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Abstract

This master thesis explores the neural encoding of speech features for hearing aid
users. The study utilizes electroencephalography (EEG) and audio data from an ex-
periment that stimulates a Cocktail Party scenario. This is a complex auditory scene,
especially difficult for individuals with hearing impairments. The primary objective
of the study is to investigate how different acoustic and linguistic speech features
are represented in the brain response and how these representations are influenced
by hearing aid settings. The speech features analyzed are the acoustic envelope,
phonetic features, word onset, and word surprisal. The word surprisal values
were derived from GPT-2. Temporal Response Functions (TRFs) and multivariate
TRFs (mTRFs) were employed to examine the correlation between these features
and EEG signals during speech processing in both attended (target) and unattended
(masker) speech scenarios.

The TRFs were estimated by training a forward model using a boosting algorithm.
In this process, the speech features serve as the predictor variables (X-data), and the
EEG signals serve as the response variables (Y-data). The boosting algorithm iter-
atively improves the model by combining multiple weak learners to better predict
the EEG responses based on the given speech features.

The study found that target and masker speech are significantly distinguishable us-
ing TRF models trained on these features. It also revealed that hearing aid conditions
impact their encoding. Among the features analyzed, the acoustic envelope had the
highest correlation with neural responses. Adding other predictor variables to the
Envelope model did not improve the correlation. Further, all speech features were
found to have unique neural encoding. The acoustic envelope and phonetic features
could be correlated to early processing, while word onset and word surprisal are
reflected in later neural responses.

Our findings suggest that speech features are important in understanding how hear-
ing aid users process speech, which could lead to future development of hearing
aids that are not only fitted to the user’s needs but also tailored to their unique neu-
ral responses.
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1
Introduction

1.1 Introduction to Auditory Processing

When we perceive a sound, whether it’s speech, music, or environmental noise, the
auditory information is initially captured by the ears and then conveyed as electrical
signals to the auditory cortex located in the brain. The brain then processes and de-
codes spoken language in different regions in a hierarchical manner, through a com-
plex network of neural pathways and structures [Hickok and Poeppel, 2007]. The
neurophysiological mechanisms in speech recognition are affected by the many ad-
verse speech conditions we experience in everyday life where speech intelligibility
is challenged. Difficulties in perceiving and processing speech can impact speech
recognition due to degradation of the speech signal, for example at the source or
during transmission, which is often the case in noisy environments. These difficul-
ties can also stem from receiver limitations due to individual hearing impairments
and cognitive load [Mattys et al., 2012].

1.2 Problem Statement

The understanding of how the human brain processes speech, particularly in chal-
lenging listening environments, is a multifaceted problem that has significant im-
plications for various fields, including neuroscience, linguistics, and audiology. In
such environments, individuals must decipher speech among competing auditory
inputs, which imposes additional cognitive demands, and presents a difficult chal-
lenge, especially for hearing impaired (HI) individuals. Difficulties with selective
hearing attention in social settings and noisy environments often lead to feelings of
frustration and exclusion for the affected, potentially resulting in social isolation,
unemployment, and mental health issues [Podury et al., 2023].
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Chapter 1. Introduction

1.3 Objectives

The primary objective of this study is to explore how acoustic and linguistic speech
features are encoded and represented in the brain. The acoustic feature investigated
is the acoustic envelope, while the linguistic features include word onsets, pho-
netic features, and word surprisals, the latter derived from a Large Language Model
(LLM). This study examines their correlation with electroencephalography (EEG)
signals during speech processing in a competing speech scenario. Specifically, it
aims to determine whether word surprisals, as a linguistic feature, can be used to
predict semantic processing of hearing aid users. Additionally, it explores whether
integrating word surprisal with acoustic features enhances this correlation.

An additional objective is to investigate the potential impact of encoding acoustic
and linguistic features across various hearing aid (HA) settings. Given that the data
used in this study are obtained from hearing aid users, analyzing the correlation
across different features will provide valuable insights into the brain’s mechanisms
under impaired hearing conditions. Ultimately, this research aims to advance our
understanding of how different speech features are encoded in the EEG of hearing-
impaired individuals in competing speech scenarios, and the impact of hearing aids
and Noise Reduction (NR) on this process. Such understanding could have signifi-
cant implications for the development of future hearing aids, potentially improving
their effectiveness and user experience.

1.4 Methods

To address these objectives, several key questions have guided the methodology.
First, the EEG data were preprocessed, and the speech features were extracted. No-
tably, the word surprisal values were derived and computed using the LLM GPT-2.
To investigate the correlation between acoustic and linguistic speech features with
EEG signals during speech processing, Temporal Response Function (TRF) models
for individual features and multivariate TRF (mTRF) models combining different
features were estimated using the Eelbrain toolbox in python.

The TRF models were then used to examine how acoustic and linguistic features
are encoded in the EEG signals in both attended (target) and unattended (masker)
speech across subjects, as well as under different hearing aid conditions. This anal-
ysis aims to evaluate if word surprisal consistently influences neural responses to
target speech differently than to competing masker speech.

The TRF curves provide a graphic representation of these models, illustrating the
temporal dynamics of the neural response to each specific speech feature, or com-
bination of features, that the TRF or mTRF model was trained on.

Since different brain regions have been shown to correlate more strongly with var-
ious levels of speech processing, such as the temporal lobe for auditory processing
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1.4 Methods

[Hickok and Poeppel, 2007] and the frontal lobe for semantic processing [Friederici,
2011], this study also explores the brain regions involved in the encoding of differ-
ent features by analyzing topographic maps for each TRF model. This approach
aims to gain a deeper understanding of the connection between speech features and
neural activity during speech processing.
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2
Background: Auditory
Processing

This chapter covers the foundational aspects of auditory processing, particularly
focusing on hearing loss and its implications, the cocktail party problem, and the
stages of auditory processing. These are key elements for understanding the com-
plexities involved in auditory processing and the challenges faced by individuals
with hearing impairments. The following sections will provide an overview of hear-
ing loss, the cognitive demands of listening in noisy environments, and the intricate
processes involved in auditory signal processing, including the differentiation be-
tween masker and target speech streams.

2.1 Hearing loss

Definition and Prevalence
Hearing loss is defined as not being able to hear as well as a person with normal
hearing, and it ranges from mild to profound. If the hearing loss is greater than
35 dB in the better-hearing ear, it can be labeled as a disabling hearing loss. Mild to
severe hearing loss can be rehabilitated with assistive devices such as hearing aids
and cochlear implants. More than 5% of the global population, equivalent to 430
million people, need rehabilitation to manage their hearing impairment. Projections
suggest that by 2050, this number could surge to over 700 million people, affecting
approximately 1 in every 10 people worldwide [World Health Oragnization, 2024].

Implications of Hearing Loss
Hearing loss can have great implications on the lives of those affected, both phys-
ically and socially. Psycho-social development can be disrupted in different ways
during the different stages of life and can ultimately lead to increased morbidity in
older adults [Podury et al., 2023].
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2.2 The Cocktail Party Problem

Hearing is an integral part of language, communication, and social interaction. In
early childhood, auditory input is important for the maturation of white matter in
the brain’s speech center, and the auditory cortex may be important for multimodal
social processing. Speech contains acoustic features that carry socially rich infor-
mation and convey emotion that may be difficult to interpret using the other sensory
modalities. Conversations in noisy environments can be very challenging for those
with impaired auditory processing. This can result in frustration, cognitive fatigue,
and social avoidance. The degree of hearing loss in adults has been associated with
work-related implications such as unemployment and increased need for sick leave
[Podury et al., 2023].

The implications of hearing loss could lead to difficulties with social development
in early childhood, diminished social well-being, social isolation, and increased risk
of depression and anxiety in adulthood. In older age implications may also include
cognitive decline and dementia, and although not yet fully understood, an increased
risk of falls and frailty [Podury et al., 2023].

2.2 The Cocktail Party Problem

The cocktail party problem refers to the brain’s ability to focus its attention on one
speaker or auditory stimulus among many in a noisy setting [Cherry, 1953]. The
phenomenon showcases an important human socio-cognitive capacity of sound seg-
regation and selective attention. This ability is often more challenging for those with
hearing loss and for those who use hearing aids [Reiss and Molis, 2021]. A remark-
able phenomenon that can occur during a cocktail party problem is when a word
of significance, such as the listener’s name, is mentioned in one of the unattended
speech streams and immediately catches the listeners attention.

Cognitive load
Listening effort can be described as a product of the processing demands in a certain
situation and the cognitive resources of the individual, and is indirectly measured
in behavior or performance. A highly demanding listening effort can lead to lower
perception and comprehension. The cocktail party problem is an example of a listen-
ing scenario that can significantly increase the processing load. Other scenarios are
when the linguistic properties of the stimulus are more complex or demand more
memory, or when the listener is dividing their attention e.g. during multitasking
[Johnsrude and Rodd, 2015].
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Chapter 2. Background: Auditory Processing

2.3 Auditory Processing

Low-Level Processing
Low-level processing refers to the initial stages of auditory processing, where the
brain analyzes basic acoustic features of the speech signal, such as spectral cues and
temporal patterns. Adverse conditions, such as background noise or signal degra-
dation, can impact low-level processing by reducing the clarity and quality of the
incoming speech signal, making it harder for the brain to extract relevant acoustic
information [Mattys et al., 2012].

Low-level processing is essential for extracting acoustic cues from the speech sig-
nal. At the acoustic level, the auditory cortex is primarily involved in decoding the
physical properties of sound and speech, such as frequency, amplitude, and duration.
The phonetic level involves the classification of acoustic patterns into phonemes,
bridging the gap between acoustic information and linguistic units. This allows the
brain to recognize and differentiate between different speech sounds [Brodbeck et
al., 2018b].

High-Level Processing
While low-level processing is essential for extracting acoustic cues from the speech
signal, high-level processing is crucial for integrating these cues into meaningful
linguistic representations and facilitating comprehension. High-level processing in-
volves more complex cognitive processes, such as lexical access, semantic inter-
pretation, and syntactic analysis. Adverse conditions can also affect high-level pro-
cessing by increasing cognitive load, reducing attentional resources, or introduc-
ing interference from competing speech signals or background noise [Mattys et al.,
2012]. The lexical level allows the brain to identify and understand words in con-
tinuous speech by integrating phonetic information for word identification. Lexical
processing occurs in the left temporal lobe, and is crucial for understanding the
meaning of spoken language [Brodbeck et al., 2018b].

Compensatory Mechanisms of Speech Recognition
In response to adverse conditions that impact both low and high levels of process-
ing, the brain may engage compensatory mechanisms to enhance speech recogni-
tion. These mechanisms may involve reallocating attentional resources, adjusting
cognitive strategies, or relying more on contextual cues to aid in speech perception
and understanding.

For example, in the process of word segmentation, the brain tends to rely more on
acoustic and phonetic cues in non-noisy environments. In noisy environments, it
becomes harder for the brain to rely solely on the acoustic characteristics of speech,
i.e. the sound, to understand what’s being said. In such situations, contextual in-
formation becomes particularly valuable for understanding speech. Even if certain
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2.3 Auditory Processing

speech sounds are obscured by noise, the context provided by surrounding words
can help fill in the gaps and aid in comprehension [Mattys et al., 2012]. Additionally,
phonetic features are more strongly encoded in the neural response when the stim-
ulus is a comprehended language, i.e. there is high-level processing present. It has
been suggested that the brain strategically relies more on low-level features when
the context clues are constricted and more information is needed, and on high-level
features when the context is reliable [Tezcan et al., 2023].

Stages of Auditory processing
Early Auditory Processing. In primary-like brain areas associated with early au-
ditory processing (within approximately 85 milliseconds), previous research has
demonstrated that it is not possible to distinguish between multiple talkers in indi-
viduals with normal hearing. In these early stages, the brain represents all speech
with similar fidelity, regardless of the focus of attention [Alickovic et al., 2021].

Higher-Order Processing. In higher-order non-primary areas, later responses (be-
yond 85 milliseconds) reveal a different pattern. In these regions, there is a dis-
cernible increase in fidelity for the attended speech compared to the unattended
speech. This phenomenon has been observed in both normal hearing (NH) and
hearing-impaired (HI) individuals, where the neural responses related to target
speech streams are enhanced while those related to masker speech streams are sup-
pressed [Alickovic et al., 2021].

Brain Regions Involved in Target and Masker Speech
Processing
Activation of Superior Temporal Gyri. Research indicates that when speech is
masked by another speech signal, both the left and right superior temporal gyri
(STG) are activated. However, when the speech signal is masked with spectrally
rotated (unintelligible) speech, activation is observed only in the right STG. This
suggests distinct roles for the left and right temporal lobes in processing different
types of masked speech signals [Scott et al., 2009].

Impact of Different Maskers. It has been studied how different maskers, both en-
ergetic (e.g., white noise) and informational (e.g., speech babble), impact cortical
auditory evoked potentials (CAEPs) during speech processing [Vander Werff et al.,
2021]. It is known that informational masking, such as competing speech, is more
challenging for normal hearing individuals compared to energetic masking [Brun-
gart, 2001]. The study found that speech babble resulted in more significant latency
delays in CAEPs compared to other noise types, indicating that the type of mask-
ing influences how speech is neurally encoded even without the participant actively
attending to it [Vander Werff et al., 2021].
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Chapter 2. Background: Auditory Processing

SNR and Age-Related Differences in Cortical Processing
How the brain responds to target speech in noisy environments is affected by age.
Research indicates that elderly people need a higher Signal-to-Noise Ratio (SNR)
compared to younger people to segregate words to the same extent in noisy en-
vironments, both in informational and in energetic noise [Schneider et al., 2022].
SNR compensates for age-related differences in speech processing, particularly in
competing speech scenarios, which are more difficult for older adults because of the
similar acoustics between the target and masker speech streams. Younger individ-
uals can more effectively use the onset differences between the target and masker
speech streams to focus on and understand the target speaker. In contrast, older
adults struggle to benefit from these temporal cues, making it harder for them to
process speech in noisy environments [Schneider et al., 2022].

Phase Locking and Linguistic Information
Phase Locking Mechanisms. Phase locking refers to the synchronization of neu-
ral responses to the timing of auditory stimuli. It has been investigated whether
phase locking of cortical responses benefits from linguistic information or is solely
a response to acoustic information in speech [Peelle et al., 2012]. The result of the
study showed that phase locking between the envelopes and neural activity is the
strongest between 4 Hz and 7 Hz, and that this is where the acoustic envelope of
sentences contains most power. It was also demonstrated that the listener’s ability
to extract linguistic information is related to the brain’s entrainment to connected
speech. Phase locking was proven to be significantly more cerebro-acoustically co-
herent in the left auditory cortex than in the right for high intelligibility speech. The
impact of speech intelligibility on phase-locked responses is observed in lower-level
auditory regions of the temporal cortex. This sensitivity in areas that are anatomi-
cally early in the speech-processing hierarchy suggested that these regions are at-
tuned to linguistic information [Peelle et al., 2012].

Semantic Encoding. The encoding of semantic information in EEG signals is as-
sociated with specific frequency ranges, particularly in the theta (4 Hz to 8 Hz) and
high beta (13 Hz to 30 Hz) bands. Studies have shown that theta activity is linked
to associative memory formation and semantic processing, whereas beta activity is
often related to maintaining a defined level of cognitive processing and predicting
upcoming stimuli. This suggests that these frequency ranges play a crucial role in
how the brain encodes and processes semantic information, implying their impor-
tance in surprisal analysis [Zion Golumbic et al., 2013].
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3
Background: EEG

This chapter explores electroencephalography (EEG) as a tool to understand the
neurophysiological responses to auditory stimuli. It will cover the basics of EEG,
electrode placement, frequency bands, and the phenomena of neural tracking. Ad-
ditionally, the chapter will outline how EEG aids in understanding speech intelligi-
bility for hearing aid users, the significance of event-related potentials (ERPs), and
the application of temporal response functions (TRFs).

3.1 Introduction to EEG

EEG is a technique commonly used by scientists to study human brain functions
and by physicians to diagnose neurological disorders such as epilepsy, sleep disor-
ders and brain tumors. EEG involves using a cap with superficial (or in some cases
intracranial) electrodes placed on the scalp to measure potentials produced by the
brain cells, reflecting the electrical activity of the brain. The electrodes are con-
nected to amplifiers and an EEG machine that records the activity. The electrodes
are recorded in parallel, with each channel typically consisting of two electrodes.
Each channel produces a signal, and together these signals generate a graph [Siuly
et al., 2016]. The placement of the electrodes, or montage, is important as different
areas of the cerebral cortex process different stimuli and tasks [Siuly et al., 2016].

3.2 Frequency Bands in EEG

The most important characteristic of an EEG recording is its frequency content.
Specific frequency bands are correlated with different mental states, such as active
attention, wakefulness, and various stages of the sleep cycle. The main frequency
band where auditory information is processed in the brain is between 1 Hz to 7 Hz
[Zion Golumbic et al., 2013].
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Chapter 3. Background: EEG

3.3 Neural Tracking

Neural tracking is a phenomenon where neural responses, commonly measured with
EEG, temporally align with specific acoustic features of a continuous sound input,
e.g. speech [Tezcan et al., 2023]. This can be used to investigate the hierarchical
properties of speech processing in the brain.

Methods of Neural Tracking
Frequently used methods of neural tracking are linear decoding and encoding
models [Alickovic et al., 2019; Geirnaert et al., 2021]. Decoding, also called back-
ward modelling, refers to the process of reconstructing the stimulus. Encoding, or
forward modelling, involves predicting the neural response, such as the EEG sig-
nal. By modelling a linear relationship between the stimulus feature and the neural
activity, it is possible to gain valuable insights into how the brain processes and
responds to different auditory inputs. Frequently tracked features include the fun-
damental frequency f0 [Van Canneyt et al., 2021; Kegler et al., 2022], the acoustic
envelope [O’sullivan et al., 2015; Mirkovic et al., 2016; Alickovic et al., 2019; Di
Liberto et al., 2020; Biesmans et al., 2016], and linguistic features such as phoneme
and word surprisal [Di Liberto et al., 2015; Broderick et al., 2018; Brodbeck et
al., 2018a; Gillis et al., 2021; Anderson et al., 2023; Chalehchaleh et al., 2024;
Karunathilake et al., 2024]. By incorporating different tracking features, it is pos-
sible to gain insights into auditory processing and speech intelligibility at different
levels [Gillis et al., 2022].

Auditory Attention Decoding
Auditory attention decoding (AAD) is a technique used to identify which audi-
tory stimulus a listener is focusing on by analyzing neural signals, such as EEG.
This method holds significant importance in applications such as hearing aids and
brain-computer interfaces, where understanding auditory attention can profoundly
enhance user experience. Common attention decoding methods rely on correlation
and estimation techniques that link electrophysiological responses to auditory stim-
uli. The primary techniques include Canonical Correlation Analysis (CCA), dense
estimation encoding/decoding models, and sparse estimation encoding/decoding
models [Alickovic et al., 2019].

Incorporating speech features into AAD serves to enhance the accuracy and ro-
bustness of these techniques. Speech-to-language transformations, modeled by sys-
tems like Whisper [Radford et al., 2023], can predict EEG responses by using
spectral speech features contextualized over time [Anderson et al., 2023]. This ap-
proach demonstrates that higher layers of speech-to-language models, which inte-
grate longer temporal contexts, can be used to better predict EEG signals related to
auditory attention, thus improving the AAD performance [Anderson et al., 2023].
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3.4 Speech Comprehension for Hearing Aid Users

3.4 Speech Comprehension for Hearing Aid Users

Hearing Aid Strategies
Historically, hearing aids have been focused on amplifying sound and reducing
noise, but are not working cooperatively with the thinking brain. There can be
great benefit in looking at top-down processing for complex stimuli such as speech
and music. The thinking brain uses mechanisms to extract meaning from complex
soundscapes and can filter out specific signals from the background. The strate-
gies used for auditory problem-solving vary among individuals, and there is much
to learn from the superior strategies to tailor hearing aids more effectively on an
individually basis [Hafter, 2010].

Speech Comprehension
Research has shown that semantic information might be more important for the in-
telligibility of speech than the SNR. A study investigated how speech intelligibility
and perceived cognitive effort were affected by two different experimental setups
with reverberant background noise for hearing aid users. The results showed that
maintaining the same topic for sentences presented to subjects, i.e. the same seman-
tic context, enhanced intelligibility and reduced self-reported cognitive effort. The
same topic increased intelligibility for 95% of subjects, while the reverberant room
hearing aid setting (NR setting) increased intelligibility for 75% of users compared
to the universal hearing aid setting. The listening effort was also lower in the same
context and reverberant room conditions. There was no significant interaction be-
tween context and the Reverberant Room setting for either of the results [Holmes
et al., 2018].

It has also been found that intelligibility remains largely consistent despite back-
ground noise until the noise reaches a level where it overpowers the energy in
the speech signal, typically around -3 dB [Brungart, 2001]. Another study [Hafter,
2010] suggests that although NR hasn’t been proven to improve speech intelligibil-
ity in noise, it is still positively commented on by the users. The appreciation could
be explained by a reduction of cognitive effort that the NR offers. In shared atten-
tion scenarios, hearing aid users might enjoy the NR not because it improves speech
identification, but because it makes it easier for them to focus on the task [Hafter,
2010].

However, a more recent study has shown that an NR scheme for HAs had an enhanc-
ing effect on the cortical representation of both target and maker speech in both low
and high SNRs. In low SNRs, it also suppressed the representation of background
babble noise [Alickovic et al., 2020; Alickovic et al., 2021].
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Chapter 3. Background: EEG

3.5 Event Related Potentials (ERPs)

In conventional event-related analysis, it is presumed that every stimulus triggers
a uniform and distinct response in the EEG. ERPs are employed to study discrete
events, like words, which are integral to human speech perception. ERPs are calcu-
lated as averages of the neural signal before and after the onset of the word, which
may include neural signals from other responses to other stimuli, such as the acous-
tic signal, as well as responses to the previous and next word [Brodbeck et al., 2021].
An example of what an ERP can look like is depicted in Figure 3.1. The use of ERPs
is therefore more suitable for studying discrete sound rather than continuous. ERPs
are localized in different brain regions depending on the task and type of stimulus.

Figure 3.1 A simulated ERP waveform showing the peaks P100, N100, P200, N200, and
P300. The x-axis represents time in milliseconds, and the y-axis represents amplitude in
microvolts (µV).

Early Peaks
N100: A negative peak between 100-160 ms is indicative of early auditory process-
ing and is correlated to the onset and discrimination of a stimulus [Näätänen and
Picton, 1987]. The N100 peak is related to perception, and the latency of the N100
peak has been shown to increase with age [Tomé et al., 2014]. The enhancement
of the N100 component when attending to a stimulus can be useful for evaluating
the effectiveness of electrical stimulation prior to the implementation of cochlear
implants for hearing-impaired individuals [Paulraj et al., 2015]. N100 is often fol-
lowed by the P200-peak, forming the so-called N1-P2 complex, distributed over the
fronto-central scalp region [Tomé et al., 2014].

P200: The P200 peak (150-200 ms latency), in ERPs typically reflects the early
stage of sensory processing and is associated with the encoding and initial anal-
ysis of sensory information. The P200-peak is related to attention and perceptual
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3.6 Temporal Response Function (TRF)

processing [Bourisly and Shuaib, 2018]. The P200 amplitude has been shown to
increase with age (20-60 years) and then decrease again. The latency also increases
with age in the anterior brain regions [Mueller et al., 2008].

Mid-Latency Peaks
N200: The N200 peak (200-350 ms latency) is correlated with selective attention
and separation of auditory stimuli [Sur and Sinha, 2009] and processing of phono-
logical information, which is related to the sounds of the language [Tomé et al.,
2014]. These peaks are related to higher cognitive processes such as attention, dis-
crimination, and memory. They indicate how the brain allocates cognitive resources
to process and respond to significant or novel stimuli. The N200 is generally ob-
served in the frontal-central areas of the brain, although the specific cites are task
dependent. [Folstein and Van Petten, 2007].

P300: The P300 peak is elicited when the subject actively listens to the target stimuli
[Picton, 1992]. It is related to higher cognitive processing such as decision-making,
memory and context updating. The peak latency of the P300 can indicate how fast
the individual is processing the stimulus [Mueller et al., 2008]. The P300 peak is
found in the parietal and frontal cortex and originates from stimulus-driven frontal
attention mechanisms during task processing, and from temporal-parietal activity
associated with higher cognitive processing [Polich, 2007].

Late Peaks
N400: Around 400 ms latency, speech understanding occurs and words are encoded.
Late negative peaks around 400 milliseconds reflect semantic processing and inte-
gration, indicating higher-level cognitive functions related to understanding and in-
tegrating complex stimuli. The N400 component is typically associated with activ-
ity in the frontal, temporal and parietal regions of the brain[Kutas and Federmeier,
2011]. Due to the peak’s relation to integrating semantics, it could potentially en-
code the word surprisal.

3.6 Temporal Response Function (TRF)

TRF measures how the brain responds to continuous sounds, like speech, over time.
TRFs describe the linear relationship between a stimulus and the brain’s reaction.
By using regularized linear regression, TRFs help understand how different features
of sounds are processed by the brain. TRFs act like filters, showing how ongoing
stimuli are transformed into neural responses, assuming a linear convolution be-
tween input and output [Crosse et al., 2016].

A TRF is a mathematical model that describes how a system responds over time
to a given input. TRFs thereby provide a framework for analyzing neural responses
to continuous stimuli, capturing both the continuous nature of the stimulus and the
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discrete events or features within it. This is achieved through the utilization of time
series predictor variables, such as multiple impulses (ERPs), which undergoes con-
volution with a kernel that outlines the general pattern of responses to this event
type [Brodbeck et al., 2021]. The TRF, w(τ,n), is estimated by minimizing the
mean-squared error (MSE) between the actual neural response at channel n, r(t,n),
and the predicted response r̂(t,n) obtained from the convolution:

minε(t,n) = ∑
t
[r(t,n)− r̂(t,n)]2 . (3.1)

Although TRF analysis assumes a linear relationship between the EEG response and
stimulus feature, the approach is based on the understanding that brain processes
are continuous, non-linear, and hierarchical. This suggests that brain signals can be
decomposed into separate responses linked to various predictor variables that are
processed simultaneously at different levels. This can be achieved by estimating a
multivariate Temporal Response Function (mTRF). This approach can provide
valuable insights into the unfolding dynamics of perception and cognitive processes
over time [Brodbeck et al., 2021].

Non-Linear Transformations
Convolution is limited by its tendency to model linear responses to input stimuli.
However, the brain exhibits a range of transformations in response to stimuli, rather
than simply mirroring them. In this context, a non-linear response is more appro-
priate. To address this, the stimulus can be subjected to non-linear transformations.
Subsequently, brain responses can be predicted based on linear responses to these
newly non-linear stimulus features [Brodbeck et al., 2021].

TRF Peaks
It is possible to interpret TRF peaks similarly to ERP peaks, as both TRFs and ERPs
are derived from EEG data and reflect the brain’s response to stimuli. The main
difference is that TRFs provide a mapping of how the brain responds to continuous
stimuli over time, while ERPs are typically associated with specific, discrete events
[Crosse et al., 2016]. Nevertheless, TRF and ERP peaks can be interpreted in terms
of their amplitude and latency in a similar way, reflecting the strength and timing of
various neural responses.

3.7 Predictor Variables

Predictor variables can be interpreted as hypotheses about the representation of
stimuli in the brain. The stimulus is represented by a chosen predictor variable,
such as the acoustic envelope, audio spectrogram, word and phoneme onsets, etc.,
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and a convolution model specifies its relation to the response. TRFs model the con-
tinuous relationship between the stimulus (e.g., speech audio signal) and the neural
response over time, allowing for a detailed analysis of the temporal dynamics of
brain activity in response to continuous stimuli. By assuming that the responses are
additive, multiple predictor variables can be chosen to characterize the stimuli, re-
sulting in an mTRF model consistent with macroscopical measurements of electric
brain signals and more natural stimulus conditions [Brodbeck et al., 2021].

The Acoustic Envelope
The acoustic envelope describes how the amplitude of an oscillating signal, e.g.
sound wave, changes over time and can be extracted in digital signal processing by
for example using the Hilbert transform or the moving root-mean-square amplitude
[The MathWorks Inc, n.d.]

Role of Acoustic Envelope in Neural Processing. The temporal envelope of
speech is a key feature strongly represented in the cortex and closely related to
neural activity. Studies have shown that there is a strong correlation between cor-
tical activity due to auditory activity and acoustic envelopes of speech [Horton et
al., 2014; O’sullivan et al., 2015]. The brain’s early auditory responses are closely
aligned with the temporal patterns of the speech envelope, indicating that the acous-
tic envelope is a primary driver of these neural activities [Oganian et al., 2023]. This
encoding helps the perception of speech and other complex sounds, enabling the
brain to process auditory information effectively.

Attention Prediction. The speech envelope has been shown to play a significant
role in decoding attention in cocktail party situations, where the EEG response
phase-locks to the acoustic envelope of the attended speaker, while remaining out
of phase with the unattended speaker [O’sullivan et al., 2015]. A study demon-
strated that a classifier trained on individuals’ envelope responses, obtained by
cross-correlating each stimulus’s envelope with EEG channels, could reliably pre-
dict the attended speaker with significant accuracy. Moreover, this classifier suc-
cessfully predicted the subject’s attention using data from other subjects, implying
promising prospects for developing auditory Brain-Computer Interfaces that don’t
necessitate individual user data for training [Horton et al., 2014].

A promising alternative is to use cepstrum analysis for AAD, which has been shown
to improve classification accuracy [Alickovic et al., 2023a; Alickovic et al., 2023b].
This approach involves performing the Fourier transform on a signal, taking the
logarithm of its magnitude, and then applying the Fourier transform again. The re-
sulting cepstrum can highlight periodic structures in the frequency domain, such
as echoes or harmonics, that are not easily visible in the original signal or its fre-
quency representation. This advantage makes cepstrum analysis a valuable tool for
identifying hidden features in complex signals.
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Word Onset
Word onsets refer to the beginning sounds of words and are important for speech
perception and processing. The human auditory system is sensitive to these initial
sounds, which help in segmenting continuous speech into discrete units, facilitat-
ing word recognition and comprehension. The brain’s response to word onsets has
been shown to be robust, as these initial sounds often carry important phonetic and
prosodic information that aids in predicting the rest of the word. Research using
electrophysiological methods, such as ERPs, has demonstrated distinct neural re-
sponses to word onsets, typically observed as peaks in the P200 and N200 com-
ponents, reflecting early auditory processing and cognitive evaluation of speech
sounds [Marslen-Wilson and Zwitserlood, 1989].

Phonetic Features
Phonetic features are a combination of the onset of phonemes and how they are
articulated. The phonemes of a language can be categorized by distinct character-
istics such as voicing, manner of articulation, and positioning of the tongue and
lips. These features are essential for distinguishing between different phonemes,
the smallest units of sound that can change meaning in a language. The processing
of phonetic features is a foundational aspect of speech perception, allowing listen-
ers to decode the acoustic signal into meaningful linguistic units. Early sensory
processing of phonetic features is reflected in the P100 component of ERPs, which
typically occurs within the first 100 milliseconds after stimulus onset [Näätänen and
Winkler, 1999].

Word Surprisal
Word surprisal is a measure of the unexpectedness of a word given its previous
words in a sentence. It is represented as probability values and computed as the
negative log likelihood of the word (3.2) [Heilbron et al., 2022]. Since the brain
predicts upcoming content based on prior knowledge, word surprisal enables in-
vestigations into how word predictability affects the brain response in natural sen-
tences. Studies have linked higher surprisal values to longer reading times as well
as to increased activation in language-related brain areas as measured by functional
MRI [Lowder et al., 2018]. Recent research has successfully used the LLM GPT-2
to generate estimates of word surprisal to capture semantic and lexical processing
in normal hearing subjects [Heilbron et al., 2022; Anderson et al., 2023]. Word sur-
prisal is calculated using the negative log likelihood of the probability of the next
word given its previous context. For a word wt at position t in a sequence, given the
context of previous words w1,w2, . . . ,wt−1, the surprisal is defined as:

Surprisal(wt) =− logP(wt | w1,w2, . . . ,wt−1) (3.2)
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Implications for Speech Processing Models. By investigating whether word sur-
prisal from GPT-2 improves prediction accuracy/correlation in speech processing
models, we can gain a deeper understanding of how linguistic context influences
neural responses during speech comprehension. This knowledge could lead to the
development of more robust speech processing algorithms and models, with appli-
cations in fields such as automatic speech recognition and natural language under-
standing.
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4
Background: Neural and
Computational Models in
Speech Processing

This chapter investigates the intersection of neural and computational models in
speech processing, focusing on tools and techniques that facilitate the understanding
and analysis of how the brain processes language. It will introduce the Eelbrain
toolkit for modeling neural responses and examine the architecture and capabilities
of the GPT-2 language model in natural language processing tasks.

4.1 Eelbrain Toolkit

Eelbrain is a Python toolkit that makes time-lagged regression, using TRFs, easy
and accessible to model neural responses to speech and language processes and
evaluate them against electrophysiological brain responses, e.g. EEG recordings.
The approach is based on the assumption that the brain processes are continuous,
non-linear and hierarchical. The brain signals can be broken down into separate
responses linked to various predictor variables. This can be done by estimating a
mTRF and the approach has provided valuable insights into the unfolding dynamics
of perception and cognitive processes over time [Brodbeck et al., 2021].

4.2 Language Models for NLP-tasks (GPT-2)

Model Training and Architecture
During training, the language model learns to predict the next word, or token, in a
sentence based on preceding input, enabling it to grasp complex linguistic structures
and meanings. A token is the basic unit of text used in natural language processing,
typically representing words or punctuation. The model consists of neural network
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layers that compute hidden states for each token, capturing contextual information.
To predict the next token, GPT-2 compares these hidden states with token embed-
dings, estimating the probability distribution over potential tokens. GPT-2 operates
in an autoregressive manner, generating one token at a time based on preceding
tokens, thus crafting cohesive sentences [OpenAI, 2019].

Hierarchical Prediction
A study has been investigating the hierarchy of linguistic prediction during natural
speech comprehension by using the LLM GPT-2 to quantify contextual predictions
[Heilbron et al., 2022]. The study found that the brain uses continuous probabilistic
prediction of upcoming speech to support interpretation, similar to how GPT-2 pre-
dicts upcoming input. The results support hierarchical predictive processing, indi-
cating that word prediction informs phoneme prediction, and that the prediction oc-
curs spontaneously at multiple levels of abstraction. This suggests that the brain and
LLMs share similar mechanisms for processing language [Heilbron et al., 2022].

Zero-Shot Task Transfer
Using language models for natural language processing tasks has led to several
key findings and implications, such as Zero-shot Task Transfer which demonstrates
the versatility and adaptability of language models to handle various tasks beyond
their original training objectives. Additionally, language models can engage in un-
supervised multitask learning, learning and performing various tasks demonstrated
in natural language sequences without interactive communication. This showcases
their ability to generalize to various tasks as well as their versatility and adaptability
in handling different natural language processing tasks effectively [Radford et al.,
2019].

Importance of Diverse Datasets
The success of zero-shot task transfer is influenced by the model’s capacity, with
larger models exhibiting improved performance across tasks. It’s essential to build
large and diverse datasets for training language models, gathering natural language
demonstrations across different domains and contexts (sources like Common Crawl
provide valuable data for this purpose) [Radford et al., 2019].

Model Sizes and Parameters
GPT-2 comes in different sizes with varying numbers of layers and dimensions. The
model sizes and corresponding parameters are as follows

• 117M: 12 layers, 768 dimensions

• 345M: 24 layers, 1024 dimensions

• 762M: 36 layers, 1280 dimensions
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• 1542M: 48 layers, 1600 dimensions

Byte Pair Encoding (BPE)
GPT-2 employs a Transformer-based architecture, enabling it to estimate the prob-
ability of any Unicode string, which the model treats as sequences of UTF-8 bytes.

GPT-2 uses Byte Pair Encoding (BPE) as part of its input representation strategy.
Directly applying BPE to byte sequences can lead to suboptimal token merges, par-
ticularly for common words. This can result in inefficient token allocation and frag-
mentation of words across multiple vocabulary tokens. To address this issue, Rad-
ford et al. [Radford et al., 2019] suggest a modification where BPE does not merge
symbols from different character categories (e.g., alphabetic characters, punctua-
tion symbols) for byte sequences, with an exception for spaces. This is done with
the aim to improve the efficiency of token allocation and reduce fragmentation of
words across multiple vocabulary tokens when using BPE with byte sequences.
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5
The Data

The data utilized in this thesis were collected in a study by Eriksholm Research Cen-
tre. For comprehensive details regarding the dataset, readers are referred to [Alick-
ovic et al., 2021]. The study was approved by the ethics committee, and all subjects
signed a written consent. The experiment initially involved 34 hearing aid users,
aged 21 and 84 years. However, due to missing or poor-quality data, this thesis uses
data from 28 of these subjects. Throughout the thesis, all subjects are identified by
an ID number, such as ID1031.

5.1 Experimental Setup

The experimental setup is illustrated in Figure 5.1 and aimed to simulate a cocktail
party effect. Subjects were placed in a sound-proofed room surrounded by six loud-
speakers. Two loudspeakers were positioned in front of the subject at slight offset
angles symmetrically from the center, while the remaining four were symmetrically
distributed behind the subject. Participants were exposed to 4-talker babble noise
(3 dB SNR) from each of four background loudspeakers and presented with target
(attended) and masker (unattended) speech streams from the two foreground loud-
speakers. The selection and order of the presented audio were different for each
subject, session, and trial. The target speaker was either male or female, with the
masker being of the opposite gender to the target.

During each trial, EEG data were collected from the subjects using a high-density
BioSemi ActiveTwo 64-channel montage, from which the data in this thesis were
derived. The sensor layout is illustrated in Figure 6.3

The experiment was divided into four sessions, with each session comprising 20
trials. In each session, one of four hearing aid conditions was randomly selected and
utilized. The order of conditions was randomized independently for each subject
across sessions. Before each trial, a visual prompt appeared on a screen, indicating
the gender of the speaker and the designated side for attention. The gender and
speaker positions were randomized, but the same male and female voices were used
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throughout all trials. The audio stimuli were neutral-toned Danish speech streams
in WAV format with a sampling frequency of 44.1 kHz. The speakers maintained
a consistent rhythm and pauses longer than 200 ms had been removed. Each trial
began 5 seconds after the start of the babble noise and lasted for 33 seconds.

Experimental Setup

Figure 5.1 Schematic of the experimental setup and duration of the speech streams played
for one trial.
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6
Method

6.1 EEG

The preprocessing of the EEG data was done prior to this thesis project by Johanna
Wilroth and included e.g. referencing, resampling, removing artifacts, and man-
ual Independent Component Analysis (ICA). Further details about the dataset can
be found in [Alickovic et al., 2021]. To facilitate its utilization with the Eelbrain
toolbox, the data underwent conversion into an NDVar (N-dimensional variable), a
widely employed data container in neuroscience. This EEG-NDVar contained tem-
poral information alongside EEG signals from each channel in the montage and
trials within a session, with four sessions per subject.

The EEG electrode montage was modeled after the Biosemi64 configuration, omit-
ting the two reference channels, also known as mastoid channels, labeled ‘EXG1’
and ‘EXG2’. Following this setup, EEG signals underwent bandpass filtering within
the 1 Hz to 8 Hz range, employing a finite impulse response (FIR) filter, as this fre-
quency band aligns with auditory processing in the brain [Zion Golumbic et al.,
2013].The FIR-filter used zero-phase filtering, ensuring that the temporal character-
istics of the signals are preserved, which is crucial for TRF analysis. Subsequently,
the EEG data was downsampled from its original 256 Hz to 64 Hz. Given that
the EEG recording extended beyond the duration of the target and masker speech
streams playback, it was padded to synchronize with the start and stop times of
the speech streams. Finally, the time axis was re-centered to zero for coherence
with subsequent analyses. Examples of the resulting EEG signals for a trial can be
viewed in Figure 6.1 (64 channels) and Figure 6.2 (one channel).
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64 Channel EEG Example

Figure 6.1 Example of the EEG data for one subject, and trial, representing all the 64
channels.

Single Channel EEG Example

Figure 6.2 Example of the EEG data for one trial measured by the ‘Cz’ channel.

Sensors
For most of the analysis, 17 electrodes from the fronto-central region were used
to reduce the influence of channels that might capture neural activity unrelated to
the auditory stimuli. An illustration of the EEG montage and the selected sensors,
marked in blue, can be seen in Figure 6.3. The chosen channels cover areas of the
brain involved in auditory processing, including the auditory cortex and regions
associated with attention and working memory related to auditory stimuli, see Sec-
tion 3.5 for reference.
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Annotation. The channels are named after the brain region they capture:

Brain regions: F - Frontal, T - Temporal, C - Central, P - Parietal, O - Occipital,
I - Inion.

Positions: A - anterior, z - midline

Odd and Even Numbers: Odd numbers (1, 3, 5, 7, 9) indicate electrodes on the
left hemisphere, while even numbers (2, 4, 6, 8, 10) indicate electrodes on the right
hemisphere.

EEG Sensor Montage

Figure 6.3 Depiction of the EEG sensor montage. The 17 channels chosen for analysis are
marked with blue circles.

6.2 Predictor Variables

The features extracted from the audio files were the acoustic envelopes, word on-
set times, and phonetic features. Word surprisal values were computed from tran-
scriptions using a GPT-2 model and combined with the word onsets to create the
surprisal. Further details are given in the text below.

These features were used as predictor variables in the training of the (m)TRF mod-
els. For each subject, session, and trial, these features were saved as NDVars, match-
ing the format of the EEG data, with the additional dimension indicating whether
the specified audio file was used as the target or masker speech.
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Envelopes
The dataset included all the speech tracks used in the experiment as target and
masker speakers, as well as babble noise. However, only the speech tracks were
used in the analysis. Acoustic envelopes were extracted from WAV files using Eel-
brain’s function for computing the Hilbert envelope. These envelopes were then
bandpass filtered, using a zero-phase FIR filter, within the 1 Hz to 8 Hz range and
were resampled to 64 Hz to align with the frequency content and sampling rate of
the EEG. Figure 6.4 shows an example plot of one of the resulting envelopes.

Envelope Example

Figure 6.4 Example of the filtered acoustic envelope from one trial. The duration is 33 s
and the sampling frequency is 64 Hz.

Word and Phoneme Onsets
The features ’word onsets’ and ’phoneme onsets’ both encode the starting time, or
onset, of said feature during speech. Complementary information about the audio
files was provided in Textgrid files [Team, 2024] and processed using Matlab. The
word onsets and phoneme onsets were extracted along with a word list for every
speech audio file.1 The onset of a word or phoneme is represented by an impulse
with an amplitude of one, while all other samples, including the onsets of silent
pauses, are set to zero. An example of word onsets can be seen in Figure 6.5, where
every vertical line represents the onset of a word. The phoneme onsets were used to
create the phonetic features.

1 A script authored by Yen-Liang Shue was used to read the Textgrid files, and a function developed
by Sara Cartas was utilized to extract the phoneme feature map, word onset times, and list of words
from each audio track.
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Word Onset Example

Figure 6.5 Example of the word onsets from one trial.

Phonetic Features
The phonetic features were constructed using a phonetic feature matrix and a pho-
netic occurrence matrix, containing the onsets of each phoneme in the speech track.
The phonetic feature matrix is a binary representation of Danish phonemes and their
corresponding phonetic features. The matrix consists of 65 rows and 21 columns.
Each row corresponds to a specific Danish phoneme, and each column represents
a distinct phonetic feature. The presence of a feature in a phoneme is indicated by
a value of one, while its absence is indicated by a value of zero, see Figure 6.6 for
reference. The phonetic features include properties such as voicing, place of artic-
ulation, manner of articulation, and other articulatory and acoustic characteristics.
When this matrix is multiplied by a time-dependent phonetic occurrence matrix, it
provides a temporal representation of phonetic features present in an audio track.
An example of a resulting phonetic feature map is shown in Figure 6.7, where row
is a feature and every vertical line is the onset of that feature.
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Phonetic Feature Matrix

Figure 6.6 The phonetic feature matrix used to construct the phonetic feature map. Each
row corresponds to a phonetic feature and the numbers in the columns refer to absence (0 -
purple) or presence (1 - yellow) of the phoneme specific to that column.

Phonetic Features Example

Figure 6.7 Example of a phonetic feature map for one trial. Each row represents a phonetic
feature and the onsets of it.

Surprisal
To calculate word surprisal, a Python function was created which takes a string of
text as input and computes surprisal values for each word in the text. The tokenizer
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and model used to calculate the surprisal of the speech was the pre-trained GPT-2
model ‘KennethTM/gpt2-medium-danish’ that has been fine-tuned to the Danish
language [KennethTM, 2021]. The training data used to fine-tune the model is part
of the ‘oscar’ dataset, with a context length of 21,024 tokens. These were loaded
using the Auto classes from the Transformers library in Hugging Face [Wolf et al.,
2020].

The model processed the input word by word, and therefore the context when calcu-
lating the probability of a word in that sequence is the previously processed words.
Surprisal values quantify the unexpectedness of a word given past context. The
wordlists from each audio file were concatenated as text string objects and were fed
to the Python function separately.

First, the input text was tokenized using the tokenizer, which returned tokenized
representations in the form of tensors. A tensor is a multi-dimensional array that
generalizes scalars, vectors, and matrices to higher dimensions, enabling the com-
plex computations required for tasks such as language modeling with GPT-2. Then,
the text was encoded again using the same tokenizer to obtain tokenized text ten-
sors. Next, predictions were generated by passing the tokenized text tensors through
the model. The predictions consist of logits, which represent the model’s estimated
probabilities for each token. The function iterates through each token in the tok-
enized text and calculates the softmax probabilities for each token prediction.

When text is tokenized, it is broken down into smaller units such as words or sub-
words, each of which is assigned a unique identifier called a token ID. However, in
the tokenization scheme, words or subwords got broken down into subword units
in the byte pair encoding (BPE) [Radford et al., 2019]. An additional function was
implemented to bypass this and its basic concept is illustrated in Figure 6.8. It iden-
tifies the boundaries of each word in the original text and returns a list containing
the word IDs corresponding to the original words in the input text. These word IDs
allow for mapping between individual words in the text and their respective posi-
tions in the tokenized sequence. For each word, the function calculates its surprisal
value by summing the negative logarithm of the predicted probability of each to-
ken in the word. Finally, the function returns a tuple containing the word list and
corresponding surprisal values.
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From GPT-2 Tokens to Surprisal Values

Figure 6.8 Example of surprisal calculation for words that had been split during the tok-
enization.

To align the surprisal values with the EEG signal, they were synchronized with the
word onset times. In this alignment, each surprisal value corresponds to an instance
precisely at the onset time of the word. In Figure 6.9, an example of surprisal is
plotted, where the vertical lines represent the onset of a word and the amplitude is
the level of surprise. At all other time points, the values are set to zero. The same
was done for the word list. The surprisal data was then saved along with the acoustic
features to be used as predictor variables for the linear models.
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Word Surprisal Example

Figure 6.9 Example of word surprisals for one trial.

Frequency Content. Research has revealed that semantic information, such as
word surprisal, is encoded in EEG activity at higher frequency ranges compared
to acoustic information, notably up to 30 Hz [Zion Golumbic et al., 2013]. To de-
termine the best-suited preprocessing methods for EEG and surprisal signals, an
analysis was conducted involving various surprisal TRF models and their correla-
tion with EEG data. This analysis utilized four sets of EEG signals, each processed
differently: one underwent bandpass filtering between 1 Hz to 30 Hz, another be-
tween 1 Hz to 8 Hz, a third between 0 Hz to 8 Hz, and the fourth underwent highpass
filtering above 1 Hz followed by resampling to 32 Hz. Similarly, four sets of the sur-
prisal signal were prepared: one remained unfiltered, another was bandpass filtered
between 1 Hz to 8 Hz, a third between 0 Hz to 8 Hz, and the fourth was highpass
filtered above 1 Hz before resampling to 32 Hz. The signals that weren’t resampled
for the analysis had a sampling frequency of 64 Hz. The resulting combinations, as
outlined in Table 6.1, were used to train TRF models, and their mean correlation
values were subsequently compared.

Table 6.1 Different combinations of EEG signal and word surprisal as input when training
surprisal TRF models. The EEG signal and word surprisal stimulus were preprocessed in
different ways through filtration and resampling.

model nr. Word Surprisals EEG signal
1 Unprocessed Bandpass filtered 1-30 Hz
2 Unprocessed Bandpass filtered 1-8 Hz
3 Bandpass filtered 1-8 Hz Bandpass filtered 1-8 Hz
4 Bandpass filtered 0-8 Hz Bandpass filtered 0-8 Hz

5 Highpass filtered >1 Hz, re-
sampled to 30 Hz

Highpass filtered >1 Hz, re-
sampled to 30 Hz
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6.3 Linear Model

The Boosting Algorithm in Eelbrain was used to train TRF- and mTRF models
of different predictor variable combinations and the EEG signal. It is resilient to
overfitting and favors sparsity in the TRFs as well as implements an early stopping
strategy [Brodbeck et al., 2021].

The data was divided into 10 partitions and reserving 10% of the data for validation
and 10% for training, see Figure 6.10 for reference. When using multiple predictors,
the selective stopping option was used to stop the training when a single predictor
would eventually start to overfit.

The time window was set from -100 ms to 400 ms for all models, except those that
include the surprisal predictor which instead used a time window from -100 ms to
700 ms. The larger time window was used for surprisal as it has been proven that
responses related to semantics are processed later in the brain than acoustic stimuli.
The basis function is a meta-parameter that sets the length of the basis of windows
for the kernel. A longer basis makes the TRF more smooth and realistic in shape to
neural signals. This parameter was set to 100 ms in the algorithm.

Partitions in Cross-validation

Figure 6.10 Partitioning of the data for cross-validation using data from one session (20
trials). The data have been divided into 10 partitions. The test folds are depicted in yellow,
the validation folds in light blue, and the training folds in dark blue. Each fold serves as the
test set once (two folds per cycle) while the remaining data is used for training, reserving one
segment from each training fold for validation. Case (x-axis) refers to trial in this context.

Eleven different models were trained by combining the different predictor variables.
Four TRF models were calculated, one for each predictor variable: envelopes, pho-
netic features, word onsets, and surprisals. Three mTRF models had a combination
of two predictor variables, with one being the envelopes. Another three mTRFs in-
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cluded a combination of three different predictors (all including the envelopes), and
finally, one mTRF model that combined all four predictors. Additionally, four sur-
prisal TRFs were trained using surprisal and EEG data filtered and resampled in
different frequency ranges to find the best combination. The data used for training
each model included data from all trials, excluding the testing set, within one ses-
sion for one subject, using either the features from the target or the masker speaker.

6.4 Statistics

Correlation
The performance of the models was defined by the Pearson correlation (r) between
the measured EEG response (y) and the predicted response (ŷ). The Pearson cor-
relation coefficient measures the linear relationship between two variables, ranging
from −1 to 1, where 1 indicates a perfect positive linear relationship, −1 indicates
a perfect negative linear relationship, and 0 indicates no linear relationship.

Pearson correlation: r =
∑

n
i=1(yi − ȳ)(ŷi − ¯̂y)√

∑
n
i=1(yi − ȳ)2 ·

√
∑

n
i=1(ŷi − ¯̂y)2

(6.1)

Here, yi represents the individual measured EEG responses, ŷi represents the cor-
responding predicted responses, ȳ is the mean of the measured responses, ¯̂y is the
mean of the predicted responses, and n is the number of data points. The equation
calculates the Pearson correlation coefficient by comparing the deviations of each
data point from their respective means, and normalizing by the standard deviations.

Hearing Aid Conditions
The four hearing aid conditions represent combinations of two different hearing aids
with two different NR settings:

• Condition 1: Hearing Aid 1 with Noise Reduction OFF (HA 1, NR OFF)

• Condition 2: Hearing Aid 1 with Noise Reduction ON (HA 1, NR ON)

• Condition 3: Hearing Aid 2 with Noise Reduction OFF (HA 2, NR OFF)

• Condition 4: Hearing Aid 2 with Noise Reduction ON (HA 2, NR ON)

Data Analysis
In this thesis, models trained using audio stimuli from the target speech streams
as the predictor are referred to as ’Target models’ (e.g., Target Envelope model).
Similarly, models trained using data from the masker speech streams are referred to
as ’Masker models’ (e.g., Masker Envelope model). Both target and masker models
for a given session are trained on the same EEG data.
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Model Hierarchy
Each subject (28 total) has eight different models per predictor variable (TRF mod-
els) and per predictor variable combination (mTRF models). The eight models are
then divided into two speaker categories: target and masker, depending on which
speaker data they were trained on. One model was created for each session. There
are four different sessions, and each session uses a randomized condition. Each
model was trained on data from the 20 trials recorded in the respective session.
Figure 6.11 illustrates the hierarchy of the model structure, for one subject and pre-
dictor variable.

Model Hierarchy

Figure 6.11 Schematic of how the data and models are structured. Every model is trained
on 80% of the trials from one session (S1-4), using either the target (blue) or the masker
(purple) speech features as predictors of the EEG. This is done for every predictor variable
(or combination thereof) and for every subject individually.

ANOVA and Tukey’s Tests
Statistical analyses were performed using the Python toolbox statsmodels [Seabold
and Perktold, 2010], specifically employing anova_lm for one-way and two-way
ANOVAs. Analysis of Variance (ANOVA) is a statistical method used to analyze
the differences among group means in a sample. It tests the null hypothesis that the
means of several groups are equal against the alternative hypothesis that at least one
group mean is different.

In this study, ANOVA was used to investigate potential effects of the different fac-
tors condition, speaker, and predtictor variable(s) on the dependent variable, which
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was the correlation data (r). By examining the variance between and within groups,
ANOVA helps determine whether there are statistically significant differences in
means among these groups.

All EEG measures were assumed to be independent, and the dependent variable
approximated a normal distribution. Furthermore, the correlation data for each con-
dition exhibited homogeneous variances. Despite multiple measurements from the
same individual, each observation was considered independent due to variations in
stimuli across measurements.

Initially, the mean correlation for all models across all conditions, stratified by
masker and target, was computed. Subsequently, to explore potential effects on con-
dition, speaker, and model, one- and two-way ANOVAs were conducted, with dif-
ferent factors fixed. In cases where significance was observed, post-hoc Tukey’s
Honest Significant Difference (HSD) tests were employed to explore pairwise dif-
ferences between conditions or models, depending on the dependent variable in
the ANOVA test. Tukey’s test is a method used for comparing all possible pairs
of means to determine which means are significantly different from each other after
finding a significant result in ANOVA. It adjusts for multiple comparisons to control
the family-wise error rate.

6.5 Structure of Analysis

Performance of all TRF and mTRF Models
The analysis comprised multiple tests to examine the relationships between different
models, attended speaker, conditions and subjects. Firstly, the results for all mod-
els were computed and visualized using bar plots or box plots. The models were
compared based on their correlation values, averaged across the selected sensors
illustrated in Figure 6.3. The conditions were grouped in different ways: all con-
ditions together, one by one, or as ON and OFF, where ON/OFF indicate whether
an NR scheme was employed. After this initial analysis, a fourth group was formed
using conditions 2, 3, and 4, while condition 1 was omitted, see Section 6.4 Hearing
Aid Conditions.

Secondly, the models were tested for significant differences using ANOVA and post-
hoc Tukey’s HSD tests. The single predictor models, i.e., TRFs, were compared.
The mTRF models, all including the envelope as a predictor, were then compared
against the envelope TRF to determine if the added predictor variables contributed
to the model’s correlation. The models were averaged across all subjects and condi-
tions (excluding condition 1) to view the average impulse response in butterfly plots
and the sensor and connectivity in topographic maps.
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Word Surprisal and Semantic Processing
The next part of the analysis focused on the Surprisal models to evaluate the per-
formance of word surprisal as a predictor of EEG for hearing-impaired individuals,
and whether they behaved differently based on attended speaker and hearing aid set-
tings. Initially, different preprocessing methods for both the stimulus and response
signals were analyzed to find the best-suited combination for model training. The
Surprisal models were then compared by their correlation values by speaker and
condition. An additional analysis of condition 1 and 4 for the Target models was
done by analyzing the average TRF responses and topographic maps.

Subject-Specific Neural Responses
Given that EEG data and speech processing can be highly individual, especially
for HI subjects, significant information can be lost when averaging across all sub-
jects. Therefore, the correlations for the four TRF models — including Envelope,
WordOnset, PhoneticFeatures, and Surprisal models — were plotted per subject.
Butterfly plots of the TRF (i.e., the impulse response) for the best-performing sub-
ject were generated for the four TRF models, along with topographic maps of the
EEG sensor responses. From these results, the six models with the highest and low-
est correlations for the envelope model were selected for further analysis of the TRF
response.
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7
Results

7.1 Interpretation of TRF plots and Topographic maps

The interpretation of TRF plots and topographic maps provides crucial insights into
neural responses to acoustic stimuli. Below are detailed explanations for both types
of visualizations used in this study.

TRF plot
In the TRF plot:

• Y-Axis: Represents the amplitude of the neural response, which is time-
locked to the predictor variable. The responses are normalized for easier com-
parison.

• X-Axis: Represents time in milliseconds (ms), with the zero point indicating
the onset of the predictor variable.

• Colored Graphs: Show TRFs for different EEG sensors (channels). Each
line illustrates how the neural response at a specific electrode evolves over
time relative to the predictor variable.

Topographic Maps
The topographic map complements the TRF plot by showing the spatial distribution
of the neural response at a specific time point (indicated by the black vertical line in
the plot):

• Red Areas: Indicate regions with a strong positive response.

• Blue Areas: Indicate regions with strong negative responses.

• White to Lighter Areas: Indicate weaker responses.

• Blue Dots: Represent EEG sensor positions.
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7.2 Performance of All TRF and mTRF Models

This section provides an overview of the performance of the TRF and mTRF mod-
els in capturing neural responses to speech features. The analysis examines mean
correlation values across all subjects and conditions, highlighting the differences in
model performance between Target and Masker models for each predictor variable.
Additionally, the impact of hearing aid conditions on these correlations is explored,
with comparisons made between different hearing aid conditions. The results are vi-
sualized using bar plots and box plots to illustrate significant differences and trends
across the models and conditions. Furthermore, averaged TRFs and topographic
maps for Target and Masker models across are presented to provide insights into
the temporal dynamics and spatial distribution of neural responses.

Mean Correlation
The mean correlation values for all Target and Masker models were computed and
plotted separately, covering all subjects and conditions. The result is presented
in Figure 7.1, for more details, see Tables 10.9(target) and 10.10(masker) in Ap-
pendix 10.1. The speaker, determined by whether the model was trained on target
or masker speech data, significantly influences mean correlation values across dif-
ferent models, with consistently higher correlations observed for the target speaker
(p < 0.0001 for each model). On average, correlations increase by approximately
527% from the masker to the target across all models.

Figure 7.1 Bar plot illustrating the mean correlation values for all models, encompassing
all subjects and hearing aid conditions. Mean correlation values for Target models are repre-
sented in blue, while those for Masker models are shown in purple.
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Comparing Conditions: ON/OFF
To explore whether hearing aid conditions had a significant impact on mean corre-
lation values, the first analysis involved grouping the conditions into ON (including
both hearing aids with NR ON) and OFF (including both hearing aids with NR
OFF). Bar plots of these grouped conditions are shown below in Figures 7.2a and
7.2b, and a box plot is shown in Figure 7.3.

47



Chapter 7. Results

Mean Correlation - NR OFF/ON

(a) NR ON

(b) NR OFF

Figure 7.2 Bar plots illustrating the mean correlation values for all models with NR ON
and OFF. Mean correlation values for Target models are represented in blue, while those for
Masker models are shown in purple.
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Figure 7.3 Box plot illustrating the significant differences in correlation values between
Target and Masker models across the grouped NR conditions OFF and ON. Mean correlation
values for all subjects and models have been used. Target correlations are shown in blue,
Masker correlations in purple. Circles indicate subjects identified as outliers. The noise re-
duction algorithm (NR ON) provides a significant improvement in Target correlation, without
any similar, unwanted, increase in Masker correlation.

One-way ANOVAs, with the speaker as the independent factor and the condition
(ON/OFF) held constant, revealed a significant speaker effect on correlation values
across all models in the ON condition (p < 0.001), see Figures 7.2a and 7.3. In
the OFF condition (see Figure 7.2b) the speaker effect was insignificant for the
Surprisal model, significant for the WordOnset model (p < 0.01), and significant
for the rest of the models (p < 0.0001). P-values of all models can be seen in Table
10.5 in Appendix 10.1

Comparing Conditions: 1-4
To investigate each hearing aid condition separately, one-way ANOVAs were con-
ducted with the speaker as the independent factor, followed by pairwise post-hoc
Tukey tests. A box plot of the four conditions, for both Target and Masker models,
is shown in Figure 7.4.

The analysis revealed a significant speaker effect (i.e. target vs masker) for all mod-
els in all conditions (p < 0.001 for all models, except for the Surprisal model in
conditions 2 and 3 where p < 0.05), see Table 10.5 in Appendix 10.1. Interestingly,
in condition 1, the speaker did not demonstrate a significant effect for any model
except for the Envelope model, indicating a unique pattern compared to the other
conditions.
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The pairwise Post- hoc Tukey tests revealed significant differences between condi-
tions 1-2, 1-3 and 1-4 for all Target and Masker models ( p < 0.05) with condition 1
consistently yielding lower mean correlation values. For the Target models, there
were no significant differences between the rest of the condition combinations, see
Table 10.7 in Appendix 10.1. For the Masker models, there were additional signifi-
cant differences between conditions 2-3 and 2-4 (p < 0.05), where both conditions
3 and 4 had higher correlation than condition 2, see Table 10.8 in Appendix 10.1.

Figure 7.4 Box plot illustrating the significant differences in correlation values between
Target and Masker models for conditions 1,2,3 and 4. Mean correlation values for all subjects
and models have been used. Condition 1 (Hearing Aid 1 with Noise Reduction OFF) performs
significantly worse than the other conditions.

Removing condition 1
Following the findings from previous results (Figure 7.4), where the mean corre-
lation for condition 1 was significantly lower compared to other conditions, con-
dition 1 was subsequently removed. New mean correlation values for each model
were then recalculated and visualized in Figure 7.5. After removing condition 1
from the dataset, there was an average increase in mean correlation for all mod-
els of approximately 39%. Given this improvement, condition 1 was excluded for
further analysis.
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Figure 7.5 Bar plot illustrating the difference in mean correlation values for all models, in-
cluding and excluding condition 1. Mean correlation for all models, encompassing conditions
1,2,3 and 4, are depicted in dark green and denoted as “Pre” (note that this is the same result
as in Figure 7.1). Mean correlations for all models after removing condition 1 are depicted in
light green, denoted as ‘Post’.

Model Performance Comparison
To evaluate the performance of the TRF and mTRF models, their mean correlations
were compared using one-way ANOVA tests to determine if there were significant
differences among the models. The models used for the analysis were the Target
models trained on data from conditions 2, 3, and 4 lumped together. In the One-way
ANOVA, the correlation were the dependent variable, while the model type was the
independent variable.

First, the single predictor variable TRF models, trained on the acoustic envelopes,
word surprisals, phonetic features and word onsets, were compared in pairs; for
example evaluating the Envelope model vs. the Surprisal model. The same method-
ology was used for analyzing the mTRF models. To determine if incorporating
multiple predictors enhanced the model’s mean correlation, each mTRF model was
compared to the Envelope model.

The TRF response and topographic maps, averaged across all subjects and condi-
tions 2-4, were plotted, see Figure 7.6, and analyzed to provide an overview of the
model performance.

One-way ANOVA tests proved that all single predictor models were significantly
different (p < 10−6), see Tables 10.1, 10.2 and 10.3 in Appendix 10.1. The best-
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performing TRF models, based on mean correlation values across subjects, were
Envelope, PhoneticFeatures, WordOnset, and Surprisal, in descending order.

None of the mTRF models were found to be significantly different from the Enve-
lope model (p > 0.05, see Table 10.4 in Appendix 10.1. Incorporating other pre-
dictor variables therefore did not improve the performance of the Envelope model.
This result motivates the decision to exclude the mTRF models for further analysis
and instead focus on the TRF models.

Average Response - TRF models

Figure 7.6 TRFs showing how the different one-predictor variable models (Target and
Masker) capture the neural response to their respective speech features. The TRFs are aver-
aged across all subjects and conditions, excluding condition 1. Each line represents one of
the selected sensors (17 total), marked in blue in the sensor maps. The plots, which are on
different scales, include A) Envelope, B) Surprisal, C) WordOnset, and D) PhoneticFeatures.
The topographic maps indicate the situation at the time marked by the vertical lines in the
corresponding plot.

A) Envelope. In Figure 7.6 A, for the Target model, the TRF revealed a negative
peak at around 70 ms, followed by a positive peak at approximately 175 ms latency.
These peaks likely correspond to the N100 and P200 components, respectively. The
peak amplitudes were significantly lower for the Masker model, with the positive
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peak appearing somewhat earlier at approximately 130 ms latency. The lower am-
plitude indicates a weaker neural response, suggesting that the masker speech is
suppressed. The topographic map, indicates concentrated positive correlation in the
fronto-central and temporal regions of the brain for the Target model at 175 ms
latency. The Masker Envelope model elicited a weaker and more diffuse response
pattern than the target, indicating less neural reaction to the masker speech.

B) Surprisal. Surprisal responses were significantly weaker than the envelope re-
sponses, having roughly 10 times lower amplitudes. Two positive peaks were ob-
served in the TRF of the Target model, one around 100 ms and another around 330
ms latency (see Figure 7.6 B), likely corresponding to the P100 and P300 compo-
nents. Additionally, a negative peak at around 200 ms was noted. The peak am-
plitude for the Masker model TRF was lower, with less clear peaks. A potential
positive peak could be distinguished at 300 ms, possibly a P300 component. In the
topographic map corresponding to the peak at 330 ms (Target model) a strong pos-
itive response could be seen in the fronto-central and temporal brain regions. The
response was weaker and more diffused in the topographic map corresponding to
the Masker model.

C) WordOnset. In Figure 7.6 C), Two positive peaks appeared at approximately
100 ms and 300 ms for the Target model, and a negative peak can be seen at 200
ms, possibly corresponding to the P100, P300, and N200 components, respectively.
This pattern was similar to the Surprisal model, reflecting the shared onset times.
The peak amplitude was lower for the Masker model, with a positive peak at 270
ms, appearing earlier than the Target’s P300 peak at 330 ms. The neural activity
at the P300 peak was positively correlated in the fronto-central and temporal brain
regions.

D) Phonetic Features. For the Target model TRF, an early positive peak was ob-
served at 50 ms, possibly linked to the P100 component, followed by a negative
peak at approximately 130 ms and a small positive peak around 230 ms, see Fig-
ure 7.6 D. The amplitude was lower for the Masker model TRF, with the first peak
occurring at the same latency as the Target. Noticeable positive activity was present
in the bilateral fronto-central brain regions during the initial positive peak in both
the Target and Masker TRFs, although the response was weaker for the Masker
model.

7.3 Word Surprisal and Semantic Processing

This section investigates the performance of word surprisal as a predictor variable
in TRF models and examines how different preprocessing methods and hearing aid
conditions affect these models. The analysis begins by comparing different pre-
processing methods for surprisal TRFs to determine their impact on model perfor-
mance. Following this, a comparative analysis between Surprisal and Word Onset
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TRFs is conducted to explore the differences in neural encoding. Subsequently, the
significance of various hearing aid conditions, including grouped ON/OFF condi-
tions and individual conditions (1-4), is evaluated using statistical tests. The results
are visualized using box plots, TRF plots, and topographic maps to illustrate differ-
ences in neural encoding of word surprisal across conditions.

Preprocessing and Modelling of Surprisal TRF
To evaluate how different EEG frequency ranges and processing methods affect the
performance of word surprisal as a predictor variable in TRF models, different Sur-
prisal models were trained using various versions of the stimulus and response in
the training data (see Table 6.1 in Section 6.2). Subsequently, t-tests were conducted
to examine whether the different Surprisal models significantly affected the corre-
lation values with the EEG, hence testing the null hypothesis that the two models
have identical average values.

Figure 7.7 Boxplot illustrating mean correlation values for the five different word surprisal
TRF models, for the target speaker as stimulus. The models are plotted in the same order as
outlined in Table 6.1. No significant difference can be seen between the different methods to
handle the surprisal features, models 1-5.

No significant differences in the correlation values were found between the Surprisal
models for either the Target or Masker model. The similarities between the models
can be observed in Figure 7.7. Therefore, for subsequent analyses, model number
2 was used, involving unfiltered word surprisals and a low-frequency EEG signal
bandpass-filtered between 1-8 Hz, both sampled at 64 Hz. This choice was made to
maintain consistency across the models, so that they were all trained on the same
EEG signal, and to enhance reproducibility by utilizing unprocessed surprisals.
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TRF Peak Analysis: Surprisal versus WordOnset
Although word surprisal is a scaled version of word onsets, examining these features
separately allows for the identification of potential differences in neural encoding.
Therefore, the differences in peak amplitudes between the P100 and P300 peaks in
their respective TRFs, (see Figure 7.6 B and C) were compared. For this analysis,
the TRFs were averaged across all channels to obtain a representative response for
each model, as shown in Figure 7.8.

TRF Peak Comparison - WordOnset and Surprisal Target Models

(a) Surprisal TRF

(b) WordOnset TRF

Figure 7.8 Comparison of the TRF peak amplitude differences for the Surprisal and
WordOnset models. The P300 peak is higher than the P100 peak in the Surprisal TRF. The
opposite is observed for the WordOnset TRF.

When comparing the TRFs of Word Onset and Word Surprisal, a key observation is
the relative amplitude differences between the P100 and P300 peaks. For the Word
Surprisal model, the second peak (P300) is higher than the first (P100), whereas for
the WordOnset model, the second peak is lower.
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Significance of Condition for Surprisal Models
The different hearing aid conditions, including the grouped ON/OFF conditions as
well as all condition separately, were evaluated for the Surprisal model to inves-
tigate their effect on the correlation for both Target and Masker Surprisal models.
One-Way ANOVA tests, followed by pairwise Tukey’s HSD (Honestly Significant
Difference) post-hoc tests, were utilized to determine differences between condi-
tions 1-4. Data from all subjects were used in the tests and the significance level was
set to 0.05. In the ANOVA test, the correlation was the dependent factor, speaker
was the fixed factor, and condition was the independent factor.

Figure 7.9 Boxplot illustrating the correlation of the Target and Masker Surprisal model
based on data from all subjects. The data is divided by Target and Masker model, and grouped
conditions ON and OFF.
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Figure 7.10 Boxplot illustrating the correlation of the Target and Masker Surprisal model
based on data from all subjects. The data is divided by Target and Masker model, and condi-
tions 1, 2, 3, and 4.

Significance of Condition: Surprisal Models

Condition: ON/OFF 1-4

Target 0.011 0.0007

Masker 0.78 0.42

Table 7.1 One-Way ANOVA - Fixed effects: Model (Surprisal), Speaker; Independent fac-
tor: Condition; Dependent factor: Correlation. P-values are presented in the table, indicating
the statistical significance of the correlation for Target and Masker. There was a significant
difference in the Target models but not in the Masker models (α < 0.05).

The findings from the one-way ANOVA show significant effects for the grouped
ON/OFF conditions (Table 7.1 and Figure 7.9). Specifically, NR significantly im-
pacts the correlation for the Target models, although not for the Masker models.

Additionally, a notable distinction was observed between condition 1 and the re-
maining three conditions, but no significant differences were detected among con-
ditions 2, 3, and 4 for the Target models, see Figure 7.10. Post-hoc Tukey results
are shown in Table 10.11 in Appendix 10.2. The conditions showed no significant
impact for the Masker models, see Table 7.1. This suggests that condition 1 is the
sole condition that diverges significantly from the others.
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Surprisal Model Performance: Conditions 1 vs. 4
To investigate the effect of conditions 1 and 4 on correlation values for the Surprisal
model, TRFs and topographic maps were plotted for the Target models using data
from conditions 1 and 4. The results, averaged across all subjects, can be viewed in
Figure 7.11.

Target Surprisal Model - Condition 1 vs. 4

Figure 7.11 TRF plots and topographic maps of the neurological response to the word
surprisal speech feature, comparing A) condition 1 (HA 1, NR OFF) and B) condition 4
(HA 2, NR ON).

In condition 4, there is a prominent positive peak around 300 ms (P300), and two
negative peaks at approximately 200 and 400 ms (Figure 7.11 B). In condition 1,
there are no prominent peaks and the response is more noise-like in behavior. This
indicates a stronger and more coherent correlation between the Surprisal model
and EEG in condition 4 compared to condition 1, as seen in the topographic maps,
particularly in the frontal, central, and temporal regions.
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7.4 Subject-Specific Neural Responses

This section explores the variability in neural responses to speech features across
individual subjects and different hearing aid conditions. By analyzing mean corre-
lation values for each subject, model, and condition, this section aims to highlight
the individual differences in EEG signals.

All Subjects
Additional analysis to compare individual results was conducted. This involved il-
lustrating bar plots, see Figures 7.12, 7.13, 7.14 and 7.15, showcasing the mean
correlation for each subject, model, and condition.

Subject ID1030 was found to have two sessions recorded under condition 2, with
no session documented for condition 1. This discrepancy is likely due to a docu-
mentation error, though it is unknown which condition is which. Consequently, the
mean correlation from the two ’condition 2’ sessions was used, and condition 1 was
omitted from the plots for this subject. Thus, the difference in correlation between
condition 1 and condition 2 remains uncertain.

Mean Correlation by Subject and Condition: Target Envelope Model

Figure 7.12 Mean correlation per subject and condition for the Target Envelope model.
27/28 subjects had higher mean correlation values in condition 2 compared to condition 1, i.e.
when the NR for hearing aid 1 was ON vs. OFF. 18/28 subjects had higher mean correlation
values in condition 4 compared to condition 3, i.e. when the NR for hearing aid 2 was ON
vs. OFF. One subject (ID1030) had missing values in condition 1.
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Mean Correlation by Subject and Condition: Target Surprisal Model

Figure 7.13 Mean correlation per subject and condition for the Target Surprisal model.
21/28 subjects had higher mean correlation values in condition 2 compared to condition 1, i.e.
when the NR for hearing aid 1 was ON vs. OFF. 16/28 subjects had higher mean correlation
values in condition 4 compared to condition 3, i.e. when the NR for hearing aid 2 was ON
vs. OFF. One subject (ID1030) had missing values in condition 1.
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Mean Correlation by Subject and Condition: Target WordOnset Model

Figure 7.14 Mean correlation per subject and condition for the Target WordOnset model.
22/28 subjects had higher mean correlation values in condition 2 compared to condition 1, i.e.
when the NR for hearing aid 1 was ON vs. OFF. 15/28 subjects had higher mean correlation
values in condition 4 compared to condition 3, i.e. when the NR for hearing aid 2 was ON
vs. OFF. One subject (ID1030) had missing values in condition 1.
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Mean Correlation by Subject and Condition: Target PhoneticFeatures Model

Figure 7.15 Mean correlation per subject and condition for the Target PhoneticFeatures
model. 22/28 subjects had higher correlations in condition 2 compared to condition 1, i.e.
when the NR for hearing aid 1 was ON vs. OFF. 15/28 subjects had higher mean correlation
values in condition 4 compared to condition 3, i.e. when the NR for hearing aid 2 was ON
vs. OFF. One subject (ID1030) had missing values in condition 1.

The Envelope model yielded the highest mean correlation values in condition 2, 3
and 4, across all subjects, with no negative values observed (see Figure 7.12). It was
followed by the PhoneticFeatures model (see Figure 7.15), the WordOnset model
(see Figure 7.14), and lastly, the Surprisal model (see Figure 7.13). Condition 1 dis-
played noticeably lower mean correlation values on an individual level compared to
the other conditions. The gap between NR settings was larger for HA 1 (conditions
1 and 2) than for HA 2 (conditions 3 and 4), as condition 1 belongs to HA 1. For
the Envelope model, the individual results were consistent across conditions 2-4,
whereas the results varied more between conditions for the other models.
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Comparing Strong and Weak Response Subjects
To analyze and illustrate the diversity in the dataset and how differently the sub-
jects’ brains process auditory input, three strong response (SR) subjects (with high
correlation values) and three weak response (WR) subjects (with low correlation
values) were selected based on their performance with the Target Envelope model
in condition 4. The TRFs and corresponding topographic maps for each of these six
subjects are shown in Figure 7.16, with the same scale used to facilitate magnitude
comparison.

Target Envelope Model - Subject Comparison

Figure 7.16 The figure shows the TRFs and corresponding topographic maps for A) three
strong response subjects and B) three weak response subjects.

Figure 7.16 illustrates how different individuals’ brains respond to the Target En-
velope stimulus using each subject’s Target Envelope model in condition 4. The
SR subjects exhibit a prominent positive peak with a maximum magnitude within
the 160-200 ms latency range. These strong positive responses are localized in the
fronto-central region of the brain.

In contrast, the WR subjects display a smaller, less distinct peak with a maximum
amplitude within the 160-240 ms latency range. The topographic maps of these
subjects reveal a weaker and more diffuse response, yet still localized in the fronto-
central brain region.
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Discussion

8.1 Performance of all TRF and mTRF models

Evaluating grouped conditions ON/OFF
The significant speaker effect suggests that there are discernible differences in how
the EEG represents the features of the Target compared to the Masker model. Simi-
larly, the significant condition effect indicates that the activation of NR schemes has
a notable impact on correlation across models for both Target and Masker speakers
(p<0.01). The significant difference in correlation between the ON and OFF condi-
tions for both Target and Masker models (Figures 7.2a, 7.2b, 7.3) suggests that the
NR schemes, by suppressing background noise, increase the correlation between
the neural activity and the speech features. This was expected as the cognitive load
increases with the noise and disrupts both low- and high-level auditory processing
[Mattys et al., 2012]. This increase in correlation for condition ON applies to both
the Target and Masker model, which suggests that the neural tracking of the vari-
ous speech features is more effective when the background noise is reduced. The
enhancement of the masker speech may not be optimal for focusing on the target
speaker, but it is important for the ability to switch targets in a conversation with
multiple speakers.

For these results with the grouped conditions ON/OFF, we later in the analysis found
that the correlation for OFF was largely influenced by condition 1 which had a lower
performance than the other three conditions (Figure 7.4). The role of NR could
therefore not be applied to both hearing aids as it only had an effect on HA 1.

Evaluating Conditions 1-4
Condition 1 (HA 1 NR OFF) consistently displayed lower correlation values com-
pared to the other conditions across all models, for both the Target and Masker
models (Figure 7.4). This suggests that the presence of background noise is par-
ticularly evident in condition 1 which impairs the subjects’ ability to focus on and
process the speech effectively. This finding implies that the absence of NR in HA 1
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leads to reduced encoding of all speech features employed, compared to when it
was switched on (condition 2). Interestingly, since condition 1 also yielded a signif-
icantly lower correlation compared to condition 3 (HA 2, NR OFF), it is suggested
that hearing aid 2 better encodes the speech features and thus dampens background
noise better in its OFF condition than hearing aid 1. Figure 7.5 demonstrates the
improvement in mean correlation by removing condition 1 from the result.

There was no significant difference between NR ON and OFF for HA 2, which
challenges the previous hypothesis that NR strengthens the encoding of the speech
features in the EEG. This suggests that HA 2 has a robust baseline performance and
does not benefit significantly from additional NR. This finding aligns with previous
research suggesting that speech intelligibility is largely unaffected by background
noise that does not overpower the speech signal’s energy [Brungart, 2001]. About
50% of the subjects got higher correlation values when NR in hearing aid 2 was
switched ON, see Figures 7.12, 7.13, 7.14 and 7.15. It is hard to asses whether this
result is random or if it’s related to the individual abilities of the subjects such as
age, hearing loss, focus, etc.

When comparing the Masker models, the only conditions that were not significantly
different were conditions 3 and 4, i.e., the settings for HA 2, which had higher
correlations than both 1 and 2. This was not the case for the Target models, where
no difference could be found between conditions 2, 3 and 4. These results suggest
that hearing aid 2 is better at segregating the masker speech and could be beneficial
for attention switching.

Comparison of Model Performance
The performance and range of mean correlation values of each TRF model were as
expected, see all model’s correlation values averaged across all conditions and mod-
els in Figure 7.1. The Envelope model was the best performing, indicating that the
envelope is the best predictor for EEG. This aligns with previous research [Horton
et al., 2014], which states that the neural response strongly encodes the envelope.
Models based on word onset and phonetic features also showed significant repre-
sentation in brain responses, with the PhoneticFeature model providing higher cor-
relation values than the WordOnset model. The Surprisal model yielded the lowest
correlations (mean of <1%).

An unexpected outcome was that adding more predictor variables to the envelope
model did not improve the correlation. Previous research has stated that the pre-
dictive power of a TRF model increases when adding features like word onset and
phonetic features to the model [Brodbeck et al., 2021]. One factor to consider is the
sample size of the study; more robust results could be obtained by using a larger
number of subjects. A plausible explanation for this lack of improvement could be
the unique auditory processing characteristics of the HI subjects, who may process
auditory input differently than those with normal hearing. This could then result in
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less benefit from additional predictors. Age also plays a role in auditory process-
ing, with research suggesting that certain auditory processing peaks occur later in
elderly populations.

Research has indicated that in situations of reduced speech intelligibility, the brain
often relies more heavily on low-level speech features, such as the acoustic en-
velope, to comprehend speech [Mattys et al., 2012]. Due to the complex acoustic
scene of the experiment and the strong correlation values obtained for the Envelope
model, it seems plausible that this reliance on low-level features holds true for the
population analyzed in this project.

Furthermore, it has previously been observed that HI individuals often exert greater
cognitive effort during listening tasks compared to those with normal hearing [Reiss
and Molis, 2021]. This heightened cognitive demand may lead to EEG signals that
are more closely related to other cognitive processes, potentially overshadowing
certain speech-related features analyzed in this project.

Neural Response of the Speech Features
As can be observed in the TRF plot in Figure 7.6, the chosen sensors (marked in
blue in topographic maps) are relatively aligned both in timing and magnitude. Con-
sistent for all TRF models is that the temporal dynamics of Target and Masker mod-
els are approximately the same, indicating similar processing timelines for both
speech signals. Additionally, the neural responses to the Target model are consis-
tently stronger compared to the Masker model. This further fortifies the notion that
the subjects, despite their hearing impairments, can direct their attention to the tar-
get speaker in a cocktail party scenario.

The different predictors had unique impulse responses, indicating that they encode
different parts of the auditory response and at different strengths. These highlight
distinct aspects of neural encoding for different speech features. These differences
can be detailed as follows:

Envelope. The acoustic envelope is the feature that has the highest TRF amplitude
and thus shows the strongest encoded neural response across all TRF models. The
Envelope TRF plot further displays a clear N1-P2-complex, see Figure 7.6 A, which
is in line with previous research that shows that the acoustic envelope drives early
auditory cortical responses [Oganian et al., 2023].

Word Surprisal. The Surprisal TRF (Figure 7.6 B) reveal two prominent positive
peaks, likely related to the P100 and P300 peaks. Since the P300 peak is involved
in attention and higher cognitive processes [Picton, 1992; Mueller et al., 2008],
the presence of this peak suggest that the Surprisal model might in fact capture
higher- level semantic processing. The N200 peak, which is related to attention
and discrimination processes [Sur and Sinha, 2009], was also prominent, which
indicates that the Surprisal model manages to capture some level of attention.
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Word Onset. The pattern of the WordOnset TRF is very similar to that of the
Surprisal but with a higher peak amplitude, which is expected as word surprisal is a
scaled version of the word onsets. In Figure 7.6 C, there are a P100 and a P300 com-
ponent, which indicates that the Word onsets trigger higher-level processes related
to lexical integration. The presence of the N200 peak reinforces previous research
that has stated that word onsets are correlated to this component, and that they are
involved in attention and processing of phonologial information [Marslen-Wilson
and Zwitserlood, 1989].

Phonetic Features. Phonetic features (D), being closely related to word onset
times as it is also a fundamental element of speech, seem to be processed in early
auditory regions but do not seem to require the broad cortical involvement seen with
word onsets.

An interesting result is that for the PhoneticFeatures (see Figure 7.6 D), the am-
plitude of the first peak shows less variation between the masker and target mod-
els compared to the other models. This observation aligns with previous research,
which indicates that early auditory processing, occurring before approximately 85
ms, is unable to distinguish between multiple speakers in individuals with normal
hearing. [Alickovic et al., 2021]. The other two following peaks, beyond 85 ms,
are more suppressed for the masker model. More analysis would be necessary to
conclude that this also applies to hearing-impaired individuals, but it appears likely.
Consequently, this finding supports the notion that the brain’s ability to segregate
and attend to a targeted speaker in a noisy environment is a higher-order process
that occurs later in the auditory pathway.

8.2 Word Surprisal and Semantic Processing

Preprocessing and Modelling of Surprisal TRF
The mean correlation with EEG for the surprisal model did not improve despite us-
ing different variations of the surprisals and EEG parameters. This was unexpected,
as the 0-30 Hz frequency band was anticipated to capture more surprisal encoding
compared to the narrower 0-8 Hz range [Zion Golumbic et al., 2013]. However,
these results suggest that the 0-8 Hz range is sufficient to capture the essential sur-
prisal information in the data from the hearing aid users analyzed in this thesis.

Filtering the word surprisals to match the EEG signal also had no effect. Inter-
estingly, filtering the signal introduced additional effects, altering its shape. The
surprisals are represented as discrete instances between 0 and 1, though they likely
represent a continuous variable. Therefore, it was expected that filtering or interpo-
lation would improve the correlation. Alternatively, surprisals could be modeled as
a step function, considering the end time of each word.
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Word Surprisal as a Predictor Variable
One possible explanation for the low mean correlation for the Surprisal model
(<1%) could be that word surprisal is a higher-level linguistic feature that requires
more complex cognitive processing. The adverse hearing conditions of the experi-
ment may have increased the cognitive demand on the hearing-impaired individuals
to the extent that they did not comprehend enough of the target speech to encode
word surprisal effectively. Additionally, HI individuals might rely more on lower-
level acoustic features, such as the acoustic envelope, due to difficulties in process-
ing higher-level linguistic information.

It was found that there was no significant difference between the masker models for
word surprisal (Table 7.1 and Figure 7.11), unlike the other models where condition
1 had lower correlations for the masker models compared to the other conditions
(Figure 7.4). This indicates that even in conditions 2, 3, and 4, there is minimal to
no encoding of the masker stimuli. This result is expected, as word surprisal is a
semantically processed feature and should not elicit a response if the subject is not
attending to it.

The low correlation between surprisal and EEG, see Figure 7.1 and 7.13, might be
attributed to the limitations of the linear TRF models. Exploring more advanced
models, potentially incorporating nonlinearities or deep neural networks, could be a
promising avenue for future research. A more complex model could offer valuable
insights, pointing toward further investigation beyond the scope of this thesis.

Furthermore, analyzing the Surprisal model performance for the subjects individu-
ally (see Figure 7.13), it appeared more random compared to the other TRF models
(see Figures 7.12, 7.14, and 7.15). This highlights that the level of word surprisal
encoding captured by the Surprisal model is highly individual. Cognition and se-
mantics are highly individual by nature with many factors shaping our thought pat-
terns, such as the context of the situation, past experiences, culture, personality, and
state of mind.

Another important factor for Surprisal models is how the predictor variable is cre-
ated. There are different methods for calculating surprisal values, and some may
yield higher correlation values than others. These calculations depend heavily on
the LLM and how well it has been fine-tuned. This study was conducted using
the Danish language, which is relatively small and less represented in technology.
The GPT-2 model used [KennethTM, 2021] was adapted from the English medium
version, which presents a challenge due to the limited Danish training data avail-
able. As a result, the performance of the Surprisal model might be constrained. In
contrast, the same Surprisal model might be more successful if applied to English,
which has access to larger and more diverse training datasets. Alternatively, using a
language model trained on a more extensive Danish corpus could improve the accu-
racy and reliability of surprisal calculations for Danish speakers. Another option for
creating predictor variables related to word surprisal would be to use the semantic
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embeddings from the LLM instead of calculating word probability.

Comparing Surprisal and WordOnset
Since word surprisals and word onsets occur the same time, there was concern
that surprisal values may not carry meaningful information. Further analysis was
conducted to determine whether word surprisals uniquely influenced the neural re-
sponse or were a weaker version of word onsets.

TRF Estimation . The mean correlation and the neural response strength are con-
sistently lower for the Surprisal model than the WordOnset model, see Figure 7.1
and Figure 7.6 (B and C). This can partially be explained by their model charac-
teristics. During model training, the predictor variables were scaled relative to the
EEG signal. Word onsets are binary events, occurring either 100% or 0% of the
time. In contrast, surprisal values vary, reaching 100% only at their highest levels.
Consequently, words with low surprisal elicit weaker responses, which reduces the
overall amplitude of the Surprisal TRF.

Another important factor to consider is the time window selected in the boosting
algorithm (basis). The time window for the Surprisal model ranges from -100 to 700
ms, whereas the window for the WordOnset model is from 100 to 400 ms latency.
This difference was intentional to capture the semantic encoding in response to
word surprisal values, which is known to occur later in auditory processing stages.
However, this larger time window for the Surprisal model also means it is likely to
capture more noise.

TRF Comparison. The pattern of both model’s TRFs in Figure 7.6 (B and C) were
similar and the later peak, P300, was of particular interest. The pronounced pres-
ence of the P300 peak highlights the model’s potential to reflect the brain’s response
to the unexpectedness and contextual significance of words, thereby encoding com-
plex semantic information beyond basic auditory features. Figure 7.8 illustrates that
the Surprisal TRF exhibited a higher P300 peak compared to its P100 peak. In con-
trast, the WordOnset TRF shows the opposite pattern, with the P300 peak being
lower than the P100 peak. The stronger P300 response in the Surprisal TRF indi-
cates a deeper involvement in cognitive functions such as attention, memory, and
semantic integration. This suggests that word surprisal, as a feature, encapsulates
not only the timing of word onsets but also the brain’s reaction to the contextual
predictability of words, thereby providing a more comprehensive representation of
speech processing.

Shuffled Surprisal. A shuffled surprisal model could be created and trained on
several sets of shuffled surprisal values as training data to further investigate whether
surprisal is encoded in the brain response and is significantly different from noise.
This shuffled model would represent random noise and could be compared to the
Surprisal model. This approach was planned for inclusion in this thesis but had to
be omitted due to time constraints.
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Significance of Condition for Target and Masker Models
The findings from the statistical analysis of the Surprisal models differ from those
of the other models. Specifically, the ON or OFF condition did not significantly
affect the masker Surprisal model; the correlation values between the two conditions
showed no statistically significant difference (Table 10.6). This suggests that NR
strategies do not influence how masker speech surprisal is encoded in the brain
response of hearing-impaired subjects.

Similar to the other models, the target Surprisal model showed a significant differ-
ence between condition 1 and the other conditions, with no differences observed
among conditions 2, 3, and 4. The conditions had no effect on the masker models,
which could be due to little to no semantic encoding of the unattended speech. The
difference in the TRF and topographic map between conditions 1 and 4 can be seen
in Figure 7.11. The weaker and fragmented neural response in condition 1 suggests
that the auditory processing system is struggling to synchronize and process the
speech features effectively. It is evident that there is a significant difference in re-
sponse between the two conditions, with condition 4 encoding information better
than condition 1, which behaves similar to noise. This indicates that the Surprisal
models for conditions 2, 3, and 4 model information that is distinct from random
noise.

8.3 Subject-Specific Neural Responses

Consistency and Variability Across Subjects
Examining the individual correlation values for the target models (Figure 7.12, 7.13,
7.14, and 7.15) reveals that the results are relatively consistent across subjects, and
that extreme outliers do not significantly influence the mean correlation values. The
Envelope model demonstrated the highest and most consistent correlation values
across all conditions, except for condition 1. In this condition, the correlations were
mostly negative, a pattern observed in the other feature models as well. This fur-
ther supports the notion that the Envelope is the highest correlated model and that
condition 1 has the lowest correlation of the conditions.

It might seem reasonable to expect that subjects would perform consistently across
all sessions; however, the individual nature of hearing loss means that preferences
for different hearing aids and the use of NR are also highly individual. Mental fa-
tigue is another important factor; subjects are likely to be more fatigued during
session 4 than session 1. The adverse conditions in the experimental set up is de-
signed to increase the cognitive load and thus the fatigue. Additionally, practice
effects may play a role, with subjects potentially performing better in later sessions
due to increased familiarity with the task. The significance of session order has not
been explored further in the analysis but is an interesting subject for future work.
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Although the different models are trained on the same EEG data, a strong correlation
for a subject in one predictor variable and condition does not necessarily guarantee
a strong correlation in other models. This variability might be due to the predictor
variables being present at varying levels across different stages of speech processing
[Mattys et al., 2012]. As the cognitive load increases, due to attentional resources
and background noise, it is more difficult to distinguish word and phoneme onsets.
The brain might reallocate its resources and rely more on contextual than acoustic
information in these situations [Mattys et al., 2012]. The envelope will be encoded
regardless of whether the subject can understand what is being said or not. [Tezcan
et al., 2023].

Strong versus Weak Response Subjects
The comparison between high and low response subjects provides valuable insights
into the variability of auditory processing within the dataset due to the three different
HA conditions.

The initial negative peaks observed in Figure 7.16 A in the SR subjects SR2 and SR3
(around 70 ms latency) could be early N100 peaks, which typically appear around
100-160 ms. The prominent positive peak observed in the SR subjects is likely the
P2 peak, usually expected around 200-300 ms. Together they form an N1-P2 com-
plex. These strong positive responses are localized in the fronto-central region of
the brain, indicating efficient auditory processing and strong neural encoding of the
target speech features. The clear responses observed in the TRFs and topographic
maps of the SR subjects align with the theories of neural tracking. The N100 and
P200 peaks, generally associated with early sensory processing of auditory stimuli
and attention discrimination, are prominently featured in these subjects. The promi-
nence of these peaks suggests a more efficient initial auditory processing and better
cognitive processing of the target stimuli compared to the WR subjects.

Within this comparison, a late N200 peak (typically expected around 200-300 ms)
is only prominent in subject SR1 (at approximately 300 ms) among all subjects,
both weak and strong. The N200 peak is often linked to attentional allocation and
cognitive control. Therefore, the presence of this peak in SR1 indicates a better allo-
cation of attention and cognitive resources towards processing the auditory stimuli.
A similar pattern was observed for the WR subjects shown in Figure 7.16 B: two
subjects, WR1 and WR2, exhibited an N100 peak, while the third subject, WR3,
displayed a late N200 peak. The response amplitude was however lower than for
the SR subjects.

The differences between the strong and WR subjects indicate significant variability
in how effectively hearing-impaired individuals’ brains can process and respond
to auditory stimuli. The observation that only one subject exhibits a visible N200
peak, even among those selected based on their high correlation values, highlights
the diversity among hearing-impaired subjects.
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Another factor to consider is the diversity within the population. The subjects had
varying ages and severity of hearing loss. For further research, it would be interest-
ing to consider these factors as they affect the peak amplitude and latency [Mueller
et al., 2008].

72



9
Conclusion

This thesis explored the neural encoding of speech features in hearing aid users,
utilizing TRF and mTRF models. The primary objective was to investigate how
the different speech features acoustic envelope, phonetic features, word onsets and
word surprisals correlate with EEG signals during speech processing in a competing
speech scenario. Additionally, the study aimed to assess the impact of hearing aid
settings on these correlations.

The TRF and mTRF Models
Key findings were, consistent with previous research, that the Envelope models
were the best predictors of EEG signals as they provided the highest mean cor-
relation value. Following them in performance were the PhoneticFeatures models,
succeeded by WordOnset and Surprisal models. The mTRF models, combining the
envelope and the other features as predictor variables, did not improve the correla-
tion. This suggests that, for individuals with hearing impairment, in high-cognitive
demand scenarios, low-level acoustic features are likely the most critical for speech
processing. Moreover, distinct neural encoding was observed for all speech features.
Early processing stages correlated with the acoustic envelope and phonetic features,
while later neural responses were influenced by word onset and word surprisal.

Word Surprisal
The Surprisal model yielded the lowest correlations, potentially due to the higher-
level cognitive processing required for the encoding of word surprisal, which might
be less accessible to individuals with hearing impairments under adverse listening
scenarios. Some representation of word surprisal could however be found in the late
neural responses, specifically the P100, N200, and P300 components. Differences
between the Surprisal models and the WordOnset models suggest that the word
surprisal could be used to predict some semantic encoding in the neural response.
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Effect of Speaker (target vs masker)
Except for condition 1 (HA 1, NR OFF), all models and conditions showed signif-
icant differences for both Target and Masker models. This indicates that attended
speaker could be distinguished from the EEG response. Interestingly, the Surprisal
model was the only Masker model where condition 1 did not significantly differ
from the other conditions. This suggests that word surprisal from the masker speaker
is less represented in the neural response compared to other speech features.

Effect of Hearing Aid Conditions
Condition 1 (HA 1, NR OFF) consistently showed lower correlations across all
models. There were no significant differences in correlation between the other three
conditions. In other words, the NR had a reinforcing effect on the correlation for
hearing aid 1 but not for hearing aid 2. The significant difference between condi-
tion 1 and condition 3 (HA 2, NR OFF) suggests that hearing aid 2 may offer more
effective noise suppression even in its OFF state, indicating potential variations in
device performance.

Need of Individualised Hearing Aids
The comparison of TRFs and topographic maps for SR and WR subjects underlines
the importance of individual differences in neural processing of auditory stimuli
among hearing-impaired individuals. Recognizing these differences can guide the
development of more effective, personalized hearing aid technologies that cater to
the specific neural processing characteristics of each user.

Implications for Future Research
The findings in this thesis suggest that incorporating more advanced models, e.g.
non-linearity or deep neural networks, could improve the predictive power, espe-
cially in capturing the encoding of word surprisal. Additionally, using LLMs trained
on larger and more diverse datasets could enhance the reliability of linguistic feature
encoding in the neural responses when extracting word surprisal. This is particularly
important when dealing with less represented languages like Danish.

Furthermore, this area of research could benefit from further investigation involving
subjects using hearing aids, with larger sample sizes and more speech features such
as cepstrum analysis and embeddings from the LLM. It would also be interesting
to investigate individual differences between subjects such as age and severity of
hearing loss.

Our results indicate the significance of speech features in comprehending the speech
processing of individuals using hearing aids. This insight could pave the way for the
future advancement of hearing aids, which are not only customized to individual
needs but also adapted to their distinct neural responses.
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10
Appendix

10.1 All TRF and mTRF model performances

Model effect

Table 10.1 One-Way ANOVA - Fixed effects: Condition (ON), Speaker (T); Independent
factor: Model (TRFs); Dependent factor: Correlation. P-values are presented in the table,
indicating the statistical significance of the correlation for that particular model combination.

Model Phonetic Features Surprisals Word Onsets
Envelope 2e-08 2e-23 8e-20

Phonetic Features 7e-27 2e-28
Surprisals 3e-5

Table 10.2 One-Way ANOVA - Fixed effects: Condition (4), Speaker (T); Independent
factor: Model (TRFs); Dependent factor: Correlation. P-values are presented in the table,
indicating the statistical significance of the correlation for that particular model combination.

Model Phonetic Features Surprisals Word Onsets
Envelope 3e-5 3e-13 5e-11
Phonetic Features 7e-15 7e-15
Surprisals 6e-10

Table 10.3 One-Way ANOVA - Fixed effects: Condition (2+3+4), Speaker (T); Indepen-
dent factor: Model (TRFs); Dependent factor: Correlation. P-values are presented in the table,
indicating the statistical significance of the correlation for that particular model combination.

Model Phonetic Features Surprisals Word Onsets
Envelope 7e-13 2e-35 7e-30
Phonetic Features 4e-15 2e-23
Surprisals 9e-07
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Table 10.4 One-Way ANOVA - Fixed effects: Condition (2+3+4), Speaker (T); Indepen-
dent factor: Model (Envelope versus mTRFs); Dependent factor: Correlation. P-values are
presented in the table, indicating the statistical significance of the correlation for that partic-
ular model combination.

mTRF models Envelope
Envelope+PhoneticFeatures 0.75
Envelope+Surprisal 0.90
Envelope+WordOnset 0.92
Envelope+PhoneticFeatures+WordOnset 0.84
Envelope+Surprisal+PhoneticFeatures 0.74
Envelope+Surprisal+WordOnset 0.11
AllPredictors 0.79

Speaker Effect

Table 10.5 One-Way ANOVA - Fixed effects: Model, Condition; Independent factor:
Speaker; Dependent factor: Correlation. P-values are presented in the table, indicating the
statistical significance of the correlation for that particular model and condition combination.
α < 0.05

Model Condition ON OFF C1 C2 C3 C4 All
Envelope 5e-21 0.002 0.010 7e-11 7e-10 1e-11 4e-16
PhoneticFeatures 3e-12 9e-5 0.497 4e-07 2e-07 3e-6 9e-13
Surprisal 4e-5 0.101 0.751 0.020 0.048 4e-4 5e-5
WordOnset 3e-09 0.002 0.933 4e-5 1e5 2e-5 7e-10
Envelope+PhoneticFeatures 8e-18 3e-5 0.824 3e-09 1e-09 7e-10 3e-17
Envelope+Surprisal 2e-21 4e-4 0.227 1e-10 1e-09 3e-12 3e-18
Envelope+WordOnset 8.e-22 8e-4 0.053 3e-11 3e-10 6e-12 2e-17
Envelope+PhoneticFeatures+WordOnset 3e-18 3e-5 0.816 2e-09 1e-09 34e-10 2e-17
Envelope+Surprisal+PhoneticFeatures 6e-19 9e-5 0.560 4e-09 3e-09 3e-11 4e-17
Envelope+Surprisal+WordOnset 1e-23 6e-4 0.177 4e-12 8e-11 5e-13 2e-18
AllPredictors 6e-19 1e-4 0.498 3e-09 2e-09 3e-11 5e-17

Condition Effect

Table 10.6 One-Way ANOVA - Fixed effects: Speaker; Independent factor: Condition
(ON/OFF); Dependent factor: Correlation. P-values are presented in the table, indicating the
statistical significance of the correlation for Target and Masker.

Condition: ON/OFF
Target 6e-42
Masker 5e-10
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10.1 All TRF and mTRF model performances

Table 10.7 Target models: Post-hoc Tukey’s results for the effect of Condition between
Conditions 1, 2, 3, and 4. TRUE (green) indicates a significant difference between the com-
bination of conditions, FALSE (red) indicates no significant difference. α < 0.05

Condition 2 3 4
1 TRUE TRUE TRUE
2 FALSE FALSE
3 FALSE

Table 10.8 Masker models: Post-hoc Tukey’s results for the effect of Condition between
Conditions 1, 2, 3, and 4. TRUE (green) indicates a significant difference between the com-
bination of conditions, FALSE (red) indicates no significant difference. α < 0.05

Condition 2 3 4
1 TRUE TRUE TRUE
2 TRUE TRUE
3 FALSE

Mean Correlation Values for Target and Masker Models (All
Conditions)

Table 10.9 Target models: Mean correlation values for all models (Pearson correlation)

Model Correlation
Envelope 0.049
PhoneticFeatures 0.025
WordOnset 0.010
Envelope+WordOnset 0.049
Surprisal 0.005
Envelope+Surprisal+PhoneticFeatures+WordOnset 0.047
Envelope+PhoneticFeatures 0.047
Envelope+Surprisal 0.049
Envelope+PhoneticFeatures+WordOnset 0.048
Envelope+Surprisal+WordOnset 0.042
Envelope+Surprisal+PhoneticFeatures 0.047
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Table 10.10 Masker models: Mean correlation values for all models (Pearson correlation)

Model Correlation
Envelope 0.011
PhoneticFeatures 0.003
WordOnset -0.010
Envelope+WordOnset -0.010
Surprisal -0.002
Envelope+Surprisal+PhoneticFeatures+WordOnset 0.007
Envelope+PhoneticFeatures 0.008
Envelope+Surprisal 0.009
Envelope+PhoneticFeatures+WordOnset 0.008
Envelope+Surprisal+WordOnset 0.008
Envelope+Surprisal+PhoneticFeatures 0.007

10.2 Surprisal models

Condition effect

Table 10.11 Target models: Post-hoc Tukey’s results for the effect of Condition between
Conditions 1, 2, 3, and 4. TRUE (green) indicates a significant difference between the com-
bination of conditions, FALSE (red) indicates no significant difference. α < 0.05

Condition 2 3 4
1 TRUE TRUE TRUE
2 FALSE FALSE
3 FALSE
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