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Abstract

This thesis uses real data from the Bank of International Settlements to create fi-
nancial networks for the interbank market using five different methods for network
reconstruction. The goal is to analyze how defaults propagate to assess the impor-
tance of banks and to examine how the network’s structure affects the system’s vul-
nerability. By applying network theory, communicability theory, and the DebtRank
algorithm, we aim to identify which banks are the most vulnerable and which prop-
agate the largest losses to the system. We also investigate how DebtRank correlates
with centrality and communicability measures. Our results will be compared to the
Basel Committee’s annual assessment of global systemically important banks.

Our findings show small differences between the network reconstruction meth-
ods. The most noticeable difference is that the minimum density method produces
more resilient networks when equity is low. In contrast, the small-world method re-
sults in networks with slightly higher losses, especially when equity is in the middle
range. Additionally, our results indicate that JP Morgan is the most systemically im-
portant bank in most scenarios, matching the Basel Committee’s conclusions. How-
ever, we believe our methods overestimate the importance of some of the largest
Chinese banks. We also show that PageRank and impact diffusion have the high-
est correlation with DebtRank impact. Finally, we conclude that Katz centrality and
impact susceptibility show a strong correlation with DebtRank vulnerability.

Keywords

DebtRank, network dynamics, graph theory, centrality, interbank market, financial
networks, shock propagation, financial contagion
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Notation List

Symbol Description
G Graph representing the network
V Set of nodes in a graph
E Set of links in a graph
W Weight matrix of a graph
P Normalized weight matrix
A Interbank assets matrix
Ai Interbank assets of bank i
ADi Asset deficit of bank i
L Interbank liabilities matrix
Li Interbank liabilities of bank i
LDi Liabilities deficit of bank i
Ei Equity of bank i
V Vulnerability matrix
hi Cumulative relative equity loss of bank i
Λi j Reduced interbank leverage matrix
CB(i) Betweenness centrality of node i
CC(i) Closeness centrality of node i
Cin(i) In-degree centrality of node i
Cout(i) Out-degree centrality of node i
CE(i) Eigenvector centrality of node i
CI(i) Invariant distribution centrality of node i
CK(i) Katz centrality of node i
CPR(i) PageRank centrality of node i
CBP(i) Bonacich centrality of node i
Si Impact susceptibility of bank i
Ii Impact diffusion of bank i
F Impact fluidity of the network
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1
Introduction

In today’s interconnected world, the global financial system is more complex and
tightly woven than ever before. Characterized by its dense structure and intricate
interconnections, it has repeatedly demonstrated a surprising fragility. The collapse
of the Lehman Brothers bank during the devastating financial crisis of 2007-2008,
and the more recent challenges faced by Silicon Valley Bank, First Republic Bank
and Signature Bank, underscores the systemic risks that lie within the system. They
also highlight how severe the damage can be. The recent bank disturbances raises
the question of systemic importance, suggesting that influence and connectivity of
a financial institution can be as critical as its size. This was illustrated during last
year’s bank crisis, when the relatively smaller American banks contributed to the
collapse of Switzerland’s second largest Bank, Credit Suisse [Ozili, 2024]. All these
events serve as a reminder of the necessity for ongoing research in order to ensure
stability within the financial system.

This thesis explores the intricate world of global financial networks, more
specifically, the interbank market. Through the application of network dynamics
theory we seek to gain a deeper understanding of its complexities. This approach
offers insights into the network’s structure and its resilience against stresses such as
defaults. By first modeling the connections and monetary flows within these systems
and then simulating financial stress on the models, we can predict and potentially
prevent the propagation of crises.

Our thesis spans several key concepts within network dynamics, including mea-
sures of centrality and the generation of random graphs. Furthermore, we explore
the relatively new algorithm, DebtRank, which is specifically designed for interbank
markets. The analysis also includes metrics from communicability, which have re-
cently been modified to better fit the context of financial networks. The models rely
on both empirical data and relevant theory from network dynamics to provide a
robust foundation for analysis

10



1.1 Purpose

1.1 Purpose

The main purpose of this thesis is to better understand the interbank market. By
creating different networks using real data from the largest banks in the world we
want to determine: how the construction of the network and its structure affects
stress and default propagation, which bank’s are the most systemically important
and how DebtRank metrics correlate with centrality and communicability measures.

1.2 Limitations

Although this thesis uses real data, it estimates the size of each interbank loan us-
ing methods for creating random graphs. It also treats the interbank market as an
isolated system, whereas, in reality, the interbank market is interconnected with
many other financial markets and networks. Graph theory offers numerous theoreti-
cal concepts for network analysis, but this thesis focuses on only a select few. These
limitations are due to both the lack of available data and the constrained time frame
of 20 weeks.

1.3 Previous work

There is an increasing amount of literature that aims to better understand finan-
cial systems. In recent years, the framework of network dynamics has proven to
be especially useful in order to capture the complexity of these networks. Many
well-established concepts have been expanded and refined to better suit the field of
finance. Our thesis builds upon several key papers, including the following:

• In the study [Battiston et al., 2012] the DebtRank algorithm is introduced, a
way to assess the systemic impact of financial institutions. By applying Deb-
tRank to data on major US banks, the authors provide a method to quantify
the potential propagation effects in financial networks. This highlights how
more central nodes can have a greater influence on systemic stability.

• Expanding on the concepts from their previous paper, the colleagues improve
their DebtRank methodology in the study [Battiston et al., 2015]. It is their
refined version first presented here that will be used in our thesis.

• In the study [Estrada and Hatano, 2008] the authors introduce the concept of
communicability in networks. Their metric, based on the exponential of the
weight matrix, gives a new perspective on how nodes communicate with each
other by considering not only direct neighbors but longer paths too.

• In the study [Silva et al., 2015] the authors explore the dynamics of financial
contagion through network analysis, focusing on how shocks can propagate
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Chapter 1. Introduction

through the banking sector. In their paper, they introduce key concepts that we
will employ in our analysis such as impact susceptibility and impact diffusion.
They expand on existing literature that aims to use network communicability
in the context of finance.

• The study [Anand et al., 2017] addresses the significant challenge of recon-
structing financial networks from incomplete data. In their study, they use a
method called minimum density to overcome these challenges. In our thesis,
we will employ this method among others, using our data.

• In the study [Upper and Worms, 2002] the authors analyze the bilateral expo-
sures in the German interbank market to evaluate the potential risk of conta-
gion. They, like many others struggle with the lack of data. In their paper, they
use a method called maximum entropy to reconstruct the financial network.
This method will also be used by us in this thesis.

1.4 Outline

This thesis is structured as follows:

• Chapter 2: This chapter presents the fundamental concepts of graph theory
used in our analysis, including basic notations, topology, centrality measures,
random graphs, and communicability theory.

• Chapter 3: We introduce network theory in the context of finance. This in-
cludes a description of the financial network model, how lending and bor-
rowing are represented in the graph, and the definition of default. We also
present contagion metrics derived from DebtRank and discuss the applica-
tion of communicability in financial models.

• Chapter 4: Our methods for network reconstruction are presented. We detail
each of the five methods, highlighting their differences and unique aspects.

• Chapter 5: This chapter provides information about our data and the method-
ology used in our thesis.

• Chapter 6: Here, we present and discuss our results and compare them with
the Basel Committee’s.

• Chapter 7: This final chapter includes further analysis, suggestions for future
work, and our conclusions.
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2
Background on Graph
Theory

In this chapter we will go through all the theory from graph theory and network
dynamics which we believe is necessary for our thesis. This includes basic con-
cepts, centrality measures and communicability in graphs. A few of the theoretical
concepts will be illustrated with a simple example.

2.1 Networks as Graphs

Nodes interconnected by links form a network. A road map offers an intuitive ex-
ample: cities serve as nodes, and roads as the connecting links. Many real-world
phenomena can be modeled as networks, where nodes might represent individuals,
financial institutions, or web pages, and links depict the relationships or interactions
between them. The mathematical concept of which all networks stand on is called
graph theory. Here, a network is described as a graph G, which consist of nodes
V , links E and a weight matrix W , formally expressed as G = (V,E ,W ). The set V
contains the nodes, V = (1,2, . . . ,n) where n is the number of nodes in the graph.
The set E contains the links, each link e = (i, j) determines whether or not there
is a connection between node i and j. The weight matrix W assigns values to the
links, which can have various interpretations depending on the context, such as the
capacity of a road to handle traffic. A graph where all weights are limited to 0 and
1 is known as an unweighted graph. [Como and Fagnani, 2021]

Another important matrix in graph theory is the normalized weight matrix P.
The normalized weight matrix adjusts the link weights of a graph to ensure that the
sum of the weights for each row equals 1. It is defined by normalizing each entry
of the weight matrix W by the sum of the weights of all links connected to the
corresponding node. The formula for the normalized weight matrix P is given by:

Pi j =
Wi j

∑k Wik
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Chapter 2. Background on Graph Theory

Furthermore, a graph can be either directed or undirected. In a directed graph, links
have a direction, meaning that a link from i to j does not imply a link from j to i. In
an undirected graph, the links do not have a direction, meaning that a link from i to
j also goes from j to i. [Como and Fagnani, 2021]

If there exists a link between two nodes they are referred to as neighbours. In
the context of directed graphs, there are two types of neighbours: in-neighbours and
out-neighbours. This distinction becomes redundant in undirected graphs. [Como
and Fagnani, 2021]

A graph is said to be strongly connected if there exists a path between every pair
of nodes. A graph is said to be unilaterally connected if it contains a directed path
between every pair of nodes. A graph is said to be weakly connected if it is directed
and replacing the directed links with undirected ones create a strongly connected
graph. A graph can also be disconnected but this thesis will not deal with those.
[Como and Fagnani, 2021]

2.2 Example of Graphs

Basic Graphs
A graph’s topology can be extremely complex, but it can also be quite simple. Some
of the most basic graphs can be seen below. Analyzing these can be helpful in order
to understand the more complicated graphs. A graph formed from a subset of nodes
and links of G is called a subgraph of G. The simple graphs seen below are often
found as subgraphs in more complex graphs.

Figure 2.1 Directed ring graph with 5 nodes.

Figure 2.2 Star graph with 1 central node and 5 peripheral nodes.
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2.2 Example of Graphs

Figure 2.3 Tree graph with 1 root and 3 children nodes.

Figure 2.4 Complete graph with 4 nodes.

Random Graphs
Often, the exact topology of a network is unknown. In such cases, it is common to
generate random graphs with certain parameters. Various methods exist for this pur-
pose. One popular method for undirected graphs is the Erdős-Rényi random graph.
This method relies on two parameters: the number of nodes and the probability that
any given pair of nodes is connected by a link. It is important to note that each
generated graph will differ, as they are created at random based on these parame-
ters. In this thesis, we will employ five different methods to generate graphs. These
methods will be discussed in detail in Chapter 4. [Como and Fagnani, 2021]

Figure 2.5 Erdős-Rényi graph G(10,0.3)
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Chapter 2. Background on Graph Theory

2.3 Network Centrality

In graph theory, network centrality aims to quantify the centrality of a node within
a graph. Determining centrality is crucial for understanding the importance of a
node. There are many types of centrality measures and we will focus on some of
the most commonly used variants. Some of these measures can be calculated using
both unweighted and weighted links; in such cases, we will specify which version
has been used.

Betweenness Centrality
This is a measure which uses the concept of shortest path to determine a node’s im-
portance. Between all nodes in the graph there exists a shortest path. The centrality
is defined as the number of these that pass through the node. For unweighted graphs
the shortest path is simply the minimum number of links between two nodes. For
weighted graphs it is the minimum sum of weights on the links between two nodes.
The betweenness centrality CB for node i ∈V in an unweighted network is given by
Equation 2.1

CB(i) = ∑
j,k∈V

σ jk(i)
σ jk

(2.1)

where i ̸= j, i, j ̸= k, σ jk(i) is the number of shortest paths that pass node i and
σ jk is the number of shortest paths between node j and k. Betweenness centrality
in a weighted network is calculated similarly to the unweighted scenario, with the
distinction that the calculation of the shortest path incorporates the weights of the
edges. The weighted version of betweenness centrality will be used throughout our
thesis. [Layton and Watters, 2016].

Closeness Centrality
Closeness also uses shortest paths to determine importance. Here, the node’s short-
est path to all other nodes is calculated and the average value is computed to give
the farness. The closeness is defined as the reciprocal of the farness. Closeness cen-
trality is calculated according to Equation 2.2

CC(i) =
1

∑ j d(i, j)
(2.2)

or, the more commonly used normalized closeness centrality

CC(i) =
N −1

∑ j d(i, j)
(2.3)

where d(i, j) is the shortest path between i and j and N is the number of nodes in
the network. Similarly to the case of betweenness centrality, closeness centrality can
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2.3 Network Centrality

also be calculated taking the weights of the network into account. In this case, the
shortest path between two adjacent nodes, might not always be through the direct
link that connects them but through another node(s) in the network, all dependent on
the weights of course. In the context of a weighted graph, (d(i, j)) represents not the
shortest path in terms of the number of links, but rather the path that minimizes the
total weight. The weighted version of closeness centrality will be used throughout
our thesis.[Rubio, 2023b]

Degree Centrality
Degree centrality is one of the simplest ways of defining centrality where the node’s
importance only depends on its in- or out-degree. In the directed and unweighted
network, the in-degree of the node i is simply the number of links pointing towards
i and the out-degree of i is the number of links originating from i. In the context of
directed and weighted networks, the in-degree of node i is defined as the sum of all
weights of the links pointing towards i. The out-degree of node i is defined as the
sum of all weights of the links originating from i. The in- and out- degree centrality
is calculated according to Equation 2.4 and 2.5, respectively

Cin(i) = degin(i) (2.4)
Cout(i) = degout(i). (2.5)

For the normalized degree centrality you simply divide 2.4 and 2.5 with N − 1
where N is the number of vertices in the network. [Rubio, 2023a]

Eigenvector Centrality
This definition is an extension of the degree centrality. Rather than treating connec-
tivity to all nodes the same, the eigenvector centrality values connections to nodes
with high centrality more than connections to nodes with low centrality. In other
words, the relative importance CE of node i should be proportional to the sum of the
relative importance of its in-neighbours

CE(i) ∝ ∑
j∈V

Wj,iCE( j) (2.6)

If we let the proportionality constant be 1/λ the relative importance of the node i
can be calculated as

CE(i) =
1
λ

∑
j∈V

Wj,iCE( j) (2.7)

which can be extended to vector format

W TCE = λCE . (2.8)
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Chapter 2. Background on Graph Theory

We recognise Equation 2.8 which says that CE is an eigenvector of W T with eigen-
value λ . The eigenvalue λ is usually set to the largest eigenvalue of W as this choice,
by Perron-Frobenius theorem, guarantees a positive and unique eigenvector under
the condition that the graph is strongly connected. [Como and Fagnani, 2021]

Invariant Distribution Centrality
Invariant distribution centrality is similar to eigenvector centrality, but instead of
using the adjacency matrix, the normalized weight matrix P is used. This is matrix,
is essentially the same as a transition probability matrix for a random walk. Invariant
distribution centrality thus quantifies the likelihood of ending up at a particular node
in a long-term random walk on the network. The invariant distribution centrality of
a node i is given by:

CI(i) = lim
t→∞

p(t)i j

where p(t)i j is the probability of transitioning from node j to node i in t steps.
In the context of a Markov chain, this is typically solved by finding the eigenvector
corresponding to the eigenvalue of 1 of the transition probability matrix P. [Como
and Fagnani, 2021]

Katz Centrality
Katz centrality extends the idea of eigenvector centrality by taking into account all
paths that lead into a given node, not just direct neighbours. Longer paths are then
exponentially penalized by incorporating a decay factor. The Katz centrality for a
node i in a network with weight matrix W is defined as:

CK(i) = α

n

∑
j=1

Wi jCK( j)+β

where CK(i) represents the centrality of node i, α is a decay factor that penalizes
contributions from distant nodes and β typically takes a value of 1 to initiate the
influence from each node. Note that, α must be less than the reciprocal of the largest
eigenvalue of W for convergence. In vector form, Katz centrality can be expressed
as:

CK = (I −αW )−1
β1

where I is the identity matrix, and 1 is a vector of all ones. [Como and Fagnani,
2021]

Bonacich Centrality
Bonacich centrality is a way to measure the influence of nodes in a network based
on both their direct connections and their connections to other highly connected
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2.4 A Simple Network Example

nodes. The centrality vector CBP is given by the formula:

CBP = α(I −βW )−1W1 (2.9)

where I is the identity matrix, W is the weight matrix, β is a parameter that mod-
ulates the influence of paths within the network, and 1 is a vector of all ones. The
coefficient α functions as a scaling parameter and is adjusted to ensure that the sum
of squared scores C2

BP matches the number of nodes. The value of β must be less
than the absolute value of the reciprocal of the largest eigenvalue of W to ensure
convergence. [Bonacich, 1987]

PageRank Centrality
PageRank centrality can be described as a variant of Bonacich centrality, where the
influence of a node within a network is adjusted by a damping factor. PageRank
was originally developed by Google’s founders for their search engine to rank web
pages and has since been used in various network analysis scenarios.

The PageRank of a node i, is defined as follows:

CPR(i) =
1−d

N
+d ∑

j∈M(i)

CPR( j)
degout( j)

where CPR(i) represents the PageRank of node i. The constant d is the damping
factor, typically set between 0.8 and 0.9. The constant N is the total number of
nodes. M(i) are nodes that link to i, indicating the direct influence on i. degout( j)
is the number of outbound links from node j, which adjusts the contribution of j to
the centrality of i. [Brin and Page, 1998]

2.4 A Simple Network Example

The purpose of this section is to make it easier for the reader to understand the
various centrality measures. We have created a simple graph and calculated all all
centrality measures previously mentioned on this graph.
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Chapter 2. Background on Graph Theory

Network Visualization

A

B C

D

40 10

20

10 30

10

Figure 2.6 Network consisting of four nodes and weighted links.

Centrality for each node

Centrality Measure A B C D
Out Degree 1.0000 1.0000 2.0000 2.0000

Betweenness 3.0000 0 1.0000 3.0000
Closeness 0.0143 0.0059 0.0200 0.0125

Eigenvector 0.9166 1.0000 0.8404 0.7302
Katz 17.6959 27.7848 28.7240 44.1217

PageRank 0.2851 0.2193 0.2159 0.2798
Bonacich 0.7011 0.6129 1.2126 1.2893

Invariant distribution 0.3077 0.2308 0.1538 0.3077

Table 2.1 Centrality for each node

2.5 Communicability

Concepts closely related to communicability have been researched for decades
within the field of graph theory and network analysis. The modern formalization of
communicability, as it is understood today, significantly owes to the contributions
of [Estrada and Hatano, 2008]. In their paper they proposed a way of analyzing
communicability by using the exponential of the weight matrix. This allows them
to not only capture the shortest path, but all possible paths between nodes. The mo-
tivation for this is firstly that communication between nodes do not always follow
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2.5 Communicability

the shortest path and secondly that shortest paths can fail to capture the nuances in
the network, like bottlenecks for instance. The communicability concepts aims to
increase the understanding and quantify how easily information travels through a
network. Communicability quantifies how easily node i ∈ V can communicate with
node j ∈ V by considering both the shortest path and random walks with varying
length between the nodes. The authors define communicability from node i to j as

Gi j =
1
s!

Si j + ∑
k>s

1
k!

W (k)
i j = eW

i j (2.10)

where Si j is the number of shortest paths with length s between nodes i and j.
Furthermore, W (k)

i j is the number of walks of length k > s connecting i to j. Note
that for k = 1, Wi j is the element (i, j) of the weight matrix. The intention is to
decrease the contribution to communicability as the length of the walk increases,
which is why the first and second terms in Equation 2.10 are divided by s! and k!,
respectively. [Estrada and Hatano, 2008]
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3
Financial Network Models

In this chapter we will explain and go through how graph theory and network dy-
namics can be applied in the context of finance. More specifically, we will explain
how a financial network model is defined, how communicability can be calculated
and how stress can be initiated in these systems. Many of the concepts we go
through here will be illustrated with a simple example.

3.1 The Financial Model

The theory of network dynamics is commonly used in a financial context. In finan-
cial networks, each node represents a financial institution, such as a bank, and the
links between them represent financial relationships such as assets and liabilities.
This network-based perspective is useful for understanding the dependencies and
the potential for systemic risk within the financial system.

• Nodes (Financial Institutions): Each node in the network corresponds to a
financial institution. These engage in various activities such as lending and
borrowing money to each other. Every institution is characterized by its bal-
ance sheet, which includes assets, liabilities, and equity.

• Links (Assets and Liabilities): The links between the nodes represent finan-
cial relationships. Assets: When a bank lends money to another bank, the
lending bank has an asset in the form of the loan amount. This is represented
as a directed link from the lending bank to the borrowing bank. Liabilities:
Conversely, when a bank borrows money, it incurs a liability. This is repre-
sented as a directed link from the borrowing bank to the lending bank.

• Equity (Buffer): Each financial institution has an equity value, which serves
as its buffer against financial distress. Equity is the difference between a
bank’s total assets and total liabilities. It represents the institution’s ability
to absorb losses, providing a cushion that helps prevent default during times
of financial stress. Equity is used as a proxy for default, and a bank is consid-
ered to be in default once its equity becomes negative.
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3.2 Communicability in Financial Networks

3.2 Communicability in Financial Networks

Applying the theory of communicability in financial networks was done in the paper
[Silva et al., 2015]. Here, the authors introduce three measures that we will focus
on; impact susceptibility, impact diffusion and impact fluidity. In order to use these
measures they create a vulnerability matrix. This matrix is created by calculating
each banks vulnerability index which is simply the liabilities from one bank to an-
other divided by the lending banks equity. The vulnerability matrix V is defined
as:

Vi j =
Li j

E j
(3.1)

In other words, when Vi j > 1 the liability from i to j surpasses the equity of j. In this
case, a default at bank i will lead to a subsequent default of bank j. In the other case
when Vi j < 1, bank j can absorb the direct default of bank i, but not necessarily if
default is spread indirectly to j. The vulnerability matrix is used as a weight matrix
to create a new graph. In this graph, a link represents a potential direct contagion
path. Taking higher powers of V gives longer contagion paths, for example V power
of k quantifies the of contagion paths of length k. [Silva et al., 2015]

Impact Susceptibility
Impact susceptibility is a measure built on the theory of communicability. It aims
to understand how likely a financial institution is to be impacted by a randomly oc-
curring default originating from somewhere in the network. Impact susceptibility,
therefore, measures a banks potential for contagion from the other banks. The im-
pact susceptibility uses the communicability in Equation 2.10 to capture the dynam-
ics that nodes can communicate not only through the shortest path, but also through
other paths of longer length. The impact susceptibility S j of bank j is defined as

S j(G(V )) =

{ 1
kin

j (V )
∑i∈V,i ̸= j Gi j(V ), when kin

j (V )> 0

0, otherwise
(3.2)

where kin
j (V̄ ) is the number of direct neighbours j such that Gi j(V )> 0. Multiplying

a bank’s value by its equity calculates the impact susceptibility as the total loss,
rather than as a fraction.

[Silva et al., 2015]

Impact Diffusion
Impact diffusion aims give the opposite perspective from impact susceptibility.
While impact susceptibility measures how vulnerable a bank is, impact diffusion
aims to measure the potential harm a bank could cause the other banks. The mea-
sure quantifies how large the impact from a bank is on the network to determine its
importance. The bank j’s influence on diffusion can be analyzed by observing how
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its removal affects the difference in communicability of the vulnerability matrix.
This is done by removing all the links that originate from j making it a sink node
and effectively removing the bank’s ability to spread contagion. The logic behind
impact diffusion approach is as follows. If j plays an important role in spread-
ing contagion, then its exclusion should significantly reduce the networks ability to
spread contagion. On the other hand, if j is non-important in spreading contagion,
then, excluding j should only have a minor effect on the networks ability to spread
contagion. The impact diffusion I j(V ) that j exerts on the network is defined as

I j(V ) =
1

kout
j (V ) ∑

i∈V
∑

k∈V,k ̸=i

[
Gik (V )−Gik

(
V ( j−)

)]
, (3.3)

where k(out)
j is the number of nodes that are directly connected that will de-

fault in the event of a default of j. The modified vulnerability matrix where
all links originating from j are removed is denoted V ( j−). The summation term,[
Gik (V )−Gik

(
V ( j−)

)]
, can be interpreted as the communicability index of paths

from i to k through j. The summation term is the difference in communicability
between the original vulnerability network and the modified vulnerability network
which effectively is the communicability between i and k that includes j on the path.
In conclusion, Equation 3.3 measures the decrease in communicability that occurs
when j’s ability to diffuse impact is disabled. A high impact diffusion implies that
the bank has the ability to propagate losses to many other banks in the network
and the opposite for a low impact diffusion. However, impact diffusion does not
distinguish between important and non important banks and does consequently not
quantify the harm that these banks can cause to the network. This implies that a
bank might spread losses to many banks, but those banks are of less importance.
Conversely, a bank might spread losses to only a few, but important banks. By
multiplying the final matrix with the equity vector, we address this issue so that
the impact diffusion is adjusted to account for the banks’ importance. [Silva et al.,
2015]

Impact Fluidity
Impact fluidity is the global equivalent of impact susceptibility. Impact fluidity is
defined as how easily losses propagate through the network. Contagion propagation
is more likely for networks with high impact fluidity. This is due to the impact
fluidity’s close relationship to impact susceptibility. The network’s impact fluidity
is calculated as the average impact susceptibility for all nodes in the network as
Equation 3.4 shows.

F(V ) =
1
N ∑

j∈V
S j(V ), (3.4)

When a majority of the banks have a high impact susceptibility, it is more likely
for defaults to propagate throughout the network which results in a high impact
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fluidity value, F(V ). Conversely, when a majority of the banks have a low impact
susceptibility it is more likely that defaults remain localized near their origin which
leads to a low impact fluidity value, F(V ). In conclusion, this measure shows how
potentially easy an impact can travel in the network. [Silva et al., 2015]

3.3 A Simple Network Example

This serves as an example to illustrate how the metrics: impact susceptibility and
impact diffusion are calculated. When we do the calculations on our larger, more
complicated networks, we do it in the same way.

Network Visualization

A

B C

D

40 10

20

10 30

10

Figure 3.1 Financial network where each bank has an equity of 100.

Impact Susceptibility Calculations
Asset Matrix where Ai j is an asset for i and a liability for j.

A =


0 0 0 10
40 0 0 0
10 20 0 0
0 10 30 0
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Liability Matrix where L is the transpose of A

L =


0 40 10 0
0 0 20 10
0 0 0 30
10 0 0 0


Equity Vector

E = (100,100,100,100)

Vulnerability Matrix where Vi j =
Li j
E j

V =


0 0.4 0.1 0
0 0 0.2 0.1
0 0 0 0.3

0.1 0 0 0


Exponential of Vulnerability Matrix

eV =


1.0013 0.4001 0.1400 0.0390
0.0060 1.0008 0.2002 0.1300
0.0150 0.0020 1.0006 0.3001
0.1000 0.0200 0.0063 1.0013


Impact Susceptibility

Si = ∑
j ̸=i

(eV ) jiEi

Impact Susceptibility for Each Bank

SA = (0.0060+0.0150+0.1000) ·100
= 0.1210 ·100 = 12.1037

SB = (0.4001+0.0020+0.0200) ·100
= 0.4221 ·100 = 42.2127

SC = (0.1400+0.2002+0.0063) ·100
= 0.3465 ·100 = 34.6599

SD = (0.0390+0.1300+0.3001) ·100
= 0.4691 ·100 = 46.9133

Impact Susceptibility Vector

S(G(V )) =
(
12.1037 42.2127 34.6599 46.9133.

)
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Impact Diffusion Calculations
Asset Matrix where Ai j is an asset for i and a liability for j.

A =


0 0 0 10
40 0 0 0
10 20 0 0
0 10 30 0


Liability Matrix where L is the transpose of A

L =


0 40 10 0
0 0 20 10
0 0 0 30
10 0 0 0


Equity Vector

E = (100,100,100,100)

Vulnerability Matrix where Vi j =
Li j
E j

V =


0 0.4 0.1 0
0 0 0.2 0.1
0 0 0 0.3

0.1 0 0 0


Exponential of Vulnerability Matrix

eV =


1.0013 0.4001 0.1400 0.0390
0.0060 1.0008 0.2002 0.1300
0.0150 0.0020 1.0006 0.3001
0.1000 0.0200 0.0063 1.0013


Exponential of Vulnerability Matrix with VA j = 0

eV A−
=


1.0000 0 0.0 0.00
0.0060 1 0.2 0.13
0.0150 0 1.0 0.30
0.1000 0 0.0 1.00


Difference between eV and eV A−

eV − eV A−
=


0.0000 0.4001 0.1400 0.0390
0.0000 0.0000 0.0002 0.0000
0.0000 0.0020 0.0000 0.0001
0.0000 0.0200 0.0063 0.0000
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Difference matrix multiplied with E

(57.9165,0.0265,0.2095,2.6368)

Impact diffusion of A

IA(V ) = 60.7893

Impact diffusion vector

I(V ) =
(
60.7893 40.1778 36.7237 14.9893.

)
3.4 DebtRank

DebtRank is an algorithm designed for assessing systemic risk, which in this con-
text refers to the risk of losses and defaults in a financial system. The algorithm
was introduced in the paper [Battiston et al., 2012]. The concept was then further
developed in the paper [Battiston et al., 2015]. This refined version will be used in
our thesis and is presented below.

Model Description
The financial system is represented with a weighted directed matrix where each
node is a bank. A link Ai j connecting the nodes i, j represent an interbank loan from
the creditor i to debtor j. Each node is characterized by its balance sheet, containing
the banks assets and liabilities. An asset is considered an interbank asset when it
corresponds to a link in the network, a principle that also applies to liabilities. Assets
and liabilities not represented in the network are referred to as external. The total
amount of interbank assets and liabilities for bank i is equal to Ai = ∑ j Ai j and
Li = ∑ j A ji, respectively. A bank i’s equity is defined through the balance sheet
identity, being the difference between total assets and total liabilities

Ei = Ai −Li +AE
i −LE

i (3.5)

where AE
i LE

i are the external assets and liabilities of the bank i. Once a bank’s
liabilities surpass its assets, i.e equity becomes negative, it cannot meet its claims
and consequently is insolvent. Insolvency is used as a proxy for default and once a
bank has defaulted it cannot meet any of its claims. A bank that has not yet defaulted
up until time t is said to be active and belongs to the set A(t), which formally is
defined according to Equation 3.6

A(t) = {i : Ei(t)> 0}. (3.6)
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3.4 DebtRank

We want to extend the balance sheet identity 3.5 to hold over time t. In order to
do so we first make the assumption that the assets are valued mark-to-market while
liabilities are valued at their face value. The motivation behind this is that if a bank
j is under stress it is less likely to be able to meet its claims towards bank i which
consequently lowers the value of the interbank assets Ai j. The stress propagation
dynamics from borrowers to lender follows the assumption that the relative change
in the borrowers j’s equity is equal to the relative change of the lender i’s asset Ai j
with the delay of one time unit.

Ai j(t +1)
Ai j(t)

=
E j(t)

E j(t −1)
=⇒ Ai j(t +1) =

{
Ai j(t)

E j(t)
E j(t−1) if i ∈ A(t)

Ai j(t) = 0 if i /∈ A(t)
(3.7)

The interbank liability from j to i A ji, however, remains unchanged even though j
is under stress. As mentioned, once a bank i has defaulted, it cannot meet any of its
claims, effectively setting the liabilities of i, A ji, to zero. The balance sheet identity
for bank i over time t can therefore be formulated according to Equation 3.8.

Ei(t) = AE
i (t)+LE

i (t)+ ∑
j∈A(t−1)

Ai j(t)−∑
j

A ji(t) (3.8)

Note that the information about a bank’s default reaches the other banks with a one
time unit delay, which is why we sum over the active banks A at time t −1. Given
the fact that external assets and liabilities as well as interbank liabilities remain
constant the evolution of equity is solely determined by the evolution of interbank
assets according to Equation 3.9.

Ei(t +1)−Ei(t) = ∑
j∈A(t)

Ai j(t +1)− ∑
j∈A(t−1)

Ai j(t)

= ∑
j∈A(t−1)

[Ai j(t +1)−Ai j(t)]− ∑
j∈A(t−1)\A(t)

Ai j(t +1)︸ ︷︷ ︸
=0

(3.9)

The last term in Equation 3.9 is the sum over the set of banks being active at t−1 and
non-active banks at t which consequently makes the interbank assets being valued at
zero at time t+1. Using Equation 3.7 recursively we can rewrite the equity evolution
as seen in Equation 3.10

Ei(t +1)−Ei(t) = ∑
j∈A(t−1)

Ai j(t)
E j(t −1)

[E j(t)−E j(t −1)]

= ∑
j∈A(t−1)

Ai j(0)
E j(0)

[E j(t)−E j(t −1)] (3.10)
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Defining the leverage matrix Λ̃ as

Λ̃i j =

{Ai j(0)
E j(0)

if j ∈ A(t −1)

0 if j /∈ A(t −1)
(3.11)

the equity evolution can be further rewritten as per Equation 3.12.

Ei(t +1) = max

[
0,Ei(t)+ ∑

j∈A(t−1)
Λ̃i j [E j(t)−E j(t −1)]

]
(3.12)

By letting hi(t +1) = Ei(0)−Ei(t+1)
Ei(0)

denote the cumulative relative equity loss it can
be rewritten according to Equation 3.13

hi(t +1) =
Ei(0)−Ei(t +1)

Ei(0)

=
Ei(0)−max

[
0,Ei(t)+∑ j∈A(t−1) Λ̃i j [E j(t)−E j(t −1)]

]
Ei(0)

= min

[
Ei(0)
Ei(0)

,
Ei(0)−Ei(t)−∑ j∈A(t−1) Λ̃i j [E j(t)−E j(t −1)]

Ei(0)

]

= min

1,hi(t)−∑
Λ̃i jE j(0)

Ei(0)︸ ︷︷ ︸
=Λi j

[
E j(t)−E j(t −1)

E j(0)

]
= min

[
1,hi(t)+∑Λi j [h j(t)−h j(t −1)]

]
(3.13)

where Λi j =
Λ̃i jE j(0)

Ei(0)
is the reduced interbank leverage matrix. In conclusion, we get

the evolution of cumulative relative equity loss as seen in Equation 3.14

hi(t +1) = min
[
1,hi(t)+∑Λi j [h j(t)−h j(t −1)]

]
(3.14)

3.5 Centrality based on DebtRank

The DebtRank algorithm does not automatically assign a centrality score to the
banks; it is an algorithm for stress propagation. However, the outcomes of applying
DebtRank can be used to construct a ranking. We do this by introducing the initial
distress to each of the banks one at a time. It then iterates as the DebtRank algorithm
states until a steady state has been reached. At this point, each of the other banks will
have a value between 0 and 1, stating the proportion of their equity loss. We then
multiply this value with the bank’s initial equity and sum over all banks. This gives
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3.5 Centrality based on DebtRank

the total loss for the system caused by a specific bank. We call this aggregate figure
DebtRank impact, where higher scores indicate a greater systemic importance of the
bank. To gain a different perspective, one can calculate each bank’s vulnerability by
summing its loss each time one of the other banks is subjected to initial stress. This
sum gives a DebtRank vulnerability for each bank.
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3.6 A Simple Network Example

The purpose of this section is to make it easier for the reader to understand the
DebtRank model and how the measures from the algorithm are derived.

Network Visualization

A

B C

D

40 10

20

10 30

10

Figure 3.2 Financial network where each bank has an equity of 100.

DebtRank Calculation
Reduced Interbank Leverage Matrix

Λ =


0 0 0 10

100
40
100 0 0 0
10
100

20
100 0 0

0 10
100

30
100 0


Step 1

hA(1) = 1

hB(1) = min
[

1,hB(0)+
40
100

· (hA(0)−0)+0 · (hC(0)−0)+0 · (hD(0)−0)
]
= 0.4

hC(1) = min
[

1,hC(0)+
10

100
· (hA(0)−0)+

20
100

· (hB(0)−0)+0 · (hD(0)−0)
]
= 0.1

hD(1) = min
[

1,hD(0)+0 · (hA(0)−0)+
10
100

· (hB(0)−1)+
30

100
· (hc(0)−1)

]
= 0
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Step 2

hA(2) = 1

hB(2) = min
[

1,hB(1)+
40

100
· (hA(1)−hA(0))

]
= 0.4

hC(2) = min
[

1,hC(1)+
10

100
· (hA(1)−hA(0))+

20
100

· (hB(1)−hB(0))
]
= 0.18

hD(2) = min
[

1,hD(1)+
10

100
· (hB(1)−hB(0))+

30
100

· (hC(1)−hC(0))
]
= 0.07

Step 3

hA(3) = 1

hB(3) = min
[

1,hB(2)+
40

100
· (hA(2)−hA(1))

]
= 0.4

hC(3) = min
[

1,hC(2)+
10
100

· (hA(2)−hA(1))+
20
100

· (hB(2)−hB(1))
]
= 0.18

hD(3) = min
[

1,hD(2)+
10
100

· (hB(2)−hB(1))+
30
100

· (hC(2)−hC(1))
]
= 0.094

Final Conditions

hA(3) = 1
hB(3) = 0.4
hC(3) = 0.18
hD(3) = 0.094

Final values for all initial conditions
Scenario 1: Initial Condition at Node A

Initial Values Final Values
hA(0) = 1 hA(3) = 1
hB(0) = 0 hB(3) = 0.4
hC(0) = 0 hC(3) = 0.18
hD(0) = 0 hD(3) = 0.094
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Scenario 2: Initial Condition at Node B

Initial Values Final Values
hA(0) = 0 hA(3) = 0.01603
hB(0) = 1 hB(3) = 1
hC(0) = 0 hC(3) = 0.20160
hD(0) = 0 hD(3) = 0.16048

Scenario 3: Initial Condition at Node C

Initial Values Final Values
hA(0) = 0 hA(3) = 0.03012
hB(0) = 0 hB(3) = 0.01200
hC(0) = 1 hC(3) = 1
hD(0) = 0 hD(3) = 0.30120

Scenario 4: Initial Condition at Node D

Initial Values Final Values
hA(0) = 0 hA(3) = 0.10000
hB(0) = 0 hB(3) = 0.04000
hC(0) = 0 hC(3) = 0.01800
hD(0) = 1 hD(3) = 1

DebtRank Impact

DebtRank Impact (A) =
0.4+0.18+0.094

3
·100 = 22.467

DebtRank Impact (B) =
0.01603+0.20160+0.16048

3
·100 = 12.670

DebtRank Impact (C) =
0.03012+0.01200+0.30120

3
·100 = 11.444

DebtRank Impact (D) =
10.000+0.04000+0.01800)

3
·100 = 5.267
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DebtRank Vulnerability

DebtRank Vulnerability (A) =
0.01603+0.03012+0.10000

3
·100 = 4.872

DebtRank Vulnerability (B) =
0.4+0.01200+0.04000

3
·100 = 15.067

DebtRank Vulnerability (C) =
0.18+0.20160+0.01800

3
·100 = 13.387

DebtRank Vulnerability (D) =
0.094+0.16048+0.30120

3
·100 = 18.523

Comments
In this simple example, we observe that bank A causes the largest additional losses
in the network, followed by banks B, C, and D. Conversely, bank D is the most
financially vulnerable, followed by banks B, C, and finally A.

Comparing the DebtRank impact with the weighted in-degree,

Cin =
(
50,30,30,10

)
we see a clear correlation. Similarly, comparing the DebtRank vulnerability with
the weighted out-degree,

Cout =
(
10,40,30,40

)
we again observe a clear correlation.
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4
Methods for Network
Reconstruction

In the complex world of financial networks, the lack of data presents a significant
challenge for analyzing and modeling. To overcome this problem we turn to the
theory of random graphs. By using both established and new methods we are able
to reconstruct these unknown networks in different ways. Here we present five dif-
ferent methods which we believe each give a unique perspective.

4.1 Maximum Entropy Method

The maximum entropy method, abbreviated as ME, maximises the entropy while
satisfying the given constraints of each institution’s total interbank assets and liabil-
ities. Entropy in this context means disorder or uncertainty, more precisely it means
that the graph’s structure is less predictable. By creating the most unbiased graph
possible one assures that the model is driven by data rather than by preconceived
notions of the graph’s characteristics. It is especially useful in financial network
analysis, where assumptions can lead to simplified models that fail to capture nu-
ances within the system.

Maximizing the entropy is not the same as maximising the number of links,
which one might be mistaken to believe. Instead this method provides the frame-
work of creating an unbiased graph. Any complexity or connectivity is a reflection
of the financial reality.

Again, we let W denote the interbank matrix with Wi j ≥ 0 being the bilateral
exposures between bank i and j and Wi j = 0 when i = j. Furthermore we denote
the interbank assets and liabilities as Ai = ∑ j Wi j and Li = ∑ j Wji, respectively. Im-
plementing this method involves solving an optimization problem. The entropy we
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4.1 Maximum Entropy Method

aim to maximize is mathematically represented by the following Equation 4.1.

minimize
N

∑
i

N

∑
j ̸=i

Wi j ln
(

Wi j

AiL j

)

subject to
N

∑
j=1

Wi j = Ai, ∀i = 1 . . .N,

N

∑
j=1

Wji = Li, , ∀i = 1 . . .N,

Wi j ≥ 0 ∀(i, j)

(4.1)

The optimization problem 4.1 can be solved numerically with the RAS-algorithm
[Upper and Worms, 2002].

When using this framework on our data, the result is a highly interconnected
and complex graph. It is important to note that this complexity, evidenced by high
degree distribution, is a reflection of our underlying constraints and not an inherent
feature of the method. A graph constructed with the ME-method can be seen in
Figure 4.1

Figure 4.1 Graph of maximum entropy network.
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4.2 Minimum Density Method

The minimum density method, abbreviated as MD, minimises the density while
satisfying the given constraints of each institution’s total interbank assets and lia-
bilities. Minimal density in this context simply means creating a graph with as few
connections as possible. The method is based on the idea that a simpler graph, one
with fewer but more significant links, can provide a clearer understanding of the es-
sential relationship between nodes. The method identifies the core connections that
are needed to represent the financial flows.

The mathematical implementation of the method is an optimization problem.
We let W denote the interbank matrix with Wi j ≥ 0 being the bilateral exposure
between bank i and j. Furthermore we denote the interbank assets and liabilities as
Ai = ∑ j Wi j and Li = ∑ j Wji, respectively. Note that banks are not allowed to lend to
themselves and therefore Wi j = 0 where i = j. By iteratively removing links that are
redundant the objective is to minimize the number of links which in mathematical
terms can be expressed according to Equation 4.2.

minimize
N

∑
i

N

∑
j ̸=i

c ·1[Wi j>0]

subject to
N

∑
j=1

Wi j = Ai, ∀i = 1 . . .N,

N

∑
j=1

Wji = Li, , ∀i = 1 . . .N,

Wi j ≥ 0 ∀i, j,

(4.2)

However, the optimization problem is computationally expensive to solve. A
network that minimizes the number of link given the constraints in 4.2 is generated
through the MD-algorithm according to the following steps.

1. Compute current deficits:

• Asset deficit ADi = (∑ j Wi j −Ai)

• Liabilities deficit LDi = ∑ j Wji −Li

2. Select link (i, j) according to probability Qi j ∝ max
{

ADi
LD j

, LDi
AD j

}
∀i, j.

3. Load exposure Wi j = min
{

ADi,LD j
}

and accept Wi j if f (W ′ = W +Wi j) ≥
f (W ).
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4. Iterate until deficits are zero and thus satisfies the following equations

∑∑Wi j = ∑Ai (4.3)

∑
j

Wi j = Ai ∀i (4.4)

∑
j

Wji = Li ∀i (4.5)

The function f is a smooth function which increases as the number of links decrease,
assuming that the interbank constraints are satisfied. [Anand et al., 2017].

The result is an aesthetically pleasing and low-density graph which can be seen
in Figure 4.2

Figure 4.2 Graph of minimum density network.

4.3 Preferential Attachment Method

This method, abbreviated as PA, is a nuanced adaptation of the well-known pref-
erential attachment method, which is widely recognized for its ability to generate
networks mimicking the ones seen in the real world. In the classical model the net-
work evolves by adding new nodes, where the likelihood of forming a connection to
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an existing node is proportional to the number of connections that node already has.
This mechanism naturally leads to "rich get richer" dynamics. Nodes with many
connections will grow their connectivity at a faster rate than nodes with fewer con-
nections.

The unweighted PA- matrix is generated by introducing 20 new links with each
new node. The choice of adding 20 new links per node is caused by the need to
meet the interbank assets and liabilities constraints, which is often unachievable
with a lower number of links. Furthermore, this model is very sensitive to the order
in which the nodes are introduced to the system. Because the topography of the
resulting graph is heavily influenced by the order, it is important that one chooses
it wisely. Recognizing this, our modified approach randomizes the order in which
they are introduced. This guarantees that the order does not affect our result. The
method is still, as all our methods are, in compliance with our given constraints of
each bank’s total interbank assets and liabilities. The weights are distributed on the
unweighted PA-matrix using the RAS-algorithm.

The result is an interesting network where a few banks play a more crucial
role. Due to our constraints, the network has a high degree distribution. A graph
constructed with the PA-method can be seen in Figure 4.3

Figure 4.3 Graph of preferential attachment network.
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4.4 Small World Method

The small world method, abbreviated as SW, acknowledges the prevalent clustering
characteristics observed in many real-world networks. This recurring phenomenon
is well documented in network studies and this method aims to capture this by
assuming geographical clustering.

We implement this concept by assigning a number to each bank based on its
continent: AMER, EUR, or ASIA. This number determines the likelihood of a con-
nection between the banks. Banks sharing the same number are connected with the
probability p = 1, ensuring that all banks on the same continent form a strongly
connected network. If the banks do not share the same number, a link is drawn
with probability p = 0.25. This much lower value reflects the lower probability of
connection between geographically distant banks. An unweighted matrix was cre-
ated using these probabilities. Note that we still do not allow self exposures and
therefore all matrix entries (i, j) where i = j were set to 0. The weighted matrix is
then created using the RAS-algorithm under the same given constraints of total in-
terbank assets and liabilities. The resulting network shows geographical clustering.
However, due to the necessity of complying to the given constraints, the extent of
clustering is moderate and the degree distribution is high. A graph constructed with
the SW-method can be seen in Figure 4.4.

Figure 4.4 Graph of small world network.
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4.5 Random Link Equal Probability Method

The random link equal probability method, abbreviated as RL, unlike the previous
two, is not inspired by previous work. Instead it is constructed by us under the as-
sumption that there exists a constant, quantifiable likelihood of one bank extending
credit to another. The method still complies to the constraint of total interbank assets
and liabilities. One advantage of this method is that it does not assume any quali-
ties of a certain bank, instead it treats all banks equally when creating the network.
Given the absence of empirical data we chose a probability of 40 percent. Firstly, an
unweighted matrix was generated where the probability of a matrix entry of 1 and 0
was 40 and 60 percent, respectively. A matrix entry of 1 at element (i, j) represented
an loan from i to j and a 0 meant no exposure between the parties. Since we do not
allow self exposures, all matrix entries (i, j) when i = j were set to zero. Secondly,
we distribute the interbank assets and liabilities between the banks that where given
a 1 in the unweighted matrix. The interbank assets and liabilities where iteratively
distributed using the RAS-algorithm until the total interbank assets and liabilities
constraints where satisfied. The constraints are satisfied when the matrix’s row sum
equal the total interbank assets and matrix’s column sum equal the total interbank
liabilities. The result is a network which, in terms of degree distribution lies some-
where between the ME-network and the MD-network. A graph constructed with the
RL-method can be seen in Figure 4.5

Figure 4.5 Graph of random link equal probability network.
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4.6 RAS Iterative Algorithm

The RAS algorithm itself is not an algorithm for estimating interbank networks, but
it can be used in conjunction with methods such as the ME-method and PA-method
to yield interbank networks. The algorithm is an iterative method for adjusting the
rows and columns of a non-negative matrix to satisfy specific constraints. It adjusts
the matrix so that the sum of the rows and columns meets predefined totals while
preserving the ratios of the entries as much as possible. The algorithm follows these
steps:

1. The matrix A is the matrix to be adjusted and R and S are identity matrices
initially. The goal is to find R and S such that the matrix multiplication RAS
satisfies the predefined matrix row and column sums r and s.

2. For each row, calculate the row scaling factors

Rii =
ri

∑
N
j Ai jS j j

(4.6)

Apply the row scaling and update A = RA

3. For each column, calculate the column scaling factors

Sii =
si

∑
N
i Ai jRii

(4.7)

Apply the column scaling and update A = AS

4. Repeat the steps 2-3 until convergence or until the row- and column sums of
the matrix RAS are sufficiently close to the target row- and column sums r
and s.

[Trinh and Phong, 2013]

4.7 Monte Carlo Simulation

Apart from the maximum entropy, the resulting networks from the methods above
will vary slightly with each application due to the stochastic nature of these meth-
ods. Consequently, there is no single, definitive graph. To enhance the robustness
and reliability of our analysis, we employ Monte Carlo Simulation for each method.
Monte Carlo Simulation is a powerful computational technique that utilizes random
sampling to approximate solutions, making it ideal for dealing with the inherent
randomness in our methods. By running the methods 100 times, we ensure that our
results are not dependent on any single, potentially atypical graph simulation. As a
result, the metrics we calculate on the network represent average values from 100
network reconstruction simulations for each method. This approach provides a more
robust statistical basis for our conclusions. The number of simulations are limited
to 100 due to long computation times. [IBM, 2020].
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5
Data and Methodology

In this chapter we will firstly discuss the data used in our model. Secondly, we will
explain Spearman’s rank correlation which we use to compare our results. Finally,
we will explain step by step our methodology.

5.1 Our data

The data used in this thesis is sourced from The Bank of International Settlements.
We believe this is the most reliable and accurate information available. However,
the data set did not provide us with all the information we needed. Therefore, we
had to rely on certain assumptions. We selected data on the 76 largest banks in the
world. This data included each banks total interbank assets, total interbank liabilities
and total exposures at the end of 2020 [Basel Committee on Banking Supervision,
2023]. These figures were then distributed between the banks in five different ways
as seen in Chapter 4. The total of the interbank assets and liabilities in our data
set does not equal each other, as the figures are part of a much larger network in
reality. In our model we need them to do so, therefore we introduce a node denoted
as ’Other’. The connections between this node and the other banks are assigned to
ensure that the total interbank assets and liabilities align correctly. Additionally, we
collected data on each bank’s total exposures. This data was used for the purpose of
calculating each banks equity.

Our main challenge was to find precise estimates of the bank’s equity, which
in our model represents the bank’s buffer. The Liquidity Coverage Ratio or LCR,
mandated by Basel III, states that a bank is required to hold high-quality liquid
assets sufficient to cover the total net cash outflows over a 30-day stressed period
[BBVA, 2023]. Although there are many regulatory frameworks such as Basel’s
LCR that provide useful information, it was difficult to translate them into concrete
and reliable numbers. This is both due to lack of data but also because the regulatory
framework is customized for the real world which is more complex and dynamic
than that of our model. By assuming that banks maintain a buffer ranging from 10
to 15 percent of their total exposures, we obtained each banks equity. By estimating

44



5.2 Spearman’s Rank Correlation

equity in this way, we believe they sufficiently reflect reality while also aligning
with the rest of our model to provide meaningful results. The banks’ total exposures
was taken from the same dataset from The Bank of International Settlements.

5.2 Spearman’s Rank Correlation

Spearman’s rank correlation is often preferred over Pearson’s correlation coefficient
in specific statistical analyses because it focuses on identifying monotonic relation-
ships rather than strictly linear ones. Pearson’s correlation assesses the degree of
linear relationship between two variables, which means it calculates how well a lin-
ear equation can describe the relationship between them. This method assumes that
the change in one variable directly corresponds to a proportional change in the other,
which is ideal for variables that increase or decrease at a consistent rate relative to
each other.

However, in our case, we do not assume a linear relationships but rather seek
monotonic relationships between our variables. A monotonic relationship is one
where the variables tend to move in the same direction (either increasing or decreas-
ing), but not necessarily at a constant rate. In these cases, Spearman’s rank correla-
tion is more appropriate because it is designed to measure the strength and direction
of a monotonic relationship. Spearman’s method works by converting the data val-
ues into ranks and then calculating Pearson’s correlation coefficient for these ranks.
This approach allows Spearman’s rank correlation to capture relationships where
the variables increase or decrease together but not necessarily at a constant or pro-
portional rate. Thus, it provides a more general assessment of association in cases
where the assumption of linearity is too rigid or not evident in the data. [Networks,
2023]

5.3 Step by Step

For each of the five methods for network reconstruction, the following steps are
performed:

1. Network Creation: A network consisting of 77 banks is created as the meth-
ods state in Chapter 4.

2. Centrality Metrics Calculation: The centrality metrics introduced in Chap-
ter 2 are calculated for each bank.

3. Stress Simulation: The DebtRank algorithm is used to simulate stress on the
network. In each scenario, a different bank is subjected to initial stress, with
equity levels varying between 10% and 15% of total exposures.
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4. DebtRank Calculation: The results from each simulation are used to calcu-
late the DebtRank impact and DebtRank vulnerability for each bank.

Steps 1 to 4 are repeated 100 times to perform a Monte Carlo simulation.

5. Correlation Analysis: Spearman’s rank correlations are used to determine
how the pre-calculated centrality metrics correlate with the DebtRank met-
rics.

6. Importance Assessment: The DebtRank impact is used to assess which
banks are the most critical to each network under varying equity levels.
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6
Results and Analysis

In this chapter we will go through and analyze our results. First we will show how
the selected centrality measures correlate with DebtRank for each network. We will
then compare the five different reconstruction methods with each other, both in re-
gards to additional losses and additional defaults. Finally, we will show our rankings
of most important banks and highlight similarities and differences with the Basel
Committee’s annual assessment.

6.1 Correlation between DebtRank and Selected
Measures

DebtRank Impact
We aim to investigate whether the network centrality measures presented in 2.3 are
effective predictors of DebtRank impact. Specifically, we want to determine if a
bank with a high centrality also causes significant losses in the system in the event
of a default, thereby identifying systemically important banks. While impact diffu-
sion, as presented in 3.2, is not strictly a centrality measure, it indicates a bank’s
ability to spread losses, making it relevant for our comparison. Given the signifi-
cant role of interbank liabilities in driving financial stress during crises, we will also
compare their size with DebtRank impact. Note that a bank’s liabilities are equiva-
lent to its weighted in-degree. The correlation will indicate the extent to which the
simulation outcome can be explained by the properties of the liabilities. Specifi-
cally, we will compare network centrality, impact diffusion and interbank liabilities
with DebtRank impact.

To evaluate our measure’s predictive ability in identifying systemically impor-
tant banks, we will compare the previously mentioned measures with DebtRank im-
pact from 100 simulations per equity level. The only exception is the ME-network,
where we will compare DebtRank impact from a single simulation per equity level.
This comparison will be conducted by calculating Spearman’s rank correlation be-
tween each measure and DebtRank impact, which will indicate the strength of their
monotonic relationship.
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DebtRank Vulnerability
A central bank in the network could be vulnerable to other banks within the net-
work. Such a central bank might be susceptible to financial contagion and, as a
result, suffer significant losses. Therefore, we investigate whether high centrality is
associated with large losses for that particular bank. The centrality measures that
will be considered are the ones presented in 2.3. We will also consider the impact
susceptibility as presented in 3.2, as it aims to capture how susceptible a bank is
to financial contagion. In contrast to interbank liabilities, the size of a bank’s inter-
bank assets determines its susceptibility to financial contagion. Therefore, we will
include interbank assets in the comparison with DebtRank vulnerability. The cor-
relation will indicate the extent to which the simulation outcome can be explained
by the properties of the assets. Note that a banks interbank assets is equivalent to
its weighted out-degree. Specifically, we will compare network centrality, impact
susceptibility and interbank assets with DebtRank vulnerability.

To evaluate are measure’s predictive ability in identifyling systemically vulnera-
ble banks, we will compare the previously mentioned measures with DebtRank vul-
nerability from 100 simulations per each equity level. Again, for the ME-network,
only one simulation per equity level will be executed. The comparison will again
be conducted by calculating Spearman’s rank correlation and the result which will
indicate the strength of their monotonic relationship.

Maximum Entropy
The ME-method aims to maximize the entropy in the network, resulting in a net-
work where all nodes are directly linked to each other with the exception of the
’Other’-bank. This implies that the out-degree centrality is equal for all nodes except
the ’Other’-bank. Consequently, this measure is not useful in this context, as calcu-
lating the correlation with a constant vector is meaningless. Similarly, the between-
ness centrality becomes redundant because the shortest paths between the nodes
are, with a few exceptions, the direct link. This results in a betweenness centrality
of almost only zeros for all nodes, making it irrelevant for the ME-network and thus
excluded from our analysis.

As shown in Figure 6.1, PageRank perfectly correlates with the DebtRank im-
pact when equity exceeds 11% of total exposures. Both eigenvector centrality and
Katz centrality exhibit a positive, although slightly weaker, monotonic relation-
ship with DebtRank impact. In contrast, Bonacich Power centrality demonstrates
negative correlation with DebtRank impact. Interbank liabilities and impact diffu-
sion also correlate almost perfectly with DebtRank impact, particularly as equity
increases. These correlations remain relatively constant across equity levels until
equity decreases to 10% and 11% of total exposures. This likely occurs because the
financial network becomes increasingly unstable as equity decreases.

All the correlation values for the centrality measures and DebtRank vulnera-
bility remain relatively constant across the equity levels as Figure 6.2 shows. Katz
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6.1 Correlation between DebtRank and Selected Measures

Centrality, impact susceptibility, and interbank assets exhibit a perfect positive cor-
relation with DebtRank vulnerability. Conversely, closeness centrality shows a per-
fect negative correlation with DebtRank vulnerability.

Figure 6.1 Spearman’s correlation between various network measures and Deb-
tRank impact for equity between 10 and 15 percent of total exposures simulated
with one instance of the maximum entropy model.
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Figure 6.2 Spearman’s correlation between various network measures and Deb-
tRank vulnerability for equity between 10 and 15 percent of total exposures simu-
lated with one instance of the maximum entropy model.

Minimum Density
Unlike the ME-method, the MD-method results in a network with varying node de-
grees. Therefore, out-degree centrality and betweenness centrality will be included
in the subsequent analysis.

As with the ME-network, PageRank stands out as the centrality measure with
the strongest monotonic relationship to DebtRank impact, as shown in Figure 6.3.
The strength of the PageRank correlation remains relatively constant for equity lev-
els above 11% but decreases for lower levels. Invariant distribution centrality shows
the second strongest correlation with DebtRank impact, though it is weaker than
PageRank, with values around 0.75. In-degree centrality also exhibits a strong cor-
relation with DebtRank impact. Although not as pronounced as in the ME-network,
interbank liabilities correlate strongly with DebtRank impact, particularly as equity
increases. None of the remaining centrality measures display a particularly strong
monotonic relationship with DebtRank impact, however, they all share the charac-
teristic of increasing strength as equity levels rise. Impact diffusion also demon-
strates a strong monotonic relationship, equalling PageRank at the higher end of the
equity spectrum.

Impact susceptibility, followed by interbank assets exhibits the strongest corre-
lation with DebtRank vulnerability. Katz centrality and out-degree centrality shows
the strongest relationship with DebtRank vulnerability among the centrality mea-
sures, with an average score slightly greater than 0.6. The average correlation

50



6.1 Correlation between DebtRank and Selected Measures

strengths are relatively constant across the equity spectrum.

Figure 6.3 Average Spearman’s correlation between various network measures
and DebtRank impact for equity between 10 and 15 percent of total exposures sim-
ulated with 100 different network instances of the minimum density model.
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Figure 6.4 Average Spearman’s correlation between various network measures
and DebtRank vulnerability for equity between 10 and 15 of total exposures per-
cent simulated with 100 different network instances of the minimum density model.

Preferential Attachment
In the PA-networks, PageRank displays the most consistent and robust relationship
with DebtRank impact, as illustrated in Figure 6.5. When equity exceed 11% of to-
tal exposures, the correlation between DebtRank impact and PageRank is nearly 1,
with small standard deviations. However, as equity drops below 11%, the correla-
tion decreases and standard deviation increases. Among other centrality measures,
Katz and eigenvector centrality follow PageRank in showing a relatively strong
monotonic relationship. Impact diffusion and interbank liabilities also demonstrates
a strong correlation with DebtRank impact, maintaining values near 1 for equity
above 11%, but this correlation significantly weakens when equity is lower.

When examining DebtRank vulnerability, impact susceptibility and interbank
assets exhibits perfect postive correlation. Katz centrality shows the highest corre-
lation among the centrality measures, but it remains just below 1. Across various
equity levels, all the centrality measures, as well as impact susceptibility, exhibit
relatively stable values. The variances for all these measures and across different
equity levels are relatively small.
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Figure 6.5 Average Spearman’s correlation between various network measures
and DebtRank impact for equity between 10 and 15 percent of total exposures sim-
ulated with 100 different network instances of the preferential attachment model.

Figure 6.6 Average Spearman’s correlation between various network measures
and DebtRank vulnerability for equity between 10 and 15 percent of total exposures
simulated with 100 different network instances of the preferential attachment model.
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Small world
Similar to the previously considered networks, PageRank exhibits the strongest
monotonic relationship with DebtRank impact for the SW-network, as shown in
Figure 6.7. The correlation between DebtRank impact and PageRank is close to 1
with small standard deviations for equity levels greater than 11% of total exposures.
As in the previous cases, PageRank’s correlation decreases as equity decreases be-
low 11% of total exposures. Katz centrality, followed by eigenvector centrality,
shows the strongest monotonic relationship after PageRank among the other cen-
trality measures. Interbank liabilities and impact diffusion also demonstrate strong
monotonic relationships with DebtRank impact, with values close to 1 for equity
levels above 11% of total exposures, but these correlations decrease dramatically
below that level.

Impact susceptibility, interbank assets and Katz centrality all show a positive
perfect correlation with DebtRank vulnerability. Eigenvector followed by PageR-
ank show the second and third strongest correlation with DebtRank vulnerability,
respectively. All of the considered network measures and their variances as well as
impact susceptibility remain relatively constant for levels of equity.

Figure 6.7 Average Spearman’s correlation between various network measures
and DebtRank impact for equity between 10 and 15 percent of total exposures sim-
ulated with 100 different network instances of the small world model.
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Figure 6.8 Average Spearman’s correlation between various network measures
and DebtRank vulnerability for equity between 10 and 15 percent of total exposures
simulated with 100 different network instances of the small world model.

Random Link Equal Probability
As with all the other network reconstruction methods, PageRank shows the
strongest monotonic relationship with DebtRank impact for the RL-network with
values very close to 1. Among the other centrality measures, eigenvector followed
by Katz centrality show the strongest correlation, with correlation values around
0.75. Impact diffusion and interbank liabilities correlate strongly with DebtRank
impact with values close to 1. For all of the previously mentioned measures the
strength of the correlation decreases as the equity decreases, particularly for 10 and
11 % of total exposures. None of the other centrality measures correlate particularly
strongly with DebtRank impact.

Impact susceptibility, Katz centrality and interbank assets exhibit a perfect pos-
itive correlation with DebtRank vulnerability. Eigenvector centrality followed by
PageRank exhibit the second and third strongest monotonic relationship with Deb-
tRank vulnerability, respectively. Closeness correlates negatively with DebtRank
vulnerability. None of the other centrality measures correlates particularly strongly
with Debtrank vulnerability.
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Figure 6.9 Average Spearman’s correlation between various network measures
and DebtRank impact for equity between 10 and 15 percent of total exposures sim-
ulated with 100 different network instances of the random link equal probability
model.

Figure 6.10 Average Spearman’s correlation between various network measures
and DebtRank vulnerability for equity between 10 and 15 percent of total exposures
simulated with 100 different network instances of the random link equal probability
model.
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6.2 Comparison between Reconstruction Methods

In this analysis, we aim to evaluate how different network reconstruction models
perform regarding the amount of additional loss and the number of additional de-
faults. We believe it is valuable to focus on the middle range of equity because high
buffers result in minimal system changes, while low buffers cause excessive system
disruptions. To better set the results in perspective, density has been calculated for
a graph by each method. The table is seen below.

Method Density

Minimum Density (MD) 0.0259
Maximum Entropy (ME) 0.9742
Preferential Attachment (PA) 0.4432
Small-World (SW) 0.4924
Random Link Equal Probability (RL) 0.3896

Table 6.1 Comparison of densities for different methods

Losses and Defaults
Additional loss When the banks’ equity is low, the MD-method creates a signif-
icantly more robust system compared to the others. Losses are better absorbed and
do not propagate as efficiently. The other four methods, being denser, perform sim-
ilarly to each other. At medium levels, the SW-network performs the worst, while
the other networks, including the MD-network, perform similarly. At high equity
levels, all models perform almost identically. Focusing on the middle range of the
spectrum indicates that the MD-network is slightly superior, while the SW-network
is clearly inferior. The RL-network, the ME-network and the PA-network give ad-
ditional losses between the previously mentioned networks. Overall, the differences
between the models are smaller than expected. See Figure 6.11 for reference.

Additional defaults When the banks’ equity is 10%, the MD-method again cre-
ates a significantly more resilient network, resulting in far fewer defaults compared
to the other methods. The ME-network performs the worst in this scenario. At eq-
uity levels of 12% and above, the MD-network is actually slightly worse than the
others. As the equity increases towards 15%, the number of defaults decreases and
approaches zero for all models. See Figure 6.12 for reference.
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Figure 6.11 Additional loss for each network reconstruction model over the equity
range 10% to 15%.

Figure 6.12 Additional defaults for each network reconstruction model over the
equity range 10% to 15%.
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Network Fluidity
We have calculated the impact fluidity of each network. The theory suggests that
higher impact fluidity should increase losses, as banks are more vulnerable in highly
fluid networks. The impact fluidity for each scenario is shown below. However, the
results do not align with expectations. Although the MD-networks perform the best
for low buffers and show the lowest impact fluidity for each buffer as anticipated,
predicting resilience based on this metric is not possible. This difficulty is illustrated
clearly when comparing their values. For example, at 10% equity, the MD-networks
have the same impact fluidity as the SW-networks at 13% equity, despite significant
differences in additional losses in both scenarios.

Metric MD ME PA SW RL
Equity 10% 1.83×1011 2.12×1011 2.06×1011 2.11×1011 2.11×1011

Equity 11% 1.79×1011 2.00×1011 1.95×1011 1.99×1011 1.99×1011

Equity 12% 1.75×1011 1.91×1011 1.87×1011 1.90×1011 1.90×1011

Equity 13% 1.72×1011 1.83×1011 1.80×1011 1.83×1011 1.83×1011

Equity 14% 1.69×1011 1.77×1011 1.74×1011 1.77×1011 1.77×1011

Equity 15% 1.66×1011 1.72×1011 1.70×1011 1.72×1011 1.72×1011

Table 6.2 Network fluidity for each scenario

6.3 Most Central Banks

In this section, we identify the most central banks by determining which cause the
largest additional losses in the system upon default. We will rank the top 10 banks
for each scenario. Each scenario consists of a specific reconstruction model and a
specified equity level. Finally, we will merge all tables into one final rank.

Maximum Entropy

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 JP Morgan ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction China Construction China Construction China Construction Bank of China
4 Agricultural Bank Agricultural Bank Bank of China Bank of China Bank of China China Construction
5 MUFG Bank of China Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong
6 HSBC MUFG MUFG MUFG MUFG MUFG
7 Citigroup HSBC HSBC HSBC HSBC HSBC
8 Shanghai Pudong Shanghai Pudong Agricultural Bank Citigroup Société Générale Société Générale
9 BNP Paribas Citigroup Citigroup Agricultural Bank Citigroup BNY Mellon

10 Bank of China BNP Paribas Société Générale Société Générale Agricultural Bank Citigroup

Table 6.3 Average additional losses in decreasing order by equity for the ME-
method.
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Minimum Density

Rank 10% of Total exposures 11 % of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 ICBC ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction China Construction China Construction China Construction China Construction
4 Agricultural Bank Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong
5 Shanghai Pudong Citigroup MUFG MUFG MUFG MUFG
6 HSBC Agricultural Bank Citigroup Bank of China Bank of China Bank of China
7 Citigroup MUFG Agricultural Bank Société Générale Société Générale Société Générale
8 MUFG HSBC HSBC Citigroup Agricultural Bank BNY Mellon
9 Société Générale Bank of China Bank of China Agricultural Bank BNY Mellon Agricultural Bank

10 Bank of China Société Générale Société Générale HSBC Citigroup Citigroup

Table 6.4 Average additional loss in decreasing order by equity for the MD-
method.

Preferential Attachment

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 JP Morgan ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction China Construction China Construction China Construction Bank of China
4 Agricultural Bank Shanghai Pudong Bank of China Bank of China Bank of China China Construction
5 HSBC Agricultural Bank Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong
6 MUFG Bank of China Agricultural Bank Agricultural Bank Citigroup Citigroup
7 Citigroup Citigroup Citigroup Citigroup Agricultural Bank Société Générale
8 Shanghai Pudong MUFG MUFG Société Générale Société Générale Agricultural Bank
9 BNP Paribas HSBC HSBC MUFG MUFG BNY Mellon

10 Bank of China BNP Paribas Société Générale HSBC BNY Mellon MUFG

Table 6.5 Average additional losses in decreasing order by equity for the PA-
method.

Small World

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC ICBC ICBC ICBC ICBC ICBC
2 China Construction China Construction China Construction HSBC HSBC JP Morgan
3 Agricultural Bank Bank of China JP Morgan JP Morgan JP Morgan HSBC
4 MUFG Agricultural Bank HSBC Société Générale Société Générale Société Générale
5 Bank of China JP Morgan Bank of China BNP Paribas BNP Paribas Bank of China
6 Shanghai Pudong Shanghai Pudong Shanghai Pudong China Construction Bank of China BNP Paribas
7 JP Morgan MUFG Agricultural Bank Bank of China China Construction China Construction
8 Mizuho HSBC BNP Paribas Shanghai Pudong UBS UBS
9 China Minsheng BNP Paribas MUFG UBS Shanghai Pudong Shanghai Pudong

10 HSBC Industrial Bank Société Générale MUFG Unicredit Unicredit

Table 6.6 Average additional losses in decreasing order by equity for the SW-
method.
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Random Link Equal Probability

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 ICBC ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction China Construction China Construction China Construction China Construction
4 Agricultural Bank Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong Shanghai Pudong
5 Shanghai Pudong Citigroup MUFG MUFG MUFG MUFG
6 HSBC Agricultural Bank Citigroup Bank of China Bank of China Bank of China
7 Citigroup MUFG Agricultural Bank Société Générale Société Générale Société Générale
8 MUFG HSBC HSBC Citigroup Agricultural Bank BNY Mellon
9 Société Générale Bank of China Bank of China Agricultural Bank BNY Mellon Agricultural Bank

10 Bank of China Société Générale Société Générale HSBC Citigroup Citigroup

Table 6.7 Average additional losses in decreasing order by equity for the RL-
method.

Final Rank and Comparison with the Basel Committee
By comparing 6.3 - 6.7, we observe small differences in the top-ranking banks. JP
Morgan consistently ranks as the most important bank, and the five Chinese banks
— ICBC, China Construction, Shanghai Pudong, and Bank of China — frequently
follow. An interesting result is that in the SW-networks, Chinese banks are more
central compared to other networks. Table 6.6 shows that this method is the only
one where JP Morgan is consistently less important, with ICBC being the most
important. This is likely because the SW-method enhances the centrality of banks
in key geographic areas, such as Asia, by requiring banks from the same continent
to have links. Based on these results, we constructed a final ranking, weighted to
emphasize the middle range of equity. The final ranking is shown in Table 6.8.

Table 6.8 Our final rank of the most important banks.

Bank Rank

JP Morgan 1
ICBC 2
China Construction 3
Shanghai Pudong 4
Bank of China 5
HSBC 6
MUFG 7
China Agriculture 8
Citigroup 9
Societe Generale 10

Since 2014, the Basel Committee has conducted annual assessments of the in-
terbank market, aiming to quantify and rank the systemic importance of banks. Each
bank is evaluated across five categorizes: size, interconnectedness, substitutability,
complexity and cross-jurisdictional activity. The overall score is derived from an
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average of these categories. The methodology used by the Basel Committee is both
more complex and more sophisticated than that of our thesis [Banking Supervi-
sion, 2018]. Nevertheless, our primary goal is the same, to determine each bank’s
importance. Therefore we wanted to compare our findings with their conclusions.
The Basel Committee’s results are presented in Tables 6.9-6.14 and are taken from
Bank of International Settlements. [Bank for International Settlements, 2021]. We
have highlighted in yellow the name of those banks that are included in our final
ranking seen in Table 6.8. When comparing our results with the Basel Commitee’s
we notice similarities. Our top 10 list includes many of the same banks which are
included in their list. The similarities in the ranking are especially prominent when
comparing Basel’s list sorted by the categories size and interconnectedness. Here, 8
out of 10 banks are the same as in our list. In the other categories, only between 3
and 5 banks are the same as our list. Considerably less than the categories size and
interconnectedness. The similarities and differences are shown in Table 6.9 - 6.14.

Table 6.9 10 highest overall scores in Basel’s annual assessment. 6 out of 10 banks
are the same as in our final list.

Bank Overall score

JP Morgan 441
Citi Group 377
HSBC 369
BNP Paribas 333
ICBC 303
MUFG 292
Bank of America 291
Bank of China 287
Deutsche Bank 262
Barclays 250
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Table 6.10 10 highest size scores in Basel’s annual assessment. 8 out of 10 banks
are the same as in our final list.

Bank Size score

ICBC 517
Agricultural Bank 433
China Construction 433
JP Morgan 396
Bank of China 379
MUFG 356
Bank of America 315
HSBC 282
Citigroup 274
BNP Paribas 266

Table 6.11 10 highest interconnectedness scores in Basel’s annual assessment. 8
out of 10 banks are the same as in our final list.

Bank Interconn. score

JP Morgan 441
ICBC 389
Bank of China 341
Agricultural Bank 277
Citigroup 274
MUFG 253
HSBC 250
SMFG 246
Bank of America 239
China Construction 232

63



Chapter 6. Results and Analysis

Table 6.12 10 highest complexity scores in Basel’s annual assessment. Only 3
banks are the same as in our final list.

Bank Complexity score

JP Morgan 498
Goldman Sachs 419
Morgan Stanley 414
Barclays 391
Deutsche Bank 390
Citigroup 360
Mizuho 354
Bank of America 308
MUFG 281
BNP Paribas 275

Table 6.13 10 highest cross-jurisdictional scores in Basel’s annual assessment. 5
out of 10 of the banks are the same as in our final list.

Bank C. Jurist. score

HSBC 704
BNP Paribas 623
Citigroup 475
Santander 469
ING Bank 382
JP Morgan 371
MUFG 366
Bank of China 297
Barclays 281
Deutsche Bank 280
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Table 6.14 10 highest substitutability scores in Basel’s annual assessment. 5 out of
10 banks are the same as in our final list.

Bank Substi. score

Citigroup 500
State Street 500
JP Morgan 500
BNY Mellon 500
Bank of America 432
Deutsche Bank 354
HSBC 340
BNP Paribas 281
China Construction 248
Bank of China 246
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7
Conclusions

7.1 Our work

A Brief Recapitulation
This thesis uses aggregate data from the Bank of International Settlements to create
financial networks. These networks are created in five different ways. They all rep-
resent different scenarios of how the interbank market could be. The goal is to ana-
lyze how defaults propagate to assess the importance of banks and to examine how
the network’s structure affects the system’s vulnerability. We apply network theory,
communicability theory, and the DebtRank algorithm to identify which banks are
the most vulnerable and which propagate the largest losses to the system. We also
investigate how DebtRank correlates with centrality and communicability measures.

DebtRank Impact
Among the considered centrality measures, PageRank most accurately predicts
the DebtRank impact across all network models. As equity increases PageRank
becomes even more effective and the correlation variance is reduced. Following
PageRank, eigenvector and Katz centrality also show strong correlation which can
be explained by their theoretical similarities with PageRank. Each of these met-
rics are rooted in the concept of iterative computation, where the importance of a
node is determined by the importance of its neighbours, reflecting the principle that
connections to high-scoring nodes contribute more to a node’s score. Therefore, all
three metrics capture global network centrality rather than just local centrality. This
means they evaluate the influence of a node within the context of the entire net-
work, considering the broader connectivity patterns and the cumulative importance
of all nodes. Unlike local centrality measures, which focus on a node’s immedi-
ate neighbourhood, these global measures provide a more comprehensive view of a
node’s significance in the overall structure of the network. However, one could ar-
gue that Bonacich centrality also share these similarities and should therefore cor-
relate strongly with DebtRank impact as well, which is not the case. A possible
explanation to this could be the value of the decay rate β which is used when cal-
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culating Bonacich centrality. The parameter regulates the influence of distant nodes
and could be the reason why the centrality differs a lot form PageRank, eigenvec-
tor and Katz centrality. None of the other centrality measures show any particularly
convincing correlations with DebtRank impact. See Figures 6.1, 6.3, 6.5, 6.7, and
6.9 for reference.

The ranking of impact diffusion closely predicts the ranking of DebtRank im-
pact, particularly in the higher range of the equity spectrum. The correlation be-
tween impact diffusion and DebtRank impact is strong across all five network mod-
els, although it seems as if it is increasingly strong in high density networks. This is
clearly illustrated when comparing the ME-network with the MD-network in Fig-
ures 6.2 and 6.3. The correlation decreases for lower equity which can be explained
by an increasingly sensitive and unstable system. This argument is strengthened by
the increase of variance of the correlation for the lower equity. In conclusion, im-
pact diffusion accurately predicts the ranking of the DebtRank impact and thus also
the systemically important banks. We believe this high correlation is interesting as it
shows that the DebtRank simulation is largely a matter of communicability between
banks.

Interbank liabilities correlate strongly with DebtRank impact across all network
models. The naive predictor, interbank liabilities, accurately predicts the systemi-
cally important banks in our setting. This shows that banks with higher interbank
liabilities are more likely to propagate financial stress throughout the network. By
focusing on interbank liabilities, we can identify potential points of failure within
the financial system. Consequently, monitoring and managing these liabilities is
crucial for maintaining financial stability and mitigating systemic risk.

DebtRank Vulnerability
A few of the considered centrality measures accurately predicts DebtRank vulner-
ability. Among the considered centrality measures, Katz centrality correlates the
strongest with DebtRank vulnerability. This correlation is very strong and we there-
fore believe Katz centrality can be useful to evaluate which bank’s are the most
vulnerable. Eigenvector centrality, followed by PageRank, also strongly correlates
with DebtRank vulnerability. However, these correlations are consistently weaker
than Katz centrality, making them less effective than Katz. The average correlation
values remain relatively constant for different equity levels although the variances
are relatively large in some cases. No large differences of average correlation can
be seen between the networks either. See figures 6.2, 6.4, 6.6, 6.8, and 6.10 for
reference.

The ranking of impact susceptibility does accurately predict the ranking of Deb-
tRank vulnerability. The correlation scores are consistent across the different equity
levels and ranges between 0.95 and 1 with small differences between the networks.
The variances of the correlation scores are relatively low which suggest a stable
mean. Impact susceptibility aims to measure how susceptible a bank is to financial
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contagion and does capture the dynamics as anticipated in our setting.
Interbank assets correlate strongly with DebtRank vulnerability. This strong cor-

relation shows that banks with higher interbank assets are more vulnerable to finan-
cial contagion. By accurately predicting a bank’s susceptibility to financial distress,
interbank assets serve as a crucial metric for assessing systemic risk. Monitoring
these assets allows for better identification of banks that may act as contagion points
in a crisis. Consequently, managing interbank assets is essential for enhancing the
resilience of the financial network and preventing widespread financial instability.

Evaluation of Network Reconstruction Methods
Our main conclusion is that more defaults occur in dense networks compared to low-
density networks when equity is low. This is highlighted by the fact that the MD-
networks outperform all other networks at the 10% level, while the ME-networks
experience the highest number of defaults. As equity increases, these differences
diminish. At high equity levels, the situation reverses. Although the differences are
small, the MD-networks actually perform the worst in terms of the number of de-
faults. We believe this is because, in the MD-network, the stress is concentrated
on a few banks. When buffers are low, this concentration helps contain the overall
network stress, making the MD-network perform better. However, when buffers are
high, the same concentration causes these few banks to default more easily, leading
to worse performance in terms of defaults.

Regarding additional loss, the MD-networks perform the best for low equity, as
expected, while the other networks perform similarly. In the middle range of equity,
the SW-network is inferior to the others. At higher buffer levels, again, all differ-
ences diminish. Interestingly, the network aiming to capture geographic clustering
appears to be less robust. We believe this is due to the significant number of impor-
tant banks from China, which are highly interconnected in this scenario. As seen
in Table 6.1 the three methods - PA, SW, and RL - create networks with similar
density. Despite this similarity, the SW-networks perform slightly worse in terms
of additional loss. This suggests that density is not the only influencing factor. As
previously mentioned, we believe the poorer performance of the SW-network is due
to the increased centrality of the large Chinese banks which in turn causes larger
losses in the system.

It is important to realize, however, that the analysis above focuses on systemic
risk. The MD-method results in stronger networks for low equity but does not nec-
essarily provide more support for each individual bank. In fact, the less dense the
network, the greater the impact on a few key nodes. Therefore, even though the
overall damage to the network is lower, the damage to a few banks is likely to be
more severe.

An important takeaway from our analysis is the practical implications of the
relatively small differences observed between networks. The difference in loss and
number of defaults across different equity levels are bigger than those between the
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networks, even when considering extreme scenarios like the MD-network. In the
pursuit of a resilient financial network, we believe that while network structure is
important, it is secondary to the size of a bank’s equity. A purely fictional network
with greater variance in banks’ assets, liabilities, and equity might better highlight
the importance of network structure than our models do.

Finally, we conclude that network fluidity is ineffective at predicting future
losses in a network under financial distress. The measure does capture communica-
bility on a global level but fails to incorporate the impact of changes in equity in a
sufficient way.

Evaluation of Banks
JP Morgan is the most important bank, followed by five Chinese banks. Our results
show clear similarities with the Basel Committee’s, especially in the categories size
and interconnectedness. Our results differ more when comparing with the other
categories; complexity, substitutability and cross-jurisdictional activity. Our model
does not include these variables and therefore it is expected that our ranking differs
more in these aspects. When comparing it is evident that our model favors Chinese
banks more than the Basel Committee’s assessment. We believe this discrepancy
arises because our model captures the size and high interconnectivity of Chinese
banks. However, it does not necessarily incorporate other important aspects, such
as their complexity and cross-jurisdictional activity, which the Basel Committee
considers. One possible way of improving the model, to capture the lower cross-
jurisdictional activity from the Chinese banks, is to create a network where the
probability of links between Chinese banks and non-Chinese banks are lower.

7.2 Future Work

There are many possible ways one could further analyze the interbank market. There
are an infinite amount of parameters that can be varied which makes the field broad.
Future work should focus on a few areas: more accurate methods for network recon-
struction, more advanced financial models, more nuanced ways of initiating distress
in the model and deeper integration between finance and network theory.

We believe network reconstruction is an area which deserves its own focus. As
the lack of data serves as a challenge, making realistic networks is the first important
step in being able to do any further analysis. In our network reconstruction we chose
5 different methods and only included interbank assets and interbank liabilities. In a
future paper one could include more data thus making the networks more complex
and closer to reality. In the paper [Anand et al., 2017] the authors focus on network
reconstruction. They use maximum entropy, minimum density and 5 other methods.
Their goal is to asses how well each of these methods are for reconstruction. This
paper is a good example of how one could focus on the important subject of filling
the gap between partial data and robust models. One could back test how well the
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reconstructed network resemble reality by simulating a real event on the network
and draw comparisons to reality.

Another angle in future work would be to focus on simpler, non-realistic net-
work models and see how metrics such as DebtRank turn out. By constructing net-
works from theory instead of trying to resemble reality, one could find valuable
insights in how defaults propagate. If the models are simpler it might be easier to
integrate more concepts from network theory with finance. These insights can then
help to understand complex scenarios that closer mimics the real world.

In our thesis all initial shocks are set to 1 so that the first bank defaults. It would
be interesting to see how smaller shocks are absorbed by the system, this could give
a more nuanced and maybe realistic view on the systems vulnerabilities. In reality it
is unlikely that there is only one isolated shock in a system. It would be interesting
to initiate numerous shocks in different parts of the system and see what happens.
Future works could focus on varying the magnitude of the shocks and how they are
initiated to give a more complex understanding.

The financial model in this thesis is rather simple. Equity is defined as the dif-
ference between assets and liabilities. In future work one could use more complex
models. These could include more financial instruments such as bonds, options,
commodities, futures and forwards. It could include proactive risk management in
the form of hedging. This opens up for new interesting questions: What happens in
the interbank market if the oil price goes down?

We also believe back testing can be a powerful tool in this area of science.
Simulating an actual historic event on a model can help to validate its quality. If
available, this could be done by collecting data on the interbank market before and
after the COVID-19-crash in 2020. Let the initial stress in your model match the
stress caused on numerous days in March of 2020, including the black Monday II
when the Dow Jones index plummeted almost 13 percent. Evaluate how well your
model matches how the real interbank market was affected. Try to do necessary
adjustments to optimize the model. This could imply increasing a banks exposure
to the stock market etc. Similar back testing could be done for the time when Credit
Suisse defaulted. The lack of data can in many cases provide a challenge. If one can
overcome this, the concept of back testing can be useful.
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8
Appendix

Rank 10% of Total exposures 11 % of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 ICBC ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction MUFG MUFG MUFG China Construction
4 MUFG MUFG Agricultural Bank China Construction Agricultural Bank Shanghai Pudong
5 Citigroup Agricultural Bank China Construction Bank of China China Construction MUFG
6 Agricultural Bank Citigroup Bank of China Agricultural Bank Bank of China Bank of China
7 HSBC Shanghai Pudong HSBC Shanghai Pudong Shanghai Pudong Agricultural Bank
8 Shanghai Pudong HSBC Shanghai Pudong HSBC Unicredit Société Générale
9 Bank of China Bank of China Société Générale Citigroup Société Générale Unicredit

10 BNP Paribas Société Générale Citigroup Société Générale UBS HSBC

Table 8.1 Average number of additional defaults in decreasing order by equity for
the minimum density method.

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC JP Morgan ICBC UBS ICBC JP Morgan
2 JP Morgan China Construction JP Morgan Agricultural Bank JP Morgan ANZ
3 ANZ ICBC Credit Suisse Bank of China ANZ Commonwealth
4 Commonwealth ANZ UBS China Construction Commonwealth National Australia Bank
5 Westpac Commonwealth Agricultural Bank ICBC National Australia Bank Westpac
6 RBC National Australia Bank Bank of China Industrial Bank Westpac CIBC
7 Agricultural Bank Westpac BoComm Shanghai Pudong CIBC Bank of Montreal
8 Bank of Beijing Bank of Montreal China Construction BNP Paribas Bank of Montreal Bank of Nova Scotia
9 Bank of China Bank of Nova Scotia China Minsheng Société Générale Bank of Nova Scotia RBC
10 BoComm RBC CITIC HSBC RBC Toronto Dominion

Table 8.2 Average number of additional defaults in decreasing order by equity for
the maximum entropy method.

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 China Construction ICBC ICBC ICBC ICBC ICBC
3 JP Morgan China Construction China Construction Bank of China Bank of China Bank of China
4 Agricultural Bank Bank of China Bank of China China Construction China Construction China Construction
5 Shanghai Pudong Shanghai Pudong Citigroup Shanghai Pudong Shanghai Pudong Citigroup
6 HSBC Agricultural Bank Agricultural Bank Société Générale Citigroup MUFG
7 MUFG Citigroup Shanghai Pudong MUFG Société Générale BNY Mellon
8 Citigroup HSBC MUFG Citigroup MUFG UBS
9 Bank of China MUFG BNP Paribas HSBC BNY Mellon Shanghai Pudong

10 BNP Paribas BNP Paribas Société Générale Agricultural Bank HSBC BNP Paribas

Table 8.3 Average number of additional defaults in decreasing order by equity for
the preferential attachment method.
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Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 ICBC ICBC HSBC HSBC JP Morgan JP Morgan
2 China Construction China Construction ICBC ICBC Citigroup ICBC
3 Agricultural Bank HSBC Société Générale Société Générale ICBC Société Générale
4 MUFG JP Morgan BNP Paribas BNP Paribas HSBC Citigroup
5 Shanghai Pudong BNP Paribas China Construction UBS BNY Mellon ANZ
6 Bank of China Agricultural Bank Crédit Agricole China Construction Société Générale Commonwealth
7 Mizuho Bank of China Barclays Citigroup Bank of China National Australia Bank
8 JP Morgan MUFG Bank of China JP Morgan China Construction Westpac
9 HSBC Shanghai Pudong Shanghai Pudong BNY Mellon BNP Paribas CIBC

10 China Minsheng Santander UBS Bank of China UBS Bank of Montreal

Table 8.4 Average number of additional defaults in decreasing order by equity for
the small world method.

Rank 10% of Total exposures 11% of Total exposures 12% of Total exposures 13% of Total exposures 14% of Total exposures 15% of Total exposures
1 JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan JP Morgan
2 ICBC ICBC ICBC ICBC ICBC ICBC
3 China Construction China Construction MUFG MUFG MUFG China Construction
4 MUFG MUFG Agricultural Bank China Construction Agricultural Bank Shanghai Pudong
5 Citigroup Agricultural Bank China Construction Bank of China China Construction MUFG
6 Agricultural Bank Citigroup Bank of China Agricultural Bank Bank of China Bank of China
7 HSBC Shanghai Pudong HSBC Shanghai Pudong Shanghai Pudong Agricultural Bank
8 Shanghai Pudong HSBC Shanghai Pudong HSBC Unicredit Société Générale
9 Bank of China Bank of China Société Générale Citigroup Société Générale Unicredit

10 BNP Paribas Société Générale Citigroup Société Générale UBS HSBC

Table 8.5 Average number of additional defaults in decreasing order by equity for
the random link equal probability method.
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