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Abstract

Heating, ventilation, and air-conditioning (HVAC) systems are ubiquitous and are
one of the major components responsible for energy consumption in a typical build-
ing system. In light of the imminent energy crisis, there is an increasing demand to
revisit the building systems and save as much energy as possible. In this regard, the
scope of the thesis is to explore opportunities for data-driven optimization of HVAC
systems. Traditionally, optimization in HVAC systems has relied on offline opti-
mization requiring domain expertise to schedule a set of optimal controls, but such
approaches often require extensive domain expertise. Another drawback is that as
the system changes over time, these controls go out of tune and need to be adapted.
Thus, data-driven optimization approaches (such as reinforcement learning) appear
more appealing due to their ability to adapt online and model and solve complex
problems.

A primary objective of the thesis is to carry out exploratory data analysis exper-
iments to quantify the savings potential and expose the optimization space for RL.
The main objective is to explore distributed reinforcement learning via multi-agent
RL strategies (MARL) and compare and contrast the pros and cons of MARL with
single-agent RL. The work benchmarks two of the popular contemporary MARL
strategies, centralized training and decentralized execution, and value-mixing ap-
proaches, along with proposing two novel MARL enhancements in HVAC systems:
a linear value-mixing strategy (inspired by Q-function mixing, QMIX) and turn-
based games, that attempt to alleviate some of the problems of multi-agent credit
assignment and non-stationarity surrounding MARL.

The experimental results include the learning performance of various RL strate-
gies and the performance benchmarks against the closed-loop controller under real-
istic conditions. The experimental results reveal that the RL strategies perform sig-
nificantly better than the closed-loop controller (with a few exceptions), achieving
power savings of up to 15% on yearly simulations with live weather profiles. The
results also highlight the tradeoffs between optimality and sampling efficiency, fur-
ther corroborating the prejudice about MARL, where the single-agent RL performs
better in terms of optimality, while the MARL approach displays faster learning.
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1
Introduction

Building systems have been identified to play a vital role in addressing the cur-
rent energy crisis and mitigating environmental impact. It is estimated that building
systems are responsible for 40% of global energy consumption and account for
nearly 30 % of carbon emissions [Shaikh et al., 2014; Energy Efficiency & Renew-
able Energy, n.d.; Abergel T., 2018]. Thus, there is a growing need to optimize the
operational efficiency of these systems. This optimization would directly translate
into a reduced carbon footprint and impact on overall sustainability. For business
organizations, improved operational efficiency would directly translate to energy
savings, and a data-driven optimization approach would lead to reduced operational
and maintenance costs.

Typically, energy systems comprise low-level rule-based and PID controllers
(supervisory control loops) whose objective are to meet the cooling load require-
ments by tracking a set of setpoints. The underlying problem here is the lack of
intelligence or “adaptability”, which leads to problems at different levels. Firstly,
the task of setting the controller setpoints is typically crafted using domain-specific
knowledge, and modeling all the dynamic factors affecting the performance of the
system can be challenging. Then, there is the aspect of tuning the supervisory con-
trol elements. As in the case of any real-world system, the system dynamics are
bound to vary over time due to wear and tear or other external factors, which means
the controller ought to be re-tuned to adapt to the changing dynamics. Over time,
these problems can have a deteriorating impact on overall performance and en-
ergy consumption. Today, adjusting the setpoints and the controllers follows a re-
active approach, i.e. the performance is evaluated periodically, and domain-specific
and engineering knowledge is required to tweak the parameters. Instead, the the-
sis discusses a proactive approach, where an autonomous entity learns to anticipate
operating conditions and outputs an optimal set of parameters. Thus, data-driven
optimization can be employed to implicitly model the behavior of the system to
intelligently choose the setpoints for the building.

The project will focus on a chiller plant responsible for meeting the cooling load
requirements of a data center. The objective here is to optimize the operational ef-
ficiency of the HVAC system by leveraging the available degrees of freedom. The
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Chapter 1. Introduction

execution involves choosing the optimal setpoints for supervisory control loops to
impact the overall power consumption. The primary job of these supervisory con-
trol loops is to efficiently track the setpoints. Thus, improving operational efficiency
boils down to the efficient staging and setpoint scheduling of the different equip-
ment involved.

1.1 Literature Review

HVAC systems is comprised of regulatory control elements - rule-based controllers
and PID controllers. The conventional approach involves analyzing the cooling load
requirements of the building, under varying external conditions and other influenc-
ing factors to craft a setpoint schedule for the supervisory control elements. There
are two challenges with this approach. Firstly, it is nearly impossible to account for
all the factors impacting power consumption, such as occupancy, heat dissipation,
equipment performance discrepancies, etc [Nagy et al., 2023]. Secondly, the sched-
ule fails to adapt to the specific system and may require engineering efforts to retune
the system regularly.

Considering the some of these challenges, optimization approachs is have been
explored for the task. As real-world control systems are often tagged with hard con-
straints, a model predictive control (MPC) strategy has been a popular choice for
diverse optimization problems in HVAC systems. [Ma et al., 2012; Maasoumy et
al., 2011] have demonstrated the use of MPC in cooling systems, with a primary
focus of designing simplified but decently accurate equipment models to be used by
MPC. [Wei et al., 2014] present MPC as a co-scheduling strategy, where the MPC
controller assists the primary control strategy. To account for model uncertainties,
[Oldewurtel et al., 2010] present a stochastic MPC. Similarly, there are other model-
based demonstrations for HVAC control [Ghahramani et al., 2014; Meimand and
Jazizadeh, 2022]. However, as noted before, a decently accurate model is impera-
tive in the case of MPC, which in turn leads to modeling several unknown factors
affecting the dynamics. Further, the current MPC-based approaches fail to scale to
higher order models and cost functions [Liang et al., 2015; Killian and Kozek, 2018;
O’Dwyer et al., 2017].

In this regard, the model-free optimization techniques are more appealing, as
they require little to no supervision, and reinforcement learning in particular are
prominent due to its completely unsupervised nature. Model-free approaches would
inherently learn a model of the system given the observations, this property en-
ables model-free RL to solve complex problems. Reinforcement learning has been
widely used for HVAC optimization [Sierla et al., 2022], two approaches have been
predominantly pursued: i) the reinforcement learning agent having complete re-
sponsibility of granular control signals, ii) the agent controlling the setpoints for
the supervisory control. The former approach could be challenging to implement
in the real/world and putting a black model directly in charge makes the approach
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1.1 Literature Review

less interpretable. Currently, these methods have been successfully applied to bi-
nary actuator signals (predominantly). The latter approach appears more feasible
and has been studied extensively. Currently, there are a plethora of methodologies
that apply reinforcement learning (as model-free methods) to HVAC systems. The
reason behind the popularity of model-free approaches is the complex nature of
building systems. Although model-based approaches such as model predictive con-
trol (MPC), have desirable properties, it is nearly impossible to accurately model the
whole system. Heat transfer interactions between building components, the impact
of occupancy rate, and the layout of the building plan all affect the model and, in
turn, impact the efficiency of model-based approaches. [Zhang et al., 2019] demon-
strate that reinforcement learning in the case of HVAC systems does not require
an overly accurate dynamics model (unlike MPC), and shows the end-to-end RL
design process. [Wei et al., 2017] is one of the first approaches employing deep
reinforcement learning for HVAC control. [Gao et al., 2019] employ a hybrid ap-
proach, combining MPC and RL to trade energy and comfort in an HVAC system.
[Luo et al., 2022] focus on controlling commercial buildings using deep RL, specif-
ically presenting the real-world challenges associated with RL approaches when
deploying the algorithm in a real-world scenario.

Despite the optimism of deep reinforcement learning in complex problems such
as HVAC control, one of the key challenges with reinforcement learning-based ap-
proaches is scalability, specifically concerning the action space of the algorithm
(even in the case of deep RL approaches). The explosion in action space implies
a larger exploration landscape for the agents, or in other words, a longer time to
converge. [Gao et al., 2019] argue that employing continuous action space rather
than discretizing or grinding the action space reduces the cardinality of the action
space. [Wei et al., 2017] address the curse of dimensionality by training separate
critic networks for separate agents, hinting towards multi-agent RL. However, this
can lead to suboptimal solutions if the agents are strongly coupled. Similarly, there
are other demonstrations of deep RL for HVAC control [Gao et al., 2020; Wei et al.,
2017; Zhang et al., 2019; Wang et al., 2024a].

The problem of scalability in RL can be tackled in two ways: i) a distributed
approach (analogous to distributed machine learning approaches) exploring data
parallelization, where multiple (identical) agents explore and learn the environment
in parallel and the learnings are then aggregated, ii) Multi-agent RL (MARL), where
the problem is broken down into multiple subproblems, and the agents work towards
a common goal. [Czech, 2021] contrast the two approaches. The original problem
of exploration due to action space exploration still persists in the data parallelism
approach, as each of the agents will still have to explore the entire action space. The
latter approach can lead to significant benefits if there exists decoupling between
the agents, which can be exploited to reformulate the problem (action spaces). [Bu-
soniu et al., 2008; Stefano V. Albrecht, 2024] comprehensively review the MARL
strategies and contrast it to single-agent RL.

[Hanumaiah and Genc, 2021] have applied reinforcement learning to tune indi-
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Chapter 1. Introduction

vidual setpoints in a multi-zone building and, furthermore, have demonstrated that
running season-specific agents in a cooperative multi-agent reinforcement learning
yields better results. [Charbonnier et al., 2022] show despite the success of MARL
in HVAC systems, the performance of the multi-agent systems degrades as the num-
ber of agents in the mix is increased. The authors alleviate the problem by per-
forming centralized training on the available historic HVAC data and then proceed
with decentralized execution. “Non-stationarity”, “adaptability”, and “credit assign-
ment” are some of the contemporary challenges of MARL in general and remain an
active area for research.

1.2 Scope of Thesis

The primary objective of the thesis will be to try to identify if there is any saving po-
tential to be exploited and then explore the feasibility of employing reinforcement
learning for optimization in HVAC systems. This is achieved by formulating a set of
exploratory data analysis experiments to explore the optimization terrain and man-
ifest the saving potential. Although the main objective of the thesis is “multi-agent
reinforcement learning” (MARL), tackling MARL in a complex problem such as
an HVAC optimization can be daunting. Thus, the problem is first addressed in the
context of single-agent RL focusing on efficient RL problem formulation. MARL is
then gradually introduced by turning the original problem into a cooperative setting,
with multiple agents working towards a common goal.

As a first step, the existing MARL algorithms are tested and benchmarked
against the single-agent RL, contrasting the pros and cons. Specifically, the central-
ized training and decentralized execution (CTDE) and value-decomposition (sum-
mixing and QMIX) approaches are evaluated. Motivated by some of the challenges
in MARL and the limitations of these approaches in the context of the given prob-
lem, two novel approaches are proposed to alleviate the problems of non-stationarity
and multi-agent credit assignment: the proposed “LINMIX” strategy exploits the re-
ward structure of the problem assuming the fact that the overall power consumption
is conservative and additive, giving rise to a linear mixing strategy as opposed to a
non-linear mixer (QMIX). To alleviate the problem of non-stationarity, a turn-based
game is proposed, where the agents play in turns to facilitate other agents to bet-
ter model and distinguish the consequences of their own actions and the actions of
other agents.

Finally, as part of evaluation and benchmarking, all of the RL implementations
are benchmarked against the closed-loop controller under multiple testbeds (emu-
lating real-world conditions that may be potentially encountered) to quantify the
savings.
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1.3 Problem Formulation

1.3 Problem Formulation

The section presents a mathematical formulation of the problem. A typical RL op-
timization problem involves identifying the relevant inputs, outputs, and control
signals, categorizing them into states and actions (decision variables), and specify-
ing the reward function. It also includes identifying the constraints, and the need to
model additional uncertainties associated with the system variables. The proposed
framework closely follows the optimal control framework for sequential decision
processes. [Powell, 2022a; Powell, 2022b] lays out the merits of such a framework,
and breaks down the problem into 6 fundamental steps. The idea here is to pursue a
“model-first” approach, i.e. model all the state and decision variables before diving
into the reinforcement learning/optimization aspects of the problem. The subse-
quent sections present the problem formulation with a level of abstraction to focus
on the high-level objectives of the problem.

The HVAC system comprises a chiller plant responsible for maintaining the load
requirements of the IT room. The model of the system can be executed using the
open-loop controller for the purpose of optimization. The model takes in a set of
measurements, temperature, relative humidity, reference cooling load, and control
inputs, and executes supervisory control loops to maintain the setpoints. Thus at a
high level, we are interested in influencing the supervisory control elements via the
setpoints and staging individual equpiments (such as chillers, cooling towers and
pumps) to impact the operation (Figure 1.1).

Narrative
The problem involves fulfilling the load requirements of a data center, where a
chiller plant is responsible for pumping the coolant to the room. The data center
load requirements can be assumed to have daily or weekly fluctuations as per the
traffic. The external factors, weather (temperature and humidity) will have an impact
on maintaining the load requirement, but should also be highly correlated within a
short time span. The agent (or the responsible intelligence) can measure the exter-
nal temperature and humidity and the current state of the IT room, i.e. the current
status of the equipments and the outputs. The control variables include equipment
staging (ability to turn ON/OFF individual equipments - chillers, cooling towers
and pumps) and the setpoints for the chiller plant. The ultimate goal is to minimize
the total energy consumption while maintaining the load requirements of the data
center.

States
The system states should encapsulate all the information that might be deemed rele-
vant to the RL optimization problem. At a high level, we may have several dynamic
states of the system and exogenous information. The dynamic states of the system
may comprise of all the internal states of the system, such as the number of indi-
vidual equipments running and their status, while the exogenous information is the
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Chapter 1. Introduction

Figure 1.1 Abstract model of the chiller plant

external variables impacting the system (such as weather). A naive approach would
be to include all the state/measurement variables available and have the algorithm
figure out relevant information on its own, but that could significantly slow down
the learning process.

In the given problem, turning ON/OFF a chiller or a cooling tower depends on
the current status of the equipment staging (marked by †) and we can expect the
decisions to also be influenced by the current operating performance of the equip-
ments, such as the chiller PLR (part load ratio) or CR (cycling ratio) of the chillers
(marked by ‡). For instance, it might be more efficient to turn ON both chillers,
if, for example, the chiller is not operating at its expected efficiency. As the prob-
lem involves reference tracking, the reference cooling load is also included as the
state variable as it is an obvious requirement. The state variables (st ) are marked
"STATE" in Table 1.1. It is also assumed that all the states listed in Table 1.1 are
known and measurable with sufficient accuracy.

Decision Variables
The decision variables (or actions) are essentially the control inputs to the system.
The decision variables at are marked "DECISION" in Table 1.1. It is worth noting
that the actions comprise both discrete and continuous actions. The discrete actions
correspond to the staging control, while the continuous actions represent the set-
points for the supervisory control loops. The initial objective is to have a single
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1.3 Problem Formulation

policy tuning all the control variables. Then the decision variables could be decou-
pled between multiple policies, e.g. staging and setpoint controls. In the subsequent
sections, a data-driven approach is pursued to provide insights into choosing the
relevant set of variables for optimization.
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1.3 Problem Formulation

Exogenous Information
The exogenous information includes uncertainty associated with measurements and
disturbances. A primary source of uncertainty could be surrounding the tempera-
ture measurements (Tdb) and humidity (H). Anticipating the trends in these mea-
surements can be a valuable insight to the model, T̂db,t = f (Tdb,t−1,Tdb,t−2, ...) (sim-
ilarly for RH), where f can be a forecasting model, enabling the agent to anticipate
future trends and plan ahead. However, it may be worth noting that explicit mod-
eling efforts might be redundant in the case of reinforcement learning optimization
leveraging neural network policy functions, as the network should eventually learn
a useful non-linear combination of variables and learn to anticipate trends.

Transition Function
The transition function P(st ,at ,st+1) ∈ [0,1] defines the transition of the system
from the current state st as a consequence of the action at , observing the new state
and exogenous information st+1,wt1 . In our case, the transition function would be
simulated by the building function mock-up units (FMU) models that are fit on prior
building data recorded, thus would serve as a vital tool for defining a simulation
environment. The simulation model was made available by Carrier, the model is
assumed to reasonably accurate within the operating conditions listed in Table 1.1.

Objective Function
The primary objective is to maintain the cooling load of the IT room, and the sec-
ondary objective is to minimize operating power consumption during the process.
Thus a preliminary reward candidate can be as per Equation 1.1,

R(st ,at) =−|Tref,t −Troom,t |−αP̂total,t (1.1)

Where P̂t would be the estimated power consumption over the simulation inter-
val, the hyperparameter α can act as a weighing factor to assign relative weights to
the different objectives involved. As both quantities are strictly positive, maximiz-
ing the negative of the quantities would be equivalent to maximizing the reward in
the context of reinforcement learning convention.

Learning Policies
Having defined the reward function, the objective is to learn an optimal policy that
would minimize the cumulative rewards (Equation 1.2),

argmax
π

ES0

[
Σ

τ
t=0γ

tR(st ,π(st)))|S0
]

(1.2)

Where the expectation is with respect to the initial state (temperature, humid-
ity, and reference cooling load). The optimal policy can be found using several
approaches, and reinforcement learning or deep reinforcement learning (and multi-
agent RL) is one of the ways.
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2
Background

2.1 Dynamic Programming

The problem at hand of choosing the optimal staging sequence and setpoints for the
chiller system can be viewed as a sequential decision-making problem, as immedi-
ate actions taken can have long-term effects. Sequential decision-making problems
are often modeled as Markov decision processes (MDPs) that build on the following
assumptions:

1. A system is defined with a set of states S ∈ Rns , where ns is the cardinality
of the state-space.

2. Given a state st , the system can execute an action (at ) A ∈ Rna , na is the
cardinality of the action space.

3. Having executed the action, the system then transits to a new state st+1 as per
the transition function T : Rns×Rna×Rns → [0,1],T = P(st+1|st ,at). One of
the crucial assumptions in an MDP is that the transition to the next state is
completely determined by the current state and the current action executed,
i.e. st ,at . During the process, the system receives also a reward R(st ,at ,st+1).

Having formulated the problem in terms of the MDP framework. Dynamic
programming (DP) is a classical approach to solving sequential decision-making
problems. Building upon the MDP framework, dynamic programming assumes that
the system receives a reward while transiting to the next state, R : Rns ×Rns →
R,R(st ,at). The objective then is to simply minimize the cumulative rewards (Equa-
tion 2.1), which would then yield an optimal control sequence, a0,a1,a2, . . .aT . A
discount factor γ < 1 is often applied for discounted MDP problems.

max
a0,a1,a2,...aT

Σ
T
t=0γ

tEs[R(st ,at ,st+1)] (2.1)
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2.1 Dynamic Programming

A naive way to solve Equation 2.1 would be to employ a brute force approach,
which would test all the combinations of actions over the horizon T and then pick
the optimal sequence that would yield the minimal cost. However, this would be
inefficient in practice. Dynamic programming solves the problem (2.1) using Bell-
man’s principle of optimality (Equation 2.2), where V represents a value-function
given a state st and V ∗ implies the optimal value, given the current state, i.e. the
highest possible cumulative reward if acted optimally starting from the current state
st . Conceptually, Bellman’s principle of optimality states that optimality from point
A-C implies optimality from point A-B and then optimality from B-C (assuming B
to be an intermediate point between A and C).

V ∗ = max
at

R(st ,at ,st+1)+ max
at+1,...aT

Σ
T
τ=t+1γ

tR(sτ ,aτ)

V ∗ = max
at

R(st ,at ,st+1)+ γV ∗(st+1) (2.2)

In case of a stochastic problem, Equation 2.2 can be rewritten by introducing
the system transition function P(st+1|st ,at) as follows,

V ∗ = max
at

Σst+1P(st+1|st ,at) [ R(st ,at ,st+1)+ γV ∗] (2.3)

In other words, we would then be maximizing the expected reward, with the
expectation over all possible states st+1 given st .

Dynamic programming exploits the recursive relationship established by the
Bellman equation (Equation 2.3). Two prominent ways of solving a DP problem are
forward and backward DP. Forward DP starts with the initial state s0 and executes
planning until the final state sT is reached, at each step the algorithm would choose
an optimal action as per the recursive relationship and update the value functions at
each state st and repeat the process until the value estimates convergence, i.e. when
the value function does not change between two successive iterations. Backward DP
is a similar approach but the problem is solved backward in time, this may be useful
depending on the context of the problem where there is a natural reverse ordering
of states, e.g. a shortest path planning problem.

Solving a DP problem involves two fundamental steps, policy evaluation, and
policy improvement steps, formally known as the policy improvement algorithm
(formally known as policy iteration algorithm, Algorithm 1, [Sutton and Barto,
2018]). The policy evaluation step involves determining the value function (Vk+1)
under the current policy π using the current value function (Vk). The process is
repeated until approximate convergence, i.e. |Vk−Vk+1| → 0. The policy improve-
ment step involves improving the policy by looking up the optimal action using cost
function approximation. The two steps are alternated until the policy improvement
yields no improvement, i.e. until the policy converges.
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Chapter 2. Background

Algorithm 1 Policy Iteration

Initialization
∆ > 0
V : Rns ×Rna → R
π : Rns → Rna

Policy Evaluation
while δ > ∆ do

for s ∈S do
v←Vk(s)
Vk+1(s)← Σst+1P(st+1|st ,at) [ R(st ,at ,st+1)+ γVk(st+1)]
δ = max(δ , |v−Vk+1(s)|)

end for
end while

Policy Improvement
for s ∈S do

πk+1(s)← argmaxat Σst+1P(st+1|st ,at) [ R(st ,at ,st+1)+ γVk(st+1)]
end for

Having solved the DP problem, the optimal policy given any state would be,
at : argmaxat Σst+1P(st+1|st ,at) [ R(st ,at ,st+1)+ γV ∗].

2.2 Motivation for Reinforcement Learning

Although the dynamic programming approach is theoretically sound and eventu-
ally bound to converge, there are a few challenges that make it infeasible to employ
forward or backward DP in a real-world task (like that of the problem of build-
ing energy optimization problem). Taking a closer look at Equation 2.3 reveals the
following subtleties:

1. The transition function P(st+1|st ,at) is often unknown or hard to model,
which makes the expectation over the states Es intractable.

2. The value function of a state st involves another expectation over the action
space and state space, V (st) = Σat P(at |st)Σst+1P(st+1|st ,at)[ R(st ,at ,st+1)+
V ∗(st+1)], which makes approximating the value function of the next state
st+1 challenging. The problem can be further exacerbated if the state/action
spaces are continuous.

3. The forward and backward DP involves iterating the value function until con-
vergence. This may not be feasible if the state-space is continuous or com-
prises of too many states.
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2.3 Reinforcement Learning

Figure 2.1 Reinforcement learning

In this regard, reinforcement learning can be seen as a way to solve the Bellman
equation while addressing these challenges. A reinforcement learning agent learns
to approximate the Bellman equation and/or learns an optimal policy by trial and
error, underpinned by the concept of feedback/reward.

2.3 Reinforcement Learning

The basic idea behind reinforcement learning is to solve the Bellman equation in
an unsupervised way. Looking at Equation 2.3, the only supervision is manifested
in two different aspects. Firstly, the term P(st+1|st ,at) represents the state transition
probabilities, without which the estimation of the expected value of the current state
would be inaccurate. Secondly, the value function of the next state V ∗(st+1) is part
of Bellman’s principle of optimality, without the optimal value estimate of the next
state, it is not feasible to derive the policy at the current state. Thus, reinforcement
learning tackles these issues by learning the value function and/or policy function
solely by interaction with the environment (or the process). Figure 2.1 demonstrates
the idea behind reinforcement learning. In each step, the agent (policy) executes an
action and observes the new state (st+1) and the reward (rt+1). The process can
be repeated to collect a set of trajectories, T = {s0,a0,r1,s1, . . .sT ,aT ,rT+1,sT+1}
which are then used to optimize the policy behavior to maximize the expected re-
wards. The problem of unknown dynamics is circumvented by replacing the expec-
tation Es with empirical averages, and a simple way to approximate the cost of the
next state is to use empirical Monte-Carlo (MC) estimates based on the observed
trajectories. Temporal-difference learning is an alternative approach to MC reward
estimation (discussed subsequently).

The two fundamental elements of the PI algorithm (Algorithm 1), policy evalu-
ation and policy improvement serve as a backbone for all RL algorithms [Kaelbling
et al., 1996; Shakya et al., 2023], and different strategies are applied to circum-
vent the challenges of classical DP. The following properties of reinforcement are
appealing and address the challenges introduced in Section 2.2:

1. Model-free reinforcement learning approaches do not require a description of
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the model. Such RL approaches circumvent the need for the model in Equa-
tion 2.3 by employing a temporal difference learning approach (inspired by
Monte Carlo methods) V (st)← (1−α)V (st)+α[R(st ,at ,st+1)+ γV (st+1)],
where α is the learning rate and γ is the discount factor. This enables learn-
ing a value function solely by the experiences, without the need for an ex-
plicit/accurate model description.

2. The TD learning also circumvents the expectation over the states Es. The
assumption is that as the agent learns to prefer optimal actions, V (st) would
be influenced by the optimal next state and eventually converge.

3. As noted earlier, learning an optimal value function involves visiting all the
states and estimating the value functions from the respective states. This may
not be feasible in the case of a continuous state space, RL addresses this
problem by learning a “critic” that learns to extrapolate the value function
from known interactions to unexplored states. This is formerly referred to as
value function approximation.

4. Finally, the problem of expectation over actions Ea is solved by policy func-
tion approximation. Here the idea is to directly optimize a policy πθ : Rns →
Rna by updating the policy parameters θ that would lead to predicting opti-
mal actions as a function of state. Again, the idea here is to extrapolate the
learnings between states.

Typically, RL involves elements of the policy iteration algorithm (Algorithm
1). Specifically, the iterative policy evaluation and policy improvement steps and
the optimal policy is then derived from the optimal value function via the π ∼
argmaxat Σst+1P(st+1|st ,at) [ R(st ,at ,st+1)+ γVk(st+1)]. However, these steps are
not feasible in case of practical applications involving large and/or continuous
state/action spaces. Large or continuous state spaces make it infeasible to run the
iterative policy evaluation step. Large/continuous action spaces make it furthermore
impractical to run the policy improvement step, as the operator π ∼ argmaxat be-
comes intractable.

These bottlenecks can be solved by parametrizing the policy and the value func-
tion as follows,

V̂φ (st) =
[

R(st ,πθ (st),st+1)+ γV̂φ (st+1)
]

(2.4)

Where V̂ represents the approximate value function predicted by the critic (pa-
rameterized by φ ). Now the goal is to optimize the parameters θ ,φ so that Equation
2.4 emulates the optimal Bellman equation 2.3. In the case of deep RL, both the pol-
icy and the value functions are parametrized by deep neural networks, leveraging
the ability of deep neural networks as non-linear function approximations. In this
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case the parameters θ ,φ in Equation 2.4 correspond to the weights of the neural
network which are then optimized using a gradient-based update rule.

This type of parametrization in deep RL is referred to as an actor-critic archi-
tecture, where the actor is simply the policy network, responsible for choosing an
action given a state, and the critic is the value function responsible for discerning
the consequence of the given state/state-action pair. Although there are several vari-
ants and implementations of deep-reinforcement learning algorithms [Wang et al.,
2024b; Arulkumaran et al., 2017], the core idea is the same, the actor is optimized
via the policy gradient theorem (described subsequently), and the critic is optimized
to reduce the Bellman error.

The objective function for the critic is as per Equation 2.5, which simply repre-
sents the Bellman error or the TD target. Vφ (st) is the value prediction of the critic
network given the current state and Vφtarget is a target critic, to circumvent the moving
target problem. Often, Vφtarget is simply a delayed version of the same critic. And the
expectation Eτ is with respect to the observed trajectories (τ), i.e all the observed
state-action-reward-state-action tuples (Equation 2.5).

Lφ = min
φ

Eτ

[
Vφ (st)−

(
rt + γVφtarget(st+1)

)]2 (2.5)

The objective function for the policy network on the other hand is more intricate
and is derived using the so called policy gradient theorem. The high-level objective
for the critic is to simply maximize the expected advantages (Â, a measure of value
of the next state),

Lθ = max
θ

Eτ∼πθ

[
Σ

T−1
t=0 Âπθ

(st ,at)
]

(2.6)

The advantages Âπθ
(st ,at) can simply be the MC estimate (REINFORCE al-

gorithm) or the observed reward minus the base value function (vanilla policy gra-
dient). The optimization process involves taking a step along the negative of the
gradient, i.e. θ = θ −α∇θ Lθ , which implies that a crucial step is to compute the
gradient of the objective function with respect to the policy parameters. However,
this is not as straightforward due to the outer expectations involved. It would have
been more convenient if the gradient was inside the expectation. We can attempt to
achieve this by expanding the outer expectation and by using the log trick.
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We can start by computing the gradient of the expected returns (2.6) with respect
to the policy parameters θ ,

−∇θ Lθ = −∇θ Eτ∼πθ

[
T−1

∑
t=0

Âθ (st ,at)

]
(2.7)

=−∇θ

∫
τ

P(τ | θ)
T−1

∑
t=0

Âπθ
(st ,at)dτ

=−∇θ

∫
τ

P(st+1|st ,at)πθ (at |st)
T−1

∑
t=0

Âπθ
(st ,at)dτ

=−
∫

τ

P(st+1|st ,at)∇θ πθ (at |st)
T−1

∑
t=0

Âπθ
(st ,at)dτ (2.8)

Equation 2.8 is intractable to approximate because it it no longer an expectation
over the observed trajectories as the term πθ (at |st) is lost. We could multiply and
divide by the term by πθ (at |st) to recover the trajectory probability,

−∇θ Lθ =−
∫

τ

P(st+1|st ,at)
πθ (at |st)

πθ (at |st)
∇θ πθ (at |st)

T−1

∑
t=0

Âπθ
(st ,at)dτ

Using the fact that P(τ | θ) = πθ (at | st)P(st+1 | st ,at) and ∇θ logπ(τ | θ) =
1

πθ (at |st )
∇θ πθ (at |st), we have,

⇒ ∇θ Lθ =−
∫

τ

P(τ | θ)∇θ logπθ (at | st)
T−1

∑
t=0

Âπθ
(st ,at)dτ

= −Eτ

[
T−1

∑
t=0

∇θ logπθ (at |st) Âπθ
(st ,at)

]
(2.9)

Comparing Equations 2.7 and 2.9, we have accomplished the task, thus the ex-
pectation Eτ can be replaced by empirical averages, something that is widely used
in batch optimization and machine learning. The above policy gradient theorem is
central to all actor-critic algorithms: A2C, TRPO, PPO, DDPG, TD3 ([Mnih et al.,
2016; Schulman et al., 2017a; Schulman et al., 2017b; Lillicrap et al., 2019; Fuji-
moto et al., 2018]).

Since this work employs the proximal policy optimization (PPO) algorithm
primarily, it is worth highlighting some of the implementation aspects of PPO.
One of the properties of PPO is that it is an on-policy algorithm, i.e. the pol-
icy being optimized is also the one used for exploration and capturing the data
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(trajectories). The nuance in Equation 2.7 is that the expectation expands as
Σs0ρ(s0)Σat∼πθ

πθ (at |st)Âθold (st ,at), where Âθold is the evaluation under the old
policy and the critic while the action probabilities are computed by the cur-
rent policy πθ (at |st), and ρ is the initial state distribution. PPO (and its pre-
decessor TRPO) overcome the discrepancy by introducing importance sampling,
Σat∼πθ

πθ (at |st )
πθold (at |st )

Âθold (st ,at) which makes it feasible to use the estimate of the old

policy under the new policy in Equation 2.7. PPO takes this a step further by clip-
ping the probability ratio to ensure stability during learning as in Equation 2.3

Lθ = Eτ [min(rτ(θ)Aτ ,clip(rτ(θ),1− ε,1+ ε)Aτ)] (2.10)

where, rτ(θ) =
πθ (a | s)

πθold (a | s)
Where ε > 0 is a clipping parameter. Essentially, the sampling ratio rτ is clipped

between 1− ε and 1 + ε so that the policy does not diverge too much between
updates, ensuring stability.

Phasic policy gradient (PPG, [Cobbe et al., 2020]) is a successor of PPO, which
aims to make better use of shared network structures between the policy and value
net, without compromising the performance, while both the policy and value net
can benefit from learning common features. The implementation however has not
evolved yet, thus this work primarily uses PPO.

2.4 Multi-agent Reinforcement Learning (MARL)

Multi-agent RL builds upon the idea of single-agent RL by reformulating the prob-
lem and having multiple agents working together or against each other. This is in
stark contrast to the data parallelism approach, where all the agents would solve the
same problem but benefit from data parallelism (wisdom of crowd). MARL, on the
other hand, breaks down the original problem into multiple/simpler problems for
the agents to collectively solve. One motivation for doing so might be due to the na-
ture of the problem, e.g. a team of RL agents playing a game of soccer, or multiple
agents performing decentralized control in a power grid. Decentralized learning can
be an advantage in cases where the agents cannot fully observe the states and the
actions of the system. For instance, in the case of control of a large power grid, it
would be impossible for every station to have full access to the measurements of the
whole system. The decentralized execution forces the agents to work with limited
or local observations and anticipate the behavior of the other agents.

Another motivation for employing MARL would be to exploit the decou-
pling between the different systems to improve the sampling efficiency in RL. Let
A = {A1,A2, . . .Ana} be the joint action space comprising of individual action
spaces of the agents. Learning an optimal policy in RL involves the agent suffi-
ciently exploring the action space, so a single agent would have to explore the entire

25



Chapter 2. Background

joint action space |A1| × |A2| × . . . |Ana |, where | · | denotes the cardinality of the
action space. But if the subsystems can be viewed as independent or are decoupled
to a sufficient degree, then one can have the agents simultaneously explore their
individual action spaces for faster exploration, |A1|+ |A2|+ . . . |Ana |, which would
in turn translate to better sampling efficiency in RL.

Thus the goal in MARL is now to learn a set of policies π = {πA1 ,πA2 , . . . ,πAn}
that would jointly constitute the optimal policy. Some of the key challenges in
MARL are the problems of credit assignment and non-stationarity. The problem
of credit assignment arises due to the fact that the critic should accurately discern
the individual proportion of the reward, given a joint action, i.e. which agent’s action
was it that led to a higher/lower observed reward? The problem of non-stationarity
is due to the fact that each of the agents learns individually and observes the effect
of other agents via the environment. This implies that each agent has to not only
the dynamics of the environment (in the case of model-free RL) but also learn to
anticipate the behavior of other agents.

These challenges are addressed in MARL by relying on communication mecha-
nisms for modeling agent-agent interaction. Specifically, this translates to the level
of visibility between the agents during the learning process. For instance, it may be
assumed that all of the agents can see each other’s actions during the training phase,
in other words, the agents share their executed action with all the other agents. An-
other mechanism could be much more conservative, where the agents do not have
the liberty to share their actions, but only their observed rewards, so that the agents
can collectively maximize the rewards earned by all the agents. The former ap-
proach is termed as centralized training and decentralized execution (CTDE), where
the training happens assuming complement visibility, while the execution is still de-
centralized. The latter approach serves as the motivation for value-decomposition or
value-mixing approaches in MARL, where the agents are optimized to maximize a
“mixed” cumulative reward.

As agents operate on local and global information, the MARL problem formula-
tion is often based upon partially observable Markov decision processes (POMDPs).
A POMDP builds upon the typical Markov decision process, except that the states
are only partially observable,

• Let st be the global state, shared among all the agents. And oi,t denote the
local observation for the agent Ai observed as per the observation function
O(oi,t+1|st+1,at). Then the complete observable state for agent Ai would be
zi,t = {st ,oi,t}.

• Let aAi ∼ πAi(zi,t) denote the action executed by agent Ai according to its
policy (acting on its local observation). Thus, the joint action is simply the
set of individual agent actions, {aA1 ,aA2 , . . . ,aAn}.

• Each of the agents now observe individual rewards RA1 ,RA2 , . . . ,RAn .
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• Let <> denote the concatenation operation. Thus, < o1,t ,o2,t , . . . ,on,t >
would denote that joint observation and < aA1 ,aA2 , . . . ,aAn > denote the joint
action.

The transition function is then given by P(s̃t+1,ot+1|s̃t ,at), here s̃ denotes the
complete (unobservable) system state, and o is the joint observation set. The goal for
each is to learn an optimal policy π∗Ai

that maximizes its own cumulative rewards,
but at the same time enables other agents to maximize their rewards (as the reward
received by a particular agent depends on the joint action executed). For each of the
agents to maximize their individual rewards might be quite straightforward, which
can be viewed as each agent running an independent single-agent RL task. How-
ever, it might lead to suboptimal policies [Tan, 1997], as the joint optimal may not
be simply the combination of individual optimal policies. This approach in fact is
formally referred to as the “independent learning” approach in MARL and serves as
a benchmark. The two broad classes of MARL algorithms, centralized training, and
decentralized execution (CTDE) and value-decomposition approaches are designed
to alleviate these problems in MARL. The algorithms differ in terms of the level of
coordination and communication between the agents.

The centralized training and decentralized execution approach ([Kraemer and
Banerjee, 2016; Oliehoek et al., 2008]) assumes complete visibility, i.e. the agents
communicate their executed actions and rewards during the training, while the exe-
cution happens on the local observations. This means that the critic in the CTDE ap-
proach is tasked to learn Q({st ,< o1,t ,o2,t , . . . ,on,t >},< aA1 ,aA2 , . . . ,aAn >), while
the agents themselves act according to aAi ∼ πAi(zi,t) and receive respective re-
wards. The policies are optimized using the policy gradient theorem utilizing the
central critic. The CTDE trades off the level of decentralization for better learning.
However, in purely decentralized applications access to the complete state and ac-
tions might be restrictive. Also, the critic is exposed to more information (the joint
state and action) which might result in slower learning if the agents are decoupled.

The value-decomposition/mixing approaches ([Rashid et al., 2018; Sunehag et
al., 2017]) on the other hand, operate under more restrictive assumptions. Each
agent, instead of sharing its observation and executed action, now only shares its
reward (the critic estimate). To enable cooperative learning, a central mixer mixes
the individual critic estimates to derive a global loss. This implies that each of the
agents themselves has localized critics trained on local information, Qθ (zi,t ,aAi),
while the central mixes these estimates, Qtot = fθmix(QA1 ,QA2 , . . . ,QAn). The pa-
rameters θ ,θmix are then jointly optimized based on the TD error, Lθ ,θmix =[
Qtot−

(
rt + γQtot, target

)]2. Thus, mixing approaches tradeoff learning for decen-
tralization. [Gronauer and Diepold, 2022; Stefano V. Albrecht, 2024] provide a
more detailed overview of the algorithms and other learning strategies in MARL.
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3
Exploratory Data Analysis

This section takes a data-driven approach to reveal the characteristics of the system
and other insights that will be useful in formulating reinforcement learning experi-
ments. In any MIMO system, it can be overwhelming to operate on all the state and
control variables involved (Table 1.1) and reinforcement learning is no exception.
Besides, operating on the entire set of inputs might be redundant, as often there are
variables that have a marginal impact on the desired output. Thus, as a primary ob-
jective, a set of experiments is carried out to quantify the impact of input variables
on the output variables (power consumption). The results from these experiments
are then used to build an intuition and to formulate a reduced landscape for RL
optimization.

The decision variables listed in Table 1.1 are of two types, discrete (ON/OFF)
and continuous variables (setpoints). This implies that there are potentially two pri-
mary control strategies to exploit: staging control, where the individual equipments
(chillers, cooling towers, pumps, fans) can be turned ON or OFF, and setpoint tun-
ing, where the setpoints for running equipments can be tweaked. Both control strate-
gies can potentially save energy depending on the operating conditions and external
factors. The following experiments help quantify the saving potential and the impact
of the controls on the overall power consumption.

3.1 Power Distribution

Before moving on to correlation analysis between the inputs and output, it is worth
analyzing the power distribution of the system. Figure 3.1 shows the power con-
tributions of individual equipment during typical operating conditions. All the set-
points were set to nominal values with all equipments turned ON. It can be observed
that the chillers, cooling water pumps, and chilled water pumps are the major con-
tributors, with the chillers and the cooling towers responsible for nearly 75% of total
power consumption. Thus, the chillers and cooling towers would be a primary fo-
cus for optimization. It is worth noting that the chiller operation is affected by both
the staging and setpoints, while the cooling towers can only be turned ON or OFF.
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Thus, to fully exploit the saving potential, it is imperative to explore both control
strategies.

Figure 3.1 Power distribution between equipments: chillers and cooling towers account for
nearly 75 % of total power consumption

Pch: chiller_power, Pct: chw_pump_power + ct_fan_power, Pchw:
ahu_fan_power + chw_pump_power

3.2 Sensitivity Analysis

The idea here is to quantify the impact of the input variables (DECISIONS) on
the output variables (performance metrics), which would then serve as a motivation
for selecting a subset of control variables for RL optimization. Given the transi-
tion function st+1,Rt = f (st ,at ,wt), we are interested in the impact of the decision
variables st on the output variables. It is worth noting that the input and output vari-
ables here are vectors (i.e. MIMO system) and that the transition function is non-
linear, constraining the method of analysis, the typical grey box identification and
least-squares analysis would produce inaccurate results in case of a system with
non-linear dynamics. Thus, sensitivity analysis is carried out as a systematic and
prudent way to measure the influence of each of the input variables.

29



Chapter 3. Exploratory Data Analysis

Sensitivity analysis includes computing the partials δi = | ∂ f (st ,at )
∂ai

|, where the
index i denotes the ith action. While this is feasible to compute in the case of con-
tinuous actions (such as the real setpoints), it is not possible to approximate the
effect of staging by computing the partial derivatives. Thus, to quantify the effect of
discrete variables, the analysis resorts to combinatorial experiments by considering
all possible combinations.

The partials ∂ f (st ,at )
∂ai

are approximated by sweeping each of the setpoints from
its minimum to its maximum value (see Table 1.1) while keeping all the other con-
trols constant and with all the equipments turned ON, and repeating the process for
different load conditions. The magnitude of the partials with respect to the actions
(δai) should give us an approximate estimate of the strength of the correlation of
the particular action. Thus, we would like to pick actions with a higher correlation.
Figure 3.2a plots the results for different load conditions.

For the staging experiments, the setpoints are fixed to their nominal values (mid-
dle value in their respective ranges), and different combinations of chillers and cool-
ing towers are tested. Since pumps are not major contributors to the overall power
consumption (Figure 3.1), the pump staging is ignored. Figure 3.2b plots the re-
sults. If a staging combination has a significant impact, we would expect a substan-
tial change in the total power upon switching the control. Although the strength of
the correlation can be hard to determine, these results can be interpreted to build
intuition for the characteristics of the optimal staging.

The following observations can be made by inspecting the results,

1. Figure 3.2b reveals that there is a significant potential to save power via
equipment staging (turning equipment ON/OFF) at higher loads than at lower
loads.

2. For moderate and higher loads, chiller staging appears to have a significant
impact. For instance, at loads 1000 kW and 2000 kW, running two chillers
appears to be more optimal than just one chiller ON.

3. At higher loads (greater than 1500 kW), it is essential to have both chillers
ON to meet the load requirements successfully.

4. In the case of setpoints (Figure 3.2a), the chiller water temperatures
(Tchwst,Tchwsdt) appear to have the most impact across the operating load
conditions. While the evaporating water temperature (Tewt) appears to have a
lesser but significant impact.

5. The differential pressure setpoint (dp), on the other hand, appears to have
little to no impact on the total power consumption.

6. Tchwst appears to have a significant impact on the power consumption across
the operating load conditions, while the differential water temperature (Tchwst)
appears to have a relatively higher impact at lower and higher loads.
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(a) Sensitivity (| ∂ f (st ,at )
∂ai

|) of setpoints (scored relatively)

(b) Impact of equipment staging

Figure 3.2 Sensitivity analysis - shows the impact of setpoints and equipment staging on
total power under varying load conditions. Variables are described in Table 1.1. Outdoor
temperature (Tdb): 22 °C, humidity (H): 0.8

3.3 Efficiency Curves

This section conducts more rigorous experiments to determine the impact of set-
points on overall efficiency. Efficiency here includes the total power consumption
and the coefficient of power (COP) in the case of the chillers. A preliminary ex-
periment includes sweeping one setpoint at a time (while the other real setpoints
stay fixed to a nominal value in their respective range) and performing equipment
staging at the same time. Further experiments include performing a sweep of the
setpoints that are deemed significant for a chosen set of cooling loads and external
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weather conditions to reveal the characteristics of the optimal. While finding the
true optimal setpoints and staging sequence solely through data analysis can be a
challenging task due to the number of factors and controls involved, the intention
of these experiments is to help identify a potential solution that could serve as a
benchmark for RL experiments and help interpret the results.

The results from the previous section implied that the staging control variables
could have a considerable impact depending on the cooling load and that the set-
points had a significant impact across the loads. Thus, as a first step, the control
variables are swept from their minimum to maximum value, and at the same time,
the stagging sequence is also varied, from having none of the equipments ON to
having all of the equipments ON. Figure 3.3 shows the results, where the curves rep-
resent the total power as a consequence of sweeping the particular control variable
(X-axis) and the error bands capture the impact of equipment staging, one curve per
operating cooling load. Similarly, Figure 3.4 plots the chiller equipment efficiency
as a consequence of the setpoints and staging. The chiller efficiency is the chiller
part load ratio, the ratio of the actual cooling load to the chiller’s cooling capacity.
Ideally, we would like to utilize the full potential of the chiller to maximize effi-
ciency. It is evident that there exists an optimal staging as well as setpoint control.
The optimality in setpoint control is implied by the peaking of the curves, while
optimality in staging is further implied by the variation (error bars in the Figure) at
this peak efficiency or power consumption.

The following observations can be made by inspecting the results in Figures 3.3
- 3.4:

1. The chiller setpoints Tchwst,Tchwsdt appear to have the most influence on the
total power, while the evaporating water temperature (Tewt) appears to have
a smaller impact on the power consumption. The rest of the variables, the
differential pressure-temperature (dp) for instance, has no observable impact.

2. In terms of chiller efficiency curves (Figure 3.4), we again observe that
Tchwst,Tchwsdt have a dominant role on the overall operating efficiency of the
chillers, which may, in turn, translate to lower power consumption.

3. In both sets of curves, we observe that equipment staging can have a signifi-
cant impact, more so in case of higher loads than in the case of lower loads.

The key takeaway from these experiments is that there is an optimal region of
operation defined by staging and setpoint control and that there exists a reduced
set of variables to work with that can potentially save energy. Although these ex-
periments evaluated the impact of the control variables, each control variable was
varied one at a time, so the true optimal may not necessarily correspond to individ-
ual optimal setpoints observed. Finding an optimal combination of controls given
the external conditions and the reference load is an optimization problem in itself,
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3.3 Efficiency Curves

(a) Effect of chiller setpoint (Tchwst)
(b) Effect of chiller differential setpoint
(Tchwsdt)

(c) Effect of condenser evaporating tem-
perature (Tewt)

Figure 3.3 Power curves manifest the optimality of power consumption in terms of con-
trol setpoint (X-axis) and equipment staging (error bars). Outdoor temperature (Tdb): 22 °C,
humidity (H): 0.8. For each experiment (subplot), all the other setpoints are fixed to their
middle values.

and it may not be feasible to arrive at a true optimal solely by such data analy-
sis and experimentation. Figure 3.5 further explores joint optimal as a function of
chwst_spt, chwsdt_spt for 4 sets of cooling loads. It is clearly evident that there
are optimal regions of operations for these setpoints, and conversely mistuning these
setpoints can incur a staggering penalty of anywhere between 100 kW to 200 kW.
Thus, the objective of RL optimization is to learn such joint terrains and an optimal
control policy.
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(a) Effect of chiller setpoint (Tchwst)
(b) Effect of chiller differential setpoint
(Tchwsdt)

(c) Effect of condenser evaporating tem-
perature (Tewt)

Figure 3.4 Power curves manifest the optimality of power consumption in terms of con-
trol setpoint (X-axis) and equipment staging (error bars). Outdoor temperature (Tdb): 22 °C,
humidity (H): 0.8. For each experiment (subplot), all the other setpoints are fixed to their
middle values.

3.4 Test Cases - Optimal Regions

Insights from these experiments can also be translated into a set of test cases that
can serve as a guideline for the verification of reinforcement learning algorithms
and discern the performance of the RL algorithms at later stages. Another way these
insights may be useful maybe to impart learning via imitation learning, where an
expert policy imparts the optimal/suboptimal controls onto the agent as part of pre-
training, but this approach is beyond the scope of the thesis.
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Figure 3.5 Chiller efficiency curves indicating equipment efficiency in terms of control
setpoint (X-axis) and equipment staging (error bars). Higher values are considered good.
Outdoor temperature (Tdb): 22 °C, humidity (H): 0.8. For each experiment (subplot), all the
other setpoints are fixed to their middle values.

chwst_spt - Tchwst, chwsdt_spt - Tchwsdt, chwst_spt - Tewt, dp_spt - dp.

We observe that the optimal Tchwst shifts from a higher value to a lower value as
the cooling load is increased (Figure 3.3). The optimal Tchwsdt, on the other hand,
shifts from a lower value at lower loads to a higher value at higher loads (Figure 3.3).
Furthermore, the chiller efficiency also peaks at these optimals (Figure 3.4), which
further implies the optimality of these setpoints. Table 3.1 summarizes the optimal
setpoints for fixed load and external conditions. The optimal setpoints were recorded
as per the experiments in Figure 3.5, with all the equipments turned ON. These
setpoints may serve as a guideline for benchmarking RL as part of RL experiments
carried out at later stages.
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A further possibility may be to interpolate the optimal for the intrim loads and
repeat the process for other outdoor temperatures and humidity. But as mentioned
before, that would in turn allude to an optimization problem, which is better off
handled by reinforcement learning rather than carrying out manual experiments.

External Conditions Setpoints
Load T_db RH chwst chwsdt_spt cond_ewt_spt

500 kW 294.15 0.8 283.34 0 299.81
1 MW 294.15 0.8 280.48 3.50 299.81

1.5 MW 294.15 0.8 279.53 3.50 299.81
2.0 MW 294.15 0.8 279.53 3.11 299.81

Table 3.1 Test Cases - Optimal Setpoints

3.5 Step Response

It is also worth analyzing the characteristics of the step response of the system.
Characteristics such as the rise time, overshoot, and settling time will be crucial for
choosing a time constant for RL experiments. The choice depends on two factors,
the settling time of the total power consumption, and secondly, the time it takes for
the controller to meet the temperature reference, i.e. to drive |Tref−Troom,t | to zero.

Figure 3.6a plots the power output for a step load reference of varying magni-
tudes. The dashed lines mark the settling time for the total power to settle down 2%
of its final value. It can be observed that for low and moderate loads, the total power
consumption settles down within 1 hr, while the settling time is pushed to 3 hrs for
a load of 2000 kW. Figure 3.6b plots the IT room temperature with the dashed line
indicating the reference room temperature (of 26 °C) for fixed outdoor temperature
and humidity. Across the loads, the controller appears to meet the reference within
a time duration of 1 hr.

Given that the objective function (Equation 1.1) includes both total power and
temperature error, it is important to consider the settling time for both responses.
A time constant of > 3 hrs appears to be a reasonable choice to approximate the
steady-state behavior under all the load conditions. Nevertheless, a smaller time
constant can be chosen for more dynamic simulations.
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3.5 Step Response

(a) Total power. Dashed lines mark the settling time.

(b) IT room temperature. Dashed line marks the refer-
ence.

Figure 3.6 Response characteristics for different operating loads. Outdoor temperature
(Tdb): 22 °C, humidity (H): 0.8
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4
Reinforcement Learning
Methodology

Based on the observations and insights gained from carrying out the exploratory
data analysis, the following section breaks down the original problem into tangible
problems that can be solved by employing reinforcement learning. The intention
here is to introduce complexity gradually and fine-tune the problem formulation by
incorporating the learnings along the way. Tackling multi-agent RL (MARL) right
away can be a daunting task due to a number of reasons, non-stationarity, multi-
agent credit assignment, and agent-agent interaction are some of the major chal-
lenges in MARL. Thus, the optimization problem is first addressed in the context
of single-agent reinforcement learning and then gradually introduce MARL into the
mix, comparing and contrasting the problems and benefits of MARL.

4.1 Setting the Stage for RL

The problem of optimizing controls of the chiller plant to minimize the operating
power consumption can be modeled as a sequential decision process (MDP), as
immediate controls can have long-term effects, and reinforcement learning can be
viewed as a means to solve the dynamic programming (DP) problem. The goal is
to learn an optimal policy π : argmaxπ Σst+1P(st+1|st ,π(st)) [ R(st ,at)+ γV ∗(st+1)]
(as introduced in Section 2). Reinforcement learning relies on learning a policy by
interaction, the agent has to trade-off between exploration and exploitation to learn
the best strategy based on the feedback received (reward). The available functional
mock-up unit (FMU) emulating the dynamics of a real plant is utilized for perform-
ing offline learning while adhering to action constraints.

Although reinforcement learning can be seen as an optimization problem, un-
like other conventional optimization problems like linear quadratic regulator (LQR)
or model predictive control (MPC), reinforcement learning is accompanied by sev-
eral challenges [Dulac-Arnold et al., 2019] that are not associated with the typical
optimization problems. Some of the significant challenges surrounding RL are, i)
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scalability of states and action spaces, ii) specificity of reward functions, and iii)
observation and actuator constraints. These issues can have a tremendous impact
on the solution of reinforcement learning. Thus it is imperative to have the right
motivation with these aspects of the RL problem formulation.

The problem of having large state spaces is not as severe compared to large
action spaces, this is because the deep RL policies (neural networks) are typically
good at focusing on the relevant aspects of the inputs and building useful non-linear
representations, but the key here is to capture the relevant inputs in the first place.
The cardinality of action spaces, on the other hand, can be a significant bottleneck.
In order for the agent to learn an optimal policy, the agent has to sufficiently explore
the action space and then figure out the optimal sequence. Suppose cardinality is na
actions each with a domain Ai ∈ R, then exploration involves exploring the joint
space of size |A1| × |A2| × . . . |Ana | given a particular state (several exploration
strategies exist to effectively explore the action terrain [Ladosz et al., 2022]). Thus
the cardinality and the domain of the action spaces play a significant role and large
action spaces result in slower convergence. While learning an optimal solution does
require exploring the whole action space, it can often be overwhelming and infeasi-
ble in the case of continuous action spaces, and the idea to extrapolate the learnings
based on the explorations.

Reward function formulation is unarguably one of the critical aspects of rein-
forcement learning. An underspecified reward function (failing to capture the re-
quired objectives) may lead to a suboptimal solution and an overspecified reward
function on the other hand can be detrimental, with the agent not learning anything
at all. The sole objective in RL is for the agent to simply maximize the rewards using
whatever strategies are at the agent’s disposal, in other words, the reward function
defines the policy learned by the agent. The problem of reward shaping can be fur-
ther exemplified if the agent is working towards multiple objectives. For instance
(as in this case), maintaining the cooling load requirement, minimizing the power
consumption, and meeting actuator constraints. Such conflicting objectives can of-
ten muddle the objectives and the feedback signal. Thus extensive care has to be
taken in crafting the reward function in RL [Tamar et al., 2015; Roijers et al., 2013].
Laying more emphasis on the gains incentivizes, the agent often learns faster, for
instance, a non-linear reward function can be used to accentuate gains and suppress
the pitfalls (more subtleties surrounding reward reshaping will be discussed in the
subsequent sections).

Physical systems are often accompanied by constraints, whether it be constraints
surrounding the observation of states or the actuator constraints - hard and rate-
limiting constraints (see Table 1.1), alluding to safe reinforcement learning [Gu et
al., 2023]. While there have been theoretical frameworks that explicitly model the
constraints by formulating a constrained MDP [Gattami et al., 2021], there have not
been practical implementations that are robust. Within the framework of classical
RL, a formal way to incorporate constraints is to perform clipping and introduce
an action penalty, where the actions are clipped to their limits (min/max value)
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and the action penalty introduces a proportional negative reward for frequent action
switching. The proposed work follows a similar approach and ensures that the hard
constraints are met at all costs and that the rate-limiting constraints are met to a
sufficient degree.

The single-agent approach involves a single agent exploring the joint action
domain to learn an optimal policy, while the multi-agent approach would break
down the problem-setting to decompose the action space so that individual agents
would explore their respective action spaces while still working towards a common
goal. The motivation for multi-agent reinforcement learning (MARL) is to exploit
the decoupling between the action spaces that may lead to faster exploration (in
turn faster learning), |A1|+ |A2|+ . . . |Ana | instead of |A1| × |A2| × . . . |Ana |, i.e.
each agent would explore its own action space instead of a single agent explore
the joint action space. However, MARL introduces additional problems that were
non-existent in RL [Busoniu et al., 2008; Wong et al., 2022]: i) non-stationarity, ii)
multi-agent credit assignment, and iii) partial observablity. In fact, if the subsystems
are highly coupled, these challenges can exacerbate the learning process and lead
to a suboptimal solution. [Stefano V. Albrecht, 2024] is a comprehensive review of
the challenges in MARL and contrasts MARL with single-agent RL.

The problem of non-stationarity arises due to the fact that the term
Σst+1P(st+1|st ,π(st)) in the Bellman equation (Equation 2.4) turns into Σst+1P(st+1|st ,<
πAi ,π−Ai > (st)), where πAi is the policy for agent Ai and π−Ai = {πA j | A j ̸=
Ai,∀Ai ∈ {agents}}, a set of all the policies except agent i, and the notation <>
indicates concatenation. The implication is that the agent not only has to learn the
dynamics and the consequences of its own actions but also learn to distinguish
between the dynamics and effects of other agents. The problem is further exacer-
bated by the fact that each of the agents in the mix is learning themselves (moving
target), adding to the non-stationarity of reinforcement learning. Thus in the case of
strongly coupled systems, decoupling can make things worse for RL.

Multi-agent credit assignment is another vital aspect of MARL. In a single-agent
RL setting, the MDP assumption assigns a reward R(st ,at ,st+1) as a consequence
of action at given a state st at time t to the agent. As we now have multiple agents,
the immediate reward function would turn into R(st ,< a1, . . .an >t ,st+1). As the
agents rely on the reward signal to learn an optimal policy, the underlying problem
now concerns the distribution of the global reward, in other words, which of the
agents’ actions contributed significantly towards the observed reward, and which of
the agents had a negative effect? The subsequent sections will formulate multiple
variants of MARL to counter this problem and propose a few novel methods to
alleviate the issues.

The last problem of partial observability in MARL is due to the decentralized
nature of the problem and turns the MDP into POMDP [Åström, Karl Johan, 1965].
The agents now have a local observation (oi,t ) and can optionally share a global state
(st ), i.e. zi,t = {st ,oi,t}, which would act at as the state vector for reinforcement for
the particular agent. If there are no restrictions with respect to observability, all the
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agents can simply share a global state (as in the context of this work).

4.2 RL Problem Formulation

A typical problem formulation in reinforcement learning involves identifying the
states, actions, and reward functions. However, because of the issues discussed
before, it is important to identify and rightly motivate these choices and simply
not include all the available/redundant information since this would slow down the
learning process. Some of the choices presented are based on hindsight but are nev-
ertheless sufficiently motivated.

The task for the reinforcement learning agent is to learn an optimal control strat-
egy to run the chiller plant. The objective is to minimize the operational power
consumption while meeting the cooling load requirements. The chiller plant com-
prises of discrete and continuous states and actions (refer Table 1.1). The discrete
controls correspond to the equipment staging/status, nchs,ncts,npps corresponding to
the number chillers, cooling towers and pumps to run. Although each of discrete
variables can be treated as a binary variable (one per equipment), the intention of
having discrete variables was to circumvent the combinatorial overhead. For in-
stance, given that the plant consists of 2 chillers, 2 cooling towers, and 3 pumps
that can turned ON/OFF, the joint domain in case of binary representation would
then be |Astag|= 22×22×23 = 128, while the discrete representation would result
in |Astag| = 2× 2× 3 = 12, a drastic reduction in the action space exploration. As
part of the exploratory data analysis, the setpoints Tchwst,Tchwsdt,Tewt (correspond-
ing to chiller leaving water temperatures and evaporating water temperature) were
identified to be the most influential on the output power consumption. Although
these setpoints can take on continuous values in their respective ranges (refer Table
1.1), an attempt was made to discretize them (as per Equation 4.1) by choosing the
number of intervals for the action na, with the a−,a+ denoting the minimum and
maximum values for the respective action. This is because considering the respec-
tive ranges, it would be redundant to explore the entire action space, and having too
granular actions can lead to frequent action switching.

adiscrete =
a

∆a
, ∆a =

a+−a−
na

(4.1)

Another motivation is that discrete action spaces often result in better con-
vergence [Charbonnier et al., 2022]. But there is also a downside with the dis-
crete representation, the discrete action space now has a larger domain |Aspts| =
Rnchwst ×Rnchwsdt ×Rnewt (instead of |Aspts| ∈ R3). However, the benefits of discrete
exploration outweigh the overhead associated with continuous action exploration
and is thus preferred. With regards to honoring the hard actuator constraints, all
the setpoints are clipped to stay between their minimum and maximum values. The
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rate-limiting constraints are incorporated as a soft constraint or a penalty as part of
the reward function.

The state space comprises all the relevant information that might potentially in-
fluence the action of the agent. The obvious factors here are the external weather
conditions Tdb,H (temperature and humidity), and the current cooling load to track
lref. These states were retained in continuous form for better generalizability, as
discretizing a state loses the ordering information, inhibiting the model from ex-
trapolating its learnings. For consistent representation of states, all the continuous
state variables were normalized to zero mean and unit standard deviation (Equation
4.2), where the means and standard deviations are computed based on the respective
rages (as listed in Table 1.1).

The current staging status of the equipment was also included as part of the state
as we expect the decisions (staging or choice of setpoints) to be influenced by the
current staging status.

stransformed =
s−µs

σs
(4.2)

Reward function formulation is another crucial aspect of reinforcement learn-
ing. As mentioned before, an over-specified or under-specified reward function can
derail the learning process. The objective here is to minimize the operating power
consumption while maintaining the cooling load requirement. In this regard, a naive
reward function would be to simply maximize the negative of the temperature er-
ror and the negative of the power consumption. As in Equation 4.3, since both the
terms are positive, maximizing the negative quantities would lead to minimizing the
original quantities.

As part of data analysis, it was also observed that the primary reward objective
of maintaining the load requirements was easier to meet, i.e. there existed several
combinations of equipment staging that could meet the load requirement, but the
desirable solution was to sufficiently satisfy the secondary objective as well. Thus
the trivial approach of having α1 > α2 resulted in the agent not paying much atten-
tion to the power objective, as the reward would always be dominated by the load
requirement component. As there were plenty of staging combinations that could
meet the requirement, the solution often converges to a suboptimal one (in terms of
power consumption). Therefore, α2 was made significantly higher than α1.

R(st ,at ,st+1) =−α1|Tref,t −Troom,t |−α2P̂total,t (4.3)

Another flaw with the naive reward function (Equation 4.3) is that the reward
function with respect to the power savings is linear, which may not be the most
efficient reward formulation. Instead, we can use a non-linear mapping such as
log(P̂total,t) to accentuate the power savings and suppress the power expenditure.
Figure 4.1 compares the negative linear function and negative log of normalized
power, the log function provides a higher incentive (with respect to relative power
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Figure 4.1 Reward functions: linear vs non-linear (log function) reward scaling

consumption) than the linear function which should have a positive impact on
the learning process. Finally, the rewards are translated to optimistic rather than
pessimistic, i.e. instead of maximizing the negative of the reward, the range was
mapped from [−∞,0] to the range [0,1] via clipping and min-max scaling. Thus,
distinguishing the positive rewards from the termination penalty (under constraint
violation). It is speculative that if Στ

t=0R(st ,at ,st+1) > Rtermination, the agent would
simply learn to terminate the episode by performing an invalid action, which may
be part of the encounters during the initial learning phase. This was another motiva-
tion for having optimistic rewards and a negative termination reward (penalty). An
alternative way would be to make Rtermination sufficiently large (Rtermination << 0),
although theoretically sound, it would result in large a critic variance.

Another aspect of reward function formulation is the frequency of switching
actions. When dealing with a real process such as a chiller plant, it is important
to ensure that the controls are not abused by frequent switching for marginal or
no improvements. For instance, it would be unrealistic to turn chillers/cooling tow-
ers/pumps ON at a time instant and then have them turned OFF immediately there-
after. This characteristic of the control is incorporated into the reward function as a
rate-limiting constraint, where a penalty is added if the action does not match the
previous action executed, −1{at ̸= at−1}, where 1 if the indicator variable equal to
1 if the previous action differs from the present action.
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Variable Role Range Representation
Tdb STATE [12,35] C Continuous
H STATE [0,1.0] Continuous

†nchs STATE {0,1,2} Discrete, one-hot encoding
†ncts STATE {0,1,2} Discrete, one-hot encoding
†npps STATE {0,1,2,3} Discrete, one-hot encoding
lref STATE [0.5,2] MW Continuous
nchs DECISION {0,1,2} Discrete
ncts DECISION {0,1,2} Discrete
npps DECISION {0,1,2,3} Discrete

Tchwst DECISION [279.538,288.094] Discrete, nchwst = 10
Tchwsdt DECISION [0,5.0] Discrete, nchwsdt = 5

Tewt DECISION [299.817,302.594] Discrete, newt = 10
Troom REWARD
Ptotal REWARD

Table 4.1 System representation for RL experiments

R(st ,at ,st+1) =



α1

(
1− |Tref,t−Troom,t |−T−

T+−T−

)
−α2 log(max(Ptotal,t ,αP)) if at ∈Avalid

−α31{at ̸= at−1}

Rtermination, otherwise

(4.4)

The final reward function was formulated as per Equation 4.4 and addresses
all the critical issues in the naive reward function (Equation 4.3). The α’s in the
equation act as weighing factors for the different objectives in the reward function
and Rtermination < 0 is the penalty for executing an invalid action which immediately
ends the episode, inhibiting the agent from gathering positive reward (Table 4.2 lists
hyperparameters used as part of the experiments).

Table 4.1 summarizes the system states and decision variables involved. The
continuous variables are represented as is, except for normalization as per Equa-
tion 4.2, while the discrete variables are encoded using one-hot encoding. And the
discrete action space is formed by discretizing the action space evenly as per the
parameter n.

4.3 Multi-agent RL Enhancements

Multi-agent reinforcement learning exploits system decoupling to break down with
multiple agents working towards a common goal (cooperative learning). Given the
decision variables in Table 4.1, a logical decomposition can be to have two agents
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Hyperparameter Value
α1 1.5
α2 1.0
α3 0.025
αp 0.01

Rtermination -10.0

Table 4.2 Reward function hyperparameters

in the problem setting, one performing the staging control and the other performing
setpoint control. This is partly motivated by the exploratory data analysis experi-
ments (Figure 3.3), which manifested the existence of an optimal for both staging
sequence and setpoint control, where it is clearly evident that the power curves peak
at an optimal setpoint, and at the particular optimum, staging can have a further im-
pact (vertical bars). Having two agents simultaneously explore the space can lead
to significant improvement in sampling efficiency. While it is possible to further
decompose the action space by having more agents exploring individual or subsets
of controls, it is speculative that this would exacerbate non-stationarity and lead to
poor/sub-optimal performance. Thus, the exploration would involve |Astag|+ |Aspts|
instead of |Astag| × |Aspts|, comprising of the staging and setpoint actions (Table
4.1).

However, as discussed before, MARL suffers from two severe performance bot-
tlenecks, the problem of non-stationarity and the problem of multi-agent credit as-
signment. In this case, the non-stationarity implies that the staging agent should
learn the optimal staging sequence while also anticipating and adapting to the learn-
ing behavior of the setpoint agent (similarly for the setpoint agent). While it is obvi-
ous that the total power consumption is a function of the actions of both agents, the
challenge here is to distinguish the individual contributions so that agents receive
accurate feedback which in turn leads to better learning.

Although several MARL strategies exist that counter these problems, the fol-
lowing section presents two novel strategies in the context of HVAC control to al-
leviate the fundamental problems discussed by exploiting the problem structure.
The problem of non-stationarity is addressed by formulating a turn-based game for
HVAC control to facilitate agents learning the consequence of their own actions
and environment dynamics as well as adapting to the actions of the other agents.
The problem of credit multi-agent assignment is addressed by formulating a cus-
tom parametric reward mixing strategy by exploiting the structure of the total re-
ward for the problem. The subsequent sections present the mathematical arguments
underpinning the proposed approaches and their implications. Experimental bench-
marks include the learning performance of popular MARL strategies CTDE (central
training and decentralized execution) and value decomposition (sum mixing and Q-
mixing) methods. The experimental results reveal that the combination of the two
proposed approaches does improve the learning properties in the case of MARL.
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MARL Problem Formulation
Let Astag,Aspts be the domain of the actions for the two agents, comprising of stag-
ing control and setpoint control. As there are no restrictions on the observations,
both the agents share the same global state S which encapsulates all the states
listed in Table 4.1. Let R be the global reward and Rstag,Rspts be the individual re-
wards for the agents. The goal is then to learn a joint policy π∗ = {π∗stag,π

∗
spts} that

would maximize the cumulative rewards.
It is obvious that the global reward is inversly proportional to the total power

consumption of the chiller plant (as per the reward formulation in Equation 4.4).
The challenge now lies in decomposing the global reward fairly between the two
agents, i.e. splitting the reward proportionately that more accurately describes the
consequence of the agents’ actions. This is challenging as the objectives of the two
agents are tangled and interdependent. Although the setpoint agent is primarily con-
cerned with tweaking the setpoints of the chillers, it can also have an impact on the
other equipment, as suboptimal chiller setpoints may result in more work for the
cooling towers and the pumps, in other words, the agents’ rewards overlap to some
degree. Thus one of the objectives of MARL is to figure out the optimal reward con-
tributions so that the individual agent rewards have a positive effect on the global
reward. The centralized learning and decentralized execution (CTDE) circumvents
this by learning a joint value function, where the agents manifest their rewards and
actions, and a centralized critic would then optimize the TD loss. In the value de-
composition approach on the other hand, the agents have local critics and the cost
is aggregated by a mixer, which would combine the localized critic estimates as in
Equation 4.5, where Qtot represents the total value and θmix represents parameteri-
zation for the mixing function.

Qtot ∼ fθmix(Qstag,Qspts) (4.5)

The following sections present two strategies, LINMIX and turn-based games.
LINMIX attempts to learn a better parameterization of the mixing function, while
turn-based game attempts to alleviate non-stationarity encountered by agent-agent
interactions.

LINMIX - Parametric Linear Mixing
LINMIX is a custom linear parametric mixing strategy inspired by value decom-
position network (VDN) [Sunehag et al., 2017] and QMIX [Rashid et al., 2018]. It
should be noted that QMIX is a superset of the proposed approach and can repre-
sent a much richer class of non-linear mixing functions. The proposed approach on
the other exploits the reward structure to compose linear parametrization for fθmix ,
instead of running a non-linear mixing strategy when it is evident that the global
reward is linear in the given problem. The proposed strategy does have some subtle
differences compared to QMIX (which will be discussed subsequently).
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Value decomposition networks assume the rewards to be additive as in Equa-
tion 4.6. The TD error is then based on the aggregated value function Qtot which
influences the policy loss. This implies that the agents get feedback from other
agents via Qtot. VDN (Equation 4.6) is a simple strategy that forces each agent
to maximize the individual returns and, at the same time steers the agents so as to
maximize the global reward. However, as pointed out before, reward decoupling
in the case of staging and setpoint agents is not as quite straightforward. It is pos-
sible to simply reward both the agents based on the total power consumption, i.e.
Rstag,Rspts ∼ f (Ptotal), but it would not accurately capture the individual contribu-
tions of the agents.

Qtot = ΣAiQAi(s,aAi) , ∀Ai ∈ agents (4.6)

QMIX is a strategy that proposes to alleviate this problem by fitting a mixing
network (neural network), where fθmix ∼ fθmix(Q1, . . . ,QAn ,st) (in Equation 4.5),
fθmix performs a non-linear mixing on the individual agent Qs. In a cooperative
setting, the value function must satisfy the monotonicity property (Equation 4.7).
The monotonicity property implies that a gain in local agent rewards has a positive
effect on the global reward, i.e. the agent rewards are not competitive. And QMIX
ensures monotonicity by restricting the weights of the neural network to be positive.
While the non-linear function is certainly capable of representing a broad class of
value functions, in the context of the given problem it might be redundant, adding
to learning overhead. This is due to the fact that the total power consumption is
additive due to the contributions of different equipments involved, which can further
be decomposed as additive contributions of staging and setpoint control (Equation
4.8). Thus fθmix can be viewed as a linear function in agent Qs.

∂Qtot

∂QAi

≥ 0 , ∀Ai ∈ agents (4.7)

Ptotal = Pchillers +Pcooling towers +Ppumps

= (Pchillers, stag +Pchillers, spts)

+(Pcooling towers, stag +Pcooling towers, spts)

+(Ppumps, stag +Ppumps, spts) (4.8)

Proposition 1. Multi-agent VDN converges to single-agent reinforcement learn-
ing solution if the agent rewards are monotonic and independent, i.e. iff rt =
ΣAirt,Ai , ∀Ai ∈ agents.

Proof for Proposition 1. The following proof derives the result using the cumu-
lative policy returns under VDN. An alternate proof based on the recursive relation
and independence assumptions also exists[Tang et al., 2023].

• Let rA1 ,rAi , . . . ,rAn be the individual agent rewards.
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• Let gAi = Σt=0γ tRAi(st ,< πAi ,π−Ai > (st),st+1 >) be the cumulative returns
for agent Ai. Here < πAi ,π−Ai > represents the joint policy, policy of agent Ai
and the rest of the agents.

• Let π = {πA1 ,πA2 , . . . ,πAn} be the set of policies to be learnt.

Multi-agent reinforcement learning under VDNs would involve optimizing the
policies to maximize the sum of agent rewards,

max
π={πA1 ,πA2 ,...,πAn}

Es0 [gA1 +gA2 + . . .gAn ]

max
π={πA1 ,πA2 ,...,πAn}

Es0

[
ΣAiΣt=0γ

tRAi(st ,< πAi ,π−Ai > (st),st+1 >)
]

ΣAi max
πAi

Es0

[
Σt=0γ

tRAi(st ,< πAi ,π−Ai > (st),st+1 >)
]

Since the agent rewards are independent, each agent maximizing its reward
should converge, while other agents (π̃−Ai ) should have no impact on agent πAi

and reward R−Ai ,

ΣAiEs0

[
Σt=0γ

tR∗Ai
(st ,< π

∗
Ai
, π̃−Ai > (st),st+1 >)

]
We can then use the fact that ΣAiR

∗
Ai
= R∗ and

⋃
Ai
< π∗Ai

, π̃−Ai >= π∗,

Es0

[
Σt=0γ

tR∗(st ,π
∗(st),st+1 >)

]
⇔max

π
Es0

[
Σt=0γ

tR(st ,π(st),st+1 >)
]

Thus, we have converted the MARL objective into a single-agent RL objective
function, implying that under the assumptions made, the MARL solution should
converge to the single-agent RL solution. Of course, the advantage would then be
the sampling efficiency.

The proof for proposition 1 hinges upon the independence assumption of the
agent rewards. However, as discussed before, Rstag,Rspts are not completely inde-
pendent. But the idea here is to extend Proposition 1 by introducing state-dependent
non-linear multiplies that would decompose the rewards, by enforcing a constraint
that the reward coefficients sum up to 1. This assumption is valid as the total power
consumption is conservative, i.e. the total power consumption can be perfectly de-
composed into contributions from individual equipments in an additive manner.
Equation 4.9 formulates the linear mixing strategy (LINMIX). The coefficients ωAi

are the outputs of a shallow neural network as a function of the current state. The
monotonicity property can be easily satisfied by choosing the softmax activation
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function (Equation 4.10). It is worth noting that although the overall function is lin-
ear in terms of QAi , the coefficients ωAi themselves can be non-linear functions of
the current state.

Qtot = ΣAiωAi(st ,at)QAi(s,aAi)

s.t. ΣAiωAi(st) = 1 , ∀Ai ∈ agents (4.9)

∂Qtot

∂QAi

= ωAi =
ezAi

ΣA j e
zA j
≥ 0 (4.10)

Thus, if the ωAi(st ,at)QAi(s,aAi)’s are independent, then Proposition 1 should
hold and we should converge to the same solution as the single-agent RL.

Turn-based Games
A turn-based game involves the agents playing in turns during the learning process.
In each turn, one of the agents would have the liberty to freely choose an action
(as per its current policy) while the other agents would be restricted to their previ-
ous action. Recalling the non-stationarity with MARL, each agent has to learn the
consequences of its own actions, and learn to distinguish the dynamics from the
behavior of other agents. The core problem is that all of these feedback signals are
squeezed into Σst+1P(st+1|st ,< πAi ,π−Ai > (st)) which the TD learning algorithm
has to then learn to approximate. Thus by formulation of a turn-based game, the
agents see the transition as Σst+1P(st+1|st ,< πAi , π̄−Ai > (st)) (π̄ indicates that the
agent retaining the previous action), reducing the variability in the TD target (mak-
ing it analogous to single-agent RL task). It is also worth noting that the argument
of turn-based games can be taken a step further, where the agent policies may be
updated in turns, and in each cycle, a subset of agents act according to their previ-
ous policy. The following section draws the implications of turn-based games on the
fundamental building blocks of RL, value iteration, and policy improvement. The
latter approach of updating agent policies in turns, however, could not be tested due
to time constraints.

Reinforcement learning is essentially an unsupervised way to solve Bellman’s
equation (Equation 2.3). Temporal difference learning enables this by having the
agent learn by interaction, circumventing P(st+1|st ,at) in the Bellman equation. The
equation is approximated as V (st)← αV (st)+ (1−α)maxat [R(st ,at)+ γV (st+1)]
([Sutton, 1988]), where α is the learning rate. As the agent learns to play optimally
by repeated interaction, the TD update should eventually converge and we would
then derive the optimal policy using the value function.

The policy improvement step involves looking up the greedy action that maxi-
mizes the value function at the current state (Equation 4.11), where < aAi ,a−Ai >
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represents the joint action of the agents. But in a turn-based game, the agents act
in turns, meaning while one of the agents takes an action, the rest of the agents
keep their actions fixed. Thus the lookup for the policy improvement step in-
volves max<aAi>

instead of max<aAi ,a−Ai>
(Equation 4.12). This implies that at each

TD update step, the critic has to approximate P(st+1|st ,< aAi , ā−Ai >) instead of
P(st+1|st ,< aAi ,a−Ai >), thus reducing the number of factors influencing the dy-
namics. As a consequence of agents restricting their actions, agent −Ai gets to ob-
serve the effect of agent Ai, while agent Ai gets to observe the effect of its own
actions.

π : max
<aAi ,a−Ai>

Σst+1P(st+1|st ,< aAi ,a−Ai >) [R(st ,< aAi ,a−Ai >,st+1)+ γV (st+1)]

(4.11)

π : max
<aAi>

Σst+1P(st+1|st ,< aAi , ā−Ai >) [R(st ,< aAi , ā−Ai >,st+1)+ γV (st+1)]

(4.12)

Value iteration on the other hand benefits from reduced computation (Equations
4.13 - 4.15), where the summation Σ<aAi ,a−Ai>

can be simplified to Σ<aAi>
. As the

learning progresses, turn-based execution should yield higher rewards when at least
one of the agents starts behaving optimally (Equation 4.16), thus, steering the over-
all learning.

V (st) = Σ<aAi ,a−Ai>
π(< aAi ,a−Ai > |st)Σst+1P(st+1|st ,< aAi ,a−Ai >)

[R(st ,< aAi ,a−Ai >,st+1)+ γV (st+1)] (4.13)
= Σ<aAi ,a−Ai>

π(< aAi > |st)π(< a−Ai > |st)Σst+1P(st+1|st ,< aAi ,a−Ai >)

[R(st ,< aAi ,a−Ai >,st+1)+ γV (st+1)] (4.14)
= Σ<aAi>

π(< aAi > |st)π(< ā−Ai > |st)Σst+1P(st+1|st ,< aAi , ā−Ai >)

[R(st ,< aAi , ā−Ai >,st+1)+ γV (st+1)] (4.15)

Σ
t+1
t R(st ,< aAi , ā

∗
−Ai

>,st+1)≥ Σ
t+1
t R(st ,< aAi ,a−Ai >,st+1) (4.16)
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5
Experiments

Apart from the specification and representation of state/action spaces and the reward
function (Table 4.1), it is imperative to design fair learning experiments to be able
to efficiently learn a useful policy in RL. The learning experiments for RL should
be representative of all the potential real-world conditions that may be encountered,
but at the same time, the environment should not be too overwhelming which would
result in the agent not learning at all. Fairness here implies fairness with respect to
the episodic rewards. Designing fair episodes can be a crucial aspect of reinforce-
ment learning, as PPO (or any on-policy algorithm) has a tendency to get biased
toward the training data. Thus, it is imperative to avoid “sorting” the data (weather
and load patterns), which might otherwise lead to the infamous “catastrophic forget-
ting” problem, which is also persistent in reinforcement learning (as the policies and
value functions themselves are neural networks) [Zhang et al., 2023]. In our case,
the episodic rewards are greatly influenced by two main factors, the reference cool-
ing load to track and external weather conditions (temperature and humidity), and
having inconsistent episodes would often result in the easier episodes dominating
and the agent being biased. Both the tracking load and weather data can have a wide
range and distinctive properties during everyday operations (refer Table 1.1 for re-
spective ranges). However, it is nearly impossible to represent the full range during
the training phase, and doing so might be redundant and inefficient, this is because
the variables Tdb,H, lref are continuous variables (Table 4.1) and it is incumbent to
learn a relationship rather than exposing the agent to every possible combination of
value in the range. This was also one of the motivating factors for the continuous
state representation of these variables. Thus, the training experiments are designed
by exploring the properties of these variables and incorporating the respective trends
spanning the domain.

Although the cooling load for the data center has a continuous range of 500 kW
to 2 MW, the load requirement often follows a discrete and stable pattern in the
defined simulation setup. For instance, the requirement may be 75 % of the capac-
ity during busy hours and a nominal 50 % rest of the time, with minor fluctuations
over the hours. Thus, for the learning experiment the load profile is assumed to be
piecewise constant with a step size of 300 kW, from 500 kW to 2 MW. Real-world
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weather patterns on the other hand are more intricate in nature. Apart from consid-
ering the range, weather patterns often have seasonality and trends that need to be
accounted for. It is also important to have realistic combinations of outdoor tem-
perature and humidity, as the two are often correlated and intertwined. Figure 5.1a
shows the weather profile for the city of Frankfurt for the year 2023. Aggregating
the data over a period of four months reveals the seasonal patterns more clearly
(Figures 5.1b - 5.1c). These trends are modeled as normal distributions by comput-
ing the means and the variances in the respective intervals. The weather conditions
for the training phase are then set by randomly choosing a season and then sam-
pling the corresponding distribution. This way, the complexity of the state space is
reduced dramatically while still exposing the agent to the different properties and
characteristics in the data, without inducing bias. Further, the episodes are made
sufficiently long, and sufficient randomization is introduced to sample all possible
combinations in every episode.

The RL agents were trained on Frankfurt weather conditions (Figure 5.1), but
were also evaluated on other weather profiles (Florida, Figure A.1) in order to ob-
serve the ability of the agents to generalize. Florida weather was also included to
have fair ground of comparison, this is because the closed-loop controller was opti-
mized on Florida data.

(a) Temperature

(b) Temperature trends (c) Humidity trends

Figure 5.1 Frankfurt weather

The overall framework is depicted in Figure 5.2. The process follows a typical
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RL step, given a state, the agent chooses an action (staging and setpoint controls),
executes the action, transits to a new state, and observes the reward. After having
collected enough examples, a gradient step is executed to update the policy and
the critic networks, and the whole process is repeated. The RL step involves the
agent executing the action for a sufficiently long time, allowing the system to settle.
This steady-state assumption simplifies the dynamics during training (although the
evaluation is more dynamic, discussed later). This assumption motivates a choice
for a lower discount factor (γ) for training, as once a steady state is reached, the
power consumption is bound to remain constant as long as the agent holds its action.
The implication is that the critic is myopic and should better be able to approximate
the steady-state behavior. Other hyperparameters for training are listed in Table 5.1.
The choice of an RL simulation step of 4 hrs is motivated by response analysis, as
detailed in Section 3.4.

Figure 5.2 Reinforcement Learning Framework for HVAC Control

Hyperparameter Value
Simulation step time 4 hrs

Discount factor 0.1
Load update frequency 3 RL steps

Weather update frequency 6 RL steps
Episode length 90 RL steps

Step size for load variation 300 KW

Table 5.1 Training Hyperparameters

For evaluation, on the other hand, real-world weather conditions and load pat-
terns are used as is and the agent is exposed to live data. The weather profile is
simply the raw hourly data (Figure 5.1a) and the load profile consists of possi-
ble real-world patterns, constant loads, and load patterns with daily and weekly
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(a) Constant loads (b) Daily and weekly load trends

Figure 5.3 Test-bench: load profiles

trends. Figure 5.3a shows the constant load profile where the load remains constant
throughout the year and Figure 5.3b is a load pattern with both daily and weekly
trends. The trends were generated by imposing sinusoids of different time periods,
a slower sinusoid of period 24×7 hours to emulate weekly variations, and a faster
sinusoid of period 24 hours to represent daily fluctuations. To further analyze the
behavior of the reinforcement learning agent, the profiles are dissected by zooming
in on specific weeks of the year to monitor the controls and discern whether the
reinforcement learning controls make sense.

5.1 Results

The metrics for evaluation primarily include the total power consumption of RL
control benchmarked against the closed-loop controller under different operating
conditions, at the same time ensuring that the IT room temperature setpoint is met.
The closed-loop controller runs supervisory sequence controllers and PI controllers
for reference tracking and often serves as a benchmark. The closed-loop controller
is made available by Carrier. Apart from the performance metrics, the results in-
clude the learning curves for RL that depict the learning progress of the agent and
the convergence. The results are presented for all the approaches discussed thus far:
single-agent RL and all of the existing MARL approaches - CTDE and value de-
composition (sum and Q-mixing), and two of the proposed MARL enhancements:
LINMIX and turn-based games.

Learning Curves
Figure 5.4 compares the learning progress (reward curve and critic error) of all the
approaches RL tested. The reward curves (Figure 5.4a) are simply the evaluation of
the algorithms as the learning progresses, and the value loss (Figure 5.4b) represents
the critic loss (TD error) during training. Ideally, we would like the reinforcement
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(a) Normalized rewards

(b) Value loss (TD error)

Figure 5.4 Learning curves captured by fixing all stochastic parameters between runs
SA: single-agent RL. MA - CTDE: multi-agent centralized learning and

decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:
multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -

TB: multi-agent QMIX and turn-based game (proposed)
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learning agent to learn fast and at the same time achieve the highest possible re-
ward. Convergence may be characterized as the point at which the rewards stabilize
and the critic loss has reduced to its lowest value (ideally to zero). Right off the
bat, the reward curves (Figure 5.4a) reveal an interesting property that relates back
to the single-agent vs multi-agent dilemma discussed initially: the tradeoff between
faster learning and optimality in MARL. The MARL algorithms learn faster than the
single-agent RL but have a tendency to converge to a suboptimal solution (with the
exception of the CTDE approach). Faster convergence can be attributed to the fact
that the agents explore their individual action spaces, leading to faster exploration,
which in turn translates to the agents learning the consequences of the actions much
faster, or in other words, faster learning. The convergence to a suboptimal solution is
also a consequence of the very same property, as the agents learn the consequences
of their own actions with minimal information sharing with others, there is a ten-
dency to not explore the whole optimization space jointly and get stuck in a local
minima.

This problem is not as prominent in the case of the CTDE approach, where a
single critic models the joint action executed by all the agents, and as expected, the
CTDE approach performs quite similarly to the single-agent RL approach.

In terms of value-decomposition approaches, MARL can benefit from decom-
posed action spaces by having to model smaller action spaces, but this also intro-
duces an overhead in terms of the learning and coordination between the agents.
For instance, in Figure 5.4b, the CTDE critic converges to the same value as the
single-agent critic, while the QMIX-based approaches incur a higher bias, and the
sum-mixing approach has a hard time converging. In terms of the performance of
two of the proposed approaches, (LINMIX and turn-based games), we observe that
the LINMIX approach learns faster than QMIX and achieves a higher expected
reward (Figure 5.4a). A plausible reason could be the better parameterization of
the mixing function in the context of the given problem, whereas the QMIX algo-
rithm has to explore a wider class of non-linear function parametrization (which
might be redundant in the context of the given problem). This is also evident in
terms of the observed value loss (Figure 5.4b), where the proposed LINMIX ap-
proach settles down to a lower value error than the QMIX approach, implying a
better parametrization of the mixing function. The proposed turn-based approach
performed worse in terms of the expected rewards and achieved a critic loss on par
with the QMIX approach. But it does appear to stabilize the training to result in a
smoother convergence than QMIX (Figure 5.4a).

Although the total reward is linear in nature, the VDN approach (which simply
attempts to maximize the sum of the agent rewards) appears to be the slowest learner
(Figure 5.4a). It also displays a spurious behavior where the critic diverges abruptly
and never manages to recover back (Figure 5.4b). The credit assignment problem
could be a plausible reason, although the total reward is linear in nature, it may not
be simply the sum of individual agent rewards.
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Performance Evaluation
As mentioned before, the evaluation benchmarks the RL controllers against the
closed-loop controller on two different weather profiles (Frankfurt and Florida) un-
der identical load conditions. The Florida data is included in the metrics to have
a fair ground for comparison, as the closed-loop controller is primarily optimized
under Florida weather conditions. As all the RL agents are trained on Frankfurt
weather data, this can be seen as an opportunity to discern the ability of the agents
to generalize, as Florida temperatures are higher compared to Frankfurt (see Figures
5.1 & A.1). At the same time, this also implies that the savings reported on Florida
data may be conservative, and there may have been higher savings if perhaps the
RL models were exposed to similar conditions during the training phase.

Figures B.1a - B.1e in the appendix show the performance evaluation of the
agents under constant and sinusoidal loads. The performance metrics include the
total power consumption benchmarked against the closed-loop and the IT room
temperature error. Firstly, it is clearly evident that all the RL agents perform consid-
erably better than the closed-loop controller, albeit some of the MARL algorithms
incur a higher power consumption under certain conditions. The saving potential
appears to be much higher in colder weather conditions (Frankfurt) compared to
warmer temperatures (Florida, Figures C.1a - C.1e). Secondly, the IT room temper-
ature error |Tref,t−Troom,t | remains nominal (close to zero) in all the cases, implying
the temperature requirements being met. Although all of the agents perform better
than the closed-loop controller, the single-agent RL approach performs the best in
the case of both constant and sinusoidal loads. This is in line with the intuition that
MARL algorithms can only perform as best as single-agent RL but may display
sampling efficiencies. It is also worth noting that QMIX in particular displays a
spurious behavior in the case of sinusoidal loads (Figures B.1e & C.1e), despite the
steady learning curve and convergence (Figure 5.4a).

It is further worth analyzing if all the RL agents have a consensus in terms of
control, i.e. whether the leanings between the agents roughly resemble each other.
This appears to be indeed the case. Figures B.2a and C.1e plot the staging controls
executed by the RL agents under sinusoidal load and Figures B.2b and C.2b plots
the setpoint control. Although the controls are not completely with agreement with
each other, there a noticible similarity, indicating a consensus at a higher level. This
corroborates the learnings of the agents and our beliefs of optimality in terms of
controls.

On Frankfurt weather data, comparing the mean power savings (Figures B.1f
- B.1g), we observe that the proposed LINMIX approach performs the best com-
pared to the rest of the MARL algorithms (with a better sampling efficiency, as
discussed in the previous section), including the CTDE approach. With the turn-
based approach, the results are ambivalent, in some cases outperforming the QMIX
approach (sinusoidal load and constant load at 1000 kW), while inferior in other
cases. As noted before, the single-agent approach achieves the most savings con-
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sistently. With respect to the evaluation under Florida weather conditions (Figures
C.1f - C.1g), we observe that the MARL agents have a hard time generalizing. The
single-agent RL approach outperforms the closed-loop controller achieving positive
savings, but the savings potential drops as compared to Frankfurt weather. Part of
this can be attributed to the dissimilar weather conditions between Frankfurt and
Florida.

The saving potential tends to decrease with increasing loads (Figure B.1f),
which is in line with the experiments carried out as part of the exploratory data
analysis. Although all the agents (including the single-agent RL) display peculiar-
ity at a constant load of 2000 kW, where the savings are negative, implying that RL
agents fail to outperform the closed-loop controller or at least at best. A plausible
reason could be the exclusion of loads higher than 2000 kW as part of training,
impeding the policy to extrapolate the learnings around the limiting values of the
state.

Further dissecting and analyzing the controls, Figure B.3 contrasts the RL con-
trols with the closed-loop controller. The wetbulb temperature fluctuates around 13
°C B.3a) and the operating load varies around 800 kW (Figure B.3b). Under these
chosen conditions, the savings appear to be remarkable, nearly 25% (Figure B.3c).
The closed-loop controller prefers to have one chiller ON, with the chiller differen-
tial setpoint (Tchwsdt_spt) set to zero, while the RL controller run both chillers with a
nominal differential setpoint of 2.5 °C. Furthermore, the RL controllers run a lower
condenser evaporating temperature (Tcond_ewt_spt), which might be more efficient
given that the outdoor temperature is quite low.

Figure C.3 compares the controls on a warm day in Florida with the wetbulb
temperature of around 23 °C. The savings appear to marginal in this case, around 7
% (Figure B.3c). The RL agents again prefer a nomial chiller differential setpoint
of 2.5 °C, but now prefer a higher condenser evaporating temperature. Figures B.4
- B.5 and C.4 - C.5 compare the results under similar external conditions.
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6
Summary

The main focus of the work carried out was to manifest the saving potential in
contemporary methods used for HVAC building control, and thus identify the op-
portunity and scope for a data-driven optimization technique such as reinforcement
learning. The problem of optimizing power consumption in HVAC systems was
modeled as a Markov decision process due to the sequential nature of the problem,
with immediate controls having both short and long-term consequences. Reinforce-
ment learning was chosen to solve the dynamic programming problem due to the
complexities involved and the limitations surrounding the classical DP approaches.
The extensive exploratory data analysis carried out also served as a motivation for
identifying a reduced optimization landscape for reinforcement learning in formu-
lating tangible problems.

The reinforcement learning problem formulation was extensively motivated,
particularly highlighting the pros and cons of the compromises made surrounding
the representation of the system states and actions. A naive reward function to opti-
mize the total power consumption of the system was proposed but was soon evolved
to also address practical concerns like action switching penalties and temperature
violation errors. Further alleviated the learning process in RL by formulating a non-
linear reward function to lay more emphasis on power savings than the expenditure.
The training experiments were formulated to incorporate potential real-world en-
counters, such as yearly weather and load patterns. At the same time, with the cau-
tion that the learning was not “episodic”, which would induce bias and unfairness,
which would in turn result in some of the episodes dominating the learning process.

The optimization problem was first tackled using single-agent RL before diving
into multi-agent RL. In the case of MARL, two fundamentally different strategies
were compared, the popular centralized training and decentralized execution ap-
proach, which trades off the level of decentralization for learning efficiency, and
value-decomposition which prioritizes decentralized learning. The pros and cons
of the approaches were discussed, along with highlighting some of the key chal-
lenges in MARL. This motivated the proposal of two novel MARL enhancements
in the context of HVAC optimization. The proposed LINMIX strategy attempted to
exploit the reward structure given the fact that the overall power consumption is a
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physical quantity and should thus always be conserved. Thus, the LINMIX strategy
attempted to perform a linear mixing of the agents’ critics. To alleviate the problem
of non-stationarity, turn-based games were proposed, where the two agents would
play in turns so as to reduce the variability in the dynamics and enable agents to
learn to distinguish the consequences of their own action vs the behavior of other
agents.

The evaluation included benchmarking both the single-agent RL and MARL
approaches against the closed-loop controller on real-world weather patterns and
load profiles. The experimental results revealed that RL optimization certainly had
a scope for saving power. All of the RL approaches outperformed the closed-loop
controller, albeit with different potential margins. The observed results also cor-
roborated the single-agent vs multi-agent dilemma of optimality vs learning ef-
ficiency, the single-agent RL achieved the best overall results while MARL ap-
proaches learned faster but had a tendency to converge to a suboptimal solution.
Given the results observed, the single-agent RL appears to be a winner in terms
of performance. Given that the scale of the problem was fairly small (comprising
of 6 actions and only two agents), MARL may not be the best approach in this
situation. Perhaps, there would have been more significant differences in case of
complex problems involving larger action spaces with the scope of having multiple
agents. For a problem on a smaller scale, the MARL challenges impede the learning
process, outweighing the benefits.

6.1 Future Work

Translating algorithmic learning to the real world is often challenging. The pri-
mary concern, especially in the case of RL, is safety. Although the proposed work
included both hard and soft constraints (as indicated in Table 1.1) to honor the con-
straints with respect to the physical controls. There may be more elaborate rules that
apply and may be imperative to adhere to. In such cases, in addition to introducing
an action penalty, it is necessary to have a “post-processing” step that filters out the
invalid actions given the current state, so that the agent does not abuse the control
by probing the system at will. Another, perhaps more robust approach would be
to pursue an RL approach modeled on CMDPs (constrained MPDs), however, the
implementations of such approaches have not matured. Of course, it is also worth
exploring more robust optimization techniques such as MPC or robust MPC, but
MPC methods often require a very accurate or decently accurate model of the sys-
tem and the online computation associated with MPC may also be a bottleneck.

Real-world processes often tend to deviate in real-time operation, which in turn
implies that the control applied must be adaptive. In such cases, a model-based
RL approach can be applied, where an approximate model of the system can be
updated periodically (as and when sufficient data is accumulated) to improve its
accuracy. The purpose of the model can be two fold, firstly, the RL policy can be
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6.1 Future Work

updated given the new model (incremental training), and secondly, the model can
serve towards online planning, techniques such as multi-step lookahead and rollout
optimization may be performed with value function approximation using the base
RL policy. Literature suggests that such techniques have better capabilities of adapt-
ing to changing dynamics and other model perturbations, thus it is a viable option
to explore.

Lastly, regarding RL sampling efficiency, as alluded to previously, one of the
avenues that is worth exploring is imitation learning, where the knowledge from
a mediocre controller can be transferred to accelerate the RL learning processes.
For instance, the existing closed-loop controller can be used to impart optimal or
suboptimal behavior under known external conditions and the RL agent can then be
trained to generalize the learnings to other conditions.

Furthermore, another dimension to the optimization problem is to exploit tuning
the underlying PID and sequence controllers, which would further enhance the per-
formance. For instance, the RL optimization algorithm can be used to optimize the
PID parameters, based on which the agent would then act upon. Again, the agent
can be initialized with the existing/suboptimal control parameters to accelerate the
training.
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A
Weather Profiles

(a) Temperature

(b) Temperature trends (c) Humidity trends

Figure A.1 Florida weather
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B
Results - Frankfurt

(a) Load 500 kW

Figure B.1 Performance metrics under constant load
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Appendix B. Results - Frankfurt

(b) Load 1500 kW

Figure B.1 Performance metrics under constant load
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Appendix B. Results - Frankfurt

(c) Load 1500 kW

Figure B.1 Performance metrics under constant load
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Appendix B. Results - Frankfurt

(d) Load 2000 kW

Figure B.1 Performance metrics under constant load
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Appendix B. Results - Frankfurt

(e) Sinusoidal load, range 500 - 2000 kW

Figure B.1 Performance metrics under sinusoidal load
SA: single-agent RL. MA - CTDE: multi-agent centralized learning and

decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:
multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -

TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop
controller
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Appendix B. Results - Frankfurt

(f) Constant load

(g) Sinusoidal load

Figure B.1 Average yearly savings (relative to closed-loop controller). All RL agents ap-
pear to a positive saving, with the constant load of 2000 kW being an outlier.

SA: single-agent RL. MA - CTDE: multi-agent centralized learning and
decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:

multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -
TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop

controller
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Appendix B. Results - Frankfurt

(a) Staging Control

Figure B.2 Control consensus, all RL agents seem to prefer a roughly similar control strat-
egy.
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Appendix B. Results - Frankfurt

(b) Setpoint Control

Figure B.2 Control consensus: all RL agents seem to prefer a roughly similar control strat-
egy, although there are a few discrepancies.

SA: single-agent RL. MA - CTDE: multi-agent centralized learning and
decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:

multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -
TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop

controller
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Appendix B. Results - Frankfurt

(a) Wetbulb temperature

(b) Load

Figure B.3 Operating conditions for a day in spring
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Appendix B. Results - Frankfurt

(c) Metrics

Figure B.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(d) Staging Control

Figure B.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(e) Setpoint Control

Figure B.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(a) Wetbulb temperature

(b) Load

Figure B.4 Operating conditions for a day in summer
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Appendix B. Results - Frankfurt

(c) Metrics

Figure B.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(d) Staging Control

Figure B.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(e) Setpoint Control

Figure B.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(a) Wetbulb temperature

(b) Load

Figure B.5 Operating conditions for a day in autumn

79



Appendix B. Results - Frankfurt

(c) Metrics

Figure B.5 Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix B. Results - Frankfurt

(d) Staging Control

(e) Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:

closed-loop controller
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Appendix B. Results - Frankfurt

(f) Setpoint Control

Figure B.5 Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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C
Results - Florida

(a) Load 500 kW

Figure C.1 Performance metrics under constant load
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Appendix C. Results - Florida

(b) Load 1500 kW

Figure C.1 Performance metrics under constant load
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Appendix C. Results - Florida

(c) Load 1500 kW

Figure C.1 Performance metrics under constant load
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Appendix C. Results - Florida

(d) Load 2000 kW

Figure C.1 Performance metrics under constant load
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Appendix C. Results - Florida

(e) Sinusoidal load, 500 - 2000 kW

Figure C.1 Performance metrics under sinusoidal load
SA: single-agent RL. MA - CTDE: multi-agent centralized learning and

decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:
multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -

TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop
controller
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Appendix C. Results - Florida

(f) Constant load

(g) Sinusoidal load

Figure C.1 Average yearly savings (relative to closed-loop controller). All RL agents ap-
pear to a positive saving, with the constant load of 2000 kW being an outlier.

SA: single-agent RL. MA - CTDE: multi-agent centralized learning and
decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:

multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -
TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop

controller
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Appendix C. Results - Florida

(a) Staging Control

Figure C.2 Control consensus, all RL agents seem to prefer a roughly similar control strat-
egy.
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Appendix C. Results - Florida

(b) Setpoint Control

Figure C.2 Control consensus: all RL agents seem to prefer a roughly similar control strat-
egy, although there are a few discrepancies.

SA: single-agent RL. MA - CTDE: multi-agent centralized learning and
decentralized execution. MA - VDN: multi-agent sum-mixing. MA - QMIX:

multi-agent QMIX. MA - LINMIX: multi-agent linear mixing (proposed). MA -
TB: multi-agent QMIX and turn-based game (proposed). CL: closed-loop

controller
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Appendix C. Results - Florida

(a) Wetbulb temperature

(b) Load

Figure C.3 Operating conditions for a day in spring
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Appendix C. Results - Florida

(c) Metrics

Figure C.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(d) Staging Control

Figure C.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller

93



Appendix C. Results - Florida

(e) Setpoint Control

Figure C.3 Operating conditions for a day in spring
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(a) Wetbulb temperature

(b) Load

Figure C.4 Operating conditions for a day in summer
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Appendix C. Results - Florida

(c) Metrics

Figure C.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(d) Staging Control

Figure C.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller

97



Appendix C. Results - Florida

(e) Setpoint Control

Figure C.4 Operating conditions for a day in summer
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(a) Wetbulb temperature

(b) Load

Figure C.5 Operating conditions for a day in autumn
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Appendix C. Results - Florida

(c) Metrics

Figure C.5 Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(d) Staging Control

Figure C.5 Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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Appendix C. Results - Florida

(e) Setpoint Control

Figure C.5 Operating conditions for a day in autumn
SA: single-agent RL. MA - LINMIX: multi-agent linear mixing (proposed). CL:
closed-loop controller
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D
Tools & Software

Software Version Description

ModelonImpact 1.8.1
A modelling and simulation environment used to interact with Carrier’s
building models.

PyFMI 2.11.0
A python package used to interact with
functional mockup units (FMUs).

Gymnasium 0.26.1

An API standard for implementing compatible
RL environments.

A custom environment was implemented as a wrapper for the FMU.

Stablebaselines3 2.3.0
A robust Python implementation of contemporary
reinforcement learning algorithms.

raylib 1.8.0
A robust and scalable Python implementation of single-agent
and multi-agent RL algorithms.

MARLlib 1.0.3

An extension of raylib supporting multi-agent RL algorithms.

The library was forked to implement compatibility to support
agents with dissimilar action spaces
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contemporary MARL strategies, centralized training and decentralized execution, and value-mixing 
approaches, along with proposing two novel MARL enhancements in HVAC systems: a linear value-
mixing strategy (inspired by Q-function mixing, QMIX) and turnbased games, that attempt to 
alleviate some of the problems of multi-agent credit assignment and non-stationarity surrounding 
MARL. 
 The experimental results include the learning performance of various RL strategies and the 
performance benchmarks against the closed-loop controller under realistic conditions. The 
experimental results reveal that the RL strategies perform significantly better than the closed-loop 
controller (with a few exceptions), achieving power savings of up to 15% on yearly simulations with 
live weather profiles. The results also highlight the tradeoffs between optimality and sampling 
efficiency, further corroborating the prejudice about MARL, where the single-agent RL performs 
better in terms of optimality, while the MARL approach displays faster learning. 
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