-3 9.49·10-3 1.63·102

Reward 7 8.10·10-5 8.20·10-5 8.21·10-5 -1.44·10-4 2.72·10-3 1.05·10-2 9.90·101

Delta 4.83·10-8 3.53·10-9 5.16·10-8 5.24·10-5 1.88·10-4 5.14·10-4 1.26·103

Nothing 1.15·10-5 1.16·10-5 1.16·10-5 -6.60·10-5 2.26·10-3 5.10·10-3 0.00·100

Table 11.24 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.76·10-4 1.77·10-4 1.79·10-4 4.58·10-4 5.42·10-3 1.72·10-2 2.66·103

Reward 2 6.59·10-4 6.60·10-4 6.63·10-4 4.63·10-4 1.41·10-2 3.71·10-2 0.00·100

Reward 3 9.34·10-4 9.37·10-4 9.39·10-4 -3.85·10-4 7.93·10-3 3.91·10-2 3.88·101

Reward 4 1.19·10-4 1.20·10-4 1.20·10-4 1.78·10-4 4.82·10-3 1.45·10-2 2.87·102

Reward 5 6.20·10-7 5.80·10-7 6.24·10-7 3.18·10-5 7.37·10-4 1.40·10-3 6.83·102

Reward 6 3.53·10-5 3.53·10-5 3.55·10-5 6.90·10-5 2.85·10-3 8.16·10-3 1.16·101

Reward 7 3.89·10-6 3.88·10-6 3.90·10-6 9.81·10-6 2.56·10-3 3.84·10-3 2.26·103

Delta 3.87·10-8 3.85·10-9 4.15·10-8 5.09·10-5 1.62·10-4 5.06·10-4 1.24·103

Nothing 8.54·10-6 8.58·10-6 8.59·10-6 -5.74·10-5 2.57·10-3 4.97·10-3 0.00·100
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Table 11.25 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.57·10-6 1.56·10-6 1.57·10-6 -2.43·10-6 2.23·10-3 2.95·10-3 9.34·103

Reward 2 3.39·10-4 3.37·10-4 3.39·10-4 -4.56·10-5 3.23·10-3 2.75·10-2 6.53·101

Reward 3 3.39·10-4 3.37·10-4 3.39·10-4 -4.56·10-5 3.23·10-3 2.75·10-2 6.53·101

Reward 4 2.45·10-4 2.43·10-4 2.45·10-4 1.89·10-4 1.31·10-2 3.01·10-2 0.00·100

Reward 5 5.25·10-7 4.89·10-7 5.25·10-7 6.10·10-6 6.94·10-4 1.23·10-3 1.87·102

Reward 6 3.39·10-4 3.37·10-4 3.39·10-4 -4.56·10-5 3.23·10-3 2.75·10-2 6.53·101

Reward 7 2.14·10-4 2.13·10-4 2.14·10-4 8.59·10-5 1.37·10-3 2.21·10-2 2.55·101

Delta 3.64·10-8 3.49·10-9 3.91·10-8 4.99·10-5 1.67·10-4 5.22·10-4 1.21·103

Nothing 5.49·10-6 5.50·10-6 5.50·10-6 -3.17·10-5 2.96·10-3 4.73·10-3 0.00·100
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Table 11.26 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.26·10-4 3.76·10-4 4.27·10-4 2.28·10-4 5.35·10-3 2.81·10-2 5.12·101

Reward 2 2.53·10-3 9.81·10-4 2.58·10-3 1.65·10-3 1.76·10-2 9.57·10-2 0.00·100

Reward 3 1.61·10-3 1.61·10-3 1.61·10-3 2.60·10-4 1.60·10-2 5.29·10-2 1.27·101

Reward 4 3.97·10-4 2.66·10-4 3.97·10-4 9.46·10-5 3.38·10-3 3.27·10-2 1.77·101

Reward 5 3.27·10-5 5.23·10-6 3.66·10-5 1.05·10-3 6.81·10-3 1.30·10-2 1.27·103

Reward 6 3.33·10-4 2.28·10-4 3.33·10-4 4.45·10-5 2.88·10-3 2.99·10-2 7.55·100

Reward 7 8.46·10-5 8.39·10-5 8.55·10-5 2.34·10-4 7.25·10-3 1.19·10-2 7.50·101

Delta 3.51·10-5 1.46·10-6 3.68·10-5 1.08·10-3 4.87·10-3 1.13·10-2 1.23·103

Nothing 1.40·10-5 1.42·10-5 1.42·10-5 -7.32·10-5 1.47·10-3 4.62·10-3 0.00·100

Table 11.27 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.70·10-3 1.24·10-3 2.85·10-3 2.37·10-3 3.10·10-2 8.79·10-2 6.79·10-4

Reward 2 4.32·10-3 1.75·10-3 4.33·10-3 5.03·10-4 3.16·10-2 1.09·10-1 0.00·100

Reward 3 2.59·10-3 2.38·10-3 2.59·10-3 3.46·10-4 2.12·10-2 7.57·10-2 9.94·100

Reward 4 1.22·10-5 1.32·10-6 1.25·10-5 1.65·10-4 3.89·10-3 6.69·10-3 4.00·102

Reward 5 3.83·10-5 8.34·10-7 3.97·10-5 3.92·10-4 3.80·10-3 1.19·10-2 2.20·102

Reward 6 1.04·10-5 9.89·10-6 1.06·10-5 5.30·10-5 2.27·10-3 4.98·10-3 1.79·102

Reward 7 3.26·10-5 1.33·10-6 3.39·10-5 3.46·10-4 3.56·10-3 1.08·10-2 1.66·102

Delta 3.70·10-5 1.20·10-6 3.94·10-5 1.24·10-3 5.54·10-3 1.27·10-2 1.20·103

Nothing 1.12·10-5 1.15·10-5 1.16·10-5 -1.14·10-4 2.02·10-3 4.83·10-3 0.00·100

Table 11.28 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.15·10-4 1.08·10-4 1.16·10-4 7.00·10-4 8.37·10-3 2.18·10-2 1.32·102

Reward 2 9.14·10-4 3.42·10-4 9.17·10-4 7.62·10-4 7.60·10-3 7.01·10-2 1.01·10-5

Reward 3 1.22·10-5 1.07·10-5 1.26·10-5 3.29·10-4 3.72·10-3 7.57·10-3 3.20·103

Reward 4 1.89·10-4 7.85·10-5 1.89·10-4 1.46·10-4 3.47·10-3 3.13·10-2 5.80·101

Reward 5 1.54·10-5 3.97·10-7 1.56·10-5 4.44·10-4 1.78·10-3 1.02·10-2 4.03·102

Reward 6 1.53·10-5 1.25·10-5 1.54·10-5 5.44·10-6 2.57·10-3 7.74·10-3 1.83·101

Reward 7 4.78·10-6 4.78·10-6 4.79·10-6 -1.20·10-5 2.27·10-3 4.16·10-3 3.24·101

Delta 1.46·10-5 1.06·10-6 1.57·10-5 1.03·10-3 2.71·10-3 1.00·10-2 1.24·103

Nothing 4.96·10-6 4.97·10-6 4.97·10-6 -4.00·10-5 2.23·10-3 4.19·10-3 0.00·100

Table 11.29 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.42·10-4 1.08·10-4 1.42·10-4 1.87·10-4 5.95·10-3 2.00·10-2 8.39·101

Reward 2 1.79·10-4 1.64·10-4 1.80·10-4 1.43·10-4 7.07·10-3 2.04·10-2 5.42·101

Reward 3 1.30·10-4 8.38·10-5 1.31·10-4 5.13·10-4 6.51·10-3 2.05·10-2 2.29·102

Reward 4 9.06·10-4 8.79·10-4 9.07·10-4 2.50·10-4 1.30·10-2 4.73·10-2 5.27·101

Reward 5 1.81·10-5 7.75·10-7 1.84·10-5 3.42·10-4 2.66·10-3 9.71·10-3 2.71·102

Reward 6 7.40·10-6 6.86·10-6 7.41·10-6 1.56·10-5 2.90·10-3 5.05·10-3 8.09·101

Reward 7 1.36·10-5 5.49·10-6 1.36·10-5 7.46·10-5 1.35·10-3 7.45·10-3 2.18·103

Delta 2.65·10-5 1.39·10-6 2.79·10-5 1.12·10-3 3.74·10-3 1.20·10-2 1.17·103

Nothing 1.17·10-5 1.17·10-5 1.17·10-5 -7.86·10-5 2.64·10-3 5.54·10-3 0.00·100
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Table 11.30 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.13·10-3 2.02·10-3 2.13·10-3 7.74·10-5 2.04·10-2 7.98·10-2 6.22·10-1

Reward 2 8.74·10-5 8.64·10-5 8.87·10-5 4.66·10-4 7.91·10-3 1.65·10-2 1.58·102

Reward 3 2.13·10-4 2.10·10-4 3.45·10-4 3.54·10-3 1.72·10-2 2.06·10-2 2.63·104

Reward 4 1.06·10-5 1.05·10-5 1.07·10-5 -6.07·10-5 2.57·10-3 5.74·10-3 2.75·100

Reward 5 1.73·10-5 1.32·10-6 1.75·10-5 2.56·10-4 2.42·10-3 9.59·10-3 4.27·102

Reward 6 9.90·10-6 9.89·10-6 9.93·10-6 -6.06·10-5 2.86·10-3 5.76·10-3 7.75·100

Reward 7 1.19·10-5 1.04·10-5 1.20·10-5 -3.25·10-5 1.80·10-3 6.12·10-3 2.79·100

Delta 2.29·10-5 1.30·10-6 2.42·10-5 1.08·10-3 3.64·10-3 1.17·10-2 1.19·103

Nothing 1.12·10-5 1.13·10-5 1.13·10-5 -7.84·10-5 2.85·10-3 6.03·10-3 0.00·100
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Pre-trained model

Table 11.31 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 3.06·10-8 1.50·10-8 3.24·10-8 4.08·10-5 1.54·10-4 4.31·10-4 9.14·102

Reward 5 4.68·10-8 2.62·10-8 4.90·10-8 4.53·10-5 1.87·10-4 5.12·10-4 1.01·103

Reward 7 1.13·10-7 9.22·10-8 1.15·10-7 4.37·10-5 1.82·10-4 6.35·10-4 7.48·102

Delta 3.80·10-8 3.39·10-9 4.12·10-8 5.55·10-5 1.66·10-4 5.24·10-4 1.28·103

Nothing 8.35·10-6 8.36·10-6 8.36·10-6 -4.07·10-5 1.56·10-3 4.19·10-3 0.00·100

Table 11.32 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 3.54·10-8 2.33·10-8 3.62·10-8 2.66·10-5 1.89·10-4 4.42·10-4 6.10·102

Reward 5 3.17·10-8 9.72·10-9 3.39·10-8 4.41·10-5 1.80·10-4 4.64·10-4 9.85·102

Reward 7 2.95·10-8 1.31·10-8 3.09·10-8 3.61·10-5 2.04·10-4 4.41·10-4 8.71·102

Delta 3.53·10-8 3.29·10-9 3.82·10-8 5.16·10-5 1.46·10-4 5.03·10-4 1.22·103

Nothing 7.74·10-6 7.74·10-6 7.75·10-6 -4.60·10-5 1.84·10-3 4.66·10-3 0.00·100
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Table 11.33 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 6.00·10-8 4.38·10-8 6.16·10-8 3.43·10-5 1.86·10-4 4.76·10-4 6.66·102

Reward 5 2.74·10-8 4.67·10-9 2.94·10-8 4.26·10-5 1.54·10-4 4.22·10-4 1.00·103

Reward 7 4.37·10-8 2.66·10-8 4.47·10-8 3.00·10-5 2.02·10-4 4.76·10-4 7.04·102

Delta 4.25·10-8 2.25·10-9 4.54·10-8 5.11·10-5 1.39·10-4 5.16·10-4 1.22·103

Nothing 5.29·10-6 5.30·10-6 5.30·10-6 -3.59·10-5 2.19·10-3 3.98·10-3 0.00·100

Table 11.34 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.62·10-8 3.12·10-8 4.75·10-8 3.49·10-5 1.73·10-4 4.33·10-4 8.95·102

Reward 5 3.03·10-8 1.12·10-8 3.23·10-8 4.18·10-5 1.93·10-4 4.25·10-4 9.75·102

Reward 7 2.41·10-7 2.31·10-7 2.42·10-7 2.30·10-5 2.22·10-4 7.00·10-4 7.44·102

Delta 3.70·10-8 3.49·10-9 3.98·10-8 5.01·10-5 1.67·10-4 4.84·10-4 1.24·103

Nothing 9.87·10-6 9.90·10-6 9.92·10-6 -6.90·10-5 2.53·10-3 5.33·10-3 0.00·100

Table 11.35 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.21·10-8 2.95·10-8 4.48·10-8 2.56·10-5 1.96·10-4 3.85·10-4 6.07·102

Reward 5 8.92·10-8 4.99·10-8 9.07·10-8 3.64·10-5 2.24·10-4 5.04·10-4 9.84·102

Reward 7 7.21·10-8 3.82·10-8 7.35·10-8 3.32·10-5 2.32·10-4 4.64·10-4 9.08·102

Delta 7.92·10-8 2.87·10-9 8.36·10-8 5.16·10-5 2.40·10-4 5.41·10-4 1.29·103

Nothing 1.15·10-5 1.17·10-5 1.17·10-5 -8.02·10-5 2.77·10-3 5.31·10-3 0.00·100
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Table 11.36 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 8.26·10-6 6.29·10-6 8.31·10-6 1.98·10-4 1.18·10-3 5.44·10-3 1.13·104

Reward 5 1.20·10-5 1.78·10-6 1.29·10-5 8.94·10-4 3.45·10-3 8.46·10-3 1.05·103

Reward 7 1.42·10-5 2.48·10-6 1.45·10-5 3.74·10-4 1.97·10-3 8.97·10-3 1.97·102

Delta 1.77·10-5 1.29·10-6 1.90·10-5 1.04·10-3 3.77·10-3 1.02·10-2 1.25·103

Nothing 7.01·10-6 7.06·10-6 7.05·10-6 -4.76·10-5 1.48·10-3 3.87·10-3 0.00·100

Table 11.37 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 8.30·10-6 3.39·10-6 8.37·10-6 1.57·10-4 2.02·10-3 6.54·10-3 1.63·102

Reward 5 1.29·10-5 1.02·10-6 1.37·10-5 8.84·10-4 2.63·10-3 9.57·10-3 1.04·103

Reward 7 7.32·10-6 1.72·10-6 7.74·10-6 6.18·10-4 2.13·10-3 7.22·10-3 9.00·102

Delta 1.65·10-5 1.11·10-6 1.76·10-5 1.04·10-3 2.96·10-3 1.08·10-2 1.22·103

Nothing 5.13·10-6 5.14·10-6 5.14·10-6 -3.76·10-5 1.91·10-3 4.14·10-3 0.00·100

Table 11.38 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.66·10-6 1.80·10-6 4.70·10-6 1.92·10-4 1.69·10-3 5.26·10-3 7.78·103

Reward 5 1.38·10-5 2.05·10-6 1.46·10-5 8.93·10-4 2.58·10-3 9.68·10-3 8.96·102

Reward 7 7.65·10-6 1.46·10-6 7.79·10-6 3.45·10-4 1.58·10-3 7.08·10-3 4.35·102

Delta 1.76·10-5 1.45·10-6 1.89·10-5 1.07·10-3 2.79·10-3 1.10·10-2 1.18·103

Nothing 7.20·10-6 7.20·10-6 7.21·10-6 -4.83·10-5 2.28·10-3 5.02·10-3 0.00·100

Table 11.39 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.88·10-6 1.77·10-6 6.27·10-6 5.85·10-4 2.08·10-3 6.23·10-3 6.46·102

Reward 5 1.14·10-5 1.20·10-6 1.22·10-5 8.07·10-4 2.28·10-3 8.67·10-3 8.85·102

Reward 7 9.01·10-6 1.79·10-6 9.09·10-6 2.58·10-4 1.09·10-3 7.30·10-3 4.54·102

Delta 1.79·10-5 8.94·10-7 1.91·10-5 1.04·10-3 2.91·10-3 1.08·10-2 1.16·103

Nothing 1.07·10-5 1.07·10-5 1.07·10-5 -5.70·10-5 2.53·10-3 5.25·10-3 0.00·100

Table 11.40 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1 for the pre-trained models.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.54·10-5 1.16·10-5 1.55·10-5 2.50·10-4 1.86·10-3 7.07·10-3 1.42·104

Reward 5 1.22·10-5 1.56·10-6 1.30·10-5 8.23·10-4 3.25·10-3 8.54·10-3 9.47·102

Reward 7 5.26·10-6 2.16·10-6 5.42·10-6 3.87·10-4 2.05·10-3 5.35·10-3 9.95·102

Delta 1.98·10-5 1.11·10-6 2.11·10-5 1.06·10-3 3.44·10-3 1.08·10-2 1.26·103

Nothing 9.39·10-6 9.45·10-6 9.45·10-6 -5.53·10-5 2.85·10-3 5.29·10-3 0.00·100
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11.2 Environment 2 tables

Base reward 1

Table 11.41 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.97·10-8 5.97·10-8 5.97·10-8 2.04·10-6 1.77·10-4 4.20·10-4 4.74·102

Delta 4.47·10-8 4.00·10-8 4.48·10-8 6.41·10-7 1.10·10-4 3.84·10-4 6.02·103

Nothing 4.25·10-8 4.25·10-8 4.25·10-8 1.35·10-6 2.16·10-4 3.45·10-4 0.00·100

Table 11.42 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.96·10-8 2.96·10-8 2.96·10-8 3.53·10-7 3.13·10-4 3.86·10-4 9.83·102

Delta 2.26·10-8 1.78·10-8 2.26·10-8 2.56·10-7 1.04·10-4 3.23·10-4 5.97·103

Nothing 2.59·10-8 2.59·10-8 2.59·10-8 1.34·10-6 2.78·10-4 3.32·10-4 0.00·100
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Table 11.43 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.57·10-8 4.57·10-8 4.57·10-8 1.80·10-6 3.32·10-4 4.23·10-4 8.15·103

Delta 3.31·10-8 2.83·10-8 3.31·10-8 -4.26·10-7 1.28·10-4 3.40·10-4 6.02·103

Nothing 4.41·10-8 4.41·10-8 4.41·10-8 1.35·10-6 3.67·10-4 4.05·10-4 0.00·100

Table 11.44 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 6.24·10-8 6.24·10-8 6.24·10-8 8.76·10-7 5.23·10-4 5.43·10-4 5.56·103

Delta 3.50·10-8 3.03·10-8 3.51·10-8 -2.41·10-6 1.79·10-4 3.99·10-4 5.58·103

Nothing 6.85·10-8 6.85·10-8 6.85·10-8 1.32·10-6 5.37·10-4 5.67·10-4 0.00·100

Table 11.45 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.53·10-7 1.53·10-7 1.53·10-7 4.38·10-7 7.51·10-4 8.68·10-4 5.17·102

Delta 5.26·10-8 4.79·10-8 5.27·10-8 -3.61·10-6 2.13·10-4 4.42·10-4 5.48·103

Nothing 1.17·10-7 1.17·10-7 1.17·10-7 1.33·10-6 6.69·10-4 6.84·10-4 0.00·100

79



Chapter 11. Appendix

Table 11.46 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.88·10-8 2.88·10-8 2.88·10-8 1.09·10-6 1.89·10-4 3.08·10-4 3.04·103

Delta 3.33·10-8 2.80·10-8 3.33·10-8 6.14·10-7 9.37·10-5 3.59·10-4 6.02·103

Nothing 3.15·10-8 3.15·10-8 3.15·10-8 1.36·10-6 2.21·10-4 3.22·10-4 0.00·100

Table 11.47 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 3.02·10-8 3.02·10-8 3.02·10-8 1.00·10-6 3.11·10-4 3.76·10-4 2.59·103

Delta 2.79·10-8 2.26·10-8 2.79·10-8 3.98·10-7 1.06·10-4 3.43·10-4 6.13·103

Nothing 3.19·10-8 3.19·10-8 3.19·10-8 1.34·10-6 2.94·10-4 3.51·10-4 0.00·100

Table 11.48 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.58·10-8 7.58·10-8 7.58·10-8 1.22·10-6 4.87·10-4 5.79·10-4 6.97·102

Delta 4.45·10-8 3.93·10-8 4.45·10-8 -3.37·10-7 1.51·10-4 3.99·10-4 5.87·103

Nothing 5.86·10-8 5.86·10-8 5.86·10-8 1.36·10-6 3.97·10-4 4.62·10-4 0.00·100

Table 11.49 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.77·10-8 5.77·10-8 5.77·10-8 -1.58·10-6 3.90·10-4 4.78·10-4 6.89·103

Delta 3.94·10-8 3.41·10-8 3.94·10-8 -1.13·10-6 1.61·10-4 3.72·10-4 5.90·103

Nothing 6.41·10-8 6.41·10-8 6.41·10-8 1.34·10-6 4.61·10-4 4.81·10-4 0.00·100

Table 11.50 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.82·10-7 1.82·10-7 1.82·10-7 2.45·10-6 7.84·10-4 9.59·10-4 5.12·103

Delta 3.61·10-8 3.09·10-8 3.62·10-8 -2.23·10-6 1.91·10-4 3.76·10-4 5.77·103

Nothing 8.07·10-8 8.07·10-8 8.07·10-8 1.34·10-6 5.73·10-4 5.67·10-4 0.00·100
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Table 11.51 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.45·10-8 4.45·10-8 4.45·10-8 1.36·10-6 2.28·10-4 4.08·10-4 2.44·102

Delta 5.20·10-8 3.29·10-8 5.20·10-8 1.41·10-6 1.98·10-4 5.37·10-4 6.01·103

Nothing 3.24·10-8 3.24·10-8 3.24·10-8 1.36·10-6 2.13·10-4 3.30·10-4 0.00·100

Table 11.52 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 3.38·10-8 3.30·10-8 3.38·10-8 1.30·10-6 3.09·10-4 3.91·10-4 1.29·103

Delta 5.62·10-8 3.70·10-8 5.62·10-8 1.42·10-6 3.06·10-4 5.66·10-4 5.89·103

Nothing 3.67·10-8 3.67·10-8 3.67·10-8 1.35·10-6 3.11·10-4 3.81·10-4 0.00·100

Table 11.53 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.24·10-8 4.14·10-8 4.24·10-8 1.39·10-6 3.68·10-4 4.35·10-4 2.16·103

Delta 6.06·10-8 4.15·10-8 6.06·10-8 1.43·10-6 3.73·10-4 5.93·10-4 5.89·103

Nothing 4.15·10-8 4.15·10-8 4.15·10-8 1.34·10-6 3.77·10-4 4.23·10-4 0.00·100

Table 11.54 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.28·10-8 7.24·10-8 7.28·10-8 1.39·10-6 5.64·10-4 6.01·10-4 1.56·103

Delta 1.03·10-7 8.42·10-8 1.03·10-7 1.42·10-6 5.67·10-4 7.46·10-4 5.61·103

Nothing 8.45·10-8 8.45·10-8 8.45·10-8 1.35·10-6 5.60·10-4 6.04·10-4 0.00·100

Table 11.55 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 9.10·10-8 9.02·10-8 9.10·10-8 1.28·10-6 6.09·10-4 6.52·10-4 3.94·102

Delta 9.99·10-8 8.09·10-8 9.99·10-8 1.44·10-6 6.10·10-4 7.38·10-4 5.66·103

Nothing 8.09·10-8 8.09·10-8 8.09·10-8 1.33·10-6 6.12·10-4 6.03·10-4 0.00·100
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Table 11.56 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.43·10-7 1.43·10-7 1.43·10-7 1.41·10-6 4.78·10-4 7.92·10-4 2.43·106

Delta 3.69·10-8 3.22·10-8 3.69·10-8 5.14·10-7 1.04·10-4 3.73·10-4 5.95·103

Nothing 3.58·10-8 3.58·10-8 3.58·10-8 1.35·10-6 2.19·10-4 3.36·10-4 0.00·100

Table 11.57 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.14·10-7 4.14·10-7 4.14·10-7 -2.05·10-6 6.54·10-4 1.33·10-3 4.06·105

Delta 2.65·10-8 2.17·10-8 2.65·10-8 1.05·10-7 1.14·10-4 3.39·10-4 6.01·103

Nothing 3.00·10-8 3.00·10-8 3.00·10-8 1.34·10-6 2.85·10-4 3.50·10-4 0.00·100
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Table 11.58 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.55·10-8 7.56·10-8 7.56·10-8 1.82·10-6 4.59·10-4 5.34·10-4 2.54·103

Delta 5.03·10-8 4.55·10-8 5.03·10-8 -1.03·10-6 1.58·10-4 4.05·10-4 5.80·103

Nothing 6.54·10-8 6.54·10-8 6.54·10-8 1.33·10-6 4.04·10-4 4.71·10-4 0.00·100

Table 11.59 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.33·10-7 2.33·10-7 2.33·10-7 -2.77·10-7 6.27·10-4 1.06·10-3 3.78·106

Delta 3.22·10-8 2.74·10-8 3.22·10-8 -1.84·10-6 1.76·10-4 3.71·10-4 5.62·103

Nothing 6.31·10-8 6.32·10-8 6.31·10-8 1.33·10-6 5.41·10-4 5.52·10-4 0.00·100

Table 11.60 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.42·10-7 2.42·10-7 2.42·10-7 4.16·10-7 6.85·10-4 1.09·10-3 5.96·106

Delta 3.53·10-8 3.05·10-8 3.53·10-8 -2.43·10-6 1.85·10-4 3.85·10-4 5.65·103

Nothing 8.09·10-8 8.09·10-8 8.09·10-8 1.33·10-6 5.95·10-4 5.99·10-4 0.00·100
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Table 11.61 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 2.48·10-8 2.48·10-8 2.48·10-8 -2.58·10-6 2.19·10-4 3.20·10-4 4.22·103

Delta 2.61·10-8 2.08·10-8 2.61·10-8 9.30·10-7 8.71·10-5 3.38·10-4 6.08·103

Nothing 2.46·10-8 2.46·10-8 2.46·10-8 1.36·10-6 2.15·10-4 2.95·10-4 0.00·100

Table 11.62 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.13·10-8 5.13·10-8 5.13·10-8 -1.34·10-6 3.52·10-4 4.89·10-4 2.65·104

Delta 3.79·10-8 3.26·10-8 3.79·10-8 -1.44·10-7 1.19·10-4 3.85·10-4 5.90·103

Nothing 4.19·10-8 4.19·10-8 4.19·10-8 1.35·10-6 2.98·10-4 3.88·10-4 0.00·100

Table 11.63 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 4.15·10-8 4.14·10-8 4.15·10-8 -2.11·10-6 2.91·10-4 4.71·10-4 1.87·103

Delta 1.80·10-8 1.27·10-8 1.80·10-8 -2.19·10-7 1.28·10-4 3.05·10-4 6.06·103

Nothing 2.64·10-8 2.64·10-8 2.64·10-8 1.36·10-6 3.51·10-4 3.54·10-4 0.00·100

Table 11.64 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.69·10-8 5.69·10-8 5.70·10-8 1.07·10-6 4.76·10-4 5.33·10-4 2.76·104

Delta 3.55·10-8 3.02·10-8 3.55·10-8 -1.38·10-6 1.82·10-4 3.89·10-4 5.77·103

Nothing 6.34·10-8 6.35·10-8 6.34·10-8 1.34·10-6 5.03·10-4 5.20·10-4 0.00·100

Table 11.65 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 7.41·10-8 7.41·10-8 7.41·10-8 -7.50·10-7 5.01·10-4 5.72·10-4 7.20·103

Delta 3.29·10-8 2.76·10-8 3.29·10-8 -1.97·10-6 1.88·10-4 3.68·10-4 5.76·103

Nothing 7.49·10-8 7.49·10-8 7.49·10-8 1.34·10-6 5.68·10-4 5.50·10-4 0.00·100
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Table 11.66 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.89·10-7 1.88·10-7 1.89·10-7 1.11·10-6 2.88·10-4 9.08·10-4 8.29·102

Delta 7.45·10-8 5.54·10-8 7.45·10-8 1.41·10-6 1.93·10-4 5.86·10-4 6.06·103

Nothing 5.45·10-8 5.45·10-8 5.45·10-8 1.35·10-6 2.12·10-4 3.75·10-4 0.00·100

Table 11.67 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 9.76·10-8 9.44·10-8 9.76·10-8 1.68·10-6 4.28·10-4 7.02·10-4 1.20·104

Delta 6.65·10-8 4.74·10-8 6.65·10-8 1.41·10-6 2.86·10-4 5.69·10-4 5.95·103

Nothing 4.71·10-8 4.71·10-8 4.71·10-8 1.36·10-6 2.95·10-4 3.75·10-4 0.00·100

Table 11.68 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 5.41·10-8 5.32·10-8 5.41·10-8 1.22·10-6 3.25·10-4 4.87·10-4 9.86·102

Delta 4.93·10-8 3.01·10-8 4.93·10-8 1.41·10-6 3.24·10-4 5.29·10-4 6.16·103

Nothing 3.04·10-8 3.04·10-8 3.04·10-8 1.36·10-6 3.26·10-4 3.38·10-4 0.00·100

Table 11.69 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 8.48·10-7 8.45·10-7 8.48·10-7 1.29·10-6 2.06·10-3 1.65·10-3 3.72·103

Delta 6.62·10-8 4.71·10-8 6.62·10-8 1.41·10-6 4.68·10-4 6.22·10-4 5.88·103

Nothing 4.73·10-8 4.74·10-8 4.73·10-8 1.36·10-6 4.64·10-4 4.58·10-4 0.00·100

Table 11.70 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 1 1.90·10-7 1.84·10-7 1.90·10-7 1.24·10-6 8.09·10-4 9.90·10-4 3.66·103

Delta 1.29·10-7 1.10·10-7 1.29·10-7 1.46·10-6 7.16·10-4 8.34·10-4 5.39·103

Nothing 1.10·10-7 1.10·10-7 1.10·10-7 1.31·10-6 7.00·10-4 7.11·10-4 0.00·100
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Table 11.71 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 2.41·10-8 2.41·10-8 2.41·10-8 1.64·10-6 2.10·10-4 3.05·10-4 4.06·103

Delta 2.24·10-8 1.76·10-8 2.24·10-8 9.42·10-7 9.44·10-5 3.14·10-4 6.10·103

Nothing 2.09·10-8 2.09·10-8 2.09·10-8 1.36·10-6 2.15·10-4 2.78·10-4 0.00·100

Table 11.72 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 3.85·10-8 3.85·10-8 3.85·10-8 1.09·10-6 3.17·10-4 4.09·10-4 2.20·102

Delta 2.79·10-8 2.31·10-8 2.79·10-8 -1.45·10-7 1.33·10-4 3.47·10-4 5.95·103

Nothing 3.33·10-8 3.33·10-8 3.33·10-8 1.35·10-6 3.17·10-4 3.74·10-4 0.00·100
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Table 11.73 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 3.57·10-8 3.57·10-8 3.57·10-8 3.04·10-7 2.84·10-4 3.96·10-4 4.26·103

Delta 3.00·10-8 2.53·10-8 3.01·10-8 -6.33·10-7 1.36·10-4 3.35·10-4 5.95·103

Nothing 3.95·10-8 3.95·10-8 3.95·10-8 1.35·10-6 3.52·10-4 3.87·10-4 0.00·100

Table 11.74 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.20·10-7 1.20·10-7 1.21·10-7 6.68·10-6 6.85·10-4 6.81·10-4 3.56·103

Delta 2.36·10-8 1.88·10-8 2.36·10-8 -9.29·10-7 1.28·10-4 3.08·10-4 5.93·103

Nothing 4.05·10-8 4.05·10-8 4.05·10-8 1.36·10-6 4.03·10-4 4.02·10-4 0.00·100

Table 11.75 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.36·10-7 1.36·10-7 1.36·10-7 3.13·10-6 7.85·10-4 8.30·10-4 7.00·102

Delta 2.43·10-8 1.95·10-8 2.43·10-8 -2.24·10-6 1.64·10-4 3.26·10-4 5.75·103

Nothing 6.41·10-8 6.41·10-8 6.41·10-8 1.34·10-6 5.50·10-4 5.30·10-4 0.00·100
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Table 11.76 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 3.35·10-8 3.35·10-8 3.35·10-8 1.28·10-6 2.01·10-4 3.47·10-4 3.03·102

Delta 2.76·10-8 2.23·10-8 2.76·10-8 5.99·10-7 9.62·10-5 3.45·10-4 5.95·103

Nothing 2.66·10-8 2.66·10-8 2.66·10-8 1.36·10-6 2.32·10-4 3.09·10-4 0.00·100

Table 11.77 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 3.00·10-8 3.00·10-8 3.00·10-8 6.60·10-7 3.16·10-4 3.72·10-4 2.66·103

Delta 2.65·10-8 2.12·10-8 2.65·10-8 3.10·10-7 1.04·10-4 3.20·10-4 6.08·103

Nothing 2.85·10-8 2.85·10-8 2.85·10-8 1.36·10-6 2.69·10-4 3.13·10-4 0.00·100

Table 11.78 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.52·10-7 1.52·10-7 1.52·10-7 1.24·10-7 4.82·10-4 5.43·10-4 6.95·103

Delta 3.51·10-8 2.98·10-8 3.51·10-8 -4.68·10-7 1.43·10-4 3.61·10-4 5.94·103

Nothing 4.75·10-8 4.75·10-8 4.75·10-8 1.35·10-6 3.85·10-4 4.19·10-4 0.00·100

Table 11.79 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 4.81·10-8 4.81·10-8 4.81·10-8 1.35·10-6 4.08·10-4 4.59·10-4 3.26·102

Delta 2.19·10-8 1.67·10-8 2.19·10-8 -2.51·10-7 1.28·10-4 3.18·10-4 6.04·103

Nothing 3.92·10-8 3.92·10-8 3.92·10-8 1.35·10-6 4.18·10-4 4.13·10-4 0.00·100

Table 11.80 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 7.82·10-8 7.82·10-8 7.82·10-8 -1.20·10-6 4.32·10-4 5.08·10-4 1.22·104

Delta 4.80·10-8 4.28·10-8 4.80·10-8 -2.37·10-6 1.91·10-4 3.96·10-4 5.77·103

Nothing 9.15·10-8 9.15·10-8 9.15·10-8 1.32·10-6 5.49·10-4 5.65·10-4 0.00·100
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Table 11.81 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.48·10-8 5.46·10-8 5.48·10-8 1.33·10-6 1.95·10-4 4.05·10-4 3.07·102

Delta 6.49·10-8 4.58·10-8 6.49·10-8 1.42·10-6 1.89·10-4 5.58·10-4 5.99·103

Nothing 4.49·10-8 4.50·10-8 4.49·10-8 1.34·10-6 2.03·10-4 3.48·10-4 0.00·100

Table 11.82 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 4.81·10-8 4.71·10-8 4.81·10-8 1.30·10-6 3.50·10-4 4.79·10-4 6.73·103

Delta 6.52·10-8 4.61·10-8 6.52·10-8 1.42·10-6 3.08·10-4 5.89·10-4 5.89·103

Nothing 4.61·10-8 4.61·10-8 4.61·10-8 1.34·10-6 3.16·10-4 4.07·10-4 0.00·100

Table 11.83 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.56·10-8 5.53·10-8 5.56·10-8 1.20·10-6 4.43·10-4 5.39·10-4 7.09·103

Delta 6.42·10-8 4.51·10-8 6.42·10-8 1.41·10-6 4.02·10-4 5.98·10-4 5.89·103

Nothing 4.53·10-8 4.53·10-8 4.53·10-8 1.36·10-6 4.00·10-4 4.28·10-4 0.00·100

Table 11.84 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 7.53·10-8 6.45·10-8 7.53·10-8 1.48·10-6 4.50·10-4 6.47·10-4 1.56·104

Delta 7.83·10-8 5.92·10-8 7.83·10-8 1.43·10-6 5.19·10-4 6.71·10-4 5.68·103

Nothing 5.97·10-8 5.97·10-8 5.97·10-8 1.34·10-6 5.05·10-4 5.21·10-4 0.00·100

Table 11.85 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 1.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 9.27·10-8 9.23·10-8 9.27·10-8 1.24·10-6 6.11·10-4 6.73·10-4 2.79·102

Delta 8.75·10-8 6.85·10-8 8.75·10-8 1.42·10-6 5.74·10-4 7.06·10-4 5.72·103

Nothing 6.87·10-8 6.87·10-8 6.87·10-8 1.34·10-6 5.74·10-4 5.61·10-4 0.00·100
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Table 11.86 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.66·10-7 5.66·10-7 5.66·10-7 4.39·10-6 7.35·10-4 1.36·10-3 1.17·105

Delta 2.68·10-8 2.21·10-8 2.68·10-8 7.06·10-7 1.07·10-4 3.36·10-4 6.00·103

Nothing 2.51·10-8 2.51·10-8 2.51·10-8 1.35·10-6 2.18·10-4 3.01·10-4 0.00·100

Table 11.87 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 3.43·10-7 3.43·10-7 3.43·10-7 4.08·10-6 6.33·10-4 1.27·10-3 2.15·105

Delta 3.02·10-8 2.54·10-8 3.02·10-8 1.88·10-7 1.22·10-4 3.33·10-4 5.94·103

Nothing 3.32·10-8 3.32·10-8 3.32·10-8 1.36·10-6 2.84·10-4 3.41·10-4 0.00·100
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Table 11.88 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 9.98·10-8 9.98·10-8 9.98·10-8 2.77·10-6 5.13·10-4 7.01·10-4 3.54·105

Delta 3.55·10-8 3.07·10-8 3.55·10-8 -5.52·10-7 1.37·10-4 3.50·10-4 5.96·103

Nothing 4.70·10-8 4.70·10-8 4.70·10-8 1.35·10-6 3.76·10-4 4.17·10-4 0.00·100

Table 11.89 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 2.51·10-7 2.51·10-7 2.51·10-7 -3.98·10-7 5.77·10-4 1.10·10-3 5.66·104

Delta 3.86·10-8 3.38·10-8 3.86·10-8 -1.19·10-6 1.66·10-4 3.93·10-4 5.77·103

Nothing 6.67·10-8 6.67·10-8 6.67·10-8 1.34·10-6 5.20·10-4 5.43·10-4 0.00·100

Table 11.90 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 4.18·10-7 4.18·10-7 4.18·10-7 4.22·10-6 8.59·10-4 1.47·10-3 1.03·107

Delta 2.43·10-8 1.95·10-8 2.43·10-8 -2.23·10-6 1.71·10-4 3.29·10-4 5.76·103

Nothing 6.48·10-8 6.48·10-8 6.48·10-8 1.34·10-6 5.76·10-4 5.45·10-4 0.00·100
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Table 11.91 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 6.97·10-8 6.97·10-8 6.97·10-8 9.28·10-7 3.03·10-4 5.68·10-4 3.46·103

Delta 3.04·10-8 2.51·10-8 3.04·10-8 7.62·10-7 8.16·10-5 3.30·10-4 6.08·103

Nothing 2.86·10-8 2.86·10-8 2.86·10-8 1.36·10-6 2.12·10-4 2.82·10-4 0.00·100

Table 11.92 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.81·10-8 5.81·10-8 5.81·10-8 -1.74·10-7 3.30·10-4 5.20·10-4 1.87·104

Delta 2.59·10-8 2.07·10-8 2.59·10-8 -5.37·10-8 1.11·10-4 3.28·10-4 6.01·103

Nothing 2.92·10-8 2.92·10-8 2.92·10-8 1.36·10-6 2.89·10-4 3.34·10-4 0.00·100

Table 11.93 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.84·10-8 5.84·10-8 5.84·10-8 9.08·10-7 3.96·10-4 5.38·10-4 9.18·103

Delta 3.51·10-8 2.99·10-8 3.51·10-8 -4.19·10-7 1.39·10-4 3.68·10-4 6.06·103

Nothing 4.59·10-8 4.59·10-8 4.59·10-8 1.34·10-6 3.76·10-4 4.18·10-4 0.00·100

Table 11.94 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.58·10-8 5.58·10-8 5.58·10-8 1.08·10-6 4.06·10-4 5.17·10-4 1.96·104

Delta 2.85·10-8 2.32·10-8 2.85·10-8 -1.48·10-6 1.71·10-4 3.64·10-4 5.83·103

Nothing 5.62·10-8 5.62·10-8 5.62·10-8 1.34·10-6 5.00·10-4 5.06·10-4 0.00·100

Table 11.95 Average performance metrics over 100 realizations with increment correlation
ρ = 1 and trading cost c = 0.05 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.43·10-7 1.43·10-7 1.43·10-7 2.20·10-6 7.29·10-4 8.35·10-4 1.06·103

Delta 3.43·10-8 2.91·10-8 3.44·10-8 -2.25·10-6 2.02·10-4 3.72·10-4 5.62·103

Nothing 7.98·10-8 7.98·10-8 7.98·10-8 1.33·10-6 6.06·10-4 5.81·10-4 0.00·100
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Table 11.96 Average performance metrics over 100 realizations with increment correlation
ρ =−1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 2.09·10-7 2.09·10-7 2.09·10-7 1.32·10-6 5.56·10-4 9.63·10-4 1.89·104

Delta 5.13·10-8 3.22·10-8 5.13·10-8 1.41·10-6 2.04·10-4 5.32·10-4 6.12·103

Nothing 3.28·10-8 3.28·10-8 3.28·10-8 1.36·10-6 2.20·10-4 3.24·10-4 0.00·100

Table 11.97 Average performance metrics over 100 realizations with increment correlation
ρ =−0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 5.59·10-8 5.50·10-8 5.59·10-8 1.33·10-6 3.92·10-4 5.22·10-4 1.68·104

Delta 5.02·10-8 3.10·10-8 5.02·10-8 1.40·10-6 2.75·10-4 5.30·10-4 6.06·103

Nothing 3.13·10-8 3.13·10-8 3.13·10-8 1.36·10-6 2.82·10-4 3.34·10-4 0.00·100

Table 11.98 Average performance metrics over 100 realizations with increment correlation
ρ = 0 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 7.55·10-8 7.49·10-8 7.55·10-8 1.22·10-6 4.06·10-4 6.05·10-4 8.34·103

Delta 5.61·10-8 3.70·10-8 5.61·10-8 1.42·10-6 3.61·10-4 5.67·10-4 6.03·103

Nothing 3.71·10-8 3.71·10-8 3.71·10-8 1.35·10-6 3.64·10-4 3.86·10-4 0.00·100

Table 11.99 Average performance metrics over 100 realizations with increment correlation
ρ = 0.5 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.11·10-7 1.07·10-7 1.11·10-7 1.18·10-6 5.81·10-4 7.60·10-4 6.01·103

Delta 9.73·10-8 7.82·10-8 9.73·10-8 1.44·10-6 5.09·10-4 6.96·10-4 5.75·103

Nothing 7.72·10-8 7.72·10-8 7.72·10-8 1.33·10-6 5.04·10-4 5.38·10-4 0.00·100

Table 11.100 Average performance metrics over 100 realizations with increment correla-
tion ρ = 1 and trading cost c = 1 and deep network architecture.∗ excluding first point.

Variance of Losses Variance of Losses∗ Mean Square Losses Mean Losses Value at Risk Expected Shortfall Turnover

Reward 7 1.44·10-7 1.44·10-7 1.44·10-7 1.56·10-6 7.38·10-4 8.76·10-4 2.05·104

Delta 9.32·10-8 7.41·10-8 9.32·10-8 1.44·10-6 6.04·10-4 7.25·10-4 5.60·103

Nothing 7.43·10-8 7.43·10-8 7.43·10-8 1.32·10-6 5.95·10-4 5.82·10-4 0.00·100
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11.3 Environment 1 figures
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Figure 11.1 Example realization of environment 1 with no correlation.
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Figure 11.2 Example trading strategy on environment 1 by an RL agent trained on reward
1 with no correlation and no trading cost.
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Figure 11.3 Moving average of learning curves for reward functions 1 to 7 from left to
right top to bottom, for the deep model with ρ =−1 and c = 0.
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Figure 11.4 Moving average of learning curves for reward functions 1 to 7 from left to
right top to bottom; for deep model with ρ = 0 and c = 0.
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Figure 11.5 Moving average of learning curves for reward functions 1 to 7 from left to
right top to bottom, for the deep model with ρ = 0 and c = 0.05.
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Figure 11.6 Moving average of learning curves for reward functions 1,5, and 7 respectively
from left to right, for the pretrained model with ρ = 0.5 and c = 0.05.
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Figure 11.7 Example realization of environment 2 with no correlation.
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Figure 11.8 Example realization and hedging of environment 2 with -0.5 correlation and
trading cost 100 percent trained with the base architecture and reward function 1.
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Figure 11.9 Example realization and hedging of environment 2 with -0.5 correlation and
trading cost 100 percent trained with the base architecture and reward function 1.
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Figure 11.10 Moving average of learning curves for reward function 1 with correlations
going through {−1,−0.5,0,0.5,1} from left to right top to bottom, for environment 2 with
trading cost c = 0.
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Figure 11.11 Moving average of learning curves for reward function 1 with correlations
going through {−1,−0.5,0,0.5,1} from left to right top to bottom, for environment 2 with
trading cost c = 1.

103



Bibliography

Ahlberg, J. (2013). Credit value adjustment. Master’s Thesis. Lund, Sweden.
Bank for International Settlements (2020). “Targeted revisions to the credit valua-

tion adjustment risk framework”.
Bank for International Settlements (2023). Otc derivatives statistics at end-june

2023. Accessed: 2024-05-14. URL: https://www.bis.org/publ/otc_
hy2311.htm.

Basel III: International Regulatory Framework for Banks (2021). Accessed: 2024-
05-14. URL: https://www.bis.org/bcbs/basel3.htm.

Berns, C. (2014). Cva risk charge and p&l volatility trade-off: proposal of a unified
steering. Available at SSRN: https://ssrn.com/abstract=2477164 or
http://dx.doi.org/10.2139/ssrn.2477164.

Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Athena Sci-
entific. ISBN: 9781886529397.

Bertsekas, D. P. (2023). A Course in Reinforcement Learning. Athena Scientific.
ISBN: 9781886529496.

Björk, T. (2019). Arbitrage Theory in Continuous Time. Oxford University Press.
ISBN: 9780198851615. DOI: 10.1093/oso/9780198851615.001.0001.
URL: https://doi.org/10.1093/oso/9780198851615.001.0001.

Bomfim, A. N. (2022). “Credit default swaps”. Finance and Economics Discussion
Series. DOI: https://doi.org/10.17016/FEDS.2022.023.

Brigo, D., M. Morini, and A. Pallavicini (2013). Counterparty Credit Risk, Collat-
eral and Funding: With Pricing Cases for All Asset Classes. John Wiley & Sons
Inc. ISBN: 9780470748466.

Buehler, H., L. Gonon, J. Teichmann, and B. Wood (2018). “Deep hedging”. arXiv.
DOI: 10.48550/arXiv.1802.03042. URL: https://doi.org/10.48550/
arXiv.1802.03042.

104

https://www.bis.org/publ/otc_hy2311.htm
https://www.bis.org/publ/otc_hy2311.htm
https://www.bis.org/bcbs/basel3.htm
https://ssrn.com/abstract=2477164
http://dx.doi.org/10.2139/ssrn .2477164
https://doi.org/10.1093/oso/9780198851615.001.0001
https://doi.org/10.1093/oso/9780198851615.001.0001
https://doi.org/https://doi.org/10.17016/FEDS.2022.023
https://doi.org/10.48550/arXiv.1802.03042
https://doi.org/10.48550/arXiv.1802.03042
https://doi.org/10.48550/arXiv.1802.03042


Bibliography

Buehler, K., D. Chiarella, H. Heidegger, M. Lemerle, A. Lal, and J. Moon (2015).
“The fundamental review of the trading book: implications and actions for
banks”. McKinsey Working Papers on Corporate & Investment Banking | No.
11.

Cao, J., J. Chen, J. Hull, and Z. Poulos (2021). “Deep hedging of derivatives using
reinforcement learning”. The Journal of Financial Data Science 3. DOI: 10.
3905/jfds.2020.1.052. URL: https://doi.org/10.3905/jfds.2020.
1.052.

Chicot, H. (2019). “Measuring cross-gamma risk”. SSRN. DOI: 10.2139/ssrn.
3502251. URL: http://dx.doi.org/10.2139/ssrn.3502251.

Daluiso, R., M. Pinciroli, M. Trapletti, and E. Vittori (2023). “Cva hedging by risk-
averse stochastic-horizon reinforcement learning”. ICAIF.

Davis, M. H., V. G. Panas, and T. Zariphopoulou (1993). “European option pricing
with transaction costs”. SIAM Journal on Control and Optimization, pp. 470–
493.

Dhariwal, P., C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schul-
man, S. Sidor, Y. Wu, and P. Zhokhov (2017). Openai baselines. https://
github.com/openai/baselines.

Du, J., M. Jin, P. Kolm, G. Ritter, Y. Wang, and B. Zhang (2020). “Deep reinforce-
ment learning for option replication and hedging”. The Journal of Financial
Data Science 2, pp. 44–57. DOI: 10.3905/jfds.2020.1.045.

Esipov, S. and I. Vaysburd (1999). On the Profit and Loss Distribution of Dynamic
Hedging Strategies. Tech. rep. 9899-03. Available at SSRN: https://ssrn.
com/abstract=145172 or http://dx.doi.org/10.2139/ssrn.145172.
Discussion Paper Series.

Gregory, J. (2010). Counterparty Credit Risk - The New Challenge for Global Fi-
nancial Markets. 1st. John Wiley & Sons Ltd.

Gregory, J. (2012). Counterparty Credit Risk and Credit Value Adjustment: A Con-
tinuing Challenge for Global Financial Markets. John Wiley & Sons Inc. ISBN:
9780470748466.

Heckinger, R., I. Ruffini, and K. Wells (2014). “Understanding deriva-
tives—markets and infrastructure: over-the-counter (otc) derivatives”. Federal
Reserve Bank of Chicago.

Hill, A., A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu (2018). Stable baselines. https://github.com/hill-a/stable-
baselines.

Hugging Face (n.d.). Exploration vs exploitation tradeoff. Accessed: 2024-05-23.
URL: https://huggingface.co/learn/deep-rl-course/en/unit1/
exp-exp-tradeoff.

105

https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.2139/ssrn.3502251
https://doi.org/10.2139/ssrn.3502251
http://dx.doi.org/10.2139/ssrn.3502251
https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.3905/jfds.2020.1.045
https://ssrn.com/abstract=145172
https://ssrn.com/abstract=145172
http://dx.doi.org/10.2139/ssrn.145172
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://huggingface.co/learn/deep-rl-course/en/unit1/exp-exp-tradeoff
https://huggingface.co/learn/deep-rl-course/en/unit1/exp-exp-tradeoff


Bibliography

Hull, J. and A. White (2012). “Cva and wrong-way risk”. Financial Analysts Jour-
nal.

Hull, J. C. (2018). Options, Futures, and Other Derivatives. 10th. Pearson.
Hull, J. C. and A. White (2017). “Optimal delta hedging for options”. SSRN. DOI:

10.2139/ssrn.2658343. URL: https://dx.doi.org/10.2139/ssrn.
2658343.

Kolm, P. N. and G. Ritter (2019). “Dynamic replication and hedging: a reinforce-
ment learning approach”. The Journal of Financial Data Science, pp. 159–171.
DOI: 10.3905/jfds.2020.1.045.

Moreau, L., J. Muhle-Karbe, and H. M. Soner (2017). “Trading with small price
impact”. Mathematical Finance, pp. 350–400.

Muhle-Karbe, J., M. Reppen, and H. M. Soner (2017). “A primer on portfolio choice
with small transaction costs”. Annual Review of Financial Economics, pp. 301–
331.

Oosterlinck, K. (2017). “History of forward contracts (historical evidence for for-
ward contracts)”. In: The New Palgrave Dictionary of Economics. Palgrave
Macmillan UK, London, pp. 1–3. ISBN: 978-1-349-95121-5. DOI: 10.1057/
978-1-349-95121-5_2974-1. URL: https://doi.org/10.1057/978-1-
349-95121-5_2974-1.

Pandit, A. (2023). “Navigating the challenges and nuances of hedging in sa-
cva”. S&P Global, Market Intelligence. URL: https : / / www . spglobal .
com/marketintelligence/en/mi/research-analysis/challenges-
hedging-in-sacva.html.

Raffin, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann
(2021a). “Stable-baselines3: reliable reinforcement learning implementations”.
Journal of Machine Learning Research 22:268, pp. 1–8. URL: http://jmlr.
org/papers/v22/20-1364.html.

Raffin, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann
(2021b). “Stable-baselines3: reliable reinforcement learning implementations”.
Journal of Machine Learning Research 22:268, pp. 1–8. URL: http://jmlr.
org/papers/v22/20-1364.html.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). “Proximal
policy optimization algorithms”. arXiv: 1707.06347 [cs.LG].

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction.
MIT Press. ISBN: 9780262039246.

Tarbert, H. P. (2020). “The enduring legacy of the dodd-frank act’s derivatives re-
forms”. Journal of Financial Regulation 6:2, pp. 159–171. DOI: 10.1093/jfr/
fjaa011. URL: https://doi.org/10.1093/jfr/fjaa011.

Zhu, S. H. and M. Pykhtin (2007). “A guide to modeling counterparty credit risk”.
SSRN, p. 7.

106

https://doi.org/10.2139/ssrn.2658343
https://dx.doi.org/10.2139/ssrn.2658343
https://dx.doi.org/10.2139/ssrn.2658343
https://doi.org/10.3905/jfds.2020.1.045
https://doi.org/10.1057/978-1-349-95121-5_2974-1
https://doi.org/10.1057/978-1-349-95121-5_2974-1
https://doi.org/10.1057/978-1-349-95121-5_2974-1
https://doi.org/10.1057/978-1-349-95121-5_2974-1
https://www.spglobal.com/marketintelligence/en/mi/research-analysis/challenges-hedging-in-sacva.html
https://www.spglobal.com/marketintelligence/en/mi/research-analysis/challenges-hedging-in-sacva.html
https://www.spglobal.com/marketintelligence/en/mi/research-analysis/challenges-hedging-in-sacva.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1707.06347
https://doi.org/10.1093/jfr/fjaa011
https://doi.org/10.1093/jfr/fjaa011
https://doi.org/10.1093/jfr/fjaa011


Lund University 
Department of Automatic Control 
Box 118 
SE-221 00 Lund Sweden 

Document name 
MASTER’S THESIS 
Date of issue 
June 2024 
Document Number 
TFRT-6253 

Author(s) 

Oscar Gummesson Atroshi 
Osman Sibai 

Supervisor 
Shengyao Zhu, Nordea Markets, Lund University, 
Sweden 
Manu Upadhyaya, Dept. of Automatic Control, Lund 
University 
Magnus Wiktorsson, Centre for mathematical 
sciences, Lund University 
Johan Eker, Dept. of Automatic Control, Lund 
University, Sweden (examiner) 
 

Title and subtitle 

Deep hedging of CVA 
Abstract 
 
Large financial institutions are vulnerable to numerous financial risks, necessitating robust regulatory 
frameworks to prevent crises such as those experienced in 2008. The Basel framework, devised by 
the Basel Committee on Banking Supervision, incorporates critical measures such as the credit 
valuation adjustment (CVA) to mitigate these risks. CVA fluctuates significantly based on market 
factors and counterparty conditions, these fluctuations need to be handled, and this is done through 
hedging. Hedging CVA is challenging due to its sensitivity to dynamic market conditions and the 
complexity of underlying assets, compounded by factors such as cross-gamma and wrong-way risk, 
which add significant complexity to effective risk management. This study explores the use of deep 
hedging, employing reinforcement learning to devise robust hedging strategies that navigate the 
complexities often associated with traditional analytic models. Through experimental simulations, 
this research compares the efficacy of traditional delta hedging with that of a reinforcement learning-
based strategy, providing insights into their respective performances. The study evaluates two 
different market models, with the RL strategies showing promising results, particularly in the less 
complex model, highlighting the challenges of addressing high-dimensional problems. The findings 
establish a foundation for further research and demonstrate the potential of reinforcement learning 
in enhancing CVA hedging strategies. 

Keywords 
 

Classification system and/or index terms (if any) 
 
Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
English 

Number of pages 
1-106 

Recipient’s notes 

Security classification 

http://www.control.lth.se/publications/ 


	Title Page
	Contents
	Introduction
	Background and motivation
	Objectives
	Significance
	Scope and methodology
	Related work
	Outline
	Individual Contributions
	Implementation code

	Financial instruments and implications
	Financial derivatives
	Counterparty credit risk
	Managing credit risk
	Basel III

	Hedging
	Hedging
	Hedging as a stochastic optimal control problem

	Stochastic modeling
	Wiener process
	Jump process
	Geometric Brownian motion
	Hull–White model
	Merton jump-diffusion model
	Cox–Ingersoll–Ross++ jump-model

	Credit risk
	Credit valuation adjustment
	Simple CVA model (market environment 1)
	IRS CVA model (market environment 2)

	Hedging CVA
	Profits and losses
	Benchmarks
	Performance metrics
	P&L in environment 1
	P&L in environment 2
	Remark on P&L, hedging, and frictions

	Reinforcement learning
	Reinforcement learning
	Model setup

	Numerical simulations and results
	Market parameters
	Results

	Discussion
	Overall performance
	Environment 1
	Environment 2
	Neural network architecture
	Pre-trained models
	Reward functions
	Correlation
	Transaction costs
	Convergence

	Conclusions
	Conclusions
	Future work

	Appendix
	Environment 1 tables
	Environment 2 tables
	Environment 1 figures
	Environment 2 figures

	Bibliography



