

Department of Automatic Control

Detection and Tracking
of Soil Protists using Deep Learning

Jingmo Bai

Zuoyi Yu

MSc Thesis
TFRT-6239
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 Jingmo Bai & Zuoyi Yu. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2024

Abstract

Plastic residues can fragment into nanoplastics and bring various pollutants to the
soil, which results in a massive environmental risk that is endangering entire ecosys-
tems. Soil protists, as a vital part of microbial food webs and carbon cycles, are also
considered to be strongly affected by the presence of nanoplastics. Until now, many
studies have found that plastic residues can have either positive or negative effects
on different elements of ecosystems. However, no research has been conducted to
quantify the impact of plastic on soil protists due to a lack of tools for visualizing
and studying these microorganisms. Therefore, we try to use a deep learning-based
object detection model, You Only Look Once (YOLO), to track and record the speed
and trace of the protists in the soil chips.

In this work, YOLOv8 model is used to detect and classify 9 classes of protists
in the videos acquired from the soil chips. To achieve better performance, several
model improvement methods are tested. Generative Adversarial Networks (GANs)
are also applied to generate synthetic images to solve the lack of data. Then we
record the speed and trace and compare them among different treatment conditions
to analyze the effects of nanoplastics on the protists. In conclusion, we demonstrate
the feasibility of leveraging the power of AI and deep learning to help scientific
research. We also conclude that high-concentration nanoplastics will cause the pro-
tists to move slower than usual, different protists have disparate moving patterns.

3

Acknowledgements

We would like to thank our supervisors, Bo Bernhardsson, Edith Hammer and
Hangbang Zou for their constant support and constructive guidance throughout the
thesis project. We thank Paola Micaela Mafla Endara for sharing the data collected
in her PhD dissertation.

The computations were enabled by resources provided by the National Aca-
demic Infrastructure for Supercomputing in Sweden (NAISS), partially funded by
the Swedish Research Council through grant agreement no. 2022-06725.

We would like to express our deepest gratitude to our parents, for all the un-
conditional love and support not only during this thesis, but throughout the entire
education journey. None of this would be possible without you.

5

Contents

1. Introduction 9
1.1 Background . 9
1.2 Aim and Scope . 14
1.3 Outline of the Thesis . 14

2. Theory 15
2.1 Data Pre-processing . 15
2.2 Generative Adversarial Networks 15
2.3 Object Detection . 18
2.4 Model Improvements . 22
2.5 Evaluation Metrics . 27

3. Data 29
3.1 Original Data . 29
3.2 Labelled Data . 29
3.3 Dataset Analysis . 31

4. Methods 34
4.1 Data Pre-processing . 34
4.2 Generate Synthetic Data . 34
4.3 Model Training . 36
4.4 Camera Motion Compensation 38

5. Results and Discussion 41
5.1 Model Performance . 41
5.2 Data Analysis . 48
5.3 Discussion . 58

6. Conclusion and Future Directions 61
6.1 Research Aims . 61
6.2 Future Directions . 61

Bibliography 63
A. YOLO Model Architectures with Different Scales 67

7

1
Introduction

1.1 Background

Plastic Pollution in Soil
Plastic pollution has become a significant global environmental issue due to the
extensive use of plastic materials in daily life combined with insufficient waste
management around the world. The accumulation of plastic waste in the environ-
ment, including water bodies and soil poses significant threats to ecosystems, human
health and the well-being of our planet.

Plastics are synthetic polymers mostly made from fossil fuel-based chemicals
like natural gas or petroleum. They are versatile, durable, lightweight, and inex-
pensive to produce, leading to their widespread applications in various industries.
However, these same properties also make them resistant to many natural processes
of degradation, resulting in their persistence in the environment.

An estimated 9.2 billion tonnes of plastic were produced between 1950 and
2017, more than half of which has been produced since 2004. If global trends on
plastic demand continue, it is estimated that by 2050 annual global plastic produc-
tion will exceed 1.1 billion tonnes[Wikipedia contributors, 2024b].

The management of plastic waste is country-specific and normally insufficient
around the world. Much of this waste ends up in landfills or improperly disposed
of in the environment, where it breaks down into smaller fragments and may take
centuries to decompose.

Soil Protists
Soil is the habitat of countless microorganisms. As plastic residues reside in the soil,
a thorough understanding of their interactions with soil microorganisms may have
a substantial ecological impact and has emerged as a critical study area, since these
soil microorganisms play a vital role in global carbon cycling.

Protists include all eukaryotes except animals, land plants (Embryophyta) and
arguably Fungi [Geisen et al., 2018a], and have been discovered in recent decades
through environmental DNA research. They are consumers of bacteria, fungi, and

9

Chapter 1. Introduction

other tiny eukaryotes, and play important roles in microbial food webs and carbon
cycles. They can even survive and disperse under extreme environments such as
low or high pH, temperature, or salt stress [Wu et al., 2022]. Protists control popu-
lations and sculpt communities as parasites of larger protists as well as plants and
animals. Plant development is enhanced by the release of nutrients from predatory
soil protists. What’s more, The study of soil protists is crucial to our comprehension
of microbial biogeography and eukaryotic evolution[Geisen et al., 2018b].

However, despite their importance in soil ecosystems, protists remain the least
explored microorganisms in soil ecosystems due to their massive diversity and tech-
nique challenges. Unlike bacteria or fungi, protists are difficult to culture for study
in the laboratory, and many cannot be cultured at all. Their tiny size (< 30µm long)
and some intricate structures also require specialized techniques for study.

Figure 1.1 The examples of all classes of soil protists we need to classify in this work.

10

1.1 Background

Microfluidic Chips
Traditional laboratory-based approaches to analyse the soil microbes community
include growth-based approach, respiration-based approach, biomass-based ap-
proach, enzyme-based approach and stoichiometry-based approach. However, none
of them provides the possibility to monitor the soil microbes and study their be-
haviour directly and visually in real-time. They are also incapable of simulating the
natural soil environment at the micro-scale in the laboratory. The emerging applica-
tion of Lab-on-a-Chip or microfluidic technologies provides precise spatiotemporal
control over the microenvironments of soil organisms in combination with high-
resolution imaging[Stanley et al., 2016].

Figure 1.2 A microfluidic chip with soil samples.

Soil microfluidic chips are two-dimensional transparent microchips used to an-
alyze soil samples at a microscale level in the laboratory, as shown in Figure 1.2.
These chips allow researchers to study soil properties, microorganisms, nutrients,
contaminants and their interactions in a controlled laboratory environment, provid-
ing unprecedented advantages over traditional approaches and novel biological and
ecological insights.

With the help of microfluidic chips, we can build artificial microhabitats where
microorganisms live, allowing us to monitor and track them in real-time with the
help of a Nikon Ti2-E inverted light microscope and a Nikon Qi2 camera, as shown
in Figure 1.3. This method provides a way to investigate their interactions with
nanoplastics. We can collect hundreds or even thousands of images or videos of the

11

Chapter 1. Introduction

protists’ community from the soil microfluidic chips with minimal effort, offering
the possibility of systematic analysis.

Figure 1.3 The Nikon Ti2-E inverted light microscope setup in the lab.

However, numerous data also become a heavy burden to researchers. Not to
mention it is almost impossible for researchers to manually localize all the mi-
crobes and record their behavior like moving speed precisely. Therefore we need
automatic tools to monitor and analyse microorganism community behaviour on
the soil chips. That is why we need to build deep learning models in this thesis.
With the development of deep learning techniques, we can train object detection
models to localize, classify and track the interested protists, record their location
and move trace at the same time. Those data can be very helpful for the analysis of
the protists community.

Object Detection
Object detection is a computer vision task that involves identifying and locating vi-
sual objects within images or videos. Unlike image classification which only classi-
fies the entire scene, object detection also determines their precise locations. These
locations are typically presented by drawing rectangular boxes with labels, called
bounding boxes, around the detected objects.

There exists a variety of object detection methods, which can be categorized
into traditional methods and deep learning-based methods.

12

1.1 Background

Traditional methods. Traditional object detection methods are built on region se-
lection, feature extraction, and classification [Zhao et al., 2019].

A typical region selection method is sliding windows, which involves moving a
window across the image and applying a classifier to each sub-region. This method
is computationally expensive and inefficient.

A common handcrafted feature descriptor is histograms of oriented gradients
(HOG) [Dalal and Triggs, 2005]. To detect objects of different sizes, the HOG de-
tector rescales the input image multiple times while keeping the size of a detection
window unchanged. Although it can be considered a great improvement as a fea-
ture descriptor and has been an important foundation of many object detectors and
computer vision applications for many years, it is still difficult to manually design
a robust feature descriptor that applies to all kinds of tasks and objects.

Deep learning-based methods. In the recent decade, the rapid development
of deep learning techniques, especially Convolutional Neural Networks (CNN)
[Krizhevsky et al., 2012], has shown remarkable possibilities across various do-
mains. Their ability to learn complicated features from vast amounts of data has led
to breakthroughs in the field of computer vision.

Deep learning-based methods can be further categorized into two-stage meth-
ods and one-stage methods. Two-stage methods generate region proposals first and
then classify each proposal into different object categories. Some typical two-stage
methods include R-CNN [Girshick et al., 2014], Fast R-CNN [Girshick, 2015],
Faster R-CNN [Ren et al., 2015], and Mask R-CNN [He et al., 2017]. One-stage
methods regard object detection as a regression or classification problem, mapping
from image pixels to categories and locations directly in a single step. Some typical
one-stage methods include You Only Look Once (YOLO) [Redmon et al., 2016],
Single-Shot Multibox Detector (SSD) [Liu et al., 2016], and DETR [Carion et al.,
2020a].

Generative Adversarial Networks (GAN)
The amount of data on some classes of protists is very insufficient. For some classes,
we barely have dozens of samples. This will still be insufficient even after imple-
menting traditional data augmentation methods. Therefore, we decided to use Gen-
erative Adversarial Networks (GANs)[Goodfellow et al., 2014] to generate more
synthetic data.

GANs are a class of generative models that typically contain two neural net-
works: the generator and the discriminator. These networks are trained simultane-
ously and compete against each other by playing a mini-max two-player game based
on game theory.

The generator network is trained to capture the real data distribution and gener-
ate fake samples by passing random Gaussian noise through a neural network. The
discriminator network is trained to estimate the probability that a sample is real or
fake to distinguish real samples and fake samples. They are trained simultaneously

13

Chapter 1. Introduction

using a value function: one tries to maximize it while the other tries to minimize it.
During training, the generator distribution will get closer and closer to the real data
distribution, becoming capable of generating more realistic samples. In theory, with
enough network capacity and training, both networks can reach a local Nash equi-
librium where neither can improve because the distributions are equal. At this point,
the generator can produce very realistic samples useful for data augmentation.

1.2 Aim and Scope

We aim to leverage the power of AI and Deep Learning techniques to help inves-
tigate the interactions between plastic residues and protists. We build a model to
detect and track different species of protists, then record the data and analyze their
behaviour and properties under various treatment conditions. Hopefully, we can un-
cover interactions between nanoplastics and protists.

This thesis project is in a proof of concept phase, which means that we build
and test experimental models to demonstrate the feasibility of utilizing the power
of AI and deep learning to help scientific research. Data are available for only a
few species of protists and the amount is quite limited for a deep learning approach.
Therefore, we will not be able to build a perfect model in this thesis project, espe-
cially given the limited data. In the future, the goal is to deploy a well-performing
and generalized model to the microscopes in the department laboratory to enhance
the efficiency of scientific research.

1.3 Outline of the Thesis

The rest of this thesis is organized as follows. In Section 2, we introduce the relevant
theory concerning generative adversarial networks and object detection methods.
Section 3 introduces our dataset, data selection, and data augmentation methods.
In Section 4, we detail our workflow, including data pre-processing, synthetic data
generation and object detection model training. In Section 5, we present our results
and discussion on model comparison and analysis of interactions between nanoplas-
tics and protists. In Section 6, we conclude this thesis and outline future research
directions.

14

2
Theory

2.1 Data Pre-processing

Data pre-processing includes every process concerning manipulating data before us-
ing them to train the model. It should include clipping images from videos, grayscal-
ing, resizing the images to the same size, and data augmentation. The main visual
features that distinguish different protists from static microscopic images are their
shape and contrast instead of colour. In this case, colour is redundant information,
so we perform grayscaling on all the data to decrease computation complexity.

Due to the lack of data, we perform many traditional data augmentation meth-
ods, including rotation, flipping, cropping, translation, blurring and adding noise.

However, even after performing traditional data augmentation methods, the
amount of data on some classes of protists is still very insufficient. For some of
the classes like flagellate and ciliate, we have only less than one hundred samples.
We therefore decided to use generative models to generate more synthetic data to
help train the model.

2.2 Generative Adversarial Networks

GANs are a class of generative models which typically contain two neural networks,
the generator and the discriminator. They are trained simultaneously and compete
against each other by playing a mini-max two-player game based on game theory.

Vanilla GAN
The vanilla GAN was first introduced by Goodfellow et al. in 2014 [Goodfellow et
al., 2014]. It is an adversarial process that simultaneously trains two models based
on game theory. This framework corresponds to a minimax two-player game. A gen-
erator G captures the real data distribution and a discriminator D estimates the prob-
ability that a sample is real or fake. The generator generates fake samples by passing
Gaussian random noise through a multilayer perceptron. The discriminator is also a

15

Chapter 2. Theory

multilayer perceptron. They can be trained simultaneously using back-propagation
and dropout algorithm [Hinton et al., 2012] with a value function V (G,D):

min
G

max
D

Ex∼Pr [logD(x)]+Ex̃∼Pg [log(1−D(x̃)] (2.1)

where Pr is the real data distribution and Pg is the generator distribution, x̃ = G(z).
Minimizing this value function amounts to minimizing the Jensen-Shannon diver-
gence between Pr and Pg [Goodfellow et al., 2014].

We train D to maximize the probability of correctly classifying both the real
samples and fake samples from G. We simultaneously train G to minimize the prob-
ability of the generated samples being correctly classified by D.

Theoretically, if G and D have enough capacity, they will reach a point at which
both cannot improve because the distributions are equal, which means finding a
local Nash equilibrium.

However, in practice, it is difficult to get both models to converge, because this
value function may not provide sufficient gradient for G to learn. It is usual that early
in training, when G is poor, D can easily reject fake samples with high confidence
because they are just random noises at the beginning. In this case, log(1−D(G(z)))
saturates. The discriminator loss converges quickly to zero, D’s gradient vanishes,
and G stops updating, it’s called the vanishing gradient. The GAN-based models are
known for their difficulties in training [Goodfellow et al., 2020]. In practice, training
usually ends up with non-convergence, and the generated images suffer from being
noisy and incomprehensible.

Deep Convolutional GAN (DCGAN)
Deep Convolutional GAN (DCGAN) [Radford et al., 2016] is a class of architec-
tures that scale GANs using CNN architectures which is commonly used in super-
vised learning. The original paper claimed that this class of architectures resulted in
stable training across a range of datasets and allowed for training higher resolution
and deeper generative models, by adopting and modifying some changes to CNN
architectures.

The first is the all convolutional net [Springenberg et al., 2014] which replaces
any pooling layers with convolutions (discriminator) and transposed convolutions
(generator). The second is to use Batch Normalization [Ioffe and Szegedy, 2015]
in both generator and discriminator which stabilizes learning by normalizing the
input to each unit to have zero mean and unit variance. The third is to remove fully
connected hidden layers for deeper architectures.

Compared to vanilla GAN, DCGAN uses convolutional networks instead of
multilayer perceptron which allows it to be capable of generating high-resolution
images. The network structure is mostly from the all-convolutional net. This archi-
tecture contains no pooling layers. When the generator needs to increase the spatial
dimension, it uses transposed convolution with a stride greater than 1. DCGAN also

16

2.2 Generative Adversarial Networks

Figure 2.1 An illustration of the DCGAN generator architecture. A series of four trans-
posed convolutions convert high-level representation into a 64 × 64 image. No fully con-
nected layers are used. Figure from [Radford et al., 2016].

use the Adam optimizer [Kingma and Ba, 2014] rather than Stochastic Gradient De-
scent (SGD) with momentum, which makes training more stable. However, it uses
the same value function so it does not address the training difficulties. In practice, it
is still common to get non-convergence during training.

Wasserstein GAN (WGAN)
Wasserstein GAN was introduced as an alternative to traditional GAN training, it
can improve the stability when training GANs, and get rid of problems like mode
collapse[Arjovsky et al., 2017]. The original paper showed that the divergences
which GANs typically minimize are potentially not continuous with respect to the
generator’s parameters, leading to training difficulty. It proposed an alternative value
function derived from an approximation of the Wasserstein-1 distance W (q, p),
which is informally defined as the minimum cost of transporting mass in order to
transform the distribution q into the distribution p (where the cost is mass times
transport distance). Under mild assumptions, W (q, p) is continuous everywhere and
differentiable almost everywhere. The WGAN value function is constructed using
the Kantorovich-Rubinstein duality to obtain

min
G

max
D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)] (2.2)

In that case, under an optimal discriminator, minimizing the value function with
respect to the generator parameters minimizes W (Pr,Pg) [Gulrajani et al., 2017].
Compared to the original GAN value function, this value function is more likely to
provide stable gradients that are useful for updating the generator.

To enforce a Lipschitz constraint on the discriminator, WGAN proposed to clip
the weights of the discriminator. However, as the original paper stated, weight clip-
ping is clearly a terrible way to enforce a Lipschitz constraint. If the clipping pa-
rameter is large, it will take a long time for any weights to reach optimality. This can

17

Chapter 2. Theory

reduce the capacity of the discriminator model, making it learn simpler functions.
If the clipping parameter is small, this can easily lead to vanishing gradients when
the number of layers is big [Arjovsky et al., 2017]. However, they stuck with weight
clipping due to its simplicity, leaving this topic of enforcing Lipschitz constraints in
neural networks for further investigation and potential improvement.

In practice, WGAN still generates poor samples or fails to converge. Without
careful tuning of the clipping threshold c, either vanishing or exploding gradients
could happen because of interactions between the weight constraint and the cost
function.

WGAN Gradient Penalty (WGAN-GP)
The WGAN made progress toward stable GAN training, but can sometimes still
generate poor samples or fail to converge. These problems are often due to weight
clipping to enforce a Lipschitz constraint on the discriminator. The WGAN gradient
penalty proposed an improved method for training the discriminator, by directly
constraining the gradient norm of the discriminator’s output with respect to its input.
They enforce a soft version of the constraint with a penalty on the gradient norm for
random samples x̂ [Gulrajani et al., 2017]. The modified value function adds a term
to penalize the gradient:

min
G

max
D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)]+λEx̂∼Px̂ [(∥∇x̂D(x̂)∥2 −1)2] (2.3)

The sampling distribution Px̂ is defined as sampling uniformly along straight
lines between pairs of points sampled from the data distribution Pr and the generator
distribution Pg.

The WGAN-GP is designed to be easier to train, using a different formulation
of the training objective which does not suffer from the training difficulties. The
WGAN-GP may also be trained successfully even without batch normalisation; it
is also less sensitive to the choice of non-linearities used between convolutional
layers.

According to the experiments in [Gulrajani et al., 2017], WGAN-GP shows
strong modelling performance and stability across a variety of architectures even
without careful hyperparameter tuning. It significantly outperforms weight clipping
with improved performance, training speed and sample quality.

2.3 Object Detection

Object detection is a computer vision approach for locating and recognizing items
in images or videos. Different from image classification, which categorizes com-
plete images, object detection methods identify objects using exact bounding boxes
around them to indicate their positions within the image. Deep learning models,

18

2.3 Object Detection

such as convolutional neural networks (CNNs), are commonly used in object detec-
tion algorithms and are commonly divided into two categories: one-step and two-
step models. The biggest difference between these two models is that the one-step
model converts the input image into a grid and predicts bounding boxes and class
probabilities directly, while the two-step model needs an extra region proposal step
to find out all the potential objects, and then is followed by a region classifier. The
most well-known of these two are Region-Based Convolutional Neural Network
(R-CNN) [Goodfellow et al., 2014] and You Only Look Once(YOLO) separately
[Jiang et al., 2022].

Region Based Convolutional Neural Network (R-CNN)
R-CNN is a deep learning architecture used for object detection, introducing a two-
step approach. It consists of three modules: the first module applies a selective
search algorithm to find relative region proposals, the second uses a CNN to ex-
tract features from each region, and the third module predicts labels using linear
Support Vector Machines (SVMs).

Figure 2.2 Overview of R-CNN architecture. It takes an image as input, then extracts about
2000 proposal bounding boxes sent to a CNN to extract features. Lastly, it uses class-specific
linear SVMs to predict labels. Figure from [Girshick et al., 2014].

Region Proposal. R-CNN begins with dividing the input image into multiple re-
gions, which are thought to be all potential regions that include all the objects in the
image. These regions are called "region proposals". A famous and common method
to locate objects, Exhaustive Search, is often used to find out the locations of these
region proposals. This approach uses sliding windows through the whole image to
locate the objects. However, this method requires thousands of sliding windows for
objects, even for small image sizes, making it really computationally expensive.
To make it more efficient, a method called Selective Search combines Exhaustive
Search and segmentation is applied. This is the algorithm used in R-CNN [Uijlings
et al., 2013].

19

Chapter 2. Theory

Selective Search is based on a hierarchical grouping algorithm developed in
the paper "Efficient Graph-Based Image Segmentation" by Felzenszwalb and Hut-
tenlocher [Felzenszwalb and Huttenlocher, 2004]. This method can generate a set
of small initial regions without spanning multiple objects fast. After getting these
starting regions, a greedy algorithm is applied to combine small regions into larger
regions: First, all neighboring regions’ similarities are computed. Then the two most
similar regions are chosen and combined into a larger, single region. This procedure
of combining is repeated until the entire image is composed of a single region. Fi-
nally, the algorithm uses these segmented region proposals to generate potential ob-
ject bounding boxes. The illustration of the Selective Search algorithm is shown in
Figure 2.3. We can see as the iteration grows, that the sizes of each region proposal
become larger and that the method begins to find the object locations.

Figure 2.3 An illustration of Selective Search algorithm at different iteration. There are
four types of similarities considered in the algorithm: color, texture, size, and fill. The bound-
ing boxes (below) are drawn based on the segmented region proposals (above). Figure from
[Felzenszwalb and Huttenlocher, 2004]

Feature Extraction. After using Selective Search generating around 2000 region
proposals, these regions are wrapped to a consistent input size that the CNN expects
(227 × 227 pixel size in R-CNN) and the CNN extracts features for further classi-
fication. The CNN is AlexNet which is generally fine-tuned on a large dataset such
as ImageNet. The output of this CNN is a high-dimensional vector which represents
the features of the input image.

20

2.3 Object Detection

R-CNN chooses the most straightforward of the numerous possible transforma-
tions for the arbitrary-shaped areas. It warps all of the pixels in a tight bounding box
surrounding the candidate region to the necessary size, regardless of its dimensions
or aspect ratio. Before warping, the size of the tight bounding box is increased so
that there are exactly 16 pixels in the warped frame.

Bounding Box Regression and Non-Maximum Suppression (NMS). Besides
classifying objects, R-CNN also applies bounding box regression and NMS: Bound-
ing Box Regression aims to improve the accuracy of object location through a sepa-
rate regression model, which is trained for each class in order to fine-tune the bound-
ing box’s size of the detected object [Felzenszwalb et al., 2009]. After classifying
and regressing bounding boxes, NMS is applied to eliminate highly overlapping or
duplicate proposal bounding boxes on the image, which implies a high probability
of the same object. NMS helps to ensure that there is only one bounding box for
each target object.

You Only Look Once v8(YOLOv8)
In our work, as we want to eventually deploy our model to microscopes and run
in real-time, we have high requirements for model performance, especially for run-
ning time. However, from above we can see traditional CNN models are too slow
to run in real-time, even though there are some improved versions released such as
faster R-CNN, as they always have very complicated pipelines. Therefore, to solve
this problem, YOLO was developed. Instead of extracting features from proposal
regions and then using a separate classifier, YOLO divides input images into grids
and predicts bounding boxes and classifications from grids directly, making YOLO
really faster in inference time. YOLOv8 is used in our work, which is a series of im-
provements and extensions made by Ultralytics to the YOLOv5 architecture [Jocher
et al., 2023].

The main idea of YOLO is that it converts the object detection task into the re-
gression task by finding and predicting the objects directly, which are called anchor-
free detectors. Instead of using sliding windows of different sizes across the whole
image like CNN, YOLO divides the input image into S×S grids. Each grid predicts
the bounding box location and the class of object individually.

The architecture of YOLOv8 is illustrated in Figure 2.4. There are mainly 5
modules in YOLOv8 structure:

1. Conv module with 2d batch normalization and SiLU activation function.

2. C2F (cross-stage partial bottleneck with two convolutions) module re-
duces the channel size of the feature map, which helps to detect objects better
with various sizes.

3. SPPF(spatial pyramid pooling fast) module in backbone accelerates com-
putation by pooling features into a fixed-size map and generates a fixed fea-
ture representation of objects of various sizes in an image.

21

Chapter 2. Theory

4. Upsample module in the neck, upsamples the spatial dimensions of the pre-
vious layer.

5. Detection module has two traces to calculate the loss of bounding box loca-
tion and class separately. Three Detect modules top-to-bottom in the head are
specialized in small, medium, and large objects respectively.

The detailed structures of these modules are shown in Figure 2.5

Figure 2.4 The architecture of YOLOv8 cited from [Zhai et al., 2023].

2.4 Model Improvements

Deep learning models are generally tested on the COCO dataset, which contains
80 categories of common objects in our daily lives. Therefore, even though these
state-of-the-art models have very high accuracy in the paper, it is still more likely
to perform poorly in microbiological applications, as they are quite different from
the common test dataset. Therefore, to have a better performance on our custom
dataset, some modifications of YOLO architecture are tried in our work.

22

2.4 Model Improvements

Figure 2.5 The details of the modules used in YOLOv8. [Jocher et al., 2023]

Transfer Learning
Transfer learning is a typical method in the field of machine learning, referring to
training a model based on a previous, related task [Zhuang et al., 2021]. Trans-
fer learning helps the model to quickly adapt to a new dataset with few resources
required by reusing old models. It is used to reduce training time, improve model
performance, solve unbalanced dataset problems, and improve model generalization
ability [Sharma, 2023].

Transfer learning can be categorized into four ways based on different kinds of
technical approaches: sample-based transfer, feature-based transfer, model-based
transfer, and relation-based transfer [Devan et al., 2019]. In our work, we tried
model-based transfer learning, which shares parameters between new and pre-
trained models. In general, in a machine learning model, neural networks learn
edge features in the first layer, shape features in the middle, and task-specific fea-
tures in the latter layers. For most objects, similar edge features are shared. Objects
from similar fields also have quite similar shape features (such as cells in biology).
Transfer learning uses these properties by freezing some layers to keep parameters
from the pre-trained models, training only on the remaining layers. Depending on
the number of frozen layers, there are three standard transfer learning approaches:
The first method freezes all of the convolutional layers from the pre-trained model
and only trains the fully connected layers. The second method freezes partial con-
volutional layers from the pre-trained model and trains the remaining convolutional
and fully connected layers. The third method trains the whole network based on the
previously trained model parameters [Devan et al., 2019].

23

Chapter 2. Theory

Deformable Convolutional Network (DCN)
A major problem in computer vision is that CNNs are unable to adapt to geometric
alterations and transformations. CNNs try to overcome this challenge by augment-
ing datasets or applying transformation-invariant features and algorithms. However,
this acquires prior knowledge about transformations, so it only works for known and
fixed variations. It also adds the complexity of the model, which needs more compu-
tational resources. Therefore, a more practical approach to addressing this issue is
to use DCN, which attempts and succeeds in adapting to extraordinary alterations.

For the regular 2D convolution, it samples over the input feature map using a
grid R, which defines the receptive field size and dilation. Then, for each location
p0 on the feature map y, we have

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn), (2.4)

where pn enumerates the locations in R. For deformable convolution, we introduce
the grid R augmented by the offsets △pn, which represents that the grid R is irreg-
ular. Then Equation (2.4) in the deformable form can be calculated by

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn +△pn). (2.5)

In practice, the offset △pn is fractional, to estimate the value of p0 + pn +△pn,
Equation (2.5) is calculated with bilinear interpolation:

x(p) = ∑
q

G(q, p) · x(q), (2.6)

where G is the interpolation kernel, q enumerates all original spatial locations in the
feature map x, and p denotes an arbitrary location (p = p0 + pn +△pn) [Dai et al.,
2017].

24

2.4 Model Improvements

Figure 2.6 An illustration of 3×3 deformable convolution. Figure from [Dai et al., 2017].

The illustration of a 2D 3× 3 deformable convolution is shown in Figure 2.6.
The offsets are calculated by applying a convolutional layer to the same feature
map, and the output offset fields are of the same spatial resolution as the feature
map. The offsets and the convolutional kernels that produce the output features are
learned at the same time during training.

Realtime Detection Transformer (RT-DETR)
For a traditional object detector, it is normal to use anchor boxes to locate objects
and NMS to eliminate overlapping bounding boxes. However, these two steps are
always time-consuming due to their complex architecture. Therefore, end-to-end
object detectors, which drop the use of anchors and NMS, are developed. The first
end-to-end object detector, called DETR (DEtection TRansformer), was initially
proposed by Carion et al. [Carion et al., 2020b]. It predicts one-to-one item sets di-
rectly by use of bipartite matching. By simplifying the detection pipeline, DETR
addresses the NMS-related performance barrier. However, there are some other
problems for DETR, such as slow training convergence and difficulty with query
optimization.

RT-DETR, the first real-time end-to-end object detector developed by Baidu,
provides real-time object detection ability while also having really high accuracy. It
uses Vision Transformers (ViT) to separate intra-scale and cross-scale fusion, allow-
ing for the effective processing of multiscale data. As is shown in Figure 2.7, the RT-
DETR model consists of a backbone, a hybrid encoder, and a transformer decoder
in the head. The encoder takes the features from the last three layers (S3,S4,S5) in

25

Chapter 2. Theory

the backbone as input, then combines intra-scale interaction and cross-scale fusion
to transform multi-scale features into an image feature sequence. Then, a defined
number of image features from the encoder output are extracted by IoU-aware query
selection and serve as the initial queries for the decoder. These queries are iteratively
improved by the decoder and additional prediction heads, to generate object boxes
and confidence ratings.

Figure 2.7 The architecture of RT-DETR. Figure from [Zhao et al., 2023].

Wise-IoU
The loss function for bounding box regression (BBR) is essential to object detection
tasks. Most BBR loss functions are designed under the assumption that the training
datasets have high quality. However, it is possible that the training datasets are of
low quality, which will lead to low loss function performance. Therefore, Wise-
IoU is designed to solve this problem, by evaluating the quality of anchor boxes
and providing a wise gradient gain allocation strategy. This enables Wise-IoU to
concentrate on anchor boxes of average quality and enhance the overall performance
of the object detector [Tong et al., 2023].

When a training dataset has low-quality samples, geometric parameters like as-
pect ratio and distance will affect the generalization ability as the penalty for low-
quality examples will degrade. Therefore, Wise-IoU develops a loss function to re-
duce the penalty of geometric factors when the anchor box and target box coincide
well:

LWIoUv1 = RWIoU LIoU

RWIoU = exp(
(x− xgt)

2 +(y− ygt)
2

(W 2
g +H2

g)
∗)

(2.7)

where Wg,Hg are the size of the smallest enclosing box and the superscript ∗ means
that Wg,Hg are detached from the computational graph to avoid bad gradient during
training [Tong et al., 2023].

26

2.5 Evaluation Metrics

Wise-IoU can also be applied with Focal Loss:

LWIoUv2 = (
L∗

IoU

LIoU
)γ LWIoUv1 (2.8)

2.5 Evaluation Metrics

The two most significant metrics for object detection are accuracy (including clas-
sification accuracy and localization accuracy) and speed.

Precision P and Recall R
Precision P evaluates the model’s ability to give correct predictions, by calculating
the accuracy of the detections, which is the proportion of true positives among all
positive predictions. On the other hand, recall R measures the model’s ability to
retrieve all instances instead of missing some of them, by calculating the proportion
of true positives among all actual positives.

Mean Average Precision (mAP)
A common evaluation metric used to evaluate classification accuracy is average
precision (AP). AP summarizes the precision-recall curve for a single class by com-
puting the area under the curve (AUC), providing a single value that measures the
model’s precision and recall performance. mAP is the mean of the APs calculated
for all classes. It provides a single number that indicates the overall precision-recall
performance of the model across all classes.

Intersection over Union (IoU)
A common evaluation metric used to evaluate localization accuracy is Intersection
over Union (IoU). IoU calculates the overlap area between the ground truth bound-
ing box and the predicted bounding box. It is defined as the area of the intersection
divided by the area of the total area covered by the union of the two boxes. IoU val-
ues range from 0 to 1, where 0 means no overlap between the predicted and ground
truth boxes and 1 means perfect overlap between two bounding boxes. A higher
IoU indicates better localization accuracy. Typically, a threshold (e.g., 0.5) is set to
determine whether a prediction is a true positive.

mAP at IoU thresholds
In practice, mAP is often calculated with multiple IoU thresholds to assess both
classification and localization accuracy. Typically, we use mAP@0.5 which evalu-
ates AP at an IoU threshold of 0.5, and mAP@0.5:0.95 which evaluates the mean of
mean AP across multiple IoU thresholds varying from 0.5 to 0.95 in steps of 0.05.
It provides a comprehensive evaluation of the model’s performance across different

27

Chapter 2. Theory

detection difficulties. Such metrics provide a robust criterion for assessing object
detection models’ ability.

28

3
Data

3.1 Original Data

In this work, we aim to track and detect 9 classes of protists in the videos:
amoeba, apusomonas, ciliate, flagellate, monothalamid, nematode, colpodea ciliate,
hypotrich and cysts. All the data we used in this work were collected in a soil chip
project conducted by P. Micaela Mafla-Endara [Mafla-Endara, 2023], who recorded
data in the form of videos captured with a microscope in three different chips with
the same design, different by treatment (see below). All the videos were taken using
a Nikon Ti2-E inverted light microscope with a Nikon Qi2 camera in the lab. The
length of captured videos spans from tens of seconds to several minutes, each con-
taining only one or a few protists, and some with camera movements. Depending
on the treatments, some videos turn off the light for several seconds to find the posi-
tion of fluorescent nanoplastics. As the protists are totally black, except with some
nanoplastics inside their body, we decided to manually trim the clips after the lights
were turned off.

There are 2-3 control groups in each chip, and the other groups received dif-
ferent treatments concerning different concentrations (0.5, 2, and 10 mg/L) of en-
gineered nanoplastics. The treatments of all the data we use is shown in Table 3.1.
There are several different videos under one treatment for the same or different pro-
tists. For example, A_ENTRY_C001 and A_ENTRY_C002 captured a nematode and
a cyst separately, B_ENTRY_F001 and B_ENTRY_F002 are both about a monotha-
lamid. The length of the videos depends on the type of protists. In general, amoebas
have much longer time over 60 seconds, while ciliate and colpodea ciliate have only
several seconds as they usually move very fast.

3.2 Labelled Data

A machine learning model learns features according to labelled images, so we need
to label the protists in the videos under image format. The tool we used for labelling
is called Roboflow [Dwyer et al., 2024], which is a platform designed to simplify

29

Chapter 3. Data

Table 3.1 Overview of original data.

Chip Video Name Treatment

A

A_ENTRY_A Control
A_ENTRY_B Control
A_ENTRY_C 0.5mg/L 60 nm beads
A_ENTRY_D 0.5mg/L 60 nm beads
A_ENTRY_E 2.0mg/L 60 nm beads
A_ENTRY_F 2.0mg/L 60 nm beads
A_ENTRY_G 10.0mg/L 60 nm beads
A_ENTRY_H 10.0mg/L 60 nm beads

B

B_ENTRY_A Control
B_ENTRY_B Control
B_ENTRY_C 0.5mg/L 60 nm beads
B_ENTRY_D 0.5mg/L 60 nm beads
B_ENTRY_E 2.0mg/L 60 nm beads
B_ENTRY_F 2.0mg/L 60 nm beads
B_ENTRY_G 10.0mg/L 60 nm beads
B_ENTRY_H 10.0mg/L 60 nm beads

C

C_ENTRY_A 10.0mg/L 60 nm beads
C_ENTRY_B Control
C_ENTRY_C Control
C_ENTRY_D 10.0mg/L 50-60 nm beads
C_ENTRY_E Control
C_ENTRY_F 10.0mg/L 50-60 nm beads
C_ENTRY_G 10.0mg/L 60 nm beads
C_ENTRY_H 10.0mg/L 200 nm beads

and streamline the process of managing and preparing image datasets for machine
learning tasks. Roboflow can upload and sample videos allowing manually chosen
frames/second. We sample the videos 2 frames/second except for amoeba, as they
usually move really slowly so we often choose 1 frame every 2 seconds to reduce
similar images in the dataset. The number of videos and corresponding images we
firstly used is shown in Table 3.2. From the table we can find some of the classes
like amoeba and (colpodea) ciliate, appear more frequently than the others like flag-
ellate, leading to unbalanced data distribution. Therefore, to avoid the imbalanced
training dataset affecting the performance of our model, we augment the classes
nematode, cysts, apousomonas, flagellate and hypotrich by 5 times and add to our
dataset, and use GANs to generate some "fake" flagellates, cysts and colpodea cil-
iates. The dataset is then split into the training dataset, validation dataset, and test
dataset by the ratio 70 : 20 : 10.

During training, we found the quality of used videos and labelled data affecting

30

3.3 Dataset Analysis

Table 3.2 The initial number of videos and sampled images.

Class Number of Videos Number of Images
amoeba 19 1614

apusomonas 3 77
ciliate 3 267

flagellate 4 52
monothalamid 6 238

nematode 4 86
colpodea ciliate 6 114

hypotrich 1 46
cysts 5 32

the model performance a lot. We will talk about in detail in the following Dataset
Analysis part. So we modify the dataset step by step as we will clarify in Chapter
4.1, and the final version of the dataset we used is shown in Table 3.3.

Table 3.3 The final dataset we used in our work.

Class Number of Images
amoeba 947

apusomonas 267
ciliate 340

flagellate 341
monothalamid 178

nematode 350
colpodea ciliate 244

hypotrich 188
cysts 280

3.3 Dataset Analysis

From Table 3.3 we can find that a problem of our dataset is the insufficient and
unbalanced numbers among classes due to the limited video sources. However, even
though we are that lack of data, during labelling and training, we still have to drop
some videos for better performance due to the following reasons.

The first problem we find is to define the appropriate species of protists for the
model. For example, the species we named "ciliate" and "colpodea ciliate" both be-
long to the phylum of Ciliophora. As there are potentially 27,000 - 40,000 existing
species of ciliate [Hawksworth, 2009], it is impossible to assign different names
to all different species. Some needs to be assigned the same general label, such as

31

Chapter 3. Data

ciliate. For us human beings, we can identify their class by the hair-like organelles
called cilium easily. However, this is really difficult for a deep learning model to
learn as the shapes of different species of ciliates vary a lot, as shown in Figure 3.1.
We therefore have to split "ciliate" into two classes to avoid confusing the model.
The same problem also occurs for "amoeba" and "flagellate". This is a specie called
"amoeboflagellate", which seems almost the same as amoeba with a flagellum but
belongs to f lagellate. If we categorize it into f lagellate, the model will be con-
fused by the difference between amoeba and f lagellate so the model will have
really bad accuracy on these two classes. Therefore, we decided to drop the videos
of amoebo f lagellate.

Figure 3.1 The example of two kinds of ciliates. In our dataset, the left one is labelled as
colpodea ciliate and the right one is labelled as ciliate.

Another problem also happens to these classes with "hair". An easy and reliable
way to identify the protists in our dataset is to find if they have (and the number
and length of) flagellum or cilium. For a video, this task is not difficult. But for
an image, it may fail to see their flagellum or cilium due to their movement or the
resolution and focus of the microscope camera. This situation becomes worse when
labelling. Almost half of sampled images of f lagellate and ciliate cannot see their
flagellum and cilium in the images, which lead to make the model fail to learn this
important feature during training.

Figure 3.2 Example of failing to see flagellum or cilium in the sampled images.

The last problem we find in our dataset is caused by the background. Besides
protists we need to detect, there are also few other species in our videos that are not
included in our detection work. There are also some dead protists, bacteria, fungi,
nanoplastics and other undetermined things in the background. For example, Figure-
3.3 is a sampled image with a cyst. However, we can see it really looks like the

32

3.3 Dataset Analysis

nanoplastics outside the segmentation, but it has a shell. At the top left corner, there
are also a "shell" and an "amoeba" that look like our target protist. This problem
happens quite often in almost all the videos, and it is impossible for us to label all
of them. What’s more, we find amoebas sometimes prefer to move with nanoplastics
(Figure 3.4). This situation is really worth studying. But this kind of amoeba looks
quite different from a common amoeba, which is generally with a "clear" body as
shown in Figure 1.1. Without this video, the model will treat them as background.
But with labelling, the model will be confused by amoeba and background during
training. So during the training process, the model finds it hard to tell the difference
between the background and our target objects with these problems, which causes
our model to sometimes fail to find the protists, or label the objects belonging to the
background.

Figure 3.3 An example of complicated background. Besides our target object within yellow
circle, there are lots of other objects such as particles, nanoplastics, dead body etc.

Figure 3.4 A video captured two amoebas moving with nanoplastics.

33

4
Methods

4.1 Data Pre-processing

At the beginning of this project, we were given a dataset with 45 videos, which
needed to be organised and labelled by ourselves. At first, we labelled all data into 9
classes: amoeba, amoeboflagellate, apusomonas, ciliate, flagellate, cysts, monotha-
lamid, nematode, hypotrich. The dataset was also augmented by rotation, crop, blur,
noise, and brightness in Roboflow before training. However, we found that the accu-
racy of amoeba,amoebo f lagellate, f lagellate and ciliate was quite low. So we had
to go back to pre-process our dataset. We thought the precision of bounding boxes
affected the model performance a lot. Therefore, we totally modified our dataset.
Firstly, we relabelled all images of amoebo f lagellate to amoeba or f lagellate,
unless the cases where they looked really different from these two classes. Then
we deleted a large amount of low-quality amoeba, as they have been already over-
represented. Then we split the original ciliate class into two classes: ciliate and
col podeaciliate, as these two species look really different from each other.

After solving these problems that occurred in the original dataset, we needed to
solve another important problem: the lack of data.

4.2 Generate Synthetic Data

To remedy the problem of the lack of data, we tried to use generative models to
generate synthetic data, especially for those classes that have much less amount of
samples compared to the others, such as col podeaciliate and cysts.

There exist a lot of generative models, including GAN-based models, VAE-
based models, and Diffusion-based models. During this thesis project, we tried all
of them, however, only GAN-based models satisfied our requirements: to gener-
ate images of protists with various shapes while maintaining genuine patterns and
looking reasonable.

We first tried to use vanilla GAN and DCGAN, which are known for their abil-
ity to generate realistic images. However, GAN-based models are also famous for

34

4.2 Generate Synthetic Data

their difficulties in training, including non-convergence and mode collapse. When
we tried to train the vanilla GAN and DCGAN, they both failed to converge. The
loss of the generator kept going up during training because the poor data distribu-
tion learnt by the generator in the early stage during training could be easily distin-
guished by the discriminator. The discriminator became almost perfect and rarely
made mistakes. The loss of discriminator therefore approached 0. The training of G
and D never became balanced again. After 10000 iterations, the generated images
were still all noise without any information.

To solve the training difficulties for GANs, we tried to use other more advanced
models, especially WGAN and its modified version WGAN-GP as described in
Ch.2. WGAN and WGAN-GP use an alternative value function derived from an
approximation of the Wasserstein-1 distance W (q, p), which is informally defined
as the minimum cost of transporting mass. This alternative value function can pro-
vide more stable gradients for the generator to update which makes training less
challenging. When we tried to train a WGAN model, it was able to generate rea-
sonable images which were much better than vanilla GAN and DCGAN. However,
due to the weight clipping on the discriminator during training, the WGAN models
improved very slowly. After 10000 iterations, the generated images look reasonable
to some extent, we can recognize them as some kind of micro-organisms, but still
lack details in shape and all the generated samples look similar, which means the
generator has only learnt some simple distribution.

(a) (b)

Figure 4.1 Ciliate samples generated by WGAN-GP. They have convincing quality, fine
details and natural textures.

When we added a gradient penalty and trained a WGAN-GP model, the gener-
ated samples improved much faster. After only around 1500 iterations, the gener-
ator was able to generate reasonable images that outperformed the WGAN model.

35

Chapter 4. Methods

After 5000 iterations, the generator had been able to generate visually convincing
samples, which had fine details in shape and colour, natural textures, various ori-
entations, locations, and lighting conditions. The generator even generated some
samples with the structure pillar which appeared a few times in the training dataset.

Finally, we trained three WGAN-GP models for ciliate, cysts and flagellate, to
solve the unbalanced data problem. We used them to generate 100 samples for each
class. We did not generate more images for hypotrich and monthalamid because
they are relatively large in size compared to other protists, and our detection model
was already able to detect them very well. The synthetic images are convincingly
realistic and we can not distinguish them from the real data, some examples of
generated images of ciliate are shown in Figure 4.1.

4.3 Model Training

We use computational resources Alvis cluster provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS) for training in this work.

We mainly use NVIDIA Tesla A40 GPU with 48GB RAM or NVIDIA Tesla
A100 HGX GPU with 40GB RAM to train YOLO models, depending on the model
complexity.

The training hyperparameters are chosen as follow: epochs=[100, 150, 200], im-
age size=640, batch size=[64, 128, 256, 400], dropout=0.3, weight decay=0.0005,
warmup epochs=3, warmup momentum=0.8. We use AdamW as optimizer with
learning rate=0.000714, momentum=0.9.

YOLO
Transfer Learning. In the training phase, we began with training from new mod-
els. This worked but took many more epochs, at least 400 epochs, to have a good
performance, so we tried to use transfer learning to reduce training time. Unfor-
tunately, we failed to find any open-source dataset on protists or microorganisms,
so we had to use the pre-trained models from YOLO which have been pre-trained
on the COCO dataset [Lin et al., 2014]. After running a few experiments on the
same datasets with the same hyper-parameters, only different in model size, we got
a comparison between the n,s,m, l pre-trained models. Considering the accuracy,
speed and computational cost, we choose YOLOv8s.pt as our baseline model. After
applying transfer learning, training time reduced significantly to around 150 epochs,
and the mAP also increased by 4%.

Improvements. To improve the performance of our model, we also tried to modify
the structure of YOLO. The first idea we came up with was to use DCN, see Ch.2.4.
The common CNN only has fixed sampling points, which makes it hard to learn the
features of objects with irregular shapes. But for the class amoeba in our datasets,
they do not have any regular shapes and change their shapes all the time. So we
implemented the DCN to try to improve the ability to learn irregular features.

36

4.3 Model Training

Then we also tried to modify the loss function of YOLO. There are some sam-
ples that are not that good or typical, we hope our model does not pay much at-
tention to these kinds of data. Therefore, we tried to apply Wise-IoU to make the
model have dynamic bounding box regression loss to avoid this problem.

At last, as the Transformer is the most popular architecture these years, we also
wanted to add it to our model. However, it is difficult for traditional Transform-
ers to run in real-time, especially compared with YOLO. Therefore, we found an
architecture named RT-DETR, which can fuse feature maps in different sizes and
use convolution to make the model more efficient for working in real-time object
detection tasks.

Two-step YOLO
After training our model and evaluating it on the test dataset, we also applied our
model to totally new datasets: such as videos with different microscope camera set-
tings, or protists in really complicated backgrounds. Then we found that our model
had bad generalization ability on these kinds of datasets. One of the reasons why
this happened we assumed is that there were too many objects in the background
that seemed similar to our target protists, and then the model was confused by the
missing of these objects’ bounding boxes. We thought this problem could be solved
by labelling our data in more detail, like labelling all confusing objects in the back-
grounds with "Unknown" or something else. However, it is impossible to label all
such things for 3,000 images. Therefore, instead of labelling all images, we hoped to
let our model learn the features of backgrounds, and then isolate our target protists
from backgrounds.

Based on the above idea, we constructed our model as a two-step YOLO model:
first, a detection model to find out all protists (or moving objects), then a classifi-
cation model to classify all the isolated objects from the detection model. In detail,
first, we modify our dataset: convert all the labels to one label "Moving" in the detec-
tion project, and then create a new classification project with all the targets without
backgrounds in it. Then we train a detection model and a classification model using
these two datasets separately. After having satisfied models, the detection model
is used as the first step to detect all the protists, then the current frame is cropped
according to the bounding box coordinates. The cropped images are sent to the sec-
ond classification model to predict a class, and finally, the class and bounding box
are drawn on the original current frame. What’s more, to keep the predicted class
stable, we record the tracking IDs of all detected amoebas in one video and choose
the most often predicted class so far as the current label instead of using the current
predicted class directly.

The two-step YOLO model has two significant advantages: better generaliza-
tion ability and more stable predicted results. As this model learns the features of
backgrounds to some extent during the first training, it can be easier to find out
the positions of protists rather than being distracted by complicated backgrounds in

37

Chapter 4. Methods

new videos. What’s more, as we know a classification task is usually more accurate
than a detection task. Therefore, as long as the model can locate the right positions
of the protists, the second classification model has a higher probability of returning
the right class compared with the one-step model. Moreover, as the shapes of many
protists are not fixed, the predicted class may change as the protists move. There-
fore, compared with the one-step model which uses the predicted class directly, the
two-step model can use algorithms to control the stability of the predicted class as
we mentioned before.

4.4 Camera Motion Compensation

To analyze the movement and speed of protists, we need to know the absolute po-
sition of each protist in the soil chips, and then sum up the distances between each
frame to represent the moving distance or speed. To capture the details of the pro-
tists clearly, our microscope camera usually uses a large magnification. Therefore,
the camera has to move to keep capturing the protists when they are likely to move
out of our screen. However, YOLO only returns relative positions of the bound-
ing boxes, which leads to wrong calculations while the camera moving. Therefore,
compensating for the camera movement is necessary. The method we use for com-
pensating is Fast Fourier Transform (FFT).

Fast Fourier Transform (FFT)
The Fast Fourier Transform is an important algorithm in signal processing that com-
putes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT).
FFT translates signals from their original domains, such as time or space, to fre-
quency domain representations with exceptional efficiency. The DFT is created by
decomposing a sequence of values into components with distinct frequencies [Hei-
deman et al., 1984]. However, it is sometimes too slow to compute the DFT directly
from the specification in practice. Therefore, an FFT computes such modifications
quickly by converting the DFT matrix into a product of sparse (mainly zero) ele-
ments [Van Loan, 1992]. So the FFT reduces the computational complexity of the
DFT from O(n2) to O(nlogn), making it possible to be applied for real-time appli-
cations and large-scale data processing.

Given a sequence x[N] of length N, FFT computes its DFT, X [k] using the for-
mula:

X [k] =
N−1

∑
n=0

x[n]e
− j2πnk

N (4.1)

Algorithms
As the camera moves, the pixel at (i, j) in one image will occur in the other
image at (i + dx, j + dy). To compensate for the camera motion, the algorithm

38

4.4 Camera Motion Compensation

Figure 4.2 An example of FFT algorithm structure with a division into half-size FFTs
[Wikipedia contributors, 2024a].

mainly has two functions: a f indTranslation() function to find (dx,dy), and a
compensateMotion() function to generate a "whole map" of the soil chip according
to (dx, dy).

findTranslation() Function.

1. Compute the 2D FFT of both images to convert two images from spatial
domain to frequency domain for further calculation.

2. Compute the Cross-Power Spectrum according to

R(u,v) =
F1(u,v) ·F∗

2 (u,v)
|F1(u,v) ·F∗

2 (u,v)|
(4.2)

Cross-Power Spectrum is designed to highlight the phase differences caused
by the displacement between the images, and the normalization part ensures
that the R contains only phase information while minimizing the impact of
the images’ amplitude information.

3. Apply the Inverse 2D FFT to go back to the spatial domain to get the corre-
lation surface r(x,y).

4. Find the Peak. The location (xpeak,ypeak) in r(x,y) corresponds to the esti-
mated displacement (dx,dy) between the two images. This works since the
correlation is maximal when the two images are best aligned, and the position
of the peak in the correlation surface corresponds to the relative shift (dx,dy)
between the two images.

compensateMotion() Function.

• Apply translation to the frame and update the old image buffer.

• The map size is 4200*4200, and the initial frame is set to the center of the
map so that it can work for movement in any direction.

39

Chapter 4. Methods

• Update the frame to the "map". First add (dx,dy) to the center (r,c) to get
the translation location(dr,dc), then update the region of interest in the map
with the current frame.

40

5
Results and Discussion

5.1 Model Performance

GANs
In this section, we demonstrate and evaluate the performance of different GAN
models as presented in Chapter 2.2. The vanilla GAN is known for its training
difficulties, especially non-convergence and mode collapse. As shown in Figure 5.1,
the training ended up with the vanishing gradient problem, and the generated images
suffer from being pure noise.

Figure 5.1 Ciliate samples generated by vanilla GAN. Training failed and only generated
some pure noise.

The DCGAN model does not address the problem of training difficulties. When
we train our model using DCGAN, it is still common to fail to converge and only
produce noise images. With careful hyperparameter tuning, the DCGAN model can
generate some poor-quality images occasionally, as shown in Figure 5.2.

41

Chapter 5. Results and Discussion

Figure 5.2 Ciliate samples generated by DCGAN. Their quality is very poor.

The WGAN model uses an alternative cost function to improve the stability
when training GANs. However, the weight clipping method in this model can reduce
the capacity of the discriminator, making it learn simpler functions. As shown in
Figure 5.3, the generated images look reasonable to some extent, however still a bit
noisy. This is because the learnt distribution lacks complexity.

Figure 5.3 Ciliate samples generated by WGAN. They look reasonable to some extent,
while still lacking quality.

The WGAN-GP model uses an improved training method by introducing a gra-
dient penalty term, greatly improving training stability even without careful hyper-
parameter tuning. It significantly outperforms weight clipping with improved per-

42

5.1 Model Performance

formance, faster training speed and higher sample quality. As shown in Figure 5.4
and Figure 5.5, the generated images of ciliate and cysts are convincingly realistic.
They have fine details in shape and colour, natural textures, various orientations,
locations, and lighting conditions.

(a) (b)

Figure 5.4 Ciliate samples generated by WGAN-GP. They look very realistic, with con-
vincing quality, fine details and natural textures.

(a) (b)

Figure 5.5 Cysts samples generated by WGAN-GP. Their quality is convincing as well.

43

Chapter 5. Results and Discussion

Model Comparison
To find the best model for our dataset, we start with training with the origi-
nal YOLO structure. Table 5.1 shows the performance of the models we tested
in our work. We can see that compared with training from a new model, us-
ing pre-trained models greatly improves the performance. For pre-trained models
YOLOv8s,YOLOv8m,YOLOv8l, they have similar good performance, but the in-
ference time increases a lot. Therefore, as a trade-off, we choose YOLOv8s.pt as
our best model.

Table 5.1 The performance of the one-step models without any modification in the archi-
tecture of YOLO, where FLOPs stand for Floating Point Operations, Params stand for Pa-
rameter Numbers. The file extension name represents different types of models: .yaml means
training from scratch, .pt means using a pre-trained model. n,s,m, l represent different num-
bers of layers, and n < s < m < l (the detailed parameters of these four models are shown in
Appendix A).

Model Structure mAP
@0.5

mAP
@0.5:0.95

Inference
Time (ms)

FLOPs
(B) Params

YOLOv8n.yaml 0.959 0.803 1.1 8.1 3007598
YOLOv8s.yaml 0.967 0.837 0.8 28.5 11129454
YOLOv8m.yaml 0.973 0.843 1.5 78.7 25845550
YOLOv8l.yaml 0.973 0.839 2.4 164.9 43614318

YOLOv8n.pt 0.971 0.845 0.9 8.1 3007598
YOLOv8s.pt 0.978 0.863 1.5 28.5 11129454
YOLOv8m.pt 0.978 0.863 3.0 78.7 25845550
YOLOv8l.pt 0.968 0.865 5.0 164.9 43614318

Then we train the models with modifications in the architecture of YOLO. As
DCN changes the backbone of YOLO, we cannot continue training on a pre-trained
model, so we choose to train from YOLOv8m.yaml since it has both good accuracy
and acceptable inference time. W-IoU is trained on our best model YOLOv8.pt, and
RT-DETR also uses the model RT −DET R−L pre-trained on COCO dataset [Lin
et al., 2014]. The performance of our modified models is shown in Table 5.2.

Table 5.2 The performance of the one-step models with modifications in the architecture
of YOLO.

Model Structure mAP
@0.5

mAP
@0.5:0.95

Inference
Time (ms)

FLOPs
(B) Params

YOLOv8m.yaml + DCN 0.965 0.813 1.1 8.1 3007598
YOLOv8s.pt + W-IoU 0.967 0.837 0.8 28.5 11129454

RT-DETR 0.982 0.869 2.45 103.5 32002235

44

5.1 Model Performance

Table 5.3 The detailed information for each class of our best model YOLOv8s.pt.

Class Box(P R mAP@0.5 mAP@0.5:0.95)
amoeba 0.938 0.955 0.982 0.841

apusomonas 0.991 0.937 0.975 0.779
ciliate 0.914 0.96 0.961 0.721
cysts 0.932 1 0.995 0.812

flagellate 0.89 0.881 0.906 0.779
hypotrich 1 1 0.995 0.976

monothalamid 1 1 0.995 0.949
nematode 0.959 0.983 0.986 0.977

colpodea ciliate 1 1 0.995 0.942

Figure 5.6 The confusion matrix of the model YOLOv8s.pt.

For the two-step YOLO model, the best detection model has mAP@0.5 = 0.981
and mAP@0.5:0.95 = 0.876, and the best classification model is almost 100% cor-
rect for the test dataset. The confusion matrices of these two models are shown in
Figure 5.8.

45

Chapter 5. Results and Discussion

Figure 5.7 The loss curves of the model YOLOv8s.pt. "Box_loss" measures how much do
the predicted bounding boxes fit the ground truth object, and it is usually a regression loss
such as smooth L1 [Huber, 1992]. "Cls_loss" measures the correctness of the classification of
each predicted bounding box, and it is often called cross entropy loss [Rumelhart et al., 1986].
"Dfl_loss" represents "Dual Focal Loss" and is used to solve class imbalance problem by
putting more importance on less frequent classes during training [Lin et al., 2017], [Hossain
et al., 2021].

46

5.1 Model Performance

(a) Moving object detection model

(b) Classification model

Figure 5.8 The confusion matrices of two-step model.

47

Chapter 5. Results and Discussion

5.2 Data Analysis

In this part, we want to analyze the effect of nanoplastics on the protists, such
as their speed and movement trajectory (trace). Among the nine target classes,
cysts and monothalamid almost do not move in the videos, nematode is not
a protist so we are not curious about it, and hytorich moves too fast to be
well tracked so we cannot get the absolute positions of bounding boxes. There-
fore, these 4 classes are dropped in the analysis part and only 5 classes remain:
amoeba,apusomonas,ciliate, f lagellate,col podeaciliate, and 37 videos in total.
However, another problem raises as shown in Table 5.4: except amoeba, we do
not have data for all treatments. And even though it has videos under one treatment,
it is not enough to get any reliable conclusion or hypothesis. Therefore, we decide
to put our emphasis on analyzing the speed and traces among classes, and to show
some figures with or without nanoplastics.

Table 5.4 The number of videos under different treatments we used for data analysis.

Class Total Video Numbers control 0.5mg/L 2mg/L 10mg/L
amoeba 14 2 3 2 7

apusomonas 3 0 0 2 1
ciliate 6 2 4 0 0

flagellate 5 1 0 0 4
colpodea ciliate 9 0 4 5 0

Camera Motion Compensation
The amplitude of the camera movement is species-dependent: the camera is al-
most fixed for amoeba and apusonomas as they move very slowly, and the camera
moves very much for the rest of the classes, especially for ciliate. If the camera
moves slowly and smoothly, the compensation algorithm works well, but for a few
videos where the camera moves rapidly, our algorithm may fail to find correspond-
ing points. But for most of the videos, even though the algorithm generated some
distorted frames in the background, the movements of the protists are still smooth
so we can still get the right speed. Some compensated examples are shown below.
The algorithm described in Chapter 4.4 has been used to patch together consecu-
tive frames in the video, compensating for the camera movement. The black areas
represent parts not covered in any video frame by the camera.

48

5.2 Data Analysis

Figure 5.9 An example of slow and smooth camera movement. The generated "map" is
really good almost without any distortion as can be seen on the non-distorted background.

Figure 5.10 An example of a suddenly quick camera movement in the video. We can see
that there are some distorted backgrounds at the top right corner, but the absolute positions
of these frames are still quick right.

49

Chapter 5. Results and Discussion

Figure 5.11 An example of a very quick movement of a ciliate, which leads to bad com-
pensation when the camera fast moves as the ciliate. This can be seen by the irregular pattern
of circular object (pillars) that in reality are positional in a regular grid.

50

5.2 Data Analysis

Model Tracking Results
Figure 5.12 shows some examples of the results of our tracking model from the
videos.

(a) amoeba (b) flagellate

(c) ciliate (d) colpodea ciliate

Figure 5.12 Some tracking examples detected by our model.

Speed Analysis
In this part, we compare speed over time among classes and speed distribution
among classes to find the difference in speed between different species. What’s
more, to analyze the effect of nanoplastics, we plot figures of each class under dif-
ferent treatments.

To estimate the speeds, we record the center coordinates given by our model
of all the bounding boxes in the videos and calculate the Euclidean distances di-
vided by the magnification ratio between each adjacent center. The sum of every 30

51

Chapter 5. Results and Discussion

distances is assumed to be a one-second distance (as the fps of each video is 30).
The magnification ratios are not the same for different videos, so we use a software
called ImageJ to measure the ratios manually (we are given that the diameter of
each pillar is 100µm).

Amoeba. From Figure 5.13, it seems that the speed of amoeba varies a lot under
different environments and treatments as there are many outliers. As the only class
which has all data under different treatments, we can see the speed distributions of
control, 0.5mg/L and 2mg/L do not differ much, while 10mg/L has a significant
negative effect on the speed of amoeba movements.

(a) (b)

Figure 5.13 The plot of amoeba’s speed distribution (µm/s) in 14 different videos. One
colour represents one amoeba in the upper figure.

Apusomonas. From Figure 5.14, we can also find that the speed of 10mg/L is
much slower than the 2mg/L treatment.

Ciliate. From the box figure of ciliate shown in 5.15, we can see there are almost
no effects on ciliates under 0.5mg/L treatment, and ciliate moves much faster than
amoeba and apusomonas. The speed around 400nm/s should be an error in our data.

Flagellate. Figure 5.16(b) shows that the median of speed with 10mg/L is larger
than the control environment. However, as we only have 3 data points in the control
environment, we think we cannot say that the presentation of nanopasltics acceler-
ates the speed of flagellate. But we can find that flagellates move faster than amoeba
and apusomonas, but slower than ciliate.

Colpodea Ciliate. Quite similar as ciliate, colpodea ciliate also moves fast among
these 5 classes. Even though we do not have any control data, it is clear that the
speed 2mg/L is slower than with 0.5mg/L treatment. The speed seems to vary based

52

5.2 Data Analysis

(a) (b)

Figure 5.14 The plot of apusomonas’ speed distribution (µm/s) in 3 different videos. One
colour represents one apusomonas in the left figure.

(a) (b)

Figure 5.15 The plot of ciliate’s speed distribution (µm/s) in 6 different videos. One colour
represents one ciliate in the left figure.

on different colpodea ciliates, as the speed dots are separate for different colpodea
ciliates in Figure 5.17(a).

Speed Distribution among Classes. Because of the lack of data, we prefer to ig-
nore the treatments and analyze all data among classes. Figure 5.18 shows the speed
distribution among 5 classes. It is quite apparent that amoeba and apusomonas move
the slowest, while both ciliate and colpodea ciliate have faster speeds. There are also
quite a lot of outliers for amoeba.

53

Chapter 5. Results and Discussion

(a) (b)

Figure 5.16 The plot of flagellate’s speed distribution (µm/s) in 5 different videos. One
colour represents one flagellate in the left figure.

(a) (b)

Figure 5.17 The plot of Colpodea ciliate’s speed distribution (µm/s) in 9 different videos.
One colour represents one Colpodea ciliate in the left figure.

Speed Comparison over Time. We also try to visualize the differences among
classes over time, shown in Figure 5.19. As we expected, amoeba moves the slowest
while ciliate moves the fastest.

54

5.2 Data Analysis

Figure 5.18 The speed distribution among 5 classes, all videos are included but we have
removed some outliers for better visualization.

Figure 5.19 The speed comparison of 5 classes over time. The data are chosen from one
video of each class randomly.

55

Chapter 5. Results and Discussion

Trace Analysis
To analyse the trace features of each class, such as shapes or directions, we plot
traces on the last frame of each video and select some typical figures in Figure 5.20.

(a) Traces of amoebas

(b) Traces of apusomonases

56

5.2 Data Analysis

(c) Traces of ciliates

(d) Traces of flagellates
57

Chapter 5. Results and Discussion

(e) Traces of colpodea ciliates

Figure 5.20 The examples of traces of 5 classes shown on the original videos. The scale
of the axes is pixels. The figure in the upper left corner of 5.20(e) shows that the colpodea
ciliate moves into a pillar. This is caused by the failure of our compensated algorithm: the
position of this pillar is wrongly patched due to the fast camera movement.

5.3 Discussion

Model
From Table 5.1 we can see that even though the pre-trained model is trained on
COCO datasets, which is totally different from our custom dataset, models with
the filename .pt still improve the performance of our model compared with train-
ing from scratch. What’s more, instead of performing better with large-scale mod-

58

5.3 Discussion

els as we imagined before, our dataset works well on a smaller pre-trained model:
YOLOv8s.pt, which we assume is caused by overfitting. RT-DETR also has very
good performance, but it is more computationally costly than YOLO.

The modification of the backbone also seems to be not very efficient as shown
in Table 5.2. This modification forces the model to be trained from scratch, but as
we do not have a large enough dataset, it is apparent that it cannot have a better
performance compared with a pre-trained model. However, from Table 5.2 we can
see the modification of the loss function does not really work as well, this also
reduces the accuracy of the model. We think this may caused by the structure of
YOLO. YOLO has a loss function designed to handle positive and negative samples,
making it difficult for a general loss function algorithm to outperform.

For the two-step YOLO model, the classification model is almost 100% correct
on the test dataset, and the object detection model has a slightly better performance
than the one-step YOLO model. This implies that the two-step model is more accu-
rate in recognizing the protists, and has a slightly better ability to find the position
of the protists in the videos. In practice, this indeed works. The two-step model is
more easier to find out the positions of protists in new videos with different settings,
and more stable class labels due to both perfect classification accuracy and manual
algorithm.

Data Analysis
Even though we do not have enough data, Figure 5.13 to Figure ?? still imply that
if the concentration of the nanoplastics is high enough (for example 10mg/L in our
work), the speed of the protists will be slower than control and low concentration
environments. The fastest class among these 5 classes is ciliate, while the slowest
class is amoeba. From Figure 5.19, we can see that the speed does not change much
for amoeba and apusomonas, while the other 3 classes change their speed irregu-
larly, especially for ciliate.

We can find some interesting features from the traces shown in Figure 5.20.
Amoebas prefer to move along an edge, such as the edge of a pillar or soil chip.
They are also the only class that we find "like" to move with nanoplastics in their
body. Many videos are recording the amoebas moving with nanoplastics or trying
to pull nanoplastics somewhere else, even though this makes them move slower.
Apusomonas are quite small and move slowly, and use their flagellum to sense the
objects in the way. In the two videos we have in our dataset, they both occur near the
nanoplastics. The traces of ciliates show that they are quite "energetic" compared
with the other classes. They have irregular and long movement traces in a short time.
The same for the colpodea ciliates, they also move fast without any regularity. Both
of these two classes also seem to be more likely to get stuck in the corner of the soil
chips. Flagellates have a clear pattern of movement: they usually move smoothly in
a straight line until they find some obstacles before them.

59

Chapter 5. Results and Discussion

Problems. However, both speeds and traces are based on a premise: stable bound-
ing boxes. We use the Euclidean distance between every adjacent bounding box’s
center to represent the speed. Therefore, to have a precise Euclidean distance, the
location and size of the bounding boxes should be accurate. However, even though
our model has high accuracy in classification, it is hard to ensure the size of the
bounding box is appropriate, especially for flagellate due to its flagellum. Depend-
ing on the quality of the captured videos, sometimes it is really difficult for our
model to detect the flagellum and only their "head" is detected. Therefore, the cen-
ter coordinates will vary a lot even though the flagellate does not move much. There
is also another problem for amoebas: as amoebas move by extending and retracting
pseudopods [Singleton, Sainsbury, et al., 2001], the location of the center coordi-
nates sometimes cannot represent its moving speed or direction. For example, if
an amoeba extends part of itself but is still within the previous bounding box, the
center coordinate will not change but it is indeed moving. Therefore, other methods
should be applied for amoebas for more precise calculation, such as calculating the
center of the segmentation instead.

The model performance causes another problem: the tracking ID for one object
changes sometimes, especially for the compensated videos, which leads to discon-
tinuous trace figures and speed distribution that disturbs analysis. In general, the
YOLO model assigns one tracking ID for the same object, and we use this tracking
ID to differentiate objects and analyze their features. However, our model some-
times assigns different tracking IDs for one object, so we have to modify the coor-
dinates manually for better analysis.

60

6
Conclusion and Future
Directions

6.1 Research Aims

In this thesis, we successfully build and test models to detect and track different
species of protists with decent performance and accuracy. We then record the data
and analyze their behaviour and properties under different treatment conditions. We
find indications on that nanoplastics have some effect on protists, specifically, high-
concentration nanoplastics seems to cause the protists to move slower than usual.
We also find that different protists have disparate moving patterns, specifically, com-
pared to other classes of protists, amoeba tend to move relatively slowly and ciliate
tend to move relatively fast.

However, those results are based on too little data than we wanted, so they might
not be highly reliable. The speed estimation, traces, and tracking of camera move-
ment are still imperfect and can be refined.

We successfully fulfil the aims of this project, which demonstrate the feasibility
of leveraging the power of AI and deep learning to help scientific research.

6.2 Future Directions

Our model still lacks decent generalization ability for unseen data without fine-
tuning, thus not suitable for deployment as a finished tool. We further suggest some
research directions to enhance practical implications.

Acquiring More Data
Much more high-quality data of different classes of protists need to be collected.
Deep learning techniques highly rely on huge amounts of data to achieve high per-
formance. To train a robust model to be deployed for laboratory research, sufficient
data is necessary.

61

Chapter 6. Conclusion and Future Directions

As the collection of dedicated large-scale micro-organism datasets with good
quality requires a lot of time and effort, there is also the possibility of perform-
ing data augmentation by generating synthetic data with generative models. With
more powerful generative models emerging in recent years, we can generate more
synthetic images with higher quality to overcome the lack of datasets.

However, synthetic data can only help the classification and detection task. It can
not be used to improve the speed estimation or analysis of impact of nanoplastics
on microorganisms.

Learning Strategy
One of the reasons why large-scale datasets are hard to acquire is that manual an-
notation is expensive. A huge amount of unlabelled data can be relatively easy and
cheap to acquire. A large research effort has been dedicated to methods to learn from
unlabeled data. The fields of semi-supervised learning and self-supervised learning
have demonstrated promising results. With the help of advancements in those fields,
one could leverage a large amount of unlabelled data to learn visual representations
and get a higher-level understanding of the data to improve performance.

Models advancements
To address the generalization problem, one other possible approach is to use more
advanced models than conventional CNNs, which have a stronger ability to extract
features. ViT-based models have shown promising results in various computer vi-
sion tasks, often achieving competitive or superior performance compared to CNNs.
Those ViT-based models are believed to exceed the previous state-of-the-art model
by a large margin. With more powerful and advanced models introduced, we can
expect them to have stronger performance and generalization capacity.

62

Bibliography

Arjovsky, M., S. Chintala, and L. Bottou (2017). “Wasserstein generative adver-
sarial networks”. In: International conference on machine learning. PMLR,
pp. 214–223.

Carion, N., F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko
(2020a). “End-to-end object detection with transformers”. In: European con-
ference on computer vision. Springer, pp. 213–229.

Carion, N., F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko
(2020b). “End-to-end object detection with transformers”. In: European con-
ference on computer vision. Springer, pp. 213–229.

Dai, J., H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei (2017). Deformable
convolutional networks. arXiv: 1703.06211 [cs.CV].

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for human de-
tection”. In: 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05). Vol. 1. Ieee, pp. 886–893.

Devan, K. S., P. Walther, J. von Einem, T. Ropinski, H. A. Kestler, and C. Read
(2019). “Detection of herpesvirus capsids in transmission electron microscopy
images using transfer learning”. Histochemistry and cell biology 151, pp. 101–
114.

Dwyer, B., J. Nelson, T. Hansen, et al. (2024). Roboflow (version 1.0). Version 1.0.
Computer vision. URL: https://roboflow.com.

Felzenszwalb, P. F., R. B. Girshick, D. McAllester, and D. Ramanan (2009). “Object
detection with discriminatively trained part-based models”. IEEE transactions
on pattern analysis and machine intelligence 32:9, pp. 1627–1645.

Felzenszwalb, P. F. and D. P. Huttenlocher (2004). “Efficient graph-based image
segmentation”. International journal of computer vision 59, pp. 167–181.

Geisen, S., E. A. Mitchell, S. Adl, M. Bonkowski, M. Dunthorn, F. Ekelund, L. D.
Fernández, A. Jousset, V. Krashevska, D. Singer, et al. (2018a). “Soil protists:
a fertile frontier in soil biology research”. FEMS Microbiology Reviews 42:3,
pp. 293–323.

63

Bibliography

Geisen, S., E. A. Mitchell, S. Adl, M. Bonkowski, M. Dunthorn, F. Ekelund, L. D.
Fernández, A. Jousset, V. Krashevska, D. Singer, et al. (2018b). “Soil protists:
a fertile frontier in soil biology research”. FEMS Microbiology Reviews 42:3,
pp. 293–323.

Girshick, R. (2015). “Fast r-cnn”. In: Proceedings of the IEEE international confer-
ence on computer vision, pp. 1440–1448.

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). “Rich feature hierarchies
for accurate object detection and semantic segmentation”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 580–587.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2014). “Generative adversarial nets”. Advances in
neural information processing systems 27.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2020). “Generative adversarial networks”. Communi-
cations of the ACM 63:11, pp. 139–144.

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville (2017).
“Improved training of wasserstein gans”. Advances in neural information pro-
cessing systems 30.

Hawksworth, D. L. (2009). Protist diversity and geographical distribution. Springer
Netherlands.

He, K., G. Gkioxari, P. Dollár, and R. Girshick (2017). “Mask r-cnn”. In: Proceed-
ings of the IEEE international conference on computer vision, pp. 2961–2969.

Heideman, M., D. Johnson, and C. Burrus (1984). “Gauss and the history of the fast
fourier transform”. IEEE Assp Magazine 1:4, pp. 14–21.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov (2012). “Improving neural networks by preventing co-adaptation of feature
detectors”. arXiv preprint arXiv:1207.0580.

Hossain, M. S., J. M. Betts, and A. P. Paplinski (2021). “Dual focal loss to address
class imbalance in semantic segmentation”. Neurocomputing 462, pp. 69–87.

Huber, P. J. (1992). “Robust estimation of a location parameter”. In: Breakthroughs
in statistics: Methodology and distribution. Springer, pp. 492–518.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: accelerating deep network
training by reducing internal covariate shift”. In: International conference on
machine learning. pmlr, pp. 448–456.

Jiang, P., D. Ergu, F. Liu, Y. Cai, and B. Ma (2022). “A review of yolo algorithm
developments”. Procedia computer science 199, pp. 1066–1073.

Jocher, G., A. Chaurasia, and J. Qiu (2023). Ultralytics YOLO. Version 8.0.0. URL:
https://github.com/ultralytics/ultralytics.

Kingma, D. P. and J. Ba (2014). “Adam: a method for stochastic optimization”.
arXiv preprint arXiv:1412.6980.

64

Bibliography

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. Advances in neural information process-
ing systems 25.

Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár (2017). “Focal loss for dense
object detection”. In: Proceedings of the IEEE international conference on com-
puter vision, pp. 2980–2988.

Lin, T., M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick (2014). “Microsoft COCO: common
objects in context”. CoRR abs/1405.0312. arXiv: 1405 . 0312. URL: http :
//arxiv.org/abs/1405.0312.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg
(2016). “Ssd: single shot multibox detector”. In: Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part I 14. Springer, pp. 21–37.

Mafla-Endara, P. M. (2023). Encounters at the microscale: Unraveling soil micro-
bial interactions with nanoplastics. PhD thesis. Lund University.

Radford, A., L. Metz, and S. Chintala (2016). Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv: 1511.06434
[cs.LG].

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). “You only look once:
unified, real-time object detection”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 779–788.

Ren, S., K. He, R. Girshick, and J. Sun (2015). “Faster r-cnn: towards real-time ob-
ject detection with region proposal networks”. Advances in neural information
processing systems 28.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representa-
tions by back-propagating errors”. nature 323:6088, pp. 533–536.

Sharma, P. (2023). Understanding transfer learning for deep learning. URL:
https://www.analyticsvidhya.com/blog/2021/10/understanding-
transfer-learning-for-deep-learning/.

Singleton, P., D. Sainsbury, et al. (2001). Dictionary of microbiology and molecular
biology. Wiley.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2014). “Striving
for simplicity: the all convolutional net”. arXiv preprint arXiv:1412.6806.

Stanley, C. E., G. Grossmann, X. C. i Solvas, and A. J. deMello (2016). “Soil-on-
a-chip: microfluidic platforms for environmental organismal studies”. Lab on a
Chip 16:2, pp. 228–241.

Tong, Z., Y. Chen, Z. Xu, and R. Yu (2023). “Wise-iou: bounding box regression
loss with dynamic focusing mechanism”. arXiv preprint arXiv:2301.10051.

65

Bibliography

Uijlings, J. R., K. E. Van De Sande, T. Gevers, and A. W. Smeulders (2013). “Se-
lective search for object recognition”. International journal of computer vision
104, pp. 154–171.

Van Loan, C. (1992). Computational frameworks for the fast Fourier transform.
SIAM.

Wikipedia contributors (2024a). Fast fourier transform — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Fast_
Fourier_transform&oldid=1221693816. [Online; accessed 14-May-2024].

Wikipedia contributors (2024b). Plastic — Wikipedia, the free encyclopedia. [On-
line; accessed 1-May-2024]. URL: https://en.wikipedia.org/w/index.
php?title=Plastic&oldid=1218609708.

Wu, C., Y. Chao, L. Shu, and R. Qiu (2022). “Interactions between soil pro-
tists and pollutants: an unsolved puzzle”. Journal of Hazardous Materials 429,
p. 128297.

Zhai, X., Z. Huang, T. Li, H. Liu, and S. Wang (2023). “Yolo-drone: an optimized
yolov8 network for tiny uav object detection”. Electronics 12:17, p. 3664.

Zhao, Y., W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen (2023). “Detrs
beat yolos on real-time object detection”. arXiv preprint arXiv:2304.08069.

Zhao, Z.-Q., P. Zheng, S.-t. Xu, and X. Wu (2019). “Object detection with deep
learning: a review”. IEEE transactions on neural networks and learning systems
30:11, pp. 3212–3232.

Zhuang, F., Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He (2021).
“A comprehensive survey on transfer learning”. Proceedings of the IEEE 109:1,
pp. 43–76. DOI: 10.1109/JPROC.2020.3004555.

66

A
YOLO Model Architectures
with Different Scales

Table A.1 The architectures of different scales of YOLO models.

Model Scales [depth, width, max_channels] Layers Gradients FLOPs Params
n [0.33, 0.25, 1024] 225 3157184 8.9 3157200
s [0.33, 0.50, 1024] 225 11166544 28.8 11166560
m [0.67, 0.75, 768] 298 25902624 79.3 25902640
l [1.00, 1.00, 512] 365 43691504 165.7 43691520

67

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2024
Document Number
TFRT-6239

Author(s)

Jingmo Bai
Zuoyi Yu

Supervisor
Edith Hammer, Dept. of Biology, Lund University,
Sweden
Hanbang Zou, Dept. of Biology, Lund University,
Swede
Bo Bernhardsson, Dept. of Automatic Control, Lund
University
Johan Eker, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Detection and Tracking of Soil Protists using Deep Learning
Abstract

Plastic residues can fragment into nanoplastics and bring various pollutants to the soil, which results
in a massive environmental risk that is endangering entire ecosystems. Soil protists, as a vital part of
microbial food webs and carbon cycles, are also considered to be strongly affected by the presence of
nanoplastics. Until now, many studies have found that plastic residues can have either positive or
negative effects on different elements of ecosystems. However, no research has been conducted to
quantify the impact of plastic on soil protists due to a lack of tools for visualizing and studying these
microorganisms. Therefore, we try to use a deep learning-based object detection model, You Only
Look Once (YOLO), to track and record the speed and trace of the protists in the soil chips.
 In this work, YOLOv8 model is used to detect and classify 9 classes of protists in the videos acquired
from the soil chips. To achieve better performance, several model improvement methods are tested.
Generative Adversarial Networks (GANs) are also applied to generate synthetic images to solve the
lack of data. Then we record the speed and trace and compare them among different treatment
conditions to analyze the effects of nanoplastics on the protists. In conclusion, we demonstrate
the feasibility of leveraging the power of AI and deep learning to help scientific research. We also
conclude that high-concentration nanoplastics will cause the protists to move slower than usual,
different protists have disparate moving patterns.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-67

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Tom sida

